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Abstract. Till now, the only reduction from the module learning with errors problem (MLWE)
to the ring learning with errors problem (RLWE) is given by Albrecht et al. in ASIACRYPT 2017.
Reductions from search MLWE to search RLWE were satisfactory over power-of-2 cyclotomic fields
with relative small increase of errors. However, a direct reduction from decision MLWE to decision
RLWE leads to a super-polynomial increase of errors and does not work even in the most special
cases- -power-of-2 cyclotomic fields. Whether we could reduce decision MLWE to decision RLWE
and whether similar reductions could also work for general fields are still open. In this paper, we
give a reduction from decision MLWE with module rank d and computation modulus q in worst-
case to decision RLWE with modulus qd in average-case over any cyclotomic field. Our reduction
increases the LWE error rate by a small polynomial factor. As a conclusion, we obtain an efficient
reduction from decision MLWE with modulus q ≈ Õ(n5.75) and error rate α ≈ Õ(n−4.25) in worst-

case to decision RLWE with error rate Γ ≈ Õ(n−
1
2 ) in average-case, hence, we get a reduction from

worst-case module approximate shortest independent vectors problem (SIVPγ) with approximation
parameter γ ≈ Õ(n5) to corresponding average-case decision RLWE problems. Meanwhile, our
result shows that the search variant reductions of Albrecht et al. could work in arbitrary cyclotomic
field as well. We also give an efficient self-reduction of RLWE problems and a converse reduction
from decision MLWE to module SIVPγ over any cyclotomic field as improvements of relative results
showed by Rosca et al. in EUROCRYPT 2018 and Langlois et al. [DCC 15]. Our methods can also
be applied to more general algebraic fields K, as long as we can find a good enough basis of the
dual R∨ of the ring of integers of K.

Keywords: Lattice-based Cryptography · Security Reduction · Cyclotomic Fields · Ring-LWE ·
Module-LWE

1 Introduction

Cryptographic primitives based on hard lattice problems play a key role in the area of post-quantum
cryptographic researches. In the round two submissions of post-quantum cryptography called by NIST,
12 out of 26 are lattice-based and most of which are based on the learning with errors problem (LWE)
and its variants. Ever since introduced by Regev [33], LWE and its variants have become fundamental
problems in lattice-based cryptography. A huge amount of cryptographic primitives based on LWE and
its variants have been proposed, such as public-key encryption [22, 28], key exchange protocols [2, 7, 8],
digital signatures [15, 16], identity-based encryption [17, 18], pseudo-random function families [6, 11, 14,
31], watermarking [19, 20], etc.

Regev established quantum reductions from worst-case lattice problems over Euclidean lattices (such
as SIVPγ) to LWE, making LWE a versatile and very attractive ingredient for post-quantum cryp-
tography. Soon after, Peikert [28] gave a de-quantization by proposing a reduction from the decisional
approximate shortest vector problem (GapSVPγ) to plain LWE with exponential modulus. Combining
the modulus-switch techniques, Brakerski et al. [10] showed the classical hardness of plain LWE with
quite flexible choices of parameters. Cryptographic protocols relying on plain LWE therefore enjoy the
property of being provably as secure as worst-case lattice problems which is strongly suspected of being
extremely hard. However, cryptography primitives based on plain LWE suffer from large key sizes (or



2 Y. Wang et al.

public data), hence, they are usually inherently inefficient. This drawback stimulates people to develop
more efficient LWE variants, such as the Polynomial Ring Learning with Errors problem (PLWE)[36]
and the Ring Learning with Errors problem (RLWE) [23]. It has been shown that RLWE is also at least
as hard as worst-case lattice problems over special classes of ideal lattices [23, 30] and cryptographic
applications of RLWE generally enjoy an increase in efficiency compared with those of plain LWE, espe-
cially in the power-of 2 cyclotomic rings. But, these ideal lattices received relatively less attention than
their analogues on general Euclidean lattices. Most importantly, the de-quantization reductions could not
applied to RLWE problem, since GapSVPγ problems are actually easy on ideal lattices for the involved
approximation factors γ as in [28]. Though a standard and well accepted conjecture is to assume that
there is no probabilistic polynomial time (PPT) algorithm (even using quantum computer) to solve hard
lattice problem (for example SIVPγ) that achieves an approximation factor which is polynomial in the
lattice dimension n [26], a series of works showed that finding short vectors in ideal lattices is potentially
easier on a quantum computer than in Euclidean lattices [12, 13, 32]. The length of the short vectors
found in quantum polynomial time is a sub-exponential multiple of the length of the shortest vectors in
ideal lattices. While, it is not known how to efficiently find such vectors in Euclidean lattices.

As alluded to above, plain LWE is known to be at least as hard as standard worst-case problems on
Euclidean lattices, whereas RLWE is only known to be as hard as their restrictions to special classes of
ideal lattices. The Module Learning with Errors problem (MLWE) was proposed to address shortcomings
in both plain LWE and RLWE by interpolating between two [9, 21]. Module lattices have more complicated
algebraic structures than ideal lattices. While, compared with Euclidean lattices, they are more structured.
Thus, MLWE might be able to offer a better level of security than RLWE and still have performance
advantages over plain LWE. Furthermore, MLWE has been suggested as an interesting option to hedge
against potential attacks exploiting the algebraic structure of RLWE [13]. Many submissions to NIST also
provided constructions based on MLWE, such as KCL, CRYSTALS-KYBER, CRYSTALS-DILITHIUM,
etc. In fact, it was posed as an open problem in [21] that whether there exists reductions from MLWE
to RLWE. To the best of our knowledge, till now, the only reduction is given by Albrecht et al. in
ASIACRYPT 2017. Their reduction is an application of the main result of Brakerski et al. [10] in the
context of MLWE. Similar technique was also used by Langlois et al. [21] to give a self-reduction of
decision MLWE problems.

In [1], they gave a very satisfactory reduction from search MLWE to search RLWE over power-of-2
cyclotomic fields. However, it turns out that for the decision variants, even in the special power-of-2
cyclotomic fields, one can’t obtain a satisfactory bounds for the reduction to preserve non-negligible
advantage unless one allows for super polynomial modulus q and absolute noise in addition to negligible
noise rate, as pointed in [1]. The self-reduction of decision MLWE problems [21] suffers similar problem.
This is just the point, since in applications, we usually use the decision variants of MLWE/RLWE.
Moreover, as stressed in [24], “powers of 2 are sparsely distributed and the desired concrete security level
for an application may call for a ring dimension much smaller than the next-largest power of 2. Restricting
to powers of 2 could lead to key sizes and run-times that are at least twice as large as necessary.” So, both
in theory and applications, it’s meaningful and instructive to investigate whether we could reduce decision
MLWE problem to decision RLWE problem efficiently and whether we could get similar reductions over
more general fields.

1.1 Our contributions

Our first result is a reduction from worst/average-case decision MLWE problems to average-case
decision RLWE problems over any cyclotomic field. We reduce decision MLWE with module rank d and
computation modulus q to decision RLWE with modulus qd in average-case, deteriorating the LWE error
rate by a small polynomial factor. As a result, for any cyclotomic field K = Q(ζl) with ζl the primitive l-th

root of unit, we deduce that if one could solve the decision RLWE problem with error rate Γ ≈ Õ(n−
1
2 )

and modulus qd in average-case over K, then he can also solve the worst-case decision MLWE problem
with modulus q ≈ Õ(n5.75) and error rate α ≈ Õ(n−4.25) over Kd. Combining the known reduction from
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module SIVPγ to decision MLWE [21, 30], we conclude a reduction from worst-case module SIVPγ with

γ ≈ Õ(n5) to corresponding average-case decision RLWE problems. We must stress that we constrain
our discussions in cyclotomic fields because we use the powerful basis of R and the decoding basis of R∨

[24], here R is the ring of integers of K. Our methods can be extended to general number field, as long
as we could find a good basis of R∨.

We then use similar method to give a self-reduction of RLWE problems. This reduction can be regarded
as a modulus switch of RLWE. Roughly speaking, we could reduce decision RLWE problem with error
rate α and modulus p to decision RLWE problem with modulus q and error rate α′ = α · pq · poly(n) for

some small poly(n). Then our reduction could be used to reduce a decision RLWE problem with some
split ’well’ polynomially bounded modulus p to a decision RLWE problem with arbitrary polynomially
bounded modulus q that is relatively closed to p, for example p = 1 mod l and p

q = poly(n). Since decision

RLWE with such modulus p can be proved hard [23], we then can prove that decision RLWE is hard for
large amount of modulus q’s.

Finally, we give a converse reduction from decision MLWE problem to a special case of module SIVPγ
problem over any cyclotomic field. We prove that if one could solve the module SIVPγ problem in lattice
A⊥ := {z ∈ Rm : A ·z = 0 mod qRd} for some m > d and A←↩ U(Rd×mq ) with non-negligible probability,

he can also solve the average-case decision MLWE problem with error rate α ≈ Õ( 1

γ·m·n3·q
d
m

). For the

usual case d = O(1), by taking m = d · log q, we obtain a reduction from decision MLWE with error
rate α ≈ Õ( 1

γ·n3 ) to average-case module SIVPγ over lattice A⊥, with A←↩ U(Rd×d log q
q ). As a corollary,

we obtain a reduction from worst-case module SIVPÕ(γ·n3.75) problem over Kd to average-case SIVPγ

problem over lattice A⊥ with A←↩ U(Rd×d log q
q ).

1.2 Reduction Road-map

Note that reductions from search MLWE to search RLWE in [1] are quite satisfactory. In order to
get a reduction from decision MLWE to decision RLWE, a natural thought is to build some reduction
from decision MLWE to search MLWE. Then, we could connect decision MLWE and decision RLWE
through the path: decision MLWE 7→search MLWE 7→search RLWE 7→decision RLWE. Many details need
to be treated carefully and the reduction road-map are summarized in Figure 1.

For any cyclotomic field K = Q(ζl), let R be the ring of integers of K, n = ϕ(l) and q - l be some prime.

We will denote D-MLWER
d

q,ψ to be the decision MLWE problem with modulus q and error distribution ψ,
denote D-RLWEq,ψ to be the decision RLWE problem with modulus q and error distribution ψ. Symbols
for search variants are similar.

We start from D-MLWER
d

q,Dα
for some continuous Gaussian distribution Dα without loss of generality

[30] and reduce D-MLWE to D-RLWE step by step. If we change it to be the elliptic Gaussian distribution
emerged in [21, 30], the same reduction also works with some slight modifications of error distributions.
Denote m to be the number of samples we need and D≤α := {Dr : rk ≤ α and rk = rn+1−k for all k ∈
{1, · · · , n2 }}. We first need to discretize the errors to a lattice in KR = K ⊗Q R. We choose to discrete
the errors to lattice 1

qR
∨. This can be done easily by using the fact, which is showed in [29], that for

any e ←↩ Dα and f ←↩ D 1
qR
∨−e,β with β ≥ ηε(

1
qR
∨), we have e + f

s
≈ D 1

qR
∨,
√
α2+β2 . Then we consider

the normal form of corresponding MLWE problems (denoted by Nor-D-MLWE), i.e. the secret s and the
error e obey the same distribution. Note that for a MLWE sample (a, b) with b = 1

qa
T · s + e mod R∨

for some secret s ∈ R∨q and error e ←↩ Dα, we can represent it as the form b = aT · s′ + e with

s′ = 1
qs ∈

1
qR
∨/R∨. Hence, transformation used in [3] may also work if we could construct an invertible

matrix A ∈ Rd×dq which is consist of the a components, when given polynomial many samples. Fortunately,
for q = Ω(n), we could construct such a matrix with very high probability by Lemma 9. Reduction from
Nor-D-MLWE to Nor-S-MLWE is straight-forward. When given m samples, one only need to test if
each component of e′ = b − A · s mod R∨ has small norm, where s is the output of the Nor-S-MLWE
oracle and A ∈ Rm×dq is the matrix formed by the a components of given samples. In this reduction, we
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D-MLWER
d

q,Dα
arbitrary m, q ≤ poly(n)

Nor-D-MLWER
d

q,D
1
q
R∨,
√
α2+β2

q ≥ Ω(n), β ≥ Õ(
√
n
q

)

Nor-S-MLWER
d

q,D
1
q
R∨,
√
α2+β2

q ≥ Õ(max{n ·
√
α2 + β2, n}), m ≥ Õ(1)

S-RLWEqd,D≤α′ α′ = Õ(n
5
2 ·

√
α2 + β2), m, q as above

Worst-case D-RLWEqd,D≤β′ β′ = Õ(n
7
2 ·

√
α2 + β2 ·m

1
2 ), Õ(1) ≤ m ≤ q

2n
, q as above

Average-case D-RLWEqd,DΓ Γ = Õ(β′ · (nm)
1
4 ),m, q, β′ as above

Proposition 1

Proposition 2

Proposition 3

Theorem 5.6 of [34]

Lemma 7.2 of [30]

Fig. 1. Reduction road-map form decision MLWE to average-case decision RLWE
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use some properties (inequality (4), which states that the smallest singular value of the matrix formed
by the decoding basis is relatively large) of the decoding basis of R∨ [24] to estimate the probability
Prb←↩U(( 1

qR
∨/R∨)m)[∃s ∈ ( 1

qR
∨/R∨)d : max1≤k≤m ||e′k|| < B, e′ = b − A · s mod R∨], where B is some

suitable upper-bound. For suitable B, if b is chosen uniformly at random, there will be at least one e′k
with norm lager than B. While, if b comes from MLWE distributions, the norm of all e′k will be less than
B with overwhelming probability. So, we could solve Nor-D-MLWE efficiently when given a Nor-S-MLWE
oracle. As we have mentioned, reductions from search MLWE to search RLWE in [1] are acceptable, so we
use similar method to reduce Nor-S-MLWE to S-RLWE. The main difference is that we need to add more
error terms to amend the error distribution to elliptical Gaussian of corresponding S-RLWE problem.
In this step, we need to bound the quantity max1≤k≤n

1
|σk(s)| for s ←↩ D 1

qR
∨,
√
α2+β2 . Our estimate also

shows that the direct reduction of search variants in [1] also works for all cyclotomic fields. We then can
use Theorem 5.6 of [34] to reduce S-RLWE to worst-case D-RLWE and use Lemma 7.2 of [30] to reduce
worst-case D-RLWE to average-case D-RLWE with some spherical error distribution, as desired.

One may have noticed that the error parameter of D-RLWE in the above reduction is related heavily
to m, meanwhile, m is bounded by q

2n . This is not very satisfactory. In applications, we may hope that
m is polynomially bounded and should be independent of q. Meanwhile, the error rate should also be
less dependent (or independent) of m. So, we provide a self-reduction of RLWE problem by using similar
thoughts as above. More precisely, it is a modulus switch form q1 to q2 - - a reduction from S-RLWEq1,Dα′′

to S-RLWEq2,D≤α′′′ with α′′′ ≈ Õ(α′′ · n2.5 · q1q2 ). In the above, we reduce D-MLWER
d

q,Dα
to worst-case S-

RLWEqd,D≤α′ . Then, though somewhat heuristically, for many choices of q and d, we can switch modulus

qd to some non-ramified prime p that splits ‘well’ (in the sense that the norm of the prime factors of pR
are poly(n) bounded) and q

p ≤ poly(n). Such p admits reductions from S-RLWE to D-RLWE by using the

same method used in [23]. We can reduce D-RLWE with modulus q to D-RLWE with modulus p by using
similar procedure as reductions from D-MLWE to D-RLWE, too. We also remark that for many choices
of q and d (for example d = O(1) and q = 1 mod l), we could directly use reductions showed in [23] to
reduce S-RLWEqd,D≤α′ to average-case D-RLWEqd,Dτ for some small polynomially bounded τ ∈ R, hence

reduce D-MLWER
d

q,Dα
to average-case D-RLWEqd,Dτ . These special cases have already covered many usual

applications, including the examples we give- -KCL, CRYSTALS-KYBER and CRYSTALS-DILITHIUM.
Reduction from D-MLWE to module SIVPγ is routine. It is well known that one of the classic way

to solve LWE consists in solving an associated SIS instance [21, 26]. In the module context, the SIS

problems over Rd (denoted by M-SISR
d

q,β) are defined as follows: given A ←↩ U(Rm×dq ), find a nonzero

vector z ∈ Rm such that zT · A = 0 mod qRd and ||z|| ≤ β for some target norm β. We first reduce

D-MLWER
d

q,Dα
to M-SISR

d

q,β with α ≈ Õ( 1
β·n ). Essentially, when give a short vector z such that zT · A =

0 mod qRd and m sample (A, b) ∈ Rm×dq × (KR/R
∨)m, we can represent zT · b mod R∨ with respect to

the decoding basis. Then, if b is distributed uniformly at random, the coefficients of zT · b mod R∨ will
also be distributed randomly in the interval (− 1

2 ,
1
2 ]. On the other hand, if b = A ·s+e for some e←↩ Dm

α ,

with high probability, the coefficients of zT ·b mod R∨ would be much closer to 0. Solving M-SISR
d

q,β can be

converted to solving module SIVPγ problem over the lattice A⊥ := {z ∈ Rm : zT ·A = 0 mod qRd} with
β ≤ γ · λn(A⊥). By the transference theorem, λn(A⊥) ≤ n·d

λ1((A⊥)∨)
≤ n·d

λ∞((A⊥)∨)
, where (A⊥)∨ denotes

the dual lattice of A⊥. In fact, (A⊥)∨ is equal to 1
q{y ∈ (R∨)m : ∃ s ∈ (R∨q )d, A · s = y mod q(R∨)m}.

We prove that for A ←↩ U(Rm×dq ), the lattice (A⊥)∨ is extremely unlike to contain unusually short
vectors under the infinity norm, which completes the reduction. Similar proof techniques are also used in
[21, 34, 38] to obtain some kinds of ring-based leftover hash lemma and may be standard now.

We remark that we constrain our discussion in cyclotomic fields in order to use the decoding basis of
R∨. Essentially, we use the property that the singular values of (one of) the basis matrix of lattice R of
cyclotomic fields are well bounded 3. We use this to discretize the errors in Subsection 3.2, to bound the

3 This also means that the singular values of (one of) the basis matrix of lattice R∨ of cyclotomic fields are well
bounded.
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probability (5) in Subsection 3.3 and to sample lattice Gaussians, whose parameter r is related to the
singular values of the basis we use, in Subsection 3.4. For general algebraic field K, our reduction also
works if we can find similar good basis of R. If our purpose is to get a (maybe very large) polynomially
bounded reduction, a basis with a polynomially bounded singular values of R is sufficient.

1.3 Organization

We will introduce some useful definitions and results in Section 2. Reductions from D-MLWE to
average-case D-RLWE are studied in Section 3. In Section 4, we will give the self-reduction of RLWE
problems and some discussions. The converse reduction from D-MLWE to module SIVPγ is put in Section
5.

2 Preliminaries

In this section, we introduce some background results and notations.

2.1 Notations

Throughout this paper, we use R+ to denote the set of positive reals. Symbol [n] represents the set
{1, · · · , n} for any positive integer n. For any M ∈ Cn×n, we use sk(M) to denote the singular values of
M for k ∈ [n]. We will re-arrange singular values and assume s1(M) ≥ · · · ≥ sn(M). Matrix In denotes

the matrix

1
. . .

1


n×n

and matrix Jn denotes the matrix

 1

. .
.

1


n×n

. When we write X ←↩ ξ, we

mean the random variable X obeys to the distribution ξ. For a finite set S, we will use |S| to denote its
cardinality and U(S) to denote the uniform distribution over S.

2.2 Cyclotomic Fields, Space H and Lattices

Through out this paper, we mainly consider cyclotomic fields for brevity. We now briefly introduce
some basic facts about cyclotomic fields. For more details and similar results of general algebraic number
fields, one can refer to [23, 34, 38].

For a cyclotomic field K = Q(ζ) with ζ = ζl the primitive l-th root of unity, its minimal polynomial

is Φl(x) =
∏
i|l(x

i− 1)µ( li ) ∈ Z[x] with degree n = ϕ(l), where ϕ(·) denotes the Euler totient function. As

usual, we set R := OK = Z[ζ], which is the ring of integers of K. Then [K : Q] = n := 2r, K ∼= Q[x]/Φl(x)
and R ∼= Z[x]/Φl(x). K is Galois over Q. We set Gal(K/Q) = {σi : i = 1, · · · , n} and use the canonical
embedding σ on K, who maps x ∈ K into a space {σi(x)}i ∈ H := {(x1, · · · , xn) ∈ Cn : xn+1−i =
xi, ∀i ∈ [r]} via embeddings in Gal(K/Q). H is isomorphic to Rn as an inner product space via the
orthonormal basis hi∈[n] defined as follows: for 1 ≤ j ≤ r,{

hj = 1√
2
(ej + en+1−j)

hn+1−j = i√
2
(ej − en+1−j),

where ej ∈ Cn is the vector with 1 in its j-th coordinate and 0 elsewhere, i is the imaginary number such
that i2 = −1.

The discriminant ∆K of K is a measure of the geometry sparsity of its ring of integers. Let α1, · · · , αn
represent a Z basis of R, we can define ∆K = |(σi(αj))1≤i,j≤n|2, where | · | represents the determinant of
a matrix. In particular, the discriminant of the l-th cyclotomic number field is

∆K = (−1)
n
2 ·

(
l∏

p|l p
1
p−1

)n
≤ nn, (1)
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where p runs over all prime factors of l.

As in [23], we define a lattice as a discrete additive subgroup of H, which is equivalent to be a discrete
additive subgroup of Rn. The dual lattice of Λ ⊆ H is defined as Λ∨ = {y ∈ H : ∀ x ∈ Λ, < x,y >=∑n
i=1 xi · yi ∈ Z}. One can check that this definition is actually the complex conjugate of the dual lattice

as usually defined in Cn. All of the properties of the dual lattice that we use also hold for the conjugate
dual.

A fractional ideal I of K is an R-module such that xI ⊆ R for some non-zero x ∈ K. So, any ideal in
R (integral ideal) is also a fractional ideal. Any fractional ideal I of K is a free Z module of rank n. So,
σ(I) is a lattice of H, and we call σ(I) an ideal lattice and identify I with this lattice and associate with
I all the usual lattice quantities. Meanwhile, its dual is defined as I∨ = {a ∈ K : Tr(a · I) ⊆ Z} 4. Then,
it is easy to verify that (I∨)∨ = I, I∨ is a fractional ideal and I∨ embeds under σ as the dual lattice of
I as defined above. Recall that we have |∆K | = det(σ(R))2, the squared determinant of the lattice σ(R).
The algebraic norm of a non-zero integral ideal J is defined as N(J) = |R/J |. Any fractional ideal can be
represented as the quotient of two non-zero co-prime integral ideals. We can define the norm of a fractional

ideal I as N(I) = N(J1)
N(J2) with I = J1

J2
, J1, J2 ⊆ R and J1 +J2 = R. We also have det(σ(I)) = N(I) ·

√
|∆k|.

The following lemma [29] gives upper and lower bounds on the minimum distance of an ideal lattice in
l2 norm and l∞ norm.

Lemma 1. For any fractional ideal I in a number field K of degree n, we have

√
n ·N 1

n (I) ≤ λ1(I) ≤
√
n ·N 1

n (I) · |∆K |
1
2n

and

N
1
n (I) ≤ λ∞1 (I) ≤ N

1
n (I) · |∆K |

1
2n .

2.3 Gaussian Distributions and Rényi Divergence

The Gaussian distribution is defined as usual. For any s > 0, c ∈ H, which is taken to be s = 1 or

c = 0 when omitted, define the (spherical) Gaussian function ρs,c : H → (0, 1] as ρs,c(x) = e−π
||x−c||2

s2 . By
normalizing this function, we obtain the continuous Gaussian probability distribution Ds,c of parameter
s, whose density function is given by s−n · ρs,c(x). For a real vector r = (r1, · · · , rn) ∈ (R+)

n
which

satisfies rk = rn+1−k for k ∈ [n2 ], we define the elliptical Gaussian distributions in the basis {hi}i≤n as
follows: a sample from Dr is given by

∑
i∈[n] xihi, where xi is chosen independently from the Gaussian

distribution Dri over R. Note that, if we define a map ϕ : H → Rn by ϕ(
∑
i∈[n] xihi) = (x1, · · · , xn),

then Dr is also a (elliptical) Gaussian distribution over Rn.

More generally, for some rank n matrix B ∈ Rn×n, we set Σ = B · BT and say a random variable
x ←↩ DB,c (or x ←↩ D√Σ,c) for some c ∈ Rn if the density function of x is given by 1√

det(Σ)
ρB,c(x) :=

1√
det(Σ)

· e−π(x−c)TΣ−1(x−c). It is easy to check that if B =

r1

. . .

rn

, then DB = Dr with r =

(r1, · · · , rn) ∈ (R+)n. Distributions over H are sampled by choosing an element in Rn according to
corresponding distributions and mapping back to H via the isomorphism H ∼= Rn. Moreover, if the
element falls into the set σ(K), we can map it back to K by using the inverse of canonical embedding
efficiently.

A discrete Gaussian distribution over some n-dimensional lattice Λ and coset vector c ∈ Rn with
parameter s is denoted by DΛ+c,s with density function ρs(x)

ρs(Λ+c) , where ρs(Λ + c) =
∑
x∈Λ+c ρs(x). It

was showed in [10] that we can sample a discrete Gaussian distribution efficiently.

4 For any a ∈ K, we define Tr(a) =
∑n
i=1 σi(a) and N(a) =

∏n
i=1 σi(a).
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Lemma 2. There is a probabilistic polynomial-time algorithm that, given a basis B of an n-dimensional

lattice Λ = L(B) ⊆ Rn, c ∈ Rn and a parameter s ≥ ||B̃|| ·
√

ln(2n+4)
π , outputs a sample distributed

according to DΛ+c,s.

Here, B̃ is the Gram-Schmidt orthogonalization of basis B = {b1, · · · , bn} and ||B̃|| is the length of
the longest column vector in it. We will also use Rényi divergence in our reductions.

Definition 1. For any distributions P and Q such that Supp(P ) ⊆ Supp(Q), the Rényi divergence of P
and Q of order a ∈ [1,∞] is given by

Ra(P ||Q) =


e
∑
x∈Supp(P ) P (x)·log

P (x)
Q(x) for a = 1

(
∑
x∈Supp(P )

P (x)a

Q(x)a−1 )
1
a−1 for a ∈ (1,∞)

maxx∈Supp(P )
P (x)
Q(x) for a =∞

For the case where P and Q are continuous distributions, we replace the sums by integrals and let
P (x) and Q(x) denote probability density functions. We just give a collection of useful results of the
Rényi divergence. For more details, one can refer to [1, 4].

Lemma 3. Let a ∈ [1,∞] and let P , Q be distributions such that Supp(P ) ⊆ Supp(Q). Then we have

– Increasing Function of the Order: The function a 7→ Ra(P ||Q) is nondecreasing, continuous and
tends to R∞(P ||Q) as a 7→ ∞.

– Log Positivity: Ra(P ||Q) ≥ Ra(P ||P ) = 1.
– Data Processing Inequality: Ra(P f ||Qf ) ≤ Ra(P ||Q) for any function f , where P f and Qf denote

the distributions induced by performing the function f on a sample from P and Q respectively.
– Multiplicativity: Let P and Q be distributions on a pair of random variables (Y1, Y2). Let P2|1(·|y1)

and Q2|1(·|y1) denote the distributions of Y2 under P and Q respectively given that Y1 = y1. Also, for
i ∈ {1, 2} denote the marginal distribution of Yi under P resp. Q as Pi resp. Qi. Then

• Ra(P ||Q) = Ra(P1||Q1) ·Ra(P2||Q2) if Y1 and Y2 are independent for a ∈ [1,∞].
• Ra(P ||Q) ≤ R∞(P1||Q1) ·maxy1∈Supp(P1)Ra(P2|1(·|y1)||Q2|1(·|y1)).

– Probability Preservation: Let E ⊆ Supp(Q) be an arbitrary event. If a ∈ (1,∞), then Q(E) ≥
P (E)

a
a−1

Ra(P ||Q) . Furthermore, we have Q(E) ≥ P (E)
R∞(P ||Q) .

– Weak Triangle Inequality: Let P1, P2 and P3 be three probability distributions such that Supp(P1) ⊆
Supp(P2) ⊆ Supp(P3). Then

Ra(P1||P3) ≤

{
Ra(P1||P2) ·R∞(P2||P3)

R∞(P1||P2)
a
a−1 ·Ra(P2||P3) if a ∈ (1,∞)

Recall that for a lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest real
s > 0 such that ρ 1

s
(Λ∨\{0}) ≤ ε. We will use the following lemmata from [5, 18, 21, 25, 27, 33].

Lemma 4. For any real ε > 0 and n-dimensional lattice Λ ⊆ Rn with a set of basis B, we have

√
ln( 1

ε )

π ·
1

λ1(Λ∨) ≤ ηε(Λ) ≤
√

ln(2n(1+ 1
ε ))

π ·max{||B̃||, λn(Λ), 1
λ∞1 (Λ∨)}.

Lemma 5. For any n-dimensional lattice Λ, σ > 0, c > 0 and t ∈ (0, 1), we have ρσ(Λ\c
√
nBn)

ρσ(Λ) ≤

t−
n
2 · e−π

(1−t)c2n
σ2

5. In particular, we have Prx←↩DΛ,σ [||x|| ≥ σ
√
n] ≤ 2−2n.

5 Here, Bn denotes the unit open ball.
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Lemma 6. For any n-dimensional lattice Λ, ε > 0, s ≥ ηε(Λ) and c ∈ Rn, we have

ρs(Λ+ c) ∈
[

1− ε
1 + ε

, 1

]
· ρs(Λ).

Lemma 7. Let Λ be an n-dimensional lattice, u ∈ Rn, r ∈ (R+)n, σ > 0 and ti =
√
r2
i + σ2 for all

i ∈ [n]. Assume that mini
ri·σ
ti
≥ ηε(Λ) for some ε ∈ (0, 1

2 ). Consider the continuous distribution Y on
Rn obtained by sampling from DΛ+u,r and then adding a vector form Dσ. Then we have ∆(Y,Dt) ≤ 4ε
and R∞(Dt||Y ) ≤ 1+ε

1−ε .

2.4 Ring-LWE and Module-LWE Problems

Let KR := K⊗QR ∼= H, TR∨ = KR/R
∨, Rq = R/(qR) and R∨q = R∨/(qR∨) for some modulus q ∈ Z.

We define the Ring-LWE and Module-LWE distributions as follows.

Definition 2. Let M = Rd and ψ be some distribution over H,

– For s ∈ R∨q , the Ring-LWE distribution Aq,s,ψ over Rq × TR∨ is (a, b) for some a ←↩ U(Rq) and

b = 1
qa · s+ e mod R∨ with e←↩ ψ.

– For s ∈ (R∨q )d, the Module-LWE distribution AMq,s,ψ over Rdq × TR∨ is (a, b) for some a ←↩ U(Rdq)

and b = 1
q

∑d
k=1 ak · sk + e mod R∨ with e←↩ ψ.

Now we can define the Search/Decision Ring-LWE and Module-LWE problems.

Definition 3. Let M = Rd and ψ be some distribution over H,

– The decision ring learning with errors problem D-RLWEq,ψ is to distinguish poly(n) many samples
of U(Rq × TR∨) from Aq,s,ψ, where s←↩ U(R∨q ). The search variant S-RLWEq,ψ is to find the secret
s with poly(n) many samples from Aq,s,ψ for some arbitrary s ∈ R∨q .

– The decision module learning with errors problem D-MLWEMq,ψ is to distinguish poly(n) many samples

of U(Rdq × TR∨) from AMq,s,ψ, where s ←↩ U((R∨q )d). The search variant S-MLWEMq,ψ is to find the

secret s with poly(n) many samples from AMq,s,ψ for some arbitrary s ∈ (R∨q )d.

Usually, the error distribution ψ may be chosen from a family of distributions Ψ over H. Let’s take
the Ring-LWE problem for an example. When the error distribution ψ is sampled from a family of
distributions Ψ over KR, we call an algorithm solve the worst-case search (or decision) problems if it solves
corresponding problems with probability ≈ 1 with the pair (s, ψ) ∈ R∨q ×Ψ arbitrary. Correspondingly, we
call an algorithm solve the average-case problems if it solves corresponding problems with a non-negligible
probability with the pair (s, ψ)←↩ U(R∨q )×D for some distribution D over Ψ6. The detailed definition of
D, which is denoted by Υα, in the worst-case to average-case reductions of corresponding LWE problems
can be found in [21, 23, 30]. We just remark that ψ can be modified to be some spherical Gaussian
distribution over KR [21, 30]. Also, in the followings, we will reduce D-MLWE problems with spherical
error distribution to average-case D-RLWE problems with some other spherical error distribution for
brevity. So, we just use a single error distribution to define corresponding problems.

In the rest of this paper, we will use Dα′≤α to denote the set of elliptical Gaussian distributions Dr
with α′ ≤ ri ≤ α. We write D≤α when α′ = 0. Meanwhile, we assume ψ = Dα without loss of generality,
since we can reduce worst-case lattice problems to corresponding decision variant problems with some
appropriate spherical error distribution [21, 23, 30]. We will also use the SIVP problems over rings and
modules, so we give definition of SIVP prblem briefly.

Definition 4. For an approximation factor γ = γ(n) ≥ 1, the SIVPγ problem is: given a full-rank lattice
Λ of dimension n, output n linearly independent lattice vectors of length at most γ · λn(Λ).

6 We also classify the cases, where the secret s ←↩ U(R∨q ) and the error distribution ψ ∈ Ψ is arbitrary, into
worst-case variants of corresponding problems.
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2.5 Basis for R and R∨ in Cyclotomic Fields

In some of our reductions, we hope that the matrices whose columns are consisted of the basis of R
or R∨ have smaller s1 and larger sn. In cyclotomic fields, there are good bases of R and R∨ with very
nice magnitudes of singular values. So, we introduce the powerful basis and the decoding basis as in [24].
We set τ be the automorphism of K that maps ζl to ζ−1

l = ζl−1
l , under the canonical embedding it

corresponds to complex conjugation σ(τ(a)) = σ(a).

Definition 5. The Powerful basis −→p of K = Q(ζl) and R = Z[ζl] is defined as follows:

– For a prime power l, define −→p to be the power basis (ζjl )(j∈{0,1,··· ,n−1}), treated as a vector over
R ⊆ K.

– For l having prime-power factorization l =
∏
lk =

∏
pαkk , define −→p = ⊗k−→pk, the tensor product of

the power basis −→pk of each Kk = Q(ζlk).

The Decoding basis of R∨ is
−→
d = τ(−→p )∨, the dual of the conjugate of the powerful basis −→p .

Also note that τ(−→p ) is a Z-basis of R. Different bases of R (or R∨) are connected by some unimodular
matrice, hence the spectral norm (i.e. the s1) may have different magnitudes. The following lemma
comes from [24], which shows the estimates of s1(σ(−→p )) and sn(σ(−→p )). Define rad(l) =

∏
p|l p and

l̂ =

{
l, if l is odd,
l
2 , if l is even.

Lemma 8. We have s1(σ(−→p )) =
√
l̂, sn(σ(−→p )) =

√
l

rad(l) , ||σ(−→p )i||∞ = 1 and ||σ(−→p )i|| =
√
n for all

i = 1, · · · , n.

We also need the estimates of s1(σ(
−→
d )) and sn(σ(

−→
d )). Assume that σ(−→p ) = T , Lemma 8 shows that

s1(T ) =
√
l̂ and sn(T ) =

√
l

rad(l) . By the definitions of
−→
d and the dual ideal, an easy computation shows

that σ(
−→
d ) = (T ∗)−1. Hence we have sn(σ(

−→
d )) = 1√

l̂
, s1(σ(

−→
d )) =

√
rad(l)
l . Moreover, one can similarly

deduce that ||σ(
−→
d )i|| ≤

√
rad(l)
l for all i = 1, 2, · · · , n. The following definition is also useful.

Definition 6. Given a basis B of a fractional ideal J , for any x ∈ J with x = x1b1 + · · · + xnbn, the
B-coefficient embedding of x is defined as the vector (x1, · · · , xn) and the B-coefficient embedding norm

of x is defined as ||x||cB = (
∑n
i=1 x

2
i )

1
2 .

If we represent x ∈ R (or R∨) with respect to the powerful basis (or decoding basis), we have√
l

rad(l)
· ||x||cσ(−→p ) ≤ ||σ(x)|| ≤

√
l̂ · ||x||cσ(−→p ), for x ∈ R, (2)

and

1√
l̂
· ||x||c

σ(
−→
d )
≤ ||σ(x)|| ≤

√
rad(l)

l
· ||x||c

σ(
−→
d )
, for x ∈ R∨. (3)

We will omit the subscript σ(
−→
d ) or σ(−→p ) in the following applications.

3 Reductions form D-MLWE to D-RLWE

In this section, we shall reduce D-MLWE problems to average-case D-RLWE problems step by step.
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3.1 Actions of matrices on Rd

In this subsection, we shall introduce some facts of maps induced by matrices in Rd
′×d, which will be

helpful for us to under the transformations in the following reductions.

Assume that matrix G ∈ Rd
′×d : Rd 7→ Rd

′
induces a map, we consider the corresponding map

GH : σ(Rd) 7→ σ(Rd
′
), i.e. for any x = (x1, · · · , xd)T ∈ Rd, we require that σ(y) = GH · σ(x) ∈ Hd′ ,

where y = G · x. If

G =

 g1,1 · · · g1,d

...
...

gd′,1 · · · gd′,d

 ,

we define

GH =



σ1(g1,1) . . . σ1(g1,d)
. . .

. . .

σn(g1,1) . . . σn(g1,d)
...

...
σ1(gd′,1) . . . σ1(gd′,d)

. . .
. . .

σn(gd′,1) . . . σn(gd′,d)


.

Then, it is easy to verify that σ(y) = GH · σ(x). The same calculation shows that the map σH : Rd×d 7→
Cnd×nd given by σH(A) = AH defined as above is a ring homomorphism. In fact, for any A ∈ Rd1×d2 and
B ∈ Rd2×d3 with C = A ·B ∈ Rd1×d3 , we have AH ·BH = CH . Hence, A ∈ Rd×d ⊆ Cd×d is invertible if
and only if AH ∈ Cnd×nd is invertible, since IH = Ind.

Assume further that ϕ : K 7→ Rn is the composite of the canonical embedding σ and the isomorphism
H ∼= Rn, we now decide the corresponding matrix GR of G such that ϕ(y) = GR · ϕ(x). For any element

x ∈ K, we have ϕ(x) = U · σ(x) with U =

(
1√
2
· Ir 1√

2
· Jr

− i√
2
· Jr i√

2
· Ir

)
(note that U−1 = U∗). Hence,

ϕ(y) =

U .. .

U

 · σ(y) =

U .. .

U

 ·GH · σ(x) =

U .. .

U

 ·GH ·
U

−1

. . .

U−1

 · ϕ(x),

which implies that GR =

U .. .

U

·GH ·
U

−1

. . .

U−1

. Moreover, we also have G ∈ Rd×d is invertible

if and only if GH ∈ Cnd×nd is invertible, and if and only if GR ∈ Rnd×nd is invertible.

Addition and multiplication of field elements are carried out component-wise in space H, i.e. σ(x ·y) =
σ(x) · σ(y) for any x, y ∈ K. While multiplication is not component-wise for ϕ in Rn. In fact, we have

ϕ(x · y) = xR · ϕ(y) = yR · ϕ(x), where xR = U · xH · U−1 and xH =

σ1(x)
. . .

σn(x)

. Note that

xR · xTR = xR · x∗R = U · xH · x∗H · U−1 =

|σ1(x)|2
. . .

|σn(x)|2

, the singular values of xR are precisely

given by |σi(x)| for i ∈ [n]. Then, for any s ∈ K, if x ←↩ DB for some nonsingular matrix B with
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Σ = B ·BT , then s ·x←↩ D√Σ′ with Σ′ = sR ·Σ · sTR . In particular, if B =

r1

. . .

rn

 with rk = rn+1−k

for all k ∈ [n2 ], then s · x←↩ DB′ with B′ =

r1 · |σ1(s)|
. . .

rn · |σn(s)|

.

Suppose q is a prime which does not ramify in R (equivalently, q - l in our settings), meanwhile,
qR = q1 · · · qg with g · f = n. We have N(qi) = qf and Rq ∼= R/q1 × · · · × R/qg. The following lemma
is useful for us to get some results about the normal form of module LWE problems where the secret
distribution is a discretized version of the error distribution. Its proof is somewhat fundamental but fussy,
so we put it in Appendix A.

Lemma 9. For any positive integer d and non-ramified prime q with the prime ideal decomposition as
above, we have PrA←↩U(Rd×dq )[A is invertible mod qR] ≥ (1− 1

qf
)g·d ≥ (1− g

qf
)d ≥ (1− n

q )d.

Remark 1. Results in this subsection can be easily modified to general algebraic number fields. The only
difference is that in general fields, the {f, g}’s may not equal to each other. However, similar deduction
implies that we still have the same lower bound (1− n

q )d as in Lemma 9.

3.2 Hardness of Normal Form of Decision MLWE

In this subsection, we shall discuss the hardness of normal form of D-MLWE. However, in order to
make multiplication well-defined in R∨, we need to discretize the errors. The discretized distribution
would also be used in Subsection 3.3.

Given a lattice Λ ⊆ H and a point x ∈ H, we want to discretize x to a point bxeΛ ∈ Λ. To do so,
we can sample a point f ∈ Λ− x and set bxeΛ = f + x. The only requirement is that f can be chosen
efficiently and dependent only on the coset Λ−x. We call such a procedure valid discretization as in [24].
Then, it is easy to check that bz + xeΛ = z + bxeΛ for any valid discretization and z ∈ Λ.

Assume that D-MLWER
d

q,Dα
is hard for some distribution Dα over KR/R

∨, let φ = bDαe 1
qR
∨ for some

valid discretization b·e 1
qR
∨ . We can show that D-MLWER

d

q,φ is also hard by using the same method as in

[24]. We just state the following lemma and its proof is put in Appendix B.

Lemma 10. There is a transformation that given a pair (a′, b′) ∈ Rdq ×KR/R
∨, outputs a pair (a, b) ∈

Rdq × 1
qR
∨/R∨ with the following guarantees: if the input pair is uniformly distributed, then so is the

output pair; and if the input pair is distributed according to the MLWE distribution AR
d

q,s,Dα
, then the

output pair is distributed according to AR
d

q,s,φ.

Next, we show that D-MLWE is also hard when the secret s is distributed as the error e. We denote

this kind of D-MLWE problem by Nor-D-MLWE (whose corresponding distribution is denoted by AR
d∗

q,s,φ),

i.e. a sample of AR
d∗

q,s,φ is of the form (a, b) with a ←↩ U(Rq) and b = aT · s + e mod R∨, where si, e ←↩
φ = bDαe 1

qR
∨ for i ∈ [d].

For A ←↩ U(Rd×dq ), Lemma 9 shows that with probability larger than (1 − 1
qf

)g·d, A is invertible

mod qR. When qf = O(g ·d), this is a non-negligible probability. In fact, for any q ≥ 2n, with polynomial
many samples, we could find an invertible matrix A with probability ≈ 1. Assume we have d samples of
the form (A, b) ∈ Rd×dq ×( 1

qR
∨/R∨)d, where A is invertible and b = A ·s′ +e for some s′, e ∈ ( 1

qR
∨/R∨)d

with s′ = 1
qs. Note that given A is equivalent to given AH , the b-component of MLWE distribution is
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σ(b) = AH · σ(s′) + σ(e), i.e.

σ(b) =



σ1(a1,1) . . . σ1(a1,d)
. . .

. . .

σn(a1,1) . . . σn(a1,d)
...

...
σ1(ad,1) . . . σ1(ad,d)

. . .
. . .

σn(ad,1) . . . σn(ad,d)


·



σ1(s′1)
...

σn(s′1)
...

σ1(s′d)
...

σn(s′d)


+



σ1(e1)
...

σn(e1)
...

σ1(ed)
...

σn(ed)


.

For another new sample (a, b) ←↩ ARdq,s,φ, we set (a′, b′) as (a′)T = −aT · A−1 mod qR and b′ =

b+ (a′)T · b mod R∨. Then, we have

b′ = b+ (a′)T · b

=
1

q
aT · s+ e− aT ·A−1 · (A · s′ + e)

= (a′)T · e+ e,

where the components of e and e obey the same distribution φ. Recall that (AH)−1 = (A−1)H , equiva-
lently, we have

σ(b′) = σ(b) + σ(a′)T · σ(b)

= σ(a)T · σ(s′) + σ(e)− σ(a)T ·A−1
H · (AH · σ(s′) + σ(e))

= σ(a′)T · σ(e) + σ(e).

It is easy to see that if (a, b)←↩ U(Rdq × 1
qR
∨/R∨), so is (a′, b′). Combining all above discussions, we get

the following proposition.

Proposition 1. There is a PPT reduction from D-MLWER
d

q,Dα
to Nor-D-MLWER

d

q,φ for q ≥ 2n.

We mainly consider the following discretization in this paper: we use results showed in [29] to discretize

e to a discrete Gaussian distribution. Note that ϕ(
−→
d ) = U · σ(

−→
d ), so ϕ(

−→
d )T · ϕ(

−→
d ) = ϕ(

−→
d )∗ · ϕ(

−→
d ) =

σ(
−→
d )∗ · σ(

−→
d ), which implies s1(ϕ(

−→
d )) = s1(σ(

−→
d )) =

√
rad(l)
l . Hence, if we set Λ = σ( 1

qR
∨) and use the

basis 1
q

−→
d , for any c ∈ H ∼= Rn and β > ω(

√
log n) · 1

q

√
rad(l)
l , we can use Algorithm 2 of [29] to output

a vector x drawn from a distribution statistically close to DΛ+c,β in probabilistic polynomial time. We
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also have

ηε(
1

q
R∨) ≤ 1

q

√
ln(2n(1 + 1

ε ))

π
· λn(R∨) (By Lemma 4)

=
1

q

√
ln(2n(1 + 1

ε ))

π
· λ1(R∨) (λn = λ1 in cyclotomic fields)

≤ 1

q

√
ln(2n(1 + 1

ε ))

π
·
√
n ·N 1

n (R∨) · |∆K |
1
2n (By Lemma 1)

=
1

q

√
ln(2n(1 + 1

ε ))

π
·
√
n · |∆K |−

1
2n (N(R∨) = |∆k|−1)

=
1

q

√
ln(2n(1 + 1

ε ))

π
·
√
n · (

∏
p|l p

1
p−1

l
)

1
2 (By equation (1))

≤

√
ln(2n(1 + 1

ε ))

π
·
√
n

q
.

Note that the last inequality is rather loose. For any β ≥
√

ln(2n(1+ 1
ε ))

π ·
√
n
q , Theorem 3.1 of [29] shows

that the distribution beeΛ = e + f with e ←↩ Dα and f ←↩ DΛ−e,β is statistically close to D
Λ,
√
α2+β2 .

In the rest of this paper, we will set φ = D 1
qR
∨,
√
α2+β2 with β ≥

√
ln(2n(1+ 1

ε ))

π ·
√

2n
q ≥

√
2 · ηε( 1

qR
∨) 7,

unless we specify it with other values.
Note that by the transference theorem [5] and Lemma 1, we have λn(R∨) ≤ n

λ1(R) ≤
√
n. So, we still

have ηε(
1
qR
∨) ≤

√
ln(2n(1+ 1

ε ))

π ·
√
n
q for general number fields. We can save a factor ≈

√
n in the above

long inequalities for some special cyclotomic fields (e.g. K = Q(ζl) with l a large prime power).
Results in this Subsection can also be extended to general number fields as long as we can find a good

enough basis of R∨, since we use 1
q

−→
d to sample a lattice Gaussian distribution. However, this constrain

depends on the discretization we used and can be avoided by using other discretizations. For example, one
can use the “coordinate-wise randomized rounding” or the simplest rounding [24] to obtain a Gaussian-
like distribution. The adverse impact is that the error analysis in Subsection 3.4 would become much
more complicated.

3.3 Reduction from Nor-D-MLWE to Nor-S-MLWE

We give a reduction from Nor-D-MLWER
d

q,φ to Nor-S-MLWER
d

q,φ in this subsection. Recall that, for
cyclotomic field K = Q(ζl), if we represent x ∈ R∨ with respect to the decoding basis, we have

1√
l̂
· ||x||c

σ(
−→
d )
≤ ||σ(x)|| ≤

√
rad(l)

l
· ||x||c

σ(
−→
d )
, for x ∈ R∨. (4)

Note that, by Lemma 5, φ is (
√
α2 + β2 ·

√
n, 2−2n) bound, i.e. Prx←↩φ[||x|| ≥

√
α2 + β2 ·

√
n] ≤ 2−2n.

We also represent m Nor-D-MLWE samples as the form (A, b), where A = (a1, · · · ,am)T ∈ Rm×dq and

b ∈ ( 1
qR
∨/R∨)m.

Now assume we have an oracle O for solving Nor-S-MLWE problem with advantage ε when given m
samples. When we get m samples (A, b) ∈ Rm×dq × ( 1

qR
∨/R∨)m, we give it to the Nor-S-MLWE oracle O

7 The factor
√

2 is used in Subsection 3.4 for convenience.
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and get some s ∈ ( 1
qR
∨/R∨)d with probability ε. Then we compute e = b−A ·s mod R∨ and N = ||e||∞,

where ||e||∞ = maxi∈[m] ||ei||. We output 1 if and only if N < B :=
√
α2 + β2 ·

√
n.

If (A, b) ←↩ ARd∗q,s,φ, then the probability we output 1 is large than ε − Pre←↩φm(||e||∞ ≥ B). If (A, b)
is uniformly distributed, the probability we output 1 is less than

Prb←↩U(( 1
qR
∨/R∨)m)[∃s ∈ (

1

q
R∨/R∨)d : ||b−A · s||∞ < B]. (5)

Hence, the distinguishing advantage we have is larger than ε−Pre←↩φm(||e||∞ ≥ B)−Prb←↩U(( 1
qR
∨/R∨)m)[∃s ∈

( 1
qR
∨/R∨)d : ||b−A · s||∞ < B].

Since φ is a (B, δ) bound distribution with δ = 2−2n, we have Pre←↩φm(||e||∞ ≥ B) ≤ m · δ. Also,

note that ||x||c∞ ≤ ||x||c ≤
√
l̂ · ||x|| for any x ∈ 1

qR
∨/R∨, we have

Prb←↩U(( 1
qR
∨/R∨)m)[∃s ∈ (

1

q
R∨/R∨)d : ||b−A · s||∞ < B] ≤ qnd · (2

√
l̂ ·B)mn

qnm
.

Note that qnd· (2
√
l̂·B)mn

qnm = (2
√
l̂·B·q dm−1)mn. We now decide the conditions to bound (2

√
l̂·B·q dm−1)mn ≤

δ < 2−2n. For q > 2
√
l̂B, this is equivalent to (2

√
l̂B · q dm−1)m < 2−2. So, m > d log q+2

log q−log(2
√
l̂B)

and we

get that the distinguishing advantage we have in the above reduction is larger than ε − (m + 1) · 2−2n.
Hence, we have the following proposition.

Proposition 2. Assume that q > 2
√
l̂ · B with B =

√
α2 + β2 ·

√
n, there is a reduction from Nor-D-

MLWER
d

q,φ to Nor-S-MLWER
d

q,φ problems when given m > d log q+2

log q−log(2
√
l̂B)

samples.

Remark 2. Note that in this section, we use (4) (a good basis of R∨ more precisely) to bound the
probability (5).

3.4 Reduction from Nor-S-MLWE to S-RLWE

In this subsection, we use methods showed in [1] to reduce Nor-S-MLWE problems to the worst-case
S-RLWE problems. We shall use the following lemma from [35] to bound some useful magnitude about
the secret s.

Lemma 11. For any full rank lattice Λ ⊆ H, c ∈ H, ε ∈ (0, 1), t ≥
√

2π, unit vector u ∈ H and
σ ≥ t√

2π
· ηε(Λ), we have

Prx←↩DΛ,σ,c [| < x− c,u > | ≤
σ

t
] ≤ 1 + ε

1− ε
·
√

2πe

t
.

Similarly, if σ ≥ ηε(Λ), we have

Prx←↩DΛ,σ,c [| < x− c,u > | ≥ t · σ] ≤ 1 + ε

1− ε
· t ·
√

2πe · e−πt
2

. 8

We can deduce the following useful estimate, which will be used to bound the increase of errors, of
|σk(x)| for some x←↩ φ and any k ∈ [n].

8 Here, DΛ,σ,c = DΛ−c,σ corresponds to the distribution e
−π ||x−c||

2

σ2∑
y∈Λ e

−π ||y−c||
2

σ2

.
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Lemma 12. Let ε ∈ (0, 1), t ≥
√

2π, φ = D 1
qR
∨,
√
α2+β2 with

√
α2 + β2 ≥ t√

2π
· ηε( 1

qR
∨), we have

Prx←↩φ[ max
1≤i≤n

1

|σi(x)|
≥

√
2 · t√

α2 + β2
] ≤ 1 + ε

1− ε
· n ·
√

2πe

2t

and

Prx←↩φ[ max
1≤i≤n

|σi(x)| ≥ t ·
√
α2 + β2] ≤ n · 1 + ε

1− ε
· t ·
√

2πe · e−πt
2

.

Proof. For any x←↩ φ, by using Lemma 11 with c = 0 and u = ( 1√
2
, 0, · · · , 0, 1√

2
) or u = ( i√

2
, 0, · · · , 0,− i√

2
),

we have

Pr[|
√

2 · Re(σ1(x))| ≤
√
α2 + β2

t
] ≤ 1 + ε

1− ε
·
√

2πe

t
,

or

Pr[|
√

2 · Im(σ1(x))| ≤
√
α2 + β2

t
] ≤ 1 + ε

1− ε
·
√

2πe

t
.

Since |σ1(x)| ≥ max{|Re(σ1(x))|, |Im(σ1(x))|}, we get

Pr[
√

2 · |σ1(x)| ≤
√
α2 + β2

t
] ≤ 1 + ε

1− ε
·
√

2πe

t
,

which implies that

Pr[
1

|σ1(x)|
≥

√
2 · t√

α2 + β2
] ≤ 1 + ε

1− ε
·
√

2πe

t
.

For other k ∈ [r], we can get the same result by using similar method. Then, by taking a union bound
and noticing that σk(x) = σn+1−k(x), we conclude the first desired result. The second assertion can be
obtained similarly.

Set Λ = 1
qd−1 · g ·R+ qRd with g = (1, q, q2, · · · , qd−1)T ∈ Rd and denote BΛ the basis of Λ, BsiR the

basis of siR for some si ∈ K. For any basis BR of R, it is easy to verify that

BΛ =


1 1
q · · ·

1
qd−1

1 · · · 1
qd−2

. . .
...
1

⊗BR =


BR

1
qBR · · ·

1
qd−1BR

BR · · · 1
qd−2BR

. . .
...
BR


is a basis of Λ. Moreover, ||B̃Λ|| = ||B̃R||. We then take BR to be the powerful basis of R, hence,
||B̃Λ|| = ||B̃R|| ≤ ||BR|| =

√
n. Observe that for any x ∈ 1

qR
∨, x ·R ⊆ 1

qR
∨ is a fractional ideal of K with

a set of basis x ·BR, here BR denotes the powerful basis of R. Moreover, we have ||x̃ ·BR|| ≤ ||x ·BR|| ≤
||x||∞ · ||BR|| ≤

√
n · ||x||. Now we can present the following lemma.9

Lemma 13. Assume s = (s1, · · · , sd)T ∈ ( 1
qR
∨/R∨)d which satisfies max1≤k≤n

1
|σk(si)| < B2 and

max1≤k≤n |σk(si)| ≤ ||si|| < B1 for all i ∈ [d]. Let r ≥ max{
√
n,
√
n · B1 · B2} ·

√
2 ln(2nd(1+ 1

ε ))

π .

There is a PPT transformation F : Rdq × 1
qR
∨/R∨ 7→ Rqd × TR∨ such that

R∞(Aqd,s′,Dα ||F(AR
d∗

q,s,φ)) ≤ (
1 + ε

1− ε
)d+4,

where s′ ←↩ U(R∨qd) and αj =
√

2(α2 + β2) + r2 · d ·B2
1 + r2 ·

∑d
k=1 |σj(sk)|2 for j ∈ [n].

9 In the following, we use powerful basis of R to implement Lemma 2. For general number field, we also need a
good basis of R (or equivalently, a good basis of R∨) to efficient output discrete Gaussian samples.
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Proof. Suppose that we are given (a, b) ←↩ ARd∗q,s,φ. Consider the following map F : Rdq × 1
qR
∨/R∨ 7→

Rqd × TR∨ :

1. Sample f ←↩ DΛ−a,r.
2. Let v = a + f mod qRd and set ã = x ∈ Rqd , where x ∈ Rqd be a random solution of 1

qd−1 g · x =

v mod qRd.
3. Sample ẽ←↩ Dr·γ with γ =

√
d·B1, e′ ←↩ D√

α2+β2 and y ←↩ U(R∨qd), set b̃ = b+ẽ+e′+ 1
qd
ã·y mod R∨.

4. Output (ã, b̃).

Note that a ∈ Rdq , so the coset Λ − a is well defined. Meanwhile, r ≥ ||B̃Λ|| ·
√

ln(2nd+4)
π , we can

efficiently sample f by Lemma 2. Assume a = (a1, · · · , ad)T , s = (s1, · · · , sd)T , f = (f1, · · · , fd)T and
s̃ = gT · s+ 1

q y, we have

b̃− 1

qd−1
ã · s̃ mod R∨ = aT · s+ e+ e′ + ẽ− 1

qd−1
ã · gT · s mod R∨

= e+ e′ + ẽ− fT · s mod R∨. (6)

Since we choose β ≥
√

ln(2n(1+ 1
ε ))

π ·
√

2n
q in Subsection 3.2, by Lemma 7, we have R∞(D√

2(α2+β2)
||e+e′) ≤

1+ε
1−ε .

In the following, we denote D the distribution of the outputs of F and try to bound R∞(Aqd,s′,Dα′ ||D).

Observe that Λ ∼= 1
qd−1 g ·Rqd mod qRd, every x ∈ Rqd is a solution to the equation 1

qd−1 g ·x = v mod qRd

for some v and the number of solutions to this equation in Rqd for different v is the same. For any ā ∈ Rdq
and f̄ ∈ Λ− ā, we have

Pr[a = ā ∧ f = f̄ ] =
1

qnd
· ρr(f̄)

ρr(Λ− ā)

= C · ρr(Λ)

ρr(Λ− ā)
· ρr(f̄)

∈ C ·
[
1,

1 + ε

1− ε

]
· ρr(f̄), (7)

where C = q−nd

ρr(Λ) and we have used Lemma 6 with r ≥ ηε(Λ). Then, for any v̄ ∈ Λ mod qRd, by using

Lemma 6 again, we get

Pr[v = v̄] =
∑
a∈Rdq

Pr[a] · Pr[f = v̄ − a|a]

∈ C ·
[
1,

1 + ε

1− ε

] ∑
a∈Rdq

ρr(v̄ − a)

∈ C ·
[
1,

1 + ε

1− ε

]
· ρr(v̄ −Rd)

∈ C ′ ·
[

1− ε
1 + ε

,
1 + ε

1− ε

]
,

where C ′ = C · ρr(Rd), also we have used that r ≥ ηε(R
d) and ρr(−Rd) = ρr(R

d). Now, let Kv denote
the number of v that has solutions in the equation 1

qd−1 g · x = v mod qRd, we have

C ′ · 1− ε
1 + ε

·Kv ≤
∑
v̄

Pr[v = v̄] = 1 ≤ C ′ · 1 + ε

1− ε
·Kv.
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So, for any ā ∈ Rqd ,

Pr[ã = ā] =
∑
v̄

Pr[ã = ā|v = v̄] · Pr[v = v̄]

∈ 1

qnd
·
[
(
1− ε
1 + ε

)2, (
1 + ε

1− ε
)2

]
.

Therefore, we have R∞(U(Rqd)||ã) ≤ ( 1+ε
1−ε )2.

We now analyze the distribution of −f appeared in (6) condition on some fixed ā (equivalently,
condition on some fixed v̄). In this situation, −f ∈ Rd− v̄ and fixing a value f̄ fixes a = v̄− f̄ mod qRd.
So, by (7), we have

1− ε
1 + ε

· ρr(−f̄)

ρr(Rd − v̄)
≤ Pr[−f = −f̄ |ã = ā] ≤ 1 + ε

1− ε
· ρr(−f̄)

ρr(Rd − v̄)
.

Hence, R∞(DRd−v̄,r|| − f) ≤ 1+ε
1−ε . This also implies that condition on some fixed v̄ = (v1, · · · , vd)T ,

∆(DRd−v̄,r,−f) ≤ 2ε, i.e. −fi is almost distributed as DR−vi,r for i ∈ [d]. It then follows that −si · fi is
almost distributed as DsiR−si·vi,ri with ri = (r ·|σ1(si)| · · · , r ·|σn(si)|)T for i ∈ [d]. Note that ẽ←↩ Dr·γ is

equivalent to ẽ =
∑d
i=1 ẽi with ẽi ←↩ Dr·B1

. For i ∈ [d], let D(i) denotes the distribution of ϕ(−si ·fi)+ ẽi,
Y (i) denotes the distribution obtained by sampling from DsiR−si·vi,ri and then adding a vector sampled

from Dr·B1
, D̃ denotes the distribution of −

∑d
i=1 si ·fi+ ẽ in (6). By using the data-processing inequality

of Rényi Divergence with the function (−f , ẽ1, · · · , ẽd) 7→ (ϕ(−s1 · f1) + ẽ1, · · · , ϕ(−sd · fd) + ẽd), we
obtain

R∞(Y (1) × · · · × Y (d)||D(1) × · · · ×D(d)) ≤ R∞(DRd−v̄,r ×Dd
r·B1
|| − f ×Dd

r·B1
)

≤ 1 + ε

1− ε
.

Then, noticing that by our choice of r, we can use Lemma 7 and conclude that

R∞(Dti ||Y (i)) ≤ 1 + ε

1− ε

for any i ∈ [d], where ti = (
√
r2 ·B2

1 + r2 · |σ1(si)|2, · · · ,
√
r2 ·B2

1 + r2 · |σn(si)|2)T . By first applying the
data-processing inequality to the function that sums the samples and then considering the weak triangle
inequality and independence, we have

R∞(Dt||D̃) ≤ R∞(Dt1 × · · · ×Dtd ||Y (1) × · · · × Y (d)) ·R∞(Y (1) × · · · × Y (d)||D(1) × · · · ×D(d))

≤ 1 + ε

1− ε
·
d∏
i=1

R∞(Dti ||Y (i)) ≤ (
1 + ε

1− ε
)d+1,

where t = (
√
r2 · γ2 + r2 ·

∑d
k=1 |σ1(sk)|2, · · · ,

√
r2 · γ2 + r2 ·

∑d
k=1 |σn(sk)|2)T .

Finally, note that 1
qd−1 ã · s̃ for some s̃ ∈ 1

qR
∨/R∨ is equivalent to 1

qd
ã · s̃′ for s̃′ = q · s̃ ∈ R∨q . We

obtain, by using data processing inequality and the multiplicativity of Rényi divergence,

R∞(Aqd,s̃′,Dα ||D) ≤ (
1 + ε

1− ε
)d+4,

whereα = (
√

2(α2 + β2) + r2 · γ2 + r2 ·
∑d
k=1 |σ1(sk)|2, · · · ,

√
2(α2 + β2) + r2 · γ2 + r2 ·

∑d
k=1 |σn(sk)|2)T .

Combining Lemmata 12 and 13, we get the following proposition.
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Proposition 3. There is a reduction from Nor-S-MLWER
d

q,φ to the worst-case S-RLWEqd,D≤α′ with m

samples, where α′ =
√

2(α2 + β2)(1 + r2 · d · n) with r ≥ 4
√

2e · n2 · d ·
√

ln(2nd(1 + (d+ 4)m)) and√
α2 + β2 ≥ 2

√
e · n · d · ηε( 1

qR
∨).

Proof. Recall that for Nor-S-MLWER
d

q,φ problem, the secret s←↩ φd. By using Lemma 5 and 12 with ε =
1

m(d+4) and t = 2n ·d ·
√

2πe, we have that with probability greater than (1− m(d+4)+1
m(d+4)−1 ·

1
4d−2−2n)d > (1−

1
2d − 2−2n)d, max1≤k≤n

1
|σk(si)| < B2 := 4n·d·

√
πe√

α2+β2
and max1≤k≤n |σk(si)| ≤ ||si|| < B1 :=

√
n ·
√
α2 + β2

for all i ∈ [d]. So, r ≥ 4
√

2e · n2 · d ·
√

ln(2nd(1 + (d+ 4)m)) is sufficient to use Lemma 13. At the same
time, the error distribution Dα satisfies αi ≤ α′.

Therefore, when given m samples, we can use the above settings and Lemma 13 to solve Nor-S-

MLWER
d

q,φ problem with advantage greater than (1− 2−2n − 1+ε
1−ε · n ·

√
2πe
t )d( 1+ε

1−ε )−(d+4)m ≥ 1
8 (1− 1

2d −
2−2n)d > 1

16 −
d

22n+3 , as desired.

Remark 3. The requirements of Proposition 3 can be released. One can see that we only need to assume
that we can solve S-RLWE problem with s′ ←↩ U(R∨qd) and non-negligible advantage δ. Then, we can

solve the Nor-S-MLWE problem with non-negligible advantage δ′ = δ · ( 1
16 −

d
22n+3 ).

Now, we can collect the results of Propositions 1, 2 and 3 to conclude the following theorem.

Theorem 1. Assume ε ∈ (0, 1
2 ), α = α(n) ∈ (0, 1) and β ≥

√
2n
q ·

√
ln(2n(1+ 1

ε ))

π such that
√
α2 + β2 ≥

2
√
e · n · d · ηε( 1

qR
∨). Let q > max{2n, 2

√
l̂ ·
√
n ·
√
α2 + β2} be a prime that does not ramify in R.

When given m > d·log q+2

log q−log(2
√
l̂·
√
n·
√
α2+β2)

samples, there is a probabilistic polynomial-time reduction

from D-MLWER
d

q,Dα
in worst/average-case to S-RLWEqd,D≤α′ in worst-case for arbitrary d = poly(n),

where α′ =
√

2(α2 + β2)(1 + d · n · r2) and r ≥ 4
√

2e · n2 · d ·
√

ln(2nd(1 + (d+ 4))m).

Remark 4. In many applications, for example, the NIST submissions KCL, CRYSTALS-KYBER and
CRYSTALS-DILITHIUM, we usually set d = O(1) and q = 1 mod l, then we can direct reduce cor-
responding S-RLWE to average-case D-RLWE by using the reductions showed in [23], hence reduce
D-MLWE to average-case D-RLWE efficiently.

The term 2n in the inequality of q can be replaced by some Ω(n). As we will see later, we have to set
q large than Õ(n) usually. Till now, we obtain a reduction from D-MLWE to S-RLWE with polynomially
bounded q and error parameters. For example, in order to obtain a meaningful reduction, we need to
avoid the case α′ ≥ ηε(R∨). Recall that, by Lemmata 1 and 4, for cyclotomic fields, we have√

ln( 1
ε )

π
· n− 1

2 · (
∏
p|l p

1
p−1

l
)−

1
2 ≤ ηε(R∨) ≤

√
ln(2n(1 + 1

ε ))

π
·
√
n · (

∏
p|l p

1
p−1

l
)

1
2 .

The upper bound of ηε(R
∨) can be as small as Õ(1). Assume d = Õ(nc1) and α = Õ(n−c2), we then

can set β ≈ α, q = Õ(n
3
2 +c1+c2) and r = Õ(n2+c1), which gives α′ = Õ(n

5+3c1
2 −c2). So, c2 >

5+3c1
2 is

sufficient. In applications, we usually use very small d = O(1), then we can set α ≈ β = Õ(n−
5
2 ) and

q = Õ(n4) to obtain a very satisfactory result.

3.5 Reduction From S-RLWE to D-RLWE

We now need to reduce the worst-case S-RLWE problems to average-case D-RLWE problmes to finish
our reduction. Note that the modulus in the S-RLWE problems we investigate is qd, so we can’t directly
use the reduction showed in [23] even in the cyclotomic fields, unless we add more restricts on q and d,
for example d = 2, 3 and q = 1 mod l. There are some results showed in [34], which state a reduction
from S-RLWE problem to worst-case D-RLWE problem for arbitrary modulus q.
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Theorem 2. Let r ∈ (R+)n be such that ri = rn+1−i for all i ∈ [n2 ] and ri ≤ r for some r. Let

d′ = n · q 1
m+ 1

n , and consider Σ = {r′ : r′i ≤
√
d′2 · r2 ·m+ d′2}. Then, there exists a probabilistic

polynomial-time reduction from S-RLWEq,Dr with m ≤ q
2n input samples to worst-case D-RLWEq,Σ.

Collecting Theorem 1 and Theorem 2, we get the following theorem.

Theorem 3. Assume ε ∈ (0, 1
2 ), α = α(n) ∈ (0, 1) and β ≥

√
2n
q ·

√
ln(2n(1+ 1

ε ))

π such that
√
α2 + β2 ≥

2
√
e·n·d·ηε( 1

qR
∨). Let q > max{2n, 2

√
l̂·
√
n·
√
α2 + β2} be a prime that does not ramify in R. When given

d·log q+2

log q−log(2
√
l̂·
√
n·
√
α2+β2)

< m ≤ q
2n samples, there is a probabilistic polynomial-time reduction from D-

MLWER
d

q,Dα
in worst/average-case to D-RLWEqd,D≤β′ in worst-case, where β′ =

√
(n · q dm+ d

n )2 · (1 +m · α′2),

α′ =
√

2(α2 + β2)(1 + d · n · r2) and r ≥ 4
√

2e · n2 · d ·
√

ln(2nd(1 + (d+ 4))m).

Note that, the error parameter β′ contains a term q
d
m+ d

n . Assume d = O(1) and α = Õ(n−c), we

set β ≈ α = Õ(n−c), q = Õ(nc+
3
2 ) and r = Õ(n2). Under this condition, we have α′ = Õ(n

5
2−c), since

m ≥ Õ(1) implies q
d
m+ d

n = O(1). So, β′ = Õ(n
7
2−c ·m 1

2 ). Meanwhile, d·log q+2

log q−log(2
√
l̂·
√
n·
√
α2+β2)

< m ≤
q

2n = Õ(nc+
1
2 ). We conclude that c > 7

2 for m = Õ(1) or c > 15
2 for m = q

2n is sufficient for us to obtain
a meaningful reduction.

Next, we consider to reduce the worst-case D-RLWE to average-case D-RLWE. Variant solutions can
be found in previous works. For example, one can use Lemma 2.14 of [34] to discuss the distribution D
over the set of error distributions D≤β′ . In this paper, we use the following lemma, which comes from
[30], to reduce worst-case D-RLWE to average-case D-RLWE with a spherical error.

Lemma 14. There is a randomized polynomial-time algorithm that given any β′ > 0 and m ≥ 1, as well
as an oracle that solves D-RLWEq,Dξ given only m samples for any modulus q, where ξ = β′ · ( nm

log(nm) )
1
4 ,

solves D-RLWEq,D≤β′ .

Overall, we conclude the following theorem.

Theorem 4. Assume ε ∈ (0, 1
2 ), α = α(n) ∈ (0, 1) and β ≥

√
2n
q ·

√
ln(2n(1+ 1

ε ))

π such that
√
α2 + β2 ≥

2
√
e·n·d·ηε( 1

qR
∨). Let q > max{2n, 2

√
l̂·
√
n·
√
α2 + β2} be a prime that does not ramify in R. When given

d·log q+2

log q−log(2
√
l̂·
√
n·
√
α2+β2)

< m ≤ q
2n samples, there is a probabilistic polynomial-time reduction from D-

MLWER
d

q,Dα
to D-RLWEqd,DΓ in average-case, where Γ = β′·( nm

log(nm) )
1
4 , β′ =

√
(n · q dm+ d

n )2 · (1 +m · α′2),

α′ =
√

2(α2 + β2)(1 + d · n · r2) and r ≥ 4
√

2e · n2 · d ·
√

ln(2nd(1 + (d+ 4))m).

Usually, there are reductions from worst-case SIVPγ with γ = Õ(n
3
4

α ) over rings or modules to

corresponding average-case D-LWE problem with error distribution Dα and α ≤ Õ(n−
1
4 ) [21, 30]. Hence,

when m = Õ(1) and d = O(1), we obtain a reduction from worst-case SIVPγ (over module lattices) to

average-case D-RLWEqd,DΓ with q ≤ Õ(n5.75), γ ≤ Õ(n5) and Γ ≈ Õ(n−
1
2 ).

4 Self-reductions of Ring-LWE Problems

Reductions from S-RLWE to D-RLWE in [34] restricts the number of samples. This increases require-
ments of capacities of the adversary. Meanwhile, the error rate is also related heavily to the number of
samples. However, in applications, we may usually hope that the number of samples m should be inde-
pendent of the modulus q and need only to be bounded by poly(n). So is the error rate. In this section, we
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shall use similar method as in Section 3 to give a self-reduction of RLWE problems to offer an alternative
solution to this problem.

We reset the values of α and β, and give a self-reduction of S-RLWE first. We begin with the problem
S-RLWEq,Dα . It is easy to deduce that Nor-S-RLWEq,φ (denote corresponding distribution A∗q,s,φ) is also

hard for φ = D 1
qR
∨,
√
α2+β2 with β ≥

√
2n
q ·

√
ln(2n(1+ 1

ε ))

π . The proof of the following lemma is similar to

that of Lemma 13.

Lemma 15. Assume s ∈ 1
qR
∨/R∨ such that 1

|σk(s)| ≤ B2 and |σk(s)| ≤ ||s|| ≤ B1 for all k ∈ [n], let

r ≥ max{
√
n, pq ·

√
n,
√
n ·B1 ·B2 ·

√
1 + p2

q2 }·
√

ln(2n(1+ 1
ε ))

π , there is a transformation F : Rq× 1
qR
∨/R∨ 7→

Rp × TR∨ such that

R∞(Ap,s̃,Dt ||F(Aq,s,φ)) ≤ (
1 + ε

1− ε
)5,

where s̃←↩ U(Rp) and ti =
√

2(α2 + β2) + r2 ·B2
1 + q2

p2 · r2 · |σi(s)|2 for i ∈ [n].

Proof. We consider the following transformation with a given sample (a, b) ∈ Rq × 1
qR
∨/R∨:

1. Sample f ←↩ DR− pq ·a,r and s1 ←↩ U(R∨p ).

2. Set ã = f + p
q · a mod pR.

3. Set b̃ = b+ 1
p ã · s1 + ẽ+ e′ mod R∨ with ẽ←↩ Dr·B1

and e′ ←↩ D√
α2+β2 .

4. Output (ã, b̃).

Since a ∈ Rq and r ≥ ||B̃R|| ·
√

ln(2n+4)
π , the coset R− p

q ·a is well defined and f can be sampled efficiently.

For any ā ∈ Rq and f̄ ∈ R− p
q · ā, we have

Pr[a = ā ∧ f = f̄ ] = q−n · ρr(f̄)

ρr(R− p
q · ā)

∈ C · [1, 1 + ε

1− ε
] · ρr(f̄),

where C = q−n

ρr(R) . Hence, for any a′ ∈ Rp,

Pr[ã = a′] =
∑
ā∈Rq

Pr[ā] · Pr[f = a′ − p

q
· ā|a = ā] ∈ C ′ · [ 1− ε

1 + ε
,

1 + ε

1− ε
],

where C ′ = C · ρr(pq · R) and we have used r ≥ ηε(
p
q · R). We conclude that C ′ ∈ 1

pn · [
1−ε
1+ε ,

1+ε
1−ε ] and

R∞(U(Rp)||ã) ≤ ( 1+ε
1−ε )2.

If we set s̃ = q · s + s1 mod pR∨, we have s̃ ←↩ U(R∨p ) and b̃ − 1
p ã · s̃ = e + e′ + ẽ − q

pf · s mod R∨.

Then, R∞(D√
2(α2+β2)

||e + e′) ≤ 1+ε
1−ε . We now estimate the distribution of −f condition on some fixed

ā ∈ Rp. Similarly, in this situation, −f ∈ p
qR− ā and we have

1− ε
1 + ε

· ρr(−f̄)

ρr(
p
qR− ā)

≤ Pr[−f = −f̄ |ã = ā] ≤ 1 + ε

1− ε
· ρr(−f̄)

ρr(
p
qR− ā)

.

Then, R∞(D p
qR−ā,r|| − f) ≤ 1+ε

1−ε and ∆(D p
qR−ā,r,−f) ≤ 2ε. Meanwhile, by our choice of r and Lemma

7, we have R∞(Dt′ ||ẽ − q
pf · s) ≤

1+ε
1−ε , where t′i =

√
r2 ·B2

1 + q2

p2 · r2 · |σi(s)|2 for i ∈ [n]. Therefore, we

obtain

R∞(Ap,s̃,Dt ||F(Aq,s,φ)) ≤ (
1 + ε

1− ε
)5,

with ti =
√

2(α2 + β2) + r2 ·B2
1 + q2

p2 · r2 · |σi(s)|2, as desired.
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Now, we can obtain the following proposition by combining Lemma 12 and 15.

Proposition 4. There is a reduction from Nor-S-RLWEq,φ to the worst-case S-RLWEp,D≤α′ with m

samples, where α′ =
√

(α2 + β2)(2 + r2 · n+ r2 · n · q2p2 ) with r ≥ 4
√
e · n2 ·

√
1 + p2

q2 ·
√

ln(2n(1 + 5m))

and
√
α2 + β2 ≥ 2

√
e · n · ηε( 1

qR
∨).

Proof. We set ε = 1
5m and t = 2n ·

√
2πe. Then, with probability ≥ 1 − 1+ε

1−ε ·
1
4 − 2−2n > 1

2 − 2−2n,

max1≤k≤n
1

|σk(s)| < B2 := 4n
√
πe√

α2+β2
and max1≤k≤n ||σk(s)|| ≤ ||s|| <

√
n ·
√
α2 + β2. So, r ≥ 4

√
e · n2 ·√

1 + p2

q2 ·
√

ln(2n(1 + 5m)) is sufficient to use Lemma 15. At the same time, the error distribution Dt

satisfies ti ≤ α′.
Therefore, when given m samples, we can use the above settings and Lemma 15 to solve Nor-S-

RLWEq,φ problem with advantage greater than ( 1
2 − 2−2n) · ( 5m+1

5m−1 )−5m ≥ 1
16 − 2−2n+3, as desired.

Remark 5. A similar self-reduction (modulus switch) of D-MLWE was given in [21]. When applied to
RLWE, it also gave a modulus-switch reduction of D-RLWE. But, we should note that in the case of
decision variants, in order to remain a non-negligible advantage, the reduction will suffer the same problem
as in [1] and make q to be at least super-polynomial. Since we usually set the error rate of D-MLWE to
be constant or polynomial, the error rate of corresponding D-RLWE will deteriorate to be negligible. So,
strictly speaking, we can’t directly use their reductions.

Now, we can combine Theorem 1 and Proposition 4 to reduce D-MLWER
d

q,Dα
in worst/average-case to

S-RLWEp,Ψ in worst-case, where Ψ is some set of elliptical Gaussians. Recall that the search to decision
reduction in [23] requires the modulus q to split ‘well’, so they assume q = 1 mod l. In fact, assume
R/qR ∼= R/q1 × · · · × R/qg with g · f = n, if |R/qk| = qf = poly(n) for k ∈ [g], the reduction in [23] also
works. This inspires us that if we can find a prime p that splits ‘well’, then for any q satisfies q

p ≤ poly(n),

we can obtain a reduction from D-RLWEq,Dα to D-RLWEp,Dβ′ for some β′ = poly(n)−1 by combining
Proposition 4 and the search to decision reductions showed in [23] for arbitrary m = poly(n) samples.
However, this process is of course somewhat heuristic. On the one hand, the Dirichlet’s theorem on primes
in arithmetic progressions tells us that there are infinite many primes in the arithmetic progression h+k ·l
for k ∈ N and (h, l) = 1. So, we may have confidence that we could find a split ‘well’ prime in the poly(n)
interval in the asymptotic sense. On the other hand, the primes are very sparse, whether there are such
primes in every desired interval and how to efficiently find such primes need to be considered carefully.

5 Reductions from D-MLWE to Module-SIVP

In this section, we give converse reductions from decision module LWE problems to module SIVP
problems over cyclotomic fields. We will first reduce module LWE problems to module SIS problems, then
reduce module SIS problems to corresponding module SIVP problems as in [21]. Combining techniques
used in [38], we can conclude the above reductions in any cyclotomic field under canonical embedding.

Recall that the definition of module SIS problems (denoted by M-SISR
d

q,β) is as follows: Given A ←↩
U(Rd×mq ), find z ∈ Rm\{0} such that A · z = 0 mod qRd and ||z|| ≤ β.

It’s well known that one of the classical ways to solve LWE consists in solving an associated SIS
instance [21, 26].

Lemma 16. There is a PPT reduction from D-MLWER
d

q,Dα
to M-SISR

d

q,β with α < 1
β·ω(n lnn

√
log logn)

.

Proof. Given m samples (A, b) ∈ Rm×dq × TmR∨ , we use the M-SIS oracle to obtain some z such that

AT ·z = 0 mod qRd and ||z|| ≤ β. Then we compute zT ·b mod R∨ =
∑n
k=1 xk ·ϕ(

−→
d k) (TR∨ ∼= Rn/ϕ(R∨))

with xk ∈ [− 1
2 ,

1
2 ). Note that, if b ←↩ U(TmR∨), we have zT · b ←↩ U(TR∨), so the coefficients {xk}’s
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of zT · b will be distributed uniformly in [− 1
2 ,

1
2 ). If b = A · s + e mod R∨ for some e ←↩ Dα, then

zT · b = zT · e =
∑m
j=1 zj · ej ←↩ Dr with rk =

√
α2 ·

∑
1≤j≤m |σk(zj)|2 for k ∈ [n]. By definition, in

this situation, we have zT · e =
∑n
k=1 x

′
k · hk with x′k ←↩ Drk for any k ∈ [n], so E[e

π

2r2
k

·(x′k)2

] =
√

2. By
Markov’s inequality, we have

Pr[(x′k)2 ≥ 2r2
k

π
· t2] ≤

√
2 · e−t

2

.

Setting t = ω(lnn), we get Pr[|x′k| <
√

2
π ·rk ·ω(lnn)] > 1−n−ω(lnn). Hence, by taking a union bound, we

have Pr[||zT ·e|| <
√
n ·α · ||z|| ·ω(lnn)] > 1−n1−ω(lnn). Therefore, Pr[maxk |xk| <

√
l̂ · n ·α ·β ·ω(lnn)] >

1 − n1−ω(lnn). Since
√
l̂ = O(

√
n · log log n), for α < 1

β·ω′(n lnn
√

log logn)
, we have xk <

1
4 for all k ∈ [n]

with probability at least 1−n−ω′′(lnn) for some other functions ω′(·) and ω′′(·). Thus, we can distinguish

AR
d

q,s,Dα
and U(TR∨) efficiently by checking if xk <

1
4 for all k ∈ [n].

The module SIS problems correspond to finding a short vector in the lattice

A⊥ = {z ∈ Rm : A · z = 0 mod qRd}

for A←↩ U(Rd×mq ). If we can solve Mod-SIVPγ in the lattice A⊥ for A←↩ U(Rd×mq ) with non-negligible

probability, then, of course, we can solve M-SISR
d

q,β with β ≤ γ · λN (Λ), here N ≤ m · n denotes the

dimension of lattice A⊥. Note that λN (Λ) ≤ N
λ1(Λ∨) ≤

N
λ∞1 (Λ∨) for any N -dimensional lattice Λ, we only

need to estimate the lower bound of λ∞1 ((A⊥)∨). Recall that the dual M∨ of a lattice M ⊆ Km is defined
as the set of all x ∈ Km such that Tr(xT · v) ∈ Z for all v ∈ M . It is easy to check (A⊥)∨ = 1

qLq(A),
where

Lq(A) = {y ∈ (R∨)m,∃ s ∈ (R∨q )d, AT · s = y mod q(R∨)m}.

Next, we give a probabilistic lower bound of λ∞1 (Lq(A)) for A←↩ U(Rd×mq ), whose proof technique is an
extension of methods used in [21, 34, 35, 38] and may be standard now.

Lemma 17. Let q be a prime that does not ramify in R and qR = q1 × · · · × qg with g · f = n, assume

m > d and ε ∈ (0, 1), then PrA←↩U(Rd×mq )[λ
∞
1 (Lq(A)) < 1

n · q
1− d

m−ε] ≤ 22mn+g · q−mnε.

Proof. By our assumption, we have N(qk) = qf for all k ∈ [g]. By the union bound, the probability p

that Lq(A) contains a nonzero vector of infinity norm < B := 1
n · q

1− d
m−ε is bounded from above by∑

t ∈ (R∨q )m

0 < ||t||∞ < B

∑
s∈(R∨q )d

PrA←↩U(Rd×mq )[A
T · s = t mod q(R∨)m],

which is equal to ∑
t ∈ (R∨q )m

0 < ||t||∞ < B

∑
s∈(R∨q )d

m∏
k=1

Pra←↩U(Rdq )[a
T · s = tk mod qR∨].

By the CRT and Lemma 2.15 of [23], we have R-module isomorphisms R∨q
∼= R∨/q1·R∨×· · ·×R∨/qg·R∨ ∼=

R/q1R× · · ·×R/qgR ∼= Rq ∼= Fg
qf

. Now, aT · s = tk mod qR∨ if and only if aT · s = tk mod qj ·R∨ for all

j ∈ [g]. If s = 0 mod qj ·R∨ for some j ∈ [g], the probability
∏m
k=1 Pra←↩U(Rdq )[a

T · s = tk mod qR∨] 6= 0

if and only if t = 0 mod qj · R∨ (denoted by qj · R∨|t) for the same j ∈ [g]. We denote S ⊆ [g] be the
set of indices j such that s = 0 mod qj · R∨. Then, for any j ∈ [g]\S, we have Pra←↩U(Rdq )[a

T · s =

tk mod qR∨] ≤ 1
qf

for any k ∈ [m]. So,

Pra←↩U(Rdq )[a
T · s = tk mod qR∨] ≤

∏
i∈[g]\S

1

qf
= (

1

qf
)g−|S|.
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Therefore, we have

p ≤
∑
S⊆[g]

∑
s ∈ (R∨q )d

∀i ∈ S, qiR
∨|s

∑
t ∈ (R∨q )m

0 < ||t||∞ < B

∀i ∈ S, qiR
∨|t

qmf|S|−mn.

There are ((qf)g−|S|)d elements in (R∨q )d satisfying qiR
∨|s for i ∈ S. Thus,

p ≤
∑
S⊆[g]

∑
t ∈ (R∨q )m

0 < ||t||∞ < B

∀i ∈ S, qiR
∨|t

q(m−d)(f·|S|−n).

Set h =
∏
i∈S qiR

∨ and denote B(r, c) the open ball in H of center c and radius r under the infinity norm.
We now estimate the number N of t’s satisfying the conditions in the above sum. First note that, if we
denote t = (t1, · · · , tm)T , ti ∈ h for all i ∈ [m], then, ||t||∞ = max1≤i≤m ||ti||∞ ≥ 1√

n
max1≤i≤m ||ti|| ≥

1√
n
λ1(h) ≥ N(h)

1
n ≥ 1

n · q
|S|
g , since N(R∨) = ∆−1

K ≥ n−n. As a result, there is no such t when |S| ≥
(1− d

m − ε) · g. For the case |S| < (1− d
m − ε) · g, we try to bound |B(B,0)∩ h|. Let λ =

λ∞1 (h)
2 , then for

any two elements v1 and v2 of h, we have B(λ,v1) ∩B(λ,v2) = φ. Meanwhile, for any v ∈ B(B,0), we
have B(λ,v) ⊆ B(B + λ,0). Hence,

N ≤ |B(B,0) ∩ h|m ≤
(

Vol(B(B + λ,0))

Vol(B(λ,0))

)m
≤ (

B

λ
+ 1)mn ≤ 4mn · qmn(1− d

m−
|S|
g −ε),

where we have used λ∞1 (h) ≥ 1
n · q

|S|
g . Since there are 2g subsets of [g], we get

p ≤ 2g · max
S ⊆ [g]

|S| < (1 − d
m
− ε)g

4mn · qmn(1− d
m−

|S|
g −ε) · q(m−d)(f|S|−n)

= 2g+2mn · max
S ⊆ [g]

|S| < (1 − d
m
− ε)g

q−mnε−d|S|f ≤ 22mn+g · q−mnε,

as desired.

By Lemma 17, for any ε ∈ (0, 1), if we can solve Mod-SIVPγ problem over lattice A⊥ for A ←↩
U(Rd×mq ) with advantage δ, then with advantage ≥ δ · (1 − 2(2m+1)n · q−mnε), we can solve Mod-SISR

d

q,β

with β ≥ γ · n2 ·m · q dm+ε. Combining Lemmata 16 and 17, we get the following theorem.

Theorem 5. Let q - l be a prime, m > d and ε ∈ (0, 1) such that qε ≥ 8, there is a PPT reduction from

D-MLWER
d

q,Dα
to Mod-SIVPγ over lattice A⊥ with A←↩ U(Rd×mq ), where α < 1

8γ·m·ω(n3 lnn
√

log logn)·q
d
m

.

In particular, if we choose m = d · log q, we obtain a reduction from D-MLWER
d

q,Dα
to Mod-SIVPγ over

lattice A⊥ with A←↩ U(Rd×d log q
q ), with 1

α ≈ m · γ · Õ(n3). So, for d = O(1), we can obtain a reduction

from worst-case module SIVPÕ(γ·n3.75) problem over Kd to average-case SIVPγ problem over lattice A⊥,

with A←↩ U(Rd×d log q
q ).
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A Proof of Lemma 9

Let’s first introduce some basic facts.

Suppose q is a prime which does not ramify in R, then Rq is a principle ideal ring (this is true even
when K = Q(α) is not a cyclotomic field, as long as q - ∆K and q - |R/Z[α]|, see Section 3 of [37]). In
the ring Rq, a non-zero element x /∈ R×q 10 if and only if there exists some non-zero element y ∈ Rq such
that x · y = 0. In fact, assume qR = q1 · · · qg with f · g = n, then 0 6= x /∈ R×q if and only if x = 0 mod qi
for some i ∈ S ( [g] and x 6= 0 mod qj for others j ∈ [g]\S. Then, any element y such that y = 0 mod qj
and y 6= 0 mod qi will satisfy x · y = 0 mod qR.

For any positive integer k, the Rq modules Rkq and Rk×kq are all free-Rq modules with rank k and

k2. A matrix A = [a1, · · · ,ak]T ∈ Rk×kq is invertible in Rq if and only if det(A) ∈ R×q , since in this
case, there is a matrix B such that A ·B = I mod qR, hence det(A) · det(B) = 1 mod qR (Note that the
determinant function of square matrices in Rk×kq , which is a special staggered k-linear map such that

det(Ik) = 1, over the ring Rq is well defined). We call a set of vectors {a1, · · · ,ak} ⊆ Rkq is Rq-linearly
independent if x1 ·a1 + · · ·+xk ·ak = 0 mod qR implies x1 = · · · = xk = 0. Note that for a square matrix
A = (a1, · · · ,ak)T ∈ Rk×kq , under our definition, a1, · · · ,ak are Rq-linearly independent does not imply

that A is invertible over Rq. We consider the ring isomorphism Ψ : Rk×kq 7→ (R/q1)k×k × · · · × (R/qg)k×k

induced by the ring isomorphism Rq ∼= R/q1 · · ·R/qg, i.e. for any A ∈ Rk×kq , Ψ(A) = (A1, · · · , Ag) with

Ai = A mod qi for i ∈ [g]. Then, it is easy to verify that A←↩ U(Rk×kq ) if and only if Ai ←↩ U((R/qi)
k×k)

for all i ∈ [g], and A is invertible in Rk×kq if and only if Ai is invertible in (R/qi)
k×k for all i ∈ [g]. So,

we just need to estimate the probability that Ai is invertible for Ai ←↩ U((R/qi)
k×k).

Notice that R/qi is a finite field with |R/qi| = qf, and R/qi ∼= R/qj for any i, j ∈ [g]. In the
followings, we denote F a finite field with |F | = qf, and F× = F\{0}. We will try to estimate the
probability A ∈ F k×k is invertible for some positive integer k and A←↩ U(F k×k). Recall that for a matrix
A = (a1, · · · ,ak)T ∈ F k×k, A is invertible if and only if vectors {ai}’s are F -linearly independent.

We have the following useful result.

Lemma 18. For any i ∈ [k− 1] and F -linearly independent vectors a1, · · · ,ai ∈ F k, the probability that
sample a vector b←↩ U(F k) such that a1, · · · ,ai, b are F -linearly independent is at least 1− 1

qf
.

Proof. Given F -linearly independent vectors a1, · · · ,ai, we can assume without loss of generality that
the first i columns of A = [a1, · · · ,ai]T are F -linearly independent. We consider the first i + 1 columns

of A together with the first i + 1 elements of a vector b ∈ F k. Let B =


a1,1 a1,2 · · · a1,i a1,i+1

a2,1 a2,2 · · · a2,i a2,i+1

...
...
. . .

...
...

ai,1 ai,2 · · · ai,i ai,i+1

b1 b2 · · · bi bi+1

 be

the corresponding matrix. By assumption, there must be some a1,j ∈ F× for j ∈ [i]. Without loss of

generality, set j = 1. Then we can get a new matrix B′ =


a1,1 a1,2 · · · a1,i a1,i+1

0 a′2,2 · · · a′2,i a′2,i+1
...

...
. . .

...
...

0 a′i,2 · · · a′i,i a′i,i+1

b1 b2 · · · bi bi+1

 such that the first

i rows of B are F -linearly independent if and only if the first i rows of B′ are F -linearly independent.
Also note that the first i rows of B′ are F -linearly independent if and only if the rows from 2 to i are
F -linearly independent, thanks to the special form of B′ and {a′j,m}’s with j ∈ {2, · · · , i}, m ∈ [i + 1].

10 Here, R×q denotes the set of invertible elements under multiplication in Rq.
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Thus, repeating the above procedure, we can get a matrix C =


a1,1 a1,2 · · · a1,i a1,i+1

0 c2,2 · · · c2,i c2,i+1

...
...
. . .

...
...

0 0 · · · ci,i ci,i+1

b1 b2 · · · bi bi+1

 such that the

first i rows of A are F -linearly independent if and only if the first i rows of C are F -linearly independent,
which also means that A is invertible if and only if C is invertible.

Recall that C is invertible if and only if the columns of C := [d1, · · · ,di+1] are F -linearly independent,
also by our construction and assumption, d1, · · · ,di are F -linearly independent. We then modify the

matrix C to the following form D = [d1, · · · ,di,d′i+1] =


a1,1 a1,2 · · · a1,i 0

0 c2,2 · · · c2,i 0
...

...
. . .

...
...

0 0 · · · ci,i 0
b1 b2 · · · bi b′i+1

. This can be done

easily, since by construction, elements except bi+1 in the diagonal of matrix C are all in F×. So, d′i+1 =
di+1 + yi · di + · · · + y1 · d1 for some y1, · · · , yi ∈ F . Note that x1 · d1 + · · · + xi · di + xi+1 · di+1 =
(x1 − xi+1 · y1) · d1 + · · ·+ (xi − xi+1 · yi) · di + xi+1 · d′i+1 and when b′i+1 ∈ F×, D is invertible. Thus,
we conclude that C is invertible if b′i+1 ∈ F×.

Finally, notice that b′i+1 = bi+1 + yi · bi + · · · + y1 · b1 ←↩ U(F ) since {bj}i+1
j=1 are sampled uniformly

and independently from F . We get the conclusion as desired.

Notice that for a←↩ U(F ), the probability that a is F -linearly independent is also 1− 1
qf

. So, for any

positive integer d, by Lemma 18, the probability that A ←↩ U(F d×d) is invertible is at least (1 − 1
qf

)d.
Combining the isomorphism Ψ , we can get Lemma 9 easily.

B Missing Proofs in Subsection 3.2

Proof of Lemma 10: Given (a′, b′), the transformation discretizes b′ ∈ KR/R
∨ to bb′e 1

qR
∨ ∈ 1

qR
∨+R∨.

It then sets a = a′ mod qR and b = bb′e 1
qR
∨ mod R∨ and outputs (a, b).

If the distribution of (a′, b′) is AR
d

q,s,α, then b′ = 1
q

∑d
i=1 a

′
i · si + e′ mod R∨ for e′ ←↩ Dα. Since

1
q

∑d
i=1 a

′
i · si mod R∨ ∈ 1

qR
∨/R∨, by validity of this discretization, we have that bb′e 1

qR
∨ and 1

q

∑d
i=1 a

′
i ·

si + be′e 1
qR
∨ are identically distributed. Hence, we get (a, b)←↩ ARdq,s,φ.

If (a′, b′) is uniformly random, then by validity so is the distribution of (a, b).
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