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Abstract

The binomial B(x) = x3 +βx36 (where β is primitive in F22) over F210

is the first known example of an Almost Perfect Nonlinear (APN) function
that is not CCZ-equivalent to a power function, and has remained unclas-
sified into any infinite family of APN functions since its discovery in 2006.
We generalize this binomial to an infinite family of APN quadrinomials of

the form x3 + a(x2
i+1)2

k

+ bx3·2
m

+ c(x2
i+m+2m)2

k

from which B(x) can
be obtained by setting a = β, b = c = 0, i = 3, k = 2. We show that for
any dimension n = 2m with m odd and 3 - m, setting (a, b, c) = (β, β2, 1)
and i = m−2 or i = (m−2)−1 mod n yields an APN function, and verify
that for n = 10 the quadrinomials obtained in this way for i = m− 2 and
i = (m − 2)−1 mod n are CCZ-inequivalent to each other, to B(x), and
to any other known APN function over F210 .

1 Introduction

Vectorial Boolean functions, or (n,m)-functions, are mappings between the vec-
tor spaces Fn2 and Fm2 for some positive integers n and m, where F2 is the finite
field with two elements. Any such mapping can be understood as a transforma-
tion substituting a sequence of n bits (zeros and ones) with a sequence of m bits
according to a given prescription, and for this reason (n,m)-functions naturally
appear in different areas of computer science and engineering. In particular,
(n,m)-functions are of critical importance in the field of cryptography: virtu-
ally all modern block ciphers incorporate an (n,m)-function (usually referred
to as an “S-box” or “substitution box” in this context) as their only nonlinear
component, and as such the security of the encryption directly depends on the
properties of the (n,m)-function. Researchers have defined various properties
which measure the resistance of an (n,m)-function to different kinds of crypt-
analysis, including nonlinearity, differential uniformity, boomerang uniformity,
algebraic degree, and so forth. The lower the differential uniformity of a func-
tion, in particular, the better its security against differential cryptanalysis [3],
which is one of the most efficient attacks that can be employed against block
ciphers. When n = m, which is the main case of our interest, the differential
uniformity of any (n, n)-function is at least 2, and the (n, n)-functions meeting
this bound are called almost perfect nonlinear (APN). Discovering new exam-
ples and constructions of APN functions is thus a matter of significant practical
importance since they enable the design of new block ciphers. APN functions
are interesting from a theoretical point of view as well, as they correspond to
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Family Exponent Conditions Algebraic degree Source

Gold 2i + 1 gcd(i, n) = 1 2 [18,21]
Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [19,20]
Welch 2t + 3 n = 2t+ 1 3 [13]

Niho
2t + 2t/2 − 1, t even

n = 2t+ 1
(t+ 2)/2

[12]
2t + 2(3t+1)/2 − 1, t odd t+ 1

Inverse 22t − 1 n = 2t+ 1 n− 1 [2, 21]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [14]

Table 1: Known infinite families of APN power functions over F2n

optimal objects within other areas of mathematics and computer science, e.g.
coding theory, combinatorics, and projective geometry.

Finding new constructions of APN functions is difficult. APN functions
have been known and studied since the early 90’s [21] but, to date, only six
infinite families of APN monomials and 11 infinite families of APN polynomials
are known. Together, these cover only a miniscule fraction of all APN func-
tions: for instance, more than 8000 CCZ-inequivalent APN functions have been
constructed over F8

2 [24], yet none of them have been classified into general con-
structions yet. Finding new examples of infinite families is an area of intense
ongoing research. Tables 1 and 2 list all currently known infinite families of
APN functions.

When n = m, it is convenient to identify the vector space Fn2 with the finite
field F2n and to consider mappings from F2n (instead of Fn2 ) to itself. The
binomials B′(x) = x3 +α36x36 and B(x) = x3 +α341x36 (where α is a primitive
element of F210) are known to be APN over F210 [16] and are remarkable as the
first examples of APN functions that are CCZ-inequivalent to power functions.
Since their discovery in 2006, a lot of work has been done on the construction
of polynomial APN functions [4, 5, 7–11, 25] but the binomials B(x) and B′(x)
have not been classified into any infinte family or construction to date. It is
worth noting that the binomial x3 +wx258 over F212 (where w ∈ F212 has order
273 or 585) was also a sporadic, i.e. not belonging to any infinite family, APN
polynomial, until it was classified into two infinite families, one for dimensions
n that are multiples of 3, and one for dimensions n that are multiples of 4 [9].

Attempts to generalize B(x) and B′(x) to an infinite family have, to the
best of our knowledge, so far only considered binomials of a similar form in
higher dimensions [10], which has not resulted in any success thus far. In our
work, we take a different approach, which involves expanding B(x) and B′(x)
into APN polynomials with more than two terms, and then generalizing these
polynomials to higher dimensions. Based on our experiments, we arrive at a
family of quadrinomials of the form

x3 + a(x2
i+1)2

k

+ bx3·2
m

+ c(x2
i+m+2m)2

k

in which B(x) corresponds to the coefficients(a, b, c) = (β, 0, 0) and the expo-
nents i = 3, k = 2. We show that the coefficients (a, b, c) = (β, β2, 1), where β
is primitive in F22 , and exponents i = m − 2, i = (m − 2)−1 mod n, i = m or
i = n−1 in the case of even k, or i = m+ 2, i = (m+ 2)−1 mod n, or i = n−1
in the case of odd k, where n = 2m and m is odd with 3 - m, give rise to APN
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ID Functions Conditions Source

F1-
F2

x2
s+1 + u2

k−1x2
ik+2mk+s

n = pk, gcd(k, 3) = gcd(s, 3k) = 1, p ∈
{3, 4}, i = sk mod p,m = p − i, n ≥
12, u primitive in F∗2n

[9]

F3 sxq+1 +x2
i+1 +xq(2

i+1) +
cx2

iq+1 + cqx2
i+q

q = 2m, n = 2m, gcd(i,m) = 1, c ∈
F2n , s ∈ F2n \Fq, X2i+1 + cX2i + cqX+
1 has no solution x s.t. xq+1 = 1

[8]

F4 x3 + a−1Trn(a3x9) a 6= 0 [10]

F5 x3 +a−1Tr3n(a3x9 +a6x18) 3|n, a 6= 0 [11]

F6 x3 + a−1Tr3n(a6x18 +
a12x36)

3|n, a 6= 0 [11]

F7-
F9

ux2
s+1 + u2

k

x2
−k+2k+s

+
vx2

−k+1+wu2
k+1x2

s+2k+s
n = 3k, gcd(k, 3) = gcd(s, 3k) =
1, v, w ∈ F2k , vw 6= 1, 3|(k +
s), u primitive in F∗2n

[5]

F10 (x + x2
m

)2
k+1 + u′(ux +

u2
m

x2
m

)(2
k+1)2i + u(x +

x2
m

)(ux+ u2
m

x2
m

)

n = 2m,m > 2 even, gcd(k,m) = 1
and i > 2 even, u primitive in F∗2n , u′ ∈
F2m not a cube

[25]

F11 a2x2
2m+1+1 + b2x2

m+1+1 +
ax2

2m+2 + bx2
m+2 + (c2 +

c)x3

n = 3m,m odd, L(x) = ax2
2m

+ bx2
m

+
cx satisfies the conditions of Lemma 8
of [7]

[7]

F12 x3 +a(x2
i+1)2

k

+ bx3·2
m

+

c(x2
i+m+2m)2

k

n = 2m = 10, (a, b, c) = (β, 1, 0, 0), i =
3, k = 2, β primitive in F22

new

n = 2m, m odd, 3 - m, (a, b, c) =
(β, β2, 1), β primitive in F22 , i ∈ {m −
2,m, 2m− 1, (m− 2)−1 mod n}

new

F13 u(uqx + xqu)(xq + x) +

(uqx + xqu)2
2i+23i +

a(uqx + xqu)2
2i

(xq +

x)2
i

+ b(xq + x)2
i+1

q = 2m, n = 2m, gcd(i,m) = 1, x2
i+1 +

ax+ b has no roots in F2m

[22]

Table 2: Known infinite families of quadratic APN polynomials over F2n

functions. Furthermore, in the case of n = 10, we show that for i = m− 2 and
i = (m − 2)−1, these APN functions are CCZ-inequivalent to each other or to
any other known APN function over F210 , including B(x) and B′(x). For i = m
and i = n − 1 the functions are equivalent to representatives from the known
families.

2 Preliminaries

Let n be a positive integer. We denote by F2n the finite field with 2n elements,
and by F∗2n the set of its non-zero elements, i.e. its multiplicative group. For
m | n, we denote by Trnm : F2n → F2m , resp. Nn

m : F2n → F2m the trace function

Trnm(x) =
∑n/m−1
i=0 x2

mi

, resp. the norm function Nn
m(x) =

∏n/m−1
i=0 x2

mi

from
F2n into its subfield F2m . We will only work with fields of even dimension

n = 2k; given some element x ∈ F2n , we denote x = x2
k

, and refer to x as the
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conjugate of x.
An (n, n)-function is any mapping F : F2n → F2n . Any such function can be

expressed as a polynomial of the form F (x) =
∑2n−1
i=0 aix

i, for ai ∈ F2n . This is
the univariate representation of F , and it is unique. The algebraic degree of F ,
denoted deg(F ), is the largest binary weight of an exponent i with ai 6= 0 in the
univariate representation, where the binary weight of an integer is the number
of ones in its binary notation, i.e. the minimum number of distinct powers of
two that sum up to it. Functions of algebraic degree 1, resp, 2, resp. 3 are called
affine, resp. quadratic, resp. cubic. An affine function F satisfying F (0) = 0 is
called linear.

Given an (n, n)-function F , we denote by ∆F (a, b) the number of solutions x
to the equation DaF (x) = b, where DaF (x) = F (x+a) +F (x) is the derivative
of F in direction a ∈ F2n . The largest value of ∆F (a, b) among all a 6= 0 and all
b is denoted by ∆F and is called the differential uniformity of F . If ∆F = 2,
we say that F is almost perfect nonlinear (APN).

The Walsh transform of F : F2n → F2n is the integer-valued function
WF (a, b) =

∑
x∈F2n

(−1)b·F (x)+a·x for a, b ∈ F2n , where the scalar product can
be defined as a · b = Trn1 (ab) for a, b ∈ F2n without losing generality. The
values of WF (a, b) for a, b ∈ F2n are the Walsh coefficients of F , and the mul-
tiset {WF (a, b) : a, b ∈ F2n} is called the Walsh spectrum of F . The multiset
{|WF (a, b)| : a, b ∈ F2n} of the absolute values of the Walsh transform is the
extended Walsh spectrum.

Two designs, dev(GF ) and dev(DF ), can be associated with a given (n, n)-
function F [17]. In both cases, the set of points is F2

2n . The set of blocks of
dev(GF ), resp. dev(DF ) is {(x + a, F (x) + b) : x ∈ F2n} for a, b ∈ F2n , resp.
{(x+ y+ a, F (x) +F (y) + b) : x, y ∈ F2n , x 6= y} for a, b ∈ F2n . The rank of the
incidence matrix of dev(GF ), resp. dev(DF ) is called the Γ-rank, resp. ∆-rank
of F .

Since the number of distinct (n, n)-functions, viz. (2n)2
n

, grows rapidly with
the dimension, (n, n)-functions are classified only up to a suitable equivalence
relation which preserves the properties being studied. The most general known
equivalence relation which preserves the differential uniformity is the so-called
Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence): we say that two (n, n)-
functions F and F ′ are CCZ-equivalent if there is an affine permutation L of
F2
2n which maps the graph GF = {(x, F (x)) : x ∈ F2n} of F to the graph
GF ′ of G. Deciding whether two given functions F and F ′ are CCZ-equivalent
computationally is a difficult problem in general, and is typically resolved via
code isomorphism. More precisely, a linear code CF with the generating matrix

CF =

 1 1 . . . 1
0 α . . . α2n−1

F (0) F (α) . . . F (α2n−1)


can be associated with any given (n, n)-function F , where α is the primitive
element of F2n . Then F and F ′ are CCZ-equivalent if and only if CF and CF ′
are isomorphic [6].

Various CCZ-invariants, i.e. properties that remain invariant under CCZ-
equivalence, can be used to show that a pair of (n, n)-functions is CCZ-inequivalent.
These include the differential uniformity, the extended Walsh spectrum and the
Γ- and ∆-ranks. In particular, it is known that if F and F ′ are CCZ-equivalent,
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then they must necessarily have e.g. the same Γ-rank. Thus, if two functions
have distinct Γ-ranks, then they are definitely CCZ-inequivalent (although the
converse does not hold in general).

A special cases of CCZ-equivalence is the so-called extended affine equiv-
alence (EA-equivalence). Two (n, n)-functions F and F ′ are said to be EA-
equivalent if F ′ = A1 ◦ F ◦A2 +A for affine A1, A2, A : F2n → F2n with A1, A2

bijective.

3 A new family of APN quadrinomials

Let β denote the primitive element of F22 . Note that β = β2. We know that
B(x) = x3 + βx36 and B′(x) = x3 + α11x341, where α is primitive in F210 are
APN over F210 [16] but have not been classified into any infinite family yet. By
means of the code isomorphism test, we establish that B(x) and B′(x) are CCZ-
equivalent, and henceforth concentrate on B(x) only. We look for polynomials
P (x) with a small number of terms such that B(x) + P (x) is APN. We do not
find any non-trivial (that is, not arising from simple EA-equivalence) monomial
P (x) for which B(x) + P (x) is APN. We do, however, come across binomials
P (x) for which B(x) + P (x) is APN and is CCZ-inequivalent to any known
APN function over F210 . A detailed description of the tests that we performed
for disproving CCZ-equivalence can be found at the end of this section after
Theorem 2.

Observation 1. The quadrinomials x3 +βx36 +β2x96 +x129 and x3 +βx129 +
β2x96 + x36 are APN over F210 are CCZ-inequivalent to each other and to any
other known function over F210 .

Note that 96 ≡ 332 mod (210 − 1) and 129 ≡ 3632 mod (210 − 1), i.e.
x96 = x3, and x129 = x36 and, conversely, x36 = x129. Furthermore, 36 = 4 ·9 =
4 · (23 + 1). It is thus natural to consider functions of the form

Ci(x) = x3 + βx2
i+1 + β2x3 + x2i+1 (1)

for 0 ≤ i ≤ n− 1. The APN-ness of such functions can be characterized by the
solvability of the following system of equations.

Proposition 1. Let n = 2m, 3 - m, m odd, and let Ci(x) be defined as in (1).
Consider the system Ei defined by{

a3(x2 + x) ∈ β · F2m

a2
i+1(x2

i

+ x) ∈ β · F2m .
(2)

Given some integer 1 ≤ i ≤ n−1, the function defined by Ci(x) is APN over
F2n if, for any a ∈ F∗2n , the system Ei from (2) only has trivial solutions in x,
i.e. only x ∈ F2 can be a solution to Ei.

Proof. Note that Ci is quadratic, so that proving its APN-ness is equivalent to
showing that the equation DaCi(ax) = DaCiF (0) has only x ∈ F2 as solutions
for a 6= 0. The expression DaCi(ax) +DaCiF (0) takes the form

a3(x2 + x) + βa2
i+1(x2

i

+ x) + β2a3(x2 + x) + a2i+1(x2i + x).
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For simplicity, denote A = a3(x2 + x) and B = a2
i+1(x2

i

+ x). Then the
equation DaCi(ax) +DaCi(0) = 0 becomes

A+ βB + β2A+B = 0. (3)

Taking the conjugate of (3) and multiplying it by β, we get β2A+βB+βA+
B = 0, and, adding this to (3), we obtain βA+A = 0 which implies β2A = βA,
hence β2A = β2A and thus β2A ∈ F2m , i.e. A ∈ β·F2m . Multiplying the identity
βA + A = 0 by β2 and substituting it back into (3), we obtain βB + B = 0,
so that we also have B ∈ β · F2m . The two inclusions, viz. A ∈ β · F2m and
B ∈ β ·F2m , are precisely the equations in the system (2). Therefore, under the
hypothesis, DaCi(ax) + DaCi(0) = 0 can only have trivial solutions, and thus
Ci(x) is APN.

Next, we determine values of i for which system (2) only has trivial solutions.
According to our experimental results, which encompass dimensions up to 46,
there are precisely four such values of i for any given dimension n satisfying the
conditions of Proposition 1. Two of these give rise to APN functions equivalent
to some of the previously known ones, while the other two lead to infinite con-
structions of APN functions whose instances for n = 10, i.e the quadrinomials
from Observation 1, are CCZ-inequivalent to any known APN function over
F210 .

In the proof of Theorem 2 we will need the following auxiliary results.

Lemma 1. Let n = 2m for m odd, and suppose that for some c ∈ F2n with
Trn1 (c) = 0 we have

c(c+ c2 + c4 + · · ·+ c2
m+1

) ∈ F2m . (4)

Then c is a cube.

Proof. First, observe that all elements of F2m are cubes due to (2m − 1, 3) = 1
for m odd.

For convenience, let us denote by h(c) = c+ c2 + · · ·+ c2
m−1

the “half-trace”

function. Then (4) can be written as ch(c) + c2
m+1 + c2

m+1+1 ∈ F2m , and since
c2

m+1 = Nn
m(c) is an element of F2m , this becomes simply

ch(c) + c2
m+1+1 ∈ F2m . (5)

Observe that h(c) + h(c) = Trn1 (c), and since Trn1 (c) = 0 by assumption, we
have h(c) = h(c). Conjugating (5), we get h(c)(c+c) = cc(c+c), and, assuming
that c 6= c (for otherwise c is already in F2m and thus a cube), this becomes
h(c) = cc.

From the definition of h(c), we clearly have h(c) + h(c)2 = c + c. Hence
c + c = cc + c2c2, from which we get c + c + cc + c2 = c2c2 + c2 by adding
c2 to both sides, and, finally, (c + c)(1 + c) = c2(1 + c2). Now, observe that

(1 + c2)/(1 + c) = (1 + c)2
m+1−1, which is s cube for m odd, and that c+ c lies

in F2m and is thus a cube. Hence c2, and thus also c is a cube, which completes
the proof.

Theorem 1. [23] Let t1 and t2 denote the zeros of t2 + bt + a3 in F2n where
n = 2m and a ∈ F2m , b ∈ F∗2m . Let f(x) = x3 + ax+ b, then
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• f has three zeros in F2m if and only if Trm(a
3

b2 + 1) = 0 and t1, t2 are
cubes in F2m (if m is even), F2n (if m is odd).

• f has exactly one zero in F2m if and only if Trm(a
3

b2 + 1) = 1.

• f has no zeros in F2m if and only if Trm(a
3

b2 + 1) = 0 and t1, t2 are not
cubes in F2m (if m is even), F2n (if m is odd).

Lemma 2. [15] Let r, n be positive integers, and let a, b, c ∈ F2n . Then the
quadratic polynomial Q(x) = x2

r+1 + ax2
r

+ bx+ c has either 0, 1, 2, or 2r0 + 1
roots x ∈ F2n , where r0 = gcd(r, n).

Using Lemma 2, we can obtain the following.

Lemma 3. Let m and i be positive integers such that gcd(m, i) = 1 and let
S ∈ F2m \ {0, 1}. Then the polynomial

P (N) = (S2i + S)N22i + (S22i + S)N2i + (S22i + S2i)N

in N has four roots, viz. N = 0, N = 1, N = S, and N = S + 1.

Proof. Note that for S /∈ {0, 1} the coefficients of P are all non-zero. Dividing

P by N and substituting t = N2i−1, we obtain a new polynomial P ′(t) =

at2
i+1 + bt+ c, with a = (S2i + S), b = (S22i + S) and c = (S22i + S2i). Since

gcd(i,m) = 1 from the hypothesis, by Lemma 2 P ′(t) can have at most three
roots. Due to gcd(i,m) = 1, every element in F2m has a unique (2i− 1)-st root,
and hence every root t of P ′ corresponds to a unique root N of P . It remains
to verify that for N ∈ {0, 1, S, S + 1}, P (N) does indeed evaluate to zero.

We are now ready to prove the main result.

Theorem 2. Let n = 2m with m odd and 3 - m. Then the system Ei from (2)
does not have any solutions x /∈ F2 for the following values of i:

1) i = m− 2;

2) i = m;

3) i = (m− 2)−1 mod n;

4) i = n− 1.

Proof. First, observe that all elements of the half-field F2m are cubes in F2n .
If some a 6= 0 and x /∈ F2 satisfy system (2), then a3(x2 + x) = α1β and

a2
i+1(x2

i

+x) = α2β for some α1, α2 ∈ F2m with α1 6= 0. We can write α1 = c3

for some c ∈ F∗2n . Dividing both sides of the first equation by c3, we obtain

(a/c)3(x2 + x) = β. Dividing both sides of the second equation by c2
i+1, we

obtain (a/c)2
i+1(x2

i

+ x) = α2βc
−(2i+1). Since 3 | 2i + 1 for odd i, c−(2

i+1) is
in F2m . Thus, system (2) has a non-trivial solution x /∈ F2 if and only of the
system {

a3(x2 + x) = β

a2
i+1(x2

i

+ x) = αβ
(6)
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has a solution for some α ∈ F2m . In the following, we show that for each of the
values of i given in the statement of the theorem, this reduced system (6) has
no solutions.

Case 1 In the case of i = m− 2, we have the system{
a3(x2 + x) = β

a2
m−2+1(x2

m−2

+ x) = β · F2m

for some α ∈ F2m . Raising the second equation to the fourth power, we have
a2

m+4(x + x4) = α4β. From the first equation, we can write a3 = β/(x2 + x).

Substituting this into the previous equation, we obtain a2
m+1 x+x4

x2+x ∈ F2m . Since

a2
m+1 ∈ F2m , this simply means (x+ x4)/(x2 + x) ∈ F2m . Thus

x+ x4

x2 + x
=
x+ x4

x2 + x

and hence (x2 + x)(x + x4) ∈ F2m . Denoting c = x2 + x, we can express

x + x4 = x + x2
m+2

as c + c2 + c4 + · · · + c2
m+1

. We now have Trn1 (c) = 0 and

c(c+ c2 + · · ·+ c2
m+1

) ∈ F2m , so according to Lemma 1, c = x2 + x must be a
cube. But then a3(x2 +x) ∈ β ·F2m implies that β is a cube which is impossible
when 3 - m.

Case 2 The case i = m trivially has no solutions since if a2
m+1(x2

m

+ x) =
αβ for some α ∈ F2m , then conjugating both sides yields a2

m+1(x2
m

+x) = αβ2,
implying β = β2.

Case 3 In the case of i = (m− 2)−1 mod n, we have the equation system{
ai(m−2)+1(x2

i(m−2)

+ x) = β

a2
i+1(x2

i

+ x) = αβ
(7)

for some α ∈ F2m . Raising the first equation to the power 22i, we obtain

a2
im+22i(x2

im

+ x2
2i

) = β, (8)

and raising the second equation to the power 2i − 1 yields

a2
2i−1(x2

i

+ x)2
i−1 = α2i−1β. (9)

From (8) and (9) we obtain the identity

α2i−1βa2
im+22i

βa22i−1
=

(x2
i

+ x)2
i−1

x2im + x22i
. (10)

The left-hand side of (10) simplifies to α2i−1a2
im+1. Since a2

im+1 = a2
m+1

is in F2m for any a ∈ F2n , we have that (x2
im

+ x2
2i

)/(x2
i

+ x)2
i−1 ∈ F2m , i.e.

(x+ x2
2i

)(x2
i

+ x)

(x2i + x)2i
=

(x+ x2
2i

)(x2
i

+ x)

(x2
i

+ x)2i

and hence

(x+ x2
2i

)(x2
i

+ x)(x2
2i

+ x2
i

) = (x+ x2
2i

)(x2
i

+ x)(x2
2i

+ x2
i

). (11)
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The left-hand side of (11) takes the form

A(x) = x2
i

x2
2i+1 + x2

i

x2
i+1 + x2

2i+2ix2
2i

+ x2
2i+2ix2

i

+

xx2
2i+1 + xx2

i+1 + x2
2i+1x2

2i

+ x2
2i+1x2

i

.

Denoting S = x + x and N = xx, and observing that A(x) + A(x) = 0, we
can write

A(x) +A(x) = (S2i + S)N22i + (S22i + S)N2i + (S22i + S2i)N = 0. (12)

We now consider the expression on the right-hand side of (12) as a polyno-
mial in S and N and determine its possible roots by Lemma 3. Before doing
so, we need to rule out the cases when N = 0 and S ∈ {0, 1}. Unless x = 0, we
must clearly have N 6= 0. If S = x+ x = 0, then we must have x ∈ F2m so that
(x2+x) is in F2m and is hence a cube. But then the equation a3(x2+x) = β from
(7) implies that β is a cube, which is impossible under 3 - m. If S = x+ x = 1,
then from the identity x2 + (x+x)x = xx we get x2 +x = xx = N and we once
again infer that x2 + x must be a cube, which is impossible.

We can now apply Lemma 3 to see that only N = 1, N = S, and N = S+ 1
are solutions to (12). We can additionally assume N 6= S + 1, since otherwise
we have xx = x + x + 1; multiplying both sides by x and adding this to the
original expression then gives us (x2 + 1)(x+ 1) = 0, which implies x = 1. We
thus only need to consider the cases N = 1 and N = S.

By adding a3(x2 + x) = β and x2 + Sx + N = 0 together, we obtain (S +
1)x+N = β/a3 and hence

x = (N + β/a3)/(S + 1). (13)

Since N = xx and thus x = N/x, we obtain

N + β/a3

S + 1
=

N(S + 1)

N + (β/a3)

leading to

N(S+ 1)2 = (N +β/a3)(N +β/a3) = N2 + (β/a3 +β/a3)N +β/a3β/a3. (14)

From (13), we get S = x+ x = N+β/a3+N+β/a3

S+1 = β/a3+β/a3

S+1 so that

S2 + S = β/a3 + β/a3. (15)

Substituting this into (14), we obtain N(S + 1)2 = N2 + (S2 + S)N +
β/a3β/a3, which implies

N2 + (S + 1)N + β/a3β/a3 = 0.

When N ∈ {1, S}, this implies S = a−3a−3. Hence S2 + S = a−6a−6 +
a−3a−3. Combining this with (15), we see that β/a3 +β/a3 = a−6a−6 +a−3a−3

and hence t1 = β/a3 and t2 = β/a3 are roots of the polynomial t2 + (a−6a−6 +
a−3a−3)t+ a−3a−3.
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If we denote c1 = (aa)−1, c2 = c61 + c31, we can write it more succinctly as
t2 + c2t + c31. Dividing both sides by c22 and denoting y = t/c2, this becomes
y2 + y + (c31)/(c22).

Since this polynomial has roots and since a quadratic equation y2 + y = v
for v ∈ F2k has solutions in F2k if and only if Trk1(v) = 0 [1], we have that

Trm1 (
c31
c22

) = 1, and hence Trm1 (
c31
c22

+ 1) = 0 due to m being odd.

Letting f(y) = y3 + c1y+ c61 + c31, by Theorem 1 f has either three roots, or
none at all. However, c21 can easily be seen to be a root, so that f must have
three roots. Again by Theorem 1, this implies that t1 and t2 have to be cubes,
which is impossible for 3 - m.

Case 4 When i = n− 1, we have the system{
a3(x2 + x) = β

a2
n−1+1(x2

n−1

+ x) = αβ

for α ∈ F2m .
Raising the second equation to the second power yields a3(x2 + x) = α2β2

so that we have α2β2 = β, implying that β lies in F2m .

According to our experimental results up to dimension n = 46, the values of
i given in Theorem 2 are the only ones for which Ci(x) = x3 +βx2

i+1 +x3·2
m

+

x2
i+m+2m is APN. We can generalize Ci to the form C ′i(x) = x3 + β(x2

i+1)2
k

+

β2x3 + (x2i+1)2k for some non-negative integer k. The APN-ness of such a
function can be characterized by the solvability of the system{

a3(x2 + x) ∈ β · F2m

(a2
i+1(x2

i

+ x))2
k ∈ β · F2m .

(16)

Note that raising β to an even power of two leaves it unchanged. Thus, for
even values of k, system (16) has non-trivial solutions if and only if (2) does.
Therefore, for i ∈ {m−2,m, n−1, (m−2)−1 mod n} and even k the generalized
quadrinomial C ′i(x) is APN.

If k is odd, we obtain a slightly different system.

Observation 2. Let k be odd. Then the system{
a3(x2 + x) ∈ β · F2m

(a2
i+1(x2

i

+ x))2
k ∈ β · F2m .

(17)

has only trivial solutions for i ∈ {m+ 2,m, (m+ 2)−1 mod n}.

Proof. Suppose i = m + 2. Since raising β to an odd power of two yields β2,
raising the second equation of system (17) to the power 2n−k leaves us with

a2
m+2+1(x2

m+2 + x) = α′β2 for α′ = α2n−k

. Raising it again to the power

(2m−2) and, noting that m − 2 is odd, we obtain a2
m−2

+ 1(x2
m−2

+ x) =

α′′β with α′′ = α′
2m−2

, which is the same as system (2). Similarly, when
i = (m + 2)−1, we first raise the second equation to the power 2n−k, and then

to the power 2(m−2)
−1 mod n; again, (m− 2)−1 mod n is odd, so that we come

back to system (7). In the case of i = m, it suffices to conjugate the equation
a2

m+1(x2
m

+x) = α′β2 in order to derive a contradiction in the same way as in
the proof of Theorem 2.
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When k is odd, the case of i = n− 1 does allow non-trivial solutions, which
can easily be seen by taking α = 1 and any a ∈ F∗2n for which x2 + x =
β/a3 is solvable. According to our data for dimension n = 10 (which is the
highest dimension for which we can computationally test CCZ-equivalence by
our current means), the polynomials C ′i for odd values of k are equivalent to some
Ci, so that we may assume k = 0. Furthermore, for i = m and i = n − 1, the
polynomial Ci over F210 is CCZ-equivalent to one of the known CCZ-equivalence
classes: in the case of i = n − 1, Ci is equivalent to the Gold function x3, and
in the case of i = m it is equivalent to family F3 from Table 2.

The remaining two values of i, viz. m − 2 and (m − 2)−1 mod n yield for
dimension n = 10 the two CCZ-inequivalent APN quadrinomials from Obser-
vation 1, C3 and C7, which are, in addition, CCZ-inequivalent to any currently
known APN function over F210 . We have verified this computationally in two
ways. First, we used the code isomorphism test described in Section 2 to com-
pare C3 and C7 against representatives from the known infinite families, against
the sporadic binomials B(x) and B′(x), and, finally, against themselves. These
tests typically take less than half a minute for any given pair of functions, and
show that C3 and C7 are indeed CCZ-inequivalent to any other known APN
function over F210 . Second, we have computed the Γ-ranks of C3 and C7, B,
and representatives from the equivalence classes of the known APN functions.
The results are summarized in Table 3 below and further confirm these results.

We do not have the Γ-ranks for functions from family F13 in Table 2 over
F210 at this moment, but have tested them for CCZ-equivalence against B(x),
C3 and C7 via the code isomorphism test. According to our data, the functions
from F13 lie in 7 distinct CCZ-classes that are inequivalent to any one of the
representatives given in Table 3 below.

As a consequence, we collect all the above results in the following corollary
and construct a new family of APN functions.

Corollary 1. Let n = 2m with m odd and 3 - m. Consider the quadrinomial

C(x) = x3 + a(x2
i+1)2

k

+ bx3·2
m

+ c(x2
i+m+2m)2

k

.

Then C(x) is APN over F2n in the following cases:

1. n = 10, (a, b, c) = (β, 0, 0), i = 3, k = 2 (this gives us the binomial B(x));

2. (a, b, c) = (β, β2, 1), i = m− 2, k even;

3. (a, b, c) = (β, β2, 1), i = (m− 2)−1, k even;

4. (a, b, c) = (β, β2, 1), i = m, k even;

5. (a, b, c) = (β, β2, 1), i = n− 1, k even

6. (a, b, c) = (β, β2, 1), i = m+ 2, k odd;

7. (a, b, c) = (β, β2, 1), i = (m+ 2)−1, k odd;

8. (a, b, c) = (β, β2, 1), i = n− 1, k even .

Furthermore, in dimension n = 10, the functions in items 2 and 3 lie in
distinct classes with respect to CCZ-equivalence and are CCZ-inequivalent to
any known APN function over F210 , including B(x).
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Function Family Γ-rank

x3 Gold 125042
x9 Gold 136492
x57 Kasami 186416
x339 Dobbertin 280604

x6 + x33 + α31x192 F3 151216
x33 + x72 + α31x258 F3 153896

x3 + Tr101 (x9) F4 153896

x3 + α−1Tr101 (a3x9) F4 164098
- F13 -

B(x) = x3 + α341x36 [16] 169984
C3 new 166068
C7 new 166168

Table 3: Γ-ranks of all known CCZ-inequivalent APN functions over F210

Conclusion

We have constructed a family of quadrinomial functions over finite fields F2n

with n = 2m, m odd and 3 - m which contains the previously unclassified
binomial x3 +βx36 (discovered in 2006 as the first example of an APN function
CCZ-inequivalent to a power function) in the sense that B(x) can be obtained by
setting two of the coefficients in the quadrinomial construction to zero. We have
shown two infinite constructions of APN functions belonging to this family, and
demonstrated that their instances over F210 are CCZ-inequivalent to any known
APN function over this field, including the sporadic binomial B(x), and that
they are CCZ-inequivalent to each other. We have also characterized the APN-

ness of all quadrinomials of the form x3 + β(x2
i+1)2

k

+ β2x3·2
m

+ (x2
i+m+2m)2

k

in terms of the solvability of a system of equations.
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