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ABSTRACT

Multiparty computation as a service (MPSaaS) is a promising ap-
proach for building privacy-preserving communication systems.
However, in this paper, we argue that existing MPC implementations
are inadequate for this application as they do not address fairness, let
alone robustness. Even a single malicious server can cause the pro-
tocol to abort while seeing the output for itself, which in the context
of an anonymous communication service would create a vulnerabil-
ity to censorship and de-anonymization attacks. To remedy this we
propose a new MPC implementation, HoneyBadgerMPC, that com-
bines a robust online phase with an optimistic offline phase that is
efficient enough to run continuously alongside the online phase. We
use HoneyBadgerMPC to develop an application case study, called
AsynchroMix, that provides an anonymous broadcast functionality.
AsynchroMix features a novel MPC program that trades off between
computation and communication, allowing for low-latency message
mixing in varying settings. In a cloud-based distributed benchmark
with 100 nodes, we demonstrate mixing a batch of 512 messages in
around 20 seconds and up to 4096 messages in around two minutes.

1 INTRODUCTION

Millions of users employ the Tor [44] network to protect the anonymity
of their communication over the Internet today. However, Tor can
only provide a weak form of anonymity against traffic analysis [43]
and has been successfully attacked using strong adversaries [15, 76].
Furthermore, emerging applications such as distributed ledgers (or
blockchains), thanks to their close relation with payments and the
financial world, demand a stronger form of anonymity [48, 52]. For
example, even the use of zero-knowledge proofs in blockchains [14,
66, 75] is undermined unless users submit transactions through a
Tor-like service. Designing and implementing practical and scalable
systems for anonymous communication with stronger anonymity
guarantees is, therefore, an active and important area of research and
development [3, 34, 49, 59, 77].

Anonymous Communication from MPC. Secure multi-party com-
putation (MPC) is a natural approach for building distributed ap-
plications with strong privacy guarantees. MPC has recently made
great strides towards practical implementation and real-world deploy-
ment and consequently, several general-purpose compilers (or front-
ends [51]) and implementations are now available supporting a range
of performance and security tradeoffs [5, 9, 16, 27, 41, 55, 56, 78].
Recent implementation efforts [9, 27, 73] have bolstered their secu-
rity guarantees by focusing on the malicious rather than semi-honest
setting (i.e., they tolerate Byzantine faults), and can scale to larger
networks (e.g., more than 100 servers) while tolerating an apprecia-
ble number of faults. Further, in contrast to early MPC realizations
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centered around one-off ceremonies [17, 18], there has been in-
creased interest in the MPC system-as-a-service (MPSaaS) [3, 9, 65]
setting, where a network of servers continuously process encrypted
inputs submitted by clients. As scalable and maliciously secure MP-
SaaS becomes increasingly practical, there’s an increasingly more
convincing argument that it can be successfully used for highly
desirable internet services such as anonymous communication.
The Need for Robustness in MPC. Despite the aforementioned
progress towards practical MPC, in this paper, we highlight robust-
ness as an essential missing component. All of the MPC implementa-
tions we know of do not guarantee output delivery in the presence of
even a single active fault. Even worse, these implementations do not
guarantee fairness, in the sense that an adversary can see the output
even if the honest servers do not. In the context of an anonymous
communication service, unfair MPC could be catastrophic since an
adversary could link the messages of clients who retry to send their
message in a new or restarted instance. Thus the primary goal of our
work is to fill this gap by advancing robustness in practical MPC
implementations and demonstrating the result through a novel robust
message mixing service.

Challenges in Providing Robust MPC. For MPC based on addi-
tive (n-of-n) secret sharing such as SPDZ [41] and EMP [78], the
guaranteed output is inherently infeasible. However, even among
guaranteed output protocols based on Shamir sharing, we find that
the vast majority [11, 39, 40, 42, 53] are sensitive to assumptions
about network synchrony. In short, their confidentiality and integrity
guarantees rely on synchronous failure detectors, such that if a server
is temporarily unresponsive, then it is "timed out" and ejected from
the network and the fault tolerance among the surviving servers is
reduced. If t honest parties are timed out, e.g., because of a tempo-
rary network partition, then a single corruption among the remaining
servers could compromise the client’s confidential inputs. Hence
for a robust distributed service based on an MPC, we would desire
safety properties even in an asynchronous network. In this setting,
a Byzantine fault tolerance of ¢ < n/3 is a lower bound even for
agreement tasks that do not require any confidentiality.

Our Approach: Asynchronous MPSaaS. To address the above
challenges, we base our message mixing service, AsynchroMix, on
a new MPC implementation, called HoneyBadgerMPC, which is the
first to guarantee fairness and output delivery in a malicious setting
without depending on network timing assumptions. AsynchroMix
proceeds in asynchronous epochs, wherein each epoch the system
selects a subset of k clients and mixes their inputs together before
publishing them. Unlike HyperMPC [9], which relies on a central co-
ordinator service, HoneyBadgerMPC employs asynchronous broad-
cast protocols to receive secret shared inputs from untrusted clients
and initiate mixing epochs in a robust and distributed way. Like many



MPC protocols, HoneyBadgerMPC relies on the online/offline pre-
processing paradigm. In our protocol the cost of the offline phase is
comparable to that of the online phase, hence it can run continuously
in the background as mixing proceeds. While the online phase is
entirely robust, more efficient (but non-robust) protocols are chosen
to generate preprocessing elements in the offline phase. In this way,
less work is required overall and a buffer of preprocessed values can
be used to guarantee robustness in the presence of faults.

Realizing Low-Latency, Robust Mixing. We evaluate two ap-

proaches for mixing inputs in MPC. The first is straightforward

and implements a switching network [35] that requires logZ k rounds

and O(nk log? k) communication to shuffle k client inputs. To im-

prove on this, we present PowerMixing, a novel mixing technique

for reducing the number of rounds to two and the communication

overhead to only O(nk) by increasing computation to O(nk + k%)

per node. We show that this allows for messages to be mixed with a

lower latency than we could otherwise achieve, with larger mixes

being available to servers with more computational power.
To summarize our contributions,

o Robust MPC System-as-a-Service. We advocate for a new op-
erating point for MPC implementations, which features a robust
online phase, but an efficient non-robust offline phase used to fill a
buffer of preprocessing values. This fills a gap between protocols
from the literature, which forego an important security property
(asynchronous safety) in order to provide a robust offline phase,
and implementations, which are not robust at all. We also show
how to use fully-distributed asynchronous broadcast primitives,
rather than a central cloud coordinator (like MATRIX [9]), to
receive client inputs and initiate MPC computations.

o Novel MPC program for mixing. We design and implement a
novel MPC program that can mix an arbitrarily large number of
messages in only two communication rounds. We evaluate this
program against a switching network implementation and show
the operating points at which it demonstrates mixing with lower
latency. We also demonstrate a method to create arbitrarily many
powers of a shared secret in one online communication round,
which may be of independent interest.

e First implementation of robust asynchronous MPC. As a prac-
tical contribution, our prototype offers the first implementation of
asynchronous MPC primitives with the guaranteed output which
may be employed for robust secure computations beyond anony-
mous broadcast. In our cloud-based distributed experiments, we
show it is practical to mix inputs from up to k = 4096 clients
using n = 100 servers located across five continents just in a
few minutes of end-to-end latency. Additionally, using our novel
low-latency mixing program, we can mix a more modest k = 512
messages in just over 20 seconds.

2 PRELIMINARIES: MPC BASED ON
SHAMIR SECRET SHARING

Our standard MPC setting involves n parties {P1, . .., Pn}, Where
up to t < n/3 of those can be compromised by a Byzantine adver-
sary. HoneyBadgerMPC relies on many standard components for
MPC [11, 29, 32, 42] based on Shamir secret-sharing. Here, we
detail the most relevant techniques and notation.

2.1 Shamir Secret Sharing and Reconstruction

Notation. For prime p and a secret s € Fp, [s], denotes Shamir
secret sharing [71] (SSS) with threshold ¢ (i.e., a t-sharing). Specif-
ically, a degree-t polynomial ¢ : F, — F, is sampled such that

¢(0) = s. The share [[s]](tl> is the evaluation ¢(i). The superscript
and/or subscript of a share may be omitted when clear from context.
Robust interpolation of polynomials. Reconstructing a secret s
from [s] requires interpolating the polynomial ¢ from shares re-
ceived from other parties. Since we want to achieve security against
an active Byzantine attacker, up to ¢ of the shares may be erroneous.
Furthermore, in an asynchronous network, we cannot distinguish a
crash fault from an intentional withholding of data and can conse-
quently only expect to receive shares from n — ¢ parties in the worst
case.

Figure 1 outlines the standard approach [11, 29, 31, 32] for robust
decoding in this setting, Robust-Interpolate. First, we optimisti-
cally attempt to interpolate a degree-t polynomial ¢ after receiving
any t + 1 shares. If the resulting ¢ coincides with the first 2¢ + 1
shares received, then we know it is correct. If the optimistic case
fails, we wait to receive more shares and as they arrive to attempt to
correct errors. In the worst case, we receive t incorrect shares and
need to wait for 3t + 1 total shares before we can correct ¢t errors
and find a degree-t polynomial that coincides with all 2t + 1 honest
shares.

In Appendix A we discuss implementations of RSDecode and
Interpolate. We use FFTs to achieve robust decoding with quasi-
linear overhead (i.e., incurring an O(nlog? n) computational cost),
rather than superlinear algorithms based on Vandermonde matrix
multiplication which incur ~ O(n?) overhead.

Algorithm Robust-Interpolate

e Input: y, ..., yz—1 symbols, up to ¢ erasures (y; € Fp U {1})

e Output: ao, ..., a;, coefficients of a degree-t polynomial ¢, such
that y; = ¢(a;) for i € I where I C [1..n] and |I| = 2t + 1, or
else L

e Procedure (case of t erasures):

(1) Interpolate a polynomial ¢ from any ¢ + 1 points (y;, @;)
(2) Output ¢ if it coincides with all 2¢ + 1 points, otherwise
output L
e Procedure (case of t — e erasures):
(1) Run RSDecode decoding to correct up to e errors

Figure 1: Robust Polynomial Interpolation

Batch reconstruction. We recall an algorithm for the amortized
batch public reconstruction (BatchRecPub) of ¢-sharings for the
t < n/3 setting by Damgard and Nielsen [42] in Figure 2. The
idea is to apply a Vandermonde matrix M to expand the shared
secrets [x1], ..., [xz+1] into a set of sharings [y1], ..., [yn]. In the
first round, each server P; locally computes their shares of each
[[yi]](f) and sends it to ;. Each P; then uses Robust-Interpolate
to reconstruct a different share y;. In the second round, the servers
exchange each y;, and again use Robust-Interpolate to recover



Protocol BatchRecPub

e Input: [x1],. .., [xr+1]
e Output: x1, ..., Xr+1
e Procedure (as server P;):
(1) Let M be the (n,t + 1) Vandermonde matrix M; ; = crl’
evaluating a degree-t polynomial at (a1, ..., ap).
(2) Compute ([ys], .- .. [ya])™ := M([x1], ... [xr1 )T
(3) (Round 1) For each j, send [y;] to party P;.
(4) Wait to receive between 2t + 1 and n shares of [y;] and
decode y; using Robust-Interpolate.
(5) (Round 2) Send y; to each party P;.
(6) Wait to receive between 2t +1 and n values y]’., then robustly
decode x1, ..., x¢+1 using Robust-Interpolate.

Figure 2: Batch Reconstruction [11, 29, 42]

X1, ..., X¢r+1. When defining an MPC program, we use the notation
xi < Open([x;]) for reconstructing an individual share, implicitly
making amortized use of the BatchRecPub protocol.

2.2 SSS-Based MPC

Linear combinations of SSS-shared secrets can be computed locally,
preserving the degree of secret sharing without any necessary inter-
action between parties. However, in order to be able to realize an
arbitrary arithmetic circuit using MPC, we need a way to multiply
secrets together. In this work, we use Beaver’s trick to multiply two
t-sharings [x], and [y], by consuming a preprocessed Beaver triple.
Beaver triples are correlated t-sharings of the form [a] ,, [],, [ab],,
for random a, b € Fp which can be used to find [xy], by using the
following identity:

[[ab]t =(a-x)b-y)+(a _x)ﬂy]]t +(b— y)[[xﬂt + [[xyﬂt-

If a and b are random and independent of x and y, then Open([Ja — x])
and Open([b — y]) do not reveal any information about x or y. Each
multiplication then requires the public opening of (a —x) and (b — y)
and the spending of a Beaver triple.

We follow the standard online/offline MPC paradigm, where the

online phase assumes it can make use of a buffer of preprocessed
values that were created during the offline phase. By utilizing pre-
computed triples and using BatchRecPub to open (a—x) and (b—y)
for many multiplication gates at once, we can process many gates at
the same circuit depth simultaneously.
Offline phase. In order to fulfill the computational needs of our
online phase, we need to generate a steady supply of Beaver Triples
offline (prior to when inputs for an MPC circuit are given). As the
offline phase can be run for an indefinite amount of time, we relax
the robustness requirements and focus on more efficient protocols.
In this way, the offline phase can proceed with less work while still
gradually building up a buffer and allowing for guaranteed output in
the online phase.

The first step of the offline phase is randomness extraction [11],
where secret-shared random values are produced from the contribu-
tions of different servers. To produce ¢-sharings of random elements
of Fp, we apply an (n, n) hyperinvertible matrix M, (concretely, a

Protocol RanDouSha

e Input: pairs {[s;],, [si],;} contributed by each server

e Output: [r1];. [rllgs - - - [resallys [reeals
e Procedure (as server P;):
D [ris-oraly & M([s1];, - - -5 [saly)
@) [r,--- ,rn]]zt — M(HSIHZP s Hsn]]zﬂ
(3) Each party P; where t + 1 < i < n privately reconstructs
[ril;. [ril,, and checks that both shares are of the correct
degree, and that their 0-evaluation is the same. Reliable-
Broadcast OK if the verification succeeds, ABORT other-
wise.
(4) Wait to receive each broadcast and abort unless all are 0K

(S) Output [r1],, [rillzes - - - [resaly [re+1]s

Figure 3: Generating random double sharings [11, 37, 42]

Vandermonde matrix) and compute

(Ir1]s - [rnl) = M([s1]s ---» [sn])

where each [[s;] is contributed by a distinct server P;, and we output
[ril,- -, [re+1]. The choice of M ensures the [r;] are random and
unknown, despite of the influence of ¢ corrupt parties. To check that
the secret sharings are of the correct degree, 2t + 1 of the servers
attempt to reconstruct one column each of [rp—2¢-1], . .., [rn]. The
hyperinvertibility property of M ensures that if all of the inputs are
of the correct degree, then so are all of [r{], ..., [rs+1]. Since all n
parties must be online to provide input for this process, this cannot
guarantee output if any parties crash.

To generate Beaver triples, we make use of random double shar-
ings, which are ¢- and 2¢-sharings of the same random value [r], and
[r];. For this we use RanDouSha [11, 42], wherein each server
contributes a pair of shares, [s;]]; and [s;],;. The first ¢ + 1 pairs
[r1] (taty- ,‘[[rHl]] (1.2t} .after applying M are taken as output,
and the remaining 2t + 1 pairs are reconstructed as a checksum (by
one server each). All together, this protocol is given in Figure 3.

Given the double sharing, we generate a Beaver triple by generat-
ing random shares [a],, [b],, calculating [ab],, = [a], - [b],, and
performing degree reduction:

[ab], := Open([abl,y; — [rls) + [r];-

Besides random field elements and multiplication triples, the offline
phase is also used to prepare random bits, and k powers of random
elements using standard techniques [37]. In general, we can im-
plement any necessary preprocessing task by combining the above
two ingredients. The overall cost of the offline phase is summarized
by the number of batch reconstructions and the number of random
shares needed. We summarize the offline costs for our two mixing
approaches in Section 5.

2.3 Asynchronous Reliable Broadcast and
Common Subset

‘We employ an asynchronous reliable broadcast primitive in order to
receive client inputs. A reliable broadcast (RBC) protocol satisfies
the following properties:



o (Validity) If the sender (i.e., the client in our case) is correct and
inputs v, then all correct nodes deliver v
o (Agreement) If any two correct servers deliver v and v’, then
v="0".
o (Totality) If any correct node delivers v, then all correct nodes
deliver v.
While Bracha’s [21] classic reliable broadcast protocol requires
O(n?|v)) bits of total communication in order to broadcast a message
of size |v|, Cachin and Tessaro [25] observed that Merkle trees and
erasure coding can reduce this cost to merely O(n|v| + n? log n) (as-
suming constant size hashes), even in the worst case. The nonlinear
factor of this cost comes from the need to send branches of a Merkle
tree created over the erasure-coded shares to ensure data integrity.
In order to reach an agreement on which instances of RBC have
terminated, and to initiate each mixing epoch, we rely on an asynch-
ronous common subset protocol [13, 24, 67]. In CommonSubset,
each server begins with an input b; (in our application each b; is a
Kk-bit vector). The protocol outputs an agreed-upon vector of n values
that includes the inputs of at least n — 2t correct parties, as well as up
to t default values. CommonSubset satisfies following properties:
e (Validity) If a correct server outputs a vector b’, then b} = b; for
at least n — 2t correct servers;
e (Agreement) If a correct server outputs b’, then every server out-
puts b’;
o (Totality) All correct servers eventually produce output.
To stick to purely asynchronous primitives, we concretely instantiate
CommonSubset with the protocol from HoneyBadgerBFT [13, 67];
as an alternative, BEATO [45] is similar but offers more efficient
cryptographic primitives. For small messages, the overhead for either
protocol grows with n?, although for very large messages it achieves
linear overhead. If asynchronous liveness is not needed, then any
partially synchronous consensus protocol, such as PBFT [26], would
suffice here as well.

3 ROBUSTNESS IN MPC PROTOCOLS AND
IMPLEMENTATIONS

In practice, distributed computing protocols should successfully pro-
tect against not just benign failures like system churn, but also net-
work partitions and denial of service attacks. Distributed consensus
protocols and systems employed in practice (e.g., [26, 54, 61]) put
significant emphasis on achieving this robustness property, and the
same also holds for prominent blockchain systems [6, 22]. Various
notions of robustness have also been explored in the context of MPC,
although we observe that the practical MPC tool-Kkits [5, 9, 37, 41]
available today have not made a similar effort to incorporate this
robustness. We therefore place a strong emphasis on achieving ro-
bustness in this paper.

In this section we evaluate the robustness of existing MPC imple-
mentations and protocols (summarized in Table 1), and use this eval-
uation to inform the design of HoneyBadgerMPC and AsynchroMix.
We focus mainly on three forms of robustness: fairness, guaranteed
output, and safety in asynchronous communication setting. In our
work we focus on the MPC-System-as-a-Service model [9], where
clients submit secret inputs to servers for processing. However, in
the usual MPC setting, the servers themselves are the clients. Thus
for the sake of comparison, in this section we assume n = k (where n

is the number of servers and k is the number of clients). In this evalu-
ation we leave implicit the need to agree on which inputs to include.
In a synchronous network, MPC typically ensures that every honest
party’s inputs are included [12], while in an asynchronous network it
is inherent that up to ¢ honest parties may be left out [29]; to accom-
modate asynchronous protocols we assume the weaker definition.
We also elide discussion of protocols and implementations that offer
only semi-honest security, such as PICCO [80] or Fairplay [64], or
that rely on trusted hardware [28].

Fairness and Guaranteed Output. Fairness is widely studied in
MPC. Roughly speaking, it means that either all parties receive their
output, or else none of them do [50]. Unfair protocols allow the
adversary to peek at the output of the computation, while the honest
parties observe the protocol fail. In the context of anonymous com-
munications, unfair protocols pose a severe hazard of intersection
attacks. For example, if a client retries to send their message in a new
session with a different anonymity set, the adversary would learn
which messages were common to both sessions [70]. To the best of
our knowledge, none of the practical implementations of MPC aim
to provide fairness against an active adversary. Instead, they focus
on the weaker notion of security with abort, meaning that the honest
parties reach consensus on whether or not the protocol aborts, which
admits the intersection attack above.

Guaranteed output delivery is usually considered synonymous
with robustness in MPC. It is a stronger notion than fairness that
further requires that corrupt parties cannot prevent honest parties
from receiving output. MPC Protocols based on n-of-n sharing for
the dishonest majority setting ¢ < n, such as EMP [78] as well as
SPDZ [41] and its descendants, are inherently unable to provide
guaranteed output. However, as long as t < n/3, then the online
phase techniques for degree-t SSS described in Section 2.1-2.2
suffice. HyperMPC [9], for example, cannot guarantee output in
the ¢t < n/3 setting as it works with 2¢-sharings in the online phase.
Unlike fairness, guaranteed output is primarily a concern for liveness
rather than safety. A fair protocol that aborts can in principle be
restarted with a new set of parties. In any case, the protocols we
evaluate satisfy both or neither.

Asynchronous Safety and Liveness. MPC protocols that guaran-
tee output typically fall into one of two camps. The first camp is
based on (bounded) synchronous broadcast primitives and involves
restarting the computation after detecting and eliminating one or
more faulty parties. Such protocols can be unconditionally secure
when t < n/3 [7, 11, 12, 42] and using cryptography can reach
t < n/2[42, 53]. Dispute resolution is also used by virtualized pro-
tocols that boost a low-resilience outer protocol (i.e., t < n/8) to
t < nj/2-el[39, 40].2 However, we observe that these protocols
rely on the ability to time out nodes that appear to be unresponsive,
restarting the computation with the remaining parties. If ¢ honest
nodes are temporarily partitioned from the network, then any failures
among the remaining parties could compromise the safety properties,
including confidentiality. Using this approach to guarantee output,
therefore, leads to an inherent trade-off between the liveness and
safety properties—the more faults tolerated for liveness, the fewer

2We only consider the outer protocols of DIK+08,DIK10. By composing with an inner
protocol, these can obtain security of ¢ = n/2 + €, though this requires large randomly
selected committees, and in any case, inherits the robustness and practicality of the
inner protocol.



Table 1: Summary of Robustness in Active Secure MPC Protocols

¢ < | Fairness Guaranteed Output | Asynchronous | Complexity | Comm.
Protocol Designs Online  Offline | Safe  Live Assumption | Ovrhd.
BGW [7,12] | n/3 (] ] O O quadratic
HNOG6 [53] | n/2 [ ] o O @) SHE linear
BHOS [11],.DNO7 [42] | n/3 ) [ ) o O O linear
DNO7 [42] | n/2 [ ) [ ] [ ] O O Dlog linear
DIK+08 [39, 401" | n/8 ° ® ® @) 0 linear
COPS15[30] | n/2 [ ] [ ) [ ] (] O HE quadratic
CHP13[29],CP17[32] | n/4 [ ] [ ] [ ) [ ] [ ) linear
CP15 [31] | n/3 ) [ ) [ J ® o SHE linear
MPC Toolkits
Viff [37] | n/3 O O O o @) quadratic
SPDZ [41, 55,56] | n O O O [ ] O SHE or OT | linear
EMP[78] | n O O O ® O oT quadratic
SCALE-MAMBA [5] | n/2 O O O [ ] O quadratic
HyperMPC [9] | n/3 O O O ] O linear
CGH+18 [27] | n/2 @) @) @) [ ) @) linear
This paper
hbMPC | n/3 | @ ° o | e o | [ linear

tolerated for safety. Furthermore, the preference for performance
would be to set the timeout parameter low enough to tolerate benign
crashes, though this means even shorter duration network partitions
weaken the security threshold among the remaining nodes.

We say a protocol has asynchronous safety if its safety proper-
ties hold even in an asynchronous network and up to ¢t parties are
corrupt.3 The second camp of guaranteed MPC protocols relies on
asynchronous primitives rather than dispute resolution, and proceed
with the fastest n — ¢ nodes regardless of the network time [29-32].
We notice that since the MPC implementations do not aim for guar-
anteed output anyway and block on all n parties before proceeding,
trivially satisfy this property.

Purely asynchronous MPC protocols [29, 31, 32] further guar-
antee liveness as well as safety without assuming bounded syn-
chrony and broadcast channels. In this setting, even a replicated state
machine task — without any secrecy properties at all — requires
t < n/3, hence this is also a lower bound for asynchronous MPC.
We know of two unconditionally secure asynchronous MPC proto-
cols with linear overhead for the ¢t < n/4 setting [29, 32], as well
as a protocol for the ¢t < n/3 relying on Somewhat Homomorphic
Encryption (SHE) [31]. Other related protocols for asynchronous
MPC include a constant-round online phase, independent of the cir-
cuit depth [33, 38]; however, these incur quadratic communication
overhead in n.

Communication Overhead. Communication overhead is a critical
factor in how well the network size n can scale. We mainly focus
on amortized overhead over suitably large batches of operations. An
MPC protocol has linear communication overhead if, for a given task,
as a function of a network size n, the total communication cost grows
with O(n). In particular, this means that as additional nodes are added,
the bandwidth required by each node remains constant. Besides

3Asynchronous safety is a requirement even for the stronger partially synchronous
network model [46], where a protocol must guarantee safety at all times, but liveness
only during periods of synchrony.

communication overhead, we also discuss computation overhead in
Section 6.1.

Informing the design of HoneyBadgerMPC. Concerns of inter-
section attacks are the primary reason not to use existing (unfair)
MPC implementations for AsynchroMix. We note that several re-
cent works use a blockchain cryptocurrency and security deposits
to provide financial compensation in case the protocol aborts un-
fairly [57, 58], though we aim to prevent such failures at all. We wish
to avoid the tradeoff between safety and availability associated with
asynchronous-unsafe protocols, which rules out protocols based on
the synchronous broadcast.

This leaves the (partially) asynchronous protocols [29-32] as
candidates. These guarantee liveness in the offline phase as well as
the online phase, which means that service can continue indefinitely
even if some nodes fail. However, these require either additional
cryptography overhead or else offer less resilience (¢ < n/4 rather
than ¢ < n/3). To avoid these problems, our approach is to start from
the unconditionally secure protocols for ¢t < n/3 [11, 29], but relax
guaranteed output in the offline phase. We envision optimistically
running the offline phase ahead of time to build up a sufficiently
large reserve of preprocessed values.

4 OVERVIEW OF ASYNCHROMIX AND
HONEYBADGERMPC

AsynchroMix is an application of the MPC-System-as-a-Service
(MPSaaS) [9] approach to the problem of anonymous broadcast
communication. We consider a typical client-server setting for anony-
mous communication networks [44, 59, 77], where clients send their
confidential messages to server nodes and server nodes mix clients
messages before making them public. As our primary focus is ro-
bustness, we model an asynchronous communication network such
that we must not make use of timeouts and do not rely on time-
bound parameters to be correctly configured. The communication
network is assumed to be under the adversary’s control such that the
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Figure 4: Overview of the AsynchroMix protocol

adversary may arbitrarily delay messages, duplicate them, or deliver
them out of order. For system liveness, we assume that the adversary
cannot drop messages between two honest parties.4 As mentioned
in Section 5, the goals of AsynchroMix include Safety (anonymity
properties) as well as liveness - the system continues to work. The
strong threat model includes a fraction being maliciously corrupted
and does not rely on timing assumptions.

System Model: Assume a set of clients C = {Cj}j1. .. Kpop
put messages mj, who communicate to a set of n servers, {P; }i=1...n.
We assume that at most ¢ < n/3 of the servers are Byzantine cor-
rupted by a global adversary, and similarly, a number of clients are
corrupted as well. All of the clients and servers are connected over
asynchronous channels. The messages themselves are fixed sizes of
|m| bits (or field elements, depending on context).

AsynchroMix proceeds in sequential mixing epochs, where in
each epoch we mix input messages provided by k < kpop clients.
Fig. 4 offers a high-level overview of the process. The protocol
satisfies the following security properties:

with in-

o Anonymity (Safety): During every mixing epoch, even when all
but k — 2 selected clients are compromised, the adversary cannot
link an included message m; to its honest client C; except with
probability negligibly better than 1/2.

Specifically, for input vector my, ..., my from k clients, the
output is a permutation z(my, ..., my.) such that the output permu-
tation is at least almost independent of the input permutation.

o Availability (Liveness): Every honest client’s input is eventually
included in a mixing epoch, and every mixing epoch eventually
terminates.

AsynchroMix is built upon a new MPC prototype, called Honey-
BadgerMPC, which realizes secure computation through the use
of asynchronous and maliciously-secure primitives. In particular,
HoneyBadgerMPC makes use of asynchronous reliable broadcast

4 Although it is tempting to treat the network to be bounded-synchronous (bounded
message delivery delays) [34, 70] and develop similar protocols using well-known
message delivery time bounds and system run-time assumptions, deciding these time
bounds correctly is a difficult problem to solve and will require frequent readjustments.
Moreover, asynchronous protocol executions may often be faster than the protocol
executions with the bounded-synchrony assumption as in most cases messages delivery
may take significantly less time than timeout values.

to receive secret shared inputs from untrusted clients, and asynch-
ronous common subset to reach agreement on the subset of clients
whose inputs are ready and should be mixed in the next epoch. Each
mixing epoch involves a standard robust MPC online phase based
on Beaver triples and batched public reconstruction [11]. The offline
phase [9, 11] runs continuously to replenish a buffer of preprocessing
elements used by the online phase. The offline phase is optimistic
in the sense that all server nodes must be online and functioning to
replenish the buffer. These components are described in more detail
below and illustrated overall in Figure 4.

4.1 Receiving Client Inputs using Preprocessing
and Asynchronous Broadcast

Since clients are untrusted, we need a way to receive secret shared
inputs while guaranteeing that the inputs are valid, consistent, and
available at every server node. In principle, we could use Asynch-
ronous Verifiable Secret Sharing (AVSS) [8, 23], though this would
lead to additional communication and computation overhead. In-
stead, we make use of a preprocessing approach due to Choudhury
et al. [30]. The idea is that for each input m from client C, we con-
sume a preprocessed random share [[r], which was generated in the
offline phase and privately reconstructed to C (i.e., each server node
sends their share of [r] to C, who robustly interpolates r). The client
then blinds its message m := m + r and broadcasts the blinded mes-
sage m ((1) in Figure 4). The servers then each locally compute their
share [m] := m — [r]), without leaking any information about m.

To broadcast m, we make use of the asynchronous broadcast
protocol ReliableBroadcast, which guarantees, roughly, that if any
server receives m, then every correct server also receives m. More
details on the reliable broadcast protocol are given in the Appendix.

4.2 Asynchronous Mixing Epochs

Each mixing epoch begins when servers have received inputs from
enough clients. Servers must reach an agreement on a subset of
k client inputs [2, 45, 67] which are deemed to be available for
processing. Every epoch, this agreement is made using the asynch-
ronous broadcast primitive CommonSubset [13]. At the beginning
of CommonSubset, each server inputs its view of which client
inputs are available for mixing. For honest servers, this will be the
set of inputs for which a value has been received by ReliableBroad-
cast. The output of CommonSubset will be a set of k available
inputs that will be used in the next mixing epoch.

4.3 Robust Online Phase

Once the inputs to a mixing epoch are determined, the mixing pro-
ceeds as an online phase of MPC, running one of two programs,
power-mix or iterated-butterfly, as we detail in the next Section.
The online phase itself is standard, based on Beaver triples [10], and
only requires batch reconstruction of ¢-sharings, which in the t < n/3
setting we can achieve through Reed Solomon decoding [11, 42].
In Appendix A we discuss implementation improvements based on
FFT.



Protocol AsynchroMix

Input: Each client C; receives an input m;

Output: In each epoch a subset of client inputs my, . . ., my are

selected, and a permutation n(my, . .., my) is published where

7 does not depend on the input permutation

e Preprocessing:

— For each mj, a random [r;], where each client has received
Tj

— Preprocessing for PowerMix and/or Switching-Network

Protocol (for client Cj):

(1) Set mj =mj+rj
(2) ReliableBroadcast m;
(3) Wait until m; appears in the output of a mixing epoch

Protocol (for server P;):

- Initialize for each client C;
input; := 0
done; :=0

- On receiving m; output from ReliableBroadcast client C; at

any time, set input; := input; + 1

- Proceed in consecutive mixing epochs e:

Input Collection Phase

Let b; be a |C|-bit vector where b; ; = 1if input; > done;
Pass b; as input to an instance of CommonSubset

Wait to receive b from CommonSubset, where b is an
n X |C| matrix, each row of b corresponds to the input from
one server, and at least n — t of the rows are non-default.
Let b. j denote the column corresponding to client C;.

// No. of inputs received from C;
// No. of messages mixed for C;

For each Cj,
mi—[ri] Xb.j=t+1
[m)] = { r .
0 otherwise
Online Phase
// Switch Network Option

Run the MPC Program switching-network on
{[[mj,k_,-]]}» resulting in 7(my, ..., my)
Requires k rounds,
// Powermix Option
Run the MPC Program power-mix on {[m; x ]}, result-
ing in z(my, ..., my)
Set done; := done; + 1 for each client C; whose input
was mixed this epoch

Figure 5: Protocol for asynchronous mixing of values.

4.4 Continuously Running Offline Phase

Since AsynchroMix is a continuously running service, the offline
phase could be run concurrently to replenish a buffer of preprocess-
ing values. Here latency is not critical, although it should ideally be
efficient enough to keep up with the demand from the online phase.
Our offline phase is an implementation of BHO8 [11], the same as
used in HyperMPC. It is based on decoding 2¢-sharings and therefore

makes progress only when all n nodes are responsive. As mentioned
in Section 3, we consider it reasonable to use a non-robust protocol
for the offline phase which runs ahead of time in order to provide
a reserve buffer of preprocessed values. If one or more nodes fail,
eventually the reserve will be depleted and clients will have to move
to a new instance of the service.

4.5 Security Analysis of AsynchroMix

THEOREM 4.1. Assuming that sufficient preprocessing elements
are available from a previously-completed offline phase, then the
AsynchroMix protocol defined in Figure 5 satisfies the anonymity
and availability properties defined earlier.

PROOF. For anonymity, it is clear that each mixing epoch only
proceeds with k inputs from different clients. The use of prepro-
cessed random sharings ensures that the secret shared inputs depend
only on broadcast values from clients, and hence are valid sharings.
The PowerMix program, thanks to perfect symmetry in its equation
format, outputs the k values in a canonical ordering that depends only
on their values, not their input permutation order. The Switching-
Network induces a random permutation, which is sampled from a
nearly uniform distribution.

For availability, we need to show that a) each honest client’s input
is eventually included in a mixing epoch, and that b) each mixing
epoch completes robustly. For a), notice that once a broadcast m;
from client Cj is received by every honest server, then the corre-
sponding bits b; ; in the next epoch will be set for every honest
server. Therefore m; is guaranteed to be included in the next mixing
epoch. For b), notice that if at least t + 1 of the bits b. ; are set
for Cj, then we know at least one honest server has received the
client’s broadcast, and hence by the agreement property of Reliable-
Broadcast we can rely on this input to be available to every honest
server. O

4.6 Comparing AsynchroMix with Other Strong
Anonymity Solutions

We observe that most anonymous communication systems do not
focus on robustness and thus cannot achieve strong availability guar-
antees in the presence of faults. For example, in protocols following
mix-nets strategies such as [59, 60, 62, 69, 77], nodes encrypt/de-
crypt layers of encryptions of user/cover traffic or re-encrypt batches
of messages, and many failures has to result in users resending their
messages. Similarly, in protocols following DC-net strategies such
as [34, 70], nodes collaborate to randomly permute a set of mes-
sages while decrypting those, and any participating node may abort
the execution and force re-execution. In order for these protocols
to handle failures, it is necessary to rely on synchronous network
assumptions to timeout a node, potentially restarting a computa-
tion or requiring users to resend messages. This introduces many
potential issues. The first is that compromised nodes may attempt
to degrade performance, such as by stalling until the last moment
before being timed out. Attempting to optimize the protocol for
speed by reducing the timeouts would only make it more likely that
honest participants who experience a fault would be removed, thus
degrading security. More importantly, by DoSing some honest nodes
during re-running, it is also possible to launch inference attacks



leading to deanonymization [19, 70, 79]. On the other hand, most of
these schemes can indeed maintain anonymity/privacy against much
larger collusion among the nodes, while liveness requirements of
AsynchroMix in the asynchronous setting mandate us to restrict the
adversarial collusions to ¢ < n/3 nodes.

Our approach to MPC mixing is closely related to MCMix [4],
which implements an anonymous messaging system based on MPC.
Instead of a switching network, they associate each message with
arandom tag and obliviously sort the tags using MPC comparison
operations.

5 MPC PROGRAMS FOR MESSAGE MIXING

Once the inputs are selected, [m1], ..., [mg], each asynchronous
mixing epoch consists of an online MPC phase, computing either
the Iterated Switching Network or PowerMix MPC programs.

The first approach is based on an iterated butterfly switching
network [35] which yields an almost-ideal random permutation
of inputs. Each switch uses a secret-shared random bit from the
offline phase and a single MPC multiplication. Overall this method
requires O(log? k) asynchronous rounds. The communication and
computation cost per server are both O(n log? k) per input.

As an alternative to the switching network, we present a constant-
round protocol called PowerMix, based on Newton’s sums. To mix
a batch of k messages [m;] through [my], the servers first com-
pute the powers [[mjl ] where i, j range from 1 to k. We then locally
compute the sums of each power, [S;] = Z}C:l [[m;]] and publicly
reconstruct each S;. Finally, we use a solver for the set of m; using
Newton sum methods. Ordinarily, computing [[mﬂ] using Beaver
multiplication would require at least O(log k) rounds of commu-
nication. However, in PowerMix we use a novel way to trade-off
communication for computation, generating all the powers in a sin-
gle round of communication by using some precomputed powers of
the form [r],[r2].. . ..[r¥]. As a result, PowerMix only requires two
rounds of communication to finish mixing.

5.1 Option I: Switching Network

Our first approach is to use an MPC program to randomly permute a
set of k secret shared values using a switching network.

Switching networks are implemented in layers, where each layer
applies a permutation to the inputs by conditionally swapping each
pair. However, the resulting permutations are biased [1, 68]. For
example, while a random Benes network can express every possible
permutation, some permutations are more likely than others. Czumaj
and Vocking showed that O(log k) iterations of random butterfly
networks (each of which consists of O(log k) layers) provide ad-
equate shuffling [35] in the sense that the combined permutation
is nearly uniform. The round complexity of the switching network
is O(log? k), and the overall communication cost is O(k log? kn)
considering there are O(log? k) layers in total and O(k) multiplica-
tions are needed in each layer. Computation cost is O(k log? kn)
since O(k log? kn) multiplications are needed in total. (See Figure 6
for a secure switching network instantiation with standard MPC
operations.)

MPC Program switch
o Input : [i1], [iz]
e Output:[o; ], [oz] which are i; and iz swapped with 1/2 proba-
bility
e Preprocessing: random bit [b], b € {-1, 1}
e Procedure:

[e] := [o] - ([ia] - [i2D)
fo] = 27" ([ia] + [i2] = [e])
loz] == 27" ([ia] + [i2] + [])
MPC Program switching-network
o Input: [mi],...,[mg]
e Output:z(my,...,my) where 7 «— D
e Procedure:
— for each of log? k iterations, evaluate a switch layer, that uses
k calls to switch to randomly permute all k/2 pairs of inputs,
where the arrangement of pairs is laid out as log k iterations
of a butterfly permutation
— finally, reconstruct the output of the final layer,

Open(r([mi], ..., [me]))

Figure 6: Permutation based on a switching network

Table 2: Summary of Online Phase computation and commu-
nication cost overhead (per client input) for Iterated Butterfly
and PowerMix MPC programs

Protocol Rounds | Comm. complexity | Compute
PowerMix 2 O(n) O(n + k%)
Switching Network | log? k O(nlog?k) O(nlog®k)

5.2 Option II: PowerMix

To contrast with the switching network, we propose a novel protocol
PowerMix, which results in reduced communication at the cost of
computation. Our approach follows two steps. First, we compute
the k powers of each shared secret, [m?], ..., [m*] from just [m].
Surprisingly, we show how to achieve this using only O(1) commu-
nication per shared secret, our protocol for computing powers may
be of independent interest. The second step, inspired by Ruffing et
al. [70], is to to use Newton’s Identities [63] to solve a system of
equations of the form S; = mi + ...+ m}c

The servers can obtain S; by computing locally [S;] and publicly
reconstructing. Then we solve the system of equations to obtain
{ m:} in canonical ordering. We next describe this approach in more
detail.

Computing powers with constant communication. For each se-

cret share [m] sent by clients, we need to compute [m?], [m?], ..., [m¥].

The naive way is to directly use Beaver triples k — 1 times. If we
cared only round complexity, we could also use the constant-round
unbounded fan-in multiplication [36], though it adds a 3x factor
of additional work. In either case, we’d need to reconstruct O(k)
elements in total.



MPC Program compute-powers
e Input: [m]
e Output:[m?], [m?] ... [m¥]
e Precompute: k powers of random b, [b], [b%], [6°] . .. [6¥]
e Procedure:
Initialize Array[k + 1][k + 1]
for i from 1 to k: Array[0][i] := [b']
C = Open([m] — [])
for ¢ from 1 to k: // compute all Array[i][j] where £ =i+ j
sum:=0
forifrom1to({—1),j=¢—1i
sum += Arrayl[i — 1][j]
// Tnvariant: sum = Y ; [m*=1-kpi*k]
Array[i][j] = [b'*/] + C - sum
// Tnvariant: Array[i][j] will store [mb/] by (1)
for i from 2 to k output [m’] := Array[i][0]

MPC Program power-mix
o Input: [mq], [mz],. .., [m«],
e Output: a shuffling of (m1, ma, ..., my)
e Precompute: k sets of precomputed powers, for k instances of
compute-powers
(ie., [b)] fori € [1..k],j € [1..k],
k beaver triples
e Procedure:
- (Step 1) for i from 1 to k:
Run compute-powers (Algorithm 7) on [m;] to obtain
[m2]. [m3]. ... [[m{‘]]
- (Step 2) for j from 1 to k:
Locally compute [S;] := Z;‘:l [[mjl]]
S; == Open([S;])
- (Step 3) Apply Newton’s identities to solve (Si, Sa,...,Sk),
recovering a shuffling of (my, ma, ..., my).

Figure 7: Algorithm for calculating k powers of input [m] using
preprocessing in the Powermix online phase

We instead make use of a preprocessing step to compute all of
[m?], [m?]..... [m*] by publicly reconstructing only a single ele-
ment. Our approach makes use of precomputed powers of a random
element, [r], [r?]. .... [FK] obtained from the preprocessing phase.
We start with the standard factoring rule

k-1
mk =k = (m-r) (Z mk_l_[r[) .
=0

Taking C = (m — r), and annotating with secret share brackets, we
can obtain an expression for any term [m'r/] as a sum of monomials
of smaller degree,

i-1
[mir] = [rF'*] +C (Z [[mf—l—frﬂfﬂ) : )
=0

Based on (1), in Figure 7 we give pseudocode for an efficient al-
gorithm to output all the powers [m?], ..., [m¥] by memoizing the
terms [m’r/]). The algorithm requires a total of k%/2 multiplications
and k? additions in the field. The memory requirement for the table
can be reduced to O(k) by noticing that when we compute [mr/],
we only need monomials of degree i+j—1, so we can forget the terms
of lower degree. Table 2 summarizes the asymptotic communication
and computation costs of each approach.
Solving Newton’s Identity. We now discuss how to reconstruct the
shuffled values from the power sums. We have S; = Zle m{. where
m; is the message provided by client C;. So we require an algorithm
to extract the message m; from S;.

Assuming that our goal is to mix k messages mi, mg, ms, ..., mg,

the servers first run Algorithm 7 to compute the appropriate powers.
k

Then all servers calculate [S;] = X5, [[m{ ] locally and then publicly
reconstruct each S;.
Let f(x) = agxX +ap_qx .+aix+agp be a polynomial such

that f(x) = 0 has roots mi, ma, ms,...,mr. And we have g = 1

k=1,

Figure 8: Power-mixing protocol for shuffling and open secret
shared values [mi], ..., [mg]

given that it is the coefficient of xk resulting from the product of
(x—mq)(x—mg3)...(x—mg). According to Newton’s identities [70],
we can calculate all coefficients of f(x) by:

S1+ap_1=0

So 4+ ap_151 +2a5_5,=0

S3 4+ ap_1S2 +ap_51 +3ap_3=0

Knowing S; we can recover all a; by solving these equations
one by one. Once we know the coefficients of f(x) we can then
find k roots of f(x) = 0 with O(k?) computation complexity in our
implementation [20]. Then we recover all m;. Our final mixing set
consists of these k messages.

To conclude, Figure 8 shows the overall protocol of Power-mixing.

5.3 AsynchroMix Offline Phase Requirements

The offline phase supporting AsynchroMix needs to be able to gen-
erate the requisite preprocessing elements for both converting client
inputs into secret sharings and for realizing either mixing program.
Of these, handling client inputs is the most straightforward as it
only requires generating a t-shared random value for each input.
For simplicity, we note that the randomness extraction protocol is
just RanDouSha, but with only one matrix operation performed
and with half the number of inputs and outputs. We, therefore, write
randomness extraction as simply half of a call to RanDouSha.
Running our mixing programs requires additional preprocessing
inputs. The Switching-Network program requires the generation of
random selector bits as well as the Beaver triples needed to use them.
Meanwhile, our PowerMix program needs k secret-shared powers
of the same random value. These preprocessing costs are given in
terms of invocations of RanDouSha and BatchRecPub in Table 3.



Table 3: Offline phase requirements to run AsynchroMix ¢ + 1
times

Preprocess Task ‘ RanDouSha ‘ BatchRecPub ‘ Needed for
Client input:

random [r] | 0.5 | 1 | each input
Switch Network:

beaver triple 2 1 each switch

random bit [b] 1.5 1 each switch

Total: | 1.75k log® k klog? k each epoch

PowerMix:
k-powers k k each input
Total: K2 k? each epoch

5.4 Supporting Larger Messages

We have so far assumed that each client message consists of a single
32-byte field element, but AsynchroMix can easily be adapted to
support larger (fixed-size) messages of multiple field elements each.
Since the switching network choices depend only on the prepro-
cessed selection bits, we can simply apply the same selection bits
to each portion of input (i.e., the 1st element of clients’ messages
are permuted in the same way as the 2nd element, and so on). For
PowerMix, we could reserve a portion of each message element
(e.g., k = 40 bits) to use as a tag which would be used to link parts
of a message together. Since no information about mixing inputs is
leaked until the mix is opened, tags will not collide except for with
27K probability.

6 IMPLEMENTATION AND EVALUATION

We have developed a prototype implementation that includes all of
the protocols needed to realize both the offline and online phases
of AsynchroMix. Our prototype is written primarily in Python 3, al-
though with computation modules written in C++ (to use NTL [72]).5
For batch computations on secret sharings, both the FFT-based and
matrix-based algorithms are implemented in C++ using the NTL
library. We carried out a distributed benchmarking experiment with
several aims: to validate our analysis, to demonstrate the practi-
cality of our approach, and to identify bottlenecks to guide future
improvement. We are mainly concerned with two performance char-
acteristics: cost and latency. Latency is the user-facing cost, the
time from when the user initiates a message to when the message is
published. Computation and bandwidth costs are a complementary
metric since we can improve latency by adding more resources, up
to the extent that sequential computations and communication round
trips are unavoidable. We are mainly interested in configurations
with varying the mix size k, as well as the number of servers n
(and assuming n =~ 3t + 1). We evaluated not only the online phase
of the MPC protocols, but also the offline phase which generates
precomputed Beaver triples, powers, and bits.

5https://gilhub. com/initc3/HoneyBadgerMPC
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Figure 9: Compute costs for switching network application at
k = 4096 (144x batch reconstructions of 4096 shares each) using
FFT vs. Matrix Multiplication algorithms

6.1 Microbenchmarks for Robust Reconstruction

Evaluating FFT-based and matrix- based decoding. For the switch-
ing network, the main cost in the online phase is batch reconstruc-
tion. We implemented two variations of the batch reconstruction
operation, one based on matrix multiplication (superlinear) as in
HyperMPC [9] and others, and an alternative based on FFT (quasi-
linear time).® The use of FFT-based methods has been suggested by
Damgiird et al. [42], but to our knowledge it has not been included
in any MPC implementation. We give a detailed explanation of the
FFT-based algorithms we use in the Appendix. Clearly for some
large enough value of n, FFT-based methods would lead to a perfor-
mance improvement, but we want to determine if it could provide
benefits for the network sizes in our experiments.

Figure 9 shows the results of microbenchmarks for a single-core
C++ implementation of the reconstruction algorithms, using a single
t2.medium node for a series of 144 batch reconstructions of 4096
shares each, corresponding to a run of the switching network pro-
gram for mixing k = 4096 client messages. The primary crossover
point is at around n = 2048. For network sizes of n = 2048 and
larger, FFT-based methods offer a significant (greater than 2x)
improvement. For context, while our distributed experiment only
goes to n = 100, HyperMPC [9] ran with up to n = 1000, hence the
n = 2048 could be considered within a practical range.

We noticed that NTL switches strategies for matrix multiplication
at n = 70. Hence at n = 64 the FFT evaluation performed marginally
better (a 23.5% speed up) using the hybrid approach compared to
just using Vandermonde matrix-based interpolation and evaluation
at n = 64. Similarly, at n = 1000, the performance is close, but using
FFT for evaluation but Vandermonde matrices for interpolation offers
an overall benefit compared to either.

Establishing the feasibility of error correction. We implemented
two algorithms for Reed Solomon error correcting, Berlekamp-
Welch and Gao [47]. For up to n = 100, correcting errors for a

6 A function f(n) is quasilinear if f = O(n log® n) for some constant c.
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single polynomial requires less than 1 second. The overall perfor-
mance of the MPC system is not too dependent on the cost of error
correction, because we only apply the error correction once per
faulty party. Once an error is identified in any batch, we discard
all the other shares from that party, and resume batch interpolation
using the remaining parties. Hence even in the worst case where
t = 33 servers fail sequentially, the maximum delay added would
be under 33 seconds.

6.2 Distributed Experiment for AsynchroMix

To evaluate the performance of AsynchroMix and identify the trade-
offs and bottlenecks involved in our two mixing approaches, we
deployed our prototype on clusters of AWS t2.medium instances
(2 cores and 4GB RAM) in 10 regions across 5 continents. We con-
ducted baseline tests for bandwidth and latency between instances
in different regions, which we detail in Appendix B. For each ex-
periment, we ran three trials for each configuration of n and k, and
recorded the bandwidth, and running times.
Online Phase for PowerMix. Figure 10 (solid lines) shows the
running time for PowerMix to mix and open from k = 64 to k = 1024
messages on up to n = 100 server nodes. It takes around 5 seconds to
mix k = 256 messages on n = 100 servers and around 130 seconds
to mix k = 1024 messages. We can see that PowerMix is mostly
insensitive to the size of n, since the bottleneck is the computational
costs, which depend mostly on k. Besides the computation steps
could be parallelized to make use of more computation resources.

Figure 11 shows the communication cost of PowerMix, measured
as outgoing bytes sent by each server, amortized per each client input.
Since PowerMix requires two batch reconstructions of k shares each,
and BatchRecPub has a linear asymptotic communication overhead
to open a linear number of shares, we expect the per-server per-share
cost to reach a constant for large enough n and k. We estimate
this constant (the dashed line in the figure) as 2 - 6 - 1.06 ~ 12X,
where the 2 is for the two batch reconstruction instances used in
PowerMix, 6 is the is the overhead for each batch reconstruction
(the limit approached by %), and 1.06 is the observed overhead
of Python pickle serialization in our implementation. As n grows
larger, since there is an additive overhead quadratic in n, larger values
of k are necessary for the amortization to have effect. However, even
at n = 100, only around 400 bytes are needed to mix each 32-byte
message with k = 512 or higher.
Online Phase for Switching Network. Figure 10 (dashed lines)
shows the running time for Switching Network to mix from k = 64
to 4096 messages. We can shuffle k = 4096 messages on n = 100
servers in around 2 minutes. Since the number of batch reconstruc-
tion rounds grows with log? k, the sensitivity to n also increases as
k increases.

Based on the microbenchmarks (Figure 9), at k = 4096 and
n = 100, the inherent computation time should account for only
about 3 seconds out of the total 120 seconds observed. The rest
is due to a combination of serialization and Python overhead as
well as communication. Fig 12 shows the overall communication
cost of the Switching network. For k = 4096 client inputs with
n = 100 servers, each input requires each server to transmit nearly
30 kilobytes. The dashed line here is y = 32 - 6 - log? k where 6 is
reconstruction overhead and log? k corresponds to the number of
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Figure 10: Online phase latency for varying number of client
inputs, using PowerMix or Switching Network.

600

500 4

400 A

300 A

200 4

100 1 weeee ideal upper limit —f= n=10,t=3 —f= n=50,t=16

- n=4at=1 - n=16,t=5 n=100t=33

01— T : 1 T
64.0 128.0 256.0 512.0 1024.0

bandwidth per elementitotal bytes sent out per node)

k (size of input)

Figure 11: Communication cost (per node) of PowerMix in dis-
tributed experiment. Dashed line indicates the predicted limit
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as 757 approaches 6.

total rounds. From our baseline experiment, the worst per-instance
bandwidth is 221Mbps (Sdo Paolo) and the longest round trip latency
is 328ms (Sdo Paolo to Mumbai), hence up to 50 seconds can be
explained by transmission time and latency. Hence at this setting,
computation, and communication contribute about equally (neither
is the sole bottleneck), although there appears to a considerable room
to eliminate overhead due to serialization and Python function calls
in our implementation.

Tradeoffs between PowerMix and Switching Network. In the
online phase, PowerMix requires considerably more computation but
less communication than Switching Network. Given the resources
available to our t2.medium instances, PowerMix results in more
than 2X reduction in overall latency at n = 100 for up to k = 512
clients, but for larger values of k, Switching Network is preferable.
PowerMix would naturally be useful for larger values of k in more
bandwidth-constrained or computationally-powerful networks.
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Figure 13: Estimated combined cost (computation and band-
width) for AsyncMix with Switching Network. The cost includes
offline phase cost(dark colored), online cost(light colored) and
client input cost(top). Bandwidth cost is marked as "'//"".

Overall cost for AsynchroMix. Figures 13 and 14 show the esti-
mated overall cost, per server and per client input, combining both
computation ($0.05 per core hour for an EC2 node) and bandwidth
($0.02 per gigabyte transferred out) costs based on AWS prices. The
stacked bar charts show the costs broken down by phases (offline,
online, and client input). The offline phase contributions are based
on a distributed experiment for the RanDouSha algorithm, mul-
tiplied out by the necessary number of preprocessing ingredients
of each type (see Table 3). The offline cost of PowerMix is always
more expensive than Switching Network at the same setting, and
the difference increases with more clients (k versus than log2 k).
Using Switching Network, at n = 100 and k = 4096, the overall
cost (including all 100 servers) is 0.08 cents per message using
geographically distributed t2 .mediun instances.
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width) for AsyncMix with PowerMix. The cost includes offline
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7 CONCLUDING REMARKS

Emerging Internet-scale applications such as blockchains and cryp-
tocurrencies demand a robust anonymous communication service
offering strong security guarantees. Along the way towards building
a robust anonymous communication service on top of MPC, we have
highlighted robustness as a first-class concern for practical MPC
implementations. Using an existing MPC implementation means ac-
cepting an unfair computation, which can enable intersection attacks
when used for asynchronous communication. Furthermore, even a
single faulty node could disrupt the service. Fortunately, we have
shown through our AsynchroMix application case study that robust
MPC can be practical. Whereas related work explicitly foregoes
robustness, we show that it is an achievable goal that is worth paying
for.

AsynchroMix features a novel MPC program for anonymous
broadcast that trades off local computation for reduced communi-
cation latency, allowing for low-latency message mixing in varying
settings. Through an extensive experimental evaluation, we demon-
strate that our approach not only leverages the computation and
communication infrastructure available for MPC but also offers
directions towards further reducing the latency overhead.

In the future, our effort should motivate other MPC implementa-
tions to consider robustness as well as a computation vs communica-
tion trade-off.
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A  BATCH SECRET SHARING WITH
QUASILINEAR COMPUTATION

Damgird et al. [39, 40] first suggested the use of FFT-based op-
erations for batch secret sharing, although to our knowledge this
has never been implemented previously. We would naturally expect
quasilinear operations to be necessary when scaling n to extreme
large networks. However, even at the smaller values of n up to 100
that we consider, we investigated whether FFT-based operations
could offer performance improvements.

A.1 Shamir Sharing in FFT-friendly fields

In Section 2 we give a description of Shamir sharing and batch oper-
ations for arbitrary prime-order field F), and for arbitrary evaluation
points ;. To enable FFT-based operations, we choose F, such that
2%|p — 1, and hence we can find a 2%-th root of unity, w. Concretely,
in our implementation we choose p as the order of the BLS12-381
elliptic curve, such that 2%2|p — 1, and p = 255 bits.

A.2 Batch secret share operations using FFT

Given a polynomial ¢(-) in coefficient form, it is clear how to use
FFT to evaluate it at points «’ for i < n. The offline phase makes use
of randomness extraction. As mentioned in Section 2, the standard
approach is to perform multiplications by a hyperinvertible matrix
multiplication, such as the Vandermonde matrix. By choosing the
Vandermonde matrix defined by a; = ', this can be evaluated
efficiently using FFT.

As defined in Section 5, Robust-Interpolate depends on a sub-
routine to interpolate a polynomial from an arbitrary subset of ¢ + 1
shares. Soro and Lacan [74] give a transformation that relies on sev-
eral FFTs and is quasilinear overall. Soro and Lacan’s approach has
a setup cost of O(n log? n) which depends on the points we are inter-
polating from, and a cost of O(nlog n) per interpolation after that.
More specifically, the cost per interpolation consists of a standard
inverse FFT and a polynomial multiplication which is done using
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an FFT/CRT based approach by NTL. In A.4 we give a detailed
explanation of this method.

If the first attempt at decoding 2t + 1 received shares fails, we
know there is at least one error, but we don’t know where it is. With
each additional value we wait for, we either identify the error, or
learn the number of errors is one more, in which case we wait for an
additional point. This is known as Online Error Correction [29]. We
implement Gao’s algorithm for Reed Solomon decoding, which is
O(nlog n) when using using FFT for polynomial multiplication.

A.3 Vandermonde interpolation

Given ¢t + 1 points ((xo, yo), (x1,Y1), - - ., (xz, y;)) for distinct values
(x0, %1, - - - , x¢), polynomial interpolation means finding the lowest
degree polynomial P(X) such that P(x;) = y;. In general, given ¢ + 1
points we can always find such a polynomial that is of degree at
most ¢. Lagrange interpolation is the standard algorithm used for
polynomial interpolation,

t t
X —xj
P(X) = i 2
=2\l 5= @
i J#i

However, this has a quadratic computational cost of O(t?), and is
impractical for large t. An alternative approach to interpolation, as in
HyperMPC [9] for example, is to use matrix multiplication with the
inverse Vandermonde matrix, M~1, where M, ij = xl’ . To summarize:

Step 1 (depends only on xo, . . ., x;):

— Compute the inverse of M~!
Step 2 (depends also on yo, . . ., yz):

— Matrix multiply (ag,...,a)T = M (yo, . . .,yt)T such that
P(X) =Y aiX".
To interpolate a batch of k polynomials at once, we multiply M~!

by a matrix of size {¢ + 1} X k.

A.4 FFT-based interpolation

Here we give a self-contained explanation of the FFT-based poly-
nomial interpolation algorithm from Soro and Lacan [74]. In this
setting we assume the additional constraint that each x; is a power

of w, a primitive n* root of unity,

xi = 0% zi€{0,1,...,n—1}

The goal is to get an expression for P(X) that can be computed
within O(nlog n) steps depending on yo, . . ., y;, along with a pre-
computation phase depending only on xo, . . ., x;. We start by rewrit-
ing Equation (2) as

t
Pe0jac) = Y 2P )
where we define l
AX) = f[(x %), @
and :
bi = ﬁ(xi Cx) = % )

J#i

15

The degree-t polynomial A(X) as well as each b; depends only
on {x;} and so we compute them explicitly during an initializa-
tion phase. The right hand side is intractable to compute directly,
but we can make use of the Taylor series expansion 1/(X — x;) =
-2 xi_] ~1XJ. We therefore have

t [ ¢
PX)/AX) = - Z (yl/bl)xl_]_le mod X*t1! (©6)
i J
Rearranging, we have
t [t
PX)/AX) = - Z ( (yi/bi)xi_j_l)Xj mod X!t (7)
Jj i

and finally since x; = w®i, we can replace each coefficient with a
polynomial evaluation

t
POO)/AX) = = 3 N7 )X/ mod X'+ ®
J

where we define the polynomial
¢
N(X) = > (yi/bi)X*. 9
i

To summarize, we can compute P(X) through the following steps:

Step 1 (depends only on x, . . ., x;):
— Compute A(X), {b;}.
Step 2 (depends also on yo, . . ., Yz):

— Compute N(X) from coefficients {y;/b;}.
— Evaluate each N(w/) using FFT to obtain the coefficients of
P(X)/A(X) mod X!+,

— Multiply by A(X) to recover P(X).
For interpolation of a batch of k polynomials from shares received
from the same set of t + 1 parties, Step 1 can be computed once
based on the party identifiers. Soro and Lacan [74] give an algorithm
to compute this step in O(nlog? n) overall time. Step 2 can clearly
be computed in O(nlog n) time, and must be computed for each of
polynomial in the batch.

A.5 Microbenchmarks

We now perform microbenchmarks to evaluate when FFT-based
methods are more performant than Vandermonde matrix multiplica-
tions. We consider the following tasks and algorithms:

Task ‘ ~ O(n'*e) ‘ ~ O(nlog® n)
Encode Shares Matrix Mul FFT
Interpolate Matrix Mul Soro-Lacan [74]
RSDecode | Berlekamp-Welch Gao

We implemented all algorithms in C++ using the NTL library.
Additional details on costs for interpolation, evaluation, matrix in-
versions, etc and on methodology are given below.

Timing evaluation algorithms: The core component of evalua-
tion using Vandermonde matrices is multiplication of a n X (¢ + 1)
matrix and a (¢ + 1) X k matrix, where k is the number of polynomials
to evaluate. We use NTL for matrix multiplication. We set k = 8192
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Figure 15: Interpolation (Step 2) and Evaluation Micro-
Benchmarks

to be large enough to estimate the amortized cost per evaluated poly-
nomial. For FFT-based evaluation, the operation consists simply of
an FFT applied to each of the k polynomials in turn. Figure 15 shows
the costs of these components.

Timing interpolation algorithms: The interpolation algorithms
both have a setup phase which only depends on the x-coordinates
of the points we are interpolating on. In the context of batch recon-
struction, these coordinates only depend on the first ¢ + 1 parties we
received shares from. Therefore, the setup phase only needs to be
done once within a single round of batch reconstruction. The primary
component of the interpolation algorithms are also dependent on
the batch sizes. We time these two parts of all algorithms separately
which helps us accurately predict how our execution time would
vary with both n and the batch size.

Vandermonde-based interpolation and evaluation costs roughly
O(n?), while their FFT-counterparts take O(n log n) time. However,
FFT has a relatively large constant behind the big-O notation but is
only better than Vandermonde-based operations at relatively larger
values of n (n > 8192). When the costs for matrix inversion, as
shown in Figure 16, are included in the total costs, in practice we
see a cross-over much earlier since matrix inversion.

Total cost for batch reconstruction: Our current implementa-
tion of batch reconstruction requires 3 evaluations and 2 interpo-
lations. Additionally, we perform batch size/(t + 1) evaluations /
interpolations per batch. Therefore, the total cost of a single batch
reconstruction is given by

2 x Cost per interpolationx
batch size/(t + 1) + 3%
Cost per evaluation X batch size/(t + 1)

B DETAILS ON DISTRIBUTED EXPERIMENT
SETUP
To launch distributed experiments on both Powermix and Swtiching

Network, we set up AWS machines in up to 10 regions across 5
continents around the world. We tested the performance of both
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Figure 16: Interpolation preparation (Step 1) time micro-
benchmarks

Regions n=4|n=10|n=16 | n=50 | n=100
Virginia 1 1 2 5 10
Ohio 0 1 1 5 10
Oregon 0 1 2 5 10
Frankfurt 0 1 1 5 10
Tokyo 1 1 2 5 10
Mumbai 1 1 1 5 10
South America 1 1 2 5 10
Canada 0 1 1 5 10
London 0 1 2 5 10
Paris 0 1 2 5 10

Table 4: Table of Region Setting for AsynchroMix Online Phase
Benchmark (n is the number of peers)

methods in the following settings : n = 4,n = 10,n = 16,n = 50,n =
100 and corresponding region settings are recorded in Table 4.

For a better understanding of the network situation among dif-
ferent AWS nodes, we launched tests to measure the latency and
bandwidth among AWS peers in different regions. The result of
latency experiment could be found at Table 5 and we measured
it by letting peers ping each other. With the help of iper 3, we
managed to measure the per link bandwidth among the peers. The
result of bandwidth experiment is available in Table 6. Besides per
link bandwidth, we also get total outgoing bandwidth which are
measured when all peers communicate with all other peers. Total
outgoing bandwidth provides a better view of actual communication
and benchmark result is available in Table 7.



Regions Virginia | South America | Tokyo | Frankfurt | Canada | Paris | Ohio | Oregon | London | Mumbai
Virginia X 145 162 91.2 16.4 81.6 | 11.6 79.8 759 187
South America 145 X 271 233 123 221 | 151 184 213 328
Tokyo 162 271 X 241 154 234 | 155 100 236 129
Frankfurt 91.1 233 241 X 99.1 19.6 | 101 155 12.8 133
Canada 16.4 123 154 99.1 X 939 | 25.6 65.1 85.8 196
Paris 81.5 221 234 10.6 93.9 X 92.3 153 8.56 106
Ohio 11.6 151 155 103 25.6 92.7 X 70.2 85.9 196
Oregon 79.7 184 100 155 65.2 152 | 70.1 X 141 224
London 75.9 213 237 12.8 85.9 852 | 86 141 X 114

Mumbai 187 328 129 113 196 106 | 196 224 114 X

Table 5: Latency tests of AWS machines across different regions. (round trip time in ms, instance type: t2.medium)

Regions Virginia | South America | Tokyo | Frankfurt | Canada | Paris | Ohio | Oregon | London | Mumbai
Virginia X 38.6 39.6 72.7 159 35.6 | 200 94.2 48.9 23.7
South America 46.4 X 28 28.2 63.8 25 | 60.2 27.6 25.4 17.4
Tokyo 334 229 X 32.6 33 22,6 | 45.1 354 25.7 36.8
Frankfurt 42.6 25.3 32.6 X 56.1 114 | 56.6 28.4 196 43.1
Canada 116 60.4 52.1 54.2 X 62 280 453 67.5 329
Paris 36.1 23.9 18.9 433 56 X 115 61.9 335 349
Ohio 104 45.6 38 61 92.5 42.8 X 52.9 54 28.7
Oregon 56.9 353 60.8 46.8 87.2 393 | 91.7 X 474 29.4
London 58 30.7 254 300 51.1 600 | 70.9 66.1 X 43.9

Mumbai 22.6 15 50.2 71.5 299 43 | 313 23 45.7 X

Table 6: Per link bandwidth test of AWS machines across different regions (per link bandwidth in Mbps, instance type: t2.medium)

Regions Total Outgoing Bandwidth (Mbps)
Virginia 618.5
South America 221.5
Tokyo 236.2
Frankfurt 487.2
Canada 529
Paris 377.65
Ohio 450.5
Oregon 259.38
London 305.4
Mumbai 401.1

Table 7: Overall bandwidth test for AWS machines across differ-
ent regions (total outgoing bandwidth in Mbps, instance type:
t2.medium)
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