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A hash function family is called correlation intractable if for all sparse
relations, it hard to find, given a random function from the family, an in-
put output pair that satisfies the relation. Correlation intractability (CI)
captures a strong Random Oracle like property of hash functions. In partic-
ular, when security holds for all sparse relations, CI suffices for guaranteeing
the soundness of the Fiat-Shamir transformation from any constant round,
statistically sound interactive proof to a non-interactive argument.

In this paper, based on the method proposed by Chris Peikert and Sina
Shiehian, we construct a hash family that is computationally correlation
intractable for any polynomially bounded size circuits based on Learning
with Errors Over Rings (RLWE) with polynomial approximation factors and
Short Integer Solution problem over modules (MSIS), and a hash family that
is somewhere statistically intractable for any polynomially bounded size cir-
cuits based on RLWE. Similarly, our construction combines two novel ingre-
dients: a correlation intractable hash family for log depth circuits based on
RLWE, and a bootstrapping transform that uses leveled fully homomorphic
encryption (FHE) to promote correlation intractability for the FHE decryp-
tion circuit on arbitrary circuits. Our construction can also be instantiated
in two possible modes, yielding a NIZK that is either computationally sound
and statistically zero knowledge in the common random string model, or
vice-versa in common reference string model. The proposed scheme is much
more efficient.

1 Introduction

A zero knowledge proof system [GMR85] is a protocol by which a prover
can convince a verifier that a particular statement is true, while revealing
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nothing more than fact. Such a system is noninteractive zero knowledge proof
[BDMP88] (NIZK) if both parties have access to some common string, and
the prover just sends a single message to the verifier. Since the introduction
of NIZK, several works have constructed such protocols for arbitrary NP
languages based on various cryptographic structure, and used them in a
series of important cryptographic applications.

The Fiat-Shamir Transform [FS86] is an important tool for designing
non interactive argument schemes. A central question in the foundational
study of cryptography regards the security of this transformation is for which
protocols and hash families does the Fiat-Shamir transform preserve sound-
ness? Under what assumptions can we prove this?

A recent line of research [KRR17, CCRR18, HL18, CCH+19] develops a
framework for instantiating the Fiat-Shamir transform [FS86], which removes
interaction from a public coin protocol by replacing each random verifier
message with a hash of the transcript so far. These works show that if
the hash function satisfies a property call correlation intractability [CGH98],
then the Fiat Shamir transform can be applied soundly to many interactive
protocols, including some zero knowledge ones. Roughly speaking, a hash
family H is correlation intractable for a relation R, given a hash key k, it
is hard to find an input-output pair (x,Hk(x)) ∈ R. In the context of Fiat-
Shamir, this ensures that a cheating prover cannot find a message that hashes
to a verifier message that admits an accepting transcript.

The works [CCRR18, HL18, CCH+19] construct correlation intractable
hash functions for various sparse relations, and use them to soundly instan-
tiate the Fiat-Shamir transform, obtaining NIZK proofs for all of NP. Of
particular interest is the beautiful work of [CCH+19], which shows that for
this purpose, it suffices to have correlation intractability for arbitrary poly-
nomial time computations, i.e., for the special class of efficiently searchable
relations. These are relations where each input has at most a single output
that is computable within some desired polynomial time bound.

The hash families constructed in [CCRR18, CCH+19] are proved to be
correlation intractable under various lattice related assumptions. However,
these assumptions are somehow non-standard, involving either optimal hard-
ness (e.g., of LWE with uniform error in an interval) against polynomial
time attacks [CCRR18, CCH+19], or the existence of circularly secure FHE
[CCH+19]. Although the latter assumption seems tantalizingly close to plain
LWE (and remains the only known way of obtaining FHE that supports un-
bounded as opposed to just leveled, homomorphic computations), none of
these assumptions are known to be supported by the hardness of LWE, nor
the conjectured worst case hardness of lattice problems.

Chris Peikert and Sina Shiehian showed there exists a noninteractive zero
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knowledge proof system for any NP language, based on the plain LWE prob-
lem[PS19]. They finally solve central open problem of basing NIZK for NP
on worst case lattice assumptions. They constructed a correlation intractable
hash family for bounded circuits is obtained by combining two new ingredi-
ents: (1) a correlation intractable hash family for bounded circuits is obtained
on plain SIS/LWE, where in particular for log depth circuits the associated
approximation factor is a polynomial; (2) a bootstrapping transform that
uses fully homomorphism encryption to promote CI for the FHE decryption
circuits to CI for arbitrary bounded circuits.

In this paper, using some new techniques recently introduced by Chris
Peikert and Sina Shiehian [PS19], we construct a hash family that is correla-
tion intractable for any polynomially bounded size circuits based on RLWE.
Similarly, our construction combines two novel ingredients: a correlation in-
tractable hash family for log depth circuits based on RLWE, and a bootstrap-
ping transform that uses leveled FHE to promote correlation intractability
for the FHE decryption circuit on arbitrary circuits. Our construction can
also be instantiated in two possible modes, yielding a NIZK that is either
computationally sound and statistically zero knowledge in the common ran-
dom string model, or vice-versa in common reference string model. Because
power of two cycotomic rings are very convenient to use, the proposed hash
family is much more efficient.

2 Preliminaries

For each positive integer a, we denote the set {0, 1, · · · , a− 1} by Za.

For a set A, we denote by a
$← A that a is drawn uniformly from A. If χ

is a probability distribution, then a ← χ means that a is drawn at random
according to the probability distribution χ.

Logarithms are in base 2, unless specified otherwise.
For a positive integer a and x ∈ Q, we define x mod a as the unique

element x′ in the interval [−a
2
, a
2
) satisfying x′ = x mod a.

For a x ∈ Q, we denote by ⌈x⌉ the smallest integer greater than or equal
to x, and by ⌊x⌋ the largest positive integer less than or equal to x.

Unless specifically stated, all vectors will be column vectors. We denote
column vectors by bold lower case letters, e.g., v, and matrices by bold
upper-case letters, e.g., A. For a vector v (or matrix A), we denote by vT

(or AT ) its transpose. For a vector v, we write v[i] to denote the i-th entry
(coordinate) of v; for a matrix A we write aij to denote the entry in row i,
column j.
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The Kronecker product A⊗ B of two matrixes (or vectors) A and B is
obtained by replacing each entry ai,j of A with the block aij B.

We denote by R the ring Z[x]/(xd+1) and Rq the ring R/(q·R), where d is
a power of 2. Regular font letters denote elements in R or Rq (which includes
elements in Z and Zq) and bold lower case letters represent vectors with
coefficients in R or Rq. We often equate elements in polynomial rings with
their coefficient vectors. In particular, we will use R2 to denote the set of R
elements with binary coefficients, e.g., when sometimes, it may denote those
vectors that have 0/1 coordinates. We write the dot product of u,v ∈ Rn as
< u,v >=

∑n
i=1 u[i] · v[i] ∈ R. We use ||r|| for r ∈ R refers to the Euclidean

norm of r’s coefficient vector. We say γR = max{∥a ·b∥/(∥a∥·∥b∥) : a, b ∈ R}
is the expansion factor of R. The value of γR is at most

√
d by Cauchy-

Schwarz. For a ∈ R, a mod q means each coefficient of a reduced into the
range [− q

2
, q
2
).

We use the standard asymptotic notation to describe the order of growth
of functions: for any positive real valued functions f(n) and g(n) we write
f = O(g)if there exists two constants a, b such that f(n) ≤ a · g(n) for all

n ≥ b; f = o(g) if limn→∞
f(n)
g(n)

= 0;f = ω(g) if g = o(f). Wa say that a

function µ(λ) is negligible if µ(λ) = O(λ−c) for every constant c.

2.1 Learning With Errors over Rings

We recall the Leaning With Errors over Rings (RLWE) problem introduced
by Vadim Lyubashevsky, Chris Peikert and Oded Regev , and their hardness
based on worst case lattice problems [LPR12].

Definition 1. For security parameter λ, let f(x) = xd+1 where d = d(λ) is
a power of 2. Let q = q(λ) ≥ 2 be an integer. Let R = Z[x]/(f(x)) and Rq =
R/(q · R). Let χ = χ(λ) be a distribution over R. The RLWEd,q,χ problem
is to distinguish the following two distributions: in the first distribution, one
samples (ai, bi) ∈ R2

q uniformly. In the second distribution, one first draws
s ← Rq uniformly and then samples (ai, bi) ∈ R2

q by sampling ai ← Rq

uniformly, ei ← χ, and setting bi = ai · s+ ei. The RLWEd,q,χ assumption is
that the RLWEd,q,χ problem is infeasible.

Theorem 1. for any d that is a power of 2, ring R = Z[x]/(xd + 1), prime
integer q = 1 mod d, and B = ω(

√
d log d), there is an efficiently samplable

distribution χ that outputs elements of R of length a most B with over-
whelming probability, such that if there exists an efficient algorithm that
solves RLWEd,q,χ, then there is an efficient quantum algorithm for solving
dω(1) · (q/B) approximate worst case SVP for ideal lattices over R.
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2.2 Module Short Integer Solution

We recall the Leaning With Errors over Rings (RLWE) problem introduced
by Adeline Langlois and Damien Stehle, which generalizes both SIS and R-
SIS, and their hardness based on worst case lattice problems[LS15].

Definition 2. The problem M-SISq,m,β is as follows: Given a1, · · · , am ∈ Rk
q

chosen independently from the uniform distribution, find z1, · · · , zm ∈ R such
that

∑m
i=1 ai ·zi = 0 mod q, and 0 < ∥z∥ ≤ β, where z = (z1, · · · , zm)T ∈ Rm.

Theorem 2. For any k ≥ 1 and ϵ(N) = N−ω(1), there is a probabilistic
polynomial time reduction from solving Mod-GIVPηϵ

γ in polynomial time (
in the worst case, with high probability) to solving M-SISq,m,β in polynomial
time with non-negligible probability, for any m(N), q(N), β(N) and γ(N)
such that γ ≥ β

√
N ·ω(

√
logN), q ≥ β

√
N ·ω(logN) andm, log q ≤ poly(N).

2.3 Leveled Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) was introduced by Craig Gentry, we
recall the notion of leveled FHE and its desired properties[Gen09].

Throughout this section we use λ to indicate the security parameter. In
addition, all schemes in this paper encryption bit-by bit and therefore our
definitions only refer to this case.

A homomorphic encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,
HE.Eval) is a quadruple of PPT algorithms as follows.

Key generation: The algorithm (pk, evk, sk) ← HE.Keygen(1λ) takes
a unary representation of the security parameter and outputs a public en-
cryption key pk, a public evalution key evk and a secret decryption key sk.

Encryption: The algorithm c ← HE.Encpk(µ) takes the public key pk
and a single bit message µ ∈ {0, 1} and outputs a ciphertext c.

Decryption: The algorithm µ∗ ← HE.Decsk(c) takes the secret key sk
and a ciphertext c and outputs a message µ∗ ∈ {0, 1}.

Homomorhic evaluation: The algorithm cf ← HE.Evalevk(f, c1, · · · , cl)
takes the evaluation key evk, a function f : {0, 1}l → {0, 1} and a set of l
ciphertexts c1, · · · , cl, and outputs a ciphertext cf . In this work, f will be
represented by an arithmetic circuit over GF (2).

Definition 3. A scheme HE is IND-CPA secure if for any polynomial time
adversary A it holds that

AdvCPA[A] = |Pr[A(pk, evk,HE.Encpk(0) = 1]
−[A(pk, evk,HE.Encpk(1) = 1]|

= negl(λ),
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where (pk, evk, sk)← HE.Keygen(1λ).

Definition 4. (compactness) A homomorphic scheme HE is compact if there
exist a polynomial s = s(k) such that the output length of HE.Eval(·, ·) is at
most s bits long regardless of f of the number of inputs.

Definition 5. (fully homomorphic encryption) A scheme HE is fully homo-
morphic if it is both compact and homomorphic for the class of all arithmetic
circuits over GF (2).

Based on RLWE, Zvika Brakerski, Craig Gentry and Vinod Vaikun-
tanathan constructed leveled fully homomorphic encryption schemes (capa-
ble of evaluating arbitrary polynomial size circuits)[BGV11]. Using their
constructions, we will construct correlation intractable hash function for ar-
bitrary polynomial size circuits.

2.4 Correlation Intractability

We recall the definitions of correlation intractability proposed in [CCH+19,
PS19], in their computational and statistical versions.

Definition 6. We say that a relation R ⊂ X × Y is searchable in size S if
there exists a function f : X → Y that is implementable as a Boolean circuit
of size S, such that if (x, y) ∈ R then y = f(x).

Definition 7. Let R = {Rλ} be a relation class. A hash function family
(Gen, Hash) is correlation intractable for R if for every non-uniform poly-
nomial size adversary A = {Aλ} there exists a negligible function v(λ) such
that for every Rλ ∈ R

Pr [(x,Hash(k, x)) ∈ Rλ] ≤ v(λ).
k ← Gen(1λ)
x = Aλ(k)

Definition 8. Let R = {Rλ} be a relation class. A hash function fam-
ily (Gen,Hash) with a fake key generation algorithm StatGen is somewhere
statistically correlation intractable for R if

1. StatGen (1λ, z), where z is an auxiliary input, outputs a key k,
2. there exists a negligible function v(λ) and a class of auxiliary inputs

Z = {Zλ} such that
1) the distribution ensembles {StatGen(1λ, zλ)} and {Gen(1λ)} are com-

putationally indistinguishable for every sequence of zλ ∈ Zλ, and
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2) for every Rλ ∈ R there exists zR ∈ Zλ such that

Pr [∃ x, s.t.(x,Hash(k, x)) ∈ R] ≤ v(λ),
k ← StatGen(1λ, zλ)

we call zR the intractability guarantee for Rλ.

2.5 Noninteractive Zero Knowledge Arguments (and
Proofs)

The following preliminaries are taken from [PS19].

Definition 9. A noninteractive zero knowledge (NIZK) argument system Π
for an NP relation R is a tuple of PPT algorithms (Setup, Prove, Verify)
having the following interfaces:

1. Setup (1n, 1λ), given a statement length n and a security parameter λ,
outputs a string σ,

2. Prove (σ, x, ω), given a string and a statement witness pair (x, ω) ∈ R,
output a proof π,

3. Verify (σ, x, π), given a string σ, a statement x, and a proof π, either
accepts or rejects.

The proof system Π must satisfy the following requirements for every
polynomial function n = n(λ). L(R) denotes the language {x : ∃ ω, s.t.(x, ω) ∈
R} and Rn denotes the set R

∩
({0, 1}n × {0, 1}∗).

1. Completeness: for every (x, ω) ∈ R and λ ∈ N , Verify (σ, x, π) ac-
cepts with probability 1, over the choice of σ ← Setup(1|x|, 1λ) and π ←
Prover(σ, x, ω).

2. Soundness: For every xn ∈ {0, 1}n \ L(R) and every polynomial size
P ∗ = P ∗

λ , there is a negligible function v such that

Pr [V (σ, xn, π) = 1] ≤ v(λ).
σ ← Setup(1n, 1λ)

π ← P ∗
λ (σ)

3. Statistical zero knowlwdge: there exists a PPT simulator S such that
for every (x, ω) ∈ R, the following two distribution ensembles are statistically
indistinguishable:(

S(1λ, x)
)
λ

s→
{(

σ,Prover(σ, x, ω)
)
: σ ← Setup

(
1|x|, 1λ

)}
λ
.

If the distribution are computationally indistributionable, then Π is said
to be computational zero knowledge.
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A NIZK argument system can also satisfy various stronger properties.
We list some important variants below.

1. Common random string: Setup(1n, 1λ) simply outputs a uniformly
random string.

2. Statistical soundness: there exists a negligible function v(λ) such that
for any n ∈ N

Pr [∃ (x, π∗)s.t.Verify(σ, x, π∗)accepts Λ x /∈ L] ≤ v(λ).
σ ← Setup(1n, 1λ)

3. Adaptive soundness: for every non uniform polynomial size “cheating”
prover P ∗ = P ∗

λ there exists a negligible function v(λ) such that for any
n ∈ N ,

Pr [Verify(σ, x, π∗)accepts Λ x /∈ L] ≤ v(λ).
σ ← Setup(1n, 1λ)
(x, π∗)← P ∗

λ (σ)

4. Adaptive (computational) zero knowledge: there exists a PPT simula-
tor S = (S1, S2) such that for every non uniform polynomial size “cheating”
verifier V ∗ = (V ∗

1 , V
∗
2 ), for every n ∈ N the probabilities

Pr[V ∗
2 (σ, x, π, ς) = 1, (x ∈ L)].

In the following two experiments differ only by negl(λ):
1. in the “real” experiment, σ ← Setup(1|x|, 1λ), (x, ω, ς) ← V ∗

1 (σ),
π ← Prove(σ, x, ω);

2. in the “simulation” experiment, (σ, τ) ← S1(1
λ), (x, ω, ς) ← V ∗

1 (σ),
π ← S2(σ, x, τ).

3 New Fully Homomorphic commitments

3.1 Gadgets Matrixes

For a positive integer modulus q, let l = ⌈log q⌉, the ”gadger” vector over Zq

[MP12, PS19] is defined as

gT = (1, 2, 4, · · · , 2l−1) ∈ Zq.

For every u ∈ Zq, there is an efficiently computable binary vector g−1[u] ∈
{0, 1}l such that < g,g−1[u] >= u mod q. Specifically, g−1[u] corresponds to
the binary representation of u in {0, 1, · · · , q − 1}.
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Let JT = (1, 1, · · · , 1) ∈ Zd
q be an all 1 column vector of length d.

Let aT = (a0, a1, · · · , ad−1) ∈ Zd
q , in this paper, we define the inner

product of a and J as < J, aT >= a0 + a1x+ · · ·+ ad−1x
d−1 ∈ Rq.

We define the function g−1⊗J : Rq → {0, 1}d·l, which applies g−1 to each
coordinate and appends the results. That is to say, if x ∈ Rq, we decomposes

x into its bit representation, Namely, write x =
∑⌊log q⌋

j=0 2j ·uj, where all of the

vectors uj are inRn
2 , and output (g−1⊗J[x])T = (u0, u1, · · · , u⌊log q⌋) ∈ R

⌈log q⌉
2 .

Because we equate the elements in R with their coefficient vectors, we have
g−1 ⊗ J [x] ∈ {0, 1}d·l.

If we define JT = (1, 1, · · · , 1) ∈ Zd·n
q be an all 1 vector of length d · n,

we define the function g−1 ⊗ J : Rn
q → {0, 1}d·n·l similarly, that is to say,

for every x ∈ Rn
q , we decomposes x into its bit representation. Namely,

write x =
∑⌊log q⌋

j=0 2j · uj, where all of the vectors uj are in Rn
2 , and output

(g−1 ⊗ J[x])T = (u0, u1, · · · , u⌊log q⌋) ∈ R
n·⌈log q⌉
2 .

For a dimension n, the two gadget matrix are defined as

G2 = I2 ⊗ gT ∈ Z2×(2l)
q ,

Ḡ = I2 ⊗ gT ⊗ J ∈ R2×(2dl)
q .

Obviously, if a column vector x ∈ {0, 1}2ld, Ḡ · x = (u(x), v(x)T , where
u(x), v(x) ∈ Rq.

In the following, we define two functions:
G−1

2 = I2⊗g−1 : Z2
q → {0, 1}2l, which applies g−1 to each coordinate and

appends the results. This has the essential property, which is also reflective
of the mixed product property, that for every u ∈ Z2

q , G2 ·G−1
2 [u] = u.

Ḡ
−1

= I2 ⊗ g−1 ⊗ J : R2
q → {0, 1}2dl as follows, for every (u(x), v(x)) ∈

R2
q , Ḡ

−1
[(u(x), v(x))T ] = (g−1 ⊗ J[u(x)],g−1 ⊗ J[v(x)])T . This also has the

essential property, which is also reflective of the mixed product property, that
is for every (u(x), v(x)) ∈ R2

q , Ḡ · Ḡ
−1
[(u(x), v(x))T ] = (u(x), v(x))T .

3.2 New Homomorphic commitments

Here we use the relevant homomorphic properties of gadgets, which were
exploited in [GSW13, BGG+14, BV14, AP14, GVW15, PS19], to construct
the fully homomorphic commitments.

Let A ∈ R2×m
q be an arbitrary matrix for some dimension m. Let Ci =

ARi+xiG2 for some matrix Ri ∈ Rm×(2l) and scalar xi ∈ Zq for i = 1, 2. We
view Ci as a commitment to xi under randomness Ri. Observe that these
commitments satisfy the following:

G2 −C1 = A · (−Ri) + (1− x1)G2,

9



C× = C1 × Ḡ
−1
[C2] = A(R1 · Ḡ

−1
[C2]) + x1 ·G2 · Ḡ

−1
[AR2 + x2G2]

= A(R1 · Ḡ
−1
[C2] + x1R2) + (x1 · x2)G2.

In particular, if the committed values xi are restricted to bits, then we
can implement NAND gate ( NAND(x, y) = 1− x · y ) using the above two
homomorphic operations, and then we can homomorphically evaluate any
booean circuit.

We also need another homomorphic property. Suppose we have a com-
mitment

C = AR+ xt ⊗G2 = A ·R+ xt ⊗ I2 ⊗ gt.

It is easy to prove that for the matrix Ḡ ∈ Z2×2dl
q , there exists a vector

mḠ ∈ R4dl2

2 such that for every vector x ∈ Z2dl
q . we have xt⊗ I2⊗ gt ·mḠ =

Ḡ · x, then

CḠ = C ·mḠ = A · rḠ + Ḡ · x.

We view CḠ as a “quasi-commitment” to Ḡ · x ∈ R2
q , under randomness

rḠ, which is small if R is small.
We summarize all of the above in the following fully homomorphic com-

mitment scheme.
Construction for fully homomorphic commitment scheme
The fully homomorphic commitment (FHC) scheme is parameterized by

q and m, and is defined as follows.
1. FHC.Gen chooses a uniformly random A← R2×m

q , where m ≥ 4l.
2. Com(A,x ∈ ZS

q ;R← Rm×2Sl) outputs a commitment C = AR+xt⊗
G2 ∈ R2×2Sl

q . If the randomness of R is not provided explicitly, it is chosen

uniformly from Rm×2Sl
2 .

3. CircuitEval(C,C ∈ R2×2Sl
q ;R ∈ Rm×2Sl). For a Boolean circuit C :

{0, 1}t → {0, 1}L, deterministically outputs a commitment matrix CC ∈
R2×2Ll

q and additionally an integer matrix RC ∈ Rm×2Ll.

4. QuasiEval(Ḡ ∈ Z2×2dl
q ,C ∈ R2×4dl2

q ;R ∈ Rm×4dl2) deterministically
output a quasi commitment vector CḠ ∈ R2

q and additionally an integral
matrix rḠ ∈ Rm.

Proposition: the above fully homomorphic commitment scheme satisfies
the following properties:

1. By the leftover hash lemma, for any x ∈ Z
poly(m)
q the distribution

of (A,C) has negl(m) statistical distance from uniformly random, where
A← Gen(1m) and C← Com(A,x).

2. For any Boolean circuit C : {0, 1}S → {0, 1}L of depth h, any x ∈
{0, 1}S, any A ∈ R2×m

q and R ∈ Rm×2Sl, for commitment C = Com(A,x;R)
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we have
CircuitEval(C,C;R) = Com(A, C(x);RC),

whereRC ∈ Rm×2Ll is the additional output Com(A, C(x);RC), and ∥RC∥ =
||R|| · dO(h).

3. For any x ∈ {0, 1}2dl, any A ∈ R2×m
q and any R ∈ Rm×4dl2 , for

commitment C = AR+ xt ⊗G2 we have

QuasiEval(Ḡ,C;R) = A · rḠ + Ḡ · x,
where rḠ ∈ Rm is the additional output of QuasiEval(Ḡ,C;R), and ∥rḠ∥ ≤
∥R∥ · (2dl)2.

4 Correlation-Intractable Hashing fromMSIS

and RLWE

4.1 Construction for Circuits

The hash family CIH=(Gen, Hash) with fake key generation algorithm Stat-
Gen is parameterized by an arbitrary circuit size S = S(λ) = poly(λ) and
depth h = h(λ) ≤ S(λ). Let U(C, x) = C(x) denote a universal circuit with
depth h and size S.

1. Gen(1λ): generate A ←FHC.Gen and C ← Com(A, 0S(λ)), choose a
uniformly random a← R2

q , and output the hash key k = (a,C).
2. StatGen(1λ.C): given a circuit C of size S, choose a uniformly random

A← Rm
q and a(x)← Rq, choose s(x)← Rq, e← χm and e← χ, where χ is

an RLWE error distribution. Let

A =

[
A

s(x) ·A+ e

]
∈ R2×m

q , a =

[
a(x)

s(x) · a(x) + e−
⌊
q
2

⌋
· J

]
∈ R2

q ,

here we define J = 1 + x+ x2 + · · ·+ xd−1 ∈ Rq.
Compute C← Com(A, C) and output the hash key k = (a,C).
3. Hash(k = (a,C), x): let circuit Ux(·) = U(·, x), and output

Ḡ
−1
[a+QuasiEval(Ḡ,CircuitEval(Ux,C))] ∈ {0, 1}2dl.

4.2 Correlation Intractability

In the following, we prove that the construction is computationally correla-
tion intractable under an appropriate MSIS assumption and RLWE assump-
tion, and statistically correlation intractable under an appropriate RLWE
assumption.
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Theorem 3. Assuming the hardness of MSIS for a sufficiently large β, the
construction above is correlation intractable for the class of functions with
output length 2dl that can be implemented by size S depth h Boolean circuits.

Proof. Let Adv = {Aλ} be any non-uniform polynomial size adversary, and
fix any sequence of functions {fλ}, where fλ has output length 2dl and can be
implemented by a circuit Cλ of size S = S(λ) and depth h = h(λ). To show
the construction above is correlation intractable with respect to f , we first
define a hybrid experiment and show that it is statistically indistinguishable
from the real experiment. Then we show that in this hybrid, it is hard for
an adversary to break correlation intractability against {fλ}.

In the hybrid experiment we merely modify how C ← Com(A, C) for
C = Cλ is generated. By item 1 of Proposition, this experiment is within
statistical distance negl(λ) from the real one, so Adv′s success probability
can differ by at most this much between the real and hybrid experiments.

We now show that under hardness hypothesis, v(λ) = Prk[x = Aλ(k) :
Hash(k, x) = f(x)] is a negligible function that depends only on Adv. To
do this we use Adv to construction a non uniform polynomial size attacker
S = {Sλ} against MSIS that also has success probability v(λ), as follows.

The attacker Sλ, given an MSIS instance A′ = [a|A] ∈ R
2×(m+1)
q , gener-

ates C← Com(A, C) and retains the commitment randomness R ∈ Rm×2Sl
2 .

It defines a hash key k = (a,C) and let x = Aλ(k). If Hash(k, x) = f(x),
then lets (Cx,Rx) = CircuitEval(Ux,C;R) and then lets rx be the addi-
tional output of QuasiEval(Ḡ,Cx;Rx). It output zx = (1, rx) ∈ Rm+1 as the
nonzero MSIS solution.

We now analyze Sλ. First observe that the distribution of the hash key
k it provides to Aλ is exactly as in the hybrid experiment, by the uniform
distribution of the MSIS instance A′ = [a|A]. We claim that zx = (1, rx) is
a valid MSIS solution whenever Hash(k, x) = f(x). To see this, observe that
this condition implies that

Ḡ · f(x) = Ḡ · Hash(k, x)
= a+QuasiEval(Ḡ, CircuitEval (Ux,C))

= a+ (Arx + Ḡ · f(x))
= A′zx + Ḡ · f(x)

and that ∥zx| ≤ β, therefore A′zx = 0, and zx satisfies the norm bound, as
desired.

Theorem 4. Assuming the hardness of RLWE. Construction is somewhere
statistically correlation intractable for the class of functions with output
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length 2dl that can be implemented by size S depth h boolen circuits; each
circuits serves as the intractability guarantee for itself.

Proof. First, it follows immediately from RLWE assumption that the output
of Gen(1λ) and Gen(1λ, Cλ) are computationally indistinguishable for any
sequence of circuits Cλ of size S.

Now fix any sequence of functions {fλ} , where fλ has single bit output
length and can be implemented by a circuit of size S = S(λ) and depth
h = h(λ). we will show that

Pr [∃ x, s.t.Hash(k, x) = f(x)] ≤ v(λ),
k ← StatGen(1λ, fλ)

where v(λ) is a negligible function.

Using the notation from StateGen, let A′ = [a|A] ∈ R
2×(m+1)
q and let

A′ = [a,A] ∈ Rm+1
q be its first row. Similarly, let e′ = (e, e) ∈ Rm+1. For

any hash input x, define rx and zx = (1, rx) ∈ Rm+1 exactly as in the proof
of theorem above. Now, notice that if Hash(k, x) = f(x), then as above we
have

Ḡ · f(x) = A′zx + Ḡ · f(x).
This implies that[

A
′ · zx

s(x) ·A′ · zx + e′ · zx

]
=

[
0

⌊ q
2
⌋ · J

]
,

and hence < e′, zx >= ⌊ q
2
⌋ · J , it is impossible.

4.3 Correlation Intractable Hashing for all Circuits

In this subsection let L = L(λ), S = S(λ) and h = h(λ) be arbitrary
poly(λ)-bound functions, and define the relation class RL,S,d = {Rλ,L,S,d},
where Rλ,L,S,d = {Rf = {(x, f(x))}} is the set of all efficiently searchable
relations whose search functions f can be computed by a circuit with output
length L(λ), size S(λ), and depth h(λ).

Let FHE be a leveled fully homomorphic encryption scheme instantiated
to support a circuit class C = {Cλ} of depth at most h = h(λ), and let
Uλ(C, x) = C(x) denote a universal circuit for circuits C ∈ Cλ, with decryp-
tion circuit having size SDec(λ) and logarithmic depth hDec(λ) = O(log λ).

Let CIH=(Gen,Hash) be a hash function family with fake-key generation
algorithm StatGen for circuit size S = L · SDec(λ) and depth d = dDec(λ).
Define a new hash family CIH∗ =( Gen∗,Hash∗) with fake key generation
algorithm StatGen∗ as follows:

13



1. Gen∗(1λ): generate k ←GIH.Gen(1λ) and (sk, ek) ←FHE.Gen(1λ).
Generate c ←Enc(pk,D) for some arbitrary “dummy” circuit D ∈ Cλ, and
output hash key k′ = (k, ek, c).

2. StatGen∗(1λ, C): generate (sk, ek)←FHE.Gen(1λ) and k ←StatGen(1λ,
FHE.Dec(sk, ·)). Generate c←Enc(pk, C)and output hash key k′ = (k, ek, c).

3. Hash∗(k′ = (k, ek, c), x): let circuit Ux(·) = Uλ(·, x) and out hash value
Hash(k,Eval(ek, Ux, c).

Theorem 5. Assuming the hardness of RLWE for poly(n) bounded χ and
suitable q, and the CPA security of FHE. The hash family CIH∗ =( Gen∗,Hash∗)
with fake key generation algorithm StatGen∗instantiated with FHE and CIH
is correlation intractable with respect to RL,S,d (respectively, somewhere
statistically correlation intractable with respect to RL,S,d, where for each
Rf ∈ RL,S,d the intractability guarantee is f).

Proof. First, it follows immediately from the CPA security of FHE that the
output of Gen(1λ) and Gen(1λ, Cλ) are computationally indistinguishable for
any sequence of circuits Cλ of size S.

The rest of the proof is similar to the proof of the theorem in [PS19] and
will not be described here.

Using the leveled FHE scheme based on RLWE that has jointly pseu-
dorandom evaluation keys and ciphertexts [BGV11], we get the following
corollary.

Corollary 1. Assuming the hardness of RLWE, there exists a somewhere
statistically correlation intractable hash family with pseudorandom hash keys
for RL,S,d, where for each Rf ∈ RL,S,d the intractability guarantee is f .

5 Noninteractive Zero Knowledge for NP

We are now ready to instantiate the noninteractive zero knowledge protocol
from [CCH+19, PS19] with our correlation intractable hash function. We
first recall the following theorem.

Theorem 6 (CCH+19). Assuming the existence of
1. a lossy public key encryption scheme with uniformly random lossy pub-

lic keys (respectively, an ordinary CPA secure public key encryption scheme),
2. a hash family with (psedo) random keys which is CI for all circuits

of output length L(λ) ≥ λc for some constant c > 0 and size bounded by
some sufficiently large S(λ) = poly(λ) (respectively, a hash family that is
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somewhere statistically correlation intractable of all such circuits, where the
intractability guarantee for each circuit is itself).

There exists an adaptively sound, statistically zero knowledge noninter-
active argument system with common random string for any NP language
(respectively, a statistically sound, adaptively zero knowledge noninteractive
proof system with common reference string).

Theorem 7. Assuming the hardness of RLWE, for any NP language there
exists

1. an adaptively sound, statistically zero knowledge noninteractive argu-
ment system having a common random string,

2. a statistically sound, adaptively zero knowledge noninteractive proof
system having a common reference string.

The proof of the theorem is similar to the proof of the theorem in [PS19],
it will not be described here.
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