
Fast Actively Secure Five-Party Computation with Security Beyond
Abort∗

Megha Byali1, Carmit Hazay † 2, Arpita Patra ‡ 3, and Swati Singla4

1Indian Institute of Science. Email: megha@iisc.ac.in
2Bar-Ilan University. Email: carmit.hazay@biu.ac.il
3Indian Institute of Science. Email: arpita@iisc.ac.in
4Indian Institute of Science. Email: swatis@iisc.ac.in

Abstract

Secure Multi-party Computation (MPC) with small population and honest majority has drawn focus specif-
ically due to customization in techniques and resulting efficiency that the constructions can offer. In this work,
we investigate a wide range of security notions in the five-party setting, tolerating two active corruptions. Being
constant-round, our protocols are best suited for real-time, high latency networks such as the Internet.

In a minimal setting of pairwise-private channels, we present efficient instantiations with unanimous abort
(where either all honest parties obtain the output or none of them do) and fairness (where the adversary obtains
its output only if all honest parties also receive it). With the presence of an additional broadcast channel (known
to be necessary), we present a construction with guaranteed output delivery (where any adversarial behaviour
cannot prevent the honest parties from receiving the output). The broadcast communication is minimal and
independent of circuit size. In terms of performance (communication and run time), our protocols incur minimal
overhead over the best known selective abort protocol of Chandran et al. (ACM CCS 2016) while retaining their
round complexity. Further, our protocols for fairness and unanimous abort can be extended to n-parties with
at most

√
n corruptions, similar to Chandran et al. Going beyond the most popular honest-majority setting of

three parties with one corruption, our results demonstrate feasibility of attaining stronger security notions at an
expense not too far from the least desired security of selective abort.

∗This article is the full and extended version of an earlier article to appear in ACM CCS 2019
†This author was supported by European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS), by the

BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office and by ISF grant 1316/18.
‡The author would like to acknowledge financial support by Tata Trust Travel Grant 2019 and SERB Women Excellence Award 2017

(DSTO 1706).

1

Contents

1 Introduction 3
1.1 Related Work . 4
1.2 Our Contribution . 4

2 Preliminaries 5

3 Distributed Garbling and More 6
3.1 Seed Distribution (SD) . 6
3.2 Attested Oblivious Transfer (AOT) . 7
3.3 The semi-honest 4DG and Evaluation . 7
3.4 Distributed Garbling with AOT and Seed distribution . 8
3.5 Attested OT Instantiation . 11
3.6 Correctness and Security of 4DG . 11

4 5PC with Fairness 12
4.1 The construction . 13
4.2 Properties . 15
4.3 n-party Extension of fair5PC . 16

5 5PC with Unanimous Abort 17
5.1 The construction . 17
5.2 Properties . 18
5.3 n-party Extension of uAbort5PC . 19

6 5PC with Guaranteed Output Delivery (GOD) 19
6.1 The Construction . 19
6.2 Properties . 22

7 Empirical Results 24

A Functionalities and Security Model 30

B Primtives 31
B.1 Non-Interactive Commitment Scheme . 31
B.2 Equivocal Commitment Scheme . 32
B.3 Collision Resistant Hash . 33

C Security Proof of fair5PC 33

D Security Proof of uAbort5PC 37

E Security Proof of god5PC 38

F 3PC with GOD 43

2

1 Introduction

Secure Multiparty Computation (MPC) [Yao82, GMW87, CDG87] is an area of cryptography that has evolved
breathtakingly over the years in its attempt to secure data while computing on it. MPC focuses on the problem of
enabling a set of n mutually distrusting parties to perform joint computation on their private inputs in a way that
no coalition of t parties can affect the output of computation or learn any additional information beyond what is
revealed by the output. In other words, MPC guarantees correctness of computation and privacy of inputs. The
literature of MPC has witnessed plethora of works from a theoretical standpoint, however, the focus on building
practice-oriented MPC [DPSZ12a, WRK17, BHKL18] constructs has gained momentum only in the recent years
owing to the rising demand for efficiency in real-time networks such as the Internet. The vast literature of MPC
can be broadly categorized into dishonest majority [GMW87, DO10, BDOZ11, DPSZ12b, AJL+12, NNOB12,
LPSY15, WRK17] and honest majority [BGW88, RB89, BMR90, DN07, BH07, BH08, BFO12, MRZ15]. While
both have received attention in the efficiency studies, designing practical MPC with honest majority is a captivating
area of research [MRZ15, AFL+16, FLNW17, CGMV17, PR18, BJPR18] for the various reasons illustrated below.

The paramount benefit of having honest majority enables the computation to achieve stronger security goals
such as fairness (adversary obtains output if and only if all honest parties do) and guaranteed output delivery
(GOD) (any adversarial behaviour cannot prevent the honest parties from receiving the output) [Cle86]. These
properties are desirable in real-life owing to limited time and resource availability, as they bind the parties to par-
ticipate in the computation and thus keep the adversarial behaviour in check. Furthermore, lack of such strong
guarantees can be detrimental in practice. For instance, in real-time applications such as e-commerce and e-
auction, an adversary can always cause an abort if the outcome is not in its favour unless a stronger security notion
is ensured. In e-voting, the adversary can abort the computation repeatedly, yet learn the outputs each time and use
them to rig the election. Apart from enabling stronger security goals, honest-majority allows design of efficient
protocols solely using symmetric-key functions. For instance, the necessity of a public-key primitive for realizing
oblivious transfer can be replaced with symmetric-key primitives, as exhibited by our protocols and [CGMV17].
Further, this setting enables design of information-theoretic protocols [BGW88, RB89, BFO12, IKKP15], besides
the computational ones. Thus, these strong notions have driven a lot of research. To elaborate, [DI05, DI06]
show constant-round protocols with GOD. The round-optimality of these notions have been studied in [GIKR02,
GLS15, PR18] and 3 rounds is proven to be necessary. Lately, round-optimal MPC protocols with GOD appeared
in [GLS15, ACGJ18, BJMS18] relying on either Common Reference String (CRS) or public-key operations, in
[ACGJ19, ABT19] under super-honest-majority t < n/4 and in [PR18] for the special case of 3-party solely from
symmetric-key primitives. The work of [DOS18] shows how to compile honest majority MPC protocol for arith-
metic circuits with abort (and several other constraints) into a protocol with fairness while preserving its efficiency.
Interestingly, while [Cle86] rules out fairness in dishonest majority, [BK14, ADMM14, CGJ+17, PST17] demon-
strate its feasibility relying on non-standard techniques such public bulletin boards, secure processors or penalties
(via Bitcoin).

Since inception, the primary focus of MPC has been on generic constructions with n parties. Yet, the regime
of practical MPC has seen major breakthroughs in the small-party domain: 3-5. Real-time applications such as
Danish Sugar-Beet Auction [BCD+09], statistical and financial data analysis [BTW12], email filtering [LADM14],
distributed credential encryption [MRZ15], Kerberos [AFL+16], privacy-preserving machine learning [MRSV17],
efficient MPC-frameworks such as VIFF [Gei07], Sharemind [BLW08] and ABY-Arithmetic Boolean Yao [MR18]
are crafted for 3 parties with one corruption. The setting of 4, 5 parties with minority corruption has been explored
in [CGMV17, IKKP15, BJPR18]. The most popular setting of 3/4 parties with 1 active corruption brings to the
table some eloquent custom-made tools such as the use of Yao’s garbled circuits [Yao82] to achieve malicious
security [MRZ15, PR18, BJPR18], spending just 2-3 elements per party in arithmetic circuits [ABF+17] and sure-
election of one honest party as a trusted party in case the adversary strikes [BJPR18, PR18]. These techniques rely
on the adversary not having an accomplice to cause damage. However, the moment adversary has a collaborator
(2 corruptions), these custom-made tools fall apart, thus elevating the challenge of achieving desired security with
real-time efficiency. In this paper, we consider MPC for 5 parties (5PC) with 2 corruptions and treat it with
securities of unanimous abort, fairness and GOD, at an expense that is not too far from the result of [CGMV17]

3

achieving least desired security of selective abort.

1.1 Related Work

The notable works on MPC for small parties come in two flavours– low-latency and high-throughput protocols.
Relying on garbled circuits, the former offers constant-round protocols that serve better in high-latency networks
such as the Internet. The latter, built on secret sharing tools, aim for low communication (bandwidth), but at the
cost of rounds proportional to the depth of the circuit representing the desired function. These primarily cater to
low-latency networks. We focus on the former category in our work.

The work most relevant to ours is [CGMV17] that proposes a 5PC protocol achieving the weak notion of
selective abort against two malicious corruptions. Their customization for 5PC resulted in an efficient protocol
for actively-secure distributed garbling of 4 parties, relying solely on the passively-secure scheme of [BLO16],
saving 60% communication than [BLO16] with four corruptions. In the 3-party (3PC), 4-party (4PC) domain,
[MRZ15, IKKP15] gave a 3PC with selective abort. [IKKP15] also gave a 2-round 4PC with GOD. Recently,
[BJPR18] improved the state-of-the-art with efficient 3PC and 4PC achieving fairness and GOD with minimal
overhead over [MRZ15]. Orthogonally, recent works [AFL+16, ABF+17, FLNW17, CCPS19, EOP+19] in the
high-throughput setting with non-constant rounds, show abort security in 3PC with one corruption. The works of
[CGH+18, NV18, DOS18, CCPS19] additionally include constructs attaining fairness.

1.2 Our Contribution

In the regime of low-latency protocols which is of interest to us, the known works [MRZ15, IKKP15, CGMV17],
despite being in honest majority, trade efficiency for security and settle for weaker guarantees such as selective
abort. With 3, 4 parties, [IKKP15, PR18, BJPR18] demonstrate that fairness, GOD are feasible goals and present
protocols with minimal overhead over those achieving weaker notions. Our paper is yet another attempt in this
direction, focused on the 5-party setting.

We present efficient, constant-round 5PC protocols with honest majority that achieve security notions ranging
from unanimous abort to GOD, solely relying on symmetric-key primitives. Being efficient and constant-round,
our protocols are best suited for high latency networks such as the Internet. Designed in the Boolean world, our
protocols are built on the semi-honest variant of the distributed garbling scheme of [WRK17] while leveraging the
techniques of seed distribution and Attested Oblivious Transfer of [CGMV17]. Our theoretical findings are backed
with implementation results with the choice of benchmark circuits AES-128 and SHA-256.

5PC with Fairness and Unanimous Abort In a minimal network of pairwise-secure channels, we achieve fair-
ness and unanimous abort in 5PC with performance almost on par with [CGMV17], all consuming 8 rounds. On
a technical note, building on [CGMV17], we achieve fairness by ensuring a robust output computation phase even
when the adversary chooses not to participate in the rest of the output computation on learning the output herself.
This is realized using techniques which enforce that, in order to learn the output herself, the adversary must first
aid at least one honest party compute the correct output. Further, we employ techniques to allow this honest party
to release the output and convince about the correctness of the same to remaining honest parties. Our 5PC with
unanimous abort is obtained by simplifying the fair construct such that the adversary can learn the output herself
without any aid from honest parties, but if she helps at least one honest party get the output, then that honest
party aids fellow honest parties to get the output (as in fair construct). Both our 5PC protocols with fairness and
unanimous abort can be extended to n parties under the constraint of t =

√
n corruptions which was established

in [CGMV17].

5PC with GOD Our protocol uses point-to-point channels and a broadcast channel. The latter is inevitable as
we use optimal threshold [CL14]. As broadcast is expensive in real-time, we limit broadcast communication to be
minimal and primarily, independent of circuit, input and output size. Our implementation uses a software broadcast
based on Dolev-Strong protocol [DS83]. On the technical side, our protocol relies on 2-robust techniques– 4-party

4

2-private replicated secret sharing (RSS) scheme for input distribution and seed-distribution of [CGMV17] to en-
sure each party’s role is emulated by two other parties. These strategies ensure that each piece of intermediate data
is with a 3-party committee and any wrong-doing by at most 2 parties will ensue conflict. When a conflict occurs,
we determine a smaller instance of a 3PC with at most 1 corruption to compute the output robustly. Our techni-
cal innovations come from maintaining– (A) input privacy, while making two 3-party committees, one formed by
RSS and one by seed-distribution, interact; (B) input consistency across the 3PC and outer 5PC. Due to the use
of customized tools for small parties such as RSS, conflict identification and running a smaller 3PC instance, this
protocol cannot be scaled to n-parties while retaining the goal of efficiency.

Empirical Comparison. A consolidated view of our results is presented below outlining the security achieved,
rounds used, use of broadcast (BC) and empirical values. The values indicate the overhead in maximum runtime
latency in LAN , WAN and total communication (CC) over [CGMV17] that offers selective abort in 8 rounds. The
range is composed over the choice of circuits: AES-128 and SHA-256 and the left value in the range corresponds
to AES, while the right value indicates SHA. AES is a smaller circuit, with 33616 gates, compared to 236112 gates
of SHA. (*: the total number of rounds is calculated plugging in the state of the art robust 3PC [BJPR18]. The
rounds for GOD is stated assuming broadcast channel availability in ours and [BJPR18]).

Security Rounds BC LAN (ms) WAN (s) CC (MB)

unanimous abort 8 7 0.65-2.87 0.2-0.01 0.16-0.09
fairness 8 7 1.05-10.95 0.28-0.03 0.2-0.13
GOD (honest run) 6 3 [CL14] 3.94-4.92 1.16-0.82 0.17-0.07
GOD (worst case) 12* 3 [CL14] 6.33-19.42 2.26-2.33 0.49-6.22

All protocols barring the one with GOD maintain the same circuit-dependent communication as [CGMV17]. The
GOD protocol costs two circuit-dependent communication, one in 5PC and one in 3PC, the latter amongst a
smaller instance of 3 parties. This is reflected in the cost of worst case run of our GOD protocol. For all other
constructions, the overhead comes from extra communication (commitments to be precise) that is dependent only
on the input, output size. Since SHA is a bigger circuit, its absolute overheads are more than AES in most cases
but the percentage overheads are better for SHA than AES. The factor of additional communication overhead
incurred by our protocols for SHA when compared to AES circuit is far less than the factor of increase in the total
communication for SHA over AES in [CGMV17]. This indicates that the efficiency of our protocols improves for
larger circuits.

2 Preliminaries

We consider a set of 5 parties P = {P1, P2, P3, P4, P5}, where each pair is connected by a pair-wise secure and
authentic channel. The presence of a broadcast channel is assumed only for the GOD protocol where it is known
to be necessary [CL14]. We model each party as a non-uniform probabilistic polynomial time (PPT) interactive
Turing Machine. We consider a static security model with honest majority, where a PPT adversary A can corrupt
at most 2 parties at the onset of protocol. Adversary A can be malicious in our setting i.e., the corrupt parties
can arbitrarily deviate from the protocol specification. The computational security parameter is denoted by κ.
A function negl(κ) is said to be negligible in κ if for every positive polynomial p(·), there exists an n0 such
that for all n > n0, it holds that negl(n) < 1

p(n) . A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈N is an
infinite sequence of random variables indexed by a and n ∈ N. Two ensembles X = {X(a, n)}a∈{0,1}∗;n∈N
and Y = {Y (a, n)}a∈{0,1}∗;n∈N are said to be computationally indistinguishable, denoted by X

c
≈ Y , if for

every PPT algorithm D, there exists a negligible function negl(.) such that for every a ∈ {0, 1}∗ and n ∈ N,
|Pr[D(X(a, n)) = 1] − Pr[D(Y (a, n)) = 1]| ≤ negl(n). The security of all our protocols is proved in the
standard real/ideal world paradigm. Appendix A elaborates on the functionalities and security definitions. Below
we discuss the primitives that we use.

5

Non-Interactive Commitment Schemes A Non-Interactive Commitment Scheme (NICOM) is characterized by
two PPT algorithms (Com,Open) for the purpose of commitment and opening phase. The properties to be satisfied
by a commitment scheme are: correctness (a commitment opens to the correct message), hiding (a corrupt receiver
cannot derive any information about the message from the commitment alone) and binding (a corrupt committer
cannot open a given commitment to multiple messages). We use instantiations based on injective one-way functions
that ensure a strong binding even if the public parameter is arbitrarily chosen by adversary.

For our fair protocol, we need an equivocal NICOM (eNICOM). An eNICOM is defined with four PPT algo-
rithms (eCom, eOpen, eGen,Equiv). eCom, eOpen are defined as in NICOM and eGen,Equiv are used to provide
the property of equivocation. The formal definitions and the instantiations appear in Appendix B.

Secret Sharing Schemes We use additive sharing and replicated secret sharing (RSS) [CDI05, ISN89]. For a
value x, its gth additive share is noted as xg. We now recall RSS. Consider a secret x, of some finite field F to be
shared among n parties s.t only > t parties can reconstruct x. A maximal unqualified set is the set of t parties who
together cannot reconstruct the secret. A dealer with secret x splits it into additive shares s.t each share corresponds
to one maximal unqualified set Tl, l ∈ {1, ...,

(
n
t

)
}. Formally, x =

∑
l∈[(nt)]

xl. Each share xl is associated with

Tl (lexicographically wlog) and additive shares are random s.t they sum to x. Each party Pi, i ∈ [n] gets all xl for
i /∈ Tl. This ensures that t parties alone of any Tl cannot retrieve x. We use a 4-party RSS with t = 2 where, each
party gets 3 shares and each share is held by 3 parties including the dealer. Reconstruction is done by combining
the shares held by any 3 parties. Given only shares of any two parties {Pi, Pj}, x remains private as xl where
Tl = {Pi, Pj} is missing from the view.

3 Distributed Garbling and More

At the heart of our 5PC lies a 4-party distributed garbling (4DG) and a matching evaluation protocol tolerating
arbitrary semi-honest corruptions. Garbling is done distributively amongst the garblers {P1, P2, P3, P4} and P5

enacts the sole evaluator. Our 4DG scheme is a direct simplification of the state-of-the-art actively-secure dis-
tributed garbling scheme of [WRK17]. The semi-honest scheme when combined with party-emulation idea of
[CGMV17], achieves malicious security against 2 corruptions. Specifically, the role of each garbler in the underly-
ing semi-honest 4DG scheme is also enacted by two other fellow garblers. This emulation is achieved via a unique
seed distribution (SD) technique that ensures that the seed of a garbler is consistent with two other garblers and all
the needed randomness for 4DG is generated from the seed. This helps to detect any wrong-doing by at most two
garblers. Interestingly, the seed distribution can further be leveraged to replace the computationally-heavy public-
key primitive Oblivious Transfer (OT) in [WRK17] with an inexpensive symmetric-key based alternative called
attested OT [CGMV17]. While all our protocols for 5PC can be realized with any underlying passively-secure
garbling scheme when used with SD and attested OT, we choose the current construction for efficiency. We start
with the seed distribution technique.

3.1 Seed Distribution (SD)

In the 4DG, all randomness required by a garbler Pi is generated using a random seed si. The SD technique
involves distributing the seeds among 4 garblers s.t the seed si generated by Pi is held by two other garblers and no
single garbler has the knowledge of all 4 seeds. Consequently, any data computed based on si is done identically
by 3 parties who own si and thus, can be compared for correctness. With at least one honest party in this team of 3
parties, any wrong-doing by at most two parties is detected. The SD functionality FSD is depicted in Fig 1 and is
realized differently in each of our protocols based on the required security guarantee (fairness or GOD).

We use Sg to denote the set of indices of parties who hold sg as well as the set of indices of the seeds held by
party Pg. Note that both these sets are identical– for instance, S1 = {1, 3, 4} indicates that parties P1, P3, P4 hold
s1. S1 also indicates that P1 holds s1, s3, s4.

6

Let Si, i ∈ [4] be S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, S4 = {1, 2, 4}. Let C be the set of corrupt parties.
Corrupted parties Pj ∈ C may send the trusted party (Input, sj/⊥) as instructed by the adversary.
On message (Input, ∗) from garbler Pg, g ∈ [4] \ C and (Input, {sj/⊥}j∈C) from adversary, sample si on behalf of every
honest Pi and send sg (or ⊥ as given by adversary) to each party in Sg .

Figure 1: Functionality FSD

3.2 Attested Oblivious Transfer (AOT)

The AOT protocol [CGMV17] can be viewed as an OT between a sender and a receiver with an additional help
from two other parties called “attesters”. These “attesters" aid in ensuring correctness of the OT protocol by
attesting inputs of the sender and the receiver. AOT functionality is recalled in Fig 2.

Ps acts as sender, Pr acts as receiver and Pa1 , Pa2 act as attesters.
– On input message (Sen, m0, m1) from Ps, record (m0, m1) and send (Sen, m0, m1) to Pa1 and Pa2 and Sen to the

adversary.
– On input message (Rec, b) from Pr, where b ∈ {0, 1}, record b and send (Rec, b) to Pa1 and Pa2 and Rec to the

adversary.
– On input message (Att, mj

0, mj
1, bj) from Paj , j ∈ [2], if (Sen, sid, ∗, ∗) and (Rec, ∗) have not been recorded, ignore

this message; otherwise, record (maj
0 , maj

1 , baj) and send Att to the adversary.
– On input message Output from the adversary, if (m0,m1, b) 6= (ma1

0 ,m
a1
1 , b

a1) or (m0,m1, b) 6= (ma2
0 ,m

a2
1 , ba2),

send (Output,⊥) to Pr; else send (Output,mb) to Pr.
– On input message abort from the adversary, send (Output,⊥) to Pr.

Figure 2: Functionality F4AOT(Ps, Pr, {Pa1 , Pa2})

3.3 The semi-honest 4DG and Evaluation

A distributed garbled circuit (DGC) is prepared together by all garblers in a distributed manner. Each wire w in our
4DG scheme is associated with a mask bit λw ∈ {0, 1} and each garbler Pg holds a share λgw s.t λw = ⊕g∈[4]λ

g
w.

Each Pg samples two keys kgw,0, kgw,1 = kgw,0 ⊕∆g for each wire w, with global offset ∆g. Thus, each super-key
of a wire has 4 keys contributed by 4 garblers.

Definition 3.1. A super-key of a wire is a set of 4 keys, each contributed by one garbler i.e., {kgw,0}g∈[4] indicates
the 0-super-key on wire w and {kgw,1}g∈[4] indicates the 1-super-key on w.

Free-XOR is enabled by setting the mask and keys for the output wire of an XOR gate as the XOR of masks
and keys of its input wires. A garbled AND gate, on the other hand, comprises of 4 super-ciphertexts (super-CT),
one for each row of truth table. A super-CT is made up of 4 CTs, each of which is contributed by one garbler.
Each CT hides a share of a super-key on the output wire such that during evaluation, 4 decrypted messages of
a super-CT together would give the desired super-key on the output wire. In order to hide the actual output of
intermediate gates from an evaluator, we enable point and permute. The mask bit λw acts as the permutation bit for
wire w. Thus, for an AND gate with input wires u, v, output wire w and their corresponding masks λu, λv, λw, if
xu, xv denote the actual values on wires u, v respectively, then the evaluator sees super-keys kgu,bu , kgv,bv where bu,
bv defined as (bu = xu ⊕ λu), (bv = xv ⊕ λv) denote the blinded bits. The evaluator then decrypts the super-CT
positioned at row (bu, bv) and obtains the output super-key {kgw,0 ⊕∆g(xuxv ⊕ λw)}g∈[4] that corresponds to the
blinded (masked) bit xuxv ⊕ λw on wire w.

Definition 3.2. A blinded or masked bit of a bit xw on a wire w is the XOR of xw with mask bit λw on wire w i.e.
bw = xw ⊕ λw.

Interpreting row (bu, bv) as γ = 2bu + bv + 1 and recasting the above, we see that the super-CT at row γ for
γ ∈ [4] encrypts the super-key {kgw,0 ⊕ ∆g((bu ⊕ λu)(bv ⊕ λv) ⊕ λw)}g∈[4]. In 4DG, the super-CTs as above

7

for an AND gate are prepared distributedly amongst the garblers, using the additive shares of the mask bits and
keys held by each garbler corresponding to the input and output wires of the gate. We achieve this in a two-step
process. First, we generate the additive sharing of each key belonging to the super-key to be encrypted in each row.
Second, for each row, a garbler encrypts the additive shares it holds of each key of the corresponding super-key
(obtained in the first step) in the CT that it contributes for the super-CT of that row. A CT for row γ has the format
of one-time pad where the pad is calculated using a double-keyed PRF with keys corresponding to row γ.

Definition 3.3. A super-ciphertext for a given row γ (γ = 2bu + bv + 1), of an AND gate with input wires u, v,
output wire w, is a set of 4 CTs, {cgγ}g∈[4], where Pg contributes cgγ that encrypts its additive share of each key in
{kgw,0 ⊕∆g((bu ⊕ λu)(bv ⊕ λv)⊕ λw)}g∈[4].

To compute the additive sharing of super-key {kgw,0⊕∆g((bu⊕ λu)(bv ⊕ λv)⊕ λw)}g∈[4] for all rows (i.e. all
possibilities of (bu, bv)), we compute the additive sharing of the following in sequence, starting with the additive
shares of λu, λv, λw: (A) λuλv (for row 1 i.e. γ = 1 and bu = bv = 0), λuλv (for γ = 2 and bu = 0, bv = 1),
λuλv (for γ = 3 and bu = 1, bv = 0) and λu λv (for γ = 4 and bu = 1, bv = 1); (B) λ1 = λuλv ⊕ λw, λ2 =
λuλv ⊕ λw, λ3 = λuλv ⊕ λw, λ4 = λu λv ⊕ λw; (C) ∆gλγ for all g, γ ∈ [4] and lastly (D) kgw,0 ⊕∆gλγ for all
g, γ ∈ [4]. (B) and (D) require linear operations, thus can be done locally by each garbler. However, for (A) and
(C), additive sharing of a product needs to be computed which requires interaction among garblers. This is done
via OTs, which we explain below. Also, in (A), it is known how to tweak shares of λuλv locally to get the shares of
remaining products [BLO16], thus computing the sharing of λuλv alone suffices. We now explain how the additive
sharing of 1) λuλv and 2) ∆gλγ for any γ ∈ [4] is computed.

To compute 1), each garbler Pg locally computes λguλ
g
v. In addition, each pair of parties Pg, Pg′ for g 6= g′

run an OT with Pg as sender, holding (r, r ⊕ λgu) and Pg′ as receiver, holding λg
′
v to generate 2-out-of-2 additive

sharing of λguλ
g′
v . Pg outputs its share as r denoted by [λguλ

g′
v]S and Pg′ outputs its share as the OT output r⊕λguλg

′
v

denoted by [λguλ
g′
v]R (We use [·]S , [·]R to denote the shares of sender and receiver of OT respectively). Each garbler

Pg now computes its share, λguv, of the product λuv = λuλv as the sum of its local product λguλ
g
v and the shares

obtained from OTs either as a sender or as a receiver i.e., λguv = λguλ
g
v ⊕ (⊕g 6=g′ [λguλg

′
v]S) ⊕ (⊕g 6=g′ [λg

′
u λ

g
v]R).

Next, to compute 2), where ∆g belongs to Pg and ∆gλγ = ∆g(λ1γ ⊕ λ2γ ⊕ λ3γ ⊕ λ4γ), each garbler Pg first locally

computes ∆gλgγ and then for each cross-term ∆gλg
′
γ , g 6= g′, Pg acts as a sender with each Pg′ as receiver in an

OT to get their respective shares [∆gλg
′
γ]S and [∆gλg

′
γ]R. Finally, the share of Pg for the product ∆gλγ is set to

the following sum: ∆gλgγ ⊕ (⊕g′ 6=g[∆gλg
′
γ]S), while the share of each Pg′ is set to [∆gλg

′
γ]R. We now present the

functionality FGC (Fig 3). Partitioning the set of all super-CTs into its 4 constituent CTs, we can view the GC as
GC1 || GC2 || GC3 || GC4 where gth partition is contributed by garbler Pg.

Evaluation of the DGC Starting with the masked bits of all inputs and corresponding super-keys, P5 evaluates
a DGC in topological order, with XOR gate evaluated using free-XOR. For an AND gate with input wires u,v,
P5, with input super-keys {(kgu,bu , k

g
v,bv

)}g∈[4] and blinded input bits bu, bv, decrypts (bu, bv)th row’s super-CT to
obtain the super-key corresponding to blinded output bit xuxv ⊕ λw and the blinded output bit itself. The blinded
bits for output wires give clear output when XORed with their respective masks.

3.4 Distributed Garbling with AOT and Seed distribution

As iterated before, we assume that all the randomness required by a party Pg for 4DG is generated using a random
seed sg. The SD then enables a party-emulation technique where the seed sg of Pg is available to exactly two other
garblers in Sg who can now emulate the role of Pg. Thus, each partition of GC, GCg is generated by 3 garblers
holding sg, offering security against at most two corrupt garblers. This also preserves input privacy as: (i) when
two garblers are corrupt (and together hold all seeds), the evaluator is surely honest and protects the privacy of
inputs; (ii) when a garbler and the evaluator are corrupt, one seed remains hidden, assuring input privacy. The
SD results brings a prime gain in the underlying semi-honest 4DG– replacing standard OTs with 1-round AOTs:

8

Let C be the circuit, κ, the security parameter and F, a double-keyed PRF [BLO16]. Each garbler Pg prepares the private
input set ISetg consisting of:
– An offset string ∆g ∈ {0, 1}κ.
– A share λgw ∈ {0, 1} of the masking bit for each wire w, barring the output wire of XOR gates.
– Keys kgw,0, k

g
w,1 ∈ {0, 1}κ for every wire w s.t kgw,1 = kgw,0 ⊕∆g ,except the output wire of XOR gates.

Input: On receiving message (Input, ISetg) from each garbler Pg, g ∈ [4], compute super-keys and mask bits for all wires
(those for XOR output wires are computed as per free-XOR). For every AND gate with input wires u, v; output wire w,
the gth CT in the γth super-CT for g, γ ∈ [4] is computed as follows. For a, b ∈ {0, 1}, let γ = 2a + b + 1, λ1 = λuλv
⊕ λw, λ2 = λuλv ⊕ λw, λ3 = λuλv ⊕ λw, λ4 = λu λv ⊕ λw, λγ = ⊕g∈[4]λgγ and [∆g′λγ]g denote the gth additive share
of ∆g′λγ , g′ ∈ [4].

cgγ=Fkgu,a,kgv,b(w||g)︸ ︷︷ ︸
Pad

⊕(λgγ︸︷︷︸
share of
blinded
output

||{[∆g′λγ]g}g′ 6=g︸ ︷︷ ︸
Pg’s share of the
output key of Pg′

||kgw,0 ⊕ [∆gλγ]g︸ ︷︷ ︸
Pg’s share of the
output key of Pg

)

Output: On receiving Output from parties, send gth partition GCg = {{cgγ}γ∈[4]∀ AND gates}||{{H(kgw,0),
H(kgw,1)}∀ output wires w} to Pg where H is the collision resistant hash (Appendix B).

Figure 3: Functionality FGC

The standard OTs used to compute each cross-term λguλ
g′
v , ∆gλg

′
γ (g 6= g′) in the additive-sharing of λuλv,∆gλγ

respectively, are replaced with AOTs. The SD further enables each AOT to be run s.t the attesters hold both seeds
that the sender and receiver mutually-exclusively hold. This implies that the attesters are aware of the inputs of
both sender and receiver at the onset, thus leading to a one-round instantiation of AOT (Appendix ??). Note that the
party-emulation technique does not increase the number of OTs required to three times the underlying semi-honest
4DG but instead keeps it the same, since SD ensures that, for each garbler Pi, OTs are needed in the computation
of every λguλ

g′
v , ∆gλg

′
γ (g 6= g′) only when one of g, g′ is not in Si.

For clarity, below we demonstrate, how a particular product share λ1uv (of λuλv) is computed by parties in
S1 ({P1, P3, P4}), utilizing AOT and SD. The share λ1uv consists of summands as listed in the first column of the
table below. We explain how P1 computes each summand. Except λ1uλ

1
v, the remaining summands correspond to

cross-terms that P1 originally obtained via OT either as sender or receiver. Now, all summands that correspond
to P1 enacting a sender (λ1uλ

g
v, g 6= 1) can be sampled from s1, as the sender’s share is a random bit. For the

summands where P1 enacts receiver (λguλ1v, g 6= 1), AOT is needed only for the summand, λ2uλ
1
v that involves s2

which P1 does not own, while for other terms, P1 can locally compute its share with the knowledge of both seeds.
As for the AOT, P1 acts as receiver with seed s1, P2 acts as sender with seed s2, and {P3, P4} act as attesters with
{s1, s2}. Similarly, {P3, P4} can compute the summands of λ1uv as indicated in the table.

P1 : (s1, s3, s4) P3 : (s1, s2, s3) P4 : (s1, s2, s4)

λ1uλ
1
v local local local

[λ1uλ
2
v]S local local local

[λ1uλ
3
v]S , [λ1uλ

4
v]S

[λ2uλ
1
v]R F4AOT(P2, P1, {P3, P4}) local local

[λ3uλ
1
v]R local local F4AOT(P2, P4, {P1, P3})

[λ4uλ
1
v]R local F4AOT(P2, P3, {P1, P4}) local

Our final garbling and evaluation protocols appear in Figs 4-5. The correctness proof appears in Lemma 3.4.

Efficiency of 4DG Our 4DG is superior to the state-of-the-art [BLO16] computationally while retaining their
communication efficiency. Concretely, for 4DG, [BLO16] needs 4 PRF computations per CT of the super-CT
whereas our scheme needs 1 PRF computation per CT. Since, the number of PRFs computed depends on the
number of parties, this difference is significant for large n. To elaborate, for n-party garbling, [BLO16] needs n

9

Common Inputs: Circuit C that computes f .
Primitives and Notation: A double-keyed PRF F [BLO16]. Sg denotes the indices of parties who hold sg as well as the
indices of seeds held by Pg .
Output: Each party Pg, g ∈ [4] outputs GCj , j ∈ Sg or ⊥.
Sampling Phase: Each Pg, g ∈ [4] samples ∆j from sj , j ∈ Sg . Also, the following is done for each wire w in C
corresponding to seed sj :
– If w is not an output wire of XOR gate, sample λjw and kjw,0 from sj . Set kjw,1 = kjw,0 ⊕∆j .
– If w is an output wire of XOR gate with input wires u, v, set λjw = λju⊕λjv , kjw,0 = kju,0⊕k

j
v,0 and kjw,1 = kjw,0⊕∆j .

The mask and super-key pair for a wire w is defined as λw = ⊕g∈[4]λgw and
(
{kgw,0}g∈[4], {k

g
w,1}g∈[4]

)
. Run in parallel

for every AND gate in C with input wires u, v and output wire w:
R1: Product Phase I: Define λuv = λuλv = (⊕g∈[4]λgu)(⊕g∈[4]λgv). Likewise define λuv, λuv, λu v that can be derived
from shares of λuv . Each garbler Pg computes λjuv of λuv for every j ∈ Sg as below:
– locally compute λjuλ

j
v . For each k 6= j, sample [λjuλ

k
v]S from seed sj .

– for every k ∈ Sg , locally compute [λkuλ
j
v]R = [λkuλ

j
v]S ⊕ λkuλjv with the knowledge of sj and sk.

– for every k 6∈ Sg , obtain [λkuλ
g
v]R from F4AOT acting as receiver with input λgv and Pk as the sender with inputs

([λkuλ
g
v]S ,[λkuλ

g
v]S ⊕ λku) derived from sk.

– for each k 6∈ Sg , j 6= g, obtain [λkuλ
j
v]R fromF4AOT acting as a receiver with input λjv , and sender Ps, s = [4]\{g, j, k}

with inputs ([λkuλ
j
v]S ,[λkuλ

j
v]S ⊕ λku) derived from sk.

– compute λjuv = λjuλ
j
v ⊕ (⊕i6=j [λjuλiv]S)⊕ (⊕i6=j [λiuλjv]R).

Define λ1 = λuλv ⊕ λw, λ2 = λuλv ⊕ λw, λ3 = λuλv ⊕ λw, λ4 = λu λv ⊕ λw. Every Pg computes jth share λj1 of λ1
for all j ∈ Sg as λjuv ⊕ λjw. Similarly, it computes the shares for λ2, λ3, λ4.
R2: Product Phase II: Pg computes share [∆jλγ]j (jth additive share) of ∆jλγ for every γ ∈ [4] and j ∈ Sg as
follows:
– locally compute ∆jλjγ . For every k 6= j, sample [∆jλkγ]S from sj .
– compute [∆jλγ]j = ∆jλjγ ⊕k 6=j [∆jλkγ]S .
Pg computes [∆kλγ]j of ∆kλγ for each k 6= j, γ ∈ [4], j ∈ Sg as:
◦ For every k ∈ Sg , compute [∆kλγ]j = [∆kλjγ]R locally from the knowledge of sj and sk.
◦ For k /∈ Sg , j = g, obtain [∆kλgγ]R from F4AOT acting as receiver with input λgγ and with Pk as sender whose inputs

are [∆kλgγ]S and [∆kλgγ]S ⊕∆k derived from sk. Set [∆kλγ]j = [∆kλjγ]R.
◦ For k /∈ Sg , j 6= g, obtain [∆kλjγ]R from F4AOT acting as receiver with input λjγ and Ps, s = [4] \ {g, j, k} as sender

with inputs [∆kλjγ]S , [∆kλjγ]S ⊕∆k (from sk). Set [∆kλγ]j = [∆kλjγ]R.
Super-CT Construction Phase: For each j ∈ Sg, Pg constructs cjγ for γ ∈ [4], as in FGC (Fig 3) and outputs GCj =

{{cjγ}γ∈[4]}∀ AND gates||{H(kgw,0),H(kgw,1)}∀ output wires w.

Figure 4: Protocol Garble()

Inputs: P5 holds GC = GC1||GC2||GC3||GC4, blinded bit bw, the corresponding super-key {kgw,bw}g∈[4] for every
input wire w and mask λw for every output wire w.
Output: P5 outputs y = C(x) where x is the actual input or ⊥.
Evaluation: Evaluation is done topologically. For a gate with input wires u, v and output wire w, P5 has
(bu, {kgu,bu}g∈[4]), (bv, {kgv,bv}g∈[4]).
– For XOR gate, P5 sets bw = bu ⊕ bv , {kgw,bw = kgu,bu ⊕ k

g
u,bv
}g∈[4].

– For AND gate, P5 sets γ = 2bu + bv + 1 and compute bw = ⊕g∈[4]λgγ and kgw,bw = kgw ⊕ (⊕g′ 6=g[∆gλγ]g′) after
decrypting every CT cgγ in the γth super-CT as follows:
(λgγ ||{[∆g′λγ]g}g′ 6=g||kgw) := Fkgu,bu ,k

g
v,bv

(j||g)⊕ cgγ .
For an output wire w, P5 assigns Y := {kgw,bw}g∈[4] and checks if the hash on gth key in Y indeed maps to
H(kgw,bw), g ∈ [4].
Output: P5 outputs yw := bw ⊕ (⊕g∈[4]λgw) for every output wire w.

Figure 5: Protocol Eval()

PRF computations per CT of super-CT and hence a total ofO(n2) PRF per super-CT, while our scheme still needs
1 PRF per CT (so total of n PRFs for super-CT), thus saving O(n) PRF computations over [BLO16]. The player-

10

emulation technique also impacts the performance of [BLO16] concretely, compared to our 4DG– 12 versus 3 for
each CT which has 3 copies and thus, 48 versus 12 per super-CT and 192 versus 48 per AND gate.

3.5 Attested OT Instantiation

For the attested OT functionality F4AOT defined in Fig 2, we now provide a standalone instantiation. The sender of
the AOT, Ps having inputs m0,m1 samples random r0, r1 ← {0, 1}κ and generates the commitments: (c0, o0)←
Com(pp,m0), (c1, o1)← Com(pp,m1). Ps sends (m0, r0,m1, r1) to the attesters and (pp, c0, c1) to the receiver.
The receiver Pr sends the choice bit b to the attesters. The attesters exchange the copy of message received from
Ps, Pr amongst themselves for correctness. If verified, they use (m0, r0,m1, r1) to compute the commitments
(pp, c0, c1) and send the same to the receiver. One of the attesters, say Pa1 also sends the opening corresponding
to cb to Pr. If the verification fails, the attesters send ⊥ to Pr. The receiver Pr then checks if all the copies of
commitments received are the same. If not, aborts. Else, Pr uses the opening of cb to obtain mb.

When coupled with seed distribution, the standalone realization of F4AOT can be simplified as follows: The
attesters are chosen s.t they possess the inputs (derived from seed) of both sender and receiver. For instance, when
Ps = P1, Pr = P2, the attesters are P3, P4 and the inputs of the sender are derived from the seed s1, while the input
of the receiver is derived from seed s2 (both seeds are with P3, P4). Thus, Ps, now sends (pp, c0, c1) to Pr and the
attesters send H((pp, c0, c1)) to Pr. Also, Pa1 sends opening corresponding to commitment cb. All these steps can
be done in only one round and hence AOT in our garbling scheme needs only one round. Pr then computes the
output as in the standalone description. This process is formally depicted in Fig 6.

Ps, Pr denote the sender and receiver respectively. Pa1 , Pa2 are attesters. All are distinct parties.

Inputs: Ps holds m0,m1, Pr holds choice bit b.

Output Pr outputs mb/⊥.

Primitives: A secure NICOM (Com,Open) (Appendix B).

– Ps samples pp and random r0, r1 ← {0, 1}κ (derived from si, i ∈ Ss \ Sr) and computes (c0, o0) ← Com(pp,m0),
(c1, o1) ← Com(pp,m1). Ps sends (pp, c0, c1) to Pr. Pa1 , Pa2 who know (r0, r1) (since they know si) also compute
(c0, o0)← Com(pp,m0), (c1, o1)← Com(pp,m1) and each send H((pp, c0, c1)) to Pra.

– Pr has b (derived using sj , j ∈ Sr \ Ss) which is known to Pa1 , Pa2 (since they know sj). Pa1 (wlog) sends ob to Pr.
(Local Computation by Pr): If the commitment sent by Ps and the hash values sent by Pa1 , Pa2 do not match, then Pr
outputs ⊥. Else, output mb = Open(cb, ob).

aThe exact realization of the functionality F4AOT involves Ps and Pr sending (r0,m0, r1,m1) and b respectively to Pa1 and Pa2

who in turn exchange their copies received from Ps, Pr for correctness.

Figure 6: Protocol Π4AOT(Ps, Pr, {Pa1 , Pa2}) for Garble

The protocol realization specific to god5PC is presented in Fig 7. This protocol is same as Π4AOT, except that
the sender’s and attesters’ messages are broadcast to enable the identification of conflict in case of mismatching
messages. Thus the protocol either outputs the OT message to the receiver or identifies a 3PC P3 for all.

3.6 Correctness and Security of 4DG

Lemma 3.4. The protocols Garble and Eval are correct.

Proof. To prove the lemma we argue that the super-key encrypted in the super-CT of a row decrypts to the correct
super-key when evaluated on the blinded inputs corresponding to that row. Consider an AND gate with input
wires u, v and output wire w with corresponding masks λu, λv and λw respectively. Let the blinded inputs bu, bv
received for evaluation have values bu = bv = 0. This means γ = 1 (row 1). We prove that bw and {kgw,bw}g∈[4]
are correctly computed given bu, bv and super-keys {(kgu,bu , k

g
v,bv

)}g∈[4]. For simplicity we consider λw = 0.
The values bu = bv = 0 imply xu = λu and xv = λv. Since, λw = 0, λγ = λ1 = λuλv. This means that

11

Ps, Pr denote the sender and receiver respectively. Pa1 , Pa2 are attesters. Pa denotes the auditor. All are distinct parties.

Inputs: Ps holds m0,m1, Pr holds choice bit b.

Notations P3 is the 3PC committee with at most 1 corruption.

Output Pr outputs mb/P3. All other parties output ⊥/P3.

Primitives: A secure NICOM (Com,Open) (Appendix B).

– Ps samples pp and random r0, r1 ← {0, 1}κ (derived from si, i ∈ Ss \ Sr) and computes (c0, o0) ← Com(pp,m0),
(c1, o1) ← Com(pp,m1). Ps broadcasts (pp, c0, c1). Pa1 , Pa2 who know (r0, r1) (since they know si) also compute
(c0, o0)← Com(pp,m0), (c1, o1)← Com(pp,m1) and each broadcast (c0, c1).

– Pr has b (derived using sj , j ∈ Sr \ Ss) which is known to Pa1 , Pa2 (since they know sj). Pa1 (wlog) sends ob to Pr.
If the broadcast values sent by Ps, Pa1 , Pa2 do not match, each Pγ , γ ∈ [5] sets P3 := {a1, r, a}. Output P3.
(Computation by Pr): If no ob is received or Open(cb, ob) = ⊥, broadcast conflict with Pa1 . All parties set P3 :=
{s, a2, a} and output P3. Else, Pr outputs mb = Open(cb, ob) and the remaining parties output ⊥.

Figure 7: Protocol Π4AOTGOD(Ps, Pr, {Pa1 , Pa2}, Pa)

g(λu, λv) = g(xu, xv) where g is the AND gate function. Thus, the encrypted super-key must be {kgw,g(xu,xv)}g∈[4]
as ∆gλ1 = ∆gg(xu, xv) (thus λ1 = g(xu, xv)) for each garbler Pg. Now, we show that on decryption of the super-
CT in row γ = 1, the evaluator obtains {kgw,g(xu,xv)}g∈[4]. The plaintext of super-CT of row 1 on unmasking the
one-time pad of PRF appears as follows:

{ (λ11||{[∆g′λ1]1}g′ 6=1||k1w,0 ⊕ [∆1λ1]1),

(λ21||{[∆g′λ1]2}g′ 6=2||k2w,0 ⊕ [∆2λ1]2),

(λ31||{[∆g′λ1]3}g′ 6=3||k3w,0 ⊕ [∆3λ1]3),

(λ41||{[∆g′λ1]4}g′ 6=4||k4w,0 ⊕ [∆4λ1]4) }

The evaluator computes bw = ⊕g∈[4]λ
g
1 = g(xu, xv) and computes the super-key as {(kgw,0 ⊕ [∆gλ1]g) ⊕

(⊕g′ 6=g[∆gλ1]g′)}g∈[4] = {kgw,0⊕∆gλ1}g∈[4]. Since ∆gλ1 = ∆g(xu, xv), the super-key reduces to {kgw,g(xu,xv)}g∈[4]
as desired. The correctness for the remaining rows of super-CT and for any choice of λw can be proved in a similar
way.

4 5PC with Fairness

Relying on pairwise-secure channels, we outline a symmetric-key based 5PC with fairness, tolerating 2 malicious
corruptions with performance almost on par with the state-of-the-art [CGMV17] with selective-abort while main-
taining a round complexity of 8. Starting with the overview of [CGMV17], we enumerate the challenges involved
in introducing fairness into it and then describe techniques to tackle them.

In [CGMV17], the garblers perform a one-time SD, which can be used for multiple executions. The evaluator
P5 splits her input additively among P2, P3, P4 who treat the shares as their own input. Garbling is done using the
passively secure scheme of [BLO16] topped with the techniques of SD and AOT (Section 3). For the transfer of
super-keys wrt every input wire w of each garbler Pg, the remaining garblers send the mask shares not held by Pg
(λjw, j /∈ Sg) on w to Pg who after verifying the shares for correctness (applying the equality check), computes the
blinded bit bw = xw ⊕ λw (xw is the input on w). Now, Pg can send 3 out of 4 keys in the super-key for bw to P5.
However, to enable P5 learn the fourth key for bw that corresponds to the seed held by remaining co-garblers, Pg
cannot simply send bw to the co-garblers, as it would leak Pg’s input when two of the garblers are corrupt (and hold
all seeds and thus the mask λw). Hence, [CGMV17] overcomes this subtle case of masked input key as follows.
Pg splits bw as bw = ⊕l∈[4]\{g}bl and sends each share to exactly one co-garbler. Each co-garbler now sends key

12

for the share she received to P5 who XORs the 3 key-shares to get the desired 4th key. The property of free-XOR
is crucial in ensuring that XOR of key-shares gives the key on blinded input. A breach in the above solution is that
Pg colluding with P5 can learn both super-keys for w leading to multiple evaluations of f . This is captured by the
following attack: Pg sets bl = 0, bl′ = 1 and sends them to co-garblers Pl, Pl′ respectively. As a result, P5 receives
0-key from Pl, 1-key from Pl′ and XOR of these values leaks the global offset and thus both keys corresponding
to the seed Pg does not own. Now Pg who already owns 3 seeds can now use both 0-key and 1-key of the 4th key
to obtain multiple evaluations of f . This is tackled by having Pg and one of her co-garblers separately provide
additive shares of 0κ that are XORed with key-shares before sending to P5. Finally, P5 assembles the XOR shares
and uses the 4th key for evaluation. On evaluation, P5 sends the output super key Y to all garblers, who then
compute the output using output mask shares, that are exchanged and verified at the end of garbling phase.

The prime challenge to introduce fairness in the protocol of [CGMV17] is for the case of a corrupt evaluator,
who either sends Y selectively to garblers or sends an invalid/no Y after learning the output herself on successful
evaluation of DGC. This can be tackled using the following natural techniques in the output phase: (a) The garblers
withhold the shares of mask bits on the output wires until a valid output super-key is received from P5. (b) To
further prevent a corrupt P5 from selectively sending Y to garblers, we enforce the garbler who received valid
Y from P5 to, in turn, send the same Y to her co-garblers. Nevertheless, both the above solutions can lead to
unfair scenarios. In solution (a), a corrupt garbler can send an incorrect share of the mask bit on receiving Y, thus
creating chaos for the honest receiver who cannot decide the true value, while the corrupt garbler herself learns the
output using the shares received from honest co-garblers. In solution (b), two colluding garblers can convince the
honest garblers of any Y using their knowledge of all seeds, even if the honest P5 aborts during evaluation. This
is easily fixable with broadcast, however, without broadcast, a convincing strategy that Y indeed originated from
P5 is necessary.

We tackle the concerns in solution (a) using the commit-then-open technique. In detail, the garblers are forced
to commit to the shares of mask bit on each output wire in advance to bar them from sending inconsistent values
later and violating fairness. Three copies of each commitment are sent by the 3-parties who own the corresponding
seed which are then compared for correctness by each receiver prior to evaluation. The collision-resistant property
of hash is used as a proofing mechanism to tackle the concerns in solution (b). Concretely, P5 computes hash
on a random value proof in the garbling phase and sends the resulting hash, H(proof) to all garblers who in turn
exchange H(proof) for consistency. The value proof is sent as a proof to the garblers along with Y post evaluation.
This technique is reminiscent of the one used in [BJPR18]. The above techniques ensure that a colluding garbler
and P5 cannot compute the output y without the aid of at least one honest garbler. An honest garbler reveals shares
on the mask bits owned by her only on the receipt of valid (Y, proof) from some party. This handles the concern
in solution (b) by ensuring that Y was not impostered upon by two colluding garblers as they cannot forge a valid
proof.

4.1 The construction

We present the formal protocol in Fig 8. The garblers perform a one-time SD as in [CGMV17], which can be used
for multiple runs. Circuit garbling is done as in Fig 4. The input keys sent by garblers define their committed inputs.
The case of evaluator’s input and transfer of input keys is dealt as in [CGMV17]. In addition, we enforce each
garbler to generate commitments on the shares of output wire masks wrt each seed she owns and allow agreement
on these commitments by all parties. Also, P5 samples a random proof and sends H(proof) to the garblers who
agree on the hash value or abort. Then, P5 evaluates the GC and sends (Y, proof) to all. Each garbler checks if
(Y, proof) is valid. If so, it sends (Y, proof) and the openings corresponding to the commitments on mask bit
shares of output wires to all. Finally, when a garbler has enough valid openings for commitments on mask bit
shares of output wires, she computes the required output.

The equivocal commitment eNICOM is used to commit on the output mask shares to handle a technicality that
arises in the proof. Namely, when one garbler and P5 are corrupt, the adversary, on behalf of P5 can decide to
abort as late as when Y needs to be sent to garblers. Hence, the simulator is also forced to act on the adversary’s
behalf and invoke the functionality after this step. Nevertheless, the simulator needs to simulate the prior rounds

13

Inputs: Party Pi ∈ P has xi.
Common Inputs: The circuit C(x1, x2, x3, x4,⊕j∈{2,3,4}x5j) that computes f(x1, x2, x3, x4, x5) and takes
x1, x2, x3, x4 and shares {x5j}j∈{2,3,4} as inputs, each input, their shares are from {0, 1} (instead of {0, 1}` for sim-
plicity) and output is of the form {0, 1}`.
Notation: Si denotes indices of the parties who hold si as well as indices of the seeds held by Pi.
Output: y = C(x1, x2, x3, x4, x5) or ⊥.
Primitives: A NICOM (Com,Open), an eNICOM (eGen, eCom, eOpen,Equiv), Garble (Fig 4), Eval (Fig 5), Collision
Resistant Hash H (Appendix B).
Seed Distribution Phase (one-time): Pg chooses random seed sg ∈R {0, 1}κ, and sends sg to the other two parties in
Sg who in turn exchange with each other and abort if their versions do not match.
Evaluator’s Input sharing Phase: P5 secret shares its input as x5 = x52 ⊕ x53 ⊕ x54. P5 sends x5j to Pj (wlog).
Proof Establishment Phase: P5 chooses proof from the domain of hash function H, computes and sends H(proof)
to each garbler Pg, g ∈ [4]. Pg in turn sends the copy of H(proof) received from P5 to her co-garblers. Pg aborts if
H(proof) received from a co-garbler does not match with her own copy received from P5. Else, Pg accepts H(proof)
to be the agreed upon hash.
Setup of public parameter for Equivocal Commitment. For eppg, g ∈ [4] of eNICOM, each Pj , j ∈ Sg samples
eppgj from fresh randomness (not from any of the seeds he holds) and sends to all. Pg additionally samples eppgl, l ∈
[4] \ Sg and sends to all. Each party computes eppg = ⊕j∈[4]eppgj . Pl ∈ P forwards eppg, g ∈ [4] to all. Each Pi ∈ P
aborts if any of eppg received mismatch.
Transfer of Equivocal Commitments.
– Each Pg, g ∈ [4] runs the Sampling Phase of Garble(C) and computes the following commitments for every circuit

output wire w using randomness from sj , j ∈ Sg: {(cjw, ojw)← eCom(eppj , λjw)}j∈Sg . Pg sends {(eppj , cjw)}j∈Sg
to all.

– Pi ∈ P aborts if it receives mismatched copies of (eppj , cjw), j ∈ [4] for some output wire w.
Garbling, Masked input bit and Key Transfer Phase.
– For circuit input wire w held by Pg, g ∈ [4] corresponding to input bit xw, each Pl, l ∈ [4]\{g} sends λjw, j ∈ Sl to
Pg . Pg aborts if it receives mismatched copies for some λjw. Else, Pg computes λw = ⊕j∈[4]λjw and bw = xw ⊕ λw.
Pg sends (bw, {kjw,bw}j∈Sg) to P5. To send kjw,bw , j ∈ [4] \ Sg (not held by Pg) to P5, it does the following (The
case for the key of P ′5s input share if held by Pg is handled similarly):
◦ Pg chooses random bits bl and random βl ∈ {0, 1}κ s.t bw = ⊕l∈[4]\{g}bl and 0κ = ⊕l∈[4]\{g}βl. Pg sends bl, βl

to Pl.
◦ One garbler other than Pg chooses δl ∈ {0, 1}κ s.t 0κ = ⊕l∈[4]\{g}δl and sends δl to Pl.
◦ Pl sends Kl = kj

w,blw
⊕ βl ⊕ δl to P5 who sets kjw,bw := ⊕lKl.

– For input wire w corresponding to P5’s input shares, let {kgw,0, k
g
w,1}g∈[4] be the keys derived from seeds {sg}g∈[4]

. Each Pg, g ∈ [4] computes commitments on these as: for b ∈ {0, 1}, j ∈ Sg , (cjw,b, o
j
w,b) ← Com(ppj , kjw,b)

using ppj and randomness derived from sj and sends {ppj , cjw,b} to P5. Pg also sends ojw,bw to P5 if it holds bw. P5

aborts if it receives either different copies of commitments or invalid opening for any wire. Otherwise, P5 recovers
the super-keys for bw, namely, {kgw,bw}g∈[4]. Let X to be the set of super-keys obtained.

– Garble(C) is run. Each Pg, g ∈ [4] sends {GCj}j∈Sg to P5. If P5 finds conflicting copies, it aborts.
Evaluation and Output Phase.
– P5 runs Eval to evaluate GC using X and obtains Y and (yw ⊕ λw) for all output wires w. P5 sends (Y, proof) to

all.
– For g ∈ [4], j ∈ Sg , if kjw,bw of Y for some output wire w does not match with either (kjw,0, k

j
w,1) or the three

keys kjw,bw in Y do not map to the same bw or if proof does not verify with previously received H(proof), Pg does
nothing. Else, Pg sends (Y, proof) to all other garblers and {ojw}j∈Sg to all. P5 checks if valid {ojw}j∈Sg received
from each Pg . If so, P5 computes yw = (yw ⊕ λw)⊕ (⊕l∈[4]λlw) for output wire w and thus outputs y.

– If received valid (Y, proof) and {ojw}j∈Sg from a co-garbler Pg , Pα, α ∈ [4] computes y by unmasking all λw.
Also, if sent nothing before, send (Y, proof) to co-garblers, {olw, ojw}l∈Sα,j∈Sg to all. If no y computed yet and
received valid (Y, proof), {olw, ojw}l∈Sα,j∈Sg from co-garbler Pα (ojw was sent by Pg to Pα before), compute y
upon unmasking all λw. Likewise, if P5 has not computed y yet and received valid {olw, ojw}l∈Sα,j∈Sg from Pα (ojw
was sent by Pg to Pα before), P5 computes y by unmasking all λw.

Figure 8: Protocol fair5PC

14

with no clue of the output, which includes transfer of DGC, super-keys, commitments on output mask shares. To
tackle this, the simulator uses eNICOM to commit to dummy values at the start and later equivocates to output
mask shares (set based on the output obtained after invoking the functionality) if the corrupt P5 sends Y to at least
one honest garbler. Elaborate details are given in Appendix C.

To keep the eNICOM trapdoor hidden from the adversary and available to the simulator, we need it to be
distributed among 3 parties. Although convenient, the public parameter for eNICOM cannot be derived from the
seeds, as it would trivially arm a corrupt garbler (with the knowledge of 3 seeds) to equivocate. Further, due to the
symmetry of eNICOM, equivocation seems infeasible for the simulator if the trapdoor is distributed into only three
parts. Hence, we distribute the trapdoor and thus public parameter into four parts (held by three parties) to keep
the binding property intact in the real world while allowing the simulator (acting on behalf of 3 honest parties) to
perform equivocation. We demonstrate below for each g ∈ [4], how eppg(= ⊕l∈[4]eppgl) for the output mask bits
corresponding to sg is chosen by the parties. We note that we could opt for a random-oracle based scheme and use
its programmability to enable equivocality. But this would make the proof rely on non-standard assumption, and
not injective one-way functions.

P1 P2 P3 P4

epp1 epp11, epp12 – epp13 epp14

epp2 – epp21, epp22 epp23 epp24

epp3 epp31 epp32 epp33, epp34 –
epp4 epp41 epp42 – epp43, epp44

n-party Extension The technique of achieving fairness for 5 parties can be extended to n parties tolerating
t <
√
n corruptions by modifying only the output phase of fair5PC (Fig 8). The technical overview and the formal

protocol appear in Fig 9 (Section 4.3).

Optimizations We propose the optimizations below to boost the efficiency of fair5PC: all optimizations of
[CGMV17] can be applied to our protocol. More concretely, majority of communication in the garbling phase
is due to the number of AOT invocations. This is optimized with the use of batch AOTs. Batch AOTs allow
the sender to send both commitments while the attesters send only hash on all the commitments. The NICOM
instantiation (Appendix B) based on the ideal cipher model can be used to obtain faster commitments in practice.
Each GCg, g ∈ [4], is sent by exactly one owner while the rest send only H(GCg). P5 verifies the hash values
before evaluation. For implementation, eNICOM, NICOM are instantiated with random-oracle based commitment.
Also, communication in eNICOM is saved by generating commitment on the concatenation of mask bit shares of
all wires rather than on each bit individually.

4.2 Properties

Lemma 4.1. The protocol fair5PC is correct.

Proof. The input of P5 is well defined by the shares sent to P2, P3, P4. The 3 keys for each input wire owned
by the garblers, along with the 4th key sent as XOR shares, define their committed inputs. Evaluation is done
on committed inputs. The correctness of Y and thus y follows from the correctness of garbling and evaluation
(Figs 4, 5).

Theorem 4.2. Our fair5PC protocol consumes at most 8 rounds.

Proof. The proof establishment phase and setting up of public parameter for eNICOM consume 2 rounds each
and can be overlapped. Further, round 1 of these two phases can be overlapped with distribution of P5’s input and
round 1 of masked input bit computation and key transfer phase. These together consume a total of 3 rounds. The

15

key transfer is started prior to Garble. More precisely, garbling can begin alongside round 3 of key transfer phase.
The transfer of GC and keys to P5 take 1 round. Finally, evaluation and output phase need at most 3 rounds, thus
settling the protocol in 8 rounds. If Y is received by all honest garblers in round 1 of output phase itself, then 7
rounds suffice. The seed distribution phase is one-time and hence is not counted for round complexity.

Theorem 4.3. Assuming one-way permutations, the protocol of fair5PC securely realizes Ffair (Fig. 17) in the
standard model against a malicious adversary that corrupts at most two parties.

The formal security proof appears in Appendix. C.
We give the intuition of fairness for completeness. For fairness, we need to guarantee that if the adversary

learns the output, then so do honest parties and converse. We first argue in the forward direction. Suppose an
adversary gets the output. We consider two corruption cases: Firstly, when P1 and P5 are corrupt, the adversary
obtains the output only if at least one honest garbler say P2 receives a valid (Y, o) from P5 or P1 (valid shares of
output wire mask bits also from P1). P2 sends the received message along with the masking bit shares she owns
to all, allowing other parties to compute the output. The recipient garblers further send out their valid masking
bit shares to allow any residual party to compute the output. Secondly, when two garblers P1, P2 are corrupt, an
honest P5 sends (Y, o) to all, on successfully evaluating GC. P1, P2, knowing all the seeds, can construct the
output themselves. The honest garblers send the masking bit shares they hold to all. Thus, every party obtains the
output in both cases.

To prove the converse case, suppose the honest parties get the output. We consider the same corruption cases
as above. In the first case, it must be true that at least one of the honest garblers say P2, received a valid (Y, o)
who then sends the masking bit shares it owns along with (Y, o) to all. Thus, the honest recipients compute the
output using (Y, o) and the masking bit shares from P2. If P2 received Y from P5, then P2 uses the masking bit
shares sent by P3, P4 (once they obtain output) to compute y. Else, P2 must have received valid (Y, o) and the
masking bit shares from P1, which is sufficient to compute y. For the case of corrupt P1, P2, suppose P5 gets the
output. This implies that all garblers must have obtained the output using valid (Y, o) sent by P5 and the masking
bit shares received from co-garblers. Consequently, P5 obtains the output using the masking bit shares sent by
honest garblers. This summarizes the intuition.

4.3 n-party Extension of fair5PC

n-party Extension We first recall the conditions involved in seed distribution for n-parties elaborated in [CGMV17]
to better understand the extension tolerating t =

√
n corruptions. The seed distribution needs to satisfy the follow-

ing properties:

Privacy: No t− 1 garblers should hold all the seeds. This is to ensure input privacy of honest garblers when t− 1
garblers and the evaluator collude.

Attested OT For each pair of seeds si, sj , there must be a garbler who holds both si, sj . This party will act as an
attester in the corresponding AOT.

Correctness Every seed should be held by at least t+1 garblers. This is necessary for correctness of the computed
DGC.

All the above properties collectively imply that for any corruption scenario, the honest garblers together must hold
all the seeds. Specifically, from correctness: each seed si that is supposed to be held by at least t+1 garblers is sure
to end up in the hands of an honest garbler in the worst case corruption scenario of t corrupt garblers. To achieve
fairness for the case of n parties, all steps of the protocol fair5PC remain the same except the output phase. For
the extension, we consider that P1, ..., Pn−1 are garblers and Pn is the evaluator. On a high level, the output phase
involves 3 rounds where in round 1, Pn sends (Y, proof) to all garblers and the remaining two rounds are used
to exchange (Y, proof) with co-garblers and openings for the commitments on mask-shares belonging to output
wires with all and thus fairly compute the output.

16

Each honest party computes the output only if openings for commitments wrt every seed is received by the end
of round 3. A naive way to distribute the openings in the last two rounds is to allow an honest garbler to forward
the openings possessed by her (and if received any other) when a valid (Y, proof) is received. This technique
however, leads to fairness violation in the following scenario: suppose the evaluator and t− 1 garblers are corrupt
and Pn does not communicate with any honest garbler in round 1, However in round 2, few of the corrupt garblers
send (Y, proof) to one set of honest parties (chosen selectively s.t the openings of this set of honest parties and
those held by the adversary are enough to compute the output). These honest parties forward all the accumulated
openings in round 3 and thus the adversary gets the output. Further, in round 3, the adversary can also choose to
send the openings to the other complementary set of honest parties on behalf of all the corrupt parties who have not
sent anything yet, thus ensuring that other complimentary set gets the output while the first set aborts. To tackle
this, we impose a restriction on the garbler Pg who communicates for the first time in round 3 of the output phase
as: Forward all the openings accumulated until round 2 only if, the openings received in round 2 together with
those held by Pg are sufficient to reconstruct the output. This condition eliminates the dependency of Pg on shares
received in round 3 to compute the output and ensures that the adversary, in order to compute the output herself,
must aid at least one honest party compute the output. Thus, even if one honest party is able to compute the output
at the end of round 2, then that honest party releases all the openings in round 3 sufficient to help all honest parties
compute the output. This concludes the intuition. The formal protocol is presented in Fig 9.

Round 1: The evaluator sends (Y, proof) to the garblers.
Round 2: If the received (Y, proof) from the evaluator is valid, each garbler Pg forwards (Y, proof) and openings for
the commitments on output mask shares wrt the seeds she holds.
Round 3: If received valid (Y, proof) and valid openings from subset of garblers s.t the openings received and the
output mask shares already present with party Pα are sufficient to reconstruct λw for every output wire w, then Pα
computes output y using the output masks. If sent nothing before, Pα forwards (Y, proof) and the accumulated
openings to all.
Local Computation: If no y computed yet and received valid (Y, proof) and openings from subset of garblers that are
sufficient to reconstruct λw for every output wire w, then party Pβ computes output y using the output masks.

Figure 9: Output Phase for n-party fairness

5 5PC with Unanimous Abort

5.1 The construction

By simplifying fair5PC, we present a 5PC achieving unanimous abort, relying on a network of pairwise-private
channels with performance on par with [CGMV17] and maintaining the round complexity to 8. Specifically, we
eliminate the stronger primitive of eNICOM used to commit on output mask shares in fair5PC, owing to weaker
security. However, we still need to address the case of a corrupt P5 selectively sending Y to honest garblers.
Unanimous abort can be trivially achieved if Y is broadcast byP5 instead of being sent privately but since broadcast
increases assumptions and is expensive in real-time networks, we enforce the garbler who receives a valid Y from
P5 to forward the same to her co-garblers. However, this technique does not suffice on its own, since in case of a
colluding garbler and the evaluator, P5 may not send Y to any honest party and at the same time, the corrupt garbler
may send Y only in the last round, to one honest garbler, thus violating unanimity. To tackle this, we ensure that
an honest garbler accepts Y in the last round of output phase from a co-garbler only if the the co-garbler gives a
valid proof that she received Y from P5 only in the previous round. This is realized by having each garbler sample
a random value and circulate its hash for agreement prior to evaluation of GC. Later in the output phase, if received
Y from P5, each garbler sends this random value along with Y to the co-garblers. However, if a garbler Pg who
did not receive any message from P5, receives valid Y and random value from the co-garbler, then Pg sends her
random value along with the Y and random value of the co-garbler to all. The number of random values received
along with Y from a garbler Pg serve as proof as in which round of output phase Pg received Y. Further, to ensure
that Y indeed originated from P5 (and was not forged by two corrupt garblers), we reuse the technique described

17

in fair5PC. The formal protocol (Fig 10), proof of correctness are presented below. Similar to our fair protocol,
this protocol can also be extended for arbitrary n parties by modifying the output phase of uAbort5PC (Fig 10) as
in Fig 11 (Section 5.3).

Inputs, Common Inputs, Output and Notation : Same as in fair5PC().

Primitives: A secure NICOM (Com,Open) (Section 2), Garble4 (Figs. 4), Eval4 (Fig. 5).
Seed Distribution Phase (one-time)and Evaluator’s Input Sharing Phase are same as in fair5PC().

Proof Establishment Phase: Pi, i ∈ [5] chooses proofi from the domain of a hash function H, computes and sends
H(proofi) to all parties. Each party, Pj , j ∈ [5] \ {i} in turn sends the copy of H(proofi) received to the remaining
parties. Pj aborts if the H(proofi) received from the remaining parties does not match with her own copy received from
Pi. Else, Pj accepts H(proofi) to be the agreed upon hash.

Setup of public parameter and Transfer of Equivocal Commitments are not present in this protocol but instead for
each output wire w, each Pj , j ∈ Sg sends λgw in clear to all. Each party Pi ∈ P aborts if the three copies of λgw
received do not match. Else, Pi computes λw = ⊕g∈[4]λgw.

Garbling, Masked input bit and Key Transfer Phase are same as in fair5PC().

Evaluation and Output Phase:
– P5 runs Eval4 to evaluate GC using X and obtains Y and (yw ⊕ λw) for all output wires w. P5 sends (Y, proof)

to all. P5 locally computes yw = (yw ⊕ λw)⊕l∈[4] λlw for each output wire w.
– For each Pg, g ∈ [4], j ∈ Sg , if the received kjw,bw of Y for some output wire w does not match with either
(kjw,0, k

j
w,1) or the three keys kjw,bw , j ∈ Sg in Y do not map to the same bw or proof5 fails, then do nothing. Else

for each output wire w, compute yw unmasking λw. Send (Y, proof5, proofg) to the co-garblers.
– If received valid (Y, proof5, proofg) from a co-garbler Pg , Pα, α ∈ [4] computes y unmasking λw. Also if

sent nothing before, send (Y, proof5, proofg, proofα) to all. If no output y is computed yet and received valid
(Y, proof5, proofg, proofα) from co-garbler Pα (proofg indicates (Y, proof5, proofg) was received from Pg), gar-
bler Pγ obtains (yw ⊕ λw) from Y, unmasks λw and computes y.

Figure 10: Protocol uAbort5PC

Optimizations. The efficiency of uAbort5PC protocol can be boosted similar to fair5PC in both the garbling
phase and communication of GC.

5.2 Properties

Lemma 5.1. The uAbort5PC protocol is correct.

Proof. The input of the evaluator, P5 is defined to be committed based on the shares sent to P2, P3, P4 in Round 1.
The keys communicated by the garblers for their own input define their committed inputs. Evaluation is performed
using the committed inputs. The correctness of the output super-key Y and thus y follows from the correctness of
garbling and evaluation (Figs 4, 5).

Theorem 5.2. Our uAbort5PC protocol runs in at most 8 rounds.

Proof. The proof follows from the proof of Theorem 4.2.

Theorem 5.3. Assuming one-way permutations, our protocol uAbort5PC securely realizes the functionalityFuAbort

(Fig. 18) in the standard model against a malicious adversary that corrupts at most two parties.

The security proof is provided in Appendix D.

18

5.3 n-party Extension of uAbort5PC

To achieve unanimous abort for the case of n parties, all steps of the protocol uAbort5PC remain the same except
the output phase. The seed-distribution is done as explained in Section 4.3. For the extension, we consider that
P1, ..., Pn−1 are garblers and Pn is the evaluator. On a high level, the output phase involves 3 rounds where in
round 1, Pn sends (Y, proofn) to all garblers and the remaining two rounds are used to exchange the Y and proofs
to compute the output.

Each honest party computes the output only if t + 1 proofs are received by the end of round 3. This is done
to prevent the adversary from remaining silent in first two rounds but selectively sending Y to few honest parties
only in the last round and them naively accepting the output without any confirmation about fellow honest parties.
Thus, an honest garbler who has not sent anything until the end of round 2, forwards Y and the received proofs
(along with own proof) in round 3 only if at least t valid proofs are received by the end of round 2. This ensures
that all honest parties are in agreement about the output acceptance at the end of round 3. In detail, if one honest
party decides to accept the output by the end of round 2 due to the availabilty of t proofs, then all honest parties
will also accept the output at the end of round 3 due to the availability of at least t + 1 proofs which implies that
an honest party has accepted Y i round 2. This completes the intuition. We formally present the n-party extension
for unanimous abort in Fig 11.

Let Pn be the evaluator and Pg, g ∈ [n− 1] be the garblers.
Round 1: The evaluator sends (Y, proofn) to the garblers.
Round 2: If the received (Y, proofn) from the evaluator is valid, each garbler Pg forwards (Y, proofn, proofg) to
all.
Round 3: If received valid (Y, proofn, {proofg}g∈G) whereG is a subset of garblers, if the total number of proofg’s
and proofn is at least t, then party Pα outputs y and if sent nothing before, Pα forwards (Y, proofn, {proofg}g∈G,
proofα) to all.
Local Computation: If no y output yet and received valid (Y, proofn, {proofg}g∈G, proofα) s.t the total number
of proofg’s, proofn and proofα together is at least (t + 1), then party Pβ outputs y using the output super-key and
output wire masks for each output wire.

Figure 11: n-party Extension: Output Phase for n-party unanimous abort

6 5PC with Guaranteed Output Delivery (GOD)

With fair5PC as the starting point, we elevate the security and present a constant-round 5PC with GOD relying
only on symmetric-key primitives. We assume a necessary broadcast channel besides pairwise-private channels for
our corruption threshold owing to the result of [CL14]. Our protocol reduces to an honest-majority 3PC with GOD
in some cases. With the assumption of broadcast channel, our protocol takes 6 rounds when no 3PC is invoked and
stretches up to 12 rounds when packed with the 3PC of [BJPR18] in the worst case.

6.1 The Construction

We achieve GOD by tackling the scenarios leading to abort when the parties are in conflict. Specifically, we
eliminate a corrupt party and transit to a smaller world of 3 parties with at most one corruption to complete
computation in such cases. We retain the setup of four garblers {P1, P2, P3, P4} and P5 as the evaluator. On a
high level, our protocol starts with a robust input and (one-time) SD, followed by the garbling phase, transfer of
the GC, blinded inputs and corresponding super-keys to the evaluator and concludes with the circuit evaluation by
the evaluator and output computation by all. The key technique in achieving a robust computation lies in the use of
tools such as 4-party 2-private RSS and SD to ensure that each phase of the protocol is robust against any malicious
wrongdoing. While using a passively-secure 4DG as the underlying building block, there exist scenarios where it
seems improbable to publicly identify and eliminate a corrupt party due to the presence of 2 active corruptions.
Instead, when the adversary strikes, we establish and eliminate the parties in conflict publicly (of which one is

19

ensured to be corrupt) and rely on the remaining parties with at most one corruption to robustly compute the
output. The essence of our protocol lies in tackling the threats to input privacy and correctness that arise during the
transfer of masked inputs and corresponding super-keys due to the presence of distinct committees.

To begin with, the input and seed distributions are robust. Each input-share/seed is owned by a committee of
3 parties (as dictated by RSS/seed-distribution). To ensure consistent distribution, we force the dealer (of input-
share/seed) to commit to the data publicly and open privately rather than relying on private communication alone.
Parties who receive the same RSS share/seed cross-check with each other to agree either on a publicly committed
value or a default value when no correct openings are dealt. The shares distributed as per RSS in input distribution
are now deemed as parties’ new inputs and the circuit is augmented with XOR gates at input level which take these
shares as inputs. The formal protocols for input and seed distribution appear in Fig. 12 and 13 respectively.

Inputs: Pi has input xi.
Notation: Tj , j ∈ [6] denotes the two size maximal unqualified subset (|Tj | = 2) of the parties in the lexicographic order.
Output: Each party Pk ∈ Pi outputs (cij , c

′
ij)j∈[6], {(oil, (xil⊕ril)), (o′il, r

il)}k/∈Tl∧l∈[6] where (cil, oil), (c′il, o
′
il) denote

the commitment and opening of the shares (xil ⊕ ril), ril respectively.
Primitives: A NICOM (Com,Open) (Appendix B), a 4-party 2-private RSS.
R1: Pi does the following:
– shares its input as xi = ⊕j∈[6]xij and a random input ri ∈ {0, 1} as ri = ⊕j∈[6]rij .
– samples ppi and for j ∈ [6], computes commitments on (xij ⊕ rij), rij as: (cij , oij) ← Com(ppi, (x

ij ⊕ rij)) and
(c′ij , o

′
ij)← Com(ppi, r

ij).
– broadcasts (ppi, cij , c

′
ij); sends {oij , o′ij} privately to each Pl, l /∈ Tj .

Define Xij to be the set of parties holding the shares xij ⊕ rij and rij . Pi by default belongs to every Xij .
R2: For {ppi, (cij , c′ij)}j∈[6] and {oij , o′ij} received from Pi, Pk sets the opening information to ⊥ when they are invalid
and forwards (oij , o

′
ij) to Pl 6∈ Tj .

Local computation by Pk: Pk resets its opening data on receiving valid openings from fellow parties (if set to⊥ earlier).
If any opening still remains ⊥, set agreed-upon default value of (xij ⊕ rij) and rij .

Figure 12: Protocol inputGODi

Notation: S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, S4 = {1, 2, 4}.

Output: Each party Pj , j ∈ Sg outputs sg .

R1: Pg chooses random seed sg ∈R {0, 1}κ, samples ppg and computes (cg, og) ← Com(ppg, sg). Pg broadcasts
(ppg, cg) and sends og privately to each Pj , j ∈ Sg .
R2: If no og received or Open(ppg, cg, og) = ⊥, Pj sets og =⊥. Pj forwards og to Pk, k ∈ Sg .
(Local Computation by Pj:) Accept og sent by Pk, if Open(ppg, cg, og) 6= ⊥ and the og received earlier from Pg was
set to ⊥. If the opening still remains ⊥, agree on default seed sg .

Figure 13: Protocol seedGODg

The techniques to identify a pair of conflicting parties (in order to eliminate a corrupt party) differ based on
the communication being either public or private. Public data sent by a party involves the transfer of: (a) GC
partition wrt each seed owned by the party, (b) shares of output wire masks wrt each seed owned by the party, (c)
shares of input wire masks wrt the seeds not owned by the wire owner, (d) masked input values for the input-shares
not owned by the evaluator. Each of these values can be broadcasted by the 3 parties owning the respective seed
(for cases (a)-(c)) or input-share (for case (d)). Any mismatch in the 3 broadcasted copies leads to election of a
3-party committee P3 that becomes the custodian for completing computation. The primary reason for adopting
broadcast in the above cases is to aid in unanimous agreement about the conflicting parties. Else, if we rely on
private communication alone, an honest receiver may always receive mismatching copies and fail to convince all
honest parties about the wrongdoing. Further, input privacy is preserved when masked input is broadcast in case (d)
for the shares not owned by evaluator (instead owned by 3 garblers), since the adversary (corrupting the evaluator
and one garbler) lacks knowledge of one seed needed to learn the underlying input-share.

20

Private communication includes the transfer of super-key for input wires wrt masked input shares to P5. The
natural solution is to have the garblers, owning the respective input share, send keys privately to P5 corresponding
to the seeds they own. The private transfer alone, however, allows corrupt parties to send incorrect keys which goes
undetected by P5. We resolve this using the standard trick of commit-then-open. All garblers publicly commit to
both keys on each input wire for the seeds they possess, where any conflict is dealt as in the public message. The
commitments wrt each seed are generated by the three seed owners using randomness derived from the same seed,
turning public verification to plain equality checking. When no public conflict arises, only the garblers holding the
actual input share send the relevant openings to P5. Since each input-share is owned by at least two garblers (the
other may be the evaluator), they together hold all parts of the correct super-key to be opened, hence all openings
can be communicated. However, this step may not be robust in case of a corrupt garbler sending incorrect (or no)
opening privately which can be realised only by P5. In such case, P5 raises a conflict against the garbler who sent
a faulty opening and a 3-party set is identified for 3PC which excludes P5 and the conflicting garbler.

Further, input consistency is threatened when the adversary gets the output in the 5PC, yet makes the honest
parties receive output via 3PC which now needs to adhere to the inputs committed in the outer 5PC protocol. This
occurs when a corrupt P5 computes the output, yet does not disclose to the garblers and the related 3PC instance
invoked must ensure input consistency to bar the adversary from learning multiple evaluations of f . This creates
a subtle issue when in the elected 3PC, only one party say Pα holds a share xij (the other two owners of xij are
eliminated). A potentially corrupt Pα can use a different xij causing the 3PC to compute on a different input xi
of Pi than what was used in the 5PC, thus obtaining multiple evaluations of f . Custom-made to the robust 3PC
of [BJPR18], we tackle this having the RSS dealer Pi distribute xij + rij and rij instead of just xij for each share
in the input-distribution phase. When a 3PC is invoked, the 3-parties who hold opening of xij + rij and rij hand
them over respectively to the two parties in the 3PC who do not hold xij . With such a modification, now each
input share in the elected 3PC is either held by at least two parties or by one party in which case it is XOR-shared
between the remaining two. This is in line with the 3PC of [BJPR18] that offers consistency for inputs, either held
by at least two parties or by one party in which case it is XOR-shared between the remaining two. In the 3PC of
[BJPR18], two parties, say Pα, Pβ act as garblers and the third party, say Pγ acts as an evaluator. The garblers
use common randomness to construct the same Yao’s GC [BHR12] individually. Since at most one party can be
corrupt, a comparison of GCs received from the garblers allows Pγ to conclude its correctness. For key transfer,
the garblers perform commitments on all keys for the input wires in a permuted order and send openings for the
shares they own to Pγ . This suffices since, for an input share not held by Pγ , it is available with both garblers and
thus, Pγ can verify if both the openings received for such a share are same. The use of permutation here further
ensures that Pγ does not learn the actual value of the input key that she has the opening for. However, for input
shares held by Pγ , no permutation is used to allow Pγ to verify if the correct opening has been received. The
diagram and an example depicting this process appears in Fig 25 (Appendix F).

In 5PC, it is easy to check that the evaluator colluding with a garbler can’t cheat with a wrong super-key for
the output, as no single garbler possesses all seeds. The AOT protocol, used in Garble, is aptly modified to tackle
conflicts and elect a 3PC instance (Fig. 7). Our 3PC appears in Fig. 14. The main protocol appears in Fig. 15.

Optimizations To improve efficiency, the garbling process is optimized similar to fair5PC. When a conflict
is identified prior to the sending of GC, identification of the 3PC instance and its execution are set in motion
immediately, thus enabling the protocol to terminate faster. To minimize the overhead of broadcast and make it
independent of input, output and circuit size, we replace each broadcast message m with the collision-resistant
hash of the message, H(m), while sending m privately to the recipient. For instance, in DGC, H(GCi), i ∈ [4] is
broadcasted by parties who own GCi whereas, GCi is sent to the evaluator by one of the parties in Si privately.
Similarly, for sending output super-key, H(Y) is broadcasted by P5 and Y is sent via pairwise channels and so on.
With this optimization in broadcast, we elaborate how any conflict will be resolved with the following examples
(all our broadcast messages fall under one of these examples):

Example 1: Consider a message m to be broadcasted where m is the GC fragment GC1. This fragment is
held by P1, P3, P4 due to seed distribution. Each of P1, P3, P4 broadcasts H(GC1). If the hashes mismatch for
two parties say P1, P3, then a 3PC instance is formed with P2, P4, P5. Else, if all the broadcast hashes are in

21

Inputs: Party Pk has (cij , c
′
ij) for i ∈ [5], j ∈ [6] and (oil, o

′
il) for i ∈ [5], l ∈ [6], k /∈ Tl.

Common Inputs: The circuit C(⊕j∈[6]x1j ,⊕j∈[6]x2j ,⊕j∈[6]x3j ,⊕j∈[6]x4j ,⊕j∈[6]x5j) that computes f(x1, x2, x3, x4,
x5), each input, their shares and output are from {0, 1}.
Notation: P3 = {Pα, Pβ , Pγ} is the chosen 3PC Committee.
Output: y = C(x1, x2, x3, x4, x5).
Input Setup for 3PC: For each xij , if just one party, say Pα ∈ P3 ∩ Xij , the following is done: every party in Xij sends
oij for xij ⊕ rij and o′ij for rij to Pβ and Pγ respectively, each of which in turn recovers the respective share using one
valid opening.
3PC Run: Run a robust 3PC (Fig 24 [BJPR18] secure against one active corruption with {Pα, Pβ} as garblers and Pγ as
the evaluator.
– The input of each party is xij / xij ⊕ rij / rij . Pγ does not XOR-share its input as in the protocol of [BJPR18].
– Inside the 3PC, for inputs not known to Pγ , the garblers send commitments on both keys in random permuted order

with randomness drawn from the common randomness of garblers. For other inputs, the commitments are sent without
permutation.

– For xij , not known to Pγ and held by both Pα, Pβ and on receiving the opening for keys Pγ , checks if the opened
keys are same from both garblers. For xij known to Pγ , it checks if they correspond to bit xij by checking whether
xij th commitment was opened or not.

– The case when all 3 parties hold xij is subsumed in the above case.
– For xij held by Pγ while xij ⊕ rij and rij held by Pα and Pβ respectively, Pγ (who knows xij ⊕ rij and rij too)

checks if the openings obtained from Pα and Pβ indeed correspond to xij ⊕ rij and rij respectively. If so, he XORs
the keys to obtain the key for xij .

– For xij held by Pα, while xij ⊕ rij held by Pβ and rij held by Pγ , Pα sends key-openings wrt xij + rij , rij and Pβ
sends key-opening wrt xij⊕ rij . Pγ checks if the opening wrt rij is correct and if the opened keys wrt xij⊕ rij (sent by
Pα, Pβ) are the same. If so, the keys of rij XORed with xij ⊕ rij top obtain key wrt xij . Compute similarly if xij ⊕ rij

is held by Pγ .
– The rest of 3PC is run using keys for all RSS shares xij and the output obtained is sent to each Pi ∈ P .

Output: The parties output majority of the three y’s received.

Figure 14: Protocol god3PC

agreement, then P1 will send GC1 privately to P5. Now if P5 is honest and finds that the received GC1 is not
consistent with the hash that was successfully broadcasted and agreed, then P5 broadcasts a conflict with P1 and a
3PC instance with P2, P3, P4 is chosen. Else if P5 is corrupt and raises a false conflict with P1, even then the 3PC
with P2, P3, P4 is run. In both the cases, one corrupt party is surely eliminated and the 3PC contains at most one
corruption.

Example 2: Consider a message m to be broadcasted where m is the mask share λ1w on output wire w. The
mask-share λ1w is held by P1, P3, P4 due to seed distribution. Each of P1, P3, P4 broadcasts H(λ1w). If the hashes
mismatch for two parties say P1, P3, then a 3PC instance is formed amongst the remaining parties, P2, P4, P5.
Else, if all the hashes are in agreement, then P1, P3, P4 privately send λ1w to each party. We consider the receiver
P2 for explanation. This step is robust since if the hashes are in agreement, there will always exist one valid pre-
image among the private messages received by P2. This is because, even if two of the three senders P1, P3 are
corrupt and send inconsistent preimage, P4 will send valid λ1w which will be consistent with the agreed upon hash.
Hence P2 uses the value sent by P4 and proceeds for computation.

6.2 Properties

Lemma 6.1. An elected 3PC has at most one corruption.

Proof. We argue that a corrupt party is eliminated in a conflict. Suppose Pi, Pj are in conflict. This could be due
to either (i) mismatch in the public message broadcast by Pi, Pj or (ii) one of Pi, Pj raised a conflict against the
other for an incorrect private message. In case (i), each message is result of either robust input or seed distribution
and hence if both were honest, the broadcast messages would be identical. In case (ii), each message involves an
opening for the commitments agreed on in public message and neither Pi nor Pj would raise a conflict if valid

22

Inputs and Output: Party Pi ∈ P has xi. Each party outputs y = C(x1, x2, x3, x4, x5).
Common Inputs: The circuit C(⊕j∈[6]x1j ,⊕j∈[6]x2j ,⊕j∈[6]x3j ,⊕j∈[6]x4j ,⊕j∈[6]x5j) that takes the RSS shares as
inputs and computes f(x1, x2, x3, x4, x5), each input, their shares are from {0, 1} (instead of {0, 1}` for simplicity)
and output is from {0, 1}`.
Notation: Si denotes the indices of the parties who hold si as well as the indices of the seeds held by Pi. Xij denotes
the set of parties that holds the jth share of Pi’s input xij . P3 is the identified 3PC committee.
Primitives: A NICOM (Com,Open), inputGODi (Fig. 12), seedGODg (Fig. 13), Garble (Fig. 4), Eval (Fig. 5) and
Π4AOTGOD (Fig. 7).
Input and Seed Distribution Phase. Run inputGODi and seedGODg for every Pi ∈ P and Pg, g ∈ [4] respectively in
parallel.
Garbling Phase. Garble(C) is run where ΠAOTGOD (Fig 7) is used instead of F4AOT. Each Pg, g ∈ [4] broadcasts
{GCj}j∈Sg . Each party runs god3PC with P3 when any instance of Π4AOTGOD returns P3 or with P3 = P \{Pα, Pβ}
when (Pα, Pβ) with α, β ∈ Sg for some g ∈ [4] broadcasts different GCg (in the optimized version, we broadcast only
a hash of GC).
Masked input bit and Key Transfer Phase.
– In parallel to the R1 of Garbling phase,
◦ For each output wire w, Pg, g ∈ [4] broadcasts λjw, j ∈ Sg . Every party runs god3PC with P3 = P \ {Pα, Pβ},

if parties Pα, Pβ holding seed sg i.e. {α, β} ∈ Sg broadcast different copies of λgw for some output wire w and g.
(Tie break deterministically if multiple pairs are in conflict.) Otherwise, every party reconstructs λw = ⊕g∈[4]λgw
for every output wire w.

◦ For every input wire w corresponding to input xw = xij held by three garblers, for each Pg ∈ Xij : each garbler
Ph, h 6= g, broadcasts λlw, l ∈ Sh \ Sg . (If Xij includes evaluator, then each garbler Ph, h ∈ [4] broadcasts
λlw, l ∈ Sh). Every party runs god3PC with P3 = P \ {Pα, Pβ}, if there are parties Pα, Pβ with {α, β} ∈ Sl
broadcasting different copies λlw for some wire w. Otherwise, Pg , the owner of the input wire w uses λlw to
compute λw = ⊕l∈[4]λlw.

– In parallel to R2 of Garbling phase, for circuit input wirew corresponding to input xw = xij held by three garblers,
each Pα ∈ Xij computes bw = xw ⊕ λw and broadcasts bw. Every party runs god3PC with P3 = P \ {Pα, Pβ}, if
there are parties Pα, Pβ with {α, β} ∈ Xij broadcasting different copies of bw. Otherwise, P5 uses bw(= xw ⊕ λw)
for evaluation. For circuit input wire w corresponding to input xw = xij held by two garblers and P5, P5 already
knows bw as λw was computed by P5 in the previous step.

– For every input wire w, let {kgw,0, k
g
w,1}g∈[4] denote the super-key derived from seeds {sg}g∈[4]. Each Pg, g ∈ [4]

computes commitments as: for b ∈ {0, 1}, j ∈ Sg , (cjw,b, o
j
w,b) ← Com(ppj , kjw,b) and broadcasts {ppj , cjw,b}. Pg

sends the opening ojw,bw to P5 if it also holds bw. Every party runs god3PC with P3 with P3 = P \ {Pα, Pβ} if
(Pα, Pβ) with α, β ∈ Si for some i and input wirew broadcast different commitments. Otherwise, P5 tries to recover
the super-key for bw, namely, {kgw,bw}g∈[4] using the openings received. If no valid openings received for some key,
P5 broadcasts a conflict with a garbler who sent invalid opening and subsequently every party runs god3PC with the
remaining three parties as P3. Otherwise, let X to be the set of super-keys obtained.

Evaluation and Output Phase.
– P5 runs Eval to evaluate C using X and obtains Y and (yw ⊕ λw) for all output wires w. For each output wire w,
P5 computes yw = (yw ⊕ λw)⊕g∈[4] λgw and thus y. Finally, P5 outputs y. P5 broadcasts Y.

– Every party Pg runs god3PC with P3 with P3 = P \ {P1, P5} if kjw,bw of Y for some output wire w and index
j ∈ Sg does not match with either (kjw,0, k

j
w,1) or the three keys kjw,bw , j ∈ Sg in Y do not map to the same bw.

Otherwise, each garbler Pg obtains (yw ⊕ λw) by comparing each key in Y with the two key labels for each w and
computes yw = (yw ⊕ λw)⊕g∈[4] λgw. Finally, Pg outputs y.

Figure 15: Protocol god5PC

opening was received. Also, in both the above cases, each message is checked for correctness before proceeding
further and thus the conflict could not have been the result of adversary’s doing in the previous steps. This implies
that at least one of Pi, Pj is corrupt. Thus, an elected 3PC in either case would contain parties P3 = P \ {Pi, Pj}.
Since one of Pi, Pj is surely corrupt, at most one corrupt party can be present in P3.

Lemma 6.2. The output y computed in the god3PC instance corresponds to the committed inputs.

Proof. In case of conflict in god5PC, a 3PC instance with at most one corruption is formed (Lemma 6.1). To

23

ensure the input consistency in the 3PC, every agreed upon RSS share xij in inputGOD, is made available in
3PC to at least two parties or when held by one party, it is XOR shared between the remaining two. With this
arrangement of input shares, the robust 3PC of [BJPR18] is guaranteed to preserve input consistency. This ensures
that computation in 3PC is performed on the inputs committed in inputGOD.

Theorem 6.3. The protocol god5PC is correct.

Proof. We argue that the output y computed corresponds to the unique inputs committed by each Pi, i ∈ [5] in
inputGODi. A corrupt party either commits to an input or a default value is assumed as per inputGOD. The honest
parties are established to have committed to their inputs by the end of round 1 in inputGOD. An honest Pα obtains
the output either by decoding the output super-key Y or via the output of god3PC (as a participant in god3PC
or recipient from the 3PC committee). In the latter case, correctness follows from Lemma 6.2 and correctness of
god3PC. We argue for the former case. Let an honest Pα obtains output from Y broadcast by P5. This implies that
the adversary behaved honestly in the entire execution and the input keys opened by a corrupt garbler correspond
to committed inputs only. Otherwise, a conflict would be raised to elect a 3PC, which contradicts our assumption
that the output was obtained on decoding Y. Thus, the output always corresponds to the committed inputs in
inputGOD. The correctness of evaluation follows from the correctness of the garbling scheme.

Theorem 6.4. Assuming one-way permutations, protocol god5PC securely realizes the functionality Fgod (Fig.
16) in the standard model against an active adversary that corrupts at most two parties.

The security proof is presented in Appendix E. Since the inputs are defined prior to the garbling phase in
god5PC, we do not require the adaptive notion of the proof. The same is true for all our protocols.

Although, the formal security proof appears in Appendix E, here, we provide intuition of GOD for complete-
ness. The routine inputGOD binds the adversary to commit to an input or a default value. If a conflict is identified
at any point during the execution, then an elected 3PC committee runs robust 3PC of [BJPR18] to obtain the output
y. Otherwise, computation proceeds as per the honest run and each party receives the output using the Y broad-
casted by P5. If Y is valid, then all parties compute y using Y to conclude the execution. Else if Y is invalid or
not received, a 3PC instance is identified among the garblers to compute y. In both the above cases (lemma 6.3),
inputs committed in inputGOD alone are used to obtain the output y thus concluding the intuition.

7 Empirical Results

In this section, we elaborate the empirical results of our protocols. We use the circuits of AES-128 and SHA-256
as benchmarks. We begin with the details of the setup environment, both hardware and software and then give a
detailed comparison of efficiency.

Hardware Details We provide experimental results both in LAN and WAN (high latency) settings. For the
purpose of LAN, our system specifications include a 32GB RAM; an Intel Core i7− 7700− 4690 octa-core CPU
with 3.6 GHz processing speed with AES-NI support from the hardware. For WAN, we have employed Microsoft
Azure D4s_v3 cloud machines with instances located in West US, South India, East Australia, South UK and East
Japan. The average bandwidth measured using the iperf testing tool corresponds to 169Mbps. The slowest link
has a round trip time of 277 ms between East Australia and South UK. RTT denotes the time required to send
a packet from source to destination and subsequently an acknowledgment back from destination to source. But
the transfer of a packet involves only one way communication from source to destination. So the delay that we
consider is half of RTT which is 138.5 ms for our slowest link (present between garblers P3 − P4). The following
are the maximum delays for each garbler for one way communication: P1: 102 ms, P2: 101 ms, P3: 138 ms, P4:
138.5 ms. For the evaluator, the maximum delay is close to 112 ms. The tables indicate the average delay for the
role of garbler which turns out to be between 114− 120 ms.

24

Software Details. For efficiency, the technique of free-XOR is enabled and the implementation is carried
out using libgarble library licensed under GNU GPL license. This library leverages the use of AES-NI instruc-
tions provided by the underlying hardware.We additionally use openSSL 1.02g library for SHA to instantiate our
commitments. The operating system used is Ubuntu 16.04 (64-bit). Our code follows the standards of C++11
and multi-threading is enabled on all cores for improved results. Communication is done using sockets whose
maximum size is set to 1 MB and a connection is established between every pair of parties to emulate a network
consisting of pair-wise private channels.

Table 1: Computation time (CT), LAN run-time (LAN), WAN run-time (WAN) and Communication (CC) for [CGMV17],
uAbort5PC and fair5PC for g ∈ [4].

Protocol CT(ms) LAN(ms) WAN(s) CC(MB)
Pg P5 Pg P5 Pg P5 Pg P5

A
E

S-
12

8 [CGMV17] (with Garble) 20.84 13.45 25.01 21.45 2.54 0.99 7.38 0.031
[CGMV17] (with [BLO16]) 24.4 14.17 28.56 22.17 2.58 1.0 7.38 0.03
uAbort5PC 21.72 13.65 25.66 21.85 2.74 0.99 7.42 0.039
fair5PC 21.79 13.74 26.06 22.3 2.82 1.10 7.43 0.039

SH
A

-2
56 [CGMV17] (with Garble) 247.69 88.23 290.38 236.53 3.44 4.78 97.26 0.062

[CGMV17](with [BLO16]) 259.99 103.54 302.6 254.21 3.58 4.8 97.26 0.06
uAbort5PC 247.89 88.75 293.25 241.51 3.69 4.79 97.28 0.078
fair5PC 249.35 88.78 301.33 242.66 3.78 4.81 97.29 0.078

Table 2: Computation time (CT), LAN run-time (LAN) and Communication (CC) and Broadcast (BC) for protocol god5PC
for g ∈ [4]. Pg′ is the garbler and Pγ is the evaluator for worst case 3PC run.

Circuit CT(ms) LAN(ms) WAN(s) CC(MB) BC(KB)
Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ) Pg(Pg′) P5(Pγ)

AES-128 21.93 13.34 28.95 24.19 3.70 1.76 7.41 0.032 10.416 10.064
(+1.12) (+0.91) (+2.39) (+2.1) (+1.02) (+1.1) (+0.15) (+0.002) (+4.03) (+4.06)

SHA-256 249.91 90.83 295.3 241.83 4.5 5.6 97.27 0.064 10.416 10.064
(+11.63) (+9.76) (+14.5) (+11.9) (+1.42) (+1.51) (+3.074) (+0.004) (+4.03) (+4.06)

We compare our results in the high-latency network with the relevant ones. The state of the art in 3PC [MRZ15,
BJPR18] and 4PC [BJPR18] with honest majority achieving various notions of security, incur significantly less
overhead compared to our setting since they tolerate one corruption which aids in usage of inexpensive Yao’s
garbled circuits [BHR12] and fewer rounds. Thus, the closest result to our setting is [CGMV17] and below we
make a detailed comparison with it.

For fair analysis, we instantiate the protocol of [CGMV17] in our environment and use the semi-honest 4DG
scheme (Section 3) in place of [BLO16] that they rely on. However, we also instantiate [CGMV17] with the 4DG
scheme of [BLO16] to emphasize the saving in computation time that occurs with the use of Garble in place of
the scheme of [BLO16]. We highlight the following parameters for analysis: computation time (CT)– the time
spent computing across all cores, runtime (CT + network time) in terms of LAN, WAN and communication (CC).
The network time emphasizes the influence of rounds and communication size taking into account the proximity
of servers. The tables highlight average values distinctly for the role of a garbler (Pg, g ∈ [4]) and the evaluator
(P5). The results for [CGMV17], uAbort5PC, fair5PC appear in Table 1. Table 2 depicts the results for god5PC.
While having the round complexity of 8 as in [CGMV17] and achieving stronger security, uAbort5PC and fair5PC
incur an overhead of at most 0.2 MB overall for both circuits over [CGMV17]. The overhead in both protocols
is a result of the proof of origin of output super-key Y and exchange of Y among garblers. Additionally, in
fair5PC, the commit-then-open trick on output mask bits constitutes extra communication. For the necessary
robust broadcast channel in god5PC, we use Dolev Strong [DS83] to implement authenticated broadcast and fast

25

Table 3: The total computation time (Total CT), maximum latency in LAN run-time (LAN) and WAN run-time (WAN) and
total communication (Total CC) of all parties for [CGMV17] and our protocols using Garble. The figures in brackets indicate
the increase for the worst case run of god5PC.

Circuit
Total CT(ms) LAN(ms) WAN(s) Total CC(MB)

[CGMV17] uAbort5PC fair5PC god5PC [CGMV17] uAbort5PC fair5PC god5PC [CGMV17] uAbort5PC fair5PC god5PC [CGMV17] uAbort5PC fair5PC god5PC

AES-128 96.81 100.53 100.9 101.06 (+ 3.15) 25.01 25.66 26.06 28.95 (+ 2.39) 2.54 2.74 2.82 3.7 (+ 1.1) 29.55 29.71 29.75 29.72 (+ 0.32)
SHA-256 1078.99 1080.31 1086.18 1090.47 (+ 33.02) 290.38 293.25 301.33 295.3 (+ 14.5) 4.78 4.79 4.81 5.6 (+ 1.51) 389.12 389.2 389.24 389.19 (+ 6.15)

elliptic-curve based schemes [BDL+12] to realize public-key signatures therein. These signatures have a one-time
setup to establish public-key, private-key for each party. We do the same for robust 3PC of [BJPR18] for empirical
purposes.

When instantiated with DS broadcast, the round complexity for honest run of GOD is 12 (in the presence
of 4 broadcasts) and the shown WAN overhead in Table 2 over [CGMV17] captures this inflation in rounds.
For the sake of implementation of all protocols (including [CGMV17] for fair comparison), we have adopted
parallelization wherever possible. Next, if we observe god5PC, Table 2 indicates that the pairwise communication
(CC) of god5PC protocol is almost on par with that of [CGMV17] in Table 1 (and less than fair5PC). This is
because, the honest run of our god5PC is almost same as [CGMV17] except for the input commit routine and the
use of broadcast. The input commit routine can be parallelized with the process of garbling to minimize number of
interactions. This implies that the majority overhead is mainly due to the use of broadcast. The implementation of
DS broadcast protocol is done by first setting up public-key, private key pair for each party involved. Each message
sent by the broadcast sender is then agreed upon by the parties by running 3 (t+1) rounds. If multiple independent
broadcasts exist in one round, they are run parallelly. Also, any private communication that can be sent along with
the broadcast data is also parallelized for improved round complexity.

The broadcast communication is kept minimal and independent of the circuit, input and output size. As a result,
the total data to be broadcasted constitutes only 1.73 KB of the total communication. In the honest run, when the
adversary does not strike, the overall overhead amounts to a value of at most 1.2 s in WAN over [CGMV17]. The
worst case run in god5PC occurs when the adversary behaves honestly throughout but only strikes in the final
broadcast of Y and a 3PC instance is run from that point. In this case, the overall WAN overhead is at most
2.5 s over [CGMV17]. This overhead is justified considering the strength of security that the protocol offers when
compared to [CGMV17]. Also, the overheads in LAN and communication are quite reasonable.

In the fair5PC, the higher overhead of 0.2 MB than honest run of god5PC is the result of commitments on
output wire masks and circulation of Y and proof of origin of Y in the output phase as explained above. Also,
fair5PC protocol involves 3 sequential rounds for output phase compared to single communication of Y by P5 in
[CGMV17] and in god5PC. Note that in the LAN setting, the RTT is of the order of microseconds for one packet
send. Our observations show that, in the LAN setting, the RTT sensitively scales with the communication size
whereas in WAN, the RTT hardly varies for small increase in communication. For instance, we have noted that,
in LAN, the average RTT for 1 KB, 8 KB, 20 KB, 80 KB is 280µs, 391µs, 832µs, 1400µs respectively, whereas in
WAN the RTT for these communication sizes does not vary. This implies that two transfers of 1 KB data consumes
less time than a single transfer of 20 KB data in LAN. All the above reasons collectively justify the slight difference
in the LAN time. Having said that, we believe that WAN being a better comparison measure in terms of both
communication data and round complexity, aptly depicts the overhead of all our protocols over [CGMV17].

Table 3 provides a unified view of the overall maximum latency in terms of each parameter and total commu-
nication of all protocols implemented with Garble. The bracketed values indicate the additional overhead involved
in the worst case run of god5PC. Note that the overhead for SHA-256 is higher compared to AES-128. This dif-
ference maps to the circuit dependent communication involving the inputs and output. Since SHA is a huge circuit
compared to AES, the increase is justified. However, the percentage overheads get better for SHA compared to
AES. Besides, the factor of additional communication overhead incurred by our protocols for SHA when compared
to AES is far less than the factor of increase in the total communication for SHA over AES in [CGMV17] thus
implying that the performance of our protocols improves with larger circuits. Further, based on our observation
and in [CGMV17], using AOT instead of OT extension eliminates the expensive public key operations needed even

26

for the seed OTs between every pair of garblers. Further, AOT needs just 1 round whereas OT extension needs
more. All these factors lead to the improvement of our Garble over [WRK17] which relies on large number of Tiny
OTs [NNOB12] to perform authentication.

References

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof, Kazuma
Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC for malicious adversaries
- breaking the 1 billion-gate per second barrier. In IEEE Symposium on Security and Privacy, pages
843–862, 2017.

[ABT19] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for the round-
complexity of malicious MPC. pages 504–531, 2019.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-optimal secure
multiparty computation with honest majority. In CRYPTO, pages 395–424, 2018.

[ACGJ19] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two round information-
theoretic MPC with malicious security. In EUROCRYPT, 2019.

[ADMM14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure mul-
tiparty computations on bitcoin. In IEEE Symposium on Security and Privacy, pages 443–458, 2014.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In SIGSAC, pages 805–817,
2016.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
FHE. In EUROCRYPT, pages 483–501, 2012.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P. Jakobsen, Mikkel
Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I.
Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In FC, pages 325–343,
2009.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-
security signatures. Journal of Cryptographic Engineering, pages 77–89, 2012.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption
and multiparty computation. In EUROCRYPT, pages 169–188, 2011.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In CRYPTO, pages 663–680, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.

[BH07] Zuzana Beerliová-Trubíniová and Martin Hirt. Simple and efficient perfectly-secure asynchronous
MPC. In ASIACRYPT, pages 376–392, 2007.

[BH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear communication
complexity. In TCC, pages 213–230, 2008.

27

[BHKL18] Assi Barak, Martin Hirt, Lior Koskas, and Yehuda Lindell. An end-to-end system for large scale p2p
mpc-as-a-service and low-bandwidth mpc for weak participants. CCS ’18, pages 695–712, 2018.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In CCS,
pages 784–796, 2012.

[BJMS18] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC: laziness
leads to GOD. IACR Cryptology ePrint Archive, 2018:580, 2018.

[BJPR18] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. Fast secure computation for small popula-
tion over the internet. CCS ’18, pages 677–694, 2018.

[BK14] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In CRYPTO, pages
421–439, 2014.

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash function.
In Matthew Robshaw, editor, Fast Software Encryption, pages 328–340, 2006.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty com-
putation for the internet. In CCS, pages 578–590, 2016.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving
computations. In ESORICS, pages 192–206, 2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (ex-
tended abstract). In STOC, pages 503–513, 1990.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party computation for
financial data analysis - (short paper). In FC, pages 57–64, 2012.

[CCPS19] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh. ASTRA: High-throughput 3PC over Rings
with Application to Secure Prediction. In IACR Cryptology ePrint Archive, 2019.

[CDG87] David Chaum, Ivan Damgård, and Jeroen Graaf. Multiparty computations ensuring privacy of each
party’s input and correctness of the result. In CRYPTO, pages 87–119, 1987.

[CDI05] R. Cramer, I. Damgård, and Y. Ishai. Share Conversion, Pseudorandom Secret-Sharing and Applica-
tions to Secure Computation. In TCC, pages 342–362, 2005.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel
Nof. Fast large-scale honest-majority MPC for malicious adversaries. In CRYPTO, pages 34–64,
2018.

[CGJ+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian Miers. Fairness in
an unfair world: Fair multiparty computation from public bulletin boards. In CCS, pages 719–728,
2017.

[CGMV17] Nishanth Chandran, Juan A. Garay, Payman Mohassel, and Satyanarayana Vusirikala. Efficient,
constant-round and actively secure MPC: beyond the three-party case. In CCS, pages 277–294,
2017.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-malleable com-
mitment. In STOC, pages 141–150, 1998.

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multiparty
computation. In ASIACRYPT, pages 466–485, 2014.

28

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In STOC, pages 364–369, 1986.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudo-
random generator. In CRYPTO, pages 378–394, 2005.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520,
2006.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In CRYPTO, pages 572–590, 2007.

[DO10] Ivan Damgård and Claudio Orlandi. Multiparty computation for dishonest majority: From passive to
active security at low cost. In CRYPTO, pages 558–576, 2010.

[DOS18] Ivan Damgård, Claudio Orlandi, and Mark Simkin. Yet another compiler for active security or:
Efficient MPC over arbitrary rings. In CRYPTO, pages 799–829, 2018.

[DPSZ12a] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty Computation from Somewhat Homo-
morphic Encryption. In R. Safavi-Naini and R. Canetti, editors, CRYPTO, pages 643–662, 2012.

[DPSZ12b] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM J.
Comput., 1983.

[EOP+19] H. Eerikson, C. Orlandi, P. Pullonen, J. Puura, and M. Simkin. Use your brain! arithmetic 3pc for
any modulus with active security. IACR Cryptology ePrint Archive, 2019.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party
computation for malicious adversaries and an honest majority. In EUROCRYPT, pages 225–255,
2017.

[Gei07] Martin Geisler. Viff: Virtual ideal functionality framework. http://viff.dk, 2007.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multiparty com-
putation. In CRYPTO, 2002.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and guarantee of
output delivery. In CRYPTO, pages 63–82, 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random oracle
model and the ideal cipher model, revisited. In STOC, pages 89–98, 2011.

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure computation
with minimal interaction, revisited. In CRYPTO, pages 359–378, 2015.

[ISN89] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access struc-
ture. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 1989.

[LADM14] John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens. Application-scale secure
multiparty computation. In Programming Languages and Systems, pages 8–26, 2014.

29

http://viff.dk

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-
party computation combining BMR and SPDZ. In CRYPTO, pages 319–338, 2015.

[MR18] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine learning.
IACR Cryptology ePrint Archive, 2018:403, 2018.

[MRSV17] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. PICS: private image
classification with SVM. IACR Cryptology ePrint Archive, 2017:1190, 2017.

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party computation: The
garbled circuit approach. In CCS, pages 591–602, 2015.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new
approach to practical active-secure two-party computation. In CRYPTO, 2012.

[NV18] Peter Sebastian Nordholt and Meilof Veeningen. Minimising communication in honest-majority
MPC by batchwise multiplication verification. In ACNS, pages 321–339, 2018.

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party computation. In
CRYPTO, pages 425–458, 2018.

[PST17] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested execution secure pro-
cessors. In EUROCRYPT, pages 260–289, 2017.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest major-
ity (extended abstract). In STOC, pages 73–85, 1989.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions, implica-
tions, and separations for preimage resistance, second-preimage resistance, and collision resistance.
In FSE, pages 371–388, 2004.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. The Bell System Technical Journal,
28(4):656–715, 1949.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In
CCS, pages 39–56, 2017.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages
160–164, 1982.

A Functionalities and Security Model

The security of our protocols is proven based on the standard real/ideal world paradigm i.e. it is examined by
comparing the adversary’s behaviour in a real execution to that of an ideal execution considered to be secure by
definition (in presence of an incorruptible trusted third party (TTP)). In an ideal execution, each participating party
sends its input to the TTP over a perfectly secure channel, the TTP computes the function using these inputs and
sends respective output to each party. Informally, a protocol is said to be secure if an adversary’s behaviour in the
real protocol (where no TTP exists) can be simulated in the above described ideal computation.

30

Each honest party Pi (i ∈ [5]) sends its input xi to the functionality. Corrupted parties may send arbitrary inputs.
Input: On message (Input, xi) from a party Pi (i ∈ [5]), do the following: if (Input, ∗) message was already received
from Pi, then ignore. Else record x′i = xi internally. If x′i is outside of the domain for Pi, set x′i to be some predetermined
default value.
Output: Compute y = f(x′1, x

′
2, x
′
3, x
′
4, x
′
5) and send (Output, y) to party Pi for every i ∈ [5].

Figure 16: Ideal Functionality Fgod

Each honest party Pi (i ∈ [5]) sends its input xi to the functionality. Corrupted parties may send arbitrary inputs as
instructed by the adversary. When sending the inputs to the functionality, the adversary is allowed to send a special abort
command as well.
Input: On message (Input, xi) from Pi, do the following: if (Input, ∗) message was received from Pi, then ignore.
Otherwise record x′i = xi internally. If x′i is outside of the domain for Pi, consider x′i = abort.
Output: If there exists i ∈ [5] such that x′i = abort, send (Output,⊥) to all the parties. Else, send (Output, y) to party
Pi for every i ∈ [5], where y = f(x′1, x

′
2, x
′
3, x
′
4, x
′
5).

Figure 17: Ideal Functionality Ffair

Each honest party Pi (i ∈ [5]) sends its input xi to the functionality. Corrupted parties may send arbitrary inputs as
instructed by the adversary. When sending the inputs to the trusted party, the adversary is allowed to send a special abort
command as well.
Input: On message (Input, xi) from Pi, do the following: if (Input, ∗) message was received from Pi, then ignore.
Otherwise record x′i = xi internally. If x′i is outside of the domain for Pi, consider x′i = abort.
Output to the adversary: If there exists i ∈ [5] such that x′i = abort, send (Output,⊥) to all the parties. Else, send
(Output, y) to the adversary, where y = f(x′1, x

′
2, x
′
3, x
′
4, x
′
5).

Output to honest parties: Receive either continue or abort from the adversary. In case of continue, send y to all honest
parties. In case of abort send ⊥ to all honest parties.

Figure 18: Ideal Functionality FuAbort

B Primtives

B.1 Non-Interactive Commitment Scheme

We use Non-Interactive Commitment Scheme (NICOM) characterized by two PPT algorithms (Com, Open) and
are defined as:

– Com outputs commitment c and corresponding opening information o, given a security parameter κ, a common
public parameter pp, message x and random coins r.

– Open outputs the message x given κ, pp, a commitment c and corresponding opening information o.
The commitment scheme should satisfy the following properties:

– Correctness: For all values of public parameter pp, message x ∈ M and randomness r ∈ R, if (c, o) ←
Com(x; r) then Open(c, o) = x.

– Hiding: For all PPT adversaries A, all values of pp, and all x, x
′ ∈ M, the difference |Pr(c,o)←Com(x)[A(c) =

1]− Pr(c,o)←Com(x′)[A(c) = 1]| is negligible.

– Binding: A PPT adversary A outputs (c, o, o
′
) such that Open(c, o) 6= Open(c, o

′
) and ⊥ /∈ {Open(c, o),

Open(c, o
′
)} with negligible probability over uniform choice of pp and random coins of A.

Instantiations In the random oracle model, the commitment scheme is:

– Com(x; r) sets c = H(x||r), o = (x||r) where c, o refer to the commitment and opening respectively. The pp
can be empty.

31

– Open(c, o = (x||r)) returns x if H(o) = c and ⊥ otherwise.

For the purpose of all empirical results, the random oracle can be instantiated using a hash function. Alterna-
tively, based on one-way permutation, we present an instantiation of NICOM(Com, Open) used theoretically in
our protocols as: Let f : {0, 1}n → {0, 1}n be a one-way permutation and h : {0, 1}n → {0, 1} be a hard-core
predicate for f . Then the bit-commitment scheme for x is:

– Com(x, r) sets c = (f(r), x⊕ h(r)) where r ∈R {0, 1}n and o = (x||r).

– Open(c, o = (x||r)) returns x if c = (f(r), x⊕ h(r)), else ⊥.

We provide bit and string based instantiations for NICOM(Com,Open) [CGMV17] based on block ciphers
that are secure in the ideal cipher model [Sha49, HKT11, Bla06] that are used in our AOT protocols for efficiency.
The bit commitment scheme is as follows:

– Com(b, r) sets c = Fk(r) ⊕ r ⊕ bn where bn = ||i∈[n]b and F : {0, 1}n × {0, 1}n → {0, 1}n is a random
permutation parametrized by key k. Also, o = (r||b).

– Open(c, o = (r||b)) returns b if c = Fk(r)⊕ r ⊕ bn and ⊥ otherwise.

However, this bit commitment scheme is not secure for string commitments. Hence we describe the following
secure instantiation:

– Com(m, r) sets c = Fk(r) ⊕ r ⊕ Fk(m) ⊕ m s.t F : {0, 1}n × {0, 1}n → {0, 1}n is a random permutation
parametrized by key k and o = (r||m).

– Open(c, o = (r||m)) returns b if c = Fk(r)⊕ r ⊕ Fk(m)⊕m, else ⊥.

B.2 Equivocal Commitment Scheme

For the fair protocol, we use an Equivocal Non-Interactive Commitment Scheme (eNICOM) characterized by
four PPT algorithms (eCom, eOpen, eGen,Equiv). The algorithms eCom, eOpen are as defined in NICOM. The
algorithms eGen,Equiv are defined as:

– eGen(1κ) returns a public parameter and a corresponding trapdoor (epp, t). The parameter epp is used by both
eCom and eOpen and trapdoor t is used for equivocation.

– Equiv(c, o′, x, t) returns an o s.t x ← eOpen(epp, c, o) when invoked on commitment c, its opening o′, the
desired message x (to which equivocation is required) and the trapdoor t.

An eNICOM should satisfy the following properties:

– Correctness: For all pairs of public parameter and trapdoor, (epp, t) ← eGen(1κ), message x ∈ M and
randomness r ∈ R, if (c, o)← eCom(x; r) then eOpen(c, o) = x.

– Hiding: For all (epp, t)← eGen(1κ), all PPT adversaries A and all x, x′ ∈ M, the difference |Pr(c,o)←eCom(x)

[A(c, o) = 1]− Pr(c,o)←eCom(x),o←Equiv(c,x,t)A(c, o) = 1| is negligible

– Binding: For all (epp, t)← eGen(1κ), a PPT adversary A outputs (c, o, o
′
) s.t eOpen(c, o) 6= eOpen(c, o

′
) and

⊥ /∈ {eOpen(c, o), eOpen(c, o
′
)} with negligible probability.

Instantiation: We can use the equivocal bit commitment scheme of [CIO98] in the standard model, based on
Naor’s commitment scheme [Nao91] for bits. Let G : {0, 1}n → {0, 1}4n be a pseudorandom generator. The
commitment scheme for bit b is:

– eGen(1κ) sets (epp, t1, t2, t3, t4) = ((σ,G(r1),G(r2),G(r3),G(r4)), r1, r2, r3, r4), where σ = G(r1)⊕G(r2)⊕
G(r3)⊕ G(r4). t = ||i∈[4]ti is the trapdoor.

32

– eCom(x; r) sets c = G(s1)⊕G(s2) if x = 0, else c = G(s1)⊕G(s2)⊕ σ and sets o = (x||r) where r = s1||s2.

– eOpen(c, o = (x||r)) returns x if c = G(s1) ⊕ G(s2) ⊕ x · σ (where (·) denotes multiplication by a constant),
else returns ⊥.

– Equiv(c = G(r1) ⊕ G(r2),⊥, x, (t1, t2, t3, t4)) returns o = (x||r) where r = t1||t2 if x = 0, else r = t3||t4.
The entire trapdoor t = (t1, t2, t3, t4) is required for equivocation.

For empirical purposes, we rely on the random oracle based scheme presented before with the property of
equivocation and is realized using a hash function.

B.3 Collision Resistant Hash

Consider a hash function family H = K × L → Y . The hash function H is said to be collision resistant [RS04]
if for all probabilistic polynomial-time adversaries A, given the description of Hk where k ∈R K, there exists a
negligible function negl() such that Pr[(x1, x2) ← A(k) : (x1 6= x2) ∧ Hk(x1) = Hk(x2)] ≤ negl(κ), where
m = poly(κ) and x1, x2 ∈R {0, 1}m.

C Security Proof of fair5PC

We now outline the complete security proof of Theorem 4.3 that describes the security of the fair5PC protocol
relative to its ideal functionality in the standard security model.

Proof. We describe the simulator Sfair5PC for the following two cases: First, when two garblers say P1 and P2 are
corrupt. Second, when one garbler say P1 and the evaluator P5 are corrupt. The simulator acts on behalf of all
the honest parties in the execution. The corruption of any two garblers is symmetric to the case when P1, P2 are
corrupt and the corruption of any one garbler and evaluator corrupt is symmetric to the case of P1, P5 corrupt.

We briefly highlight the need for equivocal commitment scheme (eNICOM) for the shares of output masking
bits in our fair protocol as follows: The adversary can decide to abort the execution as late as when Y needs to be
sent (in the worst case). Consequently, this enforces the simulator to make this decision on behalf of the adversary
at the end of Round 5 when calling the functionality. Hence, the simulator needs a mechanism to simulate the
earlier rounds appropriately such as sending the GC and committing to the shares of the output masking bits,
without the knowledge of whether the execution will result in a valid output or not (with no information about the
output). The sending of distributed GC is handled as in any standard distributed garbling proof. To tackle the
commitment on shares of output masking bits, the simulator commits to dummy bits for the seed completely under
its control. At a later point if the execution results in invoking Ffair and obtaining y, the simulator equivocates the
commitments to desired share bits such that each output wire w decodes to correct yw. The trapdoor and public
parameter for our eNICOM scheme are derived from relevant seeds as described in the protocol.

We provide a high level view of the simulation in distributed garbling and evaluation for completeness. First,
in the case of corrupt P ∗1 , P

∗
2 , the evaluator is honest. Hence correctness is required from the DGC. The simulator

behaves as an honest Pi, i ∈ {3, 4} following the protocol steps and instructing the functionality to abort in case
of any cheating throughout the garbling since all seeds are known to the adversary. If no cheating is detected
throughout the DGC construction, then the GC is generated as per the Garble4 procedure. The inputs of corrupt
parties are extracted during the garbled input communication. The simulator sends abort to the functionality if the
GC partition sent by P ∗1 , P

∗
2 is not same as the one generated by honest parties.

Second, in the case of corrupt P ∗1 , P
∗
5 , the simulator knows the seeds held by the adversary. In addition the

simulator has complete control over the part of GC generated using seed s2. Since the simulator does not know
the output in advance, the masking bit share λ2w corresponding to output wires w cannot be set in advance. As a
result, a fake GC is constructed using s2 that always evaluates to the same output super-key for the extracted and
random inputs that are known to the simulator. If the evaluation goes through and Y is received on behalf of the
honest parties, then the simulator invokes the functionality to obtain y, aptly programs the masking bit share under

33

its control by setting λ2w = y ⊕ (⊕i∈[4], i 6= 2)λiw for each output wire, performs equivocation on the commitment
made for share λ2w and sends the corresponding decommitment to the corrupt parties thus completing simulation.
We describe the simulator steps in detail in Figures 19, 20.

S12fair5PC (P ∗1 , P ∗2 are corrupt)
Seed Distribution Phase (one-time):

– Receive sg, g ∈ [2] from P ∗g on behalf of both P3, P4. If the copies of sg received mismatch, then invoke Ffair with
(Input,⊥) on behalf of P ∗g and set y = ⊥.

– Sample random s3, s4 and send s3 to P ∗1 , P
∗
2 on behalf of P3 and s4 on behalf of P4 to P ∗1 , P

∗
2 .

Evaluator’s Input sharing Phase:
– Sample a random x52 ∈ {0, 1}` as input share of P5 and send x52 to P ∗2 on behalf of P5.

Proof Establishment Phase:
– Sample proof from the domain of hash function H and send H(proof) on behalf of P5 to P ∗1 , P

∗
2 .

– Send H(proof) on behalf of P3, P4 to P ∗g , g ∈ [2]. Also receive H(proof) from P ∗g on behalf of P3, P4. If the received
hash value from P ∗g does not match with the hash value H(proof) that was created originally on behalf of P5, then invoke
Ffair with (Input,⊥) on behalf of P ∗g and set y = ⊥.

Setup of public parameter for Equivocal Commitment.
– For eNICOM, receive eppjg, g ∈ [2], j ∈ Sg , eppgl, l ∈ [4] \ Sg from P ∗g on behalf of the honest parties. Also send
eppji, i ∈ {3, 4}, j ∈ Si, eppil, l ∈ [4] \ Si on behalf of Pi to each P ∗g . Compute eppα = ⊕j∈[4]eppαj , α ∈ [4] based
on the values received from P ∗g . If eppg does not match with the eppβ = ⊕j∈[4]eppβj computed on behalf of the honest
parties, then invoke Ffair with (Input,⊥) on behalf of P ∗g and set y = ⊥. Else forward eppi, i ∈ [4] to P ∗1 , P

∗
2 on behalf

of the honest parties.

Transfer of Equivocal Commitments.
– For each circuit output wire w, create equivocal commitments for masking bit shares as per the protocol. Send
{(eppj , cjw)}j∈Si on behalf of Pi, i ∈ {3, 4} to P ∗1 , P

∗
2 . Also, receive {(epplw, clw)}l∈Sg from P ∗g , g ∈ [2] on behalf

of the honest parties. For any output wire w, if the received (eppl, clw) from P ∗g , does not correspond to the one gener-
ated using sl, then invoke Ffair with (Input,⊥) on behalf of P ∗g and set y = ⊥.

Garbling, Masked input bit and Key Transfer Phase.
– For circuit input wires w corresponding to input xii ∈ [2] held by P ∗i , send λlw, l ∈ Sj on behalf of Pj , j ∈ {3, 4}

to P ∗i . Similarly, for input corresponding to honest Pj , receive λlw, l ∈ Si from P ∗i on behalf of Pj . Invoke Ffair with
(Input,⊥) on behalf of P ∗i and set y = ⊥ if λlw received from P ∗i corresponding to Pj’s share does not correspond to
the one generated using sl.

– Sample random bits b1, b2 for input wires w of honest Pi, i ∈ {3, 4} (including the shares of P5 that Pi should hold).
Send b1, b2 to P ∗1 , P

∗
2 respectively on behalf of Pi. For the masked input bw on wire w of P ∗j , j ∈ [2], perform the steps

as per the protocol to compute Kl, l ∈ [4] \ {j}.
– For every input wire w belonging to P5’s input share, where {kgw,0, k

g
w,1}g∈[4] denote the super-key derived from seeds

{sg}g∈[4], receive {cjw,b}b∈{0,1} sent by P ∗i , i ∈ [2]∩Sl on behalf of P5. If the commitment received for any w from P ∗i
does not match with the one originally created, then invoke Ffair with (Input,⊥) on behalf of P ∗i and set y = ⊥.

– For simulation of Round 1 of Garble4, it is necessary to ensure correctness of the circuit. Behave as honest Pl, l ∈ {3, 4}
using the seeds chosen in Round 1 and instruct the functionality to abort in case of any cheating detected on behalf of
honest Pl based on the messages sent by P ∗i , i ∈ [2]. If an instance of F4AOT returns ⊥ (due to inconsistent messages
from P ∗i , i ∈ [2]), then invoke Ffair with (Input,⊥) on behalf of P ∗i and set y = ⊥.

– For simulation of Round 2 of Garble4, behave as honest Pl, l ∈ {3, 4}. If an instance of F4AOT returns ⊥ (due to
inconsistent messages from P ∗i , i ∈ [2]) or i ∈ Sj for some j ∈ [4] sends different GCj , then invoke Ffair with
(Input,⊥) on behalf of P ∗i and set y = ⊥. If there is no abort, then the garble circuit (described in ??) will be the output
of honest parties.

– Input xi of P ∗i , i ∈ [2] is extracted by unmasking λw from bw = xi ⊕ λw (sent to P5) for each wire w corresponding to
the input of P ∗i . Invoke Ffair with (Input, x1), (Input, x2) to get the output y.

Evaluation and Output Phase.
– Compute Y such that for all output wires w, each key in Y maps to (yw ⊕ λw). Send (Y, proof) to P ∗i , i ∈ [2] on

behalf of P5.
– Send (Y, proof, ojw), j ∈ Sl for all output wires w on behalf of Pl, l ∈ {3, 4} to P ∗i , i ∈ [2]. Also, receive the openings

sent by P ∗g similarly. This completes the simulation.

34

Figure 19: Simulator S12fair5PC for fair5PC with actively corrupt P ∗1 , P
∗
2

The hybrid arguments are as follows:
Security against corrupt P ∗1 , P

∗
2 : We now argue that IDEALFfair,S12fair5PC

c
≈ REALfair5PC,A when an adversary A

corrupts P1, P2. The views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALfair5PC,A.

– HYB1: Same as HYB0 except that P5 aborts if any decommitment for {kgw,0, k
g
w,1}g∈[4] corresponding to a

committed share x52 opens to a value other than what was originally committed and held by P ∗2 .

– HYB2: Same as HYB1 except that Y is computed as Y = {kgw,yw⊕λw}g∈[4] for each output wire w instead of
running the Evaluation Phase of garbling.

– HYB3: Same as HYB2 except that Pi, i ∈ {3, 4} outputs ⊥ if distributed GC cannot be successfully evaluated by
P5.

HYB3 = IDEALFfair,S12fair5PC
.To sum up the proof, we show that each pair of hybrids is computationally indistinguish-

able as follows:

HYB0
c
≈ HYB1: The primary difference between the hybrids is that in HYB0, P5 aborts if the decommitments

sent by P2 corresponding to the share x52 output ⊥ whereas in HYB1, P5 aborts if the decommitments sent by P ∗2
open to any value other than what was originally committed. Since the commitment scheme Com is strong binding
, P2 could have decommitted successfully to a different valid input label than what was originally committed, only
with negligible probability.

HYB1
c
≈ HYB2: The only difference between the hybrids is that, in HYB2, Y is computed as Y = {kgw,yw⊕λw}g∈[4]

instead of running the Evaluation Phase of the garbling. The indistinguishability follows from the correctness of
the garbling scheme since Y computed using Y = {kgw,yw⊕λw}g∈[4] is equivalent to that computed using the stan-
dard Evaluation Phase of garbling.

HYB2
c
≈ HYB3: The only difference between the hybrids is that in HYB2, Pi, i ∈ {3, 4} can possibly output

y which is non-⊥ in case it receives a valid proof ′ such that H(proof ′) = H(proof) from P ∗1 or P ∗2 although P5

was unable to evaluate the GC successfully, whereas in HYB3, Pi outputs ⊥ in this case. Due to the collision
resistant property of the hash function, P ∗1 /P

∗
2 could have a proof ′ that can be valid pre-image of H(proof) only

with negligible probability.

S15fair5PC (P ∗1 , P ∗5 are corrupt)
Seed Distribution Phase (one-time):

– Receive s1 from P ∗1 on behalf of both P3, P4. If the copies of s1 received mismatch, then invoke Ffair with (Input,⊥)
on behalf of P ∗1 and set y = ⊥.

– Sample random s3, s4 and send s3 to P ∗1 on behalf of P3 and s4 on behalf of P4.

Evaluator’s Input sharing Phase:
– Receive x52, x53, x54 on behalf of P2, P3, P4 respectively. Compute x5 = ⊕j∈{2,3,4}x5j .

Proof Establishment Phase:
– Receive H(proof) on behalf of Pi, i ∈ {2, 3, 4} from P ∗5 . If the received copies of H(proof) are not consistent, then

invoke Ffair with (Input,⊥) on behalf of P ∗5 and set y = ⊥.
– Send H(proof) to P ∗1 on behalf of Pi. Also receive H(proof) from P ∗1 on behalf of Pi. If the copy of the hash value

sent by P ∗1 is not consistent from that sent by P ∗5 , then invoke Ffair with (Input,⊥) on behalf of P ∗1 and set y = ⊥.

Setup of public parameter for Equivocal Commitment.
– For eNICOM, receive eppj1, j ∈ S1, epp12 from P ∗1 on behalf of the honest parties. Also send eppji, i ∈ {2, 3, 4}, j ∈

35

Si, eppil, l ∈ [4] \ Si on behalf of Pi to each P ∗g , g ∈ {1, 5}. Compute eppl = ⊕j∈[4]epplj , l ∈ [4] based on the values
received from P ∗1 . If eppg does not match with the eppα = ⊕j∈[4]eppij , α ∈ [4] computed on behalf of the honest
parties, then invoke Ffair with (Input,⊥) on behalf of P ∗g and set y = ⊥. Else forward eppi, i ∈ [4] to P ∗1 , P

∗
5 on behalf

of the honest parties.

Transfer of Equivocal Commitments.
– For each circuit output wire w, create commitments for masking bit shares known to P ∗1 as per the protocol (for
λiw, i ∈ [4] \ {2}). Create a dummy commitment c2w for each λ2w. Send {(eppj , cjw)}j∈Sl on behalf of Pl, l ∈ {2, 3, 4}
to P ∗1 , P

∗
5 . Also, receive {(eppj , cjw)}j∈S1 from P ∗1 on behalf of the honest parties. If for any j, the received (eppj , cjw)

from P ∗1 , does not correspond to the one generated using sj , then invoke Ffair with (Input,⊥) on behalf of P ∗1 and set
y = ⊥.

Garbling, Masked input bit and Key Transfer Phase.
– For circuit input wires w corresponding to input x1 held by P ∗1 , send λlw, l ∈ Sj on behalf of Pj , j ∈ {2, 3, 4} to
P ∗1 . Similarly, for input corresponding to honest Pj , receive λlw, l ∈ S1 from P ∗1 on behalf of Pj . Invoke Ffair with
(Input,⊥) on behalf of P ∗1 and set y = ⊥ if λlw received from P ∗1 corresponding to Pj’s share does not correspond to
the one generated using S1.

– Sample random b1 for input wires w of honest Pi, i ∈ {2, 3, 4} (including the shares of P5 that Pi should hold). Send
b1 to P ∗1 respectively on behalf of Pi. For P ∗1 ’s input, perform the steps as per the protocol to compute Kl, l ∈ {2, 3, 4}.
Send Kl to P ∗5 on behalf of Pl. Extract P ∗1 ’s input x1 by XORing for each wire w as follows : xi = (b2⊕ b3⊕ b4)⊕ λw
(λw is known since all seeds are known).

– For every input wire w belonging to P5’s input share, where {kgw,0, k
g
w,1}g∈[4] denote the super-key derived from seeds

{sg}g∈[4], each Pl, l ∈ {3, 4} computes commitments on these as per the protocol steps for seeds s3, s4. For commitments
in (cjw,0, c

j
w,1) obtained using s2 that correspond to input labels, generate commitments to the committed shares as per

NICOM. Commit to dummy values for all other labels that are not input labels. Send {ciw,b}b∈{0,1},i∈Sα on behalf of
Pα, α ∈ {2, 3, 4} to P ∗5 .

– For simulation of Round 1 of Garble4 on behalf of honest Pl, l ∈ {2, 3, 4}, all the seeds are known. Additionally, s2 is
not known to P ∗1 , so the randomness and garble circuit generated using s2 is unknown to P ∗1 . Participate in the distributed
garbling as before but constructing a simulated GC with the help of s2 such that each ciphertext is encrypts the same
output key that represents the masked output which corresponds to the evaluation performed using the extracted inputs
of the adversary and the random inputs chosen during simulation. Simulate each instance of F4AOT by acting as honest
party. If a F4AOT instance returns ⊥ (due to inconsistent messages from P ∗1), then invoke Ffair with (Input,⊥) on behalf
of P ∗1 and set y = ⊥.

– For simulation of Round 2 of Garble4 on behalf of honest Pl, l ∈ {2, 3, 4}, participate in the distributed garbling as
described before in round 1 (same strategy as described in [CGMV17]). If an instance of F4AOT returns ⊥ (due to
inconsistent messages from P ∗1), then invoke Ffair with (Input,⊥) on behalf of P ∗1 and set y = ⊥. If there is no abort,
then the garble circuit (described in Fig ??) will be the output of honest parties.

Evaluation and Output Phase.
– Receive (Y, proof) from P ∗5 on behalf of Pj , j ∈ {2, 3, 4}.
– If received (Y, proof) on behalf of Pl, l ∈ {2, 3, 4} from P ∗5 is such that Y is same as the output label created in the

generation of simulated GC, then invoke Ffair with (Input, x1), (Input, x5) to get the output y and for all output wires
w, set λ2w = ((y ⊕ λw) ⊕ λjw)j∈S1 , send (Y, proof, ojw), j ∈ Sl on behalf of Pl to P ∗1 and (ojw)j∈Sl to P ∗5 where
o2w = Equiv(c2w, o

′2
w , λ

2
w, t) where t is the trapdoor for the commitment c2w.

– Else if, received (Y, proof, cjw), j ∈ S1 on behalf of Pl, l ∈ {2, 3, 4} from P ∗1 (and not from P ∗5), perform checks as per
the protocol. If valid, then invoke Ffair with (Input, x1), (Input, x5) and obtain the output y. Send (ciw, c

j
w), i ∈ Sl, j ∈

S1 on behalf of Pl to P ∗5 where o2w = Equiv(c2w, o
′2
w , λ

2
w, t) where t is the trapdoor for the commitment c2w.

Figure 20: Simulator S15fair5PC for fair5PC with actively corrupt P ∗1 , P
∗
5

Security against corrupt P ∗1 , P
∗
5 : We now argue that IDEALFfair,S15fair5PC

c
≈ REALfair5PC,A when an adversary A

corrupts P1, P5. The views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALfair5PC,A.

– HYB1: Same as HYB0 except that some of the commitments of input wire labels sent by P2, P3, P4 wrt seed s2,
which will not be opened are replaced with commitments of dummy values. These commitments correspond
to the labels that do not correspond to any input share.

36

– HYB2: Same as HYB1 except that the GC is created as simulated one with the knowledge of s2.

– HYB3: Same as HYB2 except that,
• HYB3.1: When the execution results in abort, the commitment to λ2w for each output wire w is created

for a dummy value.
• HYB3.2: When the execution results in output y, the commitment c2w for each output wire w is created for

a dummy value and later equivocated to λ2w using o2w computed via where o2w = Equiv(c2w, o
′2
w , λ

2
w, t)

where t is the trapdoor for the commitment c2w.

– HYB4: Same as HYB3 except that that the protocol results in abort if the received Y does not correspond to the
Y resulting from the simulated GC.

HYB4 = IDEALFfair,S15fair5PC
. To conclude the proof we show that every consecutive pair of hybrids is computa-

tionally indistinguishable as follows:

HYB0
c
≈ HYB1: The only difference between the hybrids is that some of the commitments of the input labels in

HYB0 corresponding to P5’s input shares that will not be opened are replaced with commitments of dummy values
in HYB1. The indistinguishability follows via reduction to the hiding property of Com.

HYB1
c
≈ HYB2: The only difference between the hybrids is that in HYB2, the GC is constructed as a simulated

one using the seed s2 instead of a real GC. More concretely, In HYB1, Rounds 1, 2 are run as per Garble4 procedure,
which gives ||g∈[4]GCg. In HYB2, it is generated as a simulated circuit such that it always evaluates to the same Y.
Indistinguishability follows from the reduction to the security of distributed garbling and in turn the double-keyed
PRF F property.

HYB2
c
≈ HYB3.1: The difference between the hybrids is that the commitment to λ2w for each output wire w,

is created for a dummy value in HYB3.1. The indistinguishability follows via reduction to the hiding property of
eCom.

HYB2
c
≈ HYB3.2: The difference between the hybrids is that in HYB3.2, commitment to λ2w for each output wire

w, is created for a dummy value and later equivocated using o2w computed via where o2w = Equiv(c2w, o
′2
w , λ

2
w, t)

where t is the trapdoor for the commitment c2w. Indistinguishability follows via reduction to the hiding property of
eCom.

HYB3
c
≈ HYB4: The only difference between the hybrids is that, in HYB3, the protocol aborts if for some output

wire w and index j ∈ Sg, kjw,bw of the received Y does not match with either (kjw,0, k
j
w,1) or the keys {kjw,bw}j∈Sg

in Y do not map to the same bw whereas in HYB4, the protocol results in abort if the received Y does not match
the one created with simulated GC. By security of the garbling scheme, P5 could have forged such a Y only with
negligible probability.

D Security Proof of uAbort5PC

Proof. We present the proof of Theorem 5.3 relative to its ideal functionality FuAbort (Figure ??). We only outline
the sketch of the proof, since it is very similar to the security proof of Theorem 4.3, explained in detail in Section C.

We consider two corruption cases: First, when two garblers P1, P2 are corrupt and second, when one garbler
P1 and the evaluator P5 are corrupt. The cases of any two corrupt garblers and one garbler one evaluator corrupt
are analogous to the first and second case respectively. The simulator, S12uAbort5PC is described for the first case of
corruption as follows: When P1, P2 are corrupt, S12uAbort5PC acts on behalf of the honest parties. To begin with,
S12uAbort5PC receives si, i ∈ [2] from P ∗i on behalf of P3, P4. If the copies of si received mismatch, then S12uAbort5PC
invokes the functionality FuAbort on behalf of P ∗i with input ⊥. Else, it samples sj , j ∈ {3, 4} and sends sj to
P ∗1 , P

∗
2 on behalf of Pj . A random x52 is also sent by S12uAbort5PC on behalf of P5 to P ∗2 . S12uAbort5PC behaves

according to the protocol steps in the masked input bit and Key Transfer Phase. The inputs of corrupt parties

37

are extracted similar to our fair protocol. For garbling, since P1, P2 are corrupt, correctness must be ensured.
S12uAbort5PC behaves as an honest Pi, i ∈ {3, 4} instructing the functionality to abort in case of any cheating during
garbling since all seeds are known to the adversary. If no cheating occurs in the GC construction, then a GC
is generated as per the Garble procedure. If transfer of keys and masked inputs proceed without any adversarial
action, S12uAbort5PC then sends x1, x2 to FuAbort to obtain y which is the output of GC evaluation. S12uAbort5PC then
computes Y such that for all output wires w, each key in Y maps to (yw ⊕ λw). S12uAbort5PC sends continue to
FuAbort and sends (Y, proof5) on behalf of P5 and send (Y, proof5, proofg) on behalf of every honest garbler Pg
in the next round to complete the execution.

For the case of a corrupt garbler P1 and the evaluator P5, we describe the simulator, S15uAbort5PC as follows:
To begin with, S15uAbort5PC receives s1 from P ∗1 on behalf of P3, P4. If the copies of s1 received mismatch, then
S15uAbort5PC invokes the functionalityFuAbort on behalf of P ∗1 with input⊥. Else, it samples sj , j ∈ {3, 4} and sends
sj to P ∗1 on behalf of Pj . S15uAbort5PC has the freedom to choose s2. S15uAbort5PC behaves according to the protocol
steps in the masked input bit and Key Transfer Phase. The input of P ∗5 is extracted using the shares disclosed
by her to the parties with indices in {2, 3, 4}. The input of P ∗1 is extracted in garbled input generation similar to
our fair protocol. S15uAbort5PC the invokes the functionality to obtain the output y. Construct a fake garbled circuit
using s2 and the knowledge of y that always evaluates to the same output super-key Y, which corresponds to the
evaluation performed using the extracted inputs of the adversary and the inputs of the honest parties. Consequently,
the evaluator evaluates the GC to obtain Y′ which is communicated to the garblers. If the labels in Y,Y′ differ,
then S15uAbort5PC instructs the functionality to abort. However, the probability this event is negligible since the
adversary can decode only one row of the CT for each gate corresponding to the seed not held by her. This makes
the distributions indistinguishable. Finally, if S15uAbort5PC receives a valid pair (Y, proof5) from P ∗5 on behalf of
honest Pi, i ∈ {2, 3, 4}, then S15uAbort5PC sends continue toFuAbort and sends (Y, proof5, proofi) to P ∗1 on behalf of
Pi. Else if valid (Y, proof5, proof1) is received from P ∗1 in round 2 of the output phase on behalf of honest Pi, then
S15uAbort5PC sends continue to FuAbort. Else, S15uAbort5PC sends abort to the FuAbort to complete the simulation.

E Security Proof of god5PC

In this section, we outline the complete security proof of Theorem 6.4 that describes the security of our god5PC
protocol relative to its ideal functionality in the standard security model.

Proof. We describe the simulator Sgod5PC for two cases which exhaustively cover the corruption scenarios: First,
when P1 and P2 are corrupt. Second, when P1 and P5 are corrupt. The corruption of any two garblers is symmetric
to the case when P1, P2 are corrupt and the corruption of any one garbler and evaluator is symmetric to the case
of P1, P5 corrupt. The simulator acts on behalf of all honest parties in the execution. For better understanding we
separate out the simulation for the subroutine inputGOD from the simulation of main protocol. In the inputGOD
routine, we outline the simulator for the case of corrupt P1, P2 describing inputGOD1 for P1’s input x1 and
inputGOD3 for honest party’s input x3. The simulation of inputGOD routine for the case of corrupt P1, P5 is
identical to the case of corrupt P1, P2. The inputs of corrupt parties are extracted in the inputGOD routine.

We give a high level view of the simulation of garbling and output computation as follows: First, in the case
of P ∗1 , P

∗
2 corrupt, the evaluator P5 is honest. Hence, in this case, correctness is required from the distributed GC.

The simulator behaves as an honest Pi, i ∈ {3, 4} by raising conflicts as per the protocol in case of any cheating
throughout the garbling phase, since all seeds are known to the adversary. If no cheating is detected throughout
the GC construction, then a GC is generated as per the Garble4 procedure. Else a 3PC instance is identified and
the simulator in turn invokes the simulator of 3PC guaranteed output delivery protocol to complete the simulation.
Second, in the case of P ∗1 , P

∗
5 corrupt, the simulator knows the seeds held by the adversary. In addition the

simulator has complete control over the part of GC generated using the seed s2. Since input extraction is done in
the inputGOD routine, the simulator can invoke the functionality to obtain y in advance at the time of garbling.
As a result with the knowledge of y, a fake garbled circuit is constructed by the simulator using s2 that always
evaluates to the same output keys forming the output super-key Y, which correspond to the evaluation performed
using the extracted inputs of the adversary and the inputs of the honest parties. The output masking bit share λ2w

38

for each output wire w is broadcasted after setting it to (y ⊕ (⊕i∈[4],i 6=2λ
i
w)) in the garbling phase itself since the

simulator knows y and all masking bit shares in advance. Finally, if Y is received from P ∗5 on behalf of honest
parties then the simulation terminates, else a 3PC instance is identified according to the protocol and the simulator
runs the simulator of the 3PC instance sub-routine to complete the simulation. (Since the simulator for 3PC is
already well-described in [BJPR18], we do not provide details of it).

We describe the simulator steps in detail for inputGOD() below in Figs 21.

S12inputGOD1
(for input x1)

R1 Receive the broadcast commitments {pp1, c1j , c′1j)}j∈6 on behalf of each Pl, l ∈ {3, 4, 5} and openings
{o1j , o′1j} from P ∗1 on behalf of Pl, l ∈ {3, 4, 5}, Pl /∈ Tj . For opening o13 corresponding to share x13 that is
common between P3, P4, accept a default value if o13 sent by P ∗1 and received on behalf of P3 and P4 are both in-
valid i.e., Open(pp1, c13, o13) = ⊥. Else, accept the opening whichever is valid. Similar steps are done for openings
o′13 and for shares common between P3, P5 and P4, P5 as well.

R2 Send openings corresponding to commitments c16, c15, c14 on behalf of P3, P4, P5 respectively to P ∗2 . Similarly,
receive openings o16, o15, o14 on behalf of P3, P4, P5 respectively from P ∗2 . For opening o16 of share x16 that is
common between P ∗2 , P3, accept a default value if o16 received on behalf of P3 from P ∗1 and sent by P ∗2 are both
invalid. Else, accept the opening received from either P ∗1 , P

∗
2 whichever is valid. Similar steps are done for opening

o′16 common between P ∗2 , P3 and openings common between P ∗2 , P4 (o15, o′15) and P ∗2 , P5 (o14, o′14). Compute
x1 = ⊕j∈[6]xij .

S12inputGOD3
(for input x3)

R1 On behalf of P3: Compute {pp3, c3j , c′3j} as commitments on randomly chosen x3j , r3j for j ∈ [6] such that for
l ∈ [2] it holds that P ∗l /∈ Tj . For remaining shares such that P ∗l ∈ Tj , compute commitments on dummy value.
Broadcast {c3j , c′3j}j∈6 on behalf of P3 and send openings {o3j , o′3j}j∈6,P∗l /∈Tj to P ∗l .

R2 Send openings o35, o34 (corresponding to commitments c35, c34) to P ∗1 and o33, o32 (corresponding to c33, c32) to
P ∗2 on behalf of P4 and P5 respectively. Similar steps are done for openings o′35, o

′
34 common between P ∗1 , P4 and

o′33, o
′
32 common between P ∗2 , P5.

Figure 21: Simulator S12inputGOD1
(for input x1) with actively corrupt P ∗1 , P

∗
2

The simulator steps for the main protocol are now presented in Figs 22, 23 respectively.

S12god5PC (P ∗1 , P ∗2 are corrupt)
Input and Seed Distribution Phase.

– Simulation of S12inputGODi
, i ∈ [5] instances for input xi. Invoke Fgod with (Input, x1), (Input, x2) on behalf of P ∗1 , P

∗
2

to obtain y.
– For simulation of seedGODg, g ∈ [2], receive (ppg, cg) from P ∗g on behalf of all honest parties. Receive og on behalf

of P3 and P4 from P ∗g . If a valid opening og is received on behalf of at least one of P3, P4, use the corresponding valid
opening to obtain sg . Else assume a default value for sg .

– For simulation of seedGODg, g ∈ {3, 4}, sample random sg and compute (cg, og) ← Com(ppg, sg). Broadcast
(ppg, cg) on behalf of Pg and send og on behalf of Pg to P ∗1 , P ∗2 .

Garbling Phase.
– For simulation of Round 1 of Garble4, it is necessary to ensure correctness of the circuit. Behave as honest Pg, g ∈
{3, 4} using the seeds chosen in Round 1. Simulate each instance of Π4AOTGOD by acting as an honest party. If a
Π4AOTGOD instance returns P3 (due to inconsistent messages from either P ∗1 or P ∗2), invoke Sgod3PC (Simulator for 3PC
[BJPR18]) and send the output y to all received from the simulation of god3PC on behalf of honest parties in P3 to
complete the simulation.

– For simulation of Round 2 of Garble4, behave as honest Pg, g ∈ {3, 4}. If a Π4AOTGOD instance returns P3 (due to
inconsistent messages from either P ∗1 or P ∗2) or P3 = P \{Pα, Pβ} is identified when (Pα, Pβ) with α, β ∈ Sj for some
j ∈ [4] broadcasts different GCj , invoke Sgod3PC and send the output y to all received from Sgod3PC on behalf of honest
parties in P3 to complete the simulation. If there is no conflict in the garbling phase, then the GC (described in Fig.??)
will be the output of honest parties.

Masked input bit and Key Transfer Phase.

39

– For i ∈ {3, 4} and j ∈ Si \ Sg , do as per the protocol: broadcast λjw for each input wire w belonging to P ∗g where
g ∈ [2] and λlw for each output wire w on behalf of Pi where l ∈ Si. Broadcast λβw on behalf of honest Pi for input wire
w belonging to honest Pg′ where g′ ∈ {3, 4} \ {i} and g′ /∈ Si. Also, receive on behalf of the honest Pi, λαw (for each
input wire w) where α /∈ Si and λlw (for each output wire w) from P ∗g , g ∈ [2] where l ∈ Sg . If for any α, l, the received
λαw/λ

l
w from P ∗g , does not correspond to the one generated using sg , then invoke Sgod3PC with P3 = P \ {P ∗g , Pβ},

where β ∈ Sg is the index of the party in conflict with P ∗g and send the output y received from Sgod3PC on behalf of
honest parties in P3 to complete the simulation.

– For each wire w corresponding to input xw = xij held by P ∗α, α ∈ [2]∩Xij , compute the masked input bw = xw ⊕ λw
as per the protocol and broadcast bw on behalf of Pl, l ∈ ({3, 4} ∩ Xij). Also receive bw from P ∗α on behalf of honest
parties. If the received bw for any w from P ∗α does not match with the one originally broadcasted by Pl, then invoke
Sgod3PC with P3 = P \ {P ∗α, Pl} and send the output y received from Sgod3PC on behalf of honest parties in P3 to
complete the simulation.

- For each wire w holding the input share xw = xij belonging to only honest parties, broadcast random bw on behalf of
the honest parties.

– For every input wire w, where {kgw,0, k
g
w,1}g∈[4] denote the super-key derived from seeds {sg}g∈[4], each Pl, l ∈ {3, 4}

computes commitments on these as per the protocol steps and broadcasts {cjw,b}b∈{0,1},j∈Sl on behalf of Pl. Also receive
on behalf of the honest parties, {cjw,b}b∈{0,1} sent by P ∗α, α ∈ [2] ∩ Sl. If the commitment received for any w from P ∗α
does not match with the one originally created on behalf of Pl, then invoke god3PC with P3 = P \ {P ∗α, Pl} and send
the output y received from Sgod3PC on behalf of honest parties in P3 to complete the simulation.

Evaluation and Output Phase.
– Compute Y such that for all output wires w, each key in Y maps to (yw ⊕ λw). Broadcast Y on behalf of P5.

Figure 22: Simulator S12god5PC for god5PC with actively corrupt P ∗1 , P
∗
2

The hybrid arguments are as follows:
Security against corrupt P ∗1 , P

∗
2 : We now argue that IDEALFgod,S12god5PC

c
≈ REALgod5PC,A when an adversary A

corrupts P1, P2. The views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALgod5PC,A.

– HYB1: Same as HYB0 except that when the execution does not result in P ∗1 , P
∗
2 getting access to the open-

ing of the commitment cij , i ∈ {3, 4, 5}, j ∈ [6] in the inputGODi, the commitment is replaced with the
commitment of a dummy value.

– HYB2: Same as HYB1 except that P5 raises a conflict to identify a 3PC instance if any decommitment for
{kgw,0, k

g
w,1}g∈[4] corresponding to a committed share not held by P5 opens to a value other than what was

originally committed and held by P ∗i , i ∈ [2].

– HYB3: Same as HYB3 except that Y is computed as Y = {kgw,yw⊕λw}g∈[4] for each output wire w instead of
running the Evaluation Phase of garbling.

– HYB4: Same as HYB3 except that in case of a 3PC instance elected, run Sgod3PC in place of the 3PC protocol
algorithm.

Note that HYB4 = IDEALFgod,S12god5PC
. Next, we show that each pair of hybrids is computationally indistinguishable

as follows:

HYB0
c
≈ HYB1: The only difference between the hybrids is that in HYB1, when the execution does not result in

P ∗1 , P
∗
2 getting access to the opening of commitments cij , i ∈ P12, j ∈ [6] in the inputGODi, the commitment is

replaced with the commitment of a dummy value. The indistinguishability follows from the hiding property of the
commitment scheme.

HYB1
c
≈ HYB2: The only difference between the hybrids is that in HYB1, P5 raises a conflict if the decommit-

ment for {kgw,0, k
g
w,1}g∈[4] corresponding to a committed share not held by P5 and sent by P ∗i , i ∈ [2] is invalid

40

(the decommitment is ⊥) whereas in HYB2, P5 raises a conflict to identify the 3PC instance if the decommitment
corresponding a committed share opens to a value other than what was originally committed and held by P ∗i . Since
the commitment scheme Com is binding for any pp, P ∗i could have successfully decommitted to a value than what
was originally committed with negligible probability. Hence, the hybrids are indistinguishable.

HYB2
c
≈ HYB3: The only difference between the hybrids is that, in HYB3, Y is computed as Y = {kgw,yw⊕λw}g∈[4]

instead of running the Evaluation Phase of the garbling. The indistinguishability follows from the correctness
of the garbling scheme since Y computed using the Evaluation Phase of garbling would also result in Y =
{kgw,yw⊕λw}g∈[4]

HYB3
c
≈ HYB4: The only difference between the hybrids is that, in HYB3, a real-world 3PC is run in case of

conflict whereas Sgod3PC is run in HYB4. Since, IDEALFgod,Sgod3PC
c
≈ REALgod3PC,A [BJPR18], indistinguishability

follows.
Security against corrupt P ∗1 , P

∗
5 : We now argue that IDEALFgod,S15god5PC

c
≈ REALgod5PC,A when an adversary A

corrupts P1, P5. The views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALgod5PC,A.

– HYB1: Same as HYB0 except that when the execution does not result in P ∗1 , P
∗
5 getting access to the opening of

the commitment cij , i ∈ {2, 3, 4}, j ∈ [6] in inputGODi, the commitment is replaced with the commitment
of a dummy value.

– HYB2: Same as HYB1 except that the commitment to seed s2 in seedGOD2 is replaced with the commitment on
dummy value.

– HYB3: Same as HYB2 except that some of the commitments of input keys sent by P2, P3, P4 wrt seed s2, which
will not be opened are replaced with commitments of dummy values. These commitments correspond to the
labels that do not correspond to any input share.

– HYB4: Same as HYB3 except that the GC is created as simulated one with the knowledge of s2 and output y
along with the share λ2w for each output wire w set to the value λ2w = y ⊕ (⊕i∈[4],i 6=2λ

i
w).

– HYB5: Same as HYB4 except that a 3PC instance is chosen as per the protocol if the received Y does not
correspond to the Y originally created by the simulated GC. Note that HYB5 = IDEALFgod,S15god5PC

.

– HYB6: Same as HYB5 except that in case of a 3PC instance elected, run Sgod3PC in place of the 3PC protocol
algorithm.

Next, we show that each pair of hybrids are computationally indistinguishable as follows:
HYB0

c
≈ HYB1: The only difference between the hybrids is that, in HYB1, when the execution does not result in

P ∗1 , P
∗
5 getting access to the opening of commitments cij , i ∈ {2, 3, 4}, j ∈ [6] in the inputGODi, the commitment

is replaced with the commitment of a dummy value. The indistinguishability follows from the hiding property of
the commitment scheme.

HYB1
c
≈ HYB2: The only difference between the hybrids is that, in HYB2, the commitment to the seed s2 is

replaced with the commitment on a dummy value. The indistinguishability follows from the hiding property of the
commitment scheme.

HYB2
c
≈ HYB3: The only difference between the hybrids is that, in HYB3, the commitments of input wire labels

wrt seed s2, which will not be opened are replaced with commitments on dummy values. The indistingushability
follows from the hiding property of the commitment scheme.

41

S15god5PC (P ∗1 , P ∗5 are corrupt)
Input and Seed Distribution Phase.

– Simulation of S15inputGODi
, i ∈ [5] instances for input xi. Invoke Fgod with (Input, x1), (Input, x5) on behalf of

P ∗1 , P
∗
5 to obtain y.

– For simulation of seedGOD1, receive (pp1, c1) from P ∗1 on behalf of all honest parties. Receive o1 on behalf of P3

and P4 from P ∗1 . If there exists a valid opening o1 received on behalf of at least one of P3, P4, use the corresponding
valid opening to obtain s1. Else assume a default value for s1.

– For simulation of seedGODg, g ∈ {3, 4}, sample random sg and compute (cg, og) ← Com(ppg, sg). Broadcast
(ppg, cg) on behalf of Pg and send og on behalf of Pg to P ∗1 . For seedGOD2, broadcast random commitment
(pp2, c2) on behalf of P2.

Garbling Phase.
– For simulation of Round 1 of Garble4 on behalf of honest Pl, l ∈ {2, 3, 4}, all the seeds are known. Additionally,
s2 is not known to P ∗1 , so the randomness and GC2 generated using s2 is unknown to P ∗1 . Use the y obtained from
the Fgod to compute λ2w = y ⊕ λ1w ⊕ λ3w ⊕ λ4w for each output wire w. Participate in the distributed garbling as
before but constructing a simulated GC with the help of s2 and with the knowledge of y such that each ciphertext
encrypts the same output key that represents the masked output which corresponds to the evaluation performed using
the extracted inputs of the adversary and the inputs of the honest parties. Simulate each instance of Π4AOTGOD by
acting as honest party. If a Π4AOTGOD instance returns P3 (due to inconsistent messages from P ∗1), invoke Sgod3PC
and send the output y received from Sgod3PC on behalf of honest parties in P3 to complete the simulation.

– For simulation of Round 2 of Garble4, compute the simulated garble circuit using s2 on behalf of Pl, l ∈ {2, 3, 4}.
If a Π4AOTGOD instance returns P3 (due to inconsistent messages from P ∗1) or P3 = P \{P ∗1 , Pβ} is identified when
(P ∗1 , Pβ) with 1, β ∈ Sj for some j ∈ [4] broadcasts different GCj , invoke Sgod3PC and send the output y received
from Sgod3PC on behalf of honest parties in P3 to complete the simulation. If there is no conflict in the garbling
phase, then the GC (described in Fig.??) will be the output of honest parties.

Masked input bit and Key Transfer Phase.
– For i ∈ {2, 3, 4} and j ∈ Si, do as per the protocol: broadcast λjw for each input wire w belonging to P ∗5 . For
j /∈ S1, broadcast λjw for each input wire w belonging to P ∗1 and λlw (for each output wire w) on behalf of Pi where
l ∈ Si. Broadcast λβw on behalf of honest Pi for input wire w belonging to honest Pg′ where g′ ∈ {2, 3, 4} \ {i}
and β /∈ Sg . Also, receive on behalf of the honest Pi, λαw (for each input wire w) where α /∈ Si and λlw (for each
output wire w) from P ∗1 where l ∈ S1. If for any α, l, the received λαw/λ

l
w from P ∗1 , does not correspond to the one

generated on behalf of the honest parties, then invoke Sgod3PC with P3 = P \ {Pg∗, Pβ}, with β ∈ Sg and send the
output y received from Sgod3PC on behalf of honest parties in P3 to complete the simulation.

– For each wire w corresponding to input xw = xij held by P ∗1 and two honest garblers, set the masked input
bw = xw ⊕ λw as per the protocol and broadcast bw on behalf of Pl, l ∈ ({2, 3, 4} ∩ Xij). Also receive bw from P ∗1
on behalf of honest parties. Also, for xw held by only honest parties, broadcast a random bw on behalf of all honest
parties. If the bw received for any w from P ∗1 does not match with the one created on behalf of honest Pl, then invoke
Sgod3PC with P3 = P \ {P ∗1 , Pl} and send the output y received from Sgod3PC on behalf of honest parties in P3 to
complete the simulation.

– For every input wire w, where {kgw,0, k
g
w,1}g∈[4] denote the super-keys derived from seeds {sg}g∈[4], on behalf of

each Pl, l ∈ {3, 4} compute commitments on these as per the protocol steps for all seeds except s2. For commitments
in (cjw,0, c

j
w,1) obtained using s2 that correspond to input keys, generate commitments to the shares as per NICOM.

Commit to dummy values for all other keys that are not input keys. Broadcast {ciw,b}b∈{0,1},i∈Sα on behalf of
Pα, α ∈ {2, 3, 4}. Also receive {cjw,b}b∈{0,1} sent by P ∗1 , j ∈ S1 on behalf of the honest parties. If the commitment
received for any w from P ∗1 does not match with the one originally created on behalf of honest Pβ , where β ∈ S1,
then invoke Sgod3PC with P3 = P\{P ∗1 , Pβ} and send the output y received from Sgod3PC on behalf of honest parties
in P3 to complete the simulation.

Evaluation and Output Phase.
– Receive Y from P ∗5 on behalf of Pg, g ∈ {2, 3, 4}. If received Y for some output wire w and index j ∈ Sg

does not match with the output super-key created in the generation of simulated GC, invoke Sgod3PC with P3 with
P3 = P \ {P ∗1 , P ∗5 } and send the output y received from Sgod3PC on behalf of honest parties in P3 to complete the
simulation.

Figure 23: Simulator S15god5PC for god5PC with actively corrupt P ∗1 , P
∗
5

42

HYB3
c
≈ HYB4: The only difference between the hybrids is that in HYB4, GC is constructed as a simulated

one using the seed s2 and the knowledge of output y instead of a real GC. More concretely, In HYB3, Rounds 1, 2
are run as per Garble4, which gives GC. In HYB4, it is generated as a simulated circuit and additionally, for each
output wire w, λ2w is set to λ2w = y⊕ (⊕i∈[4],i 6=2λ

i
w). Indistinguishability follows from reduction to the security of

distributed garbling which in turns relies on the the double-keyed PRF F.

HYB4
c
≈ HYB5: The only difference between the hybrids is that, in HYB4, a 3PC instance is identified if kjw,bw

of the received Y for some output wire w and index j ∈ Sg does not match with either (kjw,0, k
j
w,1) or the three

keys kjw,bw , j ∈ Sg in Y do not map to the same bw whereas in HYB5, a 3PC committee is identified if the received
Y does not match the one created using simulated GC. By security of the garbling scheme, P5 could have forged
such a Y only with negligibility probability.

HYB5
c
≈ HYB6: The only difference between the hybrids is that, in HYB5, a real-world 3PC is run in case of

conflict whereas Sgod3PC is run in HYB6. Since, IDEALFgod,Sgod3PC
c
≈ REALgod3PC,A [BJPR18], indistinguishability

follows.

F 3PC with GOD

In this section, we include the robust 3PC instantiation of [BJPR18] in Fig 24 for completeness. For every case
of conflict when a 3PC committee is chosen, the routine god3PC invokes the protocol in Fig 24 to compute the
output robustly while ensuring consistency of inputs committed in inputGOD routine. In the protocol g3PC, that
is assumed to run between the 3 parties P1, P2, P3, P1, P2 act as garblers and P3 is the evaluator. Yao’s garbled
circuit [Yao82] with security defined as per [BHR12] is used for garbling. The property of soft decoding used in
this protocol allows decoding of the garbled circuit output without the use of decoding information [MRZ15]. This
can be trivially achieved by appending the truth value to each output key.

Transition from 5PC to 3PC For better understanding, we describe how the transition from 5PC to 3PC takes
place with a diagram when a conflict is identified and a 3PC instance is chosen. In such a case, input consistency
must be maintained for 1) an xij that is held by the two garblers. 2) an xij that is held by one garbler, say Pα and
evaluator Pγ . The case when all the three parties hold xij is subsumed in one of the above cases. The most critical
case when xij is with only one of {Pα, Pβ, Pγ} which is further categorized into two cases depending on whether
3) the input share is held either only by the garbler or 4) the input share is held by the evaluator. For the purpose of
our explanation, we consider the case when a corrupt P5 does not broadcast Y and the garblers choose P1, P2, P3

to run the robust 3PC of [BJPR18]. Hence, we have α = 1, β = 2, γ = 3. We specifically consider the input
shares of input x1 of P1 to describe the first 3 cases. We use the share of x3 to describe case 4). For input x1, P1

holds all the shares (dealer), while P2 holds (x14, x15, x16) and P3 holds (x12, x13, x16). For input x3, P3 holds all
the shares (dealer) while P1 holds (x34, x35, x36) and P2 holds (x32, x33, x36).

In the Fig 25, pij denotes the permutation bit for input xij and thus the commitments on both input keys for
wire belonging to xij are sent in permuted order as per pij . mij denotes the XOR of xij and pij . Recall that
as per inputGODi, (cij , oij) denotes the commitment-opening pair for share xij ⊕ rij while (c′ij , o

′
ij) denotes

the commitment-opening pair for share rij and all the commitments are broadcast, while the openings are sent
privately. During the transition from 5PC to 3PC, for the shares of the form say x11 that are held by only one party,
P1 in the 3PC (the other two share holders are eliminated), the opening o11 (for share x11 ⊕ r11) is distributed to
say P2 while the opening o′11 (for share r11) is distributed to P3. Similar steps are done for the lone input share x31

held by P3 and all others held by only one party in 3PC.
Inside the 3PC instance, in case 1) x14 is held by both garblers and not by the evaluator P3. The garblers

broadcast m14 and send the opening O[m14] corresponding to the key K[x14]. If the copies of m14 match, then P3

uses a valid opening O[m14] (one of the two sent by the garblers) to get the key K[x14]. Else, the conflict resolution
steps in [BJPR18] are followed. In case 2), x12 is held by garbler P1 and evaluator P3. The garbler P1 sends O[x12]

43

Inputs: Party Pα has xα for α ∈ [3].
Common Inputs: The function C(x1, x2, x3, x4) that computes f(x1, x2, x3 ⊕ x4) where inputs, function output are
in {0, 1}` for ` ∈ poly(κ). P3 is the evaluator and (P1, P2) are the garblers.
Output: y = C(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4).
Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and authentic with the property of soft
decoding, a NICOM (Com,Open) and a PRG G.

Round 1: P1 chooses random s ∈R {0, 1}κ for G and sends s to P2. Besides,
– P3 picks x31, x32 ∈R {0, 1}` with x3 = x31 ⊕ x32. P3 samples pp for NICOM and generates (c31, o31) ←
Com(pp, x31), (c32, o32) ← Com(pp, x32), broadcasts {pp, c31, c32} and sends (x31, o31), (x32, o32) to P1, P2 re-
spectively. (This step is not done in our 3PC. as god3PC already does this step to ensure input consistency and
privacy).

Round 2: Pi(i ∈ [2]) broadcasts (conflict, P3) if Open(c3i, o3i) 6= x3i. Else, it does the following:
– Compute GC (C, e, d) ← Gb(1κ, C) with randomness from G(s). Assume {K0

α,K
1
α}α∈[`], {K0

`+α,K
1
`+α}α∈[`],

{K0
2`+α,K

1
2`+α}α∈[2`] refer to encoding information for the input of P1, P2 and shares of P3 respectively (w.l.o.g).

– Compute permutation strings p1, p2 ∈R {0, 1}` for garblers’ input wires, generate commitments on e using ran-
domness from G(s). For b ∈ {0, 1}, (cbα, o

b
α) ← Com(pp, e

pα1⊕b
α), (cb`+α, o

b
`+α) ← Com(pp, e

pα2⊕b
`+α) for α ∈ [`],

(cb2`+α, o
b
2`+α)← Com(pp, eb2`+α) for α ∈ [2`]. Broadcast Bi =

{
C, {cbα}α∈[4`],b∈{0,1}

}
.

– P1 computes m1 = x1 ⊕ p1 and sends to P3: the openings of the commitments corresponding to (x1, x31) i.e
{om

α
1

α , o
xα31
2`+α}α∈[`], m1. Similarly, P2 computes m2 = x2 ⊕ p2 and sends to P3: openings of the commitments

corresponding to (x2, x32) i.e {om
α
2

`+α, o
xα32
3`+α}α∈[`], m2.

Every party sets TTP as follows. If exactly one Pi(i ∈ [2]) broadcasts (conflict, P3) in Round 2, set TTP = P[2]\i.
If both raise conflict, set TTP = P1. If B1 6= B2, set TTP = P3.

Round 3: If TTP = ∅, P3 does the following:
– Assign Xα

1 = Open(pp, c
mα1
α , o

mα1
α) and Xα

31 = Open(pp, c
xα31
2`+α, o

xα31
2`+α) for α ∈ [`]. Broadcast (conflict, P1) if

Open results in ⊥
– Assign Xα

2 = Open(pp, c
mα2
`+α, o

mα2
`+α), Xα

32 = Open(pp, c
xα32
3`+α, o

xα32
3`+α) for α ∈ [`]. Broadcast (conflict, P2) if

Open results in ⊥
– Else, set X = X1|X2|X31|X32, run Y ← Ev(C,X) and y ← sDe(Y). Broadcast Y.

If P3 broadcasts (conflict, Pi), set TTP = P[2]\i. If TTP = ∅ and P3 broadcasts Y, Pi (i ∈ [2]) then do the
following: Execute y ← De(Y, d). If y = ⊥, set TTP = P1.

Round 4: If TTP 6= ∅: Pi (i ∈ [2]) sends xi and o3i (if valid) to TTP. P3 sends o31, o32 to TTP.

Round 5: TTP computes x3i = Open(c3i, o3i) using openings sent by P1, P2 (if available), else uses the openings
sent by P3. If valid opening is not received, a default value is used for shares of x3. Compute y = f(x1, x2, x31⊕x32)
and send y to others. Every party computes output as follows. If y = ⊥ and received y′ from TTP, set y = y′.

Figure 24: Protocol g3PC

to P3 who checks if O[x12] is valid. If so, P3 uses opening O[x12] to get the key K[x12]. Else, the conflict resolution
steps in [BJPR18] are followed. In case 3), x11 is held only by garbler P1. However the re-shares x11 ⊕ r11 and
r11 are held respectively by P2, P3 (which are both known to P1 due to inputGOD1). Now, P1 sends m11 (masked
bit wrt share x11 ⊕ r11) and O[m11],O[r11] to P3, while P2 sends m11 and O[m11] to P3. P3 now verifies if: the
copies of m11 sent by the garblers are the same, the opening O[r11] sent by P1 is valid. If so, P3 obtains the keys
K[x11 ⊕ r11] and K[r11] from the openings and XORs them to get K[x11]. If any of the checks fail, the conflict
resolution steps in [BJPR18] are followed. In Case 4), where the evaluator alone holds the share x31 is simpler
than case 3). However, the re-shares x31 ⊕ r31 and r31 are held respectively by P1, P2 (which are both known to
P3 due to inputGOD3). Now, P1 sends O[x31 ⊕ r31] to P3, while P2 sends O[r31] to P3. P3 now verifies if the
openings are valid. If so, P3 obtains the keys K[x31 ⊕ r31] and K[r31] from the openings and XORs them to get
K[x31].

Every input share belongs to one of the above described four cases and is handled in a similar way. If all the
input keys are obtained, P3 evaluates the Yao’s GC constructed by the garblers as per [BJPR18] and distributes

44

P1

P3

P2

Case 1: When both garblers hold the input share x14

o14, o’14 o14, o’14

x14
x14

m14,O[m14] m14,O[m14]

Check if the two m14 copies are the same. If so, use valid
O[m14] to obtain the key K[x14]. Else, follow the steps in [24].

o12, o’12

x12

O[x12]

x12

Check if x12 ⊕ p12 = m12 and O[m12] is valid. If so, use
O[m12] to obtain the key K[x12]. Else, follow the steps in
[24].

Case 2: When one P1 and P3 hold the input share x12

o12, o’12

Case 3: When only P1 holds the input share x11

o11, o’11 o11

x11, x11 ⊕ r11, r11 x11 ⊕ r11

m11, O[m11],
O[r11]

Check:
• If the two copies of m11 are the same.
• Check if O[r11] is valid.
If so, use valid O[m11], O[r11] to obtain K[x11 ⊕ r11], K[r11] respectively.
Compute K[x11] = K[x11 ⊕ r11] ⊕ K[r11]. If any of the steps fail, follow the
steps in [24].

o31

x31 ⊕ r31

O[x31 ⊕ r31]

x31, x31 ⊕ r31, r31

Check if O[x31 ⊕ r31], O[r31] is valid. If so, use O[x31 ⊕ r31], O[r31]
to obtain the key K[x31 ⊕ r31], K[r31] respectively. Compute K[x31]
= K[x31 ⊕ r31] ⊕ K[r31]. Else, follow the steps in [24].

Case 4: When only P3 holds the input share x31

r11, o’11

m11, O[m11]

o’31

r31

m31,O[m31]

o31, o’31

2

P1

P3

P2

P1

P3

P2 P1

P3

P2

Figure 25: Diagram showing the transition from 5PC to 3PC.

the output to the garblers. Finally, the 3PC communicates the output to all the parties in 5PC. This completes the
description.

45

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Distributed Garbling and More
	Seed Distribution (SD)
	Attested Oblivious Transfer (AOT)
	The semi-honest 4DG and Evaluation
	Distributed Garbling with AOT and Seed distribution
	Attested OT Instantiation
	Correctness and Security of 4DG

	5PC with Fairness
	The construction
	Properties
	n-party Extension of fair5PC

	5PC with Unanimous Abort
	The construction
	Properties
	n-party Extension of uAbort5PC

	5PC with Guaranteed Output Delivery (GOD)
	The Construction
	Properties

	Empirical Results
	Functionalities and Security Model
	Primtives
	Non-Interactive Commitment Scheme
	Equivocal Commitment Scheme
	Collision Resistant Hash

	Security Proof of fair5PC
	Security Proof of uAbort5PC
	Security Proof of god5PC
	3PC with GOD

