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Abstract

Counting the Boolean functions having specific cryptographic features is an inter-
esting problem in combinatorics and cryptography. Count of bent functions for more
than eight variables is unexplored. In this paper, we propose an upper bound for the
count of rotational symmetric bent Boolean functions and characterize its truth table
representation from the necessary condition of a rotational symmetric bent Boolean
function.
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1 Introduction

Boolean functions having rich cryptographic characteristics are essentially required in all
cryptographic systems. An efficient selection of Boolean functions is the top prior job to
either break the linearity or provide the immunity to the system from various other cryp-
tographic attacks. A Boolean function is a function from an n dimensional vector space Vn
over base field Fn

2 to F2. It implies that the cardinality of set of all Boolean function is 22
n
.

Among all Boolean functions very less number of Boolean functions show some useful cryp-
tographic behaviours. Symmetric Boolean functions are well known Boolean functions to
implement a complex combination of larger number of variables in a cryptosystem. These
Boolean functions are characterized on their output which depends only on the hamming
weight of the input bit streams. In [1], Wegener described various complexities for sym-
metric Boolean functions in different model of computational systems. Symmetric Boolean
functions show so many required benefits in cryptography, such as, a compact presentation
and efficiency. Therefore it is always an exiting domain to explore those symmetric Boolean
functions equipped with other required cryptographic properties.In [3], it is proved that
there is only two symmetric bent Boolean function on Fn

2 for every even value of n and in [4]
count of the rotational symmetric Boolean function is presented. In [2], Canteaut studied
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the degree of symmetric Boolean function and also addressed the propagation characteris-
tics of symmetric Boolean function. In the same paper the characterization of all balanced
symmetric Boolean functions of degree less then 7 is presented. A Boolean function having
higher degree and high non-linearity always protect a cryptosystem from linear and differ-
ential attacks. However, both of these parameters of a Boolean function cannot be able to
increase simultaneously [3, 5]. Bent boolean functions are those Boolean function which
have highest non-linearity, but they can exist only for even number of variables and the at
most degree of these Boolean functions is n

2 , where n represent the number of variables.
Symmetric Boolean function exists for even as well as odd values of n. There are various
conjectures about the possible bounds on the degree of symmetric Boolean functions[6, 7].

Based on the rotational permutation of input bits of a Boolean function, Pieprzy and
Qu studied an another symmetric Boolean function namely rotational symmetric Boolean
function[8]. These Boolean functions are more desirable in the computation of efficient im-
plementation of various Hash algorithms. Among all possible Boolean functions, it is hard
to computationally search all possible symmetric and rotational symmetric Boolean func-
tions. So their counting is a challenging problem in cryptography and combinatorics. As
per our literature survey all available proposed constructions of symmetric and rotational
symmetric Boolean functions having other essential cryptographic characteristics are based
on iteration techniques. Therefore the count of those symmetric Boolean function which
satisfy some important cryptographic requirements is a remarkable work. Results on the
count of symmetric and rotational symmetric Boolean function on Fn

2 are available in [6].
In the same paper various enumeration of bent symmetric Boolean function is proposed.
It can be found in [15, 10, 14], that the trade off among various criteria of a cryptographic
Boolean function is difficult to attain. Balance Boolean function is an important crypto-
graphic requirement to protect it from correlation attack. Therefore balanced symmetric
and rotational symmetric Boolean functions are favourable choice in cryptography. In [9],
Shano Jing et al. proposed the enumeration of balanced rotational symmetric Boolean
functions and first order correlation immune rotational symmetric Boolean functions for
n = pr number of variables, where p is a prime number and r > 1 be any positive in-
teger. In [11], some results on the non-linearity of symmetric and rotational symmetric
Boolean functions was introduced. In the same paper they investigated the characteristics
of the Walsh spectrum of plateaued rotational symmetric Boolean functions and derived the
necessary condition for the existence of balanced plateaued rotational symmetric Boolean
functions. In continuation of the enumeration of cryptographic symmetric Boolean func-
tions Lakshmy K.V. et al.[4] proved the counting result of balanced rotational symmetric
Boolean functions on Fn

2 for n = pq, where p and q are two distinct primes. In this paper,
we develop some necessary Diophantine equations for rotational symmetric bent Boolean
functions. We enumerate bent rotational symmetric Boolean functions on Fn

2 . For n = 2q,
q > 3 a prime number, we characterize the truth table of rotational symmetric bent Boolean
functions. In the last section, we propose a much reduced upper bound for the number
of rotational symmetric bent Boolean function on Fn

2 for n = 2q, where q > 3 is a prime
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number. We hope that this method of counting of bent symmetric Boolean function is
efficiently applicable in plateaued symmetric and rotational symmetric Boolean functions.

2 Preliminaries

Let Fn
2 denotes the n−dim vector space over the field F2 of order 2. A Boolean function

from Fn
2 to F2 can always written in terms of n− number of variables. This representation

named as Algebraic Normal Form (ANF) of a Boolean function. On the other hand the
truth table of a Boolean function is treated as a column matrix of order 2n × 1. Following
is the column matrix of truth table of a Boolean f from Fn

2 to F2,

MTT = [f(0, 0, ..., 0) f(0, 1, 0, ..., 0) ... f(1, 1, ..., 1)]T (1)

A more general presentation of a Boolean function in terms of multivariate polynomial is
as follows,

f(x1, x2, ..., xn) = a0 ⊕
n∑

i=1

aixi ⊕
n∑

1≤i≤j≤n
ai,jxixj ⊕ ...⊕ a1,2,...,nx1x2 . . . xn, (2)

where ai, ai,j , ..., a1,2,3,...,n ∈ F2 for all 0 ≤ i, j ≤ n. The hamming weight of a Boolean
function is defined as the number of non zero entries in the matrix MTT and it is denoted
as wt(f). The hamming distance between two equal size column matrix Mt and Ms is
defined as dH(Mt,Ms) = wt(Mt ⊕ Ms). A Boolean function is said to be balanced if
frequency of 0 and 1 is equal in MTT in other words wt(f) = 2n−1. The Algebraic degree of
f , is defined as the number of variables in the highest order term with non-zero coefficient in
(2). Boolean functions of algebraic degree at most one are called affine Boolean functions.
Here we take An as the set of all affine Boolean functions. Those affine functions in which
constant term is zero are called linear functions. The term non-linearity for a Boolean
function is defined as the minimum distance from all affine functions. Non-linearity of a
Boolean function can be calculated from the Walsh spectrum of Boolean function. Walsh
spectrum of a Boolean function is a collection of magnitudes of the Walsh coefficients.
Walsh transformation Wf , of a Boolean function f from Fn

2 to F2 is defined as

Wf (w) =
∑
x∈Fn

2

−1f(x)+w.x, (3)

it is a transformation from Fn
2 to Z and for w, x ∈ Fn

2 , w.x = w1x1 ⊕ w2x2 ⊕ ... ⊕ wnxn.
Observe that the Walsh transformation can be defined as,

Wf (w) = card{x : f(x) + w.x = 0} − card{x : f(x) + w.x 6= 0}. (4)

Walsh spectrum characterises almost all the cryptographic measures of a Boolean function.
For example, |Wf (0)| = 0 in case of balanced Boolean function f and |Wf (w)| = ±2n/2
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for all w ∈ Fn
2 where f is a bent Boolean function. Bent Boolean function does not exist

for odd number of variables. However they are the source of Boolean functions having
maximum non-linearity. Therefore those Boolean functions having three valued Walsh
spectrum, that is, {0,±λ} are significantly important in cryptographic applications. These
Boolean functions are named as plateaued Boolean function[12, 13].

A symmetric Boolean function is invariant under the action of full symmetric group Sn
on Fn

2 . Its Walsh transformation is computed as,

Wf (w) =
n∑

k=0

(−1)ck
∑

wt(x)=k

(−1)w.x,

where {f(x) = ck ∈ F2 : wt(x) = k}. Now to define rotational symmetric Boolean function
we present the definition of cyclic rotation,

Definition 2.1 (Cyclic rotation). Let x = (x1, x2, ..., xn) be any element in Fn
2 , where

xi ∈ F2; for any 1 ≤ i ≤ n. A cyclic rotation for each xi of x is defined as,

ρkn(xi) =

{
xi+k, if i+ k ≤ n
xi+k−n, if i+ k > n

,

where k is any positive integer.

Now for any x ∈ Fn
2 , this cyclic rotation can extend as ρkn(x) = (ρkn(x1), ρ

k
n(x2), ..., ρ

k
n(xn)) ∈

Fn
2 . Outputs of rotational symmetric Boolean function (RSBF) are invariant under the

cyclic rotation. In next definition a precise explanation of RSBF is available.

Definition 2.2 (RSBF). A Boolean function f(x1, x2, ..., xn), from Fn
2 to F2 is called

rotational symmetric Boolean function if f(ρkn(x1, x2, ..., xn)) = f(x1, x2, ..., xn) for each
input (x1, x2, ..., xn) ∈ Fn

2 and any 0 ≤ k ≤ n− 1.

The cyclic permutation mentioned in the definition (2.1), generates partition in Fn
2 .

It is proved by Stanica et al.[6] that gn =
∑
t|n
φ(t)2n/t number of partitions of Fn

2 under

the action of cyclic permutation. Let Gn(x1, x2, ..., xn) be partitions of Fn
2 by ρkn for some
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positive integer k. Therefore all the partitions in F6
2 can be written as,

G6(0, 0, 0, 0, 0, 0) = {(0, 0, 0, 0, 0, 0)};
G6(1, 1, 1, 1, 1, 1) = {(1, 1, 1, 1, 1, 1)};
G6(1, 0, 0, 0, 0, 0) = {(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), ..., (0, 0, 0, 0, 0, 1)};
G6(1, 1, 0, 0, 0, 0) = {(1, 1, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0), ..., (1, 0, 0, 0, 0, 1)};
G6(1, 0, 1, 0, 0, 0) = {(1, 0, 1, 0, 0, 0), (0, 1, 0, 1, 0, 0), ..., (0, 1, 0, 0, 0, 1)};
G6(1, 0, 0, 1, 0, 0) = {(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1)};
G6(1, 1, 1, 0, 0, 0) = {(1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0), ..., (1, 1, 0, 0, 0, 1)};
G6(1, 1, 1, 1, 0, 0) = {(1, 1, 1, 1, 0, 0), (0, 1, 1, 1, 1, 0), ..., (1, 1, 1, 0, 0, 1)};
G6(1, 1, 1, 1, 1, 0) = {(1, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1), ..., (1, 1, 1, 1, 0, 1)};
G6(1, 0, 1, 0, 1, 0) = {(1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1)};
G6(1, 1, 1, 0, 1, 0) = {(1, 1, 1, 0, 1, 0), (0, 1, 1, 1, 0, 1), ..., (1, 1, 0, 1, 0, 1)};
G6(0, 1, 1, 0, 1, 1) = {(0, 1, 1, 0, 1, 1), (1, 0, 1, 1, 0, 1), (1, 1, 0, 1, 1, 0)};
G6(1, 0, 0, 1, 0, 1) = {(1, 0, 0, 1, 0, 1), (1, 1, 0, 0, 1, 0), ..., (0, 0, 1, 0, 1, 1)};
G6(1, 0, 0, 1, 1, 0) = {(1, 0, 0, 1, 1, 0), (0, 1, 0, 0, 1, 1), ..., (0, 0, 1, 1, 0, 1)}.

Here we can see that g6 = 14 and all partitions with there corresponding cardinality are
as follows,

CardG6(0, 0, 0, 0, 0, 0) = CardG6(1, 1, 1, 1, 1, 1) = 1,

CardG6(1, 0, 1, 0, 1, 0) = 2,

CardG6(1, 0, 0, 0, 0, 0) = CardG6(1, 1, 0, 0, 0, 0) = CardG6(1, 0, 1, 0, 0, 0) = 6,

CardG6(1, 1, 1, 0, 0, 0) = CardG6(1, 1, 1, 1, 0, 0) = CardG6(1, 1, 1, 1, 1, 0) = 6,

CardG6(1, 1, 1, 0, 1, 0) = CardG6(1, 0, 0, 1, 0, 1) = CardG6(1, 0, 0, 1, 1, 0) = 6,

CardG6(1, 0, 0, 1, 0, 0) = CardG6(0, 1, 1, 0, 1, 1) = 3.

In [6], results on the counting of RSBF are available. However the set of RSBF is very

small in size (≈ 2
2n

n ) as compared to the whole set of Boolean functions of size(≈ 22
n
).

While count of symmetric Boolean functions having other cryptographic characteristics
are also small in size. In the next section we present an enumeration technique of total
number of rotational symmetric bent Boolean functions. Using this technique we propose
an upper bound for the number of rotational symmetric bent Boolean functions. However
this technique is also useful in general to find the bound for other cryptographic Boolean
functions.
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3 Necessary condition for symmetric and rotational sym-
metric bent Boolean function

In this section, we show the necessary condition on the truth table for bent function and
symmetric bent Boolean function.

Theorem 3.1. Let f be a bent Boolean function from Fn
2 to F2. Then Card{x : f(x) =

0} = 2n−1 ± 2
n
2
−1 and Card{x : f(x) = 1} = 2n − 2n−1 ± 2

n
2
−1.

Proof. We know that the Walsh transformation of f , denoted as Wf is a function from Fn
2

to Z. Now let a = Card{x : f(x) + w.x = 0} and b = Card{x : f(x) + w.x = 1} for all
w, x ∈ Fn

2 and a Boolean function f from Fn
2 to F2. Therefore combining the necessary

condition on bent Boolean function f , that is |Wf (w)| = 2n/2 for all w ∈ Fn
2 and (4),

a− b = ±2n/2. (5)

Now observe that

a+ b = 2n. (6)

Solving (5) and (6),

a = 2n−1 ± 2
n
2
−1 and b = 2n − 2n−1 ± 2

n
2
−1

Hence the theorem is proved.

Remark: It is interesting to find those w ∈ Fn
2 for a Boolean function f , such that

Card{w : f(x)⊕ w.x = 0} = 2n−1 ± 2
n
2
−1, for all x ∈ Fn

2 .
In the next theorem we present the necessary condition for a symmetric bent Boolean

function on its truth table matrix. Before that we recall some result of enumeration on
number of orbits of various lengths under the action of cyclic rotation on Fn

2 , discussed in
[11]. Number of orbit of length l, which is CardGn, for some Gn ⊂ Fn

2 can be calculated
as

Card{Gn : CardGn = l} = dn,l =
1

l

∑
k/l

µ(
l

k
)2gcd(n,k). (7)

We’ll use this result in proof of forthcoming theorems.

Theorem 3.2. The necessary condition for a rotational symmetric bent Boolean function
f from Fn

2 to F2 is
k∑

i=1,di|n

zidi = a or b,

where a, b are as mentioned in Theorem 3.1 and zi ∈ Z+ ∪ {0}.
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Proof. Let f be a bent Boolean function on Fn
2 . Then from Theorem 3.1 we can write

Fn
2 = A ∪B,

where A = {x ∈ Fn
2 : f(x) = 0} and B = Fn

2 {x ∈ Fn
2 : f(x) = 1} having cardinality a and

b respectively. From the constrained of RSBF there are gn number of classes for Fn
2 and for

each class Gi
n of Fn

2 for 1 ≤ i ≤ gn, Gi
n ⊂ A or Gi

n ⊂ B. In particular for some 1 ≤ k ≤ gn,

∪1≤i≤kGi
n = Aor B

or ∑
1≤i≤k

CardGi
n = Card{x ∈ Fn

2 : f(x) = 1}. (8)

Observe that for any particular x ∈ Fn
2 , CardGn(x) is a factor of n and let set of all

possible divisors of n is {1, d1, d2, ..., dk} = D. From (7), equation (8) can be rewritten as,

k∑
i=1,di|n

zidi = a or b, (9)

where zi, 1 ≤ i ≤ k are any positive integer lying between 0 to maxl∈D{dn,l}.

Solution of equation (9) presents more clear picture of distribution in the truth table
matrix of a rotation symmetric bent Boolean function. In the next section, we use this
condition and present the upper bound of count of rotational symmetric bent Boolean
functions.

4 Enumeration of rotational symmetric bent Boolean func-
tion

In the next Theorem we present a technique to find a necessary condition for rotational
symmetric bent Boolean function.

Theorem 4.1. Necessary conditions for a rotational symmetric bent Boolean function f
from F2q

2 to F2 are

q(z3 + 2z4) = 22q−1 ± 2q−1,
1 + q(z3 + 2z4) = 22q−1 ± 2q−1,
2 + q(z3 + 2z4) = 22q−1 ± 2q−1,
3 + q(z3 + 2z4) = 22q−1 ± 2q−1,
4 + q(z3 + 2z4) = 22q−1 ± 2q−1.

where z3, z4 ∈ Z+ ∪ {0} and q is an odd prime.
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Proof. All possible divisors of n = 2q are 1, 2, q and n = 2q itself. Now from theorem 3.2,
the necessary equation for n = 2q can be written as

z1 + 2z2 + qz3 + 2qz4 = 22q−1 ± 2q−1, (10)

where all zi, 1 ≤ i ≤ 4 are some integers lies between 1 and 2q.
Note that from (7), in (10), range of all zi, 1 ≤ i ≤ 4 are 0 ≤ z1 ≤ dn,1, 0 ≤ z2 ≤

dn,2, 0 ≤ z3 ≤ dn,q and 0 ≤ z4 ≤ dn,n. Further simplifying dn,l for all l ∈ {1, 2, q, 2q},
z1 +2z2 ∈ {0, 1, 2, 3, 4}, z3 ∈ {0, 1, ..., 2

q−2
q } and z4 ∈ {0, 1, 2, ...,

2n−2q−2
2q }. Therefore in case

of n = 2q, only four possibility of (10),

q(z3 + 2z4) = 22q−1 ± 2q−1,
1 + q(z3 + 2z4) = 22q−1 ± 2q−1,
2 + q(z3 + 2z4) = 22q−1 ± 2q−1,
3 + q(z3 + 2z4) = 22q−1 ± 2q−1,
4 + q(z3 + 2z4) = 22q−1 ± 2q−1.

(11)

Hence the theorem is proved.

From Theorem 3.1, the distribution of zeros in truth table of a rotational symmetric
bent Boolean function are of two types, either it has 22q−1 − 2q−1 number of zero or
22q−1 + 2q−1 number of zeros. Let f be a rotational symmetric bent Boolean function of
type I if f takes zero value 22q−1−2q−1 number of times and it is a rotational symmetric bent
Boolean function of type II if f takes zero value 22q−1 + 2q−1 number of times. Let Bo

n and
Bn be the set of rotational symmetric bent Boolean functions of type I and II respectively.
The existence of solutions of (11), ensures the existence of rotational symmetric bent
Boolean functions for a particular value of q. Using these equations in following theorems
we demonstrate some interesting properties of both of types of rotational symmetric bent
Boolean functions.

Theorem 4.2. Let f : F2q
2 → F2, q > 3 a prime number, be a rotational symmetric bent

Boolean functions of type I. Then f satisfies the following

(i) f(x) 6= 0 for all partitions of F2q
2 for which CardGn(x) = 2.

(ii) f(x) = 0 for one partition of F2q
2 such that CardGn(x) = 1.

Proof. Let f ∈ Bo
n. Then the necessary equations from 11 can be rewritten as

q(z3 + 2z4) = 22q−1 − 2q−1,
q(z3 + 2z4) = 22q−1 − 2q−1 − 1,
q(z3 + 2z4) = 22q−1 − 2q−1 − 2,
q(z3 + 2z4) = 22q−1 − 2q−1 − 3,
q(z3 + 2z4) = 22q−1 − 2q−1 − 4.

(12)
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Integer solutions of (12), exist if and only if q is a common factor of each of the elements
from following set

{22q−1 − 2q−1, 22q−1 − 2q−1 − 1, 22q−1 − 2q−1 − 2, 22q−1 − 2q−1 − 3, 22q−1 − 2q−1 − 4}.

Now since q > 3 is a prime number therefore gcd(2, q) = 1 and

2q−1 = 1 mod q. (13)

Using (12) and (13) we can write the necessary equation for a bet RSBF f ,

q(z3 + 2z4) = 22q−1 − 2q−1 − 1. (14)

Equation (10) and (14) implies that,

z1 + 2z2 = 1 (15)

it is clear from (9) that 0 ≤ z1 ≤ 2 and 0 ≤ z2 ≤ 1. Hence the only solution of (15) is
z1 = 1 and z2 = 0. Therefore z2 does not participate in necessary equation (10) for type I
rotational symmetric bent Boolean functions. This implies that

f(x) 6= 0 for all x such that CardGn(x) = 2

hence (i) is proved.
Now z1 = 1 implies that f(x) = 0, at most one for one x ∈ F2q

2 such that CardGn(x) = 1.
It is clear that

{x ∈ F2q
2 : CardGn(x) = 1} = {(0, 0, ..., 0), (1, 1, ..., 1)}.

Therefore f(x) 6= 0 on both of x ∈ {(0, 0, ..., 0), (1, 1, ..., 1)}. Hence (ii) is proved.

Theorem 4.3. Let f : F2q
2 → F2, q > 3 a prime number, be a rotational symmetric bent

Boolean function of type II. Then f satisfies the following

(i) f(x) = 0 for only one partition of F2q
2 such that CardGn(x) = 1.

(ii) f(x) = 0 for only one partition of F2q
2 such that CardGn(x) = 2.

Proof. Let f ∈ Bn. Then the necessary equations (11) for f , can be rewritten as

q(z3 + 2z4) = 22q−1 + 2q−1,
q(z3 + 2z4) = 22q−1 + 2q−1 − 1,
q(z3 + 2z4) = 22q−1 + 2q−1 − 2,
q(z3 + 2z4) = 22q−1 + 2q−1 − 3,
q(z3 + 2z4) = 22q−1 + 2q−1 − 4.

(16)
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Now for the existence of rotational symmetric bent Boolean function, solution of the equa-
tion (16) should exist in terms of (z0, z1, z2, z3). We know that gcd(2, q) = 1 and 2q−1 = 1
mod q, therefore solution exist only if

q(z3 + 2z4) = 22q−1 + 2q−1 − 3. (17)

This implies that z1 + 2z2 = 3 and q(z3 + 2z4) = 22q−1 + 2q−1. It is earlier discussed
in Theorem 4.1 that z1 ∈ {0, 1, 2} and z2 ∈ {0, 1}, therefore set of solutions of (17) is
{(1, 1, z3, z4) : q(z2 + 2z2) = 22q−1 + 2q−1}. Hence z1 = 1 implies (i) and z2 = 1 implies
(ii).

Solution of necessary equation (12) represents all possible distributions of zeros and
ones in the truth table of a rotational symmetric bent Boolean function. Therefore in the
counting of all rotational symmetric bent Boolean function this equation plays an important
role. In next section, we show the upper bound for the number of rotational symmetric
bent Boolean functions.

4.1 Bound on number of rotational symmetric bent Boolean function

Count of bent Boolean function is still an open problem in cryptography. Up to eight
variable, total number of bent Boolean functions are enumerated moreover the gap is very
large between upper and lower bound of the enumeration result of bent boolean function

of n number of variables(22
n
2 +logn−2

2 −1

≤ card{Bent Boolean functions} ≤ 22
n−1+

( n
n/2)
2 ).

Here we refine this upper bound in the case of rotational symmetric bent Boolean functions.
In case of a Boolean function f ∈ B6, we found only three solutions for their necessary
equations discussed in Theorem 4.3 for n = 6. Solutions are as follows,

(z1, z2, z3, z4) ∈ {(0, 0, 0, 6), (0, 0, 2, 5), (1, 1, 1, 5)}.

Above values of (z1, z2, z3, z4) provide us a shorter upper bound of number of rotational
symmetric bent Boolean function on F6

2 and this is, 2(
(
9
6

)
+
(
9
5

)(
2
2

)
+
(
9
5

)(
2
1

)(
2
1

)(
1
1

)
) = 1428.

It is very less with respect to total number of bent Boolean functions for 6 number of
variables, that is , 242. It is interesting to see that in this way total number of rotational
symmetric bent Boolean function of type I are just half of the number of type II functions,
that is 714. In the next theorem we present more general result on this bound for n = 2q,
where q > 3 is prime number.

Theorem 4.4. Let n = 2q and q > 3 be any prime number. Then

CardB0
n ≤

m∑
i=1,r=2i−1

(
dn,1

1

)(
dn,q
r

)(
dn,n
k

)
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and

CardBn ≤
m∑

i=1,r=2i−1

(
dn,1

1

)(
dn,q
r

)(
dn,n
k

)
,

where m = 2q−2
2q and k = 2q−1(2q−1)−1−rq

2 .

Proof. Let f : F2q
2 → F2 be a Boolean function taken from B0

n. Then (14) implies that

z3 + 2z4 =
22q−1 − 2q−1 − 1

q
. (18)

Similarly if f ∈ Bn then (17) implies that

z3 + 2z4 =
22q−1 + 2q−1 − 3

q
. (19)

It is clear from (18) and (19) that z3 must be an odd integer and (9) implies that values
of z3 must be in arithmetic progression with first term 1 and last term 2q−2−q

q . There are

m = 2q−2
2q number of integer values of z3 and using them we calculate equal number of

integral values of z4. Following are the solutions of (18)

(z3, z4) =


(1, 2

q−1(2q−1)−1−q
2q ),

(3, 2
q−1(2q−1)−1−3q

2q ),

(...),

(2
q−2−q

q , 2
q−1(2q−1)+1+q

2q ).

(20)

Similarly solutions of (19) are as follows

(z′3, z
′
4) =


(1, 2

q−1(2q+11)−3−q
2q ),

(3, 2
q−1(2q+1)−3−3q

2q ),

(...),

(2
q−2−q

q ,
2q−1(2q+1)−3−q( 2

q−2−q
q

)

2q ).

(21)

Now from (7) and Theorem 3.2, count of all possible matrix of type MTT such that f ∈ B0
n

is ∑
p(z3+2z4)=22q−1−2q−1−1

(
dn,1

1

)(
dn,q
z3

)(
dn,n
z4

)
.

Using (20) this can be written as

CardB0
n ≤

m∑
i=1,r=2i−1

(
dn,1

1

)(
dn,q
r

)(
dn,n
k

)
.
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Now in (20) and (21) , dn,n and dn,q satisfy(
dn,q
z3

)(
dn,n
z4

)
=

(
dn,q
z′3

)(
dn,n
z′4

)
(22)

where z3, z4, z
′
3 and z′4 taken from the following order, that is, 1 ≤ z3 ≤ 2q−2−q

q , 2q−1(2q−1)−1−q
2q ≤

z4 ≤ 2q−1(2q−1)+1+q
2q ,2

q−2−q
q ≥ z′3 ≥ 1 and

2q−1(2q+1)−3−q( 2
q−2−q

q
)

2q ≥ z′4 ≥
2q−1(2q+11)−3−q

2q .
Therefore using (21) and (22) we can write

CardBn ≤
m∑

i=1,r=2i−1

(
dn,1

1

)(
dn,q
r

)(
dn,n
k

)

where m = 2q−2
2q and k = 2q−1(2q−1)−3−rq

2 . Hence the theorem is proved.

References

[1] Wegener, Ingo. The complexity of symmetric Boolean functions. Computation theory
and logic, 433–442, Lecture Notes in Comput. Sci., 270, Springer, Berlin, 1987.

[2] Canteaut, Anne; Videau, Marion. Symmetric Boolean functions. IEEE Trans. Inform.
Theory 51 (2005), no. 8, 2791–2811.

[3] Savick, Petr. On the bent Boolean functions that are symmetric. European J. Combin.
15 (1994), no. 4, 407–410.

[4] Lakshmy, K. V.; Sethumadhavan, M.; Cusick, Thomas W. Counting rotation symmetric
functions using Polya’s theorem. Discrete Appl. Math. 169 (2014), 162–167.

[5] Maitra, Subhamoy; Sarkar, Palash. Maximum nonlinearity of symmetric Boolean func-
tions on odd number of variables. IEEE Trans. Inform. Theory 48 (2002), no. 9, 2626–
2630.

[6] Stanica, Pantelimon; Maitra, Subhamoy. Rotation symmetric Boolean functionscount
and cryptographic properties. Discrete Appl. Math. 156 (2008), no. 10, 1567–1580.

[7] Xia, Tianbing; Seberry, Jennifer; Pieprzyk, Josef; Charnes, Chris. Homogeneous bent
functions of degree n in 2n variables do not exist for n > 3. Discrete Appl. Math. 142
(2004), no. 1-3, 127–132.

[8] Pieprzyk, Josef; Qu, Cheng Xin. Fast hashing and rotation-symmetric functions. J.UCS
5 (1999), no. 1, 20–31.

12



[9] Fu, ShaoJing; Li, Chao; Qu, LongJiang. On the number of rotation symmetric Boolean
functions. Sci. China Inf. Sci. 53 (2010), no. 3, 537–545.

[10] Maitra, Subhamoy; Pasalic, Enes. Further constructions of resilient Boolean functions
with very high nonlinearity. IEEE Trans. Inform. Theory 48 (2002), no. 7, 1825–1834.

[11] Maximov, A; Hell, M; Maitra S, Plateaued rotational symmetric Boolean function
on odd number of variable, First workshop on Boolean function, cryptography and
application, BFCA05, Rouen, France, 2005, 83-104.

[12] Carlet, C;Prouff. E; On plateaued functions and their constructions. In Fast Software
Encryption 2003, number 2887 in Lecture Notes in Computer Science, pages 5473.
Springer Verlag, 2003.

[13] Zheng, Y; and Zhang, X.M; Plateaued Functions. In ICICS99, pages 284-300, volume
1726 in Lecture notes in Computer Science, Springer Verlag.

[14] Clark J; Jacob J; Matra S; Almost Boolean function, The design of Boolean function
in spectral inversion, 2003, CEC 2003, Vol3, Newport Beach, california, USA 2003.

[15] Clark J; Jacob J; Stepney S; Evolving Boolean functions stidfying multiple criteria.
INDOCRYPT 2002, LNCS, vol 2551, Berlin, SPringer, 2002, 246-259

13


