
IoT-friendly AKE: Forward Secrecy and Session
Resumption Meet Symmetric-key

Cryptography?

Gildas Avoine1,2, Sébastien Canard3, and Löıc Ferreira3,1

1 Univ Rennes, INSA Rennes, CNRS, IRISA, France
2 Institut Universitaire de France

gildas.avoine@irisa.fr
3 Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,loic.ferreira}@orange.com

Abstract. With the rise of the Internet of Things and the growing pop-
ularity of constrained end-devices, several security protocols are widely
deployed or strongly promoted (e.g., Sigfox, LoRaWAN, NB-IoT). Based
on symmetric-key functions, these protocols lack in providing security
properties usually ensured by asymmetric schemes, in particular forward
secrecy. We describe a 3-party authenticated key exchange protocol solely
based on symmetric-key functions (regarding the computations done be-
tween the end-device and the back-end network) which guarantees for-
ward secrecy. Our protocol enables session resumption (without impair-
ing security). This allows saving communication and computation cost,
and is particularly advantageous for low-resource end-devices. Our 3-
party protocol can be applied in a real-case IoT deployment (i.e., involv-
ing numerous end-devices and servers) such that the latter inherits from
the security properties of the protocol. We give a concrete instantiation
of our key exchange protocol, and formally prove its security.

Keywords: Security protocols · Authenticated key exchange · Sym-
metric-key cryptography · Session resumption · Forward secrecy · Se-
curity model · Internet of Things.

1 Introduction

1.1 Context

The arising of the Internet of Things (IoT) gives birth to different types of use
cases and environments (smart home, smart cities, eHealth, Industrial IoT, etc.).
According to several reports, “the Industrial Internet of Things is the biggest and
most important part of the Internet of Things” [17] and “the biggest driver of
productivity and growth in the next decade” [1]. The Industrial IoT (IIoT) covers
sensitive applications since it aims at managing networks that provide valuable
resources (e.g., energy, water, etc.). Contrary to the smart home case, where

? Extended version of the paper accepted at ESORICS 2019.

2 G. Avoine, S. Canard, L. Ferreira

a network is localised to the house perimeter and implies merely a domestic
management of the network, the IIoT context may require a large coverage
zone where connected objects (e.g., sensors, actuators, etc.) are widespread all
over an urban area. This implies the involvement of, at least, two players: the
application provider (which exploits the connected objects to get some valuable
data and provide some service), and the communication provider whose network
is used by the application provider to communicate with its connected objects
(see Figure 1).

CS

ED0

ED1

ED2

AS

Fig. 1: Connection between end-devices (ED) and an application server (AS)
through a communication server (CS)

Cryptographic Separation of the Layers. The (Industrial) IoT involves low-re-
sources end-devices which are not able to apply heavy computations implied
by asymmetric schemes. Consequently, security protocols used on currently de-
ployed IoT networks usually implement symmetric-key functions only, and are
based on a unique (per end-device) symmetric root key. Using the same root
key implies that the communication layer and the application layer are entan-
gled. The communication provider must guarantee that only legitimate parties
can send data through its network, but does not need to get the application
data. The application provider must keep full control over its connected objects,
but must not be able to interfere with the management of the communication
network. Therefore, the communication and the application layers must be cryp-
tographically distinct.

Forward Secrecy. The (Industrial) IoT protocols based on symmetric-key func-
tions do not provide strong security properties usually ensured by asymmetric
schemes, in particular forward secrecy. The disclosure of the root key compro-
mises all the past sessions established with that key, not to mention the conse-
quences of an intrusion into the back-end server that centralises all root keys. The
current symmetric-key based IoT protocols lack in providing this fundamental
security property.

Session Resumption. A session resumption scheme allows establishing a new
session at a reduced cost: once two parties have performed a first key exchange,
they can use some shared key material to execute subsequent runs faster. This
means less data exchanged during the key agreement, and reduced time and
energy, which is particularly convenient and advantageous for low-resource end-
devices. Yet, the symmetric-key based IoT protocols always execute the same
full key exchange.

IoT-friendly AKE 3

1.2 Related Work

Several protocols for the (Industrial) IoT have been proposed. Among these,
the following are widely deployed or strongly promoted. They all build their
security on symmetric-key functions, and make use of a static and unique (per
end-device) root key shared between the end-device and the back-end network.

Sigfox [30,31] corresponds to a centric model: one entity (the Sigfox company
or one of its partners) manages a proprietary network. The application data (sent
by the end-devices) is managed by the central entity (Sigfox) and then delivered
to the different Sigfox’s customers. Hence, the latter are compelled to have con-
fidence in Sigfox, and, in a way, to let the company disintermediate them. Sigfox
owns all the application end-devices in the sense that the (fixed) root key used
to protect the data is known to Sigfox.

LoRaWAN 1.0 [33] provides more flexibility: any company can deploy a LoRa
network. Two session keys are derived from the end-device’s root key to protect
the communication and the application layers. Hence, this root key gives access
to both (cryptographic) layers, and knowledge of this key gives virtually own-
ership of the end-devices. Moreover, several weaknesses in LoRaWAN 1.0 have
been identified which lead to likely practical attacks [4].

In LoRaWAN 1.1 [32], a “Join Server” is added to the architecture (compared
to version 1.0). It is in charge of doing the key exchange with the end-device [34].
Two distinct static symmetric root keys are used. Each yields a session key.
This allows to cryptographically separate the communication and the applica-
tion layers. The specification [32] does not make clear if the application and the
communication providers can own their respective root key.4 Yet, a companion
document [34] states that these keys must be stored at the Join Server which is
in charge of doing the key exchange with the end-device. When the Join Server
computes the session keys, each one is respectively sent to the communication
server, and to the application server. In such a context, the Join Server is al-
ways solicited during the key exchange, including when the end-device makes a
new run with the same server. Furthermore, only the end-device can initiate a
key exchange (as in version 1.0) even though the Network Server can, in some
specific cases, request the end-device to initiate a new key exchange.

Contrary to the previous technologies, Narrowband IoT (NB-IoT), enhanced
Machine-Type Communication (eMTC), Extended Coverage GSM IoT (EC-
GSM-IoT) are cellular technologies. eMTC provides enhancements to the Long
Term Evolution (LTE/4G) technology for machine type communications. NB-
IoT is also based on LTE, whereas EC-GSM-IoT is based on GSM/EDGE tech-
nologies and dedicated to low-cost end-devices. These technologies aims at de-
creasing the end-device complexity (hence its cost), power consumption, extend-
ing autonomy, and increasing coverage [16]. The security of all these systems
relies on the underlying technology (GSM, EDGE, LTE), hence on a static sym-
metric root key known to a central authority, likely the telecom operator. They
inherit the intrinsic security limitations of the symmetric-key schemes they are

4 This would imply that the end-device be tied for its whole life to unique application
and communication providers.

4 G. Avoine, S. Canard, L. Ferreira

built on.
Furthermore, none of the aforementioned protocols and technologies provide

forward secrecy.

To the best of our knowledge, no IoT protocol proposes a session resumption
scheme. Such schemes exist in other contexts. In TLS 1.2 [13], the server can
encrypt the “master secret” and store that “Session Ticket” [25] at the client. In
TLS 1.3 [21], the server encrypts a “resumption master secret” (RMS) output
by the previous key exchange, and stores it at the client. In IKEv2 [19], a similar
approach is used [27].

From the same secret value, used as symmetric master key, successive runs
can be executed with these (TLS, IKE) procedures. Hence disclosure of the
reused secret may compromise several past sessions: this breaks forward secrecy.
In TLS 1.3, a fresh secret can be added to the key derivation computation,
but this implies applying the Diffie-Hellman scheme [14]. Moreover, in TLS, the
same Session Ticket Encryption Key (STEK) is used by the server to encrypt
several RMS values (corresponding to different clients). Hence a STEK may be
persistent in the server’s memory and its disclosure compromises past sessions.
Therefore these solutions are not satisfactory with respect to forward secrecy.

Aviram, Gellert, and Jager [2] propose a resumption scheme aiming at guar-
anteeing forward secrecy and non-replayability when 0-RTT is used in TLS 1.3.
They describe two concrete instantiations. One is based on RSA [22], the other
is a tree-based scheme. As all the aforementioned session resumption schemes,
Aviram et al.’s proposal implies to store a ticket at the client. Therefore the
number of tickets to store grows with the number of servers the client can re-
sume a session with. Hence, low-resource end-devices with constrained memory
cannot apply these schemes.

Reversing the roles taken by the client and the server (i.e., the client com-
putes and the server stores the ticket) is not sufficient. First, the Aviram et al.’s
RSA based scheme is excluded, despite its elegance, for low-cost IoT end-devices
that can only implement symmetric-key functions. Moreover, their tree-based
scheme implies that the decryption key grows (up to some point) each time a
ticket is used, which is prohibitive for the end-device (client).5 They also propose
an alternative that trades decryption key size for ticket size. However sending
(and retrieving) big tickets is an issue for a low-resource end-device. As noticed
by Aviram et al., each transmitted bit costs energy, which limits the battery
lifetime of self-powered end-devices.

The resumption scheme we describe reverses the roles of client (end-device)
and server. At the same time it mitigates the issues related to memory space,

5 The two schemes (RSA- and tree-based) described by Aviram et al. allow computing
a fixed number of tickets (say n). One key (asymmetric or symmetric depending on
the scheme) is used to yield the n tickets. In order to compute a new batch of n
tickets, a new key must be generated and stored by the server. We observe that, if
a new batch of n tickets is computed whereas it remains even one ticket not used
yet from the previous batch, two keys (the current and the new one) must be stored
concurrently in the server’s memory.

IoT-friendly AKE 5

computation cost, and amount of transmitted data. Yet, solving this problem
without an asymmetric scheme is not trivial.

1.3 Contribution

In this paper, we present a 3-party authenticated key exchange (3-AKE) proto-
col executed between an end-device, a server, and a trusted third party, which
matches at the same time the following properties:

– The protocol is solely based on symmetric-key functions (regarding the com-
putations done by the end-device).

– Application and communication security layers are separated.
– The protocol enables session resumption.
– The protocol provides forward secrecy.

In addition, we describe a security model in order to formally prove the security
of our protocol, and give a concrete instantiation of the latter.

Finally, we describe how to use our 3-party key exchange protocol in a realistic
IoT deployment that involves numerous end-devices and servers, and such that
it inherits the security properties of the 3-AKE protocol (in particular forward
secrecy).

1.4 Outline of the Paper

In Section 2, we describe our generic 3-party authenticated key exchange pro-
tocol, and, based on it, a more general construction for the IoT context. The
session resumption procedure is explained in Section 3. In Section 4, we in-
troduce the security model that we use to prove the security of our protocol.
Section 5 presents a concrete instantiation of our protocol. Finally, we conclude
in Section 6.

2 Description of the 3-party AKE Protocol

In this section, we describe our generic 3-party authenticated key exchange
(3-AKE) protocol. The main purpose of our protocol is to output session keys.
This subsequently enables to establish two distinct secure channels, with a com-
munication server on the one hand, and an application server on the other hand.
We do not detail these channels, and let it be defined depending on their specific
context.

2.1 The Different Roles

The real-case IoT deployment we consider involves four roles: the trusted third
party that we name Authentication and Key Server (KS), the Application End-
device (ED), the Communication Server (CS), and the Application Server (AS).
The purpose of AS is to provide some service (e.g., telemetry, asset tracking,

6 G. Avoine, S. Canard, L. Ferreira

equipment automation, etc.). The AS exploits ED (e.g., a sensor, an actuator,
etc.) to ensure that service. In order to exchange data, ED and AS use a com-
munication network. The entry point is CS, which grants ED access to that
network. Typically CS is managed by a telecom operator.

One KS can manage several ED. An ED can be either static or mobile, hence
may have to connect one or several CS. An AS can use several ED in order
to provide its service.6 The kind of ED we consider is a (low-resource) wire-
less end-device whereas we assume that KS, CS, and AS use high-speed (wired)
connections with each other, and have heavier capabilities, in particular compu-
tational.

The data exchanged between ED and AS must be accessible to these two
parties only. Moreover, CS needs also to privately communicate with ED, e.g.,
in order to regulate the radio interface. The KS is in charge of the overall secu-
rity of the system: its main purpose is to authenticate ED, and to allow AS and
CS to share distinct session keys with ED. These keys aim at establishing two
separate secure channels.

As said, the architecture we consider involves four types of entities: KS, ED,
CS, and AS. However, from a cryptographic perspective, CS and AS behave the
same way with respect to KS and ED. The main goal to reach is to allow ED
to share a session key with a server XS ∈ {CS,AS} which ensures some func-
tionality (communication or application in our case). This is achieved with our
3-AKE protocol: executed between KS, ED, and XS, the protocol outputs key
material that allows ED and XS to establish a secure channel. In the remainder
of the paper, we will mention for simplicity only the two types of CS and AS
servers. Nonetheless, recall that they represent in fact the several servers which
are actually involved in the IoT architecture we consider.

2.2 Key Computation and Distribution

Our 3-AKE protocol is based on a pre-shared symmetric key mk known only
to two parties: ED, and KS which ED is affiliated to. Each ED owns a distinct
master key mk. A 3-AKE run is split in two main phases. Each phase appeals to a
2-party authenticated key exchange (2-AKE) protocol, whose security properties
will be made explicit in Section 2.3. During the first phase, ED and KS perform
a 2-AKE run with the shared master key mk. During the second phase, ED and
XS ∈ {CS,AS} use the output of the first key exchange to perform an additional
2-AKE run. This yields a session key used to establish a secure channel between
ED and XS. In practice, since our architecture involves two types of XS servers,
a 3-AKE run is done first between KS, ED, and CS, and then between KS, ED,
and AS. This yields two distinct session keys. With each session key, a secure
channel can be established between ED and CS on the one hand, and ED and
AS on the other hand.

6 For the sake of genericness, it may also be technically (i.e., cryptographically) pos-
sible with our protocol that the same ED be used by several AS (each one providing
a different service).

IoT-friendly AKE 7

More precisely, the following steps are executed between KS, ED, CS, and
AS (see Figures 2 and 3).

1. Based on the shared master key mk, KS and ED perform an AKE, relayed
by CS (Figure 2a). This first AKE outputs a communication intermediary
key ikc.

2. The previous step (2-AKE) is repeated between KS and ED. It outputs an
application intermediary key ika.

3. KS sends ikc to CS, and ika to AS through two distinct pre-existing secure
channels (Figure 2b). Then, upon reception of the keys by CS and AS, KS
deletes its own copies in order to enhance the security of the subsequent
phases of the protocol (we elaborate more on this in Section 2.4).

4. Using ikc, ED and CS perform an AKE which outputs a communication
session key skc (Figure 3a).

5. Using ika, ED and AS perform an AKE which outputs an application session
key ska (Figure 3b).

6. Using the application session key ska, ED and AS can now establish an appli-
cation secure channel. Likewise, with the communication session key skc, ED
and CS can establish a distinct communication secure channel (Figure 3c).

We call P the protocol that involves ED, and is used to perform the 2-AKE
runs between ED and KS (steps 1-2), ED and CS (step 4), and ED and AS
(step 5). We call P ′ the 2-AKE protocol used on the back-end side between KS
and AS (resp. CS). Let Enc be the function used to set up the secure channel
between KS and AS (resp. CS) with the session key output by P ′ (step 3).

For the sake of clarity, we have depicted (Figure 2a) the case where the two
intermediary keys ikc and ika are successively computed. But the computation
of either key can be completely dissociated.7

2.3 The Building Blocks P , P ′, and Enc

Our 3-AKE protocol depends crucially on the 2-party protocols P and P ′, and
function Enc. Before making clear the properties of our 3-party protocol, we list
below the main features we require these three building blocks to have.

Protocol P . We require protocol P to fulfill the following properties.

– The scheme is a 2-party AKE protocol that provides mutual authentication.
– The scheme is based on symmetric-key functions solely.
– The scheme guarantees forward secrecy.

Although it is not related to the main goals we tackle, we add the following
requirement in order to improve the flexibility of the 3-AKE protocol:

7 Conversely, it may also be possible that both keys be computed at once during the
same run. The same key exchange protocol can be used in either case, the difference
lying in an additional derivation step that yields two keys from the unique output
of the original 2-party AKE.

8 G. Avoine, S. Canard, L. Ferreira

KS

CSED AS
AKE

mk

ikc/ika ← KDF(mk)

mk

ikc/ika ← KDF(mk)

(a) 2-AKE executed between ED and KS (relayed by
CS) with mk

KS

CSED AS

ikc, ika ← KDF(mk)

mk

mk

ikc, ika

{
ik
c }
K
S
-
C
S

{ik
a}
K
S-A

S

(b) Transmission by KS of intermediary keys ikc (to
CS) and ika (to AS) respectively through the secure
channels {·}KS-CS established between KS and CS, and
{·}KS-AS established between KS and AS

Fig. 2: 2-AKE executed between ED and KS with mk, and distribution of ikc,
ika

IoT-friendly AKE 9

KS

CSED AS
AKE

ska ← KDF(ika) ska ← KDF(ika)

mk

ikc, ika

skc ← KDF(ikc)

ikc ika

mk

skc ← KDF(ikc)

(a) 2-AKE executed between ED and CS with ikc

KS

CSED AS

mk

mk

ikc, ika

skc

ska ← KDF(ika)

ika

ska ← KDF(ika)

ikc

skc

AKE

(b) 2-AKE executed between ED and AS (relayed by CS)
with ika

KS

CSED

ED

AS

AS

ska ← KDF(ika) ska ← KDF(ika)

mk

mk

ikc, ika

ska, skc

ika

ska

ikc

skc

{·}skc

{·}ska

(c) Secure channels established: communication channel
{·}skc between ED and CS, and application channel {·}ska
between ED and AS

Fig. 3: 2-AKE executed between ED and AS (resp. CS) with ika (resp. ikc), and
subsequent secure channels

10 G. Avoine, S. Canard, L. Ferreira

– Any of the two parties can initiate a run of protocol P .

Combining symmetric-key cryptography and forward secrecy may appear coun-
terintuitive. Therefore, we informally recall what such a property means in that
context. Once a 2-AKE run of P is complete, past output secrets must remain
private even if the current symmetric root key (used to authenticate the parties
and compute the shared secret) is revealed.

More precisely, in a 2-AKE run done between ED and KS, the disclosure of
the current master key mk (used as root key) must not compromise past inter-
mediary keys ik computed by these two parties. Likewise, in a 2-AKE run done
between ED and some XS ∈ {CS,AS}, the disclosure of the current intermediary
key ik (used as root key in that case) must not compromise past session keys sk
computed by ED and XS.8

Protocol P ′. We demand P ′ to be a secure 2-AKE protocol that provides
mutual authentication, and forward secrecy. Since P ′ is applied between KS and
XS, asymmetric functions may be used.

Function Enc. We demand Enc to provide data confidentiality and data au-
thenticity. In the latter we include non-replayability of messages.

2.4 Main Features of the 3-AKE Protocol

In Section 4, we formally define the properties we demand for a 3-AKE protocol,
and prove that P , P ′, and Enc yield a secure 3-AKE protocol. Before, we detail
in this section the main features provided by our 3-AKE protocol and informally
justify these properties.

Management of the security. The key hierarchy (between mk, ik, and sk), allows
ED and KS to manage the overall security of the system. The key exchange
done between KS and ED (steps 1-2, Section 2.2) can be initiated by any but
only these two entities. Each 2-AKE done between ED and KS creates a new
intermediary key ik. This obsoletes the current intermediary key shared by ED
and XS ∈ {CS,AS}, and “disconnects” ED from XS by resetting ik at ED.
Hence, KS and ED can defend against a dishonest or corrupted XS.

Cryptographic separation of the layers. The use of two distinct intermediary
keys ikc and ika allows separating the communication layer (between ED and
CS) and the application layer (between ED and AS). The mutual authentication
done between KS and, respectively, CS and AS, guarantees that the intermediary
keys are sent to and received from legitimate parties only.ly.

8 A concrete instantiation of P is given in Section 5.

IoT-friendly AKE 11

Secure connection to any server. The 3-AKE protocol allows ED to share an
intermediary key ik with any (communication or application) server. Moreover,
ED can connect any such server without impairing the security with another
server. First, each 2-AKE run done between ED and KS yields a different inter-
mediary key ik. Hence each partnered ED and XS use a distinct key ik. Next, KS
deletes its copy of ik as soon as it has been received by XS. Finally, P provides
forward secrecy. The disclosure of the current master key mk (stored at ED and
KS) does not compromise a past output key ik. The forward secrecy ensured
by P ′ and the security of the channel established with Enc participate also in
the privacy of ik. Likewise, due to the forward secrecy of P , past session keys
sk (computed between ED and XS) remain private, even if the current key ik
(stored at ED and XS) is exposed

Quick session establishment. Once a first intermediary key ik is shared between
ED and XS, these two parties can perform as many 2-AKE runs (hence set up as
many successive secure channels) as wished without soliciting KS anymore (i.e.,
ED and XS repeat several times step 4 or 5, Section 2.2). This avoids overloading
KS (which has to manage many ED and XS). At the same time this hides to KS
the number and the frequency of the connections established between ED and
XS.

3 Session Resumption Procedure

3.1 Rationale for a Session Resumption Procedure

As explained in Section 2.4, after a first 2-AKE run with KS, ED shares an in-
termediary key ik with XS ∈ {CS,AS}. Then, ED and XS can execute, from ik,
subsequent 2-AKE runs without soliciting KS anymore. Consequently, as soon
as ED shares (distinct) intermediary keys with several servers, it can quickly
switch from one server to another back and forth without the help of KS. This
is particularly convenient for a mobile ED which must connect different com-
munication providers (hence different CS servers). Likewise, this allows ED to
connect several AS servers, hence to be securely used by different application
providers. Moreover, since P guarantees forward secrecy, the disclosure of (the
current value of) ik does not compromise past session keys sk. We call this faster
mode (without KS) a session resumption procedure.

Due to the intrinsic properties of the 2-AKE scheme P (see Section 2.3), any
peer (ED or XS) can initiate the key exchange. This implies that both peers can
initiate the session resumption procedure.

The main benefit of this procedure is to give the ability to switch between
servers without soliciting KS. Avoiding the involvement of KS (that is, avoiding
a whole 2-AKE run between ED and KS), allows to save time, computation cost
and communication cost for KS but mainly for ED. Indeed, the ED we consider
are low-resource, self-powered devices. The energy cost to transmit and to re-
ceive data usually exceeds the cost of cryptographic processing [26]. Hence it is
worth saving as much as possible the amount of data exchanged to compute a

12 G. Avoine, S. Canard, L. Ferreira

new session key.
Another limitation of a low-resource ED is its memory space. Being able to

resume a session with several servers implies to store simultaneously as many
intermediary keys. This is likely possible for a server but becomes prohibitive
for such kind of ED. In Section 3.2 we present a session resumption scheme that
solves this issue.

3.2 Session Resumption Procedure for Low-resource ED

Overview of the Procedure. The session resumption procedure for a low-
resource ED with XS ∈ {CS,AS} is made of two phases:

(a) The storage phase. ED and XS have an ongoing secure channel set up with
a session key sk (output by P). Both share an intermediary key ik. First,
ED encrypts ik under a key known only to itself (we elaborate on this in
Section 3.2). Next, ED sends this “ticket” to XS through the ongoing secure
channel. Upon reception of the ticket by XS, ED deletes ik. Then ED can
close the channel any time.

(b) The retrieval phase. ED starts a new 2-AKE run with a known XS. First,
ED gets, in the continuity of the run, the ticket it has sent previously. Next,
ED decrypts the ticket and gets the corresponding key ik. Then, ED and XS
complete the run with ik, and compute a new session key sk.

This procedure is reminiscent of existing schemes (e.g., [21, 25, 27]). However
none of the latter succeeds in combining session resumption and forward secrecy
without asymmetric cryptography or prohibitive requirements (for a constrained
ED) regarding memory, or the amount of transmitted data [2, 21]. In contrast,
our 3-AKE protocol provides a nifty solution to this issue, as explained below.

Computing the Ticket. The intermediary key ik that is stored at the server
and later retrieved by ED is encrypted. Only ED needs to decrypt ik since the
server stores its own copy of the key. Using the same encryption key k to protect
different intermediary keys (sent to different servers) obviously breaks forward
secrecy: revealing k allows decrypting past intermediary keys, hence compromis-
ing the session key sk computed with the latter. Therefore each intermediary
key must be encrypted with a different key k. However, replacing in ED’s mem-
ory each intermediary key ik with another (encryption) key k yields the same
memory issue and is pointless. Therefore, we compute the keys k used to encrypt
the intermediary keys as elements of a one-way key chain.

From an initial random key k0, each ticket is computed as ticketi+1 =
KW(ki+1, ik) with ki+1 = H(ki), i ≥ 0. KW is a key-wrap function [24], and
H a one-way function. ED keeps in memory only one key kj . This key is the
child of the key that has decrypted the last used ticket. When ED wants to
consume ticketi, it first computes the decryption key ki from the current key kj ,
i ≥ j: ki = Hi−j(kj). Then kj is replaced with ki+1 = H(ki), and ticketi cannot
be decrypted anymore.

IoT-friendly AKE 13

This unique encryption key gives ED the ability to compute multiple tickets,
therefore to resume as many sessions.

Two Chains of Keys. When ticketi is used, the current decryption key is
replaced with ki+1 = H(ki). Hence any previous ticketj , j ≤ i, is obsoleted. Let
us consider the following scenario. A mobile low-resource ED is managed by one
AS, and switches back and forth between two other servers CSa and CSb. ED
stores fresh ticketi, ticketj , and ticketk, i < j < k, respectively at AS, CSa, and
CSb. ED keeps the decryption key ki. When ED makes a new key exchange with
CSa, it retrieves ticketj and decrypts it with kj = Hj−i(ki). Then, ED replaces
the current key ki with kj+1 = H(kj). Whenever ED alternates between CSa
and CSb, the ticket decryption key is updated. Consequently, ED cannot use
ticketi. Even though ticketi was the most recent ticket, it would be obsoleted
at some point. This makes the session resumption procedure unusable with AS.
Therefore, we advocate the use of two chains of decryption keys corresponding
to the two types of CS and AS servers, and the two possibly different behaviours
of ED (see Figure 4). Nonetheless, if a different context requires so, a unique
chain of decryption keys can also be maintained. Note that, if the tickets are
used in the same order they are computed, all can be (legitimately) decrypted.

Figure 4a depicts the case where a CS ticket (ticketi) is used. The corre-
sponding decryption key ki is deleted, and ED keeps only ki+1. This obsoletes
all previous CS tickets. Figure 4b depicts the case where an AS ticket (ticket′0)
is used. The decryption key k′0 is deleted, and ED keeps only k′1. All AS ticket′j ,
j ≥ 1, are still usable.

k0

k1

...

ki

ki+1

ticket0

ticket1

ticketi

H

H

H

H

(a) CS tickets and keys

k′0

k′1

...

k′j

k′j+1

ticket′0

ticket′1

ticket′j

ticket′j+1

H

H

H

H

(b) AS tickets and keys

Fig. 4: Chains of keys used to compute a ticket

14 G. Avoine, S. Canard, L. Ferreira

Maintaining Forward Secrecy. When ticketi is used, the current encryp-
tion key kj , j ≤ i, stored at ED, is replaced with the next encryption key
ki+1 = H(ki). This forbids any old ticket from being decrypted. All the remain-
ing tickets that can be decrypted (from the now current key ki+1) have not been
used yet. Moreover, the protocol P provides forward secrecy. Hence, the disclo-
sure of the intermediary key ik protected into a (not used yet) ticket does not
compromise past session keys sk. In a way, the session resumption procedure
inherits the forward secrecy from P (and also from the one-wayness of H).

The use of the (forward secret) intermediary key ik highlights also why en-
crypting the session key sk in the ticket is not a good choice. The more data the
same session key protects, the worse its disclosure.9

4 3-AKE Security Model

Before describing in Section 5 a concrete instantiation of our generic 3-AKE
protocol, we present the essential building blocks of the security model that we
employ to formally prove the security of the 3-AKE protocol and its instantia-
tion.

In a nutshell, we use the security experiments of a 2-AKE model (entity au-
thentication, key indistinguishability), as described by Brzuska, Jacobsen, and
Stebila [12]. Taking inspiration from the 3(S)ACCE model of Bhargavan, Boure-
anu, Fouque, Onete, and Richard [10], we extend the 2-AKE model to incorpo-
rate the three parties of our 3-AKE protocol, and their interleaved operations.

In our 3-AKE security model, the adversary has full control over the commu-
nication network. It can forward, alter, drop any message exchanged by honest
parties, or insert new messages. Our 3-AKE model captures also forward secrecy.

4.1 Preliminaries

In this section, we recall the definitions of the basic security notions we use in
our results. The security definitions of a secure pseudo-random function (PRF),
can be found in Bellare, Desai, Jokipii, and Rogaway [6]. We take the definition
of a (stateful) authenticated encryption scheme (sAE) from Shrimpton [29] that
we rephrase below. The security definition of a MAC strongly unforgeable under
chosen-message attacks (SUF-CMA) can be found in Bellare and Namprempre [7].

Secure PRF. A pseudo-random function (PRF) F is a deterministic algorithm
which given a key K ∈ {0, 1}λ and a bit string x ∈ {0, 1}∗ outputs a string

9 Another reason to opt for ik is efficiency. In fact, sk may be quite large (e.g., two
pairs of keys, encryption and MAC, for each direction, and the last value of the
uplink and downlink frame counters). The ticket is transmitted twice between ED
and XS. As explained above, the amount of data exchanged with the server is a
burden for a wireless low-resource ED. From a single intermediary key ik, any kind
of security parameters can be computed. Hence the choice of ik.

IoT-friendly AKE 15

y = F (K,x) ∈ {0, 1}γ (with γ being polynomial in λ). Let Func be the set of all
functions of domain {0, 1}∗ and range {0, 1}γ . The security of a PRF is defined
with the following experiment between a challenger and an adversary A:

1. The challenger samples K
$←− {0, 1}λ, G

$←− Func, and b
$←− {0, 1} uniformly

at random.

2. The adversary may adaptively query values x to the challenger. The chal-
lenger replies to each query with either y = F (K,x) if b = 1, or y = G(x) if
b = 0.

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b.

The adversary’s advantage is defined as

advPRFF (A) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 1 (Secure PRF). A function F :{0, 1}λ×{0, 1}∗ → {0, 1}γ is said
to be a secure pseudo-random function (PRF) if, for all probabilistic polynomial
time adversary A, advPRFF (A) is a negligible function in λ.

Secure MAC. A message authentication code (MAC) consists of two algo-
rithms (Mac,Vrf). The tagging algorithm Mac takes as input a key K ∈ {0, 1}k
and a message m ∈ {0, 1}∗ and returns a tag τ ∈ {0, 1}γ (with γ being polyno-
mial in k). The verification algorithm Vrf takes as input the key K, a message
m, and a candidate tag τ for m. It outputs 1 if τ is a valid tag on message m
with respect to K. Otherwise, it returns 0. The notion of strong unforgeability
under chosen-message attacks (SUF-CMA) for a MAC G = (Mac,Vrf) is defined
with the following experiment between a challenger and an adversary A:

1. The challenger samples K
$←− {0, 1}k, and sets S ← ∅.

2. The adversary may adaptively query values m to the challenger. The chal-
lenger replies to each query with τ = Mac(K,m) and records (m, τ): S ←
S ∪ {(m, τ)}.

3. Finally, the adversary sends (m∗, τ∗) to the challenger.

The adversary’s advantage is defined as

advSUF-CMA
G (A) = Pr[Vrf(K,m∗, τ∗) = 1 ∧ (m∗, τ∗) /∈ S].

Definition 2 (SUF-CMA). A message authentication code G = (Mac,Vrf) with
Mac:{0, 1}k × {0, 1}∗ → {0, 1}γ is said to be strongly unforgeable under chosen-
message attacks (SUF-CMA) if, for all probabilistic polynomial time adversary
A, advSUF-CMA

G (A) is a negligible function in k.

16 G. Avoine, S. Canard, L. Ferreira

Stateful Authenticated Encryption. A stateful authenticated encryption
scheme (sAE) consists of two algorithms StAE = (StAE.Enc,StAE.Dec). The
encryption algorithm, given as (C, st′e) ← StAE.Enc(K,H,M, ste), takes as in-
put a secret key K ∈ {0, 1}λ, a header data H ∈ {0, 1}∗, a plaintext M , and
the current encryption state ste ∈ {0, 1}∗. It outputs an updated state st′e, and
either a ciphertext C ∈ {0, 1}∗ or an error symbol ⊥. The decryption algorithm,
given as (M, st′d) ← StAE.Dec(K,H,C, std), takes as input a key K, a header
data H, a ciphertext C, and the current decryption state std. It outputs an up-
dated state st′d, and either a value M , which is the message encrypted in C, or
an error symbol ⊥. The states ste and std are initialised to the empty string ∅.
The security of a sAE scheme is defined with the following experiment between
a challenger and an adversary A:

1. The challenger samples uniformly at random K
$←− {0, 1}λ, and b

$←− {0, 1}.
2. The adversary may adaptively query the encryption oracle Encrypt and the

decryption oracle Decrypt, as described by Figure 5.
3. Finally, the adversary outputs her guess b′ ∈ {0, 1} of b.

This game captures both the confidentiality and integrity properties of a stateful
AEAD scheme. The adversary’s advantage is defined as

advsAEStAE(A) =
∣∣Pr[AEncrypt,Decrypt ⇒ 1|b = 1]− Pr[AEncrypt,Decrypt ⇒ 1|b = 0]

∣∣ .
Definition 3 (Secure sAE). The encryption scheme StAE is said to be a secure
stateful authenticated encryption scheme (sAE) if, for all probabilistic polynomial
time adversary A, advsAEStAE(A) is a negligible function in λ.

Encrypt(M,H) Decrypt(C,H)

u← u+ 1 if b = 0 then return ⊥
M0 $←− {0, 1}|M| v ← v + 1
M1 ←M (M, std)← StAE.Dec(K,H,C, std)

(Cb, stbe)
$←− StAE.Enc(K,H,Mb, ste) if v > u or C 6= Cv or H 6= Hv

if Cb =⊥ then return ⊥ then sync← false

(Cu, Hu, ste)← (Cb, H, stbe) if sync = false then return M
return Cu return ⊥

Fig. 5: The Encrypt and Decrypt oracles in the sAE security experiment. The
counters u and v are initialised to 0, and sync to true at the beginning of the
experiment.

4.2 Execution Environment

Protocol Entities. Our model considers three sets of parties: a set K of KS
servers, a set E of ED parties, and a set X of XS ∈ {CS,AS}. Each party is given
a long term key ltk.

IoT-friendly AKE 17

Session Instances. Each party Pi maintains a set of instances Pi.Instances =
{π0

i , π
1
i , . . .} modeling several (sequential or parallel) executions of the 3-party

protocol Π. Each instance πni has access to the long term key Pi.ltk of its party
parent Pi. Moreover, each instance πni maintains the following internal state:

– The instance parent πni .parent ∈ K∪E ∪X indicating the party owning that
instance.

– The partner-party πni .pid ∈ K∪E ∪X indicating the intended party partner.
A party in one of the three sets can be partnered with a party belonging to
any of the two other sets.

– The role πni .ρ ∈ {ed, ks, cs, as} of Pi = πni .parent. If Pi ∈ E , then πni .ρ = ed.
If Pi ∈ K, then πni .ρ = ks. If Pi ∈ X , then πni .ρ ∈ {as, cs}.

– The session identifier πni .sid of an instance.
– The acceptance flag πni .α ∈ {⊥, running, accepted, rejected} originally set

to running when the session is ongoing, and set to accepted/rejected when
the party accepts/rejects the partner’s authentication.

– The session key πni .ck set to ⊥ at the beginning of the session, and set to a
non-null bitstring once πni computes the session key.

– The key material πni .km. If πni .parent ∈ K (resp. πni .parent ∈ X) and πni .pid ∈
X (resp. πni .pid ∈ K), then πni .km is set to ⊥ at the beginning of the session,
and set to a non-null bitstring once πni ends in accepting state. Otherwise
πni .km is always set to ⊥.

– The status πni .κ ∈ {⊥, revealed} of the session key πni .ck.
– The transcript πni .trscrpt of the messages sent and received by πni .
– The security bit πni .b ∈ {0, 1} sampled at random at the beginning of the

security experiments.
– The partner-instances set πni .ISet stores the instances that are involved in

the same protocol run as πni (including πni).
– The partner-parties set πni .PSet stores the parties parent of the instances in
πni .ISet (including πni .parent).

Adversarial queries. The adversary A is assumed to control the network, and
interacts with the instances by issuing to them the queries described below.

In our 3-AKE model, we use familiar queries. Nonetheless we require some
restrictions regarding the Test-query. This query aims at “evaluating” the qual-
ity of a key output by any of the 2-AKE runs done during a 3-AKE session.
We use the vanilla real-or-random experiment. Nonetheless, some session keys
output during a 3-AKE session are used in the same session, which allows the
adversary to trivially distinguish between a “real” session key and a random key.
Consequently, we forbid the adversary from issuing a Test-query with respect to
a key as soon as this key is used (i.e., as input to a function).

Moreover, we require the adversary to be stateless with respect to the Test-
query. That is, the key kb sent in response to a Test-query cannot be used
to interact with instances, nor contribute to answering other Test-challenges.

Instead of proving that the key is good, one could consider proving that the
key is good to be used for some purpose [11,20]. But we chose not to use a weaker
notion than the more established ones despite the necessity of these restrictions.

18 G. Avoine, S. Canard, L. Ferreira

– NewSession(Pi, ρ, pid): this query creates a new instance πni at party Pi,
having role ρ, and intended partner pid.

– Send(πni ,M): this query allows the adversary to send any message M to πni .
If πni .α 6= running, it returns ⊥. Otherwise πni responds according to the
protocol specification.

– Corrupt(Pi): this query returns the long-term key Pi.ltk of Pi. If Corrupt(Pi)
is the ν-th query issued by the adversary, then we say that Pi is ν-corrupted.
For a party that has not been corrupted, we define ν = +∞.

– Reveal(πni): this query returns the session key πni .ck, and πni .κ is set to
revealed. If Reveal(πni) is the ν-th query issued by the adversary, then we
say that πni is ν-revealed. For a party that has not been revealed, we define
ν = +∞.

– Test(πni): this query may be asked only once per pairwise partnered instances
throughout the game. If πni .α 6= accepted, then it returns ⊥. Otherwise it

samples an independent key k0
$←− KEY, and returns kb, where k1 = πni .ck.

The key kb is called the Test-challenge. We forbid the adversary from issuing
a Test-query, and answering a Test-challenge as soon as the corresponding
key πni .ck is used during the session. Moreover, the adversary is stateless
with respect to this query (it does not keep track of kb).

4.3 Security Definitions

Partnership. In order to define the partnership between two instances involved
in a 2-AKE run, we use the definition of matching conversations initially pro-
posed by Bellare and Rogaway [8], and modified by Jager, Kohlar, Schäge and
Schwenk [18].

Let Ti,n be the sequence of all (valid) messages sent and received by an in-
stance πni in chronological order. For two transcripts Ti,n and Tj,u, we say that
Ti,n is a prefix of Tj,u if Ti,n contains at least one message, and the messages in
Ti,n are identical to the first |Ti,n| messages of Tj,u.

Definition 4 (Matching Conversations). We say that πni has a matching
conversation to πuj , if

– πni has sent all protocol messages and Tj,u is a prefix of Ti,n, or
– πuj has sent all protocol messages and Ti,n = Tj,u.

Consequently, we define sid to be the transcript, in chronological order, of all
the (valid) messages sent and received by an instance during a 2-AKE run, but,
possibly, the last message. We say that two instances πni and πuj are pairwise
partnered if πni .sid = πuj .sid. Then, we define the 3-AKE partnering with the sets
ISet and PSet. πni .ISet stores instances partnered with πni , and πni .PSet stores
parties partnered with πni .

Definition 5 (Correctness). We define the correctness of a 3-AKE protocol
as follows. We demand that, for any instance π ending in an accepting state, the
following conditions hold:

IoT-friendly AKE 19

– |π.ISet| = 6. Let π.ISet be {πni , πmi , π`k, πsk, πuj , πvj }.
– πni .parent = πmi .parent = Pi ∈ E
– π`k.parent = πsk.parent = Pk ∈ K
– πuj .parent = πvj .parent = Pj ∈ X
– π.PSet = {Pi, Pj , Pk}
– πmi .sid = π`k.sid 6=⊥ and πmi .ck = π`k.ck 6=⊥
– πni .sid = πuj .sid 6=⊥ and πni .ck = πuj .ck 6=⊥
– πsk.sid = πvj .sid 6=⊥ and πsk.ck = πvj .ck 6=⊥
– πvj .km = πsk.km = πmi .ck = π`k.ck
– ∃ f | f(πmi .ck, π

n
i .trscrpt) = πni .ck = πuj .ck = f(πvj .km, π

u
j .trscrpt)

The last two conditions aim at “binding” the six instances involved in a
3-AKE run. Function f corresponds typically to the session key derivation func-
tion used by Pi (ED) and Pj (XS ∈ {CS,AS}) together.

More concretely, ck corresponds either to ik output by the 2-AKE run done
between ED and KS, or to sk output by the 2-AKE run done between ED and
XS (both with protocol P), or to the session key output by the 2-AKE run done
between KS and XS (with protocol P ′). km denotes the intermediary key ik sent
by KS to XS (see Figure 6).

KSπ`k πsk

(Pk)

XS

πvj

πuj

(Pj)ED

πmi

πni

(Pi)

P ′

Enc

km
=
ikck

=
ik

ck = sk

P

P

Fig. 6: The six instances involved in a correct 3-AKE run

Security of a 3-AKE protocol is defined in terms of an experiment played
between a challenger and an adversary. This experiment uses the execution en-
vironment described in Section 4.2. The adversary can win the 3-AKE experi-
ment in one of two ways: (i) by making an instance accept maliciously, or (ii) by
guessing the secret bit of the Test-instance. In both, the adversary can query all
oracles NewSession, Send, Reveal, Corrupt, and Test.

20 G. Avoine, S. Canard, L. Ferreira

Entity Authentication (EA). This security property must guarantee that (i)
any instance π ∈ {πni , πmi , π`k, πsk, πuj , πvj } ending in accepting state is pairwise
partnered with a unique instance, and (ii) the output of a 2-AKE run done
between Pk and Pi is used as root key in a 2-AKE run done between Pi and Pj .

Definition 6 (Entity Authentication (EA)). An instance π of a protocol
Π is said to maliciously accept in the 3-AKE security experiment with intended
partner P̃ , if

(a) π.α = accepted and π.pid = P̃ when A issues its ν0-th query.
(b) Any party in π.PSet is ν-corrupted with ν > ν0.
(c) Any instance in π.ISet is ν′-revealed with ν′ > ν0.
(d) There is no unique instance π̃ such that π.sid = π̃.sid,

or there is no instances πmi , π
n
i , π

u
j , π

v
j ∈ π.ISet such that

– πmi .pid = πvj .pid ∈ K,
– πni .parent = πmi .parent ∈ E,
– πuj .parent = πvj .parent ∈ X , and
– f(πmi .ck, π

n
i .trscrpt) = πni .ck = πuj .ck = f(πvj .km, π

u
j .trscrpt).

The adversary’s advantage is defined as its winning probability:

advent-authΠ (A) = Pr[A wins the EA game].

Key Indistinguishability. This security property must guarantee that the
adversary can do no more than guessing in order to distinguish from random
the session key output by any of the 2-AKE runs performed during a 3-AKE
protocol session.

Definition 7 (Key Indistinguishability). An adversary A against a protocol
Π, that issues its Test-query to instance π during the 3-AKE security experiment,
answers the Test-challenge correctly if it terminates with output b′, such that

(a) π.α = accepted
(b) Let π̃ be the last instance in π.ISet to end in accepting state: π̃.α = accepted

when A issues its ν0-th query.
(c) Any party in π.PSet is ν-corrupted with ν > ν0.
(d) No instance in π.ISet has been queried in Reveal queries.
(e) π.b = b′

The adversary’s advantage is defined as

advkey-indΠ (A) =

∣∣∣∣Pr[π.b = b′]− 1

2

∣∣∣∣ .
The definitions of entity authentication and key indistinguishability allow an

adversary to corrupt a party involved in the 3-AKE security experiment (up to
some point, in order to preclude trivial attacks). Therefore, protocols secure with
respect to Definition 8 below provide forward secrecy.

Definition 8 (3-AKE Security). A protocol Π is 3-AKE-secure if Π satisfies
correctness, and for all probabilistic polynomial time adversary A, advent-authΠ (A)

and advkey-indΠ (A) are a negligible function of the security parameter.

IoT-friendly AKE 21

4.4 Security Proof of our Generic 3-AKE Protocol

In this section we use the security model described in Sections 4.2 and 4.3 to
prove the security of the generic 3-AKE protocol Π depicted in Section 2. The
protocol Π is based on: (i) the 2-AKE protocol P executed between ED and
KS, ED and XS, (ii) the 2-AKE protocol P ′ executed between KS and XS, and
(iii) the function Enc used to set up a secure channel between KS and XS with
a session key output by P ′. Informally, the security of the 3-AKE protocol Π
relies on the 2-AKE-security [12] of P and P ′, and on the sAE-security [29] of
the function Enc. Based on the security of P , P ′, and Enc, we show that Π is a
secure 3-AKE protocol according to Definition 8.

Theorem 1. The protocol Π is a secure 3-AKE protocol under the assumption
that P is a secure 2-AKE protocol, P ′ is a secure 2-AKE protocol, and Enc is
a secure sAE function, and for any probabilistic polynomial time adversary A in
the 3-AKE security experiment against Π

advent-authΠ (A) = nK · nE · nX
[
2advent-authP (B1) + advent-authP ′ (B0) + advkey-indP ′ (B0)

+2advsAEEnc(B2)
]

advkey-indΠ (A) = advent-authΠ (A) + nK · nE · nX
[
2advkey-indP (B1) + advkey-indP ′ (B0)

+advsAEEnc(B2)
]

where nK , nE, nX are respectively the number of KS, ED, and XS parties, and
B0 is an adversary against the 2-AKE-security of P ′, B1 an adversary against
the 2-AKE-security of P , and B2 an adversary against the sAE-security of Enc.

Below, we give a sketch proof of Theorem 1. The full proof is given in Ap-
pendix A.

Entity authentication. First we consider the entity authentication experiment
described in Section 4.3. We use the following hops.

Game 0. This game corresponds to the entity authentication security exper-
iment.

Game 1. The adversary interacts with three unique parties, respectively in
the set K, X and E . This is equivalent to guessing the targeted parties, hence
implies a security loss equal to 1

nK ·nE ·nX .
Game 2. Let Pk ∈ K, Pj ∈ X and Pi ∈ E be the three parties. The challenger

aborts the game if the adversary succeeds in impersonating Pj to Pk. We reduce
this event to the 2-AKE-security of the protocol P ′ applied between Pk and Pj .

Hence a loss advent-authP ′ (B0).
Game 3. The challenger aborts if the adversary succeeds in impersonating

Pi to Pk. We reduce this event to the 2-AKE-security of the protocol P applied
between Pk and Pi. Hence a loss advent-authP (B1).

22 G. Avoine, S. Canard, L. Ferreira

Game 4. The challenger aborts if the adversary succeeds in getting the in-
termediary key ik sent by Pk to Pj through the secure channel established with
the session key output by P ′ and the function Enc, or in forging a valid message
that carries a key of the adversary’s choice. We reduce both events to the sAE-
security of Enc. In turn, we must assume that the Enc key is random. The latter
is reduced to the 2-AKE-security of P ′. Hence a loss advkey-indP ′ (B0)+2advsAEEnc(B2).

Game 5. The challenger aborts if the adversary succeeds in impersonating Pi
to Pj (or conversely). We reduce this event to the 2-AKE-security of P . Hence

a loss advent-authP (B1). To that point, the adversary has no chance to win.
Collecting all the probabilities from Game 0 to Game 5 yields the given

bound.

Key indistinguishability. Now we consider the key indistinguishability security
experiment described in Section 4.3.

Game 0. This game corresponds to the key indistinguishability security ex-
periment.

Game 1. The challenger aborts and chooses b′ ∈ {0, 1} uniformly at random
if there exists an instance that maliciously accepts. In other words, we make the
same modifications as in the games performed during the entity authentication
proof. Hence a loss advent-authΠ (A).

Game 2. The adversary interacts with three unique parties, respectively in
the set K, X and E . This is equivalent to guessing the targeted parties, hence a
loss 1

nK ·nE ·nX .
Game 3. Let Pk ∈ K, Pj ∈ X and Pi ∈ E be the three parties. In this game,

we rely upon the key-ind-security of the protocol P between Pi and Pk to replace
the session key ik with a truly random value. Hence a loss advkey-indP (B1).

Game 4. In this game, we rely upon the key-ind-security of the protocol P ′

between Pk and Pj to replace the session key with a truly random value. Hence

a loss advkey-indP ′ (B0).
Game 5. Now the adversary can try to get the key (allegedly ik) sent by Pk

to Pj , and to compute the session key sk (shared between Pi and Pj). The key
ik is sent by Pk to Pj protected with Enc. Hence we reduce this event to the
sAE-security of Enc. In turn, this relies implicitly on the fact that the encryption
key (output by P ′) used to key Enc be indistinguishable from random. This is
the case due to Game 4. Therefore the challenger aborts the game if the adver-
sary succeeds in getting ik. Hence a loss advsAEEnc(B2).

Game 6. The challenger aborts if the adversary succeeds in breaking the
key-ind-security of P between Pi and Pj . Hence a loss advkey-indP (B1). To that
point, the adversary can do no better than guessing.

Collecting all the probabilities from Game 0 to Game 6 yields the given
bound.

IoT-friendly AKE 23

5 Instantiation of the 3-AKE Protocol

In this section we present a concrete instantiation of our 3-AKE protocol de-
scribed in Section 2. We have to choose a 2-AKE-secure protocol P , a 2-AKE-
secure protocol P ′, and a sAE-secure function Enc. Recall that the protocol P
must fulfill the properties listed in Section 2.3, which includes the essential for-
ward secrecy.

P is a symmetric-key based protocol, whereas P ′ can implement asymmet-
ric schemes. Therefore we define the long term key ltk of each party to be
ltk = (pubk, prvk, rootk) where (i) pubk is a certified public key, (ii) prvk is
the corresponding private key, and (iii) rootk is a symmetric root key. For any
party in K, the three components of ltk are defined. For any party in X , ltk is
fully defined after the first 3-AKE run (before, rootk =⊥). For any party in E ,
ltk = (⊥,⊥, rootk).

We describe an instantiation of P with (Section 5.3) and without (Section 5.2)
the session resumption procedure for low-resource ED.

5.1 Protocol P ′ and Function Enc

We instantiate the 2-AKE protocol P ′ with TLS 1.3. In order not to impair
the security, we enforce (EC)DHE and forbid 0-RTT mode. We define the Enc
function to be the record layer of TLS 1.3.

5.2 Forward Secret 2-AKE Protocol P

We instantiate the 2-AKE protocol P with the SAKE protocol [3]. SAKE fulfills
all the properties listed in Section 2.3.10

SAKE uses a key-evolving scheme, based on a one-way function, to update the
symmetric root key shared by the two peers. The root key is made of two main
components: a derivation key K, and an independent authentication key K ′.
K is used in the session key derivation. K ′ allows authenticating the messages,
tracking the root key evolution (i.e., its successive updates), and, if necessary,
resynchronising in the continuity of the protocol run. After a complete and cor-
rect run of SAKE, both peers have the guarantee that their root key is updated
and synchronised. That is, SAKE is self-synchronising. When any of the two
peers deems the session key can be safely used, it has the guarantee that its
partner is synchronised (in particular, it is not late). Hence, SAKE guarantees
forward secrecy.

Thus, applying SAKE, ED and KS compute an intermediary ik with their
shared master key mk (used as SAKE root key). The current master key is then
updated with the one-way function update: mki+1 ← update(mki). Likewise,
applying SAKE, ED and XS ∈ {CS,AS} compute a session key sk with the key
ik they share (used as SAKE root key in that case). Eventually, the SAKE root

10 Any other 2-AKE protocol can be used, as long as it provides the same properties
as SAKE, but we are not aware of other such protocols.

24 G. Avoine, S. Canard, L. Ferreira

key used in that case is updated: ikt+1 ← update(ikt).
Figure 7 depicts the evolution of the three types of keys over time: the master

key mk, the intermediary key ik, and the session key sk. The computation of ik0

and mk1 from mk0 corresponds to the 2-AKE run executed between ED and KS
as depicted by Figure 2a. The computation of sk2 and ik3 from ik2 corresponds
to the 2-AKE run done between ED and CS (resp. AS) with ik = ikc (resp.
ik = ika) as depicted by Figure 3a (resp. Figure 3b). Note that the keys ikc
and ika are computed from two different values mk (i.e., yielded by two different
2-AKE runs between ED and KS). In Figure 7, the branch mk0 → mk1 → · · ·
corresponds to the evolution of mk throughout successive key exchange runs
executed between ED and KS. Each of these runs yields a new intermediary
key ik = ik0. The branch ik0 → ik1 → · · · corresponds to the evolution of ik
throughout successive key exchange runs (each one outputting a session key ski)
executed between ED and XS without the involvement of KS.

mk0
mk0

mk1
mk1 · · ·

update

mk0ik0 ik1 ik2
ik2

ik3
ik3 · · ·

...

sk0 sk1 sk2 sk3

K
D
F

update

K
D
F

K
D
F

Fig. 7: Key chains

5.3 Protocol P with Session Resumption Scheme for Low-resource
ED

In this section, we describe a session resumption scheme dedicated to low-
resource ED. This scheme (i) fulfills the features of the procedure described
in Section 3.2, and (ii) is a 2-AKE-secure protocol (which include, in particular,
forward secrecy). Recall that the session resumption procedure is made of two
phases (see Section 3.2): the storage phase (phase (a)) and the retrieval phase
(phase (b)). The retrieval phase of the scheme for low-resource ED is a variant of
the SAKE protocol adapted to include the use of the ticket. We call this variant
SAKE-R.

Session Resumption Procedure with SAKE-R. Figure 8 depicts the two
phases of the procedure regarding the evolution of the keys.

Figure 9 depicts the storage phase of the session resumption procedure. The
computation Hn(kj) = H(· · ·H(H(kj)) · · ·) corresponds to n times the applica-
tion of function H, where n is the “distance” between the current key kj stored

IoT-friendly AKE 25

mk0 mk1 · · ·

ik0 ik1 ik2

ik2 ik3 · · ·
sk0 sk1

sk2 sk3

pause (phase (a))

resume (phase (b))

Fig. 8: Resuming a chain of intermediary keys (from ik2)

by ED and the (new) key ki needed to encrypt ik (i.e., n = i − j).11 SAKE
(hence SAKE-R) uses two main keys: an authentication key K ′ and a derivation
key K. Therefore, ik corresponds to K‖K ′.

ED XS ∈ {CS,AS}

ki ← Hn(kj)
// ik = K‖K′
ticket← KW(ki, ik)
store (idticket, idserver)

idticket‖ticket−−−−−−−−−−−−−−→
store (idticket, ticket, ik)

ack←−−−−−−−−−−−−−−
delete ik

Fig. 9: Storage of a ticket

During the storage phase, ED merely sends the ticket through the ongoing
secure channel established with XS (see Section 3.2). When ED initiates the re-
trieval phase with SAKE-R (see Figure 10), the first message sent to XS carries
an identifier of the ticket to retrieve. XS responds with the corresponding ticket.
The parameter idticket indicates ED which key ki (i.e., essentially its index i)
must be used to decrypt the corresponding ticket.

The subsequent messages are essentially the same as the original SAKE pro-
tocol. They embed pseudo-random values that participate in the mutual authen-
tication, and the session key computation. When the server is the initiator, the
ticket is sent in the first message (see Figure 11).

For the sake of clarity we use the following notations:

11 See Section 3.2.

26 G. Avoine, S. Canard, L. Ferreira

– kdf corresponds to: sk ← KDF(K, g(rA, rB))12

– upd corresponds to
1. K ← update(K)
2. K ′ ← update(K ′)

KDF is the session key derivation function used in SAKE (and SAKE-R). update
is the one-way function used to update the root key (i.e., the intermediary key
ik in that case). verif(k,m, τ) denotes the MAC verification function. It takes as
input a secret key k, a message m, and a tag τ . It outputs true if τ is a valid
tag on message m with respect to k. Otherwise, it returns false.

We chose to model H and KDF as PRFs, and KW as an AE function.

Once ED gets ik, the ticket decryption key kj currently kept by ED is replaced
with ki+1 = H(ki), where ki is the key used to decrypt the retrieved ticket (see
Section 3.2). Therefore, ED rejects any replay of an already consumed ticket.

Observe that ED updates its root key ik = K‖K ′ upon reception of message
mB . If XS does not receive message τA, it does not update its own root key ik.
Hence ED and the server are “desynchronised” (i.e., they do not share the same
value of ik). When ED initiates anew the key exchange, it executes the SAKE
protocol (and not SAKE-R) since it has already retrieved ik. SAKE enables ED
and XS to resynchronise in the continuity of the protocol run (i.e., SAKE is
self-synchronising). Therefore, ED and XS can perform a correct key exchange,
and eventually compute a shared session key sk.

Security Proof for SAKE-R. We consider the case where ED initiates SAKE-
R (see Figure 10).13 With the following theorem we claim that SAKE-R is a
secure 2-AKE protocol with respect to the security model of Brzuska et al. [12].

Theorem 2. The protocol SAKE-R is a secure 2-AKE protocol, and for any
probabilistic polynomial time adversary A in the 2-AKE security experiment
against SAKE-R

advent-authSAKE-R(A) ≤ nq
[
(nq − 1)2−(λ−1) + 2(q − 1)advPRFH (B0) + 2advAEKW(B1)

+3advSUF-CMA
MAC (B2) + q · advPRFupdate(B3)

]
advkey-indSAKE-R(A) ≤ advent-authSAKE-R(A) + nq

[
2
(
advAEKW(B1) + advPRFKDF(B4)

)
+(q − 1)

(
advPRFupdate(B3) + 2advPRFH (B0)

)]
where n is the number of parties (ED and XS), q the maximum number of in-
stances (sessions) per party, λ the size of the pseudo-random values (rA, rB),
B0 an adversary against the PRF-security of H, B1 an adversary against the AE-
security of KW, B2 an adversary against the SUF-CMA-security of MAC, B3 an

12 Function g is deliberately left undefined. For instance, g(rA, rB) can be equal to the
concatenation or the bitwise addition of rA and rB .

13 The converse case, where the XS is the initiator, follows the same reasoning.

IoT-friendly AKE 27

ED [A] XS ∈ {CS,AS} [B]
(−) (K,K′)

(kj , idticket) (idticket, ticket)

rA
$←− {0, 1}λ

mA ← A‖rA‖idticket
mA−−−−−−−−→

if (idticket not found) then

abort

rB
$←− {0, 1}λ

τB ← MAC(K′, B‖A‖rB‖rA‖idticket‖ticket)
mB ← rB‖ticket‖τB

mB←−−−−−−−−
ki ← Hn(kj)
ik ← KW−1(ki, ticket)
if (ik = ⊥) then

abort

// ik = K‖K′
if (verif(K′, B‖A‖rB‖rA‖idticket‖ticket, τB) = false) then

abort

ki+1 ← H(ki)
delete kj , ki

τA ← MAC(K′, A‖B‖rA‖rB)

sk ← kdf
K,K′ ← upd

τA−−−−−−−−→
if (verif(K′, A‖B‖rA‖rB , τA) = false) then

abort

sk ← kdf
K,K′ ← upd

τ ′B ← MAC(K′, rB‖rA)
delete ticket

τ ′B←−−−−−−−−
if (verif(K′, rB‖rA, τ ′B) = false) then

abort

Fig. 10: Session Resumption with SAKE-R initiated by ED

28 G. Avoine, S. Canard, L. Ferreira

ED [B] XS ∈ {CS,AS} [A]
(−) (K,K′)

(kj , idticket) (idticket, ticket)

rA
$←− {0, 1}λ

mA ← A‖rA‖idticket‖ticket
mA←−−−−−−−−

if (idticket not found) then

abort

ki ← Hn(kj)
ik ← KW−1(ki, ticket)
if (ik = ⊥) then

abort

ki+1 ← H(ki)
delete kj , ki

// ik = K‖K′

rB
$←− {0, 1}λ

τB ← MAC(K′, B‖A‖rB‖rA)
mB ← rB‖τB

sk ← kdf
K,K′ ← upd

mB−−−−−−−−→
if (verif(K′, B‖A‖rB‖rA, τB) = false) then

abort

sk ← kdf
K,K′ ← upd

τA ← MAC(K′, A‖B‖rA‖rB)
delete ticket

τA←−−−−−−−−
if (verif(K′, A‖B‖rA‖rB , τA) = false) then

abort

Fig. 11: Session Resumption with SAKE-R initiated by XS ∈ {CS,AS}

IoT-friendly AKE 29

adversary against the PRF-security of update, and B4 an adversary against the
PRF-security of KDF.

Below we give a sketch proof of Theorem 2. The full proof is given in Ap-
pendix B.

We consider the 2-AKE security model of Brzuska et al. [12], and define
the entity authentication and the key indistinguishability security experiments
accordingly.

Entity authentication. We start with the 2-AKE entity authentication exper-
iment. Let advent-authSAKE-R(A) be the probability that the adversary A) wins the
entity authentication game. Let advent-authSAKE-R,client(A) bounds the probability that

the adversary succeeds against a client (ED), and advent-authSAKE-R,server(A) bounds
the probability that the adversary succeeds against a server (XS ∈ {CS,AS}).
We have that advent-authSAKE-R(A) ≤ advent-authSAKE-R,client(A) + advent-authSAKE-R,server(A). We
use the following hops. We first consider an adversary that targets a client.

Game 0. This game corresponds to the 2-AKE entity authentication security
experiment when the adversary targets a client instance.

Game 1. The challenger aborts if there exists an instance that chooses a ran-
dom value rA or rB that is not unique. There is at most n × q random values,
each uniformly drawn at random in {0, 1}λ. Hence the two games are equivalent

up to a collision term nq(nq−1)
2λ

.
Game 2. The adversary interacts with a single client instance. This is equiv-

alent to guessing the targeted instance, hence a loss 1
nq .

Game 3. The first key k0 used to compute a cookie is uniformly drawn
at random. Each subsequent key is computed with the function H. If k0 is
random, one can rely on the PRF-security of H = PRFH(·, ·). In turn, since
PRFH(k0, ·) can be replaced with a truly random function, its output k1 is ran-
dom. Therefore, one can rely on the pseudo-randomness of the function H keyed
with this new value k1, and so forth. Each transition (i.e., each computation of
kt+1 = H(kt), t ≥ 0) implies a loss equal to advPRFH (B0). Hence an overall loss at
most (q − 1)advPRFH (B0).

Game 4. In this game, one relies on the AE-security of function KW to guar-
antee that ik = K‖K ′ (hence K ′) is indistinguishable from random. This is
possible because ki is indistinguishable from random due to Game 3. Hence a
loss advAEKW(B1).

Game 5. The challenger aborts if the targeted instance π ever receives a valid
message mB but no instance partnered with π has output that message. We re-
duce this event to the SUF-CMA-security of the MAC function used to compute
mB . Hence a loss advSUF-CMA

MAC (B2).
Game 6. The challenger aborts if the targeted instance π ever receives a valid

message τ ′B but no instance partnered with π has output that message. We re-
duce this event to the SUF-CMA-security of the MAC function used to compute
τ ′B . In turn, we must rely on the PRF-security of the function update used to

output the current MAC key. Hence a loss advPRFupdate(B3) + advSUF-CMA
MAC (B2). To

30 G. Avoine, S. Canard, L. Ferreira

that point, the adversary has no chance to win.

Now we consider an adversary that targets a server.

Game 0. This game corresponds to the 2-AKE entity authentication security
experiment when the adversary targets a server instance.

Game 1. The challenger aborts if there exists an instance that chooses a ran-
dom value rA or rB that is not unique. There is at most n × q random values,
each uniformly drawn at random in {0, 1}λ. Hence the two games are equivalent

up to a collision term nq(nq−1)
2λ

.
Game 2. The adversary interacts with a single server instance. This is equiv-

alent to guessing the targeted instance, hence a loss 1
nq .

Game 3. The first key k0 used to compute a cookie is uniformly drawn at ran-
dom. Each subsequent key is computed with the function H. Since k0 is random,
one relies on the PRF-security of H = PRFH(·, ·). In turn, since PRFH(k0, ·) can
be replaced with a truly random function, its output k1 is random. Therefore,
one relies on the pseudo-randomness of the function H keyed with this new value
k1, and so forth. Each transition (i.e., each computation of kt+1 = H(kt), t ≥ 0)
implies a loss advPRFH (B0). Hence an overall loss at most (q − 1)advPRFH (B0).

Game 4. In this game, one relies on the AE-security of function KW to guar-
antee that ik = K‖K ′ (hence K ′) is indistinguishable from random. This is
possible because ki is indistinguishable from random due to Game 3. Hence a
loss advAEKW(B1).

Game 5. The first value of K ′ is uniformly chosen at random. During each
run of SAKE-R, K ′ is updated with the function update. Since the first K ′ is
random, one relies on the PRF-security of update = PRFupdate(·, ·). In turn, since
PRFupdate(K

′, ·) can be replaced with a truly random function, its output (up-
dated K ′) is random. Therefore, one relies upon the pseudo-randomness of the
function update keyed with this new value K ′, and so forth. Each transition (i.e.,
each update of K ′) implies a loss advPRFupdate(B3). Hence an overall loss at most

(q − 1)advPRFupdate(B3).
Game 6. The challenger aborts if the targeted instance π ever receives a valid

message τA but no instance partnered with π has output that message. Such a
forgery can be achieved in one of two ways: either the adversary guesses the MAC
key used to compute τA, or it gets the key carried in cookie. The first possibility
is reduced to the SUF-CMA-security of the MAC function. The second possibil-
ity is reduced to the AE-security of function KW, which is already assumed due
to Game 4. Hence a loss advSUF-CMA

MAC (B2). To that point, the adversary has no
chance to win.

Collecting all the probabilities yields the indicated bound.

Key indistinguishability. Now we consider the 2-AKE key indistinguishability
security experiment.

IoT-friendly AKE 31

Game 0. This game corresponds to the 2-AKE key indistinguishability secu-
rity experiment.

Game 1. The challenger aborts and chooses b ∈ {0, 1} uniformly at random
if there exists an instance that accepts maliciously. Hence a loss advent-authSAKE-R(A).

Game 2. The adversary interacts with a single instance. This is equivalent
to guessing the targeted instance, hence a loss 1

nq .
Game 3. We distinguish two cases: the adversary targets either a client in-

stance or a server instance, corresponding respectively to an advantage advkey-indSAKE-R,client(A)

and advkey-indSAKE-R,server(A). Let adv3 be the advantage of the adversary of winning

in Game 3. We have that adv3 ≤ advkey-indSAKE-R,client(A) + advkey-indSAKE-R,server(A). We
begin with the first case.

Gameclient 3. We rely on the AE-security of KW. In turn, we recursively rely
on the PRF-security of the function H used to output the cookie decryption key
ki. Hence a loss at most advAEKW(B1) + (q − 1)advPRFH (B0).

Gameclient 4. Due to Gameclient 3, ik = K‖K ′ (hence K) is indistinguishable
from random. Hence we rely on the PRF-security of the function KDF used to
compute the session key sk. Hence a loss advPRFKDF(B4). To that point the adver-
sary can do no better than guessing.

Now we consider the case where the adversary targets a server instance.

Gameserver 3. The key K used by the server instance to compute the session
key is updated throughout the successive runs. We rely on the PRF-security of
the function update. Hence a loss at most (q − 1)advPRFupdate(B3).

Gameserver 4. We rely on the AE-security of KW. In turn, we recursively rely
on the PRF-security of the function H used to output the cookie decryption key
ki. Hence a loss at most advAEKW(B1) + (q − 1)advPRFH (B0).

Gameserver 5. Due to Gameserver 3 and Gameserver 4, K is indistinguishable
from random. Hence we rely on the PRF-security of function KDF used to com-
pute the session key sk. Hence a loss advPRFKDF(B4). To that point the adversary
can do no better than guessing.

Collecting all the probabilities yields the indicated bound.

5.4 Achieving 3-AKE Security

P = SAKE is proved to be a secure 2-AKE protocol [3] in the Brzuska et al.
security model (which captures forward secrecy) [12]. P = SAKE-R is a 2-AKE-
secure protocol from Theorem 2. With respect to the 3-AKE security model,
we define the long-term key component rootk of any ED to be rootk = (K,K ′)
if P = SAKE, and rootk = (K,K ′, kj) if P = SAKE-R. That is, in the latter
case, we allow the 3-AKE adversary to get the ticket encryption key kj through a
Corrupt-query, in addition to the derivation master key K and the authentication
master key K ′.

P ′ = TLS 1.3 is proved to be a secure 2-AKE protocol [15]. Although this
result applies to an earlier draft of the protocol, we may reasonably assume that

32 G. Avoine, S. Canard, L. Ferreira

the final version also guarantees 2-AKE-security.
Enc defined as the record layer of TLS 1.3 is proved to be AE-secure [5] in the

sense of Rogaway [23] (indistinguishability from random bits) which implies AE-
security in the sense of Shrimpton [29] (real-from-random indistinguishability).
In addition, in TLS 1.3, a per-record nonce derived from a sequence number aims
at guaranteeing non-replayability of the records (the sequence number being
maintained independently at both sides). Hence we assume the sAE-security of
Enc.

Hence, from Theorem 1, our instantiation (with and without the session
resumption scheme for low-resource ED) is a 3-AKE-secure protocol according
to Definition 8.

6 Conclusion

We have described a generic 3-party authenticated key exchange (3-AKE) pro-
tocol dedicated to IoT. Solely based on symmetric-key functions (regarding
the computations done between the end-device and the back-end network),
our 3-AKE protocol guarantees forward secrecy, in contrast to widely deployed
symmetric-key based IoT protocols. It also enables session resumption without
impairing security (in particular, forward secrecy is maintained). This allows sav-
ing communication and computation cost, and is advantageous for low-resource
end-devices.

In addition, we have described a concrete instantiation of our 3-AKE proto-
col, and presented a security model used to formally prove the security of our
3-AKE protocol and its concrete instantiation.

Our 3-AKE protocol can be applied in a real-case IoT deployment (i.e., in-
volving numerous end-devices and servers) such that the latter inherits from
the security properties of the protocol. This results in the ability for the (mo-
bile) end-device to securely switch from one server to another back and forth
at a reduced (communication and computation) cost, without compromising the
sessions established with other servers.

Acknowledgment. The authors would like to thank an anonymous reviewer
from ESORICS 2019 for pointing out a mistake in the security model (Test-
query).

References

1. Accenture: Winning with the Industrial Internet of Things – How to accelerate the
journey to productivity and growth (2015)

2. Aviram, N., Gellert, K., Jager, T.: Session Resumption Protocols and Efficient
Forward Security for TLS 1.3 0-RTT. Cryptology ePrint Archive, Report 2019/228
(2019), to appear at Eurocrypt 2019.

3. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key Authenticated Key Ex-
change (SAKE) with Perfect Forward Secrecy. Cryptology ePrint Archive, Report
2019/444 (2019)

IoT-friendly AKE 33

4. Avoine, G., Ferreira, L.: Rescuing LoRaWAN 1.0. In: Financial Cryptography and
Data Security (FC 2018) (2018), https://fc18.ifca.ai/preproceedings/13.pdf

5. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented
secure channels and the goal of the TLS 1.3 record layer. In: Au, M.H., Miyaji, A.
(eds.) ProvSec 2015: 9th International Conference on Provable Security. Lecture
Notes in Computer Science, vol. 9451, pp. 85–104. Springer, Heidelberg, Germany,
Kanazawa, Japan (Nov 24–26, 2015). https://doi.org/10.1007/978-3-319-26059-4 5

6. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment
of symmetric encryption. In: 38th Annual Symposium on Foundations of Com-
puter Science. pp. 394–403. IEEE Computer Society Press, Miami Beach, Florida
(Oct 19–22, 1997). https://doi.org/10.1109/SFCS.1997.646128

7. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. Journal of Cryptology 21(4),
469–491 (Oct 2008). https://doi.org/10.1007/s00145-008-9026-x

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology – CRYPTO’93. Lecture Notes in Computer
Science, vol. 773, pp. 232–249. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 22–26, 1994). https://doi.org/10.1007/3-540-48329-2 21

9. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the secu-
rity of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004),
http://eprint.iacr.org/2004/331

10. Bhargavan, K., Boureanu, I., Fouque, P.A., Onete, C., Richard, B.: Content deliv-
ery over TLS: a cryptographic analysis of keyless SSL. In: 2017 IEEE European
Symposium on Security and Privacy (EuroS&P). pp. 1–16. IEEE (April 2017).
https://doi.org/10.1109/EuroSP.2017.52

11. Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less
is more: relaxed yet composable security notions for key exchange. In-
ternational Journal of Information Security 12(4), 267–297 (August 2013),
https://doi.org/10.1007/s10207-013-0192-y

12. Brzuska, C., Jacobsen, H., Stebila, D.: Safely exporting keys from secure channels:
On the security of EAP-TLS and TLS key exporters. In: Fischlin, M., Coron,
J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016, Part I. Lecture Notes in
Computer Science, vol. 9665, pp. 670–698. Springer, Heidelberg, Germany, Vienna,
Austria (May 8–12, 2016). https://doi.org/10.1007/978-3-662-49890-3 26

13. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol – Version
1.2. https://tools.ietf.org/html/rfc5246 (August 2008)

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

15. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016), http://eprint.iacr.org/2016/081

16. GSMA: 3GPP Low Power Wide Area Technologies – GSMA White Paper (October
2016)

17. i-scoop: The Industrial Internet of Things (IIoT): the business guide to In-
dustrial IoT. https://www.i-scoop.eu/internet-of-things-guide/industrial-internet-
things-iiot-saving-costs-innovation/ (2018)

18. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE
in the standard model. Cryptology ePrint Archive, Report 2011/219 (2011),
http://eprint.iacr.org/2011/219

19. Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., Kiviner, T.: Internet Key Exchange
Protocol Version 2 (IKEv2). https://tools.ietf.org/html/rfc7296 (October 2014)

34 G. Avoine, S. Canard, L. Ferreira

20. Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16: 23rd Con-
ference on Computer and Communications Security. pp. 1438–1450. ACM Press,
Vienna, Austria (Oct 24–28, 2016). https://doi.org/10.1145/2976749.2978325

21. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3.
https://tools.ietf.org/html/rfc8446 (August 2018)

22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature
and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2), 120–126 (1978)

23. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V.
(ed.) ACM CCS 02: 9th Conference on Computer and Communications Se-
curity. pp. 98–107. ACM Press, Washington D.C., USA (Nov 18–22, 2002).
https://doi.org/10.1145/586110.586125

24. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006. Lecture
Notes in Computer Science, vol. 4004, pp. 373–390. Springer, Heidelberg, Germany,
St. Petersburg, Russia (May 28 – Jun 1, 2006). https://doi.org/10.1007/11761679 -
23

25. Salowey, J., Zhou, H., Eronen, P., Tschofenig, H.: Transport Layer Security (TLS)
Session Resumption without Server-Side State. https://tools.ietf.org/html/rfc5077
(January 2008)

26. Seys, S., Preneel, B.: Power Consumption Evaluation of Efficient Digital Signature
Schemes for Low Power Devices. In: IEEE International Conference on Wireless
And Mobile Computing, Networking And Communications. WiMob 2005, vol. 1,
pp. 79–86. IEEE (August 2005). https://doi.org/10.1109/WIMOB.2005.1512820

27. Sheffer, Y., Tschofenig, H.: Internet Key Exchange Protocol Version 2 (IKEv2) –
Session Resumption. https://tools.ietf.org/html/rfc5723 (January 2010)

28. Shoup, V.: Sequences of games: a tool for taming complexity in se-
curity proofs. Cryptology ePrint Archive, Report 2004/332 (2004),
http://eprint.iacr.org/2004/332

29. Shrimpton, T.: A characterization of authenticated-encryption as a form of
chosen-ciphertext security. Cryptology ePrint Archive, Report 2004/272 (2004),
http://eprint.iacr.org/2004/272

30. Sigfox: Secure SigFox Ready devices – Recommendation guide (2017)

31. Sigfox: SigFox Technical Overview (May 2017)

32. Sornin, N.: LoRaWAN 1.1 Specification (October 2017), LoRa Alliance, version
1.1, 11/10/2017

33. Sornin, N., Luis, M., Eirich, T., Kramp, T.: LoRaWAN Specification (July 2016),
LoRa Alliance, version 1.0

34. Yegin, A.: LoRaWAN Backend Interfaces 1.0 Specification (October 2017), LoRa
Alliance, version 1.0, 11/10/2017

A Security Proof for the Generic 3-AKE Protocol

In this section, we give a proof of Theorem 1. We proceed through a sequence
of games [9, 28] between a challenger and an adversary A.

IoT-friendly AKE 35

A.1 Entity Authentication for the Generic 3-AKE Protocol

First we consider the entity authentication experiment described in Section 4.3.
Let Ei be the event that the adversary succeeds in making an instance accept
maliciously in Game i. We use the following hops.

Game 0. This game corresponds to the entity authentication security experiment
described in Section 4.3. Therefore we have that

Pr[E0] = advent-authΠ (A)

Game 1. In this game, the challenger aborts the experiment if it does not guess
the party the adversary targets, and its party partners. There are respectively
nK , nE , nX parties in the sets K, E , and X . Therefore we have that

Pr[E1] = Pr[E0]× 1

nK · nE · nX
Game 2. Now the parties Pk ∈ K, Pj ∈ X and Pi ∈ E are fixed. In this game, the
challenger aborts the experiment if the adversary succeeds in impersonating Pj
to Pk or conversely. We reduce this event to the 2-AKE-security of the protocol
P ′ applied between Pk and Pj . Therefore we have that

Pr[E1] ≤ Pr[E2] + advent-authP ′ (B0)

where B0 is an adversary against the 2-AKE-security of P ′.
This guarantees that to each instance πsk ∈ Pk.Instances there exists a unique

instance πvj ∈ Pj .Instances such that πsk.sid = πvj .sid (and conversely).

Game 3. In this game, the challenger aborts the experiment if the adversary
succeeds in impersonating Pi to Pk or conversely. We reduce this event to the
2-AKE-security of the protocol P applied between Pk and Pi. Therefore we have
that

Pr[E2] ≤ Pr[E3] + advent-authP (B1)

where B1 is an adversary against the 2-AKE-security of P .
This guarantees that to each instance πmi ∈ Pi.Instances there exists a unique

instance π`k ∈ Pk.Instances such that πmi .sid = π`k.sid (and conversely).

Game 4. Another way for the adversary to win the entity authentication security
experiment is to get the intermediary key ik used by Pi and Pj to mutually au-
thenticate, or to forge a valid message intended to Pj that carries an intermediary
key chosen by the adversary. In this game, the challenger aborts the experiment
if the adversary succeeds in either case. The secure channel between Pk and Pj
is established with the function Enc keyed with the session key output by P ′.
We reduce each of the two events to the sAE-security of Enc. In turn, we must
assume that the Enc key is random. The latter is reduced to the 2-AKE-security
of P ′. Therefore we have that

Pr[E3] ≤ Pr[E4] + advkey-indP ′ (B0) + 2advsAEEnc(B2)

where B2 is an adversary against the sAE-security of Enc.

36 G. Avoine, S. Canard, L. Ferreira

Game 5. In this game, the challenger aborts the experiment if the adversary
succeeds in impersonating Pi to Pj or conversely. We reduce this event to the
2-AKE-security of P . Therefore we have that

Pr[E4] ≤ Pr[E5] + advent-authP (B1)

Due to Game 4 and Game 5, we have that, to each instance πni ∈ Pi.Instances,
there exists a unique instance πuj ∈ Pj .Instances such that πni .sid = πuj .sid (and

conversely). Due to Game 4, the intermediary key ck = ik shared by πmi and π`k
is also known to πvj (i.e., ik = πmi .ck = πvj .km). Due to Game 5, πni .sid = πuj .sid.
Hence πni .trscrpt = πuj .trscrpt. We define function f to be the key derivation
function that outputs the session key πni .ck = πuj .ck = sk from the root key
ik and the messages exchanged between πni and πuj . Therefore, we have that
f(πmi .ck, π

n
i .trscrpt) = πni .ck = πuj .ck = f(πvj .km, π

u
j .trscrpt).

To that point, the adversary has no chance to win. Therefore

Pr[E5] = 0

Collecting all the probabilities from Game 0 to Game 5, we have that

advent-authΠ (A) = Pr[E0]

= nK · nE · nX · Pr[E1]

≤ nK · nE · nX
[
Pr[E2] + advent-authP ′ (B0)

]
≤ nK · nE · nX

[
Pr[E3] + advent-authP (B1) + advent-authP ′ (B0)

]
≤ nK · nE · nX

[
Pr[E4] + advkey-indP ′ (B0) + 2advsAEEnc(B2)

+advent-authP (B1) + advent-authP ′ (B0)
]

≤ nK · nE · nX
[
Pr[E5] + advkey-indP ′ (B0) + 2advsAEEnc(B2)

+2advent-authP (B1) + advent-authP ′ (B0)
]

= nK · nE · nX
[
advkey-indP ′ (B0) + advent-authP ′ (B0)

+2advent-authP (B1) + 2advsAEEnc(B2)
]

A.2 Key Indistinguishability for the Generic 3-AKE Protocol

Now we consider the key indistinguishability security experiment described in
Section 4.3. Let Ei be the event that the adversary wins in Game i, and advi =
Pr[Ei]− 1

2 . We use the following hops.

Game 0. This game corresponds to the key indistinguishability security experi-
ment described in Section 4.3. Therefore we have that

Pr[E0] = adv0 +
1

2
= advkey-indΠ (A) +

1

2

IoT-friendly AKE 37

Game 1. In this game, the challenger aborts the experiment and chooses b′ ∈
{0, 1} uniformly at random if there exists an instance that maliciously accepts. In
other words, we make the same modifications as in the games performed during
the entity authentication proof. Therefore

adv0 ≤ adv1 + advent-authΠ (A)

Game 2. In this game, the adversary aborts the experiment if it does not guess
the party the adversary targets, and its party partners. There are respectively
nK , nE , nX parties in the sets K, E and X . Therefore

adv2 = adv1 ×
1

nK · nE · nX

Game 3. Now the parties Pk ∈ K, Pj ∈ X and Pi ∈ E are fixed. Moreover,
the conditions of Definition 6 are satisfied. This means in particular that each
instance ending in accepting state is pairwise partnered with a unique instance.

In this game, we replace the session key ik output by the 2-AKE run of
protocol P between Pi and Pk with a truly random value ĩk. The challenger
aborts the game if there is an algorithm able to distinguish between both values.
We reduce this event to the 2-AKE-security of P . Therefore, we have that

adv2 ≤ adv3 + advkey-indP (B1)

where B1 is an adversary against the 2-AKE-security of P .

Game 4. In this game, we replace the session key output by the 2-AKE run of
protocol P ′ between Pk and Pj with a truly random value. The challenger aborts
the game if there is an algorithm able to distinguish between both values. We
reduce this event to the 2-AKE-security of P ′. Therefore, we have that

adv3 ≤ adv4 + advkey-indP ′ (B0)

where B0 is an adversary against the 2-AKE-security of P ′.

Game 5. The key (allegedly ik) sent by Pk to Pj is protected with Enc, which is

keyed with the session key output by P ′. The adversary can try to get the key ĩk,
and then compute the session key sk shared between Pi and Pj . We reduce this
event to the sAE-security of Enc. In turn, this relies implicitly on the fact that
the encryption key (output by P ′) used to key Enc be indistinguishable from
random. This is the case due to Game 4. Therefore, in this game, the challenger
aborts the experiment if the adversary succeeds in getting ik. We have that

adv4 ≤ adv5 + advsAEEnc(B2).

38 G. Avoine, S. Canard, L. Ferreira

Game 6. In this game, the challenger aborts the experiment if the adversary
succeeds in breaking the 2-AKE-security of P executed between Pi and Pj .
Therefore we have that

adv5 ≤ adv6 + advkey-indP (B1).

To that point, the adversary can do no better than guessing. Therefore

adv6 = 0.

Collecting all the probabilities from Game 0 to Game 6, we have that

advkey-indΠ (A) = adv0

≤ advent-authΠ (A) + adv1

= advent-authΠ (A) + nK · nE · nX · adv2
≤ advent-authΠ (A) + nK · nE · nX

[
adv3 + advkey-indP (B1)

]
≤ advent-authΠ (A) + nK · nE · nX

[
adv4 + advkey-indP ′ (B0)

+advkey-indP (B1)
]

≤ advent-authΠ (A) + nK · nE · nX
[
adv5 + advsAEEnc(B2) + advkey-indP ′ (B0)

+advkey-indP (B1)
]

≤ advent-authΠ (A) + nK · nE · nX
[
adv6 + advsAEEnc(B2) + advkey-indP ′ (B0)

+2advkey-indP (B1)
]

= advent-authΠ (A) + nK · nE · nX
[
advsAEEnc(B2) + advkey-indP ′ (B0)

+2advkey-indP (B1)
]

B Security Proof for SAKE-R

In the section we give a proof of Theorem 2. That is, we consider only the
case where ED initiates the protocol run (Figure 10). The converse case where
XS ∈ {CS,AS} initiates the run (Figure 11) is similar.

We consider the 2-AKE security model of Brzuska et al. [12], and define
the entity authentication and the key indistinguishability security experiments
accordingly.

We define functions H and update to be two PRFs. That is H : y 7→ PRFH(y, x)
and update : y 7→ PRFupdate(y, x

′) for some (constant) values x and x′.

B.1 Entity Authentication for SAKE-R

We start with the 2-AKE entity authentication experiment. Let advent-authSAKE-R(A)
be the probability that the adversary wins the entity authentication game. Let

IoT-friendly AKE 39

advent-authSAKE-R,client(A) be the probability that the adversary succeeds against a

client (ED), and advent-authSAKE-R,server(A) the probability that the adversary succeeds
against a server (XS). We have that

advent-authSAKE-R(A) ≤ advent-authSAKE-R,client(A) + advent-authSAKE-R,server(A)

Client Adversary. We first consider an adversary that targets a client. Let
Ei be the event that the adversary succeeds in making a client instance accept
maliciously in Gameclient i.

Gameclient 0. This game corresponds to the 2-AKE entity authentication security
experiment when the adversary targets a client instance. Therefore

Pr[E0] = advent-authSAKE-R,client(A)

Gameclient 1. In this game, the challenger aborts the experiment if there exists
an instance that chooses a random value rA or rB that is not unique. There is
at most n× q random values, each uniformly drawn at random in {0, 1}λ. Hence

the two games are equivalent up to a collision term nq(nq−1)
2λ

. Therefore

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ

Gameclient 2. In this game, the challenger aborts the experiment if it does not
guess which client instance will be the first to maliciously accept. There is n
parties and q instances per party. Therefore we have that

Pr[E2] = Pr[E1]× 1

nq

Gameclient 3. The first key k0 used to compute a ticket is uniformly drawn at
random. The next encryption key k1 is computed as k1 = H(k0) = PRFH(k0, x).
Since k0 is random, we can replace PRFH(k0, ·) with a truly random function
FH
k0

. We do the same for any server instance that uses function H with the
same key k0 to compute k1. Distinguishing the change implies an algorithm
able to distinguish the H function from a random function. This corresponds
to an advantage advPRFH (B0) where B0 is an adversary against the PRF-security
of H. Since PRFH(k0, ·) is replaced with a random function FH

k0
, k1 = FH

k0
(x) is

random. In turn, we can replace PRFH(k1, ·) with a truly random function FH
k1

.
Recursively, we replace each function PRFH(ki, ·) with a truly random function
FH
ki

. There is at most q instances per party, hence at most q − 1 updates of
the original key k0 before computing a ticket (that is, 0 ≤ i < q). Therefore,
distinguishing the successive changes corresponds to an advantage at most (q −
1)advPRFH (B0). Consequently, in this game, the challenger aborts the experiment
if the adversary is able to distinguish any of these changes. Therefore, we have
that

Pr[E2] ≤ Pr[E3] + (q − 1)advPRFH (B0)

40 G. Avoine, S. Canard, L. Ferreira

Gameclient 4. In this game, the challenger aborts the experiment if the adversary
is able to get the key ik from ticket = KW(ki, ik), 0 ≤ i < q. We reduce this event
to the AE-security of function KW (this is possible because ki is indistinguishable
from random due to Gameclient 3). Therefore we have that

Pr[E3] ≤ Pr[E4] + advAEKW(B1)

where B1 is an adversary against the AE-security of KW.

Gameclient 5. In this game, the challenger aborts the experiment if the targeted
instance π ever receives a valid message mB but no instance partnered with π
has output that message. Due to Gameclient 4, ik = K‖K ′ (hence K ′) can be
safely replaced with a truly random value. Therefore, we reduce this event to
the SUF-CMA-security of the MAC function (keyed with K ′) used to compute
mB . Therefore, we have that

Pr[E4] ≤ Pr[E5] + advSUF-CMA
MAC (B2)

where B2 is an adversary against the SUF-CMA-security of MAC.

Gameclient 6. The key used to compute the MAC tag τ ′B is update(K ′) =
PRFupdate(K

′, x′). In this game, we replace PRFupdate(K
′, ·) with a random func-

tion Fupdate
K′ . We do the same for any server instance that uses the update function

with the same key K ′. Distinguishing the change implies an algorithm able to
distinguish the function update from a random function. Therefore, in this game,
the challenger aborts the experiment if the adversary is able to distinguish such
a change. Hence

Pr[E5] ≤ Pr[E6] + advPRFupdate(B3)

where B3 is an adversary against the PRF-security of update.

Gameclient 7. In this game, the challenger aborts the experiment if the targeted
instance π ever receives a valid message τ ′B but no instance partnered with π has
output that message. Due to Gameclient 6, the key used to compute the MAC
tag τ ′B is truly random. Hence, we reduce this event to the SUF-CMA-security
of the MAC function used to compute τ ′B . Therefore, we have that

Pr[E6] ≤ Pr[E7] + advSUF-CMA
MAC (B2)

To that point, the adversary has no chance to win. Therefore

Pr[E7] = 0

IoT-friendly AKE 41

Collecting all the probabilities from Gameclient 0 to Gameclient 7, we have that

advent-authSAKE-R,client(A) = Pr[E0]

≤ nq(nq − 1)

2λ
+ Pr[E1]

=
nq(nq − 1)

2λ
+ nq × Pr[E2]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E3] + (q − 1)advPRFH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E4] + advAEKW(B1) + (q − 1)advPRFH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E5] + advSUF-CMA

MAC (B2) + advAEKW(B1)

+(q − 1)advPRFH (B0)
]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E6] + advPRFupdate(B3) + advSUF-CMA

MAC (B2)

+advAEKW(B1) + (q − 1)advPRFH (B0)
]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E7] + advPRFupdate(B3) + 2advSUF-CMA

MAC (B2)

+advAEKW(B1) + (q − 1)advPRFH (B0)
]

=
nq(nq − 1)

2λ
+ nq

[
advPRFupdate(B3) + 2advSUF-CMA

MAC (B2)

+advAEKW(B1) + (q − 1)advPRFH (B0)
]

= nq
[
(nq − 1)2−λ + advPRFupdate(B3) + 2advSUF-CMA

MAC (B2)

+advAEKW(B1) + (q − 1)advPRFH (B0)
]

Server Adversary. Now we consider an adversary that targets a server. Let
Ei be the event that the adversary succeeds in making a server instance accept
maliciously in Gameserver i.

Gameserver 0. This game corresponds to the 2-AKE entity authentication security
experiment when the adversary targets a server instance. Therefore we have that

Pr[E0] = advent-authSAKE-R,server(A)

Gameserver 1. In this game, the challenger aborts the experiment if there exists
an instance that chooses a random value rA or rB that is not unique. There is
at most n× q random values, each uniformly drawn at random in {0, 1}λ. Hence

the two games are equivalent up to a collision term nq(nq−1)
2λ

. Therefore

Pr[E0] ≤ Pr[E1] +
nq(nq − 1)

2λ

42 G. Avoine, S. Canard, L. Ferreira

Gameserver 2. In this game, the challenger aborts the experiment if it does not
guess which server instance will be the first to maliciously accept. There is n
parties and q instances per party. Therefore we have that

Pr[E2] = Pr[E1]× 1

nq

Gameserver 3. The first key k0 used to compute a ticket is uniformly drawn at
random. The next encryption key k1 is computed as k1 = H(k0) = PRFH(k0, x).
Since k0 is random, we can replace PRFH(k0, ·) with a truly random function
FH
k0

. We do the same for any client instance that uses the H function with the
same key k0 to compute k1. Distinguishing the change implies an algorithm
able to distinguish the H function from a random function. This corresponds
to an advantage advPRFH (B0) where B0 is an adversary against the PRF-security
of H. Since PRFH(k0, ·) is replaced with a random function FH

k0
, k1 = FH

k0
(x) is

random. In turn, we can replace PRFH(k1, ·) with a truly random function FH
k1

.
Recursively, we replace each function PRFH(ki, ·) with a truly random function
FH
ki

. There is at most q instances per party, hence at most q − 1 updates of
the original key k0 before computing a ticket (that is, 0 ≤ i < q). Therefore,
distinguishing the successive changes corresponds to an advantage at most (q −
1)advPRFH (B0). Consequently, in this game, the challenger aborts the experiment
if the adversary is able to distinguish any of these changes. Therefore, we have
that

Pr[E2] ≤ Pr[E3] + (q − 1)advPRFH (B0)

Gameserver 4. In this game, the challenger aborts the experiment if the adversary
is able to get the key ik from ticket = KW(ki, ik), 0 ≤ i < q. We reduce this event
to the AE-security of function KW (this is possible because ki is indistinguishable
from random due to Gameserver 3). Therefore we have that

Pr[E3] ≤ Pr[E4] + advAEKW(B1)

where B1 is an adversary against the AE-security of KW.

Gameserver 5. The first value of K ′ (K ′0) used to compute a MAC tag τA
is uniformly chosen at random. During the next protocol run, the key is re-
placed with update(K ′0) = PRFupdate(K

′
0, x
′). Since K ′0 is random, we can re-

place PRFupdate(K
′
0, ·) with a truly random function Fupdate

K′
0

. We do the same

for any client instance that uses update function with the same key K ′0. Distin-
guishing the change implies an algorithm able to distinguish the function update
from a random function. This corresponds to an advantage advPRFupdate(B3). Since

PRFupdate(K
′
0, ·) is replaced with a random function Fupdate

K′
0

, K ′1 = Fupdate
K′

0
(x′)

is random. In turn, we can replace PRFupdate(K
′
1, ·) with a truly random func-

tion Fupdate
K′

1
. Recursively, we replace each function PRFupdate(K

′
i, ·) with a truly

random function Fupdate
K′
i

. There is at most q instances per party, hence at most

IoT-friendly AKE 43

q − 1 updates of the original key K ′0 before computing a MAC tag τA (that is,
0 ≤ i < q). Therefore, distinguishing the successive changes corresponds to an
advantage at most (q − 1)advPRFupdate(B3). Consequently, in this game, the chal-
lenger aborts the experiment if the adversary succeeds in distinguishing any of
these changes. Therefore, we have that

Pr[E4] ≤ Pr[E5] + (q − 1)advPRFupdate(B3)

Gameserver 6. In this game, the challenger aborts the experiment if the targeted
instance π ever receives a valid message τA but no instance partnered with π
has output that message. Such a forgery can be achieved in one of two ways:
either the adversary succeeds in forging a valid MAC tag τA, or it gets the key
K ′ carried in ticket. We reduce the first possibility to the SUF-CMA-security
of the MAC function used to compute τA. We reduce the second possibility to
the AE-security of function KW, which is already assumed due to Gameserver 4.
Therefore, we have that

Pr[E5] ≤ Pr[E6] + advSUF-CMA
MAC (B2)

To that point, the adversary has no chance to win. Hence

Pr[E6] = 0

Collecting all the probabilities from Gameserver 0 to Gameserver 6, we have
that

advent-authSAKE-R,server(A) = Pr[E0]

≤ nq(nq − 1)

2λ
+ Pr[E1]

=
nq(nq − 1)

2λ
+ nq × Pr[E2]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E3] + (q − 1)advPRFH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E4] + advAEKW(B1) + (q − 1)advPRFH (B0)

]
≤ nq(nq − 1)

2λ
+ nq

[
Pr[E5] + (q − 1)advPRFupdate(B3) + advAEKW(B1)

+(q − 1)advPRFH (B0)
]

≤ nq(nq − 1)

2λ
+ nq

[
Pr[E6] + advSUF-CMA

MAC (B2)

+(q − 1)advPRFupdate(B3) + advAEKW(B1)

+(q − 1)advPRFH (B0)
]

= nq
[
(nq − 1)2−λ + advSUF-CMA

MAC (B2) + (q − 1)advPRFupdate(B3)

+advAEKW(B1) + (q − 1)advPRFH (B0)
]

44 G. Avoine, S. Canard, L. Ferreira

Finally, we have that

advent-authSAKE-R(A) ≤ advent-authSAKE-R,client(A) + advent-authSAKE-R,server(A)

≤ nq
[
(nq − 1)2−(λ−1) + 2(q − 1)advPRFH (B0) + 2advAEKW(B1)

+3advSUF-CMA
MAC (B2) + q · advPRFupdate(B3)

]
B.2 Key Indistinguishability for SAKE-R

Now we consider the 2-AKE key indistinguishability security experiment. Let
Ei be the event that the adversary succeeds in making an instance accept mali-
ciously in Game i, and advi = Pr[Ei]− 1

2 .

Game 0. This game corresponds to the 2-AKE key indistinguishability security
experiment. Therefore we have

Pr[E0] =
1

2
+ advkey-indSAKE-R(A) =

1

2
+ adv0

Game 1. In this game, the challenger aborts the experiment and chooses b ∈
{0, 1} uniformly at random if there exists an instance that accepts maliciously.
Therefore we have

adv0 ≤ adv1 + advent-authSAKE-R(A)

Game 2. In this game, the challenger aborts the experiment if it does not guess
which instance the adversary targets. Therefore, we have that

adv2 = adv1 ×
1

nq

Game 3. We distinguish two cases: the adversary targets either a client instance
or a server instance, corresponding respectively to an advantage advkey-indSAKE-R,client(A)

and advkey-indSAKE-R,server(A). Therefore we have that

adv2 ≤ advkey-indSAKE-R,client(A) + advkey-indSAKE-R,server(A)

We begin with the first case.

Gameclient 3. The first key k0 used to compute a ticket is uniformly drawn at
random. The next encryption key k1 is computed as k1 = H(k0) = PRFH(k0, x).
Since k0 is random, we can replace PRFH(k0, ·) with a truly random function
FH
k0

. We do the same for any server instance that uses the H function with the
same key k0 to compute k1. Distinguishing the change implies an algorithm
able to distinguish the H function from a random function. This corresponds
to an advantage advPRFH (B0) where B0 is an adversary against the PRF-security
of H. Since PRFH(k0, ·) is replaced with a random function FH

k0
, k1 = FH

k0
(x) is

IoT-friendly AKE 45

random. In turn, we can replace PRFH(k1, ·) with a truly random function FH
k1

.
Recursively, we replace each function PRFH(ki, ·) with a truly random function
FH
ki

. There is at most q instances per party, hence at most q − 1 updates of
the original key k0 before computing a ticket (that is, 0 ≤ i < q). Therefore,
distinguishing the successive changes corresponds to an advantage at most (q −
1)advPRFH (B0). Consequently, in this game, the challenger aborts the experiment
if the adversary is able to distinguish any of these changes. Therefore, we have
that

advkey-indSAKE-R,client(A) ≤ advclient3 + (q − 1)advPRFH (B0)

Gameclient 4. In this game, the challenger aborts the experiment if the adversary
succeeds in getting K from ticket = KW(ki, ik). We reduce this event to the
AE-security of the KW function (we use the fact that ki be indistinguishable
from random due to Gameclient 3). Therefore we have that

advclient3 ≤ advclient4 + advAEKW(B1)

Gameclient 5. In this game, we replace the KDF function used to compute the
session key sk when keyed with K, with a random function FKDF

K . We use the
fact that K be indistinguishable from random due to Gameclient 4. Consequently,
the challenger aborts the experiment if the adversary succeeds in distinguishing
the change. Therefore, we have that

advclient4 ≤ advclient5 + advPRFKDF(B4)

where B4 is an adversary against the PRF-security of KDF.
To that point, sk = FKDF

K (f(rA, rB)) is a random value. Therefore the adver-
sary can do no better than guessing. Hence

advclient5 = 0

Collecting the probabilities from Gameclient 3 to Gameclient 5, we have that

advkey-indSAKE-R,client(A) ≤ advclient3 + (q − 1)advPRFH (B0)

≤ advclient4 + advAEKW(B1) + (q − 1)advPRFH (B0)

≤ advclient5 + advPRFKDF(B4) + advAEKW(B1) + (q − 1)advPRFH (B0)

= advPRFKDF(B4) + advAEKW(B1) + (q − 1)advPRFH (B0)

Now we consider the case where the adversary targets a server instance.

Gameserver 3. The first value of K (K0) used to compute the session key is uni-
formly chosen at random. During the next protocol run, the key is replaced with
update(K0) = PRFupdate(K0, x

′). SinceK0 is random, we can replace PRFupdate(K0, ·)
with a truly random function Fupdate

K0
. We do the same for any client instance that

uses update function with the same key K0. Distinguishing the change implies an
algorithm able to distinguish the function update from a random function. This

46 G. Avoine, S. Canard, L. Ferreira

corresponds to an advantage advPRFupdate(B3). Since PRFupdate(K0, ·) is replaced with

a random function Fupdate
K0

, K1 = Fupdate
K0

(x′) is random. In turn, we can replace

PRFupdate(K1, ·) with a truly random function Fupdate
K1

. Recursively, we replace

each function PRFupdate(Ki, ·) with a truly random function Fupdate
Ki

. There is at
most q instances per party, hence at most q − 1 updates of the original key K0

before computing a session key (that is, 0 ≤ i < q). Therefore, distinguishing
the successive changes corresponds to an advantage at most (q−1)advPRFupdate(B3).
Consequently, in this game, the challenger aborts the experiment if the adversary
succeeds in distinguishing any of these changes. Therefore, we have that

advkey-indSAKE-R,server(A) ≤ advserver3 + (q − 1)advPRFupdate(B3)

Gameserver 4. The first key k0 used to compute a ticket is uniformly drawn at
random. The next encryption key k1 is computed as k1 = H(k0) = PRFH(k0, x).
Since k0 is random, we can replace PRFH(k0, ·) with a truly random function
FH
k0

. We do the same for any client instance that uses the H function with the
same key k0 to compute k1. Distinguishing the change implies an algorithm
able to distinguish the H function from a random function. This corresponds
to an advantage advPRFH (B0) where B0 is an adversary against the PRF-security
of H. Since PRFH(k0, ·) is replaced with a random function FH

k0
, k1 = FH

k0
(x) is

random. In turn, we can replace PRFH(k1, ·) with a truly random function FH
k1

.
Recursively, we replace each function PRFH(ki, ·) with a truly random function
FH
ki

. There is at most q instances per party, hence at most q − 1 updates of
the original key k0 before computing a ticket (that is, 0 ≤ i < q). Therefore,
distinguishing the successive changes corresponds to an advantage at most (q −
1)advPRFH (B0). Consequently, in this game, the challenger aborts the experiment
if the adversary is able to distinguish any of these changes. Therefore, we have
that

advserver3 ≤ advserver4 + (q − 1)advPRFH (B0)

Gameserver 5. In this game, the challenger aborts the experiment if the adversary
succeeds in getting K from ticket = KW(ki, ik). We reduce this event to the AE-
security of the KW function (we use the fact that ki be indistinguishable from
random due to Gameserver 4). Therefore we have that

advserver4 ≤ advserver5 + advAEKW(B1)

Gameclient 6. In this game, we replace the KDF function used to compute the
session key sk when keyed with K, with a random function FKDF

K . We use the fact
that K be indistinguishable from random due to Gameserver 3 and Gameserver 5.
Consequently, the challenger aborts the experiment if the adversary succeeds in
distinguishing the change. Therefore, we have that

advserver5 ≤ advserver6 + advPRFKDF(B4)

IoT-friendly AKE 47

To that point, sk = FKDF
K (f(rA, rB)) is a random value. Therefore the adver-

sary can do no better than guessing. Hence

advserver6 = 0

Collecting the probabilities from Gameserver 3 to Gameserver 6, we have that

advkey-indSAKE-R,server(A) ≤ advserver3 + (q − 1)advPRFupdate(B3)

≤ advserver4 + (q − 1)advPRFH (B0) + (q − 1)advPRFupdate(B3)

≤ advserver5 + advAEKW(B1) + (q − 1)advPRFH (B0)

+(q − 1)advPRFupdate(B3)

≤ advserver6 + advPRFKDF(B4) + advAEKW(B1) + (q − 1)advPRFH (B0)

+(q − 1)advPRFupdate(B3)

= advPRFKDF(B4) + advAEKW(B1) + (q − 1)advPRFH (B0)

+(q − 1)advPRFupdate(B3)

Finally, collecting all the probabilities, we have that

advkey-indSAKE-R(A) = adv0

≤ advent-authSAKE-R(A) + adv1

= advent-authSAKE-R(A) + nq · adv2
≤ advent-authSAKE-R(A) + nq

[
advkey-indSAKE-R,client(A) + advkey-indSAKE-R,server(A)

]
≤ advent-authSAKE-R(A) + nq

[
(q − 1)

(
advPRFupdate(B3) + 2advPRFH (B0)

)
+2
(
advAEKW(B1) + advPRFKDF(B4)

)]

