Multi-Client Symmetric Searchable Encryption
with Forward Privacy*

Alexandros Bakas and Antonis Michalas

Tampere University,
Tampere, Finland
{alexandros.bakas,antonios.michalas}@tuni.fi

Abstract. Symmetric Searchable encryption (SSE) is an encryption
technique that allows users to search directly on their outsourced en-
crypted data, in a way that the privacy of both the files and the search
queries is preserved. Naturally, with every search query, some information
is leaked. The leakage becomes even bigger when the scheme is dynamic
(i.e. supports file insertions and deletions). To deal with this problem we
design a forward private dynamic SSE scheme where file insertions do
not leak any information about previous queries. Moreover, our construc-
tion supports the multi-client model, in the sense that every user that
holds the secret key can perform search queries. Finally, our scheme also
focuses on the problem of synchronization by utilizing the functionality
offered by Intel SGX.

Keywords: Cloud Security - Forward Privacy - Multi-Client - Symmet-
ric Searchable Encryption

1 Contribution

We extend the work proposed in [5] by constructing a Dynamic Symmetric
Searchable Encryption (DSSE) scheme [4] that supports a multi-client model
while at the same time, we preserve all the key properties of the original scheme.
In particular, our construction:

— Provides forward privacy The Cloud Service Provider (CSP) maintains a
dictionary Dict that provides a mapping of the extracted keywords to the
corresponding file names (id(f)). Each entry/address in Dict is calculated
with the help of a key K,, that is revoked after every search for a keyword w.
This requires the computation of new addresses for all the affected rows (i.e.
addresses that correspond to keyword w). To compute the new addresses,
a fresh key K,,’ is needed. This key along with the updated addresses are
generated locally by the user who is then send the new addresses to the CSP.
This way the CSP cannot know if a file that will be added later, contains

* This work was funded by the ASCLEPIOS: Advanced Secure Cloud Encrypted Plat-
form for Internationally Orchestrated Solutions in Healthcare Project No. 826093 EU
research project.

2 A. Bakas and A. Michalas

a keyword w that a user searched for in the past (i.e. in a previous search).
Hence the scheme satisfies the property of forward privacy.

— Is asymptotically optimal. The update cost is O(m) and the search time is
O(¥), where m is the number of unique keywords in a file and ¢ is the number
of the resulted files.

— Is parallelizable. The CSP stores the file names (id(f)) in a dictionary. The
address of each id(f;) is calculated by the data owner, before inserting the
files, and is then hashed. This results to O(¢) independent hashes for each
search. Hence, if the load is distributed to p processors, we achieve optimal
search cost O(¢/p). Similarly, the update cost will be O(m/p).

2 Cryptographic Primitives

In this section, we introduce our notation, and we provide a formal definition of
a dynamic SSE along with the security definitions.

2.1 Notation

Given a set X, we use z <— X to show that x is sampled uniformly from X and

e & Xifzis sampled uniformly at random. |X'| denotes the cardinality of X
Given two strings « and y, we use z||y to denote the concatenation of x and y.
If X,) are two sets, then we denote by [X,))] all the functions from X to Y
and by [X,))] all the injective functions from X to Y. We use R(-) for a truly
random function and R™! for the inverse function of R. A function negl(-) is
called negligible if it grows slower than any inverse polynomial. If s(n) is a string
of length n, we denote by 5(1) its prefix of length { and by s(1), its suffix of length

[, where | < n.

Definition 1 (Pseudorandom Function (PRF)). Let F be a function such
that F : I x X — Y where K is the key-space, X is the domain of definition and
Y is the range. Moreover, let F.Gen(1*) be an algorithm that given the security
parameter X\, outputs k € K. F is a PRF if for all PPT adversaries A:

|Prik < F.Gen(1%) : AF*)(1%) = 1]

5 . (1)
— Prik’ < [x,Y]: ABO (1Y) = 1] = negl())

Definition 2 (Invertible Pseudorandom Function(IPRF)). An IRPF with
key-space K, domain of definition X and range) consists of two functions
F:(KxX)—=Yand F7' : (KxY) = X U{L}. Moreover, let F.Gen(1*)
be an algorithm that given the security parameter X\, outputs k € K. The func-
tions F and F~! satisfy the following properties:

1. F~Yk,F(k,z)) = z,Vz € X.

2. F~Y(k,y) =L if y is not an image of F.

3. F and F~' can be efficiently computed by deterministic polynomial algo-
rithms.

Multi-Client SSE with Froward Privacy 3
4. F(k,-),F~Y(k,-) are injective functions from X to Y.
An IPRF F : (K x X) = Y is secure if V PPT adversary A:

|Prik « F.Gen(1*) : AP F 71 (10) = 1]
Pri & [X,7]: ARORTO %) = 1] = negl())

2.2 Dynamic Symmetric Searchable Encryption

Our construction enables a data owner to share her files with multiple users.
However, only the data owner can add and delete files from her collection.

We proceed with the definition of a dynamic symmetric searchable encryption
scheme (DSSE).

Definition 3 (DSSE). A dynamic Symemtric Searchable Encryption scheme
consists of the following PPT algorithms:

— K+ KeyGen(1*)(1*): The Data Owner generates a secret key K that consists
of a key Kg for and IRPF I and a key Kske for a IND-CPA secure symmetric
key cryptosystem SKE.

— (Incsp, C)(InL) < InGen(K, F): The data owners runs this algorithm to gen-
erate the CSP index Incsp and a collection of ciphertexts C that will be sent
to the CSP. Moreover, the index In| is generated, that is stored both locally
but is also outsourced to a trusted authority TA.

— (Inggp, C")(In{) < AddFile(K, f,In_)(Incsp, C): The data owner is running
this algorithm to add a file to her collection of ciphertexts. All the indexes
and the collection of ciphertezts are updated.

— (Inggp, Cw)(In)) <= Search(K, w, Iny)(Incsp, C'). This algorithm is executed by
a user in order to search for all files f containing a specific keyword w. The
indezes are updated and the CSP also returns to the user the ciphertexts of
the files that contain w.

— (Inggp, C")(In]) < Delete(K,id(f;),In.)(Incsp, C): The data owner runs this
algorithm to delete a file from the collection. All the indexes are then updated
accordingly.

The KeyGen and InGen algorithms do not require any interaction. However,
the rest of the algorithms require synchronization between the different entities
since In_ is stored both on the owner’s side and on TA.

2.3 Security Definitions

Definition 4 (Search Pattern). The Search Pattern is a mapping between
queries and keywords. This mapping is used to tell whether two or more queries
were for the same keyword.

Definition 5 (Access Pattern). The Access Pattern is defined to be the out-
come of each search query.

4 A. Bakas and A. Michalas

Definition 6 (Forward Privacy). A DSSE scheme satisfies Forward Privacy
if for all file insertions after the successful execution of InGen, the leakage is
limited to the id of the file, its size and the number of unique keywords contained
i 4.

Definition 7 (Leakage Functions). Let Lingen, Ladds Lsearchs LDelete be the leak-
age functions associated with index creation, file addition, and the search and
delete operations.

— Lingen(F) = (N, n,id(f;),|fi]),Vfi € F. This function leaks the total size N
of all the (keyword, id(f;)) mappings, as well as the number of files, their
id’s and their sizes

— Ladd(f) = @d(f),|f|, #w;): This function leaks the file id, its size and the
number of unique keywords contained in it.

— Lsearch(w) = {Access Pattern, Search Pattern}: This function leaks the Ac-
cess and Search Patterns.

— Lpelete(1d(f)) = (1d(f), #wi,1): This function leaks the file id, the number
of unique keywords contained in f and the number of keywords j that will
receive and updated address addry, and value val,, .

Definition 8 (DSSE Security). Let DSSE = (KeyGen, InGen, Add, Search, Delete,
Modify) be a dynamic symmetric searchable encryption scheme. Moreover, let
LinGen, LAdd> Lsearchs LDelete be the leakage functions. We consider the following
experiments between a challenger C and an adversary ADV:

— RealADV ()\)

ADY outputs a set of files F. C runs KeyGen to generate a key K, and
runs InGen. ADY then makes a polynomial time of adaptive queries ¢ =
{w, f1, fa} such that w is contained in a file f € F, f1 ¢ F and fs € F.
For each g, she receives back either a search token for w, 75(w), an add
token, 1o, and a ciphertext for fi or a delete token 74 for fo. Finally,
ADY outputs a bit b.

— IdealADV ()\)

ADYV outputs a set of files F. S gets Lingen(F) to simulate InGen. ADV
then makes a polynomial time of adaptive queries ¢ = {w, f1, f2} such
that w is contained in a file f € F, fy ¢ F and fo € F. For each q, S
is given either Lsearch(W), Ladd(f1) o7 Lpelete((f2)). S then simulates the
tokens and, in the case of addition, a ciphertext. Finally, ADY outputs a
bit b.

We say that the DSSE scheme is secure in the semi-honest model if for all
PPT adversaries ADV there exists a probabilistic simulator S such that:

|Pr{(Real) = 1] — Pr{(Ideal) = 1]| < negl(\)

Multi-Client SSE with Froward Privacy 5

3 Architecture

In this section, we introduce the system model by describing the entities that
participate in our construction.

Users: A data owner generates three different indexes. At first, she creates
No.Filesjw] which contains a hash of each keyword w, along with the number
of files that contain w and No.Search[w|, which contains the number of times
a keyword w has been searched by a user. Both of these indexes are of size
of O(m), where m is the total number of keywords. Finally, the data owner
generates a dictionary Dict, which is a mapping between keywords and filenames
The dictionary’s size is O(N) = O(nm), where n is the total number of files.
To achieve the multi-client model, the data owner outsources No.Files[w] and
No.Search[w] to a trusted authority TA on the cloud but also keeps a copy locally.
These indexes will allow registered users to create consistent search tokens. Dict
is finally sent to the CSP.

Cloud Service Provider (CSP): We consider a cloud computing environment
similar to the one described in [10,11]. The CSP must support SGX since core
entities will be running in the trusted execution environment offered by SGX.
The CSP storage will consist of the ciphertexts as well as of the dictionary Dict.
Each entry of Dict is encrypted under a different key K,,. Thus, given K,, and the
number of files containing a keyword w, the CSP can recover the files containing
w.

Trusted Authority (TA): TA is an index storage that stores the No.Files and
No.Search indexes that have been generated by the data owner. All registered
users can contact the TA to access the No.Files[w] and No.Search[w] values for a
keyword w. These values are needed to create the search tokens that will allow
users to search directly on the encrypted database.

SGX: We provide a brief presentation of the main SGX functionalities. A more
detailed description can be found in [6].

— Isolation: Enclaves are located in a hardware guarded are of memory they
compromise a total of 128MB (only 90MB can be used by software). Intel
SGX is based on memory isolation built in the processor along with strong
cryptography. The processor tracks which parts of memory belong to which
enclave and ensures that only enclaves can access their own memory.

— Sealing: Every SGX processor comes with a Root Seal Key with which, data
is encrypted when stored in untrusted memory. Sealed data can be recovered
even after an enclave is destroyed and rebooted on the same platform.

— Attestation: One of the core contributions of SGX is the support for at-
testation between enclaves of the same (local attestation) and different plat-
forms (remote attestation). In the case of local attestation, an enclave enc;
can verify another enclave enc; as well as the program/software running in

6 A. Bakas and A. Michalas

the latter. This is achieved through a report generated by enc; containing
information about the enclave itself and the program running in it. This
report is signed with a secret key sk, which is the same for all enclaves
of the same platform. In remote attestation, enclaves of different platforms
can attest each other through a signed quote. This is a report similar to the
one used in local attestation. The difference is that instead of using sk to
sign it, a special private key provided by Intel is used. Thus, verifying these
quotes requires contacting Intel’s Attestation Server.

4 Construction

In this section we present our construction. We start by describing a multi-client
SSE scheme with forward privacy. Our construction constitutes of six different
algorithms: KeyGen, InGen, AddFile, Search, Delete and Update. At first, the data
owner u; runs KeyGen to generate her secret key. As a next step, she will execute
InGen and AddFile to create the three indexes: No.Files[w], No.Search[w] and Dict
and encrypt her files. While No.Files[w] and No.Search[w] are outsourced to the
TA who is running on the cloud a copy is also stored locally by the user. Dict is
sent directly to the CSP, where it will be stored. The CSP will use this dictionary
to reply to future search queries. The data owner, can still run the AddFile
algorithm, even after the execution of InGen, if she wishes to add new files to
her encrypted file collection. Just like file addition, u; can also delete files by
running Delete. File modification is then simplified to a sequence of Delete and
AddFile for a specified file f. Finally, any user that possesses the data owner’s
secret key, is allowed to search directly on u;’s encrypted collection, by creating
and sending a search token to the CSP.

4.1 MC-SSE

Let G : {0,1}* x {0,1}* — {0,1}* be an invertible pseudorandom function
(IPRF). Moreover, let SKE = (Gen, Enc, Dec) be a CPA-secure symmetric key
encryption scheme and finally, let 4 : {0,1}* — {0,1}* be a cryptographic hash
function for the security parameter \.

Key Generation: The data owner generates the secret key K = (K, Kskg),
where Kg is a key for the IPRF G, while Kskg is the key for the CPA-secure
symmetric key encryption scheme that will be used for the encryption of user’s
files. K¢ is also sent to the TA. This is a probabilistic algorithm run by the data
owner.

Indexing: After the data owner generates the secret key K, she generates the
indexes required by the scheme. In particular, she generates the following three
indexes:

— No.Files — stores the total number of files containing a keyword w,

Multi-Client SSE with Froward Privacy 7

Algorithm 1 KeyGen

Input: Security parameter A\
Output: K < Gen(1*)(1*)

: Kg + GenlPRF(1*) > For the IPRF G
. Kske < SKE.Gen(1%)

return K = (Kg, KSKE)

: Send K¢ to the TA

=W =

— No.Search — stores the number of times each keyword has been searched by
a user,
— Dict — a mapping of a keyword and the filename that can be found at.

The data owner outsources No.Files and No.Search to the TA but also stores a
copy of each index locally. Dict is sent to the CSP. This protocol is treated like a
set of AddFile protocols, thus the data owner is required to internally run AddFile.
Note that upon its generation, Dict is directly sent to the CSP. However, this is
not the case for No.Search and No.Files. More precisely, before outsourcing the
indexes to the TA, the data owner needs to encrypt them using TA’s public key.
Although this process is not characterized by its efficiency, it will only occur once
and it is a necessary trade-off to achieve a multi client scheme. Upon reception,
TA decrypts the indexes using its private key and stores them in plaintext.

Algorithm 2 InGen

Input: sk, f;
Output: (ICSP7 Ci),ITA — Index(sk, fl)

c={}
AllMap = {}
for all f; do
Run AddFile to generate ¢; and Map; > Results are NOT sent to the CSP
C=CUcg;
AllMap = [{AllMap U Map;}, id(f;)]
Cra = PKE.Enc(pkra, (No.Files[w], No.Search[w]))
Send (AllMap, C') to the CSP
Send Cra to the TA
: CSP stores AllMap in Dict
: Zesp = {Dict}, Zra = {No.Files, No.Search}

—
2O Y XN oW

[

File Insertion: The data owner can add new files to her collection, even af-
ter the execution of Algorithm 2. To do so, she retrieves the No.Files[w] and
No.Search[w] indexes, that are stored locally on her device. These indexes will
allow her to create an add token 7,(f) for the file f that she wishes to add. For

8 A. Bakas and A. Michalas

each distinct keyword w; € f, she increments No.Files[w;] by one and then com-
putes the corresponding address on Dict. Moreover, she computes ¢ = (Kskg, f)
and she sends the results to the CSP (lines 8-11 of Algorithm 3). As a last step, u;
sends an acknowledgement to the TA so that TA will also increment No.Files[w]
by one.

Algorithm 3 AddFile

Input: sk, f,Zra
Output: (Z'csp,C’),Z 74 <+ Add(sk, f,Zra)

Map = {}

for all w; € f do
No.Files[w;] + +
Kw; = G(Kg, h(w;)||No.Search[w;])
addr,,, = h(Kuw,, No.Files[w;]||0) > Address in Dict
valwi = Enc(KSKE,id(fi)HNo.FiIes[wi})
Map = Map U{addr.,, val., }

¢ + SKE.Enc(Kske, f)

Ta(f) = (¢c,Map)

: Send 74(f) to the CSP

: CSP adds ¢ into C' and Map into Dict

: Send the updated value of No.Files to TA

: TA updates No.Files

==
[SUI S e i)

Search: We now assume that the data owner has successfully shared her secret
key K with multiple users so that they can also access her encrypted data. Lets
assume that a user u; who has access to K wishes to search for specific keywords
in u}s encrypted data. To do so, she needs to create a search token 74(w) that will
allow her to search for a specific keyword w. To create 74(w) for a specific keyword
w, u; first needs to request the corresponding values No.Files[w] and No.Search[w]
from the TA (line 1 of Algorithm 4). After u; receives these values, she can com-
pute the key K,, for the keyword w as K,, = G(Kg, h(w)||No.Search[w]). Apart
from that, she increments the No.Search value by one and computes the up-
dated key for w, K/, as well as the new addresses addr,, on Dict. She finally
stores the new addresses in a list L that will be sent to the CSP (lines 4-11
of Algorithm 4). Upon reception, the CSP forwards (K,, No.Files[w]) to the
TA to ensure that u; sent the correct values. At this point, TA retrieves the
keywords w and No.Search[w] by inverting the pseudorandom function G. In
particular, TA computes: G~1(Kg, Ky,) = G71(Kg, G(Kg, h(w)||No.Search[w]) =
h(w)||No.Search[w]. As soon as TA retrieves these values, it can compute K'[w]
by incrementing No.Search by one. In addition to that, it also computes addr’,.
Finally, it stores addr’y, to a list Ly 4 and sends it to the CSP (lines 12-20 of
Algorithm 4). Upon reception, the CSP checks whether L, = Lr4 or not. If
L, # Lpa, the CSP outputs L and abort the protocol. If L,, = Ly 4, then the

Multi-Client SSE with Froward Privacy 9

CSP locates the file identifiers by looking at Dict[] and replace the corresponding
addresses on Dict and . The files are sent back to the user and the CSP sends
an acknowledgement to TA in order to increment the value of No.Search[w] by
one. Finally, this acknowledgement is also forwarded to the data owner, so that
she can also update her local indexes.

File Deletion: Apart from adding files to the her collection, the data owner
u; can also delete files. To do so, she first needs to generate a delete token 74(f)
and send it to the CSP. The CSP can identify which entries of Dict correspond
to the file f that u; wishes to delete. However, apart from deleting these entries
the indexes No.Files[w] and No.Search[w] need to be updated. To this end, the
CSP sends f back to u; before deleting the entries. Upon reception, u; extracts
every keyword w; contained in f and updates the indexes accordingly (lines 7-10
of Algorithm 5). However, since these indexes are also stored online, u; will have
to send the updated values No.Files|w] and No.Search[w] to the TA as well.

File Modification: Finally, for the data owner u; to modify a file f (Algo-
rithm 6) that is stored online, she first needs to run the Delete algorithm to
make sure that each entry associated with f will be deleted and that all indexes
will be updated accordingly. As a next step, u; modifies f and runs the AddFile
algorithm for the updated file.

5 Security Analysis

In this section we prove the security of our construction against the threat model
defined in Section 2.3. We construct a simulator S that simulates the SSE scheme
as well as the communications between the enclaves.

Theorem 1. Let SKE be a CPA-secure symmetric key encryption scheme, G an
invertible pseudorandom function and h a hash function. Then our construction
1s secure according to definition 8.

Proof. We construct a simulator & that simulates the real algorithms in such a
way that any Probabilistic Polynomial Time(PPT) adversary ADYV will not be
able to distinguish between the real algorithms and the simulated ones. To prove
the security of our construction we are using a hybrid argument where S is given
the leakage functions LinGen, Ladd; Lsearch, LDelete and simulates the protocol. We
assume that upon their initialization, enclaves generate the secret key skipt, used
to sign their reports.

Hybrid 0 | Everything runs as specified by the protocol.

: Like Hybrid 0 but instead of InGen, S is given access to the leakage
function Lingen = (N, n,id(f:), | fi]),Vfi: € F and proceeds as follows:

ADY cannot distinguish between the two hybrids as the simulated dictionary
has exactly the same size as the real one. Moreover, the CPA security of the
symmetric encryption scheme, ensures that ADYV cannot distinguish between
the encryption of actual files and that of a string of zeros.

10

A. Bakas and A. Michalas

Algorithm 4 Search

11:

12:
13:
14:
15:
16:
17:

18:

19:
20:
21:
22:
23:
24:

25:
26:
27:

28:
29:

30:

Input: sk, fi,Zra
Output: (Z'csp,C’),I'ra < Add(sk, fi,Zra)

User:

: Request the values No.Files|w] and No.Search[w] for a keyword w, from TA

TA:
Verifies the user and send back the values
User:
Kw = G(Kg, h(w)||No.Search[w])
No.Search[w] + +
K\ = G(Kg, h(w)||No.Search[w])
Lu = {}
for i = 1 to i = No.Files[w] do
addr,, = h(K,,|0)
L, =L, U{addr,}

: Send 75 (w) = (Kw, No.Files[w], L,) to the CSP

CSP:
Forward (K, No.Files[w]) to TA
TA:
h(w)||No.Search[w] = G~ ! (Kg, Ku)
K\ = G(Kg, h(w)||No.Search[w])
Lra = {}
for i = 1 to i« = No.Files[w] do
addr,, = h(K,,4|0)
Lra =Lra U{addrw}
Send List to the CSP

CSP:
if L, = LT4 then
Cr, ={}

for i = 1 to i = No.Filesjw] do
¢, = Dict[(h(Kw, i[|0))]
Cr, = Fuw U {Cfi,}
Delete Dict[(h(Kuw,|]0))]
Add the new addresses and values as specified in L,
else
Output L
Send CF, to the user and an acknowledgement to the TA and the Data Owner
TA:
No.Search[w] + +
Data Owner:
No.Search[w] + +

Multi-Client SSE with Froward Privacy 11

Algorithm 5 Delete

Input: File identifier id(f)
Output: File f is deleted

Data owner:

1: FileNumber = {}

2: for all w; € f; do

3: if No.Files[w;] > 1 then

4: addry,; = h(Kuw, No.files[w;||0])
5: valw, = Enc(K, No.Files[w])

6: No.Files[w] — —

7 naddr = h(Ky, No.files[w;||0])
8: nval = Enc(K, No.Files[w])

9: else

10: valw, = Enc(K, No.Files[w])
11: nval =0

12: Delete No.Files[w;]

13: Delete No.Search[wj]

14: FileNumber = FileNumber U {h(w), No.Files[w;]}
15: 74(f) = |id(f), {Kuw, (addry, , naddr.,,), (val,, , nval,,) } 74/

16: Send {FileNumber, 74(f)} to the CSP
CSP:

17: Forward {FileNumber, 74(f)} to the TA
TA:

18: for all h(w) € FileNumber do

19: if No.Files[w] > 1 then

20: Repeat steps (4 - 9)

21: else

22: Repeat steps (11 - 12)

23: Send {(addr.,,naddr,,), (val,,, nval,,)}*“/ to the CSP
CSP:

24: NewVal = {}

25: if the values received by the user are Not the same as the ones received by the TA
then

26: Output L

27: else

28: fori=1toi=#w € f do

29: if nval,, = 0 then

30: Delete val.,;

31: else

32: addr,,;, = naddr,

33: valy, = nvaly,

34: Send acknowledgement to TA
TA:

35: for all w; € f do
36: if No.Filesw;] > 1 then

37: No.Files[w;] — —
38: else
39: Delete No.Files[w;]

40: Delete No.Search{w;]

12 A. Bakas and A. Michalas

Algorithm 6 Update file

Input: File identifier id(f)
Output: f is updated

Data Owner:
1: Run Delete Algorithm with h(id(f)) as input
Modify f
3: Run AddFile Algorithm with f as input

o

Algorithm 7 InGen Simulation

. k + SKE.Gen(1?)

:fori=1toi= N do

Simulate (a;,v;) pairs such that |a;| = |v;]

Store all (a;, v;) pairs in a dictionary Dict

: for all f; € F do

¢i + SKE.Enc(k, 0'fil

7: Create a dictionary KeyStore to store the last K,, of each keyword.
8: Create a dictionary Oracle to reply to the random oracle queries.

STk

Hybrid 2 |Like Hybrid 1, but instead of AddFile, S is given the leakage function
Ladd = (id(f),|f], #w;) and simulates the add token as follows:

Algorithm 8 Add Token Simulation

1: Laaa = {}

2: for i =1 to i = #w; do
Simulate {a;,v;} pairs such that |a;| = |v;|
Add (id(f),{ai,v:}) in Dict
Ladd = Laaa U {ai,vi}

¢ + SKE.Enc(k, 0

To(f) = (id(f), ¢, Lada)

The simulated add token, allows the S to keep its dictionary up to date with
files provided by ADYV after the execution of InGen. The token provided by the
simulator has exactly the same format and size as the real add token. Moreover,
we show that the add token can be simulated by only knowing Lag4q4, and as a
result we prove that our scheme preserves forward privacy. Finally, once again
the CPA security of the symmetric encryption scheme, ensures that ADYV cannot
distinguish between the encryption of actual files and that of a string of zeros.
Like Hybrid 1 but instead of running the Search protocol, S is given
the Search and Access patterns and simulates the search tokens, both for the
data owner as well as for the rest of the users. Apart from that, S simulates the

Multi-Client SSE with Froward Privacy 13

communications between the different entities that participate in the real Search
protocol. The search tokens are simulated as shown in Algorithm 9.

Algorithm 9 Search Token Simulation

1: Generate two random integers and send them to the user > Step 1 is NOT for the
data owner

2: d=|Fyl > Number of files containing w

3: if KeyStore[w] = Null then

4: KeyStore[w] + {0, 1}

5: Kw = KeyStore[w]

6: fori=1toi=ddo

7 if Oracle[K,,][0][¢] is Null then

8: if f; is added after InGen then

9: Pick a (¢d(fi), {ai, vi} pair

10: else

11: Pick an unused {a;,v;} at random

12: Oracle[Ky][0][Z] = a;

13: Oracle[Ky][1][z] = vsl|id(fi)

14: else

15: a; = Oracle[K.,][0][¢]

16: v; = Oracle[Kw][1][i](|Oracle[Kw][1][i]| — |id(f:)])
17: Remove a; from the dictionary

18: UpdatedVal = {}

19: K, «+ {0,1}*

20: KeyStore[w] = K,

21: fori=1toi=ddo

22: Generate new a; and match it with v; from step 16
23: Add (id(f:), {ai,vi}) to the dictionary

24: UpdatedVal = UpdatedVal U {id(f:),a:}

25: Oracle[K,,][0][i] = a;

26: Oracle[Ky, |[1][7] = villid(f:)

27: 7s(w) = (Kw, d, UpdatedV al)

The KeyStore[w] dictionary is used to keep track of the last key K, used for
each keyword w. The Oracle[K,,[j][i] dictionary is used to reply to ADV’s queries.
For example, Oracle[K,,[0][¢] represents the address of a Dict entry assigned to
the ¢ — th file in the file collection F'. Similarly, Oracle[K,,[1][i] represents the
masked value needed to recover id(f). It is clear, that the simulated search token
has exactly the same size and format as the real one, and as a result no PPT
adversary can distinguish between them. Moreover, ADY cannot tamper with
the reports generates by the enclaves during the execution of the local attestation
protocols. The reason for this, is that these reports are signed with the secret
skypt key, which is only know to enclaves that reside in the same platform. As

14 A. Bakas and A. Michalas

a result, tampering with the reports implies producing a valid MAC, which can
only happen with negligible probability.

Like Hybrid 3, but S is given £peete(f) = (id(f), #w;, 1) and sim-
ulates the delete token as described in Algorithm 10. Moreover, S simulates the
communication between TA and CSP.

Algorithm 10 Delete Token Simulation

Laer = {}

Ls = LsUid(f)

¢ + SKE.Enc(Kske, O‘i‘“f)l)

fori=1toi=/do
Generate a new {aj,v;} pair
Select an unused {a;,v;} pair
Laer = Laer U {{ai, vi}, {ai, vi}}
Replace {a;,v;} with {a}, v}

fori=/7+1toi=#wdo
Generate a new v,
Pick an unused {a;,v;} pair and delete it
Liet = Laer U {v;, 0}

: Output 74(f) = (¢, Laer)

e el
W o9

The simulated delete token is indistinguishable from the real one since the
have the same format and size. Moreover, ADYV could once again try to tamper
with the report sent from TA to CSP as part of the protocol. However, as already
stated before, this action would imply that ADYV could produce a valid MAC
without owning sk,,; which can only happen with negligible probability. Hence,
the Hybrids are indistinguishable.

With that hybrid our proof is complete. We constructed a simulator S that
simulates all the real protocols in a way that no PPT adversary ADYV can dis-
tinguish between the real and the ideal experiments.

6 Conclusion and Future Work

In this paper, we extended the scheme presented in [5] by presenting a forward
private symmetric searchable encryption scheme that supports the multi-client
model. In our construction, we deal with the problem of syncrhonization between
users, by using the functionality offered by SGX. As a result, our construction
can be seen as an important contribution in the field of Searchable Encryption.
Furthermore, our scheme can squarely fits constructions like the ones presented
in [9,3,8,7].

As future steps, we plan to implement our construction using as datasets
either the Wikipedia archive [2] or the Gutenberg ptoject [1]. This will allow
us to evaluate the performance of our construction against a variety of realistic

Multi-Client SSE with Froward Privacy 15

scenarios (i.e. using datasets from which a very large number of keywords can be
extracted). Finally, we plan to extend our construction in a way that protection
against, the more realistic malicious adversarial model, will be supported.

References

10.

11.

Project gutenberg (1971), https://www.gutenberg.org/

Wikipedia:database = download (2019), https://en.wikipedia.org/wiki/
Wikipedia:Database_download

Bakas, A., Michalas, A.: Modern family: A revocable hybrid encryption scheme
based on attribute-based encryption, symmetric searchable encryption and sgx.
Cryptology ePrint Archive, Report 2019/682 (2019), https://eprint.iacr.org/
2019/682

Dowsley, R., Michalas, A., Nagel, M., Paladi, N.: A survey on design and im-
plementation of protected searchable data in the cloud. Computer Science Re-
view (2017). https://doi.org/https://doi.org/10.1016/j.cosrev.2017.08.001, http:
//www.sciencedirect.com/science/article/pii/S1574013716302167

Etemad, M., Kiipcii, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable
encryption with forward privacy. Proceedings on Privacy Enhancing Technologies
2018(1), 520 (2018)

Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryp-
tion using intel sgx. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. pp. 765-782. ACM (2017)

Michalas, A., Dowsley, R.: Towards trusted ehealth services in the cloud. In: 2015
IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC).
pp. 618-623 (Dec 2015). https://doi.org/10.1109/UCC.2015.108

Michalas, A., Weingarten, N.: Healthshare: Using attribute-based encryption for
secure data sharing between multiple clouds. In: 2017 IEEE 30th International
Symposium on Computer-Based Medical Systems (CBMS). pp. 811-815 (June
2017). https://doi.org/10.1109/CBMS.2017.30

Michalas, A.: The lord of the shares: Combining attribute-based encryption
and searchable encryption for flexible data sharing. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. pp. 146-155. SAC ’19, ACM,
New York, NY, USA (2019). https://doi.org/10.1145/3297280.3297297, http:
//doi.acm.org/10.1145/3297280.3297297

Paladi, N., Gehrmann, C., Michalas, A.: Providing user security guarantees in
public infrastructure clouds. IEEE Transactions on Cloud Computing 5(3), 405—
419 (July 2017). https://doi.org/10.1109/TCC.2016.2525991

Paladi, N., Michalas, A., Gehrmann, C.: Domain based storage protection with
secure access control for the cloud. In: Proceedings of the 2014 International Work-
shop on Security in Cloud Computing. ASTACCS 14, ACM, New York, NY, USA
(2014)

