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ABSTRACT
We present a new 4-move special honest-verifier zero-knowledge

proof of knowledge system for proving that a vector of Pedersen

commitments opens to a so-called “one-hot” vector (i.e., to a vec-

tor from the standard orthonormal basis) from Znp . The need for

such proofs arises in the contexts of symmetric private information

retrieval (SPIR), end-to-end verifiable voting (E2E), and privacy-

preserving data aggregation and analytics, among others. The key

insight underlying the new protocol is a simple observation regard-

ing the paucity of roots of polynomials of bounded degree over a

finite field. The new protocol is fast and yields succinct proofs: For
vectors of length n, the prover evaluates Θ(lgn) group operations

plus Θ(n) field operations and sends just Θ(lgn) group and field ele-
ments, while the verifier evaluates one n-base multiexponentiation

plus Θ(lgn) additional group operations and sends just 2(λ + lgn)

bits to obtain a soundness error less than 2
−λ

. (A 5-move variant of

the protocol reduces prover upload to just 2λ+ lgn bits for the same

soundness error.) We have implemented both our new protocol

and its closest competitors from the literature; in accordance with

our analytic results, experiments confirm that the new protocols

handily outperform existing protocols for all but the shortest of

vectors (roughly, for vectors with more than 16–32 elements).

CCS CONCEPTS
• Security and privacy→ Cryptography; Privacy-preserving
protocols; Security protocols;

KEYWORDS
Zero-knowledge proofs; efficiency; privacy-preserving protocols

1 INTRODUCTION
Zero-knowledge proofs provide a means for a prover to convince a

verifier that some claim is true while communicating nothing more.
The ability to prove statements while conveying zero information

beyond their veracity has profound implications for cryptography

and, especially, for its applications to the construction of privacy-

enhancing technologies (PETs). Unfortunately, zero-knowledge

does not come free and most of the common zero-knowledge tech-

niques in the literature suffer poor scalability when applied to

statements with “high fan-in”, thus limiting their usefulness in

many otherwise-promising application domains.

This paper addresses the problem of designing communication-

and computation-efficient zero-knowledge proofs of knowledge

with which a prover P can convince a verifier V of its ability to open

a vector of Pedersen (or Pedersen-like) commitments to a so-called

“one-hot” vector (i.e., to a vector from the standard orthonormal

basis) over some prime-order field. The need for such proofs nat-

urally arises in several contexts. For instance, Henry, Olumofin,

and Goldberg [19] and, more recently, Damgård, Luo, Oechsner,

Scholl, and Simkin [13] have observed that such proofs give rise to

a generic (and rather elegant) transformation from “vector-matrix”

style private information retrieval (PIR) to symmetric PIR (SPIR), a
strengthened variant of PIR which extend privacy protections be-

yond the queriers to also include the database holders. Similarly,

schemes that rely on “vector-matrix” style PIR-Writing [7] with

multiple clients—such as the Riposte system of Corrigan-Gibbs,

Boneh, and Mazières [11] or the private ad-impression reporting

protocol of Green, Ladd, and Miers [15]—require such proofs to

ensure that malformed write requests frommalicious clients cannot

corrupt the entire database.

The focus of this paper is on the design, formal analysis, and
empirical evaluation of an efficient new proof system for proving

vectors of commitments open to standard basis vectors, as opposed

to specific applications thereof; however, we hasten to note that

our new proof system can serve as a drop-in replacement for those

used in any of the above-mentioned systems, among myriad others.

Moreover, our analytic and experimental results suggest that using

our new proofs in place of existing proofs would yield increasingly

dramatic speedups and bandwidth savings as the sizes the vectors

in question grow large.

Related work. A handful of recent works have studied efficient

zero-knowledge proofs pertaining to “high fan-in” statements. In

Sections 2.1 and 2.2, we review a pair of protocols that tackle the

same problem as this work (i.e., proving that a vector of commit-

ments opens to a standard basis vector). The second of those proto-

cols builds on a logarithmic-size zero-knowledge proof, due to Groth

and Kohlweiss [16], for proving that (at-least-)1-out-of-n commit-

ments opens to zero, which itself builds on another logarithmic-size

zero-knowledge proof, due to Bayer and Groth [2], for proving that

a commitment opens to some element of a publicly known set. The

Groth-Kohlweiss proof was later improved by Bootle, Cerulli, Chai-

dos, Ghadafi, Groth, and Petit [8]. Relatedly, Brands, Demuynck,

and DeDecker [9] give a

√
n -size proof that a committed value does

not open to any element of a publicly known set.

In another line of work, Peng, Boyd, and Dawson [21] and Gen-

naro, Leigh, Sundaram, and Yerazunis [14] proposed two alternative

ways to prove simultaneous knowledge of n discrete-log representa-

tions, while Henry and Goldberg [17] extended the former approach

to allow proving knowledge of (at-least-)k-out-of-n discrete-log rep-

resentations. Whereas the protocols described in Sections 2.1 and

2.2 follow the same “small-exponents” technique as Peng et al.,
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our new protocol will instead follow the “polynomial-evaluation”

technique of Gennaro et al.

Finally, we note that there has been a recent flurry of work on

SNARKs and SNARGs [5], IOPs [4], and the like. These approaches

yield constant-size proofs with very efficient verifiers—but at consid-
erable computational expense for the prover, which effectively ren-

ders them inapplicable for the scale of problems we target.

2 NOTATION AND PRELIMINARIES
Throughout, we denote by p a “large” (think, 256- or thereabout-bit)

prime number; byZp the field of integersmodulop; and byZp [x] the
ring of polynomials over Zp . We further denote by G a fixed, cyclic

group of order p (for which we use multiplicative notation) having

two canonical generators that we denote by д and h. We implicitly

assume that the discrete logarithm problem (DLP) is intractable in
G and that the generators д and h are selected in such a way that

logд h ∈ Zp is a uniform random, unknown quantity. With that said,

all of the results we present herein hold unconditionally: We do not

actually rely on the DLP nor on any other unproven intractability

assumptions.
1

Rather, it is the cryptographic systems that are likely

to use our results which must rely on such assumptions for their

security and privacy guarantees to hold.

Cryptographic commitments: Each of our protocols takes as input
one or more cryptographic commitments to elements from Zp . In

practice, any linearly homomorphic commitment scheme will do;

however, for simplicity and concreteness, we assume throughout

that all commitments are Pedersen commitments [20] constructed

using the above-defined bases д and h. Specifically, a commitment

to a ∈ Zp has the form C = дahr for uniformly selected r ∈
R
Zp .

Throughout the paper, we speak colloquially of the ability of a

party to open a Pedersen commitment C to some value a ∈ Zp ,

by which we mean that the party can (be modified to) output the

unique r ∈ Zp for which C = дahr . When the DLP is intractable

in G, one can reasonably surmise that the ability of a party to

open C to a implies that the party cannot also open C to a′ for
any a′ ≢ a mod p, as doing so would be tantamount to computing

x ≡ logд h mod p.

Standard basis vectors: Our main contribution is an efficient pro-

tocol with which a prover P can demonstrate to a verifier V its

ability to open a length-n vector of Pedersen commitments, say

E⃗ ≔ ⟨E
1
, . . . ,En⟩, component-wise to a standard basis vector from

Znp ; that is, to a length-n vector comprising a single one, along with
n−1 zeros. We refer to the length-n standard basis vector having its

one in its ℓ th coordinate as the ℓ th standard basis vector of Znp and

we denote it by e⃗ℓ . We write ν⃗ [i] to refer to the i th component of a

vector ν⃗ ; thus, e⃗ℓ[i] = 1 if and only if ℓ = i and e⃗ℓ[i] = 0 otherwise.

(Note that we adopt the notational conventions that (i) indexing

into sequences and vectors is always 1-based, and (ii) the index

i always ranges over [1. .n], while index j ranges over [1. .k] for
k ≔ ⌈lgn⌉, and index l ranges elsewhere.)

1

One pseudo-caveat is our efficiency analyses in Sections 2.1–2.3 and Section 5.1,

which take for granted the presumed infeasibility of computing x ≡ logд h mod p
and therefore consider only calculations that do not require knowledge of such an x .

2.1 The Henry-Olumofin-Goldberg Proof
The earliest instance of a proof of knowledge system allowing

prover P to convince verifier V of its ability to open a vector of

commitments component-wise to a standard basis vector appears

to be due to Henry, Olumofin, and Goldberg [19, §3.5.2].
2

As with

the protocol proposed herein, their protocol is a 4-move special

honest-verifier zero-knowledge proof of knowledge system. It is

based on the following two-part observation:

(1) if ν⃗ = e⃗ℓ is the ℓ th standard basis vector and R⃗ ∈ Znp is an

arbitrary vector, then ν⃗ · R⃗ ≡ R⃗[ℓ] mod p; whereas,

(2) if ν⃗ ≠ e⃗ℓ is not the ℓ th standard basis vector and R⃗ ∈
R
Znp is

selected uniformly at random, then ν⃗ · R⃗ ≢ R⃗[ℓ] mod p, except
with a probability negligible in lgp.

The above observation effectively reduces the problem of proving

that ν⃗ is a standard basis vector to that of proving that the scalar

ν⃗ · R⃗ is an element of the set {R⃗[1], . . . , R⃗[n]}, which Henry et al.

implement as a straightforward disjunctive (“OR”) proof of partial

knowledge using the standard techniques first proposed by Cramer,

Damgård, and Schoenmakers [12].

In particular, at the outset of Henry et al.’s protocol, V chooses

R⃗ ∈
R
Znp , and then it (i) computes

˜E(R⃗) ≔
∏n

i=1
(Ei )

R⃗[i]

=
∏n

i=1

(
дν⃗ [i]hri

) R⃗[i]
=
∏n

i=1
дν⃗ [i]·R⃗[i]hri ·R⃗[i]

= д(
∑n
i=1

ν⃗ [i]·R⃗[i])h(
∑n
i=1

ri ·R⃗[i])

= дν⃗ ·R⃗h(
∑n
i=1

ri ·R⃗[i])

= дR⃗[ℓ]h(
∑n
i=1

ri ·R⃗[i])

and (ii) sends R⃗ to P. From here, P engages V in the Σ-protocol
denoted in Camenisch-Stadler notation [10] by

PK

{
r :

∨n
i=1

(
(˜E(R⃗)/дR⃗[i]) = h

r ) }
using r ←

∑n
i=1
(ri · R⃗[i]) mod p.

Both parties in this protocol have computation cost linear in

the length n of E⃗: V evaluates an n-base multiexponentiation and

an additional n exponentiation in G to produce the sequence of

˜E(R⃗)/дR⃗[i], plus a further Θ(n) 2-base multiexponentiations in G as

part of the Σ-protocol; meanwhile, P evaluates 2n − 1 operations in

Zp to compute the witness r , plus a further Θ(n) exponentiations
in G and operations in Zp as part of the Σ-protocol. Similarly, both

parties have upload cost linear inn: V sends the vector R⃗ ∈ Znp in the

first step, plus a single challenge from Zp as part of the Σ-protocol;
meanwhile, P sends n elements of G and a further n challenge-

response pairs from Zp × Zp as part of the Σ-protocol.

2

Shortly thereafter [18, Appendix], Henry, Huang, and Goldberg generalized Henry et

al.’s protocol from a system allowing P to convince V of its ability to open a vector

of commitments component-wise to a standard basis vector of Znp into a system

allowing P to convince V of its ability to open a vector of multi-secret commitments

to a “rectangular permutation matrix” from Zm×np in which each individual row is a

distinct standard basis vector of Znp .
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2.2 The Groth-Kohlweiss Improvement
More recently, Groth and Kohlweiss [16, Figure 2] proposed a com-

munication-efficient Σ-protocol allowing prover P to convince veri-

fier V of its ability to open a commitment to some element of a fixed,

finite set S . In contrast to the linear disjunctive proof of knowledge
employed by Henry et al., Groth and Kohlweiss’ proofs are concise:
the entire (set membership sub-)protocol exhibits communication

cost logarithmic in the cardinality of S . As observed by Green, Ladd,
and Miers [15, §1.2 and §5], merely swapping Groth and Kohlweiss’

protocol into the framework of Henry et al. yields a 4-move special

honest-verifier zero-knowledge proof of knowledge systemwith no-

tably reduced communication and computation costs—particularly

when n is “large”—relative to the linear disjunctive proof. Never-

theless, with this approach, V must still sample and send to P the

uniform random vector R⃗ ∈ Znp with which to define ˜E(R⃗) and r
prior to invoking Groth and Kohlweiss’ protocol; thus, the overall

Θ(n) communication cost of Henry et al.’s protocol persists, albeit

with significantly smaller constants hidden within the big-Θ nota-

tion. (Looking ahead, we empirically measure the improvements

relative to the linear disjunctive proof in Section 6.)

At the heart of Groth and Kohlweiss’ protocol is a simple ob-

servation regarding the Kronecker delta function δ : [0 . .2k − 1] ×

[0 . .2k − 1] → {0, 1}, defined via δ (ℓ, i) = 1 if i = ℓ and δ (ℓ, i) = 0

otherwise; namely, that

δ (ℓ, i) =
∏k

j=1
δ (ℓj , i j ),

where ℓj and i j respectively denote the j th-least-significant bits in
the (k-bit) binary representations of ℓ and i .

To prove that ˜E(R⃗) commits to some R⃗[ℓ] ∈ {R⃗[1], . . . , R⃗[n]}, P
first commits to each bit ℓj in binary representation of ℓ, and then it

constructs a specific length-n sequence of polynomials f
1
, . . . , fn ∈

Zp [x], with each fi being defined in terms of (i) the bits ℓj of the

target set element’s index ℓ, (ii) the bits i j of the polynomial’s

index i , and (iii) the randomness in the commitments to the ℓj just

constructed. The polynomials fi are defined in such a way that—

owing to the above observation about δ (ℓ, i)—we have deg fi = k
if i = ℓ and deg fi < k otherwise. (Recall that k ≔ ⌈lgn⌉ is the
bitlength of ℓ and i .) The remainder of the protocol relates the

unique degree-k monomial among the fi to the position of an

element within the set {R⃗[1], . . . , R⃗[n]}. We refer the reader to

Groth and Kohlweiss’ paper [16, §3] for details of how this all works;

for our purposes, it suffices to note that their approach requires

P to evaluate Θ(n lnn) operations in Zp in order to construct and

evalulate the requisite sequence of polynomials.

Thus, both parties in the resulting protocol have computation

cost that is (at least) linear in n: V still evaluates an n-base multiex-

ponentiation and n exponentiations in G to produce the sequence

of ˜E(R⃗)/дR⃗[i], plus a further Θ(lgn) operations in G and Zp as part

of the Σ-protocol; meanwhile, P still evaluates 2n − 1 operations in

Zp to compute the witness r , plus a further Θ(n lgn) operations in

Zp and Θ(lgn) operations in G as part of the Σ-protocol. However,
now it is only V that has upload cost linear in n, while P’s has

been reduced to logarithmic in n: V still sends the vector R⃗ ∈ Znp
in the first step, plus a single challenge from Zp as part of the Σ-

protocol; meanwhile, P sends just 4⌈lgn⌉ elements from G and and

3⌈lgn⌉ − 1 elements from Zp as part of the Σ-protocol—a dramatic
improvement over the linear disjunctive proof.

2.3 The new protocol
Our new protocol tackles the problem of allowing prover P to

convince verifier V of its ability to open a vector of commitments to

a standard basis vector “head on”, without reducing the problem to

that of proving set membership. In doing so, we are able to eliminate

the random vector R⃗ ∈ Znp and, thereby, obtain a protocol with only

logarithmic communication in both directions (indeed, as we will see,
it is natural to treat V’s upload as constant).

The new protocol is based on the following two-part observation,

which is reminiscent of Henry et al.’s observation as stated in Sec-

tion 2.1, just with the vector R⃗ ∈
R
Znp replaced by a vector of the

form ⟨1, t , t2, . . . , tn−1⟩ for some t ∈
R
Zp :

(1) if ν⃗ = e⃗ℓ is the ℓ th standard basis vector and t ∈ Zp , then∑n
i=1

ν⃗ [i] · t i−1 ≡ tℓ−1
mod p; whereas,

(2) if ν⃗ ≠ e⃗ℓ is not the ℓ th standard basis vector and t ∈
R
Zp is

selected uniformly at random, then

∑n
i=1

ν⃗ [i]·t i−1 ≢ tℓ−1
mod

p, except with negligible probability.

Indeed,

∑n
i=1
(ν⃗ [i] · t i−1) ≡ tℓ−1

mod p if and only if t is a root of
the polynomial Vℓ(x) ≔

(∑n
i=1
(ν⃗ [i] · x i−1

)
)
− xℓ−1

∈ Zp [x], which
is exceedingly unlikely for uniformly selected t ∈

R
Zp unless

Vℓ(x) = 0 is the zero polynomial (i.e., unless ν⃗ = e⃗ℓ ). We provide

much-needed rigor to the above argument in Section 3, specifically

in Corollary 3.4 and the pair of theorems that precede it.

The above observation effectively reduces the problem of proving

that ν⃗ is a standard basis vector to that of proving that V (x) ≔∑n
i=1
(ν⃗ [i] · x i−1

) is a monic monomial of degree less than n.3 To
this end, we propose an efficient Σ-protocol for proving knowledge
of a so-called double discrete logarithm (double DL) with a publicly

known base and a publicly known upper bound on the bitlength of

the secret exponent.

More concretely, at the outset of our protocol, V chooses t ∈
R
Zp ,

and then it (i) computes the vector t⃗ ≔ ⟨1, t , t2, . . . , tn−1⟩ ∈ Znp ,

(ii) uses t⃗ to compute

˜E(t) ≔
∏n

i=1
(Ei )

t i−1

=
∏n

i=1

(
дν⃗ [i]hri

)t i−1

=
∏n

i=1

(
дν⃗ [i]·t

i−1

hri ·t
i−1 )

= д(
∑n
i=1

ν⃗ [i]·t i−1)h(
∑n
i=1

ri ·t i−1)

= дν⃗ ·t⃗h(
∑n
i=1

ri ·t i−1)

= дt
ℓ−1

h(
∑n
i=1

ri ·t i−1)

as ann-basemultiexponentiation, and (iii) sends t ∈ Zp to P.
From here, P engages V in the Σ-protocol denoted in Camenisch-

Stadler notation [10] by

PK

{
(ℓ, r ) : C = дt

ℓ−1

hr ∧ ℓ ∈ [1. .2k ]
}
,

3

In order to avoid costly range proofs, we relax the latter requirement and prove only

that the degree of V (x ) is less than 2
⌈lgn⌉

; our analysis in Section 3 establishes that

this relaxation imposes an at-most-negligible penalty to the soundness of the protocol.
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Table 1: Computation and communication complexities for the prover and verifier in the protocols of Henry, Olumofin,
and Goldberg (“HenryOG11”) [19]; its variant with Groth and Kohlweiss’ improvement (“GrothK15”) [16]; and the pro-
tocol proposed in this work (“This work”). The color underlining each protocol label references the corresponding plot
color for that protocol in Figures 1 and 2 (in Section 6). In each column, the lowest-cost cells are shaded green, whilst
the highest-cost cells are shaded red; when all costs in a column are asymptotically equal, the cells are shaded yellow.

Prover Verifier

Computation Communication Computation Communication

Exps. Zp G Zp Exps. n-Multiexps. Zp Zp

“HenryOG11” Θ(n) + Θ(n) Θ(n) + Θ(n) Θ(n) + Θ(1) + Θ(n) Θ(n)

“GrothK15” Θ(lgn) + Θ(n lgn) Θ(lgn) + Θ(lgn) Θ(n) + Θ(1) + Θ(n) Θ(n)

“This work” Θ(lgn) + Θ(n) Θ(lgn) + Θ(lgn) Θ(lgn) + Θ(1) + Θ(n) Θ(1)

using r ←
∑n
i=1
(ri · t

i−1) mod p. An efficient instantiation of the

latter Σ-protocol appears in Section 4.4.

The result is a 4-move special honest-verifier zero-knowledge

proof of knowledge system that, relative to the protocols of Henry

et al. (§2.1) and its variant with Groth and Kohlweiss’ improve-

ment (§2.2), exhibits superior asymptotics and superior concrete

costs for all but the shortest of vectors. Specifically, both parties

in the resulting protocol have computation cost that is linear in

n: V computes powers of t using n − 2 multiplications in Zp and

then it evaluates an n-base multiexponentiation in G, plus a further
Θ(lgn) operations in each of G and Zp as part of the Σ-protocol;
meanwhile, P evaluates 2n− 1 operations Zp to compute its witness

r using Horner’s method, plus a further Θ(lgn) operations in each

of G and Zp as part of the Σ-protocol. However, now both parties

have upload cost (at most) logarithmic in n: V sends t ∈ Zp , plus
a single challenge from Zp as part of the Σ-protocol; meanwhile,

P sends just 5⌈lgn⌉ − 3 elements from G and 4⌈lgn⌉ − 2 elements

from Zp as part of the Σ-protocol.
Table 1 summarizes the asymptotic costs of the three protocols

just described in Sections 2.1–2.3. Notice that the new protocol is

(i) at least as efficient (asymptotically) as the other two protocols in

every column, and (ii) more efficient than than at least one other

protocol in all but two columns. An empirical, head-to-head eval-

uation of the concrete performance of all three protocols appears

later on, in Section 6. That evaluation confirms that the superior

asymptotics of our new protocol, as summarized in Table 1, equate

to (rather dramatic) across-the-board speedups relative to the other

two protocols.

3 ROOTS OF POLYNOMIALS
This section proves some elementary results about the (maximum

possible number of) roots of certain collections of polynomials

arising in the analysis of our protocol. The results established in

this section are neither surprising nor are their precise statements

(or proofs of those statements) especially crucial for readers who

seek an intuitive understanding of our new protocol; nonetheless,

these facts do play a sufficiently central role in the construction as

to warrant prominent inclusion in the main body of the text. With

that said, readers who are willing to accept our claims of soundness

at face value may safely skip to Section 4.

Theorem 3.1 (“Tight-range” bound). Fix a positive integer n.
Let p an odd prime and let V ∈ Zp [x] such that (i) degV < n and
(ii) V is not a (monic) monomial. Then the n polynomials in P =

{V − x0,V − x1, . . . ,V − xn−1

} can have at most n · (n − 1) distinct
roots in total between them.

Proof. Let h ∈ P , say, h(x) ≔ V (x) − x i−1

for some i ∈ [1. .n].
Then, since degV < n and V is not a monic monomial, we have

that h ≠ 0 so that degh = max(degV , i − 1) < n and, consequently,

that h has at most n − 1 distinct roots in Zp . Moreover, as h was

selected arbitrarily from a set of n possibilities, it follows by the

union bound that the total number of distinct roots of polynomials

in P is at most n · (n − 1), as desired. □

Theorem 3.2 (“Loose-range” bound). Fix positive integers k and
n such that n ≤ 2

k . Let p be an odd prime and let V ∈ Zp [x] such
that (i) degV < n and (ii) V is not a (monic) monomial. Then the 2

k

polynomials in P = {V − x0,V − x1, . . . ,V − xn−1,V − xn , . . . ,V −

x2
k−1

} can have at most 2
2k−1−2

k−1+
n ·(n−1)

2
distinct roots in total

between them.

Proof. Write P = P
0
∪ P

1
where P

0
= {V − x0,V − x1, . . . ,V −

xn−1

} and P
1
= {V −xn ,V −xn+1, . . . ,V −x2

k−1

} are disjoint sets.

By Theorem 3.1, the polynomials in P
0
contribute at most n · (n− 1)

distinct roots. As for the polynomials in P
1
, it suffices to note that

eachhi ≔ V (x)−x i−1

∈ P
1
has degree deghi = max(degV , i−1) =

i − 1 and, hence, at most i − 1 distinct roots. It then follows by the

union bound that the total number of distinct roots for polynomials

in P
1
is at most(2k−1∑
l=1

l
)
−
( n∑
i=1

i
)
=
(2k − 1) · (2k − 1 + 1)

2

−
n · (n − 1)

2

(1)

= 2
2k−1 − 2

k−1 −
n · (n − 1)

2

. (2)

Adding to Equation (2) the at most n · (n − 1) roots contributed by

P
0
yields a total of at most

2
2k−1 − 2

k−1 +
n · (n − 1)

2

(3)

distinct roots for polynomials in P = P
0
∪ P

1
, as desired. □

Corollary 3.3. Fix positive integers k and n such that n ≤ 2
k .

Let p be an odd prime and let V ∈ Zp [x] such that (i) degV < n
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and (ii) V is not a (monic) monomial. Then the 2
k polynomials in

P = {V − x0,V − x1, . . . ,V − xn−1,V − xn , . . . ,V − x2
k−1

} have
fewer than 2

2k distinct roots in total between them.

Proof. Since n ≤ 2
k
, we have

n ·(n−1)
2

≤
2
k ·(2k−1)

2
= 2

2k−1 −

2
k−1

. Substituting into Equation (3) yields a total of at most(
2

2k−1 − 2
k−1

)
+
(
2

2k−1 − 2
k−1

)
= 2

2k − 2
k < 2

2k ,

distinct roots for polynomial in P , as desired. □

We remark (without proof) that it is relatively easy to produce

examples of polynomialsV ∈ Zp [x] to demonstrate that the bounds

in Theorems 3.1 and 3.2 are tight.

Of course, when V ∈ Zp [x] is a monic monomial—i.e., when

V (x) = x i−1

for some i ∈ [1. .n]—then the set of polynomials P
contains as an element the zero polynomial, for which every element

of Zp is a root. This observation together with the next corollary

forms the basis for the completeness and soundness of our new

zero-knowledge protocol.

Corollary 3.4. Fix positive integers k and n such that n ≤ 2
k .

Let p be an odd prime, let ν⃗ = ⟨ν
0
, . . . ,νn−1

⟩ ∈ Znp , and define the
polynomialV ∈ Zp [x] asV (x) ≔

∑n−1

i=0
(νi · x

i
). If ν⃗ is not a standard

basis vector, then

Pr

[∃i ∈ [1. .2k ],V (t) ≡ t i−1
mod p

|︁|︁ t ∈
R
Zp

]
< 2

2k/p.

Proof. Notice that V (t) = t i−1
if and only if t is a root of hi ≔

V (x) − x i−1

. The latter polynomial is an element of the set P from

Corollary 3.3, the elements of which have strictly fewer than 2
2k

distinct roots in total; hence, a uniform choice for t ∈ Zp will yield

one of these strictly fewer than 2
2k

roots with probability strictly

less than 2
2k/p, as desired. □

4 ZERO-KNOWLEDGE BUILDING BLOCKS
We now introduce four Σ-protocols that serve as building blocks for
our new protocol. The first (§4.1) is (barely) new, while the second

(§4.2) and third (§4.3) are entirely standard; ultimately, we present

these first three protocols purely as stepping stones toward the

fourth (§4.4) building block, a Σ-protocol for proving knowledge

of a double DL with a publicly known base and a publicly known

upper bound on the bitlength of the secret exponent. To the best

of our knowledge, the latter double DL protocol is new, though
perhaps unsurprising; it performs most of the heavy lifting for our

main protocol, which follows in Section 5.

The reader should bare in mind that we have made some in-

tentional presentation choices that make Protocols 1 and 2—and,

to a lesser extent, Protocol 3—appear somewhat “messier” than

is strictly necessary. The rationale for these choices will become

apparent when we present Protocol 4, as they greatly increase the

extent to which one can immediately “see” how we have amalga-

mated the first three protocols into our (significantly more complex)

double DL protocol.

4.1 ZKPoK for a commitment to X or Y
Our first building block is a Σ-protocol allowing prover P to con-

vince verifier V of its ability to open a commitment C to a value

a ∈ Zp such that either a ≡ X mod p or a ≡ Y mod p. Here the

values X ,Y ∈ Zp can be arbitrary (publicly known) constants, sub-

ject only to X ≢ Y mod p. In Camenisch-Stadler notation [10], the

protocol implements

PK

{
r : C/дX = h

r
∨ C/дY = h

r }.
The protocol is a modest adaptation of an existing protocol [16,

Figure 1] allowing P to demonstrate its ability to open a commit-

ment to some a ∈ Zp such that either a ≡ 0 mod p or a ≡ 1 mod p.
The idea is quite simple: Given C = дahr as common input, V com-

putes ̂C ≔
(
C/дX

)d
= д(a−X )·dhr ·d with d ≔ (Y − X )−1

mod p,
and then it engages with P in an otherwise-standard proof of knowl-

edge of the value â ≡ (a − X ) · d mod p committed to by ̂C such

that either â ≡ 0 mod p or â ≡ 1 mod p. This works because ̂C

commits either to (i) (X − X ) · d ≡ 0 mod p when a ≡ X mod p, or
to (ii) (Y − X ) · d ≡ 1 mod p when a ≡ Y mod p. For concreteness,
the full protocol follows in Protocol 1 below.

Protocol 1: (HV)ZKPoK for a commitment to X or Y

Common input: C
[
=дa1hr1

]
∈ G and (X

1
,Y

1
) ∈ Zp × Zp

Prover knows: (a
1
, r

1
) ∈ Zp × Zp

0: Define d
1
≔ (Y

1
− X

1
)
−1

mod p and ̂C ≔
(
C/дX1

)d
1
.

1: P chooses (s
1
, t

1
) ∈

R
(Zp × Zp ) × Zp and ε

1
∈

R
Zp sends

1a: A
1
← дs1ht1

; and

1b: Ā
1
← дs1

·(a−X
1
)·d2

1hε1

to V.

2: V chooses c ∈
R
Zp and sends it to P.

3: P sends

3a: (ν
1
,u

1
) ← (s

1
+ a

1
· c mod p, t

1
+ r

1
· c mod p); and

3b: w
1
← ε

1
+ r

1
· d

1
·
(
c − (ν

1
− X

1
· c) · d

1

)
mod p

to V.

4: V accepts if and only if (i) A
1
, Ā

1
∈ G, (ν

1
,u

1
) ∈ Zp × Zp , and

w
1
∈ Zp ; and (ii) the following verification equations both hold:

4a: A
1
C
c ?

= дν1hu1
; and

4b: Ā
1
̂C
c−(ν

1
−X

1
·c)·d

1
?

= hw1
.

Theorem 4.1. The Σ-protocol depicted in Protocol 1 is a system for
2-extractable special honest-verifier zero-knowledge proofs of knowl-
edge of r ∈ Zp such that either (i) C = дX1hr or (ii) C = дY1hr .

Proof. We prove the completeness, the 2-extractability (includ-

ing soundness), and the c-simulatability of the protocol in turn. In

each of the following arguments, let ν̄
1
≔ (ν

1
− X · c) · d

1
mod p.

Completeness: Completeness follows easily by inspection. In-

deed,

A
1
C
c
=
(
дs1ht1

) (
дa1hr1

)c
= дs1

+a
1
·cht1

+r
1
·c

= дν1hu1

5



and

Ā
1
̂C
c−ν̄

1 =
(
дs1
·(a

1
−X

1
)·d2

1hε1

) (
д(a1
−X

1
)·d

1hr1
·d

1

)c−ν̄
1

= дs1
·(a

1
−X

1
)·d2

1
+(a

1
−X

1
)·d

1
·(c−ν̄

1
)hε1
+r

1
·d

1
·(c−ν̄

1
)

= hw1 ,

where the last equality holds because either

(1) a
1
− X

1
≡ 0 mod p so that s

1
· (a

1
− X

1
) · d2

1
≡ (a

1
− X

1
) ·

d
1
· (c − ν̄

1
) ≡ 0 mod p when a

1
≡ X

1
mod p; or

(2) (a
1
−X

1
)·d

1
≡ 1 mod p so that s

1
·(a

1
−X

1
)·d2

1
≡ s

1
·d

1
mod p

and

(a
1
− X

1
) · d

1
· (c − ν̄

1
) ≡

(
c − (ν

1
− X

1
· c) · d

1

)
≡
(
c − (s

1
+ a

1
· c − X

1
· c) · d

1

)
≡
(
c − s

1
· d

1
− (a

1
− X

1
) · d

1
· c
)

≡ c − s
1
· d

1
− c

≡ −s
1
· d

1
mod p

when a
1
≡ Y

1
mod p.

2-Extractability: Let

(C,X
1
,Y

1
; A

1
, Ā

1
; c; (ν

1
,u

1
),w

1
)

and

(C,X
1
,Y

1
; A

1
, Ā

1
; c ′; (ν ′

1
,u ′

1
),w ′

1
)

be a pair of accepting transcripts that share common inputs

(C,X
1
,Y

1
) and initial commitments (A

1
, Ā

1
), but that use distinct

challenges c ≢ c ′ mod p. From the first verification equation,

we have that C
c−c ′

= дν1
−ν ′

1hu1
−u′

1
; hence, the extractor can

compute

a
1
≡ (ν

1
− ν ′

1
) · (c − c ′)−1

mod p

and

r
1
≡ (u

1
− u ′

1
) · (c − c ′)−1

mod p,

which establishes that the protocol is 2-extractable. To see that it

is also sound (i.e., that either a
1
≡ X

1
mod p or a

1
≡ Y

1
mod p),

note that

ν̄
1
− ν̄ ′

1
≡ d

1
· (ν

1
− X

1
· c) − d

1
· (ν ′

1
− X

1
· c ′)

≡ d
1
·
(
(a

1
− X

1
) · c − (a

1
− X

1
) · c ′

)
≡ d

1
· (a

1
− X

1
) · (c − c ′) mod p;

hence,

̂C
(c−ν̄

1
)−(c ′−ν̄ ′

1
)
=
(
дa1
−X

1hr1

)d
1
·
(
(c−ν̄

1
)−(c ′−ν̄ ′

1
)
)

=
(
дa1
−X

1hr1

)d
1
·
(
(c−c ′)−(ν̄

1
−ν̄ ′

1
)
)

= д(a1
−X

1
)·d

1
·
(
(c−c ′)−d

1
·(c−c ′)·(a

1
−X

1
)
)
hw1
−w ′

1

= д(a1
−X

1
)·d

1
·(c−c ′)·(1−(a

1
−X

1
)·d

1
)hw1

−w ′
1 .

Moreover, from the second verification equation, we also have

that ̂C
(c−ν̄

1
)−(c ′−ν̄ ′

1
)
= hw1

−w ′
1
, which implies

(a
1
− X

1
) · d

1
· (c − c ′) · (1 − (a

1
− X

1
) · d

1
) ≡ 0 mod p.

As c ≢ c ′ mod p and d
1
≢ 0 mod p, this latter congruence holds

if and only if a
1
−X

1
≡ 0 mod p or (a

1
−X

1
) · d

1
≡ 1 mod p; i.e.,

if and only if a
1
≡ X

1
mod p or a

1
≡ Y

1
mod p, as desired.

c-Simulatability: Given the common input (C,X
1
,Y

1
) and a chal-

lenge c ∈ Zp , a simulator for the honest verifier samples uniform

responses ((ν
1
,u

1
),w

1
) ∈

R
(Zp × Zp ) × Zp , and then it computes

A
1
← C

−cдν1hu1

and

Ā
1
←

(
C/дX1

)−d
1
·(c−ν̄

1
)
hw1 ,

and outputs the simulated transcript

(C,X
1
,Y

1
; A

1
, Ā

1
; c; (ν

1
,u

1
),w

1
).

Notice that, by virtue of P uniformly selecting (s
1
, t

1
), ε

1
∈

R
Zp

in Step 2, ((ν
1
,u

1
),w

1
) is also uniformly distributed in (accepting)

real transcripts. Also notice that (A
1
, Ā

1
) is uniquely determined

by (c, (ν
1
,u

1
),w

1
) and the common input. Hence, the simulated

transcripts are drawn from the same probability distribution as

those of accepting proofs with an honest verifier who just so

happens to choose challenge c . □

4.2 ZKPoK for 2-ary multiplication
Our second building block is a (completely standard) Σ-protocol
allowing prover P to convince verifier V of its ability to open a triplet

of commitments (C
1
,C

2
,C′

3
) to values (a

1
,a

2
,a′

3
) ∈ Zp × Zp × Zp

such that a′
3
≡ a

1
· a

2
mod p. In Camenisch-Stadler notation [10],

the protocol implements

PK

{
(a

1
,a

2
,r

1
,r

2
,γ

3
) : C

1
= дa1hr1∧C

2
= дa2hr2∧C

′
3
= дa1

·a
2hγ3

}
.

Again, the idea is quite simple: Given C
1
= дa1hr1

, C
2
= дa2hr2

,

and C
′
3
= дa

′
3hγ3

as common input, P demonstrates knowledge of

(a
1
, r

1
), (a

2
, r

2
), andγ

3
such that log(дa2 )

(
C
′
3
/hγ3

)
≡ a

1
mod p, from

which it follows that

(
C
′
3
/hγ3

)a
1 = дa1

·a
2
or, equivalently, that a′

3
≡

a
1
·a

2
mod p. The full protocol follows in Protocol 2 below.

Theorem 4.2. The Σ-protocol depicted in Protocol 2 is a system
for 2-extractable, special honest-verifier zero-knowledge proofs of
knowledge of (a

1
, r

1
), (a

2
, r

2
) ∈ Zp × Zp and γ

3
∈ Zp such that

(i) C
1
= дa1hr1 , (ii) C

2
= дa2hr2 , and (iii) C′

3
= дa1

·a
2hγ3 .

Proof. We prove the completeness, the 2-extractability (includ-

ing soundness), and the c-simulatability of the protocol in turn.

Completeness: Completeness follows easily by inspection; in-

deed,

A
1
C
c
1
=
(
дs1ht1

) (
дa1hr1

)c
= дs1

+a
1
·cht1

+r
1
·c

= дν1hu1
;

A
2
C
c
2
=
(
дs2ht2

) (
дa2hr2

)c
= дs2

+a
2
·cht2

+r
2
·c

= дν2hu2
;

6



Protocol 2: (HV)ZKPoK for product of (two) committed values

Common input: C
1

[
=дa1hr1

]
,C

2

[
=дa2hr2

]
,C′

3

[
=дa1

·a
2hγ3

]
∈ G

Prover knows: (a
1
, r

1
), (a

2
, r

2
) ∈ Zp × Zp and γ

3
∈ Zp

1: P chooses (s
1
, t

1
), (s

2
, t

2
) ∈

R
Zp × Zp and δ

3
∈

R
Zp and sends

1a: A
1
← дs1ht1

;

1b: A
2
← дs2ht2

; and

1c: A′
3
← дa1

·s
2hδ3

to V.

2: V chooses c ∈
R
Zp and sends it to P.

3: P sends

3a: (ν
1
,u

1
) ← (s

1
+ a

1
· c mod p, t

1
+ r

1
· c mod p);

3b: (ν
2
,u

2
) ← (s

2
+ a

2
· c mod p, t

2
+ r

2
· c mod p); and

3c. z
3
← (−r

1
· ν

2
) + δ

3
+ γ

3
· c mod p

to V.

4: V accepts if and only if (i) A
1
,A

2
,A′

3
∈ G, both (ν

1
,u

1
),

(ν
2
,u

2
) ∈ Zp × Zp , and z

3
∈ Zp ; and (ii) the following veri-

fication equations all hold:

4a: A
1
C
c
1

?

= дν1hu1
;

4b: A
2
C
c
2

?

= дν2hu2
; and

4c: A′
3
(C
′
3
)
c ?

= C
ν

2

1
hz3

.

and

A′
3
(C
′
3
)
c
=
(
дa1
·s

2hδ3

) (
дa1
·a

2hδ3

)c
= дa1

·s
2
+a

1
·a

2
·chδ3

+γ
3
·c

= дa1
·(s

2
+a

2
·c)hδ3

+γ
3
·c

= дa1
·ν

2hδ3
+γ

3
·c

= дa1
·ν

2hr1
·ν

2h−r1
·ν

2hδ3
+γ

3
·c

= C
ν

2

1
h(−r1

·ν
2
)+δ

3
+γ

3
·c

= C
ν

2

1
hz3 .

2-Extractability: Let

(C
1
,C

2
,C′

3
; A

1
,A

2
,A′

3
; c; (ν

1
,u

1
), (ν

2
,u

2
), z

3
)

and

(C
1
,C

2
,C′

3
; A

1
,A

2
,A′

3
; c ′; (ν ′

1
,u ′

1
), (ν ′

2
,u ′

2
), z′

3
)

be a pair of accepting transcripts that share common inputs

(C
1
,C

2
,C′

3
) and initial commitments (A

1
,A

2
,A′

3
), but that use

distinct challenges c ≢ c ′ mod p. From the first two verifica-

tion equations, we have C
c−c ′
1

= дν1
−ν ′

1hu1
−u′

1
and C

c−c ′
2

=

дν2
−ν ′

2hu2
−u′

2
; hence, the extractor can compute

a
1
≡ (ν

1
− ν ′

1
) · (c − c ′)−1

mod p,

a
2
≡ (ν

2
− ν ′

2
) · (c − c ′)−1

mod p,

r
1
≡ (u

1
− u ′

1
) · (c − c ′)−1

mod p,

and

r
2
≡ (u

2
− u ′

2
) · (c − c ′)−1

mod p,

which establishes that the protocol is 2-extractable with respect

to (a
1
, r

1
) and (a

2
, r

2
). To see that it is also 2-extractable with

respect toγ
3
as well as sound (i.e., that the prover can indeed open

C
′
3
to a′

3
≡ a

1
· a

2
mod p), note that, from the third verification

equation, we also have that (C
′
3
)
c−c ′
= C

ν
2
−ν ′

2

1
hz3
−z′

3
so that

C
′
3
=
(
C
(ν

2
−ν ′

2
)

1
h(z3
−z′

3
))(c−c ′)−1

= C
(ν

2
−ν ′

2
)·(c−c ′)−1

1
h(z3
−z′

3
)·(c−c ′)−1

= C
a

2

1
h(z3
−z′

3
)·(c−c ′)−1

= дa1
·a

2hr1
·a

2h(z3
−z′

3
)·(c−c ′)−1

= дa1
·a

2hr1
·a

2
+(z

3
−z′

3
)·(c−c ′)−1

;

hence, the extractor can compute γ
3
≡ r

1
· a

2
+ (z

3
− z′

3
) · (c −

c ′)−1

mod p using the r
1
,a

2
extracted above.

c-Simulatability: Given the common input (C
1
,C

2
,C′

3
) and a

challenge c ∈ Zp , a simulator for the honest verifier samples uni-

form

(
(ν

1
,u

1
), (ν

2
,u

2
), z

3

)
∈

R
(Zp × Zp ) × (Zp × Zp ) × Zp , and

then it computes

A
1
← C

−c
1

дν1hu1
;

A
2
← C

−c
2

дν2hu2
;

and

A′
3
← C

−c
3
C
ν

2

1
hz3 ,

and outputs the simulated transcript

(C
1
,C

2
,C′

3
; A

1
,A

2
,A′

3
; c; (u

1
,ν

1
), (u

2
,ν

2
), z

3
).

Notice that, by virtue of P uniformly selecting (s
1
, t

1
), (s

2
, t

2
) ∈

R

Zp × Zp and δ
3
∈

R
Zp in Step 2,

(
(ν

1
,u

1
), (ν

2
,u

2
), z

3

)
is also uni-

formly distributed in (accepting) real transcripts. Also notice that

(A
1
,A

2
,A′

3
) is uniquely determined by

(
c, (ν

1
,u

1
), (ν

2
,u

2
), z

3

)
and the common input; hence, the simulated transcripts are

drawn from the same probability distribution as those of accept-

ing proofs with an honest verifier who just so happens to choose

challenge c . □

4.3 ZKPoK for k-ary multiplication
Our third building block is a relatively straightforward general-

ization of Protocol 2 into a Σ-protocol allowing prover P to con-

vince verifier V of its ability to open a sequence of commitments

(C
1
, . . . ,Ck ,C

′
k+1
) to values (a

1
, . . . ,ak ,a

′
k+1
) ∈ Zk+1

p such that

a′k+1
≡
∏k

j=1
aj mod p. In Camenisch-Stadler notation [10], the re-

sulting generalization implements

PK

{
((aj ,rj )

k
j=1
,γk+1

) :

(
∧k

j=1
Cj =д

ajhrj
)
∧C
′
k+1
=д(

∏k
j=1

aj )hγk+1

}
.

The protocol is constructed via ak-fold (parallel) composition of Pro-

tocol 2, emitting any requisite commitments to partial products and

omitting any “redundant” commitments, responses, and verification

equations along the way. For completeness, the full protocol follows

in Protocol 3.

A full proof of the completeness, 2-extractability (including

soundness), and c-simulatability for Protocol 3 closely mirrors that
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Protocol 3: (HV)ZKPoK for product of k committed values

Common input:
(
Cj [=д

aj hrj ]
)k
j=1
,C′k+1

[=д(
∏k
j=1

aj )hγk+1 ] ∈G

Prover knows: (a
1
, r

1
), . . . , (ak , rk ) ∈ Zp × Zp and γk+1

∈ Zp

0: For convenience, define C
′
2
and γ

2
as synonyms for C

1
and r

1
,

respectively.

1: for each (j ∈ [1. .k]) do
1a: P chooses (sj , tj ) ∈R

Zp × Zp and sends Aj ← дsjhtj to V.

end for
for each (j ∈ [3 . .k + 1]) do
1b: P chooses δj ∈R

Zp and sends A′j ← д(sj−1

∏j−2

l=1
al )hδj to V.

end for
for each (j ∈ [3 . .k]) do
1c: P chooses γj ∈R

Zp and sends C
′
j ← д(

∏j−1

l=1
al )hγj to V.

end for
2: V chooses c ∈

R
Zp and sends it to P.

3: for each (j ∈ [1. .k]) do
3a: P sends (νj ,uj ) ← (sj + aj · c mod p, tj + rj · c mod p) to V.

end for
for each (j ∈ [3 . .k + 1]) do
3b: P sends zj ← (−γj−1

· νj−1
) + δj + γj · c mod p to verifier.

end for
4: V accepts if and only if (i) Aj ∈ G and (uj ,νj ) ∈ Zp × Zp for

each j ∈ [1. .k]; (ii) (C′j ,A
′
j ) ∈ G × G and zj ∈ Zp for each

j ∈ [3 . .k + 1]; and (iii) the following verification equations all

hold:

4a: AjC
c
j

?

= дνjhuj for each j ∈ [1. .k]; and

4b: A′j (C
′
j )
c ?

= C
′νj−1

j−1
hzj for each j ∈ [3 . .k + 1].

for Protocol 2. Indeed, one can easily verify that, given the tran-

script of an accepting protocol run between P and honest V, the

sub-transcript comprising

(C
1
,C

2
,C′

3
; A

1
,A

2
,A′

3
; c; (ν

1
,u

1
), (ν

2
,u

2
), z

3
)

is itself an accepting transcript of Protocol 2 with common inputs

(C
1
,C

2
,C′

3
), thus establishing that P knows (a

1
, r

1
) ∈ Zp × Zp ,

(a
2
, r

2
) ∈ Zp × Zp , and γ

3
∈ Zp such that C

1
= дa1hr1

, C
2
=

дa2hr2
, and C

′
3
= дa1

·a
2hγ3

. In a similar vein, the sub-transcript

comprising

(C
3
,C′

3
,C′

4
; A

3
,A′

3
,A′

4
; c; (ν

3
,u

3
), z

4
)

establishes that P also knows (a
3
, r

3
) ∈ Zp × Zp such that C

3
=

дa3hr3
and, moreover, that if P knows some (a′

3
,γ

3
) ∈ Zp × Zp

satisfying C
′
3
= дa

′
3hγ3

(which we just proved it must; namely, a′
3
≡

a
1
· a

2
mod p), then it also knows γ

4
∈ Zp such that C

′
4
= дa

′
3
·a

3hγ4
.

More generally, the sub-transcript comprising

(Cj ,C
′
j ,C
′
j+1

; Aj ,A
′
j ,A
′
j+1

; c; (νj ,uj ), zj+1
)

“extends” the proof to establish that P knows (aj , rj ) ∈ Zp × Zp

and γj+1
∈ Zp such that Cj = дajhrj and C′j+1

= д(aj
∏j−1

l=1
al )hγj+1

;

when j = k , this establishes precisely what P set out to prove.

Thus, the key difference between Protocol 3 and a naïve k-fold

parallelization of Protocol 2 is that the former eschews “direct”

proofs of knowledge for the partial products committed to by the

C
′
j in favour of “implicit” proofs of knowledge following from the

demonstrated relationship that each C
′
j has with Cj and C

′
j−1

. In

light of the preceding correspondence with Protocol 2, we forgo a

self-contained proof of the following theorem.

Theorem 4.3. The Σ-protocol depicted in Protocol 3 is a system
for 2-extractable, special honest-verifier zero-knowledge proofs of
knowledge of ((a

1
, r

1
), . . . (ak , rk ),γk+1

) such that (i) Cj = дajhrj

for each j ∈ [1. .k], and (ii) Ck+1
= д(

∏k
j=1

aj )hγk+1 .

Protocol 4: (HV)ZKPoK for double discrete logarithm

Common input: C′k+1

[
=дt

ℓ
hγk+1

]
∈ G, t ∈ Zp , and k ∈ N

Prover knows: ℓ ∈ [1. .2k ] and γk+1
∈ Zp

0a: For each j ∈ [1. .k], define dj ≔ (t
2
j−1

− 1)
−1

mod p.

0b: Define C
′
2
and γ

2
as synonyms for C

1
and r

1
, respectively.

1: Express ℓ−1 = ℓk ℓk−1
· · · ℓ

1
in binary and define L(j) ≔ ℓj ·2

j−1

and aj ≔ tL(j) mod p for each j ∈ [1. .k].
for each (j ∈ [1. .k]) do
1a: P chooses rj ∈R

Zp and (sj , tj ) ∈R
Zp × Zp , and then it

sends Cj ← дajhrj and Aj ← дsjhtj to V; and

1b: P chooses εj ∈R
Zp and sends Āj ← дsj ·(aj−1)·d2

j hεj to V.

end for
for each (j ∈ [3 . .k]) do
1c: P chooses γj ∈R

Zp and sends C
′
j ← д(

∏j−1

l=1
al )hγj to V.

end for
for each (j ∈ [3 . .k + 1]) do
1d: P chooses δj ∈R

Zp and sends A′j ← д(sj−1

∏j−2

l=1
al )hδj to V.

end for
2: V chooses c ∈

R
Zp and sends it to P.

3: for each (j ∈ [1. .k]) do
3a: P sends (νj ,uj ) ← (sj +aj · c mod p, tj + rj · c mod p) to V;

and

3b: P sendswj ← εj + rj · dj · (c − (νj − c) · dj ) to V.

end for
for each (j ∈ [3 . .k + 1]) do
3c: P sends zj ← (−γj−1

· νj−1
) + δj + γj · c mod p to verifier.

end for
4: V accepts if and only if (i) (Cj ,Aj , Āj ) ∈ G × G × G

and (uj ,νj ,wj ) ∈ Zp × Zp × Zp for each j ∈ [1. .k];

(ii) (C
′
j ,A
′
j ) ∈ G × G and zj ∈ Zp for each j ∈ [3 . .k + 1];

and (iii) the following verification equations all hold:

4a. AjC
c
j

?

= дνjhuj for each j ∈ [1. .k];

4b: Āj
(
Cj /д

)dj ·(c−(νj−c)·dj ) ?

= hwj
for each j ∈ [1. .k]; and

4c. A′j (C
′
j )
c ?

= (C
′
j−1
)
νj−1hzj for each j ∈ [3 . .k + 1].

4.4 ZKPoK for (public-base) double DL
Our fourth and final building block is a Σ-protocol allowing prover

P to convince verifier V that it knows a double DL with a fixed

8



publicly known base t ∈ Zp and a publicly known upper bound

k ∈ N on the bitlength of the secret exponent; that is, for proving

knowledge of ℓ ∈ [1. .2k ] such that P can open C to tℓ−1 ∈ Zp . In

Camenisch-Stadler notation [10], the protocol implements

PK

{
(ℓ,γ ) : C = дt

ℓ−1

hγ ∧ ℓ ∈ [1. .2k ]
}
.

The most common way to prove knowledge of such double DLs is

via addition chains; e.g., using an oblivious form of the ubiquitous

“left-to-right double-and-add” method to homomorphically recon-

struct ℓ − 1 in the exponent of t (all in the exponent of д). Here we
propose a slightly different approach that uses a straightforward

composition of Algorithms 1 and 3 to reconstruct ℓ − 1 in the ex-

ponent of t “directly” from (ℓ − 1)’s binary decomposition. This

approach is quite efficient when the bitlength of ℓ − 1 is a priori
known to be small.

Specifically, we express ℓ − 1 = ℓk ℓk−1
· · · ℓ

1
in binary, with each

ℓj denoting the j th-least-significant bit of ℓ − 1 (padding to the

left with zeros as necessary) and, for each j ∈ [1. .k], we define
L(j) ≔ ℓj ·2

j−1
so that ℓ − 1 =

∑k
j=1

L(j). Notice that L(j) ∈ {0, 2j−1}

for each j ∈ [1. .k]. From here, P simply outputs the sequence of

commitments

(C
1
, . . . ,Ck ) ← (д

tL(1)hr1 , . . . ,дt
L(k )

hrk ),

and then it uses a k-fold parallel composition of Protocol 1 to prove

for each j ∈ [1. .k] that it indeed knows (aj , rj ) ∈ Zp ×Zp such that

(i) Cj = дajhrj , and (ii) either aj ≡ t2
j−1

mod p or aj ≡ 1 mod p.
Finally, P uses Protocol 3 to prove that it also knows γ ∈ Zp such

that C = д(
∏k

j=1
aj )hγ . To see that this approach is complete, it

suffices to observe that∏k
j=1

aj ≡
∏k

j=1
tL(j)

≡ t
∑k
j=1

L(j)

≡ tℓ−1
mod p

by construction. Likewise, to see that this approach is sound (i.e.,

that ℓ ∈ [1. .2k ]), it suffices to note that the guarantee that aj ∈

{1, t2
j−1

} implies logt aj ∈ {0, 2
j−1} for each j ∈ [1. .k], which in

turn implies that

logt (
∏k

j=1
aj ) ≤ logt (

∏k
j=1

t2
j−1

)

=
∑k

j=1
2
j−1

= 2
k − 1.

Theorem 4.4. The Σ-protocol depicted in Protocol 4 is a system
for 2-extractable, special honest-verifier zero-knowledge proofs of
knowledge of ℓ ∈ [1. .2k ] and γ ∈ Zp such that C = дt

ℓ−1

hγ .

Proof (Sketch). By inspection, the “sub-protocol” consisting

of Steps 1a,b; 2; 3a,b; and 4a,b comprises k parallel instances of Proto-

col 1 with the j th instance usingX j = 1 and Yj = t2
j−1

. Theorem 4.1

establishes that the subprotocol is complete, 2-extractable (allowing

to extract the binary decomposition of ℓ) and sound, and special

honest-verifier zero-knowledge.

Meanwhile, the “sub-protocol” consisting of Steps 1a,c,d; 2; 3a,c;

and 4a,c is an instance of Protocol 3 establishing that the prover can

open the common input to the product of values whose correctness

was established by the first subprotocol. Theorem 4.3 establishes

that the latter subprotocol is complete, 2-extractable (again, allow-

ing to extract the binary decomposition of ℓ as well as γ ), and
special honest-verifier zero-knowledge. □

5 ZKPoK FOR ONE-HOTNESS
We now present our main result, a 4-move special honest-verifier

zero-knowledge proof of knowledge of ℓ ∈ [1. .n] such that the

vector of commitments E⃗ ≔ ⟨E
1
, . . . ,En⟩ opens component-wise

to the ℓ th standard basis vector for Znp .

Protocol 5: (HV)ZKPoK for opening of a standard basis vector

Common input: E
1

[
=дe⃗ℓ [1]hβ1

]
, . . . ,En

[
=дe⃗ℓ [n]hβn

]
∈ G

Prover knows: ℓ ∈ [1. .n] and β
1
, . . . , βn ∈ Zp

1: V chooses t ∈
R
Zp , and then it computes ˜E(t) ←

∏n
i=1
(Ei )

t i−1

and sends t to P.

2: P computes γ ←
∑n
i=1
(βi · t

i−1) mod p, and then it engages V

in the Σ-protocol denoted by

PK

{
(ℓ,γ ) : ˜E(t) = дt

ℓ−1

hγ ∧ ℓ ∈ [1. .2k ]
}

and realized by Protocol 4.

3: V accepts if and only if it accepts in the Σ-protocol in Step 2.

Theorem 5.1. The 4-move protocol depicted in Protocol 5 is a
system for honest-verifier zero-knowledge proofs of knowledge of
(ℓ; β

1
, . . . , βn ) such that Ei = д

e⃗ℓ[i]hβi for each i ∈ [1. .n]. It is
special honest-verifier zero-knowledge; the witness ℓ ∈ [1. .n] is 2-
extractable; and the witness tuple (β

1
, . . . , βn ) ∈ Z

n
p is (2n + 2)-

extractable.

Proof. We prove the completeness, the 2-extractablitity (includ-

ing soundness), and the special honest-verifier simulatablity of the

protocol in turn.

Completeness: V accepts if and only if it accepts in the Σ-protocol
of Step 2; i.e., if P indeed knows ℓ ∈ [1. .2k ] and γ ∈ Zp such

that ˜E(t) = дt
ℓ−1

hγ . Thus, it suffices to note that, when indeed

each Ei = д
e⃗ℓ[i]hβi , we have that

˜E(t) =
∏n

i=1
(Ei )

t i−1

=
∏n

i=1

(
дe⃗ℓ[i]hβi

)t i−1

=
∏n

i=1
дe⃗ℓ[i]·t

i−1

hβi ·t
i−1

= д(
∑n
i=1

e⃗ℓ[i]·t
i−1)h(

∑n
i=1

βi ·t i−1)

= дt
ℓ

hγ ,

where γ ←
∑n
i=1
(βi · t

i−1) mod p.

Extractability: FromTheorem 4.4, there exists an extractor Ext for
Protocol 4 that, by rewinding P just once, can extract ℓ ∈ [1. .2k ]

and γ ∈ Zp such that ˜E(t) = дt
ℓ−1

hγ in Step 2 (assuming V

sends t ∈ Zp in Step 1). We now show how to construct an

extractor for the full Protocol 5 that, by using Ext as a subroutine,
extracts a basis vector e⃗ℓ ∈ Z

n
p and ⟨β

1
, . . . , βn⟩ ∈ Z

n
p such that

Ei = д
e⃗ℓ[i]hβi for each i ∈ [1. .n].

The extractor works as follows: First, it repeatedly samples

challenges ti ∈R
Zp and invokes Ext to obtain the corresponding

9



ordered pairs (ℓi ,γi ) ∈ [1. .2
k ] × Zp satisfying ˜E(ti ) = д

t ℓi −1

i hγi .4

Upon successfully extracting such pairs for n+1 pairwise distinct

choices of ti ∈ Zp , the extractor uses the pairs to construct two

length-n sequences of points

(t
1
, tℓ1
−1

1
), . . . , (tn , t

ℓn−1

n ) ∈ Zp × Zp

and

(t
1
,γ

1
), . . . , (tn ,γn ) ∈ Zp × Zp ,

plus two “extra” distinguished points (t
0
, tℓ0
−1

0
) ∈ Zp × Zp and

(t
0
,γ

0
) ∈ Zp × Zp to be used later on.

Next, the extractor interpolates through the n points in the

first and second sequences to respectively obtain the degree-

(n − 1) polynomials A ∈ Zp [x] and B ∈ Zp [x] satisfying

˜E(ti ) = д
A(ti )hB(ti )

for all i ∈ [1. .n]; whence, it follows that

дA(ti )hB(ti ) =
(∏n

i=1
Ei
)t i−1

i

=
(∏n

i=1
дaihβi

)t i−1

i

=
∏n

i=1
дai ·t

i−1

i hβi ·t
i−1

i

= д(
∑n
i=1

ai ·t i−1

i )h(
∑n
i=1

βi ·t i−1

i ),

and we can write Ei = дaihβi for each i ∈ [1. .n] using the

coefficients ofA(x) =
∑n
i=1
(ai ·x

i−1

) and B(x) = (
∑n
i=1

βi ·x
i−1

).

We have thus far shown how our extractor can open E⃗ com-

ponent-wise to some vector ⟨a
1
, . . . ,an⟩ ∈ Z

n
p ; it now remains to

show that it can open E⃗ component-wise to some standard basis
vector from Znp . For this, we employ the “extra” distinguished

points (t
0
, tℓ0
−1

0
) and (t

0
,γ

0
). In particular, we consider the fol-

lowing two cases:

Case 1 (A(t0) ≡ t
ℓ0−1
0 mod p andB(t0) ≡ γ0 mod p): By Cor-

ollary 3.4, this event occurs with probability strictly less than

2
2k/p, unless A(x) = xℓ0

−1

so that the vector ⟨a
1
, . . . ,an⟩

already extracted is indeed the ℓ
0
th standard basis vector, as

desired.

Case 2 (A(t0) ≢ t
ℓ0−1
0 mod p andB(t) ≢ γ0 mod p): Here, the

extractor holds (distinct) ordered pairs (tℓ0
−1

0
,γ

0
) ∈ Zp × Zp

and (A(t
0
),B(t

0
)) ∈ Zp × Zp such that both

˜E(t
0
) = дt

ℓ
0
−1

0 hγ0

and

˜E(t
0
) = дA(t0

)hB(t0
)
;

hence, дt
ℓ
0
−1

0 hγ0 = дA(t0
)hB(t0

)
and the extractor can solve for

logд h ≡ (t
ℓ

0
−1

0
−A(t

0
)) · (B(t

0
) − γ

0
)
−1

mod p.

From here, the extractor is free to choose any ℓ ∈ [1. .n], define
Bℓ ≔ B(x) − (logд h)(A(x) − x

ℓ
), and then output e⃗ℓ ∈ Z

n
p and

⟨Bℓ(1), . . . ,Bℓ(n)⟩ ∈ Z
n
p as an opening of E⃗ to e⃗ℓ .

4

Note that we cannot simply presume the ℓi so extracted by Ext in this step are all

equal; indeed, they need not be. We shall address this issue in the sequel.

Simulatable: From Theorem 4.4, there exists a special simulator

Sim for the honest-verifier for Protocol 4 that, on input c ∈
Zp , outputs simulated transcripts from the same distribution

as real transcripts in Step 2. Given Sim, a special simulator for

the full protocol is trivial: On input (t , c) ∈ Zp × Zp , compute

˜E(t) ←
∏n

i=1
(Ei )

t i−1

and k ← ⌈lgn⌉, and then invoke Sim with

common inputs

(
˜E(t), t ,k

)
and challenge c to obtain a simulated

transcript for Step 2. □

5.1 Cost analysis
We now analyze the computation and communication cost of Pro-

tocol 5 on input a vector of length n. By inspection, we see that P

sends just 5⌈lgn⌉ − 3 commitments from G and a further 4⌈lgn⌉ −
2 elements of Zp as part of the sub-protocol in Step 2; hence, P

uploads Θ(lgn) group and Θ(lgn) field elements. Meanwhile, V

sends just two Zp elements to P; hence, V uploads just Θ(1) field
elements.

In terms of computational effort, the dominant (asymptotic) cost

for P is the computation of γ in Step 2, a polynomial evaluation

in Zp [x] requiring 2n − 1 operations in Zp using Horner’s method.

Within the sub-protocol, P evaluates an additional Θ(lgn) opera-
tions in each of G and Zp ; thus, P evaluates Θ(n) field operations

and Θ(lgn) group operations. The dominant computation cost for

V is the computation of ˜E(t) in Step 1, which can be realized as

a sequence of n − 2 multiplications in Zp followed by an n-base

multiexponentiation inG.5 Within the sub-protocol, V evaluates an

additional Θ(lgn) operations in each of G and Zp ; thus, V evaluates

Θ(n) field operations and Θ(n) group operations. A detailed sum-

mary of these costs—as well as analogous breakdowns for Henry

et al.’s protocol (§2.1) and its variant with Groth and Kohlweiss’

improvement (§2.2)—was located back in Table 1.

5.2 Trading speed for soundness
Referring back to Section 2.1 (and Section 2.2), we note that the

verifier V in Henry et al.’s protocol (and in its variant with Groth

and Kohlweiss’ improvement) need not select the vector R⃗ and

challenge c uniformly from all of Znp and Zp . Rather, V may select

R⃗ ∈
R
[0 . .2λ]n and c ∈

R
[0 . .2λ] for some λ < lgp as a means to

trade somewhat-increased soundness error (going from 2
− lgp

up

to 2
−λ

) in exchange for lower upload cost (from Θ(n) field elements

down to Θ(n · λ) bits), as well as a cheaper n-base multiexponen-

tiation to compute ˜E(R⃗) and cheaper exponentiations to compute

the sequence of ˜E(R⃗)/дR⃗[i] (both going from Θ(n · lgp) down to

Θ(n ·λ) group operations). This technique, sometimes referred to as

small-exponent batching [3], can yield substantial speedups while

still maintaining adequate soundness in practice.

We can likewise reduce the size of V’s challenges t and c in the

new protocol; however, the potential speedups from doing so are

decidedly less profound than in the case of Henry et al.’s protocol.

Specifically, the n-base multiexponentiation in the new protocol

uses exponents from t⃗ ≔ ⟨1, t , t2, . . . , tn−1⟩, a vector whose entries

quickly grow to lgp bits, even when t is small. The new protocol

5

One might be tempted to compute ˜E (t ) using “Horner’s method in the exponent”;

however, it is not difficult to verify that this approach incurs strictly greater computa-

tion cost than the multiexponentiation we count here.
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(c) Communication

Figure 1: Empirically measured computation times for the prover (Fig. 1a) and the verifier (Fig. 1b) and analytically computed com-
munication costs (Fig. 1c) as the vector length ranges from n = 21 through n = 220. In all experiments, we chose challenges uniformly
from Zp so as to minimize the soundness error. The verifier upload costs in “HenryOG11” and “GrothK15” are identical, with the
plot of the former ( ) totally eclipsed by that of the latter ( ) in Figure 1c. The value to the right of each trend line is a 99%
confidence interval for the final (e.g., n = 220) data point.

must also contend with the 2
2k ≈ n2

soundness loss (see Corol-

lary 3.4), which implies that, to get soundness error less than 2
−λ

, V

must choose t ∈
R
[0 . .2λ+2k − 1]. The latter point serves to further

stifle any nominal speedups V might hope to gain in the compu-

tation of t⃗ itself. Nevertheless, as we will soon see in Section 6.2,

unless the soundness error is allowed to exceed about 2
−30

, the new

protocol still comfortably outperforms its competitors.

5.3 5-move with better soundness
It is possible to slightly improve on the soundness of the protocol

with the introduction of one additional move. (In applications where

the prover produces E⃗ in an implicit 0th move with the intention

of following up with a proof that it, in fact, commits to a standard

basis vector—such as the applications mentioned in Section 1—

this extra move can piggyback onto that implicit initial move.)

Essentially, the prover commits to the binary decomposition of ℓ

prior to learning the initial challenge t , and those commitments are

then transformed into appropriate powers of t by V as part of Step 1.

Having P commit to ℓ prior to its learning t effectively commits it

to a specific polynomial V (x) − xℓ , which must have a root at t is
V is to accept. This reduces the number of “bad” challenges t from
up to about 2

2k
to at most 2

k
, allowing to reduce the soundness

error by a factor n or, alternatively, to reduce the size of t (for a
fixed soundness error) by lgn bits.

6 IMPLEMENTATION & EVALUATION
In order to empirically validate the efficiency of Protocol 5, we have

implemented it in C++ together with the algorithms of Henry et

al. (§2.1) and its variant with Groth and Kohlweiss’ improvement

(§2.2).
6

We herein refer to our implementations of Protocol 5 as

“This work”, to our implementation of Henry et al.’s protocol as

“HenryOG11”, and to our implementation of Henry et al.’s protocol

with Groth and Kohlweiss’ improvement as “GrothK15”, where

the underline colors reference the corresponding plot colors in

Figures 1 and 2. Our implementations leverage version 3.11.2 of

6

Our implementation (of all three protocols) is available as free and open source

software (under the MIT License) via Github [6].

the NTL library [22] for multiprecision arithmetic and the latest

(at time of writing—see citation for the precise commit digest)

developer build of the RELIC toolkit [1] for elliptic curve arithmetic.

All experiments use Curve P-256, a NIST-standardized elliptic

curve of 256-bit prime order p = 2
256− 2

224+ 2
192+ 2

96 − 1 for the

commitment group G.
We conducted all of our experiments on a workstation running

Ubuntu 18.04.2 LTS atop an AMD Ryzen 7 2700x eight-core CPU

@ 4.30GHz with 16GiB of RAM. Our code was compiled using

version 7.4.0-1ubuntu~18.04.1 of g++ with both the -O3 and

-march=native compiler flags enabled.

Each of our experiments measures the (wall-clock) running times

for a prover and verifier each running in isolation, single-threaded

on a single CPU core. In lieu of a “warm up period”, we repeated all

experiments for 110 trials and then discarded the 10 trials with run-

ning times furthest from the sample mean (note that we discarded

both unusually fast and unusually slow trials).
7

Our plots report

the sample mean running timings across the 100 remaining trials.

We note that all experiments exhibited sample standard deviations

that were minuscule relative to the sample means, resulting in error

bars that were, in all instances, far too small to be visible on the

plots. When discussing selected statistics, we write µ±w to indicate

a 99% confidence interval with sample mean µ and interval width

w (i.e.,w ≔ 2.58 s for sample standard deviation s). We report all

such figures to one digit of precision in the interval width.

6.1 Running time versus vector length
Our first set of experiments measures the running time as the vector

length increases from a minimum of n = 2
1
elements to a maximum

of n = 2
20

elements. Plots of our findings are located in Figures 1a

and 1b, while Figure 1c shows the (analytically computed) commu-

nications costs for the same. Our findings are in accordance with

the theoretical analysis: “HenryOG11” incurs the lowest compu-

tation cost for the very shortest of vectors, but quickly overtakes

“GrothK15” and “This work” by around n = 2
4
, whereafter “This

work” reigns supreme.

7

This outlier pruning had almost no impact on the running times reported herein.
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Figure 2: Empirically measured computation times for the prover (Fig. 2a) and the verifier (Fig. 2b) and analytically computed com-
munication costs (Fig. 2c) as the soundness error ranges from 2−1 down to 2−256 using a fixed vector length of n = 214. Plots for “This
work” end with soundness error 2−224 because of the 2 lgn = 28 loss. The verifier upload costs in “HenryOG11” and “GrothK15” are
identical, with the plot of the former ( ) totally eclipsed by that of the latter ( ) in Figure 2c. The value to the right of each
trend line is a 99% confidence interval for the final (e.g., n = 220) data point.

By n = 2
20
, the prover in “This work” runs about 100× faster

than the “GrothK15” prover (590 ± 70 ms versus 59600 ± 700 ms),

while the verifier in “This work” runs about 4× faster than the

“GrothK15” verifier (88740 ± 70 ms versus 354000 ± 4000 ms). In

terms of communication, the constant upload cost of the verifier

in “This work” begins lower than the (linear) verifier upload costs

in “GrothK15” and “HenryOG11”, with the discrepancy growing

in proportion to the vector length; meanwhile, the prover in “This

work” uploads a small constant factor (about 1.3×) more than the

“GrothK15” prover.

For vectors of length exceeding about n = 2
16
, the (linear) cost

of evaluating the degree-n polynomial β(t) in Step 2 of Protocol 5

begins to dominate the overall running time for the prover in “This

work” and the slope of its trendline begins to look (essentially)

linear in n.
Finally, as is just barely perceptible from the two trendlines in

Figure 2a, the “GrothK15” prover’s computation cost grows asymp-

totically faster than that of the “HenryOG11” prover. Extrapolating

(to an admittedly absurd degree), we estimate that the “GrothK15”

prover would eventually overtake the “HenryOG11” prover for

vector lengths in the vicinity of n = 2
80
.

6.2 Running time versus soundness error
Our second set of experiments measured the running time for a

fixed vector length n = 2
14

(an arbitrary choice) while varying the

soundness error of the protocol from a minimum of (at most) 2
−1

through to a maximum of (at most) 2
−256

. The soundness error tun-

ing was accomplished by varying the bitlengths of the elements of

the random vector in the “HenryOG11” and “GrothK15” protocols

and the point t in “This work”, as well as the verifiers challenge

c in all three protocols.
8

Plots of our findings are located in Fig-

ures 2a and 2b, while Figure 2c shows the (analytically computed)

communications costs for the same. Notice that the plots for “This

work” end with soundness error (at most) 2
−224

. This is because the

8

For “HenryOG11”, smaller c results in reduced prover upload, since the prover needs

to send the challenges used in simulated proofs; for the other two protocols the impact

of changing c is insignificant.

2 lgn = 28-bit soundness loss limits that protocol to a soundness

error of (at most) 2
−242

in the best case.

We notice that the computation costs for “This work” are basi-

cally agnostic to the soundness parameter, while the “GrothK15”

and “HenryOG11” verifiers both show nominal speedups when the

soundness error is allowed to grow. For all three protocols, prover

upload costs are independent of the soundness, while verifier up-

load costs scale linearly with it. For very small soundness errors, the

“GrothK15” protocol is fastest; however, for all cryptographically

suitable soundness errors (indeed, for any soundness error less than

about 2
−30

), “This work” is faster.

7 CONCLUSION
We proposed a new communication- and computation-efficient,

4-move special honest-verifier zero-knowledge proof of knowledge

system with which a prover P can convince a verifier V of its ability

to open a vector of Pedersen (or Pedersen-like) commitments to

a so-called “one-hot” vector (i.e., to a vector from the standard or-

thonormal basis) over Znp . The new protocol offers superior asymp-

totics relative to existing protocols for proving one-hotness. We

have implemented both our new protocol and its closest competi-

tors from the literature; in accordance with our analytic results,

experiments confirm that the new protocols handily outperform

existing protocols for all but the shortest of vectors (roughly, for

vectors with more than 16–32 elements).
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