
Automated Probe Repositioning for On-Die EM
Measurements

Bastian Richter
Ruhr University Bochum

Horst Görtz Institute
Bochum, Germany

bastian.richter@rub.de

Alexander Wild
NXP Semiconductors
Hamburg, Germany

alexander.wild@nxp.com

Amir Moradi
Ruhr University Bochum

Horst Görtz Institute
Bochum, Germany
amir.moradi@rub.de

Abstract—In side-channel analysis attacks, on-die localized
EM monitoring enable high bandwidth measurements of only
a relevant part of the Integrated Circuit (IC). This can lead
to improved attacks compared to cases where only power
consumption is measured. Combined with profiled attacks which
utilize a training phase to create precise models of the information
leakage, the attacks can become even more powerful. In contrast,
localized EM measurements can cause difficulties in applying the
learned models as the probe should be identically positioned for
both the training and the attack even when the setup was used
otherwise in between. Even small differences in the probe position
can lead to significant differences in the recorded signals.

In this paper we present an automated system to precisely
and efficiently reposition the probe when performing repeated
measurements. Based on the training IC, we train a machine
learning system to return the position of the probe for a given
measurement. By taking a small number of measurements on
the IC under attack, we can then obtain the coordinates of the
measurements and map it to correct the coordinate system. As
the target for our practical analyses, we use an STM32L0 ARM-
M0+ microcontroller with integrated hardware AES.

Index Terms—Side-channel analysis, EM probe, convolutional
neural network, machine learning

I. INTRODUCTION

Shortly after the introduction of the power side-channel
also the electro-magnetic emanation (EM) resulting from the
current flow was identified as a source of side-channel sig-
nals. A main advantage is its high bandwidth which is less
influenced by parasitic capacitances introduced by the board
or the chip’s package. Especially, if measured directly on the
chip package or even better directly on the die of a decapped
chip, it can reaveal more information than the externally
measured power consumption. As introduced in 2001 [1], on-
die measurements with very small probes in the range of a few
hundred micrometer, can measure a localized signal of a part
of the chip. This enables the attacker to measure an isolated
signal emitted by the targeted circuit (e.g., an encryption core)
not influenced by the noise generated by other parts of the chip
(e.g., by the CPU core running in parallel to the encryption).

Another improvement to the initial unprofiled power anal-
ysis attacks like Differential Power Analysis (DPA) [2] and

This work is partly supported by the German Research Foundation (DFG)
through the project 393207943 ”Security for Internet of Things with Low
Energy and Low Power Consumption (GreenSec)”, and Germany’s Excellence
Strategy - EXC 2092 CASA - 390781972.

Correlation Power Analysis (CPA) [3] are profiled attacks
especially template attack [4]. For these attacks an identical
chip is required which can be controlled by the attacker. The
controllable chip is used to create a leakage-model which is
further used for a more precise and thus more efficient attack.
In some cases the leakage-model is even able to directly target
values and not only their power-model like the Hamming
Weight (HW) in CPA. There has been research on profiled
attacks extending from the original multivariate Gaussian
distribution fitting to other machine learning techniques like
Support Vector Machines (SVMs) [5] or deep neural networks.

At first, a profiled attack based on localized EM measure-
ments seems like a good combination, as the local signal
should improve the profiling by excluding signal sources not
related to the target value. But the downside is that performing
the measurement on the attack chip at exactly the same
position as on the training chip can be very difficult. As
the signal highly varies with the position of the probe, even
a slight misplacement can decrease the effectiveness of an
attack. To counteract this, the leakage-model need to be made
more robust, e.g. by pre-processing the traces. But still the
question arises whether the attack could be better optimized
if an exact repositioning is possible.

Especially, security evaluation labs which try to determine
the physical resistance of a device face several scenarios in
their daily business which requires accurate probe reposition-
ing. The previously mentioned attacks can address various
target values. To identify the best attack position of a potential
target value, typically a grid scan is performed by measuring
EM traces from each probe position in a grid which have
to be further analysed. In addition, to mount the previously
mentioned attacks usually various EM tracesets with differ-
ent input data patterns are required which are typically not
measured in a one-shot. Due to the high computational com-
plexity and hence runtime of the trace analysis respectively
attacks, evaluation labs frequently swap devices during the
trace analysis respectively attack process to increases the
measurement setup utilization. Another scenario is simply the
reevaluation of software-based implementations that include
fixes of previously detected weaknesses.

In recent years, machine learning algorithms and especially
deep learning are gaining more and more attention due to
the impressive results in the field of image processing like



object detection or image classification which can be seen as
pattern detection. Also in the side-channel field deep learning
has produced some interesting results [6], [7] like being
immune to jitter if used with convolution layers [8] and being
able to attack masked implementations in a supervised and
unsupervised [9] setting.

A. Contribution

In this paper we show that it is possible to train a con-
volutional neural network to recover the probe position of a
given EM trace. Based on the neural network prediction it
is hence possible to implement a simple algorithm on top,
to accurately reposition an EM probe on a target chip. The
practical evaluation is performed on a modern microcontroller
targeting a software and a hardware implementation of the
AES encryption.

II. BACKGROUND

A. Neural Networks

Neural networks transfers its input data from one domain
into another domain which represents the target of typical
applications like classification and regression. The basic unit
of neural networks are neurons which are typically organized
in layers. A neuron receives its inputs either from other
neurons of the previous layer or from an external source.
Typically, every neuron receives the output of every neuron
in the previous layer. These layers are thus called fully
connected and a network only consisting of these layers is
called Multilayer Perceptron (MLP). Other architectures with
different connection schemes are also possible, e.g. parallel
layers with different properties then connecting to a common
successor. In the neurons, inputs are multiplied with associated
weight values and summed. By weighting the inputs, a relative
importance is given to them.

The sum is further processed by a simple non-linear func-
tion, called activation function, which adds non-linearity to the
network and hence the capability for a non-linear domain map-
ping. Each layer of neurons changes the representation of the
data and performs a step towards the domain transfer. Based
on the target domain, a layer can compress or decompress the
data, transform it to a more abstract or detailed representation.

In case of supervised learning, a set of labeled data ,i.e.,
input data with corresponding output is given to the training
process. A loss function is defined which calculates a value
related to the error between the value predicted by the network
and the correct value. This error is then propagated back
through the network to minimize the loss by adjusting the
weights. Stochastic gradient descent [10] and its advanced
versions like Adam [11] are the most common technique
for weight optimization but others are possible as well, e.g.
evolutionary algorithms.

Parameters that have to be set before the training pro-
cess which e.g. define the network architecture, configure
the backpropagarion algorithm, or preprocess data are called
hyperparameters. Typical architecural hyperparameters are the
properties of the layers like the number of neurons and the

activation function. Since hyperparameters are fixed at training
time but need to be optimized for an application, multiple
training interations with different hyperparameters are needed
to optimize the efficiency of the neural network.

B. Convolutional Neural Networks

In unstructured data it can happen that the information
required to perform the domain transfer is not always located
at the same position. To address this problem, neural networks
make use of convolution layers. Those layers define filters
,i.e., a set of neurons that stride along the data and search
for this information. Technically, a convolution layer groups
its neurons while the weigths are shared between the groups.
Usually, a convolution layer expands the data and hence
convolution layers are often combined with pooling layers that
perform a compression by removing the spacial information
of the filter outputs, e.g., by reducing a dimension by keeping
only the maximum of a certain interval.

III. PROBE REPOSITIONING

When switching the ICs in a typical side-channel mea-
surement setup, often either the whole PCB is switched or
a socket for the IC is used. This introduces some variation
in the positioning of the IC relative to the stage and thus the
coordinate system in which the probe is moved. The same
holds for sockets which also have some tolerance for easier
insertion.

A. Visual Positioning

The most simple and widely used method is visual po-
sitioning of the probe using a microscope mounted above.
The main downside of this method is its precision. For
automated positioning, the camera also needs to be mounted
static in relation to the probe. Manual positioning is also often
performed by orienting on structures on the IC. But this needs
visual clues be present for orientation which might not exist
near the point of measurement if a shield is present on high
security ICs or if approaching the IC from the backside.

B. Scan of The Chip

The next method is scanning over the chip and correlating
the profiling traces with the traces measured during the scan.
This might be combined with a coarse visual prepositioning.
In theory, this method should lead to the highest precision as
it exhaustively tries to find the position most similar to the
profiled one. In practice, jitter or random timing can prevent a
correlation to properly work. Additionally, it also takes a long
time as scanning over the chip and doing measurements for
correlation is slow.

C. Direct Positioning

Ideally, it would be possible to map the coordinate system
of the profiling chip to the attacked chip by only a few
measurements. This can be done by taking measurements of
at least two points on the attacked chip and then find their
position on the profiling chip, by correlating over a scan. Then
the profiling coordinate system can be mapped to the one of



Fig. 1: Stitched microscope image of the decapped
STM32L081CB with marked start and end position of the
probe (red circles) and scan area (blue dashed rectangle). The
red circles approximate the size of the probe’s coil.

the target chip. This method is as slow as the second one when
repositioning is only needed once, but more efficient if it is
done multiple times. To improve it, we can find a function
which directly maps a measured trace to a position as this
would skip the time-consuming step of correlating over the
whole scan. This is the approach we will follow in this work.
Based on machine learning we try to find this function by
regression to map the trace to coordinates.

IV. IMPLEMENTATION

A. Target

Our target platform is a STMicroelectronics STM32L081CB
ARM Cortex-M0+ microcontroller [12] placed on a custom
measurement board for communication via a USB to UART
interface. It features an AES hardware implementation taking
213 clock cycles for one encryption. The LQFP32 package
was opened from the front side using nitric acid to expose the
die for measurement with the EM probe.

We scanned over the area marked in Figure 1 with a blue,
dashed rectangle. Within this area, the logic is covered with
the crossed power distribution network which we also suspect
to cover the SRAM. The large square block in the top of the
image is the flash and the many small structures right of it are
analog blocks.

B. Measurement Setup

For the measurements we used a Langer EMV ICR HH150-
27 near-field probe with an inner diameter of 150 µm and a
bandwidth of 1.5MHz to 6GHz. The size of the probe in
relation to the die is approximated in Figure 1 by the red
circles. For automated and precise positioning the probe is

Fig. 2: Photo taken with the measurement setup of the probe
on the die of the microcontroller.

mounted on an X-Y-Z stage consisting of Thorlabs MTS50-
Z8 axes with bidirectional repeatability of 1.6 µm and backlash
of 6 µm. Due to mechanical instabilities we expect the total
repeatability to be in the range of 20 µm. The signal was then
recorded using a Teledyne-Lecroy Waverunner 8254M with
its full bandwidth of 2.5GHz and a sampling frequency of
5GHz.

C. Datasets

There are different trace sets needed for the analyses we
perform in this paper. For each target, i.e. for the software and
for the hardware AES encryption, we recorded the following
data sets:
(A) 5000 random positions on a grid of 5 µm in the area

marked in Figure 1 with 200 traces recorded for each
position for training and validation during training for
training.

(B) Scan with a grid of 20 µm (5084 positions) over area
marked in Figure 1 with 200 traces recorded for each
position for testing of the trained algorithm on training
chip.

The Training sets were recorded with random input to also
capture a scenario in which the plaintext can not be fully
controlled.

D. Choice of Machine Learning Algorithm

As the positioning system is based on learning a regres-
sion function, also other machine learning methods might be
applicable. Especially, SVMs and Random Forrests (RFs) are
popular methods which have already been used in the side-
channel field and also support regression. However, they have
the downside of being sensitive to misalignment and jitter. In
contrast, Convolutional Neural Networks (CNNs) have been
shown to be able to overcome jitter and random timing in
side-channel attacks [8]. Thus, we assume that they are also
able to perform our regression in the presence of jitter.



EM measurements are especially susceptible to jitter, since
the peaks can be very short (<1 ns) for newer technologies
so that even minimal jitter results in peaks not overlapping
anymore over multiple traces. We noticed jitter in our mea-
surements,additionally increased by slow IOs of the trigger,
which leads to peak positions differing around 10 sample
points (2 ns). Due to these properties, we decided to follow
the CNN approach and omit the other techniques.

E. Neural Network Architecture

Our goal is to find a function to recover the coordinate
a given trace was measured at. As we do not want to be
constrained to a certain grid on the axes, we decided not use
a classification to the coordinates. Instead, we formulated the
problem as a regression to two values. These represent the two
axes and have a range from 0 to 1 which represents the whole
range of the axis.

In our case the lengths of the axes differ which would result
in different scale factors. As the loss function weights both
axes the same, the shorter axes would have a higher influence
on the loss value. To counteract this, we scaled both axes
so that 1 represents the maximum of the longest axis which
results in Equations 1 and 2 for the coordiante labels lx and
ly if the x-axis is longer.

lx =
x− xmin

xmax − xmin
(1) ly =

y − ymin

xmax − xmin
(2)

Similarly, the traces are also scaled to a range of 0 to 1
with 0 (1, respectively) representing the minimum (maximum,
respectively) of the ADC values. As argued in the previous
section, we used a CNN for the regression. In addition to the
previously mentioned advantages, CNNs lower the complexity
for inputs with a high dimensionality, as they share their
weights and thus have fever parameters to train. This is
favorable for us as our inputs consist of multiple 1000s points.

Figure 3 visualizes the CNN architecture used which con-
sists of two convolution blocks (1-3 and 4-6) and two dense
layers. The input is first normalized by a Batch Normalization
layer before passed to the first convolution block. This im-
proves the training as the range of the different points highly
differs. Points representing peaks in the trace have a high
mean and variance while the others mean and variance is much
lower. The two convolution blocks consist of a 1D convolution
layer (1 and 4) followed by a 1D maximum pooling layer
(2 and 5). To counteract overfitting we also added a dropout
layer(3 and 6) to the blocks. The two blocks are followed by
a dense layer (7). All previous layers have ReLu as activation
function, only the last dense layer (8) uses a Sigmoid activation
to constrain the output of the network to the range [0, 1]. The
output of the Sigmoid layer (8) is then used with the mean-
squared-error loss function. We implemented the network in
Python using Keras [13] with TensorFlow [14] backend.

This general CNN architecture was used for both targets
but we performed independent hyperparameter optimizations
for which we used the Talos framework [15]. Table I lists the
final parameters of the layers used for the evaluations.

Input

1D Convolution (ReLu)

1D Max Pooling

1D Convolution (ReLu)

1D Max Pooling

Dropout

Batch Normalization

Dropout

Dense (ReLu)

Dense (Sigmoid)

2

1

3

5

4

6

7

8

Output

Fig. 3: Convolutional Neural Network architecture used for
position recovery.

No. Layer Software AES Hardware AES

1 1D Convolution (30, 50) (20, 10)
2 1D Max Pooling 5 2
3 Dropout 0.2 0.2
4 1D Convolution (50, 20) (30, 30)
5 1D Max Pooling 5 2
6 Dropout 0.2 0.2
7 Dense 64 64
8 Dense 2 2

TABLE I: Hyperparamter for software and hardware AES
CNN Architecture. The format for Convolution layers is
(no. filters, kernel size).

F. Points of Interest

As the traces for our targets are very long with 70,000
(HW) and 150,000 (SW) points, we selected two areas of
interest from them which are marked in Figures 4 and 6.
These were picked after a quick visual inspection. The areas in
the software traces were picked to contain parts of each sub
operation of the AES round, i.e. SubBytes, ShiftRows, and
MixColumns. For the hardware AES we picked the beginning
and end of the trace, as these also include parts of the control
code for the hardware which we suspected to give additional
position dependent information. Another possible approach
would be to pick parts which exhibit a high variance over
different position on the chip, but as our coarse selection
already worked well we did not evaluate this approach.

V. PRACTICAL RESULTS

A. Software AES Encryption

Our first target is a timing constant software implementation
of the AES encryption written in ARM Thumb assembly.
We measured traces of the first round of the AES which are
shown in Figure 4. The different parts of the round are clearly



Fig. 4: Example traces of the software AES (first round) for
different positions within the scan area. Red lines mark the
parts of the traces used for training and recovery.

discernible within the trace. Also, traces of different positions
highly differ and peaks are only present for certain operations.

We trained the CNN on dataset (A) which contains random
positions. The traces (150,000 points) were preprocessed by
cutting them to the marked areas (35,000 points in total) of
interest and calculating the mean of 20 traces each, so we get
10 mean traces for each position we use for training.

To establish a baseline of the accuracy of the position
recovery, we used dataset (B) which contains measurements
on a grid of 20 µm from the training chip. After preprocessing,
we fed the traces into the trained net and calculated the mean
Euclidean distance (over the 10 mean traces per position) to
the point they were measured at. The result is plotted as a heat
map in Figure 5. There are some small spots with an increased
distance of around 250 µm but the over all mean is 43.86 µm
with a standard deviation of 23.58 µm. The histogram also
poofs that there are only few positions with a high distance
as the center of the highest bin is 30 µm with a bin range of
5 µm.

The distance is in general higher on the right side of the
map wich corresponds to the layout of the chip. In Figure 1
the power grid of the logic area does not continue to the right
end of the scan area but there is a different structure and some
power lines coming from the VDD and GND bond pads. As
we suspect that the power lines are the main source of electro

Fig. 5: Mean distance of recovered position over the scanned
area on the training chip (top) and its distribution (bottom) for
software AES.

magnetic radiation in this area, we expect that there is less
operation and hence location depended leakage at this part
because the power lines carry the total current of a larger
area. Consequently, the mean distance is only 38.08 µm with
a standard deviation of 19.31 µm if only the logic area is
considered.

Please note that the scan we show do not directly correspond
to the area marked in Figure 1 which is defined by the outer
edge of the probe at their maximum positions. As the probe is
considerably larger (inner diameter of 150 µm) than our step
size of 20 µm which corresponds to the pixels in the map
(Fig. 5), we can not directly map it to the area in the photo
but have to consider it as a map over the range of movement.

B. Hardware AES Encryption

The STM32L081CB also features a hardware implementa-
tion of AES which takes 213 cycles to perform an encryption.
The key and plaintext are loaded in software by shifting these
into the AES register in 32-bit words. This writing to the data
registers and the later reading of the ciphertext is included in
the traces shown in Figure 6. The full traces are 70,000 points
long and we picked 33,000 points for training which include
the writing and reading of the data registers. As the AES core
is expected to be smaller and thus less far distributed than the
ARM core, we expect signals with a lower amplitude which
is confirmed by the traces in Figure 6.

Following the same approach as with the software imple-
mentation, we evaluated the network on how good it can
recover the position on the training chip. The map in Figure 7
behaves similarly to the software implementation but with the
high distance outlier only on the right edge of the map. The
impact of the different chip structure on the right is thus much
higher with a small mean error of 25.16 µm with a standard



Fig. 6: Example traces of the hardware AES (whole encryp-
tion) for different positions within the scan area. Red lines
mark the parts of the traces used for training and recovery.

deviation of 17.82 µm over the logic area and an increasing
gradient on the right side. The overall mean of the error is
50.90 µm with a standard deviation of 43.50 µm. This is also
confirmed by the histogram with its highest bin’s center also
at 30 µm but with a second small peak at 70 µm originating
from the increased distance on the right.

VI. CONCLUSION

Starting with a scan over the chip which is usually already
performed when starting an EM analysis of a chip we have
shown that by training a convolutional neural network it is
possible to recover the position at which a given trace was
measured. The accuracy is in the range of less than 50 µm
with a distance of around 30 µm for the most positions.
This accuracy has been achieved for a software as well as a
hardware implementation of AES on a modern microcontroller
platform. Therefore, the system enables repositioning to repeat
measurements of a chip.

A. Future Works

An interesting future work would be to see whether the
system is still possible to recover the position for a target
chip which features strong countermeasures, as these often
feature high temporal misalignment which makes it much
more difficult to find features an extract their information. For

Fig. 7: Mean distance of recovered position over the scanned
area on the training chip (top) and its distribution (bottom) for
hardware AES.

side-channel leakage it has already been shown but it might
be different for this application.

REFERENCES

[1] Karine Gandolfi, Christophe Mourtel, et al. Electromagnetic analysis:
Concrete results. In CHES, volume 2162 of Lecture Notes in Computer
Science, pages 251–261. Springer, 2001.

[2] Paul C. Kocher, Joshua Jaffe, et al. Differential power analysis. In
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[3] Eric Brier, Christophe Clavier, et al. Correlation Power Analysis with
a Leakage Model. In CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 16–29. Springer, 2004.

[4] Suresh Chari, Josyula R. Rao, et al. Template attacks. In CHES, volume
2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002.

[5] Gabriel Hospodar, Benedikt Gierlichs, et al. Machine learning in side-
channel analysis: a first study. J. Cryptographic Engineering, 1(4):293–
302, 2011.

[6] Zdenek Martinasek, Jan Hajny, et al. Optimization of power analysis
using neural network. In CARDIS, volume 8419 of Lecture Notes in
Computer Science, pages 94–107. Springer, 2013.

[7] Houssem Maghrebi, Thibault Portigliatti, et al. Breaking cryptographic
implementations using deep learning techniques. In SPACE, volume
10076 of Lecture Notes in Computer Science, pages 3–26. Springer,
2016.

[8] Eleonora Cagli, Cécile Dumas, et al. Convolutional neural networks
with data augmentation against jitter-based countermeasures - profiling
attacks without pre-processing. In CHES, volume 10529 of Lecture
Notes in Computer Science, pages 45–68. Springer, 2017.

[9] Benjamin Timon. Non-profiled deep learning-based side-channel attacks
with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(2):107–131, 2019.

[10] David E Rumelhart, Geoffrey E Hinton, et al. Learning representations
by back-propagating errors. Nature, 1986.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

[12] STMicroelectronics. STM32L081CB Datasheet, 2017. Rev 5.
[13] François Chollet et al. Keras. https://keras.io, 2015.
[14] Martı́n Abadi, Ashish Agarwal, et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[15] Autonomio. Talos. https://github.com/autonomio/talos, 2019.


