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Abstract. Among numerous applications, besides cryptocurrencies, the
Blockchain offers inherent properties beneficial for the management of
supply chains, where data is shared between trusted and untrusted par-
ties. Electronics supply chain serves as a prime example of such chains,
where one of the major players, i.e., a foundry, can be untrusted. Hard-
ware obfuscation techniques, namely logic locking, and IC camouflag-
ing have been developed to mislead an adversary aiming at reverse-
engineering and Intellectual Property (IP) piracy. However, virtually all
existing hardware obfuscation schemes developed over the last decade
have been shown to be vulnerable to various attacks. The success of these
attacks has been relying on either a lack of thorough, cryptographically-
secure obfuscation schemes or an incorrect assumption widely made, i.e.,
the existence of an ideal tamper- and read-proof memory to store the key.
To overcome these shortcomings, this paper proposes a novel, Blockchain-
enabled, cryptographically-secure hardware obfuscation schemes being
compatible with current circuit synthesis and fabrication tools. In this re-
gard, rather than solely monitoring the supply chain via the Blockchain,
the security of the obfuscation is guaranteed by Proof-of-Stack Blockchain
protocols and witness encryption schemes. Furthermore, with the help
of our construction, we can realize one-time and pay-per-use hardware,
where a user can use the electronic circuit for a limited amount of time.

Keywords: IP Piracy· Logic Locking· Hardware Obfuscation· Garbled
Circuits· Witness Encryption· Blockchains

1 Introduction

Since the invention of the Blockchain technology, several real-world applications
of that, beyond the cryptocurrency, have been proposed and developed. The
spectrum of these applications covers various areas, where transparency, trust,
and traceability are crucial, e.g., digital voting [23], smart contract [2, 8], and
supply chain management [40, 36]. In the latter scenario, Blockchain-enabled
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Fig. 1: The supply chain in semiconductor industry. It is assumed that the de-
signer, packaging and distribution are trusted, while the IP integrator, foundry
and end-users are untrusted.

management plays even a more important role for particular supply chains, for
instance, the electronics supply chain. Over the years, electronic components
and their supply chains have been considered secure and trustworthy. However,
the globalization of the modern integrated circuit (IC) supply chain refutes this
assumption. As the fabrication of the semiconductors moves to smaller nodes,
more advanced and sophisticated fabrication facilities are needed. To keep the
production of ICs with the latest technology nodes profitable, most market-
leading IC vendors have become fabless [19], where their products are fabricated
overseas by an independent foundry. Different phases of chip manufacturing,
such as design, integration, and fabrication can no longer be carried out under
the same roof, see Figure 1. Therefore, original IP owners no longer have control
over the entire supply chain. Consequently, ICs become vulnerable to IP piracy,
tampering, and counterfeiting. These problems continue even when the devices
are delivered to the malicious end-users in the market. Clearly, without ensuring
the integrity of the electronics supply chain, tampered and counterfeit devices
can pass through the chain and be employed in security-critical applications.

To address these issues, several IP obfuscation schemes have been proposed to
prevent IP piracy of electronic chips attempted by IP integrators and untrusted
foundries, which are discussed briefly as follows.

A Brief Overview on Obfuscation Techniques: In an attempt to regain
control over the design, it is suggested to manufacture only the front-end-of-
line (FEOL) layers at an untrusted high-end foundry, whereas a trusted low-end
foundry should take over manufacturing the back-end-of-line (BEOL) layers [15].
The split manufacturing approach, although being a promising solution, has
shortcomings that have been identified in the literature (e.g., [38]). As a prime
example, it has been demonstrated that a malicious FEOL foundry can launch
a heuristic-based attack to circumvent security measures offered by some split
manufacturing techniques [28].

Further efforts to protect IPs cover a wide range of techniques developed
over the past decade: compiler-level, gate-level, and layout-level hardware ob-
fuscations. The former type of obfuscation techniques refers mainly to Finite
State Machine (FSM) locking, so-called sequential logic locking, where the FSM
is augmented by adding a new set of states [10]. This type of approach can also
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be applied at the gate-level as proposed in, e.g., [5, 4] and layout-level, see [6, 20].
In addition to this, at the gate-level, the most prominent example is (combina-
tional) logic locking methods that include extra key gates in a design, which are
controlled by a key given to it as input bits [29]. Logic masking [7] and logic per-
mutation [11] are other techniques built upon the idea of setting a fixed output
for wrong keys and permutation of interconnections by a key, respectively. Al-
though being effective in some scenarios, no proof has supported the approaches
mentioned above.

At the layout-level, camouflaging is performed to hide the functionality of a
standard cell by employing a combination of real and dummy contacts [27]. It
has been assumed that an attacker requires exponential time, in the number of
camouflaged gates, to de-camouflage a circuit; however, this assumption has be-
come invalid as the de-camouflaging problem is reduced to Boolean satisfiability
(SAT) problem and solved by applying off-the-shelf SAT-solvers. The application
of such solvers in the hardware obfuscation area is not limited to this as they are
widely adopted to compromise the security of logic locked circuits, see, e.g., [35].
In addition to this, modified, approximation-based versions of SAT attack, so-
called APP-SAT, has been applied to de-obfuscate circuits effectively [30]. Recent
work has gone even beyond this by showing that the existing locking techniques
cannot be resilient against approximation attacks, when the adversary is given
access to an oracle providing her with the outputs of an unlocked design [31].
This can further emphasize the importance of applying cryptographically-secure
techniques to guarantee the security of the obfuscated circuits.

Unfortunately, virtually all of these schemes have been developed in an ad-hoc
and heuristic fashion, as discussed above. Moreover, the existence of a tamper-
and read-proof memory is the primary assumption made by several obfusca-
tion techniques, e.g., logic locking. However, the most secure memory candi-
dates, which are all based on non-volatile memory technologies, are susceptible
to physical attacks, making direct readout possible [25]. As a conclusion, there
is an ever-increasing need for an obfuscation technique, which is provably secure
against oracle-guided attacks and relies on secure memories as little as possible.

Our Contribution: This paper suggests a novel approach aimed at not only
addressing the issues with existing obfuscation methods but also enabling “pay-
per-use circuits.” This notion offers a higher security level since not only the
first access to the circuit can be restricted, but also the total number of accesses
can be pre-defined. Interestingly, our approach relies on the existence of neither
a tamper-proof memory nor a self-destructing one, as required by a scheme
proposed in [13]. Instead, we rely on inherent characteristics of the Blockchain
technology that is, it can be regarded as a “platform” enabling us to achieve the
security in the sense of cryptography. In this regard, as proved in [14], the security
of our scheme is related to the security of the Blockchain. This also explains
the core difference between our work and [40, 16, 37], where the Blockchain is
deployed to monitor the integrity of the electronics supply chain.

Finally, we stress that our idea can be considered as a step towards the fur-
ther development of a provable method, which has rarely been fully researched
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in the hardware obfuscation area. Compared with the most relevant study of this
matter, i.e., [9], our paper does not focus on a specific type of obfuscation ap-
proaches. However, both of our methods and one proposed by Crescenzo et al. [9]
apply formal models as an enabler. While we employ the Blockchain cf. [14], in-
distinguishability obfuscation is considered in [9], as such models suggested for
program obfuscation, the latter cannot adequately reflect the challenges con-
fronting hardware obfuscation, as also mentioned in [9]. To address this, we
provide an exhaustive discussion on how and to what extent our scheme can
be implemented in real-world scenarios. In fact, this is a crucial contribution
made by our paper: although the security of the Blockchain-enabled pay-per-use
programs has been proven in the literature [14], we demonstrate how to adapt
those results to achieve secure hardware obfuscation.

2 Building Blocks of Our Scheme and Adversary Model

Our scheme aims to offer cryptographically-secure obfuscation for circuits. In
other words, for a physical circuit Cn, computing a function f on n inputs, our
scheme can be employed to build a circuit C ′, where an adversary with some
resources (see Section 2.4) fails to extract the information required to perform
reverse-engineering and IP piracy. In this regard, the core idea of our solution
is to overcome the limitations of previous approaches by applying the notion
of Blockchain in conjunction with witness encryption and garbled circuits, as
described below.

2.1 Blockchains and Proof-of-Stake Protocols

In our scheme, Blockchains can be seen as an alternative to the trusted-setup
assumptions, i.e., the existence of tamper-proof hardware. This is due to the
fact that Blockchains have been proven to offer the security-related features
demanded by construction using tamper-proof hardware, e.g., one-time programs
and pay-per-use programs [14]. Moreover, Blockchains enable us to deal with
malicious parties, namely malicious foundries and users in our scenario.

Regarding the mechanism used to reach consensus, commonly referred to as
“mining”, Blockchain protocols can be categorized as Proof-of-Work (POW) and
Proof-of-Stake (POS) [18]. As for the former significant amount of computational
power is required, in the latter case, a miner has to provide a sufficient balance.
More specifically, if a party attempts to generate a block, the POS should be
used as a certificate to verify the correctness. In our scenario, POS Blockchains
provides assurance that a party (legitimate or malicious) can evaluate a circuit
for only a limited time, depending on its balance [14].

2.2 Garbled Circuits

The notion of garbled circuits can be thought of as a randomized encoding
of Boolean circuits [1]. Among several interesting applications of garbled cir-
cuits, we are interested in how they are employed to construct one-time and
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pay-per-use programs, i.e., one-time circuits in our case. In this regard, it is
desired to encode a circuit into one that can be executed only once or when
paid by the user. Informally, after garbling a circuit C with n inputs, we ob-
tain a garbled circuit, together with 2n wire keys. More precisely, for a family
of circuits {Cn}n, i.e., set of circuits Cn with n inputs, the garbling scheme is
defined as polynomial-time algorithms Garble and Eval. As for the former one,(
G, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C ∈ Cn), i.e., given a security parameter λ

and a circuit C ∈ Cn, the algorithm Garble outputs a garbled circuit G along
with 2n wire keys {wi,b}i≤n,b∈{0,1}. On the other hand, when these outputs are
fed into the algorithm Eval, we obtain y ∈ {0,1}, cf. [3]. Put differently, when
evaluating a garbled circuit on given key and input (see Section 4 for more de-
tails), given the same input, the output of the garbled circuit is the same as
the output of our circuit C (our circuit before garbling). This property is as-
sociated with the “correctness” of a garbling scheme. The security of such a
scheme is related to the fact that during the evaluation of the garbled circuit,
the information neither on circuit C nor on the input is revealed3.

It is straightforward to observe that although the above encoding fulfills our
requirements in terms of correctness and security, it does not meet the charac-
teristics of the one-time and pay-per-use circuits. To address this, the notion of
witness encryption, as defined below, can be helpful.

2.3 Witness Encryption (WE)

The concept of (extractable) WE is similar to public-key encryption/ decryption,
although the secrecy is handled in a different manner. For public key-based
scheme, a secret key associated with a public one is required, whereas a message
encrypted by an (extractable) WE can be decrypted if the solution to some NP-
hard search problem (so-called, a witness) is known [12]. For instance, suppose
that the decryption is possible if a solution to an NP-hard puzzle is known.

Formally, consider the witness relation R, that is R : {0, 1}∗ × {0, 1}∗ →
{true, false} so that R(x) = {w : R(x,w)}, where x ∈ {0, 1}∗. Clearly, true
and false can be denoted by “1” and “0”, respectively. Now, for a language L
with witness relation R, i.e., an efficiently computable the witness encryption,
i.e., WE = (Enc, Dec) over the message space M ⊆ {0,1}∗, is composed of two
polynomial-time algorithms Enc and Dec with the following properties. For a
given message m ∈ M and a string x ∈ {0,1}∗, the algorithm Enc(1λ, x,m)
outputs a ciphertext ct, where λ is the security parameter. Applying the de-
cryption algorithm Dec(ct, w ∈ {0,1}∗) on the ciphertext and a witness string
w, it delivers the message m ∈M or ⊥, which is a special symbol denoting that
the decryption fails.

3
To prove this, it is inevitable to follow a simulation-based formulation of security.
In this sense, informally, a simulator in an alternative, secure-by-definition world is
constructed, which generates a view of the adversary in the real world. This view
should be computationally indistinguishable from the real one [21].
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The above WE scheme is correct if for all λ, (x,w) ∈ R, m ∈ M , we have

m = Dec(ct, w) with ct← Enc(1λ, x,m). The security for a WE is defined with
regard to the notion of “extractable security” stating that only if an adversary
knows a witness for the instance used by the encryption algorithm, she can
learn some non-trivial information about the encrypted message. Definition 1
formulates this precisely.

Definition 1 The WE scheme WE is extractable secure, if for all security pa-
rameter λ, PPT adversary A, and a polynomial p(·), a PPT extractor E with
a polynomial q(·) can be found that satisfies the following. For every pair of
messages m0,m1 ∈M and a string x ∈ {0,1}∗ we have

Pr[A(1λ,ct) = b | b← {0,1}; ct← Enc(1λ, x,mb)] ≥
1

2
+

1

p(λ)
,

and then,

Pr[(x,w) ∈ R | w ← E(1λ, x,m0,m1)] ≥ 1

2
+

1

q(λ)
.

In our scheme, such witness is the existence of users’ blocks in the Blockchain.
This is possible thanks to the witness relation on the Blockchain protocol defined
based on the uniqueness of the local states of parties and their transaction over
the Blockchain [14]. Especially for the pay-per-use application, there should be
evidence showing that a pre-specified amount of cryptocurrency is transferred
from the user to the IP owner (i.e., service provider). We further elaborate on
this in Section 3.2.

After establishing the foundation of our framework, we can now define the
adversary model considered in our work.

2.4 Adversary Model

Similar to the most relevant studies on circuit obfuscation, we consider adver-
saries attempting to run polynomial-time (in a security parameter λ) algorithm
to deobfuscate the netlist, cf. [9, 31]. In our attack model, the adversary is given
access to the black-box hardware component. More precisely, there exists a prob-
abilistic polynomial time (PPT) adversarial algorithm, when being given the
above access, whose output is indistinguishable from the output of a simulator
with restricted oracle access to the circuit. As can be understood, the crucial
difference between our model and the existing adversary model in the circuit
obfuscation-related studies is that we ensure limited oracle access given to the
adversary.

Regarding the interaction between the adversary4 and the Blockchain, we
assume that the adversary has complete access to the Blockchain and can pos-
sibly have a malicious influence on the protocol execution by mining blocks or

4
Needless to say that by the term adversary, we refer to the above PPT algorithm
controlling all the corrupt parties.
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Fig. 2: Generating garbled IPs and their deployment in the field. The wire keys
can decrypt the garbled IP for evaluation. Construction 1 (Evaluation with
Blockchain and and WE) stores encrypted wire keys on the chip and uses
Blockchain to get a witness along with the current state of the user to decrypt
them. Construction 2 (Evaluation with Tamper-proof Memory) stores the wire
keys in plaintext in a tamper-proof memory.

deviating from the protocol, cf. [14]. Finally, with respect to the notion of WE,
we say that the adversary can extract some non-trivial information about the
encrypted message only if she can come up with a witness for the instance used
during encryption. In Section 3, we explain how such a witness can be crafted
for honest parties and why the adversary cannot know any witness.

3 Cryptographically-secure Hardware Obfuscation

Our proposal covers two constructions: Construction 1 ensures a high degree of
security that is, no tamper-proof hardware is required. This can be achieved at
the price of implementing POS Blockchains equipped with WE. Nevertheless,
if tamper-proof hardware is used, another construction (Construction 2) can
be built exhibiting provably-secure obfuscation. We further compare these two
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Algorithm 1 Function Compile included in the protocol underlying the
Construction 1.

Require: Access to a Blockchain protocol Γ with validity predicate V and distin-
guishable forking property-related parameters (β, `1, `2, n) and a WE scheme
WE = (Enc, Dec), security parameter λ, a public identity id, the amount of stake
q ∈ Q belonging to id, and the circuit C ∈ Cn.

Ensure: A compiled circuit CC

1:
(
G, {wi,b}i≤n,b∈{0,1}

)
← Garble(1

λ
, C ∈ Cn).

2: while i ≤ n do
3: for b ∈ {0, 1} do
4: xi,b = (1

λ
, st, 1

`1 , 1
`2 , 1

n
, β, i, b, id, q). . st: the local state.

5: cti,b ← Enc(1
λ
, xi,b, wi,b).

6: end for
7: end while
8: x0 = (1

λ
, st, 1

`1 , 1
`2 , 1

n
, β, 0, 0, id, q).

9: ct0 ← Enc(1
λ
, x0,G).

10: CC = (1
λ
,1
`1 , 1

`2 , id, q, ct0, {cti,b}i≤n,b∈{0,1}).
11: return CC

constructions and demonstrate why the Blockchain-enabled one outperforms the
obfuscation scheme, where tamper-proof hardware is integrated into the scheme.
In both constructions, the Boolean circuit of one or more IPs are garbled, and
the wire keys associated with them are generated locally, see Figure 2. The
garbled truth tables or lookup tables are then sent to the IP integrator, and
eventually to the foundry. Consequently, the garbled lookup tables are integrated
and fabricated along with other IP cores on the chip. Note that for both of the
constructions explained here, the proofs of the security has been given in [14],
although we adopt those to the context of hardware obfuscation.

3.1 Construction 1

As explained above, this construction is built around Blockchain as an enabler.
To elaborate on how Construction 1 works, we begin with the definition of our
Blockchain protocol as the main building block. The Blockchain protocol Γ is
composed of the following polynomial-time algorithms: (1) UpdateState(1λ)
that maintains a local state st

5, given the security parameter λ, (2) a sequence

of valid blocks contained in st is delivered by the algoriyhm GetRecords(1λ, st),
where each of them includes a sequence of records/ messages m, and (3) to send

the message m to all nodes executing the protocol Γ, Broadcast(1λ,m) is used.
With this protocol, we also associate the validity predicate V associated with the
application of the Blockchain protocol, which indicates if a sequence of blocks
B is valid by outputting 1, and vice verse [24].

Inspired by the design of per-pay-use programs [14], our construction encom-
passes two main algorithms Compile and Eval, whose main steps are depicted

5
As for the local state, the entire Blockchain should be considered [14].



Blockchain-enabled Cryptographically-secure Hardware Obfuscation 9

Algorithm 2 Function Eval included in the protocol underlying the Con-
struction 1.

Require: Access to a Blockchain protocol Γ with validity predicate V and distin-
guishable forking property-related parameters (β, `1, `2, n) and a WE scheme
WE = (Enc, Dec), security parameter λ, a public identity ĩd, the amount of stake
q ∈ Q belonging to id, the compiled circuit CC, and the input to be evaluated
y ∈ {0,1}n.

Ensure: Eval(G, {wi}i≤n).

1: m = (ĩd, id, q, aux = y).
2: Broadcast(1

λ
,m).

3: UpdateState . Wait for the chain to be extended by `1 + `2 blocks
4: G = Dec(ct0, st).
5: while i ≤ n do
6: wi = Dec(cti,yi , st).
7: if Fail then
8: return ⊥
9: else

10: return Eval(G, {wi}i≤n)
11: end if
12: end while

in Algorithms 1-2. To perform the protocol, first and foremost, the IP owner
defines a unique identity (id ∈ {0,1}∗) for each IC. Note that the security of
our scheme does not depend on the security of this id and it can be public. The
process of committing a circuit over the Blockchain B, i.e., running the Compile

algorithm, begins with garbling the circuit resulting in a garbled circuit and
wire keys, as described in Section 2.2. Clearly, these wire keys must be stored
encrypted on the chip so that the circuit cannot be evaluated freely. Although
one can encrypt the wire keys by employing a public key system, we stick to
WEs since they allow us to decrypt wire keys only conditionally as required by
the one-time circuit and pay-per-use approaches [14]. Furthermore, WEs meet
the one-time secrecy condition, i.e., during the evaluation, only the wire keys
corresponding to the input given to the circuit is revealed. Therefore, the IP
owner (i.e., the service provider) encodes the wire keys independently by using
a WE system, see Figure 2.

When the IC is registered, the design - including the garbled circuit and its
corresponding wire keys- along with the id and the initial balance associated
with that id is committed over a Blockchain B. It is evident that although the
design is the same for a family of chips, the garbled circuits are instance-specific,
ID-related; otherwise, the attacker can pay to use a circuit, but use her credential
to use other chips.

To evaluate the compiled circuit (see Algorithm 2), the user first broadcast
a message m to other nodes executing the protocol. This message demonstrates
that the user with the public identity id transfers q coins to the IP owner ĩd

in the hope of evaluating the circuit on the input y. After posting this message
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and waiting till the Blockchain is extended by `1 + `2 blocks, the local state of
the user st can be used to decrypt the garbled circuit and wire keys. To this
end, as a witness the user has to generate a Blockchain B’ that (1) contains
a block with the input, on which the circuit should be evaluated, and (2) that
block should be followed by at least a pre-defined, minimum number of blocks,
e.g., n. These n blocks contain a minimum amount of combined POS α to stop
adversaries attempting to generate those n blocks by themselves (i.e., malicious
extension).

It is worth noting here that the above description as well as Algorithms 1- 2
corresponds to the pay-per-use applications. To achieve one-time and pay-per-
use circuits, these algorithms can be adopted and modified slightly: instead of
transferring the coins along with the desired input, the user sends the garbled
circuit G and the input to the IP owner to evaluate it.

3.2 Security and Correctness

When it comes to assessing the security of the protocol mentioned above, it can
be thought that the adversary may extend the Blockchain to impair the effec-
tiveness of the protocol. Note that even if a malicious Blockchain B̃ is extended,
the adversary still has to deal with the garbled circuit. Besides, the parameters
of the Blockchain can be defined so that such malicious extension can be dis-
tinguished. We elaborate on this point in the next subsection; however, before
that, we expand on a principle providing the basis for the security and correct-
ness proofs. These proofs rely heavily on the notion of extractable secure WE6.
An example of how the WE can be helpful is related to avoiding multiple inputs
simultaneously committed to the Blockchain. To this end, to ensure that the
user commits only one input over the Blockchain, our scheme naturally involves
a mechanism to check the witness B’.

The importance of defining a witness relation has been already stressed in
Section 2.3. Here, we provide more detail on how such a relation can be defined
based on the properties of a Blockchain protocol. Consider the relation RΓ asso-
ciated with the Blockchain protocol Γ, where x = (1λ, st, 1`1 , 1`2 , 1n, β, i, b, id, q)

and w = s̃t. Clearly, B = GetRecords(1λ, st) and B̃ = GetRecords(1λ, s̃t) can
be defined. For w, to provide witness to x in the sense of RΓ, the following
should hold. Both of the Blockchains B and B̃ should be valid and consistent.
Additionally, for a given unique message m = (ĩd, id, q, aux = y), there is no
block with a record of m unless it is in B̃ (assuming that B is a prefix of B̃).
And, after this unique block in B̃, the Blockchain is extended by `′ ≥ `1 + `2
blocks with sufficient fraction of stake, greater than β.

According to the above definition, it is evident that the security of the entire
protocol depends on how the parameters of the Blockchain are set, as discussed
below.

6
As the proofs of security and correctness of our protocol are similar to pay-per-use
programs presented in [14], we refer the reader to that for more details.
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Fig. 3: A Blockchain with forking distinguishability property. In our setting, the
number of honest parties is n. The length of the maliciously generated fork is `′,
and its minimum length is `1+`2: `′ ≥ `1+`2 (the first part of the fork is denoted
by `1). The length of the honest parties’ local Blockchain is `. The fraction of
the amount of stake that is proven in the honest parties’ Blockchain is at least
β, whereas in the adversarial fork, it is at most α. The above parameters (α, β,
`1, and `2) reflect the hardness of our Blockchain-based scheme [14].

How to Set Parameters Related to POS Blockchain to Achieve the
Secure Scheme? First, we again put emphasis on the role of the Blockchain. In
our framework, the purpose of the Blockchain is to offer a platform, upon which
we construct a provably-secure scheme. To base such a platform on the POS
Blockchain, we must define a setting, in which the security of our construction
can be formalized and proved. To this end, we begin with the requirement that
is, any fork crafted by the adversary on her own (i.e., in an off-line manner)
must be clearly distinguished from the real Blockchain, cf. [14]. More precisely,
with high probability, we can distinguish an individual, invalid chain of blocks
generated by an adversary from the honest parties’ Blockchain, see Figure 3.

For this purpose, we define a threshold for the amount of POS belonging
to an adversary as well as a minimum value for the POS owned by the honest
parties. More specifically, the fraction of the amount of stake proven in the
honest parties’ Blockchain is at least β, whereas, in the adversarial fork, it is
at most α. It has been proven that the above parameters (α, β, and the length
of adversary’s fork, all polynomial in λ) reflect the hardness of our Blockchain-
based scheme [14]. Note that this requirement is in line with the consistency and
quality properties of appropriate stake sharing between the honest parties, as
satisfied by POS-based Blockchain protocols, e.g., [18].

Finally, to draw a conclusion of this section, we stress that the one-time
secrecy and security against a malicious extension of the Blockchain is reduced
to the security of the Blockchain (e.g., chain consistency, etc.) equipped with
the WE and security of garbling scheme, respectively (see [14] for the proofs).
This point, as well as how existing approaches may achieve the security-related
requirements, have been summarized in Table 1.
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Property Camouflaging Logic Locking Construction 1 Construction 2

Cryptographically-
secure

7 7 X X

One-time Circuit 7 (X)* X (X)*
Pay-per-use Circuit 7 (X)* X (X)*

Protection against SAT
Attacks

7 7 X X

Protection against
Physical Attacks

7 7 X 7

Requiring No
Tamper-proof Memory

X 7 X 7

* When equipped with self-destructing memory

Table 1: Security requirements and how they are met by previous approaches and ours

3.3 Construction 2

The purpose of this construction is to provide a comparison between our
Blockchain-enabled obfuscation scheme and conventional ones. In this regard,
for the second construction, we assume the existence of a tamper- and read-proof
memory on the chip (see Figure 2 and Table 1). In this case, after the generation
of the garbled IP, the wire keys are not needed to be stored encrypted on the chip
and can be merely stored in the secure memory, see Fig 2. During the evalua-
tion phase, based on the user’s input, the corresponding wire keys are read from
memory and fed to the garbled IP. As a result, the garbled IP is decrypted and
evaluated. While the assumption of having a tamper- and read-proof memory
on the chip makes this construction similar to common logic locking schemes,
the security of the obfuscated IP is the primary difference of this construction.
In other words, in contrast to the heuristic locking techniques, this construction
still deploys garbled circuits to obfuscate the netlist, which is cryptographically
secure. Nevertheless, when compared to our Blockchain-enabled construction,
Construction 2 cannot achieve the same security level. More specifically, al-
though the existence of a tamper- and read-proof memory makes the design of
a scheme more straightforward, such a scheme is vulnerable to physical attacks,
similar to conventional logic locking schemes [26].

4 Practical Consideration

Last but not least, to support our theoretical, abstract constructions, here we
highlight how the practical challenges facing our scheme can be addressed. First
and foremost, the question would arise whether a WE scheme can be integrated
into a Blockchain system. This has been already discussed and proposed in
the literature [22]. Moreover, we should come up with a WE scheme that of-
fers extractability and efficiency. For this purpose, a promising candidate can
be extractable hash proof systems [39]. Secondly, the implementation of POS
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Blockchain systems should be considered. In this regard, we can rely on already
existing POS protocols, for instance, Ouroboros [18], whose security-related fea-
tures (e.g., consistency, chain quality, etc.) have been proven. More crucially,
although it may seem that a user has to have access to the Blockchain system
to evaluate the circuit, we stress that two possibilities are available: (1) for a
security-critical IP, where the user is not trusted, the Blockchain access is es-
sential, (2) if the user is trusted, or the protection of intellectual property is
less vital, our one-time circuit scheme can be used to make the design (e.g., the
bitstream for FPGAs) unlocked once and forever and disconnect the chip from
the Blockchain.

The second question would be whether the proposed schemes can be synthe-
sized and integrated into the current, real-world chips, e.g., application-specific
integrated circuits (ASICs) and Field Programmable Gate Arrays (FPGAs). It
has been shown that any circuit can be compiled in a very optimized way with
current synthesis tools [32, 34, 33]. In addition, regarding the realization of gar-
bled circuits, since a garbled IP does not need any specific logic rather than
lookup tables to store the encrypted truth tables, it can be integrated into any
ICs. In this regard, in the case of ASICs, a memory array as well as crypto-
processors, capable of running symmetric and asymmetric ciphers, should be
built along with other IP cores. The memory arrays can be programmed with
encrypted truth tables during fabrication or later by the designer. Note that the
truth tables are different for each chip instance, and hence, different encrypted
values have to be stored on the memory arrays of each chip. On the other hand,
in the case of FPGAs, this can be done in a simple manner as FPGAs are
configured by a bitstream, which can contain arbitrarily garbled configurations,
cf. [17]. In addition to the above discussion, in the second construction, a mech-
anism for storing the wire keys in the secure memory should be considered. To
this end, a tamper-proof memory can be realized by non-volatile memories, such
as flash or eFuses. Additionally, these memories can be configured to support
one-time usage, by erasing a secure flash memory or burning an eFuse to make
a rewrite operation into them almost impossible. However, an adversary with
access to the advanced failure analysis equipment might still be able to reverse
this process. Last but not least, note that both ASICs and FPGAs can also be
configured to be connected to a network to transact on Blockchain protocols.

Finally, while our first construction consumes more die area and its evalua-
tion might take longer than the maximum time that some specific applications
can tolerate, the second construction causes less overhead (i.e., die area and la-
tency), but of course, offers only limited security. Construction 2 can be further
optimized if the potential adversaries are foundries or IP integrators, but the
user is trusted. For instance, if an IC is used in a satellite with no physical ac-
cess, the garbled IP can be unlocked once and forever to decrease the latency
and power consumption of the circuit further.
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5 Conclusion

This paper forms an idea of how cryptographically-secure hardware obfuscation
can be achieved by relying on the notion of Blockchain. We explain why neither
self-destructing nor tamper-proof memory is required, in contrast to several cel-
ebrated existing methods. Furthermore, when such memories are available, we
demonstrate how our scheme can be adapted to further offer security guarantees.
These guarantees are based on concepts that are widely accepted in cryptogra-
phy, namely, witness encryption and garbled circuits. Last but not least, we
discuss the feasibility of our theoretical, abstract constructions in practice. We
believe that the latter can largely contribute to the development of the knowledge
and methodologies within the domain of hardware obfuscation.
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