
Tight and Optimal Reductions for Signatures based on
Average Trapdoor Preimage Sampleable Functions and

Applications to Code-Based Signatures ?

André Chailloux2 and Thomas Debris-Alazard1,2

1 Information Security Group, Royal Holloway, University of London
2 Inria de Paris, EPI COSMIQ
andre.chailloux@inria.fr,

thomas.debris@rhul.ac.uk

Abstract. The GPV construction [18] presents a generic construction of signature schemes
in the Hash and Sign paradigm. This construction requires a family F of trapdoor preimage
sampleable functions (TPSF). In this work we extend this notion to the weaker Average
TPSF (ATPSF) and show that the GPV construction also holds for ATPSF in the Random
Oracle Model. We also introduce the problem of finding a Claw with a random function
(Claw(RF)) and present a tight security reduction to the Claw(RF) problem. Our reduction
is also optimal meaning that an algorithm that solves the Claw(RF) problem breaks the
scheme. We extend these results to the quantum setting and prove this same tight and
optimal reduction in the QROM. Finally, we apply these results to code-based signatures,
notably the Wave signature scheme and prove tight and optimal reductions for it in the
ROM and the QROM improving and extending the original analysis of [12].

1 Introduction

Signature schemes are an important element of many cryptographic applications and are one
of the schemes standardized by the post-quantum NIST competition [23]. Assessing the exact
security (and therefore efficiency) of these schemes is therefore a very important task, both against
classical and quantum computers. The GPV construction [18] presents a generic construction
of signature schemes in the Hash and Sign paradigm. This construction requires a family F of
trapdoor preimage sampleable functions (TPSF), which informally is a collection of functions that
are hard to invert but which can be easily inverted with some trapdoor. There are two specific
properties of their construction:

1. The inversion algorithm that uses the trapdoor should have good repartition properties for
each image y. This means that for each image y, the inversion algorithm should output a
preimage x according to a certain distribution.

2. The security of the resulting signature scheme is tightly based on the collision resistance of
the family F and not on the one-wayness.

These properties were tailored for lattice based schemes where these 2 properties hold. For exam-
ple, the lattice-based FALCON signature scheme [17] is based on the GPV construction. Notice
that it is also possible to base the security on one-wayness but the security reduction is not tight.

In this paper, we extend the notion of TPSF where the property (1) above should hold only
on average for y, defining the notion of Average TPSF (ATPSF). A direct use of the leftover hash
lemma shows that we can go from an ATPSF to a TPSF with a quadratic loss in the security of
F . What we show is the following:

– We show that this quadratic loss is not necessary and that we can use ATPSF instead of TPSF
without any loss.

? The work of Debris-Alazard was supported by the grant EPSRC EP/S02087X/1.



2 André Chailloux and Thomas Debris-Alazard

– Applying the GPV construction of signature schemes from a family F of ATPSF, we show that
the security of the signature scheme ie equivalent to solving the Claw with Random Function
(Claw(RF)) problem for F . Informally, in the Claw(RF) problem, we are given a random
function H and a random f from F and we want to find (x, y) such that f(x) = H(y).

– We extend this to the quantum setting and show that our tight and optimal results also hold
in the QROM.

– We apply these results to the Wave signature scheme [12] and show more formally its classical
and quantum security.

One of the implications of these results is that:

Collision 4
Claw(RF)
m

Signature
4 One way.

This means that the collision problem is easier than the Claw(RF) problem which itself is easier
than the preimage problem. Moreover, attacking the signature scheme is equivalently hard to
solving the Claw(RF) problem in the ROM. In the case of lattices, we have:

Collision ≈ SIS3 4 Signature 4 One way = ISIS4.

In the context of code-based cryptography, things are very different. In many regimes used for
signatures, the collision problem is actually easy to solve. Therefore, we can only use the non-tight
reduction to one wayness. From there, there are two possibilities: (1) lose the factor associated
to non-tightness and have a big loss in parameters or (2) ignore the non-tightness and assume
it won’t have a practical impact. Solution (2) is of course very risky as the security proof of the
actual scheme becomes incomplete. On the other hand, those that decide on (1) have a loss in
parameters which could be unnecessary.

What we also advocate through our result is that if we want to study the concrete security
of these signature schemes in the ROM, the Claw(RF) problem is the actual problem we should
be looking at. Others that would want to construct a family of ATPSF for which the collision
problem is easier than the preimage problem can use our results to study the real security of their
schemes. Because we also prove this optimal security in the quantum ROM, our result is especially
adapted for post-quantum cryptography.

In order to prove our results, we use fairly standard techniques in the ROM based on repro-
gramming the hashing and signing oracles. In order to do this formally, we need to keep track of
the internal memory of the reprogrammed oracles - which is often a problem that is discarded in
game based reductions - and not only look at their output distributions. We take the approach
of constructing more explicitly an algorithm for the Claw(RF) problem from an attacker that at-
tacks the signature scheme instead of using the game formalism, even though we strongly inspire
ourselves from this formalism. An interesting aspect of our proof is that we manage to reprogram
only the signing oracle, and not the hashing oracle, which reduces the requirement on the family
of ATPSF functions.

For the quantum case, our proofs mainly use a result by Zhandry [29] on the indistinguishability
of close quantum oracles. Here, we need to reprogram the hash function as well since we cannot
work on the internal memory of the quantum oracles.

2 Preliminaries

Probabilistic Notation. Let D be a distribution, and X be a random variable. The notation

X
$←↩D denotes that X is distributed according to D. Furthermore, for a set S, we will denote

by U(S) the uniform distribution over S. We use the same notations for picking elements: y
$←↩D

means that y is picked according to D while y
$←↩ S denotes that y is uniformly distributed over S.

3 SIS: Short Integer Solution problem commonly used in lattice-based cryptography
4 ISIS: Inhomogeneous Short Integer Solution



Tight and Optimal Reductions for Signatures based on ATPSF 3

Sometimes when we wish to emphasize on which probability space the probabilities or the
expectations are taken, we note on the right of a symbol “:” the random variable specifying the
associated probability space over which the probabilities or expectations are taken. For instance
the probability P(E : X) of the event E is taken over the random variable X.

The statistical distance between two discrete probability distributions D1,D2 over a same space
E is defined as:

∆(D0,D1)
4
=

1

2

∑
x∈E
|D0(x)−D1(x)|.

The statistical distance ∆ satisfies the triangle inequality.
A function f(λ) is said to be negligible, and we denote this by f ∈ negl(λ), if for all polynomials

p(λ), |f(λ)| < p(λ)−1 for all sufficiently large λ.
For any 2 sets D,R, we denote by FDR the set of functions from D to R.

Query Algorithms and Oracles. For any algorithm A, we denote by |A| it’s total running
time. We will also consider query algorithms AO that will make a certain amount of calls to an
oracle O. For us, an oracle O will be a deterministic or probabilistic function for which we have
only a black box access. When we write AO, it will mean that the oracle is non specified and we
can replace O with any oracle.

For a query algorithm AO, we write |AO| = (t, q) indicating that its running time is t and that
it performs q queries to O. An algorithm can also query different oracles, which we indicate as
AO1,O2 and |AO1,O2 | = (t, q1, q2) indicates that it runs in time and perform q1 queries to O1 and
q2 queries to O2.

For any (deterministic or probabilistic) function f , we denote by Of its associated oracle, and
we will write it:

Of (x)

return f(x).

An important concept in this paper will be the concept of oracles with internal memory. We
will denote by O(x;L) a query x to oracle O which has internal memory L. If the result to this
query is y and the internal memory is changed to L′, we will write return (y;L′). This internal
memory is never revealed.

One oracle of interest will be the random oracle. It mimics a uniformly chosen random function
from FDR . We will denote this oracle ORO (the sets D and R are implicit).

ORO(x;L)

if ∃!y : (x, y) ∈ L, return (y;L)

otherwise, pick y
$←↩ Rλ, return (y;L ∪ {(x, y)})

This oracle mimics a call to a random function. Each time x is queried, a random image y is
constructed. If the same x is called afterwards, the same output y should be given. Therefore, we
have a list L that stores values (x, y) already specified by the function. If L is initialized with ∅,
we should never have x, y, y′ 6= y such that (x, y) ∈ L and (x, y′) ∈ L. For any algorithm AO, we
have:

P
(
AOg outputs 0 | g $←↩FDR

)
= P

(
AORO outputs 0 | ORO is initialized with L = ∅

)
.

Another important aspect of query algorithms is that if we consider an algorithm AO and
2 close oracles O1,O2, AO1

and AO2
will be close. This is at the core of the game formalism

presented in [27]. More formally

Proposition 1. Let AO be a query algorithm with |AO| = (t, q). Let O1,O2 be 2 oracles such
that:

∀x,L, ∆(O1(x;L),O2(x;L)) ≤ δ.
Then we have:

P
(
AO1 outputs 0

)
− P

(
AO2 outputs 0

)
≤ qδ.



4 André Chailloux and Thomas Debris-Alazard

3 Digital Signatures and EUF-CMA Security Model in a
Classical/Quantum Setting

A signature scheme S consists of three algorithms (S.keygen,S.sign,S.verify):

– S.keygen(1λ) → (pk, sk) is the generation of the public key pk and the secret key sk from
the security parameter λ.

– S.sign(m,pk, sk)→ σm : generates the signature σm of a message m from m,pk, sk.

– S.verify(m,σ,pk)→ {0, 1} verifies that σ is a valid signature of m using m,σ,pk. The output
1 corresponds to a valid signature.

Correctness. A signature scheme is defined as correct if when we sample (pk, sk)← S.keygen(1λ),
we have for each m:

S.verify(m,S.sign(m,pk, sk),pk) = 1.

Security definitions We consider the EUF-CMA (Existential Universal Forgery for Chosen Message
Attack) security for signature schemes. A key pair (pk, sk) ← S.keygen(1λ) is generated. The
goal of the adversary A is, knowing only pk, to construct a pair (m,σm) such that σm is a valid
signature for m but we give him some additional power. He can query a signing oracle OSign, that
does the following:

proc Sign(m)

σm ← S.sign(m, pk, sk)
return σm

Notice here that the signing oracle has access to pk and sk. The goal of the adversary is then in
this case to output a valid signature σm∗ for a message m∗ that has not been queried to the signing
oracle.

Definition 1. Let AO be a query algorithm, we define

AdvEUF-CMA
S (AO) = P

(
S.verify(m∗, σ∗,pk) = 1 and m∗ has not

been queried in OSign : (pk, sk)← S.keygen(1λ), (m∗, σ∗)← AOSign(pk)
)
.

For any time t and number of queries qsign, we define:

AdvEUF-CMA
S (t, qsign) = max

AO:|AO|=(t,qsign)
AdvEUF-CMA

S (AO).

For a quantum adversary, we define similarly the quantum EUF-CMA advantage as:

QAdvEUF-CMA
S (t, qsign) = max

AO:|AO|=(t,qsign)
AdvEUF-CMA

S (AO).

where the maximum is over quantum query algorithms that perform classical queries.

It is actually standard, even if the algorithm is quantum, to consider classical queries to the
signing oracle. This is because in the real life scenario that motivates this security definition,
signing queries are done to an external party that can force you to perform classical queries.

Remark 1. We could also require that the EUF-CMA condition holds for almost all key pairs
(pk, sk) and not only on average. We can also get this stronger notion, and we discuss this in
Section 6.2.



Tight and Optimal Reductions for Signatures based on ATPSF 5

4 Family of ATPSF

In this work we will use the Full Domain Hash (FDH) paradigm of signature schemes [4, 9]. The
key ingredient of this kind of constructions is a trapdoor one-way function f : D → R and a
cryptographic hash function H. The corresponding FDH scheme to sign a message m uses the
trapdoor to choose a signature x ∈ f−1(H(m)). The verification step simply consists in computing
H(m) and f(x) to ensure that f(x) = H(m). The difficulty for designing such primitives is the
fact that each time a message is signed, the signature is made public while the secret trapdoor has
been used to produce it. Therefore, we must ensure that no information of the trapdoor leaks after
the inversion. However, in the nice case where f is a permutation this does not matter. Indeed, the
hash of the message H(m) is classically considered as random and thus the inverse x = f−1(H(m))
will be random too and in this way distributed independently of the trapdoor. This is typically
the case for signatures schemes like RSA. Nevertheless, building one-way permutations in the
post-quantum world like in code/lattice-based cryptography is a hard condition to meet. Usually
[18, 13] functions are many-to-one and then it is non-trivial to build trapdoor candidates with an
inversion algorithm which is oblivious to the used trapdoor. Building a secure FDH signature in this
situation can be achieved by imposing additional properties [18] to the one-way function. This is
mostly captured by the notion of Trapdoor Preimage Sampleable Functions (TPSF) [18, Definition
5.3.1]. We express below this concept in a slightly relaxed way dropping the domain sampleability
condition and only assuming that the preimage sampleable property holds on average and not for
any possible element in the function range. This will be sufficient for proving the security of the
associated FDH scheme.

Definition 2. An ε-ATPSF (for Average Trapdoor Preimage Sampleable Functions (or Func-
tion Family)) is an efficient triplet of probabilistic algorithms (TrapGen, SampDom, SampPre)
where:

• TrapGen(1λ) → (f, τ). Takes the security parameter λ and outputs f : Dλ → Rλ, an effi-
ciently computable function with an efficient description, and τ , the trapdoor that will allow
to invert f .

• SampDom(f)→ x. Takes a function f : Dλ → Rλ (with an efficient description) as an input
and outputs some x ∈ Dλ.

• SampPre(f, τ , y)→ x. Takes a function f with associated trapdoor τ , an element y ∈ Rλ and
outputs x ∈ Dλ s.t. f(x) = y.

We define

εf,τ
4
=∆

(
SampDom(f),SampPre(f, τ , U(Rλ))

)
,

where SampPre(f, τ , U(Rλ)) is sampled as follows: pick y
$←↩ Rλ, return SampPre(f, τ , y). We

require that our triplet of algorithms satisfies

E(f,τ)←TrapGen(1λ) (εf,τ ) ≤ ε. (1)

The main difference with the definition of TPSF as defined [18, Definition 5.3.1] is that we

consider an average y
$←↩ Rλ instead of wanting the property for almost all y. Furthermore, it is

also asked for TPSF to verify that E(f,t)←TrapGen(1λ) (∆(f(SampDom(f)), U(Rλ))) ≤ ε′ (domain
sampleability condition) for some ε′ whereas we, a priori, don’t request anything of this kind for
ATPSF.

As we will show now in the following propositions, (i) ε-ATPSF family verifies the domain
sampleability condition of [18] with ε and (ii) Equation 1 holds for almost all y but with a loss of
a square factor.



6 André Chailloux and Thomas Debris-Alazard

Proposition 2. Let F = (TrapGen, SampDom, SampPre) be a collection of ε-ATPSF. We
have for any f, τ

∆(f(SampDom(f)), U(Rλ)) ≤ εf,τ

where for a fixed f , f(SampDom(f)) is the distribution which is sampled as follows: x← SampDom(f),
return f(x). Furthermore,

E(f,t)←TrapGen(1λ) [∆(f(SampDom(f)), U(Rλ))] ≤ ε

Proof. We write

εf,τ = ∆
(
SampDom(f),SampPre(f, τ , U(Rλ))

)
≥ ∆

(
f(SampDom(f)), f(SampPre(f, τ , U(Rλ)))

)
= ∆(f(SampDom(f)), U(Rλ))

where the first inequality uses the fact that for any deterministic function f and random variables
X and Y (see [19] for a proof), ∆(f(X), f(Y )) ≤ ∆(X,Y ). We conclude the proof by using the
definition of ε. ut

Proposition 3 ([1]). Let F = (TrapGen, SampDom, SampPre) be an ε-ATPSF and for (f, τ)
output by TrapGen(1λ). Then we have:

2εf,τ ≥
1

|Rλ|
∑
y∈Rλ

∆ (SampPre(f, y), Xy)

where Xy denotes the distribution of Xy
$←↩SampDom(f) given f(Xy) = y, meaning

∀x ∈ Dλ, P (Xy = x)
4
=P (SampDom(f) = x | f(SampDom(f)) = y) . (2)

From there,

#
{
y ∈ Rλ : ∆ (SampPre(f, y), Xy) >

√
εf,τ

}
≤ 2
√
εf,τ ,

Proof. Let us denote for all y ∈ Rλ,

py
4
=P (SampDom(f) = x | f(SampDom(f)) = y) .

We have the following computation,

∆(SampPre(f, t,U(Rλ)),SampDom(f))

=
1

2

∑
y

∑
x∈f−1(y)

∣∣∣∣P (SampDom(f) = x)− 1

|Rλ|
P(SampPre(f, τ , y) = x)

∣∣∣∣
=

1

2

∑
y

∑
x∈f−1(y)

∣∣∣∣P (SampDom(f) = x)− py
|Rλ|

+
py
|Rλ|

− 1

|Rλ|
P(SampPre(f, τ , y) = x)

∣∣∣∣
≥ 1

2

∑
y

1

|Rλ|
∑

x∈f−1(y)

|py − P(SampPre(f, τ , y) = x)| − 1

2

∑
y

∑
x∈f−1(y)

∣∣∣∣P (SampDom(f) = x)

py
− 1

|Rλ|

∣∣∣∣
=
∑
y∈Rλ

1

|Rλ|
∆ (SampPre(f, τ , y), Xy)− 1

2

∑
y

∑
x∈f−1(y)

∣∣∣∣P (SampDom(f) = x)

py
− 1

|Rλ|

∣∣∣∣ (3)



Tight and Optimal Reductions for Signatures based on ATPSF 7

Now we have for all x ∈ f−1(y) and by definition of py,

P (SampDom(f) = x)

py
=

P (SampDom(f) = x)

P (SampDom(f) = x | f(SampDom(f)) = y)

=
P (SampDom(f) = x)

P (f(SampDom(f)) = y | SampDom(f) = x) P(SampDom(f)=x)
P(f(SampDom(f))=y)

=
P(f(SampDom(f)) = y)

P (f(SampDom(f)) = y | SampDom(f) = x)

= P(f(SampDom(f)) = y) (4)

where in the last line we used the fact that f(x) = y. Therefore, by putting (4) in (3) we get,

∆(SampPre(f, t,U(Rλ)),SampDom(f)) ≥
∑
y∈Rλ

1

|Rλ|
∆ (SampPre(f, τ , y), Xy)

−∆(f(SampDom(f)),U(Rλ)).

which easily concludes the proof with proposition 2. ut

4.1 Constructing a signature scheme from ATPSF

As pointed out in [1], the fact that a collection of ATPSF verifies the preimage property for almost
all inputs is enough to build a signature scheme as in [18] and to use the security reduction given
in [18, Proposition 6.1]. Nevertheless, by doing this we loose a square factor. We propose here to
generalize the construction of [18] by adding a random salt in the signing algorithm. More precisely,
given a collection an ATPSF F = (TrapGen, SampDom, SampPre) we define the following Full
Domain Hash signature scheme SF : select a cryptographic hash function H : {0, 1}∗ → Rλ and
a random salt r of size λ0 (λ0 will be precised later). Consider the following 3 algorithms of the
signature SF :

SF .keygen(1λ) SF .sign(m,pk, sk) SF .verify(m, (x, r),pk)

(f, τ)← TrapGen(1λ) r
$←↩{0, 1}λ0 y ← H(m, r)

return (pk, sk) = (f, τ) y ← H(m, r) if f(x) = y return 1
x← SampPre(y, sk) else return 0
return(x, r)

Our aim in what follows is to give a tight security reduction of this scheme using directly the
average property of ATPS. In order to do so, we must first define different computational problems
to reduce and in particular introduce our Claw(RF) problem.

The Random Oracle Model (ROM) in this construction. In the random oracle model, we replace
the function H with a random function h : {0, 1}∗ × {0, 1}λ0 → Rλ to which we only give black
box access. Recall the EUF-CMA advantage of SF :

AdvEUF-CMA
SF (AOSF .sign) = P

(
H(m∗, r∗) = f(x∗) and m∗ has not been

queried in OSign : (pk, sk)← S.keygen(1λ), (m∗, r∗, x∗)← AOSF .sign(pk)
)
.

The ROM assumption says that any algorithm can only use H in a black box fashion and that it
behaves as a random function. This translates to the fact that A can be seen as query algorithm
not only to the signing oracle but also to the H function and that the EUF-CMA advantage is
equal to the following one:



8 André Chailloux and Thomas Debris-Alazard

P
(
h(m∗, r∗) = f(x∗) and m∗ has not been queried in OSign : h

$←↩F{0,1}
∗×{0,1}λ0

Rλ

(pk, sk)← S.keygen(1λ), (m∗, r∗, x∗)← AOSF .sign,Oh(pk)
)
.

5 One-wayness, Collision Resistance and the Claw with Random
Function problem

The interest in using trapdoor functions for signatures is that these functions should be hard to
invert without the trapdoor τ . Ideally, we want to reduce the security of the signature scheme to
the hardness of inverting the function. However, this is not always possible and we have to reduce
to other problems. We first present the notion of advantage related to one-wayness and collision
finding. We then define our Claw(RF) problem and the associated advantage.

Definition 3. Let F = (TrapGen, SampDom, SampPre) be an ATPRF. For any algorithm
A, we define

AdvOWF (A)
4
=P

(
f(x) = y : (f, τ)← TrapGen(1λ), y

$←↩ Rλ, x← A(f, y)

)
,

AdvCollF (A)
4
=P

(
f(x1) = f(x2) ∧ x1 6= x2 : (f, τ)← TrapGen(1λ), (x1, x2)← A(f)

)
.

For any time t, we also define

AdvOWF (t)
4
= max
A:|A|=t

AdvOWF (A),

AdvCollF (t)
4
= max
A:|A|=t

AdvCollF (A).

Now, we define the Claw(RF) problem.

Problem 1 (Claw with Random Function - Claw(RF )).

• Instance: a function f and a random function h to which we only have black box access.
• Goal: find x, y such that f(x) = h(y).

From there, we define the Claw(RF) advantage for any query algorithm AO.

Definition 4. Let F = (TrapGen, SampDom, SampPre) be an ATPRF.

Adv
Claw(RF )
F (AO)

4
=P

(
f(x) = h(y) : h

$←↩FDR , (f, τ)← TrapGen(1λ), (x, y)← AOh(f)

)
= P

(
f(x) = ORO(y) : (f, τ)← TrapGen(1λ), (x, y)← AORO (f)

)
For any time t and any number of queries q, we also define

Adv
Claw(RF )
F (t, q)

4
= max
AO:|AO|=(t,q)

Adv
Claw(RF )
F (AO).

Similarly, if we consider quantum algorithms, we canQAdvOWF (t), QAdvCollF (t) andQAdv
Claw(RF )
F (t, q)

where we maximize over quantum algorithms. In the case of QAdv
Claw(RF )
F (t, q), we allow quantum

queries to Oh.



Tight and Optimal Reductions for Signatures based on ATPSF 9

Proposition 4. Let F be an ε-ATPRF For any time t, we have

AdvOWF (t) ≤ AdvClaw(RF )
F (t, 1)

Adv
Claw(RF )
F (t, q) ≤ q ·AdvOWF (t)

Adv
Claw(RF )
F (t, q) ≤ AdvCollF (t+ Õ(q)) + qε+ E(f,t)←TrapGen (MNP (f))

where for (f, τ)← TrapGen(1λ), the minimal number of preimages MNP (f) is

MNP (f)
4
= min

y
(|{x : f(x) = y|}) .

Proof. We prove each inequality separately.

1. AdvOW
F (t) ≤ Adv

Claw(RF)
F (t,1). Let A be an algorithm running in time t with one-way ad-

vantage AdvOWF (t). We consider the following algorithm BOg (f): x2
$←↩ D, y

4
= g(x2), x1 ← A(f, y),

return (x1, x2). For a random g, y is a uniform element in Rλ. Moreover, since f(x1) = g(x2) is

equivalent to f(x1) = y, we have AdvOWF (A) ≤ AdvClaw(RF )
F (BOg ). Finally notice that BOg makes

a single call to g and runs in the same time as A, which concludes the proof.

2. Adv
Claw(RF)
F (t,q) ≤ q ·AdvOW

F (t). Let AO be a query algorithm running in time t, perform-

ing q queries to O with Claw(RF) advantage Adv
Claw(RF )
F (t, q). Let ORO(x;L) be the random

oracle. We construct a new procedure O′′j,y which is equivalent to ORO except the jth call that
outputs y. In the internal memory of O′′j,y, we will keep track in a index i that corresponds to
the number of times the oracle was queried +1.

proc O′′
j,y0(x;L, i)

if ∃y : (x, y) ∈ L, return (y;L, (i+ 1))
otherwise if i = j return (y0;L ∪ {(x, y0)}, (i+ 1)

else take y
$←↩ Rλ, return (y;L ∪ {(x, y)}, (i+ 1))

Notice that if j and y0 are chosen at random then this doesn’t change the behavior of the

oracle. We consider the following algorithm B(f, y0) : pick j
$←↩{1, . . . , q}. Run AORO but replace

calls to ORO with calls to O′′j,y0 . Let (x1, x2) be the output of AORO . B returns x1. We write

Adv
Claw(RF )
F (AO)

= P
(
f(x1) = ORO(x2) : (f, τ)← TrapGen(1λ), (x1, x2)← AORO (f)

)
= P

[
f(x1) = O′′j,y(x2) : (f, τ)← TrapGen(1λ),

j
$←↩{1, . . . , q}, y $←↩ Rλ, (x1, x2)← AO

′′
j,y (f)

]
≥ 1

q
P
[
f(x1) = y : (f, τ)← TrapGen(1λ), j

$←↩{1, . . . , q}, y $←↩ Rλ, (x1, x2)← AO
′′
j,y (f)

]
=

1

q
P
[
f(x1) = y : (f, τ)← TrapGen(1λ), y

$←↩ Rλ, x1 ← B(f, y)
]

where the inequality comes from the fact that when x2 is queried in O′′j,y(x2), there is a probability

of 1
q that this corresponds to the jth query on average on j which corresponds to O′′j,y(x2) = y.



10 André Chailloux and Thomas Debris-Alazard

3. Adv
Claw(RF)
F (t,q) ≤ AdvColl

F (t + Õ(q)) + qε+ E(f ,t)←TrapGenMNP(f). Let AO be a query

algorithm running in time t, performing q queries toO with Claw(RF) advantageAdv
Claw(RF )
F (t, q).

Here, AOg makes calls to a procedure Og for a random function g. We write

proc Og(x)

return g(x)

Instead of calling Og for a randomly chosen g, we use oracle ORO. We have

Adv
Claw(RF )
F (AO) = P

(
f(x1) = ORO(x2) : (f, τ)← TrapGen(1λ), (x1, x2)← AORO (f)

)
(5)

We now define another procedure O′f that is similar to ORO but we change the way y is
sampled.

proc O′
f (x;L)

if ∃y : (x, y) ∈ L, return (y;L)

otherwise compute z ← SampDom(f), y
4
= f(z), return (y;L ∪ {(x, y)})

Therefore we have:
∀x,L, ∆

(
ORO(x;L),O′f (x;L)

)
≤ ε (6)

from Proposition 2.
We now consider the following algorithm B: run AO. Each time O is called, run O′f and keep

track efficiently of the internal memory L, with a sorted list. Initialize L = ∅. The list L is of size
at most q so each membership query to L can be done in time at most O(log(q)), so B runs in

time t+ Õ(q). Moreover, since O′f is called q times, using Equations (5),(6) and Proposition 1, we
have

Adv
Claw(RF )
F (AO) ≤ P

(
f(x1) = O′f (x2) : (f, τ) ← TrapGen(1λ), (x1, x2) ← B(f)

)
+ qε.

Now, we construct the following algorithm C: run B. Each time O′f (x;L) is called, keep track of the
value z such that f(z) = O′f (x). Let x1, x2 be the output of B(f). Let z such that O′f (x2) = f(z).

Output (x1, z). Again, C runs in time t+ Õ(q). We have

Adv
Claw(RF )
F (AO) ≤ P

(
f(x1) = f(z) : (f, τ) ← TrapGen(1λ), (x1, z) ← C(f)

)
+ qε.

In order to relate this to the collision advantage, we just need to find the probability that x1 6= z
in the above. From the construction of C and Of ′ , we have that z is a random preimage of f(x1).
Therefore, x1 6= z with probability 1−MNP (f)5. From there, we can conclude

Adv
Claw(RF )
F (AO) ≤ AdvCollF (C) + qε+ E(f,t)←TrapGen (MNP (f)) .

6 Tight reduction to the claw problem, with ATPSF

6.1 Proof of our main theorem

Theorem 1. Let F = (TrapGen,SampDom,SampPre) be a collection of ε-ATPSF with secu-
rity parameter λ. Let SF be the associated Hash and Sign signature scheme with salt size λ0. For
any t, qhash, qsign, we have

AdvEUF-CMA
SF (t, qhash, qsign) ≤ AdvClaw(RF )

F (Õ(t), qhash) + qsign

(
ε+

(qsign + qhash)

2λ0

)
by taking λ0 = λ+ 2 log(qsign) + log(qhash), we have

AdvEUF-CMA
SF (t, qhash, qsign) ≤ AdvClaw(RF )

F (Õ(t), qhash) + qsignε+
1

2λ
.

5 A similar argument was already implicitly used in [18]



Tight and Optimal Reductions for Signatures based on ATPSF 11

Proof. LetAOHash,OSign be an attacker with |AOHash,OSign | = (t, qhash, qsign) such thatAdvEUF-CMA
SF

(t, qhash, qsign) =

AdvEUF-CMA
SF

(AOHash,OSign). We show how to construct a query algorithm CO to attack the claw with

random function property of F . In the signature scheme SF , we have the following hash and sign
procedures, where the Hash procedure is the Random Oracle.

proc Hash(x;L)

if ∃!y : (x, y) ∈ L, return (y;L)

otherwise, pick y
$←↩ Rλ, return (y;L ∪ {(x, y)})

proc Sign(m;L)

r
$←↩{0, 1}λ0

(y;L′)← Hash(m||r;L)
x← SampPre(f, τ , y)
return (x, r;L′)

Recall that L corresponds to the list of input/output pairs already queried to the Hash function.
Here, both procedures use the same L and each time is it updated, this update happens for both
procedures at the same time. We first explicitly replace the Hash procedure by its code in Sign:

proc Sign(m;L)

r
$←↩{0, 1}λ0

(y;L′)← Hash(m||r;L)
x← SampPre(f, τ , y)
return (x, r;L′)

=

proc Sign(m;L)

r
$←↩{0, 1}λ0

if ∃!y0 : (m||r, y0) ∈ L
then

x0
$←↩ SampPre(f, τ , y0)

return (x0, r;L)
else

y
$←↩ Rλ

x
$←↩ SampPre(f, τ , y)

L′ 4
=L ∪ {(m||r, y)}

return (x, r;L′)

Now, we present a new signature procedure Sign′, that will be close to Sign but doesn’t use τ .

proc Sign′(m;L)

r
$←↩{0, 1}λ0

if ∃!y0 : (m||r, y0) ∈ L
then

return ⊥
else

x
$←↩ SampDom(f)

y
4
= f(x)

L′ 4
=L ∪ {(m||r, y)}

return (x, r;L′)

We made two changes from Sign to Sign′. In the case where ∃y0, : (m||r, y0) ∈ L, Sign′ outputs ⊥.
In the other case, Sign′ also has a different way of sampling x and y. We show that these 2 changes
do not change a lot the output distribution of the sign procedure:

Lemma 1. For any f, τ as well as m and L, we have ∆
(
Sign(m;L),Sign′(m;L)

)
≤ εf,τ + |L|

2λ0
.

Proof. We consider the following intermediate procedure Signint
proc Signint(m;L)

r
$←↩{0, 1}λ0

if ∃!y0 : (m||r, y0) ∈ L
then

return ⊥
else

y
$←↩ Rλ

x
$←↩ SampPre(f, τ , y)

L′ 4
=L ∪ {(m||r, y)}

return (x, r;L′)



12 André Chailloux and Thomas Debris-Alazard

Sign(m;L) and Signint(m;L) only differ when for the random choice r
$←↩{0, 1}λ0 , ∃!y0 : (m||r, y0) ∈

L. This event happens with probability at most |L|
2λ0

hence ∆(Sign(m;L),Signint(m;L)) ≤ |L|
2λ0

.

Now, let’s look at the distance between Signint(m;L) and Sign′(m;L). The only difference in
those distributions comes from the way x and y are sampled. Since both in Signint and Sign′, we
have y = f(x) (and f is deterministic), the only difference comes from the way x is sampled.
Therefore,

∆
(
Signint(m;L),Sign′(m;L)

)
= ∆ (SampPre(f, τ , U(Rλ)),SampDom(f)) = εf,τ

and we can therefore conclude the proof using the triangle inequality. ut

We are now ready to finish the proof of Theorem 1. From an adversary AOHash,OSign(f), we
construct an algorithm BOHash,OSign′ (f) which corresponds to running AOHash,OSign but calls to OSign

are replaced with calls to OSign′ . We also ask B to emulate by himself the oracles OHash,O′Sign. To
do this, it initializes L = ∅ and runs these algorithms by himself by updating L efficiently via a
sorted list. Notice that this was not possible with OSign because it required τ that B does not have
access to. Let us define Adv′(·) as:

Adv′(BOHash,OSign′ )
4
=P
(
Hash(m∗||r∗) = f(e∗) ∧ (m∗, e∗, r∗) wasn’t answered

by OSign′ in B : (f, τ)← TrapGen(1λ), (m∗, r∗, e∗)← BOHash,OSign′ (f)
)
.

On average on f , the outputs of BOHash,OSign′ differ from those of AOHash,OSign(f) only because we
replaced calls to OSign with calls to OSign′ . There are qsign such calls and using Lemma 1, we have:

AdvSEUF-CMA
SF (AOHash,OSign) ≤ Adv′(BOHash,OSign′ ) + qsign

(
ε+

(qsign + qhash)

2λ0

)
where we here also averaged over (f, τ)← TrapGen(1λ).

When we first discussed the random oracle model, we showed how when calling an oracle Og for
a random g, we could “internalize” the random function into each call of ORO. In order to arrive

at the quantity Adv
Claw(RF )
F , we have to undo this step and externalize the random function, but

we want to keep the internal memory L since it can also be modified by OSign′ . More precisely, for
any function g, we define

proc Hashg(x;L)

if ∃!y : (x, y) ∈ L, return (y;L)
otherwise, return (g(x);L ∪ {(x, g(x))})

.

When, we run Hash, each time a fresh x is queried - meaning ∀y, (x, y) /∈ L - we pick a random
value y as its output. Equivalently, we can compute all those possible values y at the beginning,
characterized by values g(x) for a random function g. Therefore, we have

Adv′(BOHash,OSign′ ) = P
(
Hashg(m

∗||r∗) = f(x∗) ∧ m∗ wasn’t queried to

OSign′ in B : g
$←↩RF , (f, τ)← TrapGen(1λ), (m∗, r∗, x∗)← BOHashg ,OSign′ (f)

)
.

Now, for a fixed g, let’s try to characterize Hashg(m||r) for any m, r. If ∀y, (m||r, y) /∈ L then
Hashg(m||r) = g(m||r). Otherwise, let y such that (m||r, y) ∈ L and we distinguish 2 cases:

1. (m||r, y) was put in L after a call to Hash, then Hashg(m||r) = g(m||r).
2. (m||r, y) was put in L after a call to Sign′, then m was queried to OSign′ .



Tight and Optimal Reductions for Signatures based on ATPSF 13

Therefore, for any triplet (m∗, r∗, x∗)← BOHashg ,OSign′ , we have

m∗ is not queried to OSign′ or m∗ is queried and (x∗, r∗) is not answered by OSign′

⇔ Hashg(m
∗||r∗) = g(m∗||r∗).

From there, we have

Adv′(BOHash,OSign′ ) = P
(
g(m∗||r∗) = f(x∗) : g ← F

{0,1}∗×{0,1}λ0
Rλ

,

(f, τ)← TrapGen(1λ), (m∗, r∗, x∗)← BOHashg ,OSign′ (f)
)
.

In order to conclude, notice that the algorithm BOHashg ,OSign′ can be seen as an algorithm COg that
runs in time Õ(t) and performs qhash queries to Og so

Adv′(BOHash,OSign′ ) = P
(
g(m∗||r∗) = f(x∗) : g ← F

{0,1}∗×{0,1}λ0
Rλ

,

(f, τ)← TrapGen(1λ), (m∗, r∗, x∗)← COg (f)
)

= Adv
Claw(RF )
F (COg )

Putting everything together, we get Adv
Claw(RF )
F (COg ) = Adv′(BOHash,OSign′ ) and

AdvEUF-CMA
SF (AOHash,OSign) ≤ AdvClaw(RF )

F (COg ) + qsign

(
ε+

(qsign + qhash)

2λ0

)
which concludes the proof. ut

6.2 Changing the security notion to avoid weak key attacks

The way we defined EUF-CMA security for a signature scheme S was that an attacker in time
t can’t break the signature scheme with probability greater than AdvEUF-CMA

S (t). However, this
could lead weak key attacks in the following way: (pk, sk)← S.keygen could generate some keys
such that with probability 2−40, one can recover sk from pk with probability 2−40. However, the
way AdvEUF-CMA

S is defined (on average on (pk, sk)) would seem to imply that this scenario has
80 bits of security. This is probably something known in the community but is often overlooked
in the definitions.

What we should do is to replace the average on (pk, sk) with a notion that says that the
Advantage should be smaller than ε for almost all (pk, sk)← S.keygen6. Our tight and optimal
security results directly follow to this definitions using the same proofs. In order for this to work,
we require the following:

– The definition of ATPSF should also hold for almost all (f, τ) ← TrapGen and not on
average.

– The Claw(RF) advantage should also be defined for almost all (f, τ)← TrapGen and not on
average on (f, τ).

Once we have this, the same proofs give the same reductions in this scenario.

7 Quantum Security Proof in the QROM

In this section, we will prove that in the quantum setting, we can also prove the security of SF

for a collection F of ATPSF. We first present the quantum random oracle model.

6 Actually, this notion is probably too strong. We believe that the actual correct notion is to allow the
adversary to have access to a S.keygen oracle but this is a discussion for another time.



14 André Chailloux and Thomas Debris-Alazard

7.1 The Quantum Random Oracle Model

The Quantum Random Oracle Model (QROM) is a model where we model a certain function with
a random function H but since we are in the quantum setting, we have a black box access to H
and thus also to the unitary OH(|x〉|y〉) = |x〉|H(x) + y〉. Unlike the classical setting, when calling
OH for a randomly chosen H, we will not be able to generate values H(x) on the fly as we did
classically since a quantum query potentially queries all values H(x) at the same time7. Hopefully
we will still have tools to reprogram the QROM.

When a function h is drawn uniformly from the set of functions FD{0,1}m , we can equivalently, for

each input x ∈ D, draw h(x)
$←↩{0, 1}m, which fully specified the function h. For each distribution

D on {0, 1}m, let us consider the distribution of functions FunD where h← FunD means that for

each x, h(x)
$←↩D. In [29], Zhandry showed the following relation.

Proposition 5. Let AO be a quantum query algorithm running in time t and making q queries
to the oracle O. Let D be a probability distribution on {0, 1}m such that ∆(D,U({0, 1}m)) ≤ ε.
We have∣∣∣ P(AOh outputs 1 : h← FD{0,1}m

)
− P

(
AOg outputs 1 : g ← FunD

) ∣∣∣ ≤ 8π√
3
q3/2
√
ε.

One can compare this to the classical case, which follows directly from Proposition 1.

Proposition 6. Let AO be a classical query algorithm running in time t and making q queries to
the oracle O. Let D be a probability distribution on {0, 1}m such that ∆(D,U({0, 1}m)) ≤ ε. We
have ∣∣∣P(AOh outputs 1 : h← FD{0,1}m

)
− P

(
AOg outputs 1 : g ← FunD

)∣∣∣ ≤ qε.
With Proposition 5, we will be able to prove the quantum security of SF .

7.2 Tight quantum security of SF

The goal of this section is to prove the following theorem

Theorem 2. Let F = (TrapGen,SampDom,SampPre) be an ε-ATPSF. Let SF be the associ-
ated Hash and Sign signature scheme. Let AOHash,OSign an adversary with |AOHash,OSign | = (t, qHash, qSign)

running in time t. There exists an algorithm CO running in time Õ(t) such that

QADV EUF-CMA
SF (t, qhash, qsign) ≤ 1

2

(
QADV Claw(RF )(Õ(t), qhash) +

8π√
3
q3/2
√
ε+ qsign

(
ε+

qsign
2λ0

))
by taking λ0 = λ+ 2 log(qsign), this gives

QADV EUF-CMA
SF (t, qhash, qsign) ≤ 1

2

(
QADV Claw(RF )(Õ(t), qhash) +

8π√
3
q3/2
√
ε+ qsignε+

1

2λ

)
.

Before proving this statement, we need to add another definition. Let F = (TrapGen,SampDom,SampPre)
be an ε-ATPSF. We said that SampDom(f) was an efficient probabilistic algorithm. Here, we need
to explicit this randomness and work with a deterministic algorithm. Let SampDomdet(f,K)
be the algorithm which corresponds to running SampDom(f) with randomness K ∈ {0, 1}k.

What this means is that running SampDom(f) is done by choosing K
$←↩{0, 1}k and running

SampDomdet(f, k).
With this new definition, we can go and prove our theorem.

7 It is actually possible to do this via the quantum lazy sampling routine [10] but we will use much simpler
tools here.



Tight and Optimal Reductions for Signatures based on ATPSF 15

Proof of Theorem 2: Fix F ,SF and let AOHash,OSign an adversary in quantum EUF-CMA model
with |AOHash,OSign | = (t, qHash, qSign) running in time t . We first construct a new function Z that we
will use as a replacement for Hash. Consider J , a random hash function from {0, 1}∗ ×{0, 1}λ0 to
{0, 1} × {0, 1}k. In particular, the first bit of J(m, r) is a random element of {0, 1} for any m, r.
From the functions J and Hash we can build the function Z : {0, 1}∗ × {0, 1}λ0 → Rλ as follows:

Z(m, r) =

{
Hash(m, r) if J(m, r) = (0,K) for some K ∈ {0, 1}k

f(SampDomdet(f,K)) if J(m, r) = (1,K)

We can easily construct an efficient quantum circuit for OZ using OH and OJ . Notice also that
for each m, r since Hash and J are random functions, Z(m, r) follows a distribution which is at
most ε/2-close to the uniform distribution. Indeed, Z(m, r) follows the uniform distribution with
probability 1

2 and the distribution SampDom(f) with probability 1
2 . But these two distributions

are at most at distance εf,τ from Proposition2.
Our first change is that we replace Hash with Z (we also do this change in the Sign procedure).

Then, we change the Sign procedure into a procedure Sign′ so that it doesn’t use the trapdoor and
can be emulated only with the public key.

proc Sign(m)

r
$←↩{0, 1}λ0

y ← Z(m, r)
x← SampPre(f, τ , y)
return (x, r)

→

proc Sign′(m)

r
$←↩{0, 1}λ0

(b,K) = J(m, r). If b = 0, pick new r.
J(m, r) = (1,K) so Z(m, r) = f(SampDomdet(f,K)).

x
4
= SampDomdet(f,K)

return (x, r).

Notice that for any m, ∆(Sign(m),Sign(m′)) ≤ ε. This is because both in Sign and Sign′, r
is a uniform random string as long as each call to the signing oracle chooses a different r. This
happens with probability ≥ 1 − qsign

2λ0
(the values r such that J(m, r) = (1, e) are uniform for a

random J). We therefore have using Proposition 5:

QADV EUF-CMA
SF (AOHash,OSign) ≥ QADV EUF-CMA

SF (AOZ ,OSign) +
8π√

3
q3/2
√
ε

≥ QADV EUF-CMA
SF (AOZ ,OSign′ ) +

8π√
3
q3/2
√
ε+ qsign

(
ε+

qsign
2λ0

)
.

Now, we write:

QADV EUF-CMA
SF (AOZ ,OSign′ ) = P

(
Z(m∗, r∗) = f(x∗) and m∗ has not been queried in OSign′ :

(f, τ)← TrapGen, (m∗, x∗, r∗)← AOZ ,OSign′ (f)
)

=
1

2
P
(
Hash(m∗, r∗) = f(x∗) :

(f, τ)← TrapGen, (m∗, x∗, r∗)← AOZ ,OSign′ (f)
)

=
1

2
QADV Claw(RF )(AOZ ,O

′
Sign).

Let BOHash = AOZ ,O
′
Sign . We have

QADV EUF-CMA
SF (AOZ ,OSign′ ) ≤ 1

2

(
QADV Claw(RF )(BOHash) +

8π√
3
q3/2
√
ε+ qsign

(
ε+

qsign
2λ0

))
.

ut



16 André Chailloux and Thomas Debris-Alazard

8 Codes: Syndrome Decoding vs. Decoding One Out of Many vs.
Collision on codes

In this section we will apply our security reduction to the collection of ATPSF Wave [12] in the
paradigm of error correcting codes. It gives a first application of our work when compared to
the reduction of [18]. First, Wave is only proved to be “preimage sampleable on average” in [12]
and applying directly the reduction of [18] with Proposition 3 would lead to a lost of a square
factor. Secondly, as we will see the collision problem for the proposed parameters of Wave can be
solved in polynomial time while the Claw(RF ) problem, which is in this case roughly equivalent
to the Decoding One Out of Many (DOOM) problem [20, 25], is well-known. Furthermore, solving
DOOM is in the state-of-the-art for Wave’s parameters [7] of the same exponential complexity
as the generic decoding problem upon which relies the code-based cryptography which gives an
extremely “tight algorithmic reduction”.

Notations. We will denote by Fq the finite field with elements. Vectors will be written with
bold letters (such as e) and uppercase bold letters are used to denote matrices (such as H). Vectors
are in row notation. We will denote for a vector x by x(i) its i-th entry. Furthermore, the Hamming
of a vector x ∈ Fnq , that we denote by |x|, is the number of its non-zero components, namely

|x|4= # {1 ≤ i ≤ n : x(i) 6= 0} .

8.1 Ony-Way, Claw(RF ) and Collision Problems in Code-Based Cryptography

Let us start with some basic definitions and by translating “One-Way, Collision and Claw(RF )”
into the code-based setting which namely correspond to problems Syndrome Decoding (SD), Col-
lision and DOOM.

A q-ary linear code C of length n and dimension k is a subspace of Fnq of dimension k and is
often defined by a parity-check matrix H over Fq of size (n− k)× n as

C =
{
x ∈ Fnq : xHᵀ = 0

}
.

The problem of decoding a q-ary linear code with this formalism can be expressed as follows.

Problem 2 (Syndrome Decoding - SD(n, q,R, ω)).

– Instance: a parity-check matrix H ∈ F(n−k)×n
q of rank n− k, a syndrome s ∈ Fn−kq ,

– Output: e ∈ Fnq of Hamming weight w such that eHᵀ = s

where k
4
=bRnc and w

4
=bωnc.

The advantage of breaking SD for uniformly distributed outputs is then defined as follows.

Definition 5 (SD-advantage(n, q,R, ω)). Let k
4
=bRnc and w

4
=bωnc. For any algorithm A, we

define,

AdvSD(n,q,R,ω)(A)
4
=P

(
eHᵀ = s and |e| = w : H

$←↩F(n−k)×n
q , s

$←↩Fn−kq , e← A(H, s)

)
,

and for any time t, we also define,

AdvSD(n,q,R,ω)(t)
4
= max
A:|A|=t

AdvSD(n,q,R,ω)(A).



Tight and Optimal Reductions for Signatures based on ATPSF 17

SD is the problem upon which all code-based cryptography relies. It is known to be NP-
complete [5] and is conjectured to be hard on average for a large set of parameters. This problem
has been studied for a long time [24, 28, 15, 2, 16, 21, 3, 8, 22, 14, 6, 7] and the best solutions for
solving it on average are off complexity (up to a polynomial factor) 2nα(q,R,ω) where for a constant
ω, {

α(q,R, ω) = 0 if ω ∈
(
q−1
q (1−R), R+ q−1

q (1−R)
)

α(q,R, ω) ∈ R∗+ otherwise

while for ω = o(1) we have α(q,R, ω) = −ω log2(1 − R). In this way we can easily build a one-
way function from SD for carefully chosen parameters. However, the classical way to introduce a
trapdoor in such functions is to choose parity-check matrices with a special structure (and thus
define structured codes) that is hidden and which enables to solve SD for parameters where the
problem is generically hard.

The second generic problem that we will consider relates to the, so called, Decoding One Out
of Many (DOOM) problem. This problem was first considered in [20] and later analyzed in [25].
It corresponds to an instance of SD where for a matrix H we have various syndromes s and we
are interested in solving only one of them, namely,

Problem 3 (Decoding One Out of Many - DOOM(n, q,R, ω,N)).

– Instance: a parity-check matrix H ∈ F(n−k)×n
q of rank n− k and N syndromes s1, · · · , sN ,

– Output: e ∈ Fnq of Hamming weight w and i ∈ J1, NK such that eHᵀ = si

where k
4
=bRnc and w

4
=bωnc.

The advantage of breaking DOOM for uniformly distributed outputs is then defined as follows.

Definition 6 (DOOM-advantage(n, q,R, ω,N)). Let k
4
=bRnc and w

4
=bωnc. For any algo-

rithm A, we define,

AdvDOOM
(n,q,R,ω,N)(A)

4
=P
(
eHᵀ = si and |e| = w : H

$←↩F(n−k)×n
q ,

s1, · · · , sN
$←↩Fn−kq , (e, i)← A(H, s)

)
,

and for any time t, we also define,

AdvDOOM
(n,q,R,ω,N)(t)

4
= max
A:|A|=t

AdvDOOM
(n,q,R,ω,N)(A).

This problem is in the algorithmic state-of-the art of exponential complexity for the same
parameters as SD. However, we know how to get some exponential gains when ω is constant. The
best achievement is for relative weights ω close to the Gilbert-Varshamov bound where we typically
expect one solution in an instance of SD while this improvement vanishes when the number of
solution that we expect is growing. For instance in code-based signatures like Surf [11] or Wave
[12], where parameters are such that we typically expect an exponential number of solutions, there
are no advantage to solve DOOM instead of SD [11, 7].

Let us finish now by giving the collision problem in the paradigm of code-based cryptography.

Problem 4 (Collision Decoding - CD(n, q,R, ω)).

– Instance: a parity-check matrix H ∈ F(n−k)×n
q of rank n− k,

– Output: e1, e2 ∈ Fnq of Hamming weight w such that e1H
ᵀ = e2H

ᵀ



18 André Chailloux and Thomas Debris-Alazard

where k
4
=bRnc and w

4
=bωnc.

While SD and DOOM are hard for a large class of parameters, this is not the case for CD as
shown by the following proposition.

Proposition 7. Let q,R, ω which verify

ω ≥ q − 1

q
(1−R) and q ≥ 3. (7)

Then, it exists a polynomial-time in n algorithm which solves on average (over H) CD(n, q,R, ω).

Proof. The idea is to first compute a codeword c ∈ Fnq , i.e: cHᵀ = 0 where k
4
=bRnc. Then we

can easily build e1, e2 ∈ Fnq s.t e1H
ᵀ = e2H

ᵀ and of Hamming weight w ≥ |c|. Indeed, it is always
possible to choose for i with c(i) 6= 0, e1(1) − e2(i) = c(i) and e1(i), e2(i) 6= 0 as q ≥ 3. Then
for other w − |c| positions we complete as e1(i), e2(i) 6= 0 and e1(i) − e2(i) = 0 and for the last
positions we put 0’s.

Let us show that we can reach (asymptotically with n) relative weight of codewords |c|/n =

(q − 1)/q(1 − R) in polynomial time. Let H ∈ F(n−k)×n
q be uniformly distributed. For almost all

matrices H we can make a Gaussian elimination in polynomial-time to put them into the form
(up to a permutation)(

1n−k H′
)

H′ ∈ F(n−k)×k
q and 1n−k the identity with n− k one.

It is easily verified that very rows of the matrix
(
1k H′

ᵀ)
forms a codeword of typical weight

(q − 1)/q(n− k) as the matrix H′
ᵀ

is random which concludes the proof. ut

8.2 The Wave-ATPSF Family

In this context authors of [12] gave a collection of ATPSF which is called Wave. To accomplish this
they introduced a family of codes which forms their trapdoor, namely the permuted generalized
(U,U + V )-codes. The presentation of this trapdoor is out of the scope of this paper. What we
only need to know here is the following fact.

Fact 1 Let n ∈ N, R,ω ∈ (0, 1), q a field size, k
4
=bRnc and w

4
=bωnc. It exists a polynomial-time

application (in n)

τ ∈ T 7→ Hτ ∈ F(n−k)×n
q

such that: given (Hτ , τ), for every s ∈ Fn−kq we can find in polynomial-time (in n) e of Hamming
weight w verifying,

eHᵀ
τ = s.

In the following we will denote by:

ParUV(n, q,R, ω)
4
= {(τ,Hτ ) : τ ∈ T}

Definition 7 (Wave-ATPSF). Let (n, q,R, ω) be the parameters of Wave which are functions

of the security parameters λ [13, §7.3]. Let k
4
=bRnc and w

4
=bωnc. We define,

• TrapGenWave(1λ) outputs (fw,Hτ , τ) with (τ,Hτ ) ∈ ParUV(n, q,R, ω) and

fw,Hτ :
{
x ∈ Fnq : |x| = w

}
−→ Fn−kq

e 7−→ eHᵀ
τ



Tight and Optimal Reductions for Signatures based on ATPSF 19

• SampDomWave(·) denotes the uniform distribution over words of Hamming weight w in Fnq ,

• SampPreWave(fw,Hτ , τ , s) for s ∈ Fn−kq is defined in [12, §5]

The Wave family is proved to be an ε-ATPSF for ε ∈ negl(λ) in [13, Theorem 1].

Now as explained in [13], some parity-check matrices H ∈ F(n−k)×n
q cannot be written as Hτ

for τ ∈ T . It is due to the fact codes defined by parity-check matrices Hτ form a sub-family of
all the linear code. Therefore, inverting fw,Hτ

doesn’t amount to solve SD(n, q,R, ω) and the one-
wayness property of Wave doesn’t reduce directly to the syndrome decoding problem. However,
it is classic in code-based cryptography (see for instance [26]), where a trapdoor is used, to split
the difficulty of the considered decoding problem to: (i) distinguish between the used code and
a random code and (ii) the SD problem. This is summarized for Wave in the proposition which
follows. Let us first start by introducing the advantage to distinguish between a random code and
a code used in Wave.

Definition 8 (UVtrapdoor-advantage(n, q,R, ω)). Let k
4
= bnRc. For any algorithm A, we

define

AdvUVTrap
(n,q,R,ω)(A)

4
=P

(
A(H) = 1 : H

$←↩F(n−k)×n
q

)
− P

(
A(Hτ ) = 1 : (τ,Hτ )

$←↩ParUV(n, q,R, ω)

)
For any time t, we also define

AdvUVTrap
(n,q,R,τ)(t)

4
= max
A:|A|=t

AdvUVTrap
(n,q,R,ω)(A)

Proposition 8. Let FWave be the family Wave of ATPSF. We have for parameters (n, q,Rω)
and any time t,

AdvOWFWave
(t) ≤ AdvUVTrap

(n,q,R,ω)(t) +AdvSD(n,q,R,ω)(t)

Adv
Claw(RF )
FWave

(t,N) ≤ AdvUVTrap
(n,q,R,ω)(t) +AdvDOOM

(n,q,R,ω,N)(t)

Proof. It is enough here to apply the triangular inequality and to remark that in AdvDOOM
(n,q,R,ω,N)(t)

syndromes are uniformly distributed, i.e: are output by a random function as in Adv
Claw(RF )
FWave

(t,N).
ut

In this way our security reduction can be stated in the case of Wave as:

Theorem 3. Let FWave be the collection Wave of ε-ATPSF with security parameter λ, parameters

(n, q,R, ω) and k
4
=bnRc. Let SFWave be the associated Hash and Sign signature scheme by taking

λ0 = λ+ 2 log(qsign) + log(qhash). We have in the ROM

AdvEUF-CMA
SFWave

(t, qsign) ≤ AdvUVTrap
(n,q,R,ω)(Õ(t)) +AdvDOOM

(n,q,R,ω,qhash)
(Õ(t)) + qsignε+

1

2λ
.

Proof. It is enough here to apply Theorem 1 and Proposition 8. ut

Here our choice to reduce the security into DOOM(n, q,R, ω) instead of CD(n, q,R, ω) at the
same distance is crucial. Indeed, let us take a look on the practical Wave parameters. As defined
in [13, §7.3] we have,

n = 66.34λ, ω = 0.9396, q = 3, R =
RU +RV

2



20 André Chailloux and Thomas Debris-Alazard

with,
RU = 0.8379 and RV = 0.4821.

This gives
q − 1

q
(1−R) ≈ 0.23� ω.

Therefore, by applying Proposition 7 (q = 3) it would be easy to break the collision for the
Wave parameters. However, it could be argued that parameters may be chosen to avoid this.
Nevertheless, it is impossible in the case of Wave, as explained, SampPreWave necessary works

for high relative weights ω, namely ω ≥ (q−1)
q (1−R) which is exactly the condition of Proposition

7.

9 Conclusion

In this paper, we extended the GPV construction of signature schemes by allowing the use of
ATPSF instead of TPSF. We also presented a security reduction of these signature schemes to
the Claw(RF) which is not only tight but also optimal, meaning that an algorithm that solves the
Claw(RF) also breaks the underlying signature scheme.

Our results allow to extend the GPV construction to non-lattice based schemes. In particular,
for code-based cryptography, it is often easy to find collisions for the underlying trapdoor function.
What we showed is that with this construction, we cannot have a tight reduction to Syndrome
Decodings so we cannot ignore the non-tightness to SD. On the other side, losing a q factor in
the security reduction is greatly overkill. The good approach is to consider the Claw(RF) problem
which in the code-based setting is the DOOM problem. Because of our optimality results, the
Claw(RF) should always be the studied problem in GPV-like construction in order to correctly
assess the security of the signature scheme.

More generally, we advocate that all Hash and Sign signatures should follow similar guidelines.
This was implicitly done for lattices because SIS and ISIS are considered of same difficulty and
the associated Claw(RF) problem lies between them.

References

1. Personal communication with Damien Stehlé.
2. Alexander Barg. Minimum distance decoding algorithms for linear codes. In Applied Algebra, Alge-

braic Algorithms and Error-Correcting Codes, 12th International Symposium, AAECC-12, Toulouse,
France, June 23-27, 1997, Proceedings, volume 1255 of LNCS, pages 1–14. Springer, 1997.

3. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear
codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Advances in Cryptology -
EUROCRYPT 2012, LNCS. Springer, 2012.

4. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures-how to sign with rsa and
rabin. In Advances in Cryptology - EUROCRYPT ’96, volume 1070 of LNCS, pages 399–416. Springer,
1996.

5. Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. On the inherent intractability of certain
coding problems. IEEE Trans. Inform. Theory, 24(3):384–386, May 1978.

6. Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for LPN
security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography 2018, volume
10786 of LNCS, pages 25–46, Fort Lauderdale, FL, USA, April 2018. Springer.

7. Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and Matthieu Lequesne. Ternary syndrome
decoding with large weights. preprint, February 2019. arXiv:1903.07464, to appear in the proceedings
of SAC 2019.

8. Rodolfo Canto-Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-linear error
weight, 2015. preprint.

9. Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes. In Advances
in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of
Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings, pages
272–287, 2002.



Tight and Optimal Reductions for Signatures based on ATPSF 21

10. Jan Czajkowski, Christian Majenz, Christian Schaffner, and Sebastian Zur. Quantum lazy sampling
and game-playing proofs for quantum indifferentiability. Cryptology ePrint Archive, Report 2019/428,
2019. https://eprint.iacr.org/2019/428.

11. T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. The problem with the surf scheme. preprint,
November 2017. arXiv:1706.08065.

12. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new family of trap-
door one-way preimage sampleable functions based on codes. In Advances in Cryptology - ASI-
ACRYPT 2019, LNCS, Kobe, Japan, December 2019.

13. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new family of trapdoor
one-way preimage sampleable functions based on codes. Cryptology ePrint Archive, Report 2018/996,
March 2019. https://eprint.iacr.org/2018/996.

14. Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. preprint, January 2017.
arXiv:1701.07416.

15. Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-Swedish Int.
Workshop Inform. Theory, pages 50–52, Moscow, 1991.

16. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryptosystems.
In M. Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, volume 5912 of LNCS, pages
88–105. Springer, 2009.

17. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas
Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier
Lattice-based Compact Signatures over NTRU. First round submission to the NIST post-quantum
cryptography call, November 2017.

18. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 197–206. ACM, 2008.

19. Shafi Goldwasser and Daniele Micciancio. Complexity of Lattice Problems: A Cryptographic Per-
spective, volume 671 of Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, March 2002.

20. Thomas Johansson and Fredrik Jönsson. On the complexity of some cryptographic problems based
on the general decoding problem. IEEE Trans. Inform. Theory, 48(10):2669–2678, October 2002.

21. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in O(20.054n).
In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011, volume
7073 of LNCS, pages 107–124. Springer, 2011.

22. Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding of bi-
nary linear codes. In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015,
volume 9056 of LNCS, pages 203–228. Springer, 2015.

23. Nist. Post-quantum cryptography standardization, 2017. https://csrc.nist.gov/projects/post-
quantum-cryptography.

24. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Information
Theory, 8(5):5–9, 1962.

25. Nicolas Sendrier. Decoding one out of many. In Post-Quantum Cryptography 2011, volume 7071 of
LNCS, pages 51–67, 2011.

26. Nicolas Sendrier. The tightness of security reductions in code-based cryptography. In Proc. IEEE Inf.
Theory Workshop- ITW 2011, pages 415–419. IEEE, 2011.

27. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology
ePrint Archive, 2004:332, 2004.

28. Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolfmann,
editors, Coding Theory and Applications, volume 388 of LNCS, pages 106–113. Springer, 1988.

29. Mark Zhandry. How to construct quantum random functions. In Proceedings of the 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science, FOCS ’12, pages 679–687, Washington, DC,
USA, 2012. IEEE Computer Society.


