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Abstract: Blockchains such as the bitcoin blockchain depend on reaching a global consensus on the 

distributed ledger; therefore, they suffer from well-known scalability problems. This paper 

proposes an algorithm that avoids double-spending in the short term with just O(√n) messages 

instead of O(n); each node receiving money off-chain performs the due diligence of consulting k√n 

random nodes to check if any of them is aware of double-spending. Two nodes receiving double-

spent money will in this way consult at least one common node with very high probability, because 

of the ‘birthday paradox’, and any common honest node consulted will detect the fraud. Since the 

velocity of money in the real world has coins circulating through at most a few wallets per day, the 

size of the due diligence communication is small in the short term. This `k-root-n’ algorithm is 

suitable for an environment with synchronous or asynchronous (but with fairly low latency) 

communication and with Byzantine faults. The presented k-root-n algorithm should be practical to 

avoid double-spending with arbitrarily high probability, while feasibly coping with the throughput 

of all world commerce. It is resistant to Sybil attacks even beyond 50% of nodes. In the long term, 

the k-root-n algorithm is less efficient. Therefore, it should preferably be used as a complement, and 

not a replacement, to a global distributed ledger technology. 
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1. Introduction 

In blockchains such as bitcoin, all n nodes reach Nakamoto consensus [1] on each block of 

transactions, thereby creating a scalability problem [2–4] that notoriously limits the entire bitcoin 

network to a few transactions per second while consuming massive power [5]. Bitcoin is considered 

the first digital currency algorithm to solve the double-spending problem without the need for a 

trusted authority or central server. Additionally, it can cope with Byzantine faults (e.g., [6,7]) 

including a Sybil attack [8] of up to 50% dishonest nodes. However, it requires O(n) communication 

messages per transaction that limit its scale. 

Practically, bitcoin transactions suffer from a lag time of 15 min to several hours before being 

included in a block on the bitcoin blockchain [9] (this lag time has a complex dependency on how 

high a fee is offered by the transaction participants to the miner [10]). It then takes an hour longer to 

reach the generally desired threshold of 6-block confirmation [11]. Thus, before received bitcoin 

transfers are confirmed, and are safe to re-spend, there is typically a latency of several hours. 

At the time of writing, the typical fee paid to the miner for a single bitcoin transaction is tens of 

thousands of Satoshi or about US $0.50–$5 [9]; this is higher than many fiat currency domestic bank 

transaction fees. 

Therefore, efforts are being made to redesign the blockchain algorithm itself to ensure greater 

scalability, such as SCP [12], Algorand [13], bitcoin next generation (bitcoin-NG) [14], which all 

involve selecting a subset of users (committees or a rotating leader) in various configurations to 

reduce the number of messages required to reach consensus. In an alternative approach, a subset of 

nodes transacts with each other off-chain for a time, [15] as in the lightning network [16]. 

In this paper we consider an approach for protecting against double-spending [17] even if 

combined with a Sybil attack, without the need for a global ledger consensus. In this paper, we did 
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not consider other forms of attacks, such as eclipse attacks [18], routing attacks [19], attacks based on 

time advantage [20], incentive attacks [21] and quantum computing attacks [22]. Relevant surveys of 

other attack types are [23,24]. Some previous research on avoiding double-spending are [25,26]. This 

study focuses on the protection against the most central vulnerability of cryptocurrencies, namely 

double-spending covered up by a Sybil attack of malicious nodes. 

We propose a scalable low-latency algorithm that can run off-chain in parallel to a global ledger 

consensus mechanism, such as blockchain, protecting against double-spending in the short term. 

Thus, commerce may continue at a high pace even while the n nodes are working to reach consensus 

on transactions possibly with a lag of some hours from the transaction time. By applying this 

algorithm, we can accept a situation where consensus is achieved infrequently. Therefore, we can 

accept longer blockchain blocks that are created every hour, or every few hours, instead of bitcoin’s 

current average of 10 min, thereby increasing blockchain’s throughput of transactions per second 

[27], while compensating for longer latency with our complementary off-chain algorithm for 

preventing short-term double-spending. 

For example, each morning the nodes may reach a consensus on the valid transaction histories 

and wallet balances as of the preceding midnight Greenwich Mean Time, and they may do so 

asynchronously, reaching the consensus by, say, 6 a.m. the next morning. For example, in the 

particular case of bitcoin, by 6 a.m. all the transactions from the previous day would typically have 

achieved six-block verification and may be considered final. In this case, the role of our algorithm is 

to allow fast and safe transactions in the 30 hours say from Sunday midnight to Tuesday 6 a. m., when 

consensus is finalized for the ledger as of Monday midnight. Thus, in this example, our algorithm 

allows the configuration of the distributed ledger to be relaxed relative to the current configuration 

of bitcoin, to reach a consensus only every 24 h with a 6-hour lag. Therefore, this enables the 

transaction rate of the ledger to increase. Our proposed solution allows people to trade, particularly 

to safely pass on the received coins, with next to zero latency. 

The proposed algorithm, which is called ‘k√n’ or ‘k-root-n’, avoids double-spending in the short 

to medium term, while there is no global ledger consensus with an arbitrarily high probability of 

detecting double-spending, requiring just O(√n) messages per transaction. This is based on the 

assumption that specific money balances only circulate through O(constant) wallets in 24 h. This 

assumption is realistic since money circulates in the real economy with a velocity measured in one or 

two transactions per month [28], and bitcoin is already practically constrained by the transaction 

confirmation lag times to circulate a few times per day, and in practice rarely more than once or twice 

a day. 

In this algorithm, every transaction should eventually be on-chain. The initial transaction 

verification is off-chain, thereby allowing transactions to continue off-chain at high speed and waiting 

for the blockchain to catch up. The algorithm only involves O(√n) nodes and messages per 

transaction; we typically choose 10√n. 

2. Overview of k√n Random Double-Spending Detection 

Suppose there are n nodes, in which each node is also a wallet, connected to a network, and they 

have achieved consensus on the global distributed ledger (or at least on the balance of each node) 

using blockchain (or another algorithm) sometime recently, a time we shall call the global ledger 

consensus (in the example above that would occur at 6 a.m. daily for the previous midnight). 

For now, we assume that every wallet is also a node, which is usually online and available, and 

which also provides basic verification services to the network. The central idea is that any honest 

node that wants to verify whether the funds it receives have not been double-spent, will demand that 

the sender disclose the pedigree of the transferred funds, namely the sender’s transaction history 

since the last global ledger consensus. In case the sender depends on incoming funds to have 

sufficient balance to cover the current transaction, the receiver shall recursively demand disclosure 

of the source of funds, right back to funds that were available as of the last global ledger consensus. 

Since querying all the nodes to verify each transaction is prohibitively expensive, an honest node 

will perform its due diligence on the pedigree of each inbound transaction with only a random k√n 
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other nodes. The idea is that if two nodes query k√n random nodes, we will show that the probability 

of zero common queried nodes is extremely small for suitable k, even if a substantial proportion of 

nodes are failing or malicious. Therefore, if two honest nodes receive the same double-spent coins, 

they will almost certainly consult at least one common node and detect the fraud. This is the main 

concept of the algorithm, and it is based on the famous birthday paradox [29], where for example just 

40 people (which is of order 2√𝑛 where n is the number of possible birthdays, 366) have about a 90% 

chance that at least two of them have the same birthday. 

Each honest node provides verification services by keeping a history of all the transaction 

pedigrees it has been asked to verify. When two honest nodes query random nodes, any common 

queried honest node can immediately raise the alarm if the two receiving nodes are victims of a 

double-spending attempt, i.e., if they were given inconsistent transaction histories. 

Let k be a small number greater than 1. We will generally choose k = 10. Assume that we are in 

an environment with Byzantine faults, say about 10% of nodes may not respond at any time because 

of node or network failure; assume that about 50% of the nodes are malicious, we would then have 

an effective k = 4.5, i.e., k√n responsive, honest nodes. When each of two honest nodes receives funds 

and successfully each query 4.5√n responsive, honest nodes, this k = 4.5 is sufficient to ensure an 

expected value of more than twenty common, honest and responsive nodes. There is a probability of 

just approximately 10−9 of zero common, honest and responsive nodes. Therefore, the chances of 

getting away with double-spending are negligible, and there is a probability very close to 1 that any 

double-spending will be detected as soon as both branches of the spend reach honest nodes. 

The penalty for double-spending is at least forfeiting the wallet, so if each wallet has a minimum 

stake m of $1 and each transaction is limited to well under $1 billion, say to a maximum M = 

$1,000,000, then there is a negative expected return from any double-spending attempt, since there is 

a probability of just approximately 10−9 of not being caught. 

Now a dishonest node may not be checking its inbound transactions, and may be maliciously 

collaborating with other nodes. This is why the receiving honest node must check not only the 

transaction history of the immediate sender for forked history/double-spending, but also to 

recursively check any of the sender’s transactions, to the extent that the immediate sender depends 

on the sender’s sender (recursively) payment to have balance for covering the current transaction. 

This recursive tree of inbound transactions is called the pedigree of the transaction, that is the 

recursive list of transactions that the current transaction depends on. This recursion is why the k-root-

n algorithm is less efficient for long term use since the recursive pedigree of transactions may become 

large over a long time period. 

Figure 1 shows node C receiving a transaction from node B. Before accepting it, node C consults 

k√n random nodes and checks that they have not seen an alternative history for B, i.e., that B has not 

been double spending. For illustration only, k = 2, thus C consults two rows of the other nodes when 

randomly arranged in a square of √n x √n. The diagram shows that a proportion (one) of these nodes 

fails to respond (dashed thin arrow), and of some may be responding dishonestly (not shown). In 

case B did not have cover for this transaction as of the last global ledger consensus, and is relying on 

incoming funds from A, C will recursively validate the A→B transaction too with the same network 

nodes. 
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Figure 1. Simple illustration of node C receiving coin from B, and verifying with a random selection 

of 2√n nodes that the coin is not double spent; if B is relying on a previous payment from A, C verifies 

that transaction too with the same nodes. 

As a motivation for the O(√n) algorithm, we briefly explore how a 10√n algorithm scales by 

assuming n = 10 billion people (the projected world population for 2050 [30] and much more than 

bitcoin’s current 32 m wallets [31]). Suppose people are each transacting once per hour on the average, 

i.e., 24-hours per day (higher than the average rate of commerce). Each transaction involves messages 

to 10√n = 106 nodes. We will see that this gives a probability of just p ≈ 10−9 of getting away with 

double-spending, even if half of the nodes are fraudulent and 10% of the nodes are unavailable (i.e., 

4.5√n honest, responsive validating nodes). Thus, each transaction only burdens 1 out of 10,000 nodes, 

a performance improvement of four decimal orders of magnitude. With 10 billion transactions per 

hour globally, or 2.77 million transactions per second globally, each node should be involved in just 

278 transactions per second. This transaction throughput is feasible for a modern computer 

(especially in 2050). 

Thus, it seems practical that the algorithm could securely handle not only Visa/Mastercard 

volumes, but in fact all the commerce in today’s world and the foreseeable future. Visa’s volumes 

have been widely misquoted in bitcoin articles as 24,000 per second, although that appears to be 

mythical [32] with apparently more reliable sources estimating about 78.95 billion Visa transactions 

in the first half of 2018 [33] which averages 5000 per second, although peak transaction rates would 

presumably be higher. In any event, the current algorithm could feasibly handle transaction volumes 

orders of magnitude larger than Visa. 

Whilst the idea of depending on probability to secure commerce may at first seem strange, it is 

noteworthy that all commerce already depends on probability. For example, every credit card 

transaction is accepted based on a probabilistic evaluation that it is not fraudulent. 

We now introduce some definitions and formally present the k-root-n algorithm. 

3. Preliminaries 

Definition 1. A Transaction T = (x, t, S, R, ss, sr) is an agreement to transfer a balance from a 

sender node/wallet to a receiver node/wallet; the tuple comprises a positive monetary amount, that 

is a quantity of coin, x = x[T], a time stamp t = t[T], identifiers (public keys) of the sender user S = S[T] 

and the receiver user R = R[T]. Additionally, ss and sr are the respective digital signatures of S and R 

of the data tuple (x, t, S, R) evidencing their agreement to the transaction. 

A transaction T is only valid if the sender S had a balance (see next definition) of at least m + x 

immediately before the transaction, where m denotes the agreed minimum wallet balance. No sender 

or receiver may participate in two transactions with identical time stamps t.  

C B A 
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A potential transaction T is a transaction that has not yet been signed by the receiver, that is T = 

(x, t, S, R, ss). □ 

Definition 2. The Balance b[S, t1] of a user S at time t1, given that s/he had a balance of b0 at the 

time t0 of the last known global ledger consensus, is defined by 

𝑏0 + ∑ 𝑏[𝑇𝑖]𝑡0<𝑡[𝑇𝑖]<𝑡1,𝑅[𝑇𝑖]=𝑆 − ∑ 𝑏[𝑇𝑖]𝑡0<𝑡[𝑇𝑖]<𝑡1,𝑆[𝑇𝑖]=𝑆 , 

i.e., the last known global ledger consensus balances plus all received amounts, minus all spent 

amounts. □ 

Definition 3. The Lineage LIN[T] of a transaction or potential transaction T is the transaction 

history for the sender S[T] from the last known global ledger consensus at time t0 before t[T] and up 

to the time of T: 

𝐿𝐼𝑁[𝑇] = {𝑇𝑖  | 𝑡0 < 𝑡[𝑇𝑖] < 𝑡[𝑇] , 𝑆[𝑇𝑖] = 𝑆[𝑇] ⋁  𝑅[𝑇𝑖] = 𝑆[𝑇]}. □ 

These are the transactions relevant to establishing that the sender S has sufficient balance to 

afford T. However, not all of this history is necessarily required to establish sufficient balance, so for 

the sake of efficiency we now introduce a narrower transaction history. 

Definition 4. The Critical Lineage CLIN[T] of a transaction or potential transaction T is a set of 

transactions whose elements are a subset of LIN[T], comprising a minimal subset of inbound 

transactions critical to provide the balance that allows the sender to afford T. Formally, suppose that 

a sender S makes a payment of amount x in a transaction or potential transaction T; suppose that S’s 

last known global ledger consensus balance was b0. Suppose that the set of transactions in which S 

participated since the last global ledger consensus, LIN[T], includes inbound payments, T1...Tn, in 

descending order of amount (and ordered chronologically when amounts are equal) and outbound 

payments, U1...Um. Now, the critical inbound payments are the subset CLIN[T] = {T1...Tj} of inbound 

payments with j minimal such that 

𝑏 + ∑ 𝑇𝑖 
𝑗
𝑖 − ∑ 𝑈𝑖

𝑚
𝑖  ≥ 𝑥 +  𝑚. □ 

Thus, given that the sender has opening balance b and has spent the Ui, then, {T1...Tk} is a minimal 

subset of inbound transactions that are enough to provide balance coverage for this payment of x. 

Even if any of the other inbound payments, Tj+1...Tn, is derived directly or indirectly from fraud, the 

validation by the receiver of these critical inbound payments CLIN[T] of the sender is sufficient due 

diligence to ensure that the sender can afford x. Therefore, the minimum due diligence of the receiver 

R[T] is to check the following: (A) LIN[T] is complete and (B) the lineage of each transaction in 

CLIN[T] is complete. We now formalize this recursive set of transactions. 

Definition 5. The Pedigree PED[T] of a transaction or potential transaction T is the recursive 

closure of the set {T} under the CLIN operator. To compute this: 

• Start with the set of PED[T] = {T}. 

• For each T1 in PED[T], add any element of CLIN[T1] which is not already in PED[T] to PED[T]. 

Repeat until there is nothing to add. 

• PED[T] = PED[T]. □ 

It is also helpful to think of PED[T] as the nodes of a directed acyclic graph for each transaction, 

recursively showing the inbound transactions that the sender depended on to cover the transaction 

since the last known global ledger consensus. Figure 2 depicts a $10 transaction and its PED pedigree. 

Here, the opening balances are shown on the nodes, and we assume an agreed minimum node 

balance of $1. The $10 transaction depends on $2 that the sender already had (over and above the $1 

minimum) plus two received amounts of $4 each, of which one, in turn, depended on a received $3. 

The dashed lines represent other received amounts that are not critical to covering the transaction 

balances so are excluded from the PED. 
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Figure 2. An example of the PED[T] pedigree of a $10 transaction. 

Definition 6. A Disclosure DIS[T] for a potential transaction T is a communication from sender 

S[T] to receiver R[T] of PED[T] and LIN[T1] for every T1 in PED[T]. □ 

Definition 7. A Fraudulent Transaction T is any transaction wherein the sender S[T] provides 

the receiver with an incomplete LIN[T] in the disclosure. Additionally, a transaction is considered a 

fraudulent transaction in retrospect if, at some time between t[T] and the next global ledger 

consensus, the same sender S[T] is the sender of another transaction T1 and fails to disclose T when 

disclosing LIN[T1]. □ 

Thus, if Malory sends money to Alice and later double spends by sending the same money to 

Bob without disclosing to Bob the earlier payment made to Alice, then both payments are considered 

fraudulent. It is insufficient to cancel the second transaction; the one that was directly involved in the 

fraud, as Alice may be a co-conspirator of Malory, while Bob is the only victim. The cancellation of 

both transactions ensures there is a significant penalty for fraud. In theory, this does mean that Bob 

would lose out since he was a victim of double-spending in retrospect, but practically this 

arrangement ensures that double-spending has a negative expected value and is very unlikely to 

occur at all. 

Definition 8. An Invalid transaction is a transaction that is not fraudulent, but wherein the 

sender in retrospect did not have balance to cover the transaction after removing fraudulent 

transactions. Equivalently, these are transactions that turn out to have a fraudulent transaction in 

their pedigree. □ 

Definition 9. Due diligence for a potential transaction T is the process of receiver R[T] 

communicating the offered disclosure DIS[T] with a random selection of 𝑘√𝑛 (strictly ⌈𝑘√𝑛⌉ i.e., 

𝑘√𝑛 rounded up to the nearest integer) nodes, called the validating nodes, and confirming that none 

of them has seen an alternative version of LIN[T1] for any T1 in PED[T]. □ 

4. k-root-n Algorithm 

Suppose we have n nodes, each of which is also a wallet, connected to a network, and the nodes 

achieved consensus on the global ledger (or at least on the balance of each node) at some time t0 in 

the recent past; we call this time the global ledger consensus. Each global ledger consensus may 

become known at time t1 > t0, that is, with some latency after the time t0 which it relates to (e.g., in 

bitcoin, we may wait some hours for transactions to be included in a block and then for 6-block 

confirmation, before trusting that consensus was achieved). When we refer to the last global ledger 

consensus before time t, we mean the last one known before time t. 

The nodes transfer balances to each other by mutually digitally signing transactions. Based on 

the algorithm, each receiving honest node will perform the following steps before accepting and 

signing a potential transaction T. 

• Demand that the sender transmits the disclosure DIS[T], that includes the recursive list of 

dependent transactions PED[T] and the transaction history LIN[T1], for each T1 in PED[T].  

 

 

 

 

$10 

$3 
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• Validate that each transaction T1 in PED[T] was properly formed and signed by known nodes, 

and that each node had the balance to cover T1 based on the last known global ledger consensus 

balance of S[T1] plus the provided LIN[T1]. 

• Due diligence: Randomly choose ⌈𝑘√𝑛⌉ validating nodes on the network; send each (directly or 

by communicating through a cascading tree of nodes) the disclosure DIS[T], and ask the 

validating nodes to validate that they have not seen any alternative LIN history for any 

transaction in PED[T].  

• Any honest node receiving this due diligence request will validate that they have never 

previously seen a contradictory LIN history for any of the transactions T1 in PED[T]. If all is well, 

they will confirm their validation by digitally signing DIS[T] and transmitting that validation 

back to the receiver R[T]. Each validating node must then store every LIN transaction history 

they are asked to validate until the next achieved global ledger consensus, for future validation. 

• If any validating node has in fact seen an alternative LIN transaction history for some T1 in 

PED[T], it informs the receiver R[T] who rejects potential transaction T. Proof of fraud, which 

comprises two alternative histories LIN[T1] and LIN’[T1], should be broadcast to all nodes on the 

network by the validating node. The double-spending wallet S[T1] will be blacklisted and any 

balance forfeited. 

• The receiver R[T] should also broadcast the list of any of the other 𝑘√𝑛 validating nodes that 

failed to raise an alarm. That is, in case R[T1] or any other nodes had previously disclosed 

LIN’[T1] to one of these same validating nodes V, then this node should also be blacklisted with 

proof of validation fraud, that is proof that V validated the current potential transaction, even 

though the disclosure included LIN[T1] while the same V has previously validated a transaction 

disclosure that included a forked lineage LIN’ for the same sender. Thus, the nodes are also held 

accountable for providing validation services honestly. 

• If on the other hand all the validating nodes validate the transaction, the transaction is accepted 

and signed by the receiver. 

All nodes periodically take time to reach a global ledger consensus on the distributed ledger, 

e.g., using Nakamoto consensus. All recipients will request that the transactions they received should 

be added to the global ledger. In the case that a node was caught in a fraudulent transaction, it will 

be disqualified. All fraudulent transactions are iteratively removed from the ledger.  

After removing fraudulent transactions, invalid transactions must be iteratively identified until 

they are excluded from the global ledger. This process must be iterative since invalidating one 

transaction may cause the receiver to not have had cover for subsequent spends, thereby invalidating 

further transactions. 

In the k-root-n algorithm, there is a need for honest nodes to be online almost all the time. It is 

recommended to have a protocol wherein an honest node commits to a service level agreement (SLA) 

(e.g., [34,35]) of say u = 90% uptime, and a node that does not comply should receive warnings, and 

eventually financial penalties or disqualification, by consensus of all the nodes. A node that tries to 

consult k√n nodes and receives less than uk√n responses in a specified target latency time should pick 

other nodes and retry until it receives the target uk√n validations. 

5. An Example of Detection of Double-Spending Using the k-Root-n Algorithm 

Suppose during Monday morning the network reaches a consensus that as of Sunday midnight 

the balances on the distributed ledger after all valid transactions were added, were as follows: 

• Chuck (malicious)   $100 

• Mallory (malicious)   $100 

• Alice (honest)    $100 

• Bob (honest)    $100 
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The ledger also showed that there was a total of n valid nodes, each having at least a minimum 

stake of m = $1. 

We analyse the scenario where Chuck conspires with Mallory to double-spend, by transmitting 

the same money to Alice and also to Bob. To conceal the double-spend, the payment to Bob is passed 

by Chuck via co-conspirator Mallory.  

 

Figure 3. An example of transactions between two dishonest and two honest nodes, including 

attempted double-spending. 

As shown in Figure 3 transaction #1, Mallory sends $99 to Bob (in exchange for some goods, 

services or another currency). Mallory discloses her transaction history since the last consensus, 

which is empty, so she has $99 to spend. Bob first confirms that Mallory had $100 as of the last known 

global ledger consensus. Then, Bob, being honest, performs his due diligence and queries k√n 

network nodes (either directly or through a cascading tree of nodes) to confirm that none of them has 

seen Mallory signing any other transactions since consensus. They have not, and Bob, therefore, 

accepts the $99 and counter-signs the transaction, and submits it for eventual inclusion on the main 

distributed ledger. 

In transaction #2, Chuck sends $99 to Mallory. Mallory being malicious and complicit with 

Chuck tells no one about this transaction. They both sign the transaction and may or may not submit 

it to the main ledger. Chuck is sending this $99 through Mallory attempting to mask the double-

spending he is planning. He might potentially pass this money through further nodes. 

In transaction #3, Chuck now sends $99 to Alice in exchange for some value. This is a fraudulent 

double-spend. He informs Alice fraudulently that he has no other transactions since the last 

consensus. Alice being honest does her due diligence and queries k√n random validating nodes with 

the declared disclosure. They all inform Alice that they are unaware of any forked transaction 

lineages (since transaction #2 was not broadcast) for Chuck, and so Alice accepts the payment. Thus, 

the double-spend is not yet detected (until both instances of double-spent money reach honest nodes). 

In transaction #4, Mallory sends another $99 to Bob in exchange for some value. Bob being honest 

demands disclosure, and Mallory provides Bob with a copy of her transaction history since 

consensus, namely transaction #1 (-$99 that Bob already knows about) and transaction #2 (+$99), 

thereby evidencing Mallory’s balance of $100 allowing Mallory to spend $99. At this juncture, 

Chuck’s double-spent money has, via Mallory, reached the honest Bob. 

• Bob notices that Mallory’s $100 balance is contingent on the money from Chuck (so 

transaction #2 is in the critical lineage CLIN[#4] and therefore in PED[#4]). Thus, Bob 

validates transaction #2 by requiring Mallory to provide Chuck’s transaction history LIN[#2] 

as part of the pedigree. In this case no further recursion is required. 

• Chuck now does his due diligence and queries k√n random network nodes by asking them 

to validate the pedigree, which includes both LIN[#4] and LIN[#2].  

• Some of these nodes (k2 on average, but at least 1 with an extremely high probability) had 

previously been told about Chuck’s alternative transaction history of transaction #3 in which 

he gave $99 to Alice. This triggers the following actions. 

Chuck     Mallory           Alice          Bob 

#2: $99 

#4: $99 

Chuck’s double-spend not yet detected 

since Mallory complicit 

Double spend now detected by Bob. #4 is 

rejected; #3 & #2 are also marked as 

#1: $99 

#3: $99 



 9 of 16 

 

o The common validating nodes raise the alarm of double-spending, and broadcast a 

fraud-proof, namely that transaction #3 was not disclosed in LIN[#4]. The fraud-proof 

comprises two divergent transaction histories that were both signed by Chuck.  

o Bob rejects the fraudulent transaction.  

o Chuck has his wallets blacklisted and forfeits his $1 minimum stake. 

o The fraudulent transaction #2 from Chuck to Mallory (which was later hidden from 

Alice) is also rejected from the distributed ledger. Therefore, transaction #4 is invalid 

since it depends on a fraudulent transaction #2. 

o The network preferably should ask Mallory to show that she queried k√n validating 

nodes. When she fails to do so, Mallory may also be blacklisted and forfeit her balance. 

(This is optional extra protection which we might call no due diligence fraud, although 

this is not required for the algorithm to work and cannot be enforced in case Mallory 

had k√n co-conspirators and pretends to select them at random). 

o Alice and Bob compare notes and find all the ~k2 common validating nodes they had 

consulted in #3 and #4. If any common node failed to raise the alarm, then such node 

would also be blacklisted for validation fraud, with the fraud-proof showing that the 

node received two alternative lineages from Chuck and in both cases approved and 

digitally signed them. 

The next morning consensus is established again around the following end balances: 

• Chuck (malicious)  $100 (blacklisted with balance forfeited for double-spending) 

• Mallory (malicious)  $1 (may be blacklisted for failing to do due diligence on #2) 

• Alice (honest)   $100 

• Bob (honest)   $199 

Once this new global ledger consensus is known, future senders only need to provide shorter 

transaction histories back to the newer global ledger consensus. In this scenario, Alice who is honest 

has lost out as a victim of fraud, but the algorithm ensures that the fraudsters have significant losses 

with very high probability, meaning that such fraud is very unlikely. 

6. Algorithm Correctness 

Theorem 1. For any two honest nodes receiving and successfully validating payments with k√n random 

nodes each, there are an average of k2 common nodes queried by both honest nodes (any one of which can detect 

double-spending and raise the alarm). 

Proof of Theorem 1. The first honest node randomly queries k√n nodes representing a 

proportion k/√n of all n nodes. Therefore, when the second honest node queries k√n random nodes, a 

proportion of k√n * (k/√n) = k2 on average will overlap. □ 

This result is the key strength of the algorithm. Since both transactions involve only O(√n) 

validating nodes, but the expected value of the number of overlapping nodes is significant, thereby 

allowing any double-spending to be detected. 

However, since it only requires one common node to detect fraud, what we are really interested 

in is the probability of at least one node in common, versus the probability of zero common nodes, 

which we require to be very small. 

Lemma 2. The probability 𝒑𝟎(𝒏, 𝒓) of zero clashes (zero common nodes) between two random sets of r = 

k√n nodes satisfies 𝑝0(𝑛, 𝑟) < 𝑒−𝑘2
 with 𝑝0(𝑛, 𝑟) ≈ 𝑒−𝑘2

 for large n and 𝑟 ≪ 𝑛. 

Proof of Lemma 2. First, 𝑝0(𝑛, 𝑟) =
(𝑛−𝑟

𝑟 )

(𝑛
𝑟)

 since there are (
𝑛
𝑟

) ways for the second node to choose 

r validating nodes from n nodes, in which (
𝑛 − 𝑟

𝑟
) combinations involve zero of the same r validating 

nodes that the first node chose. Thus, 

𝑝0(𝑛, 𝑟) =
(𝑛−𝑟

𝑟 )

(𝑛
𝑟)

=
(𝑛−𝑟)!𝑟!(𝑛−𝑟)!

𝑟!(𝑛−2𝑟)!𝑛!
=

(𝑛−𝑟)…(𝑛−2𝑟+1)

𝑛…(𝑛−𝑟+1)
< (

𝑛−𝑟

𝑛
)

𝑟

= (1 −
𝑟

𝑛
)

𝑟

 with ≈ 

for 𝑟 ≪ 𝑛. 
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Now, let 𝑟 = 𝑘√𝑛. Then, we can approximate 

𝑝0(𝑛, 𝑟) = (1 −
𝑘√𝑛

𝑛
)

𝑘√𝑛

= ((1 −
𝑘

√𝑛
)

√𝑛

)

𝑘

<  (𝑒−𝑘)𝑘 = 𝑒−𝑘2
 

again with ≈ for the limit of large n □ 

Therefore, 𝑒−𝑘2
 is a safe upper bound for 𝑝0 and a good approximation in the realistic case of 

large n and small k. By substitution, we see that k = 4.5 gives p0 ~ 10-9 for all large n. For convenience, 

we typically recommend that k = 4.5. k must be large enough to allow for the level of Byzantine faults 

in the network. As we saw a typical practical value would be k = 10 to allow for 10% unavailable 

nodes and 50% fraudulent nodes, so we have k = 4.5 of honest available nodes. 10% unavailability 

seems generous for most modern networks, while 50% of fraudulent nodes is typically the maximum 

supported by the distributed ledger technology used for global ledger consensus. 

Appendix A shows values of 𝑝0(𝑛, 𝑟) and confirms that the approximation is excellent for large 

n and small k while providing a valid upper bound in all cases. 

Now, double-spending with co-conspirators is in itself of no value, as the co-conspirators will 

not provide any value in return for a payment that they know is fraudulent, and may be later rejected 

from the global ledger. Therefore, the algorithm depends on ensuring a negative expected value once 

double-spent money directly or indirectly arrives at honest nodes, and the algorithm must catch the 

fraud in time before honest nodes naively provide value in exchange for fraudulent payments. 

Theorem 3. Let M be the maximum allowed transaction amount, m be the minimum wallet balance, n be 

the number of valid nodes as of the last global ledger consensus, h be the proportion of nodes assumed to be 

honest and u be the proportion of uptime required from nodes. Assume that the network is designed such that  

𝑝0(𝑛, 𝑘√𝑛) <
𝑚

𝑀+𝑚
≈

𝑚

𝑀
 , 

where 𝑘 = 𝑘ℎ𝑢. Then, the expected return on any combination of double-spending to honest 

nodes is negative. 
Proof of Theorem 3. The maximum amount of a double-spend transaction is the maximum 

transaction amount M. By utilizing Lemma 2, the probability of two honest nodes not detecting a 

double-spend transaction is 𝑝0(𝑛, 𝑘√𝑛), in which case there is a gain of M. In the case that a double-

spend transaction is detected, the double-spender will at least forfeit the minimum wallet balance m. 

Therefore, the maximum expected gain is given by 

𝑝0(𝑛, 𝑘√𝑛)𝑀 − (1 − 𝑝0(𝑛, 𝑘√𝑛)) 𝑚. 

Given 𝑝0(𝑛, 𝑘√𝑛) <
𝑚

𝑀+𝑚
≈

𝑚

𝑀
 , this expected value is negative. □ 

As discussed, practical values are m = $1, M = $1,000,000 and k = 4.5 which give 𝑝0~10−9 ≪
𝑚

𝑀
. 

Assuming h = 50% honest nodes (the algorithm can handle even fewer than 50% honest nodes but the 

blockchain cannot) and u = 90% uptime, we need k = 10 to ensure a negative expected value of any 

double-spend. 

7. Algorithm Message Space Complexity 

The number of messages per transactions is k√n. These may be transmitted directly or cascaded 

through a tree of nodes to avoid the receiving node becoming a network bottleneck. 

Before discussing message size, we present some definitions. 

Definition 8. The critical inbound transaction size j[T] is the number of inbound transactions 

(since the last global ledger consensus) which a sender depends on for their balance when spending 

money in a transaction t, that is j[T] = |CLIN[T]|. □ 

An upper bound for j[T] is the total number of inbound transactions |LIN[T]| that the node has 

participated in since the last global ledger consensus. In most transactions, j will likely be zero. A 

person spending money most often already had the money that morning. However, in extreme cases, 

v may be large. For example, a grocery store may start the day with zero balance, accept hundreds of 



 11 of 16 

 

small transactions, and spend all their accumulated money on a large capital item or payroll that 

same evening. The large spend may depend on every one of the small inbound transactions. 

Definition 9. The critical velocity of money v[T] of a transaction T, is the maximum depth of 

the recursion in PED[T]. □ 

v[T] denotes the number of nodes that the specific balance of coin circulated through in the 

period between the last global ledger consensuses until it landed in transaction T, where it is only 

considered circulation if the nth transaction depended to cover its balance on the (n−1)th. v is 

generally assumed to be small, most often 1 and rarely more than 2. It is defined more narrowly than 

the economic concept of the velocity of money [36] that includes all circulation of currency whether 

critical to the spender’s balance or not. The velocity of fiat money tends to average a very modest rate 

of 4–11 per year [37], so v > 2 in a single day between global ledger consensuses would be rather rare. 

That is, in say 24 hours of real commerce, a specific banknote will rarely change hands more than 

once or twice and at most a few times. 

The number of transactions in the pedigree of a transaction T is the size of all transactions in the 

pedigree, so |PED[T]| = 𝑜 (𝑗
𝑣

) , where 𝑗  and 𝑣  denote the maximum values of j and v for 

transactions in the pedigree recursion, respectively. 

In the majority of the transactions, we expect v = 1 and occasionally v = 2 but rarely more, while 

j is most often 0 but may occasionally hit a few hundred. Thus, the message sizes in realistic commerce 

may typically be small; on rare occasions, we may have tens of thousands of transactions and require 

some megabytes of message size, which is still quite a practical message size for a modern network. 

However, if the algorithm is continuously used for days and weeks without a global ledger 

consensus, v may cause the message size to grow prohibitively large. 

8. Sybil Attack 

In a Sybil attack, a fraudster develops numerous fraudulent nodes hoping to reduce the chance 

of two honest nodes detecting the fraudster’s double-spending. We already saw that a 50% attack 

does not provide a positive expected value of double-spending with the recommended network 

parameters. What about a still larger attack? 

It is noteworthy that the global ledger consensus algorithm will typically fail with a 51% attack 

[38]; regardless we investigate whether such an attack could pay off in the k-root-n algorithm. 

Suppose again that m = $1, M = $106 and k = 10. Assume that there are initially n honest nodes, 

and the fraudster creates another n fraudulent nodes, to control 50%, and suppose further that 10% 

of the nodes are unavailable. We already saw that k = 4.5 and the fraudster has successfully reduced 

p0≈10−44 to p0≈10−9. But with M/m=106 there is no incentive to double-spend with p0≈10−9. 

In fact, the appendix shows that the fraudster needs to get approximately k < 3.5 to obtain p0>10−6 

and achieve a positive expected value for double-spending. Therefore, the criminal would need 

approximately 2n fraudulent nodes. However, the fraudster then faces another challenge. The loss 

from a single unsuccessful double-spending is not limited to forfeiting the double-spending wallet, 

but also the loss of all the nodes that failed to detect the double-spend and thereby committed a 

verification fraud. According to Theorem 1 the expected number of common nodes is (10 − 3.5)2 = 

42.25 nodes for an average loss of at least 42.25 m. Thus, even in this case, double-spending will have 

a negative expected value. 

Consider more generally that a fraudster creates (f − 1)n fraudulent nodes for a total of n = fn 

nodes. When a user consults k√n = k√(fn) nodes, a proportion of 1/f of the nodes or k√(n/f) nodes, will 

be genuine, this being a proportion k/√(fn) of all the n honest nodes. Two honest nodes will therefore 

have an expectation of consulting (𝑘/√𝑓𝑛)( 𝑘𝑛/√𝑓)  =  𝑘2/𝑓 common honest nodes, i.e., k = k/√f. 

They will also consult on average k2- k2/f dishonest nodes, and if the double-spending is caught these 

k2 (1-1/f) nodes will be disqualified. 

Therefore, the expected payoff from a single double-spending is p0(k, n)M ≈ 𝑒−𝑘2/𝑓𝑀, against 

the expected cost of (k2 (1 - 1/f) + 1)m ≈ k2m (the fraudulent nodes that fail to report the double-

spending, plus one for the double-spending wallet) for every unsuccessful transaction against a setup 

cost of (f − 1)nm. 
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Practically, an extremely large number of fraudulent nodes are required for the double-spending 

to payoff. Since k = 10, we can find numerically that we need approximately f > 10.5 for a positive 

payoff. Suppose f = 11; the fraudster has to create a massive 10n fake nodes to control ~91% of the 

network. This is done at a cost of $10nm, assuming $10m for n = 1 million. Now, k = k/√f ≈ 3 and p0 = 

𝑒−𝑘2 𝑓⁄ = 𝑒−9 ≈ 0.00012. Thus, a double-spending of M = $1,000,000 would have an expected value of 

$120, while the expected cost would be losing k2(1 − 1/f) + 1 = 91 nodes at a cost of 91m = $91, giving 

an expected profit of $29. After such an extreme attack, a single fraudulent transaction would have a 

positive expected value. 

However, even this strategy is doomed to fail. If n = 106, it costs $10 million to setup 10 million 

nodes. The user would have to repeat the double-spending three hundred thousand times to recoup 

the initial investment. However, they would lose 91 nodes, on average, each time they fail, meaning 

that they would lose the vast majority of the fraudulent nodes before recovering their investment, so 

the whole scheme is not feasible. 

Now, if we increase f further say f ≈ k2 = 100, then the fraud can pay off. p0 gets closer to 1 and 

the fraudster earns a payback that tends to M as f increases. However, this requires creating O(100n) 

nodes to dominate ~99% of the network. Various strategies that can help to defend against such an 

extreme attack include the following. 

• Reducing M/m: Reducing M can force honest people to have more wallets that increase n. 

• Increasing k. 

• Biasing the k√n random nodes towards the nodes that have been around for longer or have 

higher balances. 

• Monitoring for suspicious behaviour such as the creation a huge number of wallets with close 

to a minimum stake. 

In summary, with the recommended parameters of k, m and M, the algorithm is immune to 51% 

attacks and even 90% attacks, and in fact resilient to all but the most extreme of Sybil attacks.  

9. Variations on the Algorithm for Further Research 

9.1.  k-root-n without Global Ledger Consensus 

There would be an option of running k-root-n as the sole algorithm without any common 

consensus on a ledger. As time goes on, j increases, and the verifications become exponentially 

heavier. However, each node should cache everything it knows about other nodes’ verified 

transaction histories. Over time, if money circulates throughout the entire network, every node will 

end up verifying every transaction at some time or another just once with k√n other nodes, creating 

in the long term a complexity of kn√n per transaction, that seems unattractive. However, there is room 

for optimizations that could make this approach of standalone k-root-n feasible. 

9.2.  Nodes Versus Wallets 

The assumption so far is that every wallet is a node, and the provision of node verification 

services is part of the cost of being a wallet. This may be feasible as we rapidly move to a world where 

all devices are online almost all the time, but it could also be a limitation. 

There could be an alternative variation of the algorithm in which not every wallet is a node. This 

may be helpful since people may want their wallets to be offline or to be stored on a machine with 

limited processing power, bandwidth or memory. In this scenario, nodes may be paid a fee to provide 

verification services. Moreover, the nodes could be the same machines as the nodes of the underlying 

blockchain. Further research is required to formally define such a network. 

9.3.  Forced Validation  

An alternative idea may be considered where even dishonest nodes are forced to consult O(√n) 

nodes. In this situation, nodes should not be given the opportunity to select which validating nodes 

they consult, since they could pick collaborating dishonest nodes. Therefore, we may introduce a 
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pseudorandom formula to dictate the nodes that are consulted. This would also ensure balancing the 

load between all nodes. In this situation, the idea is that if Alice sends money to Bob and Bob sends 

the same money to Charlie, then Charlie will again ask k√n nodes to validate that Bob did not double-

spend. However, Charlie will not need to ask the network to validate the transaction from Alice to 

Bob. Charlie can instead ask Bob to see the k√n digital signatures for the appropriate nodes that signed 

off on the transaction with Alice. Thus, Charlie can verify that Bob indeed consulted the prescribed 

set of k√n nodes, and received all their approval, creating less traffic and processing demands on the 

network. 

In this approach, when two people agree on a transaction, they must notify a formulaically 

determined pseudorandom selection of k√n other nodes and obtain each of their digitally signed 

approval. Moreover, the pseudorandom selection is based on a predetermined formula which is 

known to all, and takes as input e.g., sender’s ID and the time of the transaction. To reduce the 

sender’s ability to pick and choose a specific time, we preferably take time stamps to be at a resolution 

of a second or a minute (rather than a more fine-grained time slot) so they have limited choices to try 

to find a time slot at which the pseudorandom formula happens to choose all their co-conspirators. 

As before, each of those nodes that are honest will check that the sender has not double-spent. 

Now for the recursive check of sender’s sender and so on, the receiver can check that all the 

recursive transactions have the necessary sign-off from all the nodes as determined by the 

pseudorandom formula. Thus, the receiver does not have to burden the network by validating the 

recursive transactions. Such an algorithm would scale better over longer periods. 

This type of algorithm suffers from some clear vulnerabilities. In a real network, there is a high 

chance that some nodes may not be available, so the sender could feasibly calculate which k2 nodes 

would detect his double-spending and simply claim that those particular nodes were not available. 

This would have to be mitigated by common monitoring of node availability, or honest nodes may 

self-monitor, so that anyone can later validate any claim that a certain node was unavailable at a 

certain time. 

The sender may also have multiple wallets and multiple available time slots allowing them some 

choice of the sending node and time slot, giving them some leeway to plan a double-spend without 

any clashes of verifying nodes, by choosing the particular sending wallet and time slot wherein the 

pseudorandom formula happens to pick many of their complicit nodes. If we choose k large enough, 

we can make this infeasible, for example with k = 10 and p0 = 3.70 × 10−44, the user must consider O(1044) 

combinations of wallets and time slots to obtain one with no clashes to an earlier transaction, which 

is not feasible.  

Therefore, it should be possible to design an algorithm wherein each node (honest or not) is 

forced to consult a particular set of k√n nodes based on a function of the sender and time slot, and 

wherein there is no feasible way to create a positive expected value of double-spending. 

10. Conclusion 

For a distributed ledger, reaching consensus is expensive and may involve a long lag time. In 

this paper, we have explored a two-tier system in which the primary algorithm ensures that the global 

ledger consensus is reached for the distributed ledger, but perhaps only periodically and with high 

latency. In the meantime, a secondary k-root-n algorithm allows parties to transact rapidly and 

protect against double-spending with a more efficient O(√n) probabilistic algorithm which involves 

validating each transaction, and recursively the transactions it depends on (the transaction’s 

pedigree) with a random selection of k√n nodes. It seems feasible for such a network to handle all the 

world’s commerce, while always having a negative expected value of double-spending, and being 

resistant to even aggressive Sybil attacks. 

Further research is required to investigate the practicality of each wallet being a highly available 

node, or develop the idea of separating wallets and nodes. Further research is also required on the 

feasibility of the alternative idea of formulaically dictating validating nodes.  
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Appendix A: Table of k and p0 

This table shows p0, the chances of zero clashes when two honest nodes each consult k√n random 

nodes for various values of k and a couple of values of n.  

Table 1. Values of p0(n,k√n). 

k p0(n=104, k√n) p0(n=1010, k√n) 𝒆−𝒌𝟐
 

1 0.36 0.37 0.37 

1.5 0.1 0.11 0.11 

2 0.017 0.018 0.018 

2.5 0.0016 0.0019 0.0019 

3 9.30x10-05 1.20X10-04 1.20x10-04 

3.5 3.10x10-06 4.80x10-06 4.80x10-06 

4 5.80x10-08 1.10x10-07 1.10x10-07 

4.5 6.10x10-10 1.60x10-09 1.60x10-09 

5 3.70x10-12 1.40x10-11 1.40x10-11 

5.5 1.20x10-14 7.30x10-14 7.30x10-14 

6 2.30x10-17 2.30x10-16 2.30x10-16 

6.5 2.30x10-20 4.50x10-19 4.50x10-19 

7 1.30x10-23 5.20x10-22 5.20x10-22 

7.5 3.70x10-27 3.70x10-25 3.70x10-25 

8 5.60x10-31 1.60x10-28 1.60x10-28 

8.5 4.60x10-35 4.20x10-32 4.20x10-32 

9 1.90x10-39 6.60x10-36 6.60x10-36 

9.5 4.10x10-44 6.30x10-40 6.40x10-40 

10 4.40x10-49 3.70x10-44 3.70x10-44 
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