
SEAL: Attack Mitigation for Encrypted Databases via Adjustable
Leakage

Ioannis Demertzis
yannis@umd.edu

University of Maryland

Dimitrios Papadopoulos
dipapado@cse.ust.hk

Hong Kong University of Science and Technology

Charalampos Papamanthou
cpap@umd.edu

University of Maryland

Saurabh Shintre
Saurabh_Shintre@symantec.com

Symantec Research Labs

ABSTRACT

Building expressive encrypted databases that can scale to large
volumes of data while enjoying formal security guarantees has
been one of the holy grails of security and cryptography research.
Searchable Encryption (SE) is considered to be an attractive imple-
mentation choice for this goal: It naturally supports basic database
queries such as point, join and range, and is very practical at the
expense of well-defined leakage such as search and access pattern.
Nevertheless, recent attacks have exploited these leakages to re-
cover the plaintext database or the posed queries, casting doubt to
the usefulness of SE in encrypted systems. Defenses against such
leakage-abuse attacks typically require the use of Oblivious RAM
or worst-case padding—such countermeasures are however quite
impractical. In order to efficiently defend against leakage-abuse
attacks on SE-based systems, we propose SEAL, a family of new SE
schemes with adjustable leakage. In SEAL, the amount of privacy
loss is expressed in leaked bits of search or access pattern and can
be defined at setup. As our experiments show, when protecting
only a few bits of leakage (e.g., three to four bits of access pattern),
enough for existing and even new more aggressive attacks to fail,
SEAL query execution time is within the realm of practical for
real-world applications (a little over one order of magnitude slow-
down compared to traditional SE-based encrypted databases). Our
findings therefore show that SEAL could be a promising approach
for building efficient and robust encrypted databases.

1 INTRODUCTION

Encrypted databases enable a data owner to outsource a database
to a server in a private manner, so that the server can still an-
swer database queries (e.g., point, join, range) on the underly-
ing encrypted data. Initially implemented with weak primitives
like order-preserving (OPE) and deterministic (DET) encryption
(e.g., [5, 6, 36, 40])1, encrypted databases have now moved to more
“secure" implementations through other primitives like searchable
or structured encryption (SE) [12], offering support for a plethora
of queries such as point queries [16, 17], range queries [14, 15, 18],
and SQL queries [26] (e.g., join and group-by queries).

SE-based encrypted databases are quite practical at the expense
of well-defined leakage. This leakage information includes the

1Note that such implementations have been shown to be susceptible to inference
attacks [34] since they leak statistical and order information allowing an attacker to
decrypt the actual encrypted records.

.

search pattern (whether a query q has been made in the past or not)
and the access pattern that consists of the volume pattern (number
of database tuples contained in the query result) and the overlap-
ping pattern (which database tuples, if any, in the result for query q
appeared in the result of a previous query).

Leakage-abuse attacks. Unfortunately the aforementioned leak-
ages exposed by SE can be quite harmful, enabling the recovery
of the encrypted database or/and the posed queries. In particular,
the works of Islam et al. [24] and Cash et al. [10] were the first
to exploit access pattern leakage and prior knowledge about the
dataset to recover the queried keywords. Zhang et al. [43] pro-
pose file injection attacks for encrypted email applications to im-
prove the recovery rate of queried keywords. For the private range
search problem, effective access pattern and volume pattern attacks
through which the attacker learns the plaintext order and value
of all encrypted records, without any prior knowledge, have been
proposed [13, 22, 28–30, 32]. This ever-growing body of leakage-
abuse attacks has already alerted the community about using SE
for implementing encrypted database systems [1].

Current defenses. To provably defend against leakage-abuse at-
tacks on SE-based systems one has to (i) use expensive crypto-
graphic tools to eliminate the search/overlapping patterns, i.e.,
Oblivious RAM (ORAM) [38] (introducing a polylogarithmic search
overhead) and (ii) perform worst-case padding (resulting in worst-
case linear search time [25] or quadratic index size) for eliminating
the volume pattern. Both approaches above incur large overheads
leading to quite impractical protocols. We present other, more prac-
tical, but less effective defenses in our prior work section.

Our contributions. In light of the above, we ask in this paper
whether practical SE primitives can still somehow be used to im-
plement secure encrypted databases. Towards this goal, we pro-
pose SEAL2, a family of new SE schemes with adjustable leakage
which allow the client to define a trade-off between efficiency and
leaked information. We show that hiding only a few bits of the
search/overlapping/volume pattern significantly reduces the suc-
cess of existing as well new, even more aggressive, leakage-abuse
attacks. At the same time SEAL’s practical performance is close to
traditional SE. In particular our contributions are as follows:

2
SEAL stands for Searchable Encryption with Adjustable Leakage.

(1) To better motivate SEAL, we first present new attacks on ex-
isting SE-based encrypted databases. In particular, we show
that the same inference attacks [34] on DET systems can be
used by a persistent adversary to recover the database val-
ues in SE-based systems, such as those implementing point
queries (e.g., [14]), and group-by and join queries (e.g., [26]).
The high-level reason is that after the adversary observes a
certain number of SE queries in these constructions, tuples
with the same values are revealed and therefore frequency in-
formation is readily available to the adversary. Even for more
robust SE-based range query schemes [14, 18], we present
new attacks that can work under certain assumptions about
the dataset (see Section 3).

(2) We present SEAL(α ,x), a family of SE schemes with ad-
justable leakage. SEAL is based on two other “adjustable"
primitives, an adjustable ORAM, parameterized by a value
α and an adjustable padding algorithm, parameterized by a
value x . The adjustable ORAM, ADJ-ORAM-α , hides only α
bits of the access pattern by partitioning the accessedN -sized
array into N /2α regions of 2α size each and by applying
an individual standard ORAM per region. The adjustable
padding algorithm, ADJ-PADDING-x , reduces the volume
pattern leakage by padding every list to the the closest power
of x , leading to a dataset with at most logx N distinct sizes.
Clearly, larger values for α and x yield slower but more
secure SEAL (see Section 4).

(3) We use SEAL to build encrypted databases with adjustable
leakage. We first present three new constructions POINT-
ADJ-SE-(α ,x) (for point queries), JOIN-ADJ-SE-(α ,x) (for
join queries) and RANGE-ADJ-SE-(α ,x) (for range queries)
that use SEAL(α ,x) as black box, instead of plain SE. Fi-
nally, we present a more efficient adjustable construction for
ranges, RANGE-SRC-SE, that reduces access pattern leakage
and volume pattern leakage implicitly by modifying an exist-
ing construction [15] and not by using our (more expensive)
SEAL(α ,x). (see Sections 4.4 and 4.5).

(4) We evaluate the robustness of our SEAL-based encrypted
databases for various valuesα andx against particularly pow-
erful adversaries that observe the leaked search/overlapping
and volume patterns and have plaintext access to the entire
input dataset. Such strong threat model offers additional cred-
ibility to our proposed mitigation techniques. We consider
two new attacks. The first is a query recovery attack that aims
at decrypting the encrypted queries posed by the client. The
second is a database recovery attack that aims at mapping
encrypted database tuples to (decrypted) client queries3. We
observe that these attacks are related. For example, in the
case of point queries, if an attacker recovers the plaintext
value v of a query q and additionally figures out which tu-
ples this query returns, then the adversary can infer that the
value of the queried attribute of the returned tuples is v (see
Section 5).

(5) We observe that for all the above attacks we can find cer-
tain values for α and x that reduce the attacker’s success

3We note here that this attack is trivial in the case of plain SE since this mapping is
part of the leakage.

rate significantly while maintaining good performance. For
instance we show that if we use SEAL to hide three bits of
access pattern while at the same time pad the keyword lists
to powers of 4 (thus hiding a few bits of volume pattern
as well), we can defend against our all-powerful attackers
only at the expense of an acceptable slowdown from plain
SE—around 32×.

Prior work. Wagh et al. [41] introduces an ORAM with a tunable
trade-off between the search/storage efficiency and security. This
trade-off is controlled by an (ϵ,δ)-differential privacy modification
of PathORAM [38]. Their construction could potentially be used as a
drop-in replacement in our proposed encrypted database algorithms
(instead of our adjustable ORAM). It would be interesting to explore
how different choices of ϵ and δ affect the performance of existing
leakage-abuse attacks—we leave this as future work.

The works of Cash et al. [10], and Bost and Fouque [8] propose
padding techniques for keyword search that can hide a portion of
the volume pattern. Unlike our proposed padding in Section 4.2,
their padding depends on the distribution of the input dataset,
which results in leakage even prior to query execution. Bost and
Fouque [8] also propose new security definitions for SE aiming at
capturing existing leakage abuse attacks. These definitions could po-
tentially provide intuition on how we can modify existing schemes
in order to make them robust against such attacks.

Recently, Kamara et al. [27] showed how to suppress the search
pattern leakage without using ORAM. However suppressing only
the search pattern leakage is not enough for mitigating leakage-
abuse attacks. Kamara andMoataz [25] showed theoretically how to
perform worst-case padding without requiring quadratic index size,
while sometimes assuming certain properties for the input dataset,
such as a Zipf distribution or highly-concentrated multimaps. Fi-
nally, Markatou and Tamassia [31] have recently presented new
mitigation techniques for range queries based on various range
query transformations.

2 PREMILIMINARIES

We now provide some notation, definitions and background that
we use throughout the paper. We write out ← Alg(in) to indi-
cate the output of an algorithm Alg and (clientout , serverout) ↔
Prot(clientin , serverin) to indicate the execution of a protocol Prot
between a client and a server.

Negligible Function. A function ν : N → R is negligible in λ,
denoted by neдl(λ), if for every positive polynomial p(·) and all
sufficiently large λ, ν (λ) < 1/p(λ).

Oblivious RAM (ORAM). Oblivious RAM (ORAM), introduced
by Goldreich and Ostrovsky [20], is a compiler that encodes the
memory such that accesses on the compiled memory do not re-
veal access patterns on the original memory. An ORAM scheme
consists of two algorithms/protocols ORAM = (OramInitialize,
OramAccess), where OramInitialize initializes the memory, and
OramAccess performs the oblivious accesses. We provide the for-
mal definition in Section 4.3.

Oblivious Dictionary (ODICT). An oblivious dictionary is an
oblivious data structure that can support oblivious queries from an
arbitrary domain. ODict offers the following protocols (see [42]
for a detailed description):
• (T ,σ) ← ODictSetup(1λ ,N): Given a security parameter λ,
and an upper bound N on the number of elements, it creates
an oblivious data structureT . The client sendsT to the server
and maintains locally the state σ .
• ((value,σ ′),T ′) ↔ ODictSearch((key,σ),T): Given the
search key key andσ , returns the corresponding value value,
the updated T ′ and σ ′.
• (σ ′,T ′) ↔ ODictInsert((key, value,σ),T): Given a key-
value pair key, value and σ , it inserts this entry in the dic-
tionary. It returns the updated T ′ and σ ′.

Searchable Encryption (SE). Let D be a collection of documents.
Each document D ∈ D is assigned a unique document identifier
and contains a set of keywords from a dictionary ∆. Let D(w)
denote the identifiers of documents containing keyword w . SE
schemes build an encrypted index I on the document identifiers
which can be queried using keyword “tokens". Note that we do
not store encrypted documents in the index, just their identifiers.
Encrypted documents can be retrieved in an extra round. We denote
with N the data collection size, i.e., N =

∑
w ∈∆ |D(w)|. An SE

protocol involves two parties, a client and a server and consists of
the following algorithms/protocols [12]:
• (stC ,I) ← Setup(1λ ,D): is a probabilistic algorithm per-
formed by the client prior to sending any data to the server.
It receives the security parameter as input and the data col-
lection D, and outputs an encrypted index I which is sent
to the server. stC is sent to the client and it contains the
secret key k .
• ((X, stC),I) ↔ Search((stC ,w),I): is a protocol executed
between the client and the server. The client inserts the
secret state stC and a keywordw , while the server inserts an
encrypted indexI. At the end of the protocol the client learns
X, the set of all document identifiers D(w) corresponding
to keyword w and the updated secret state stC , while the
server’s output is the updated encrypted index I.

The security of the above SE scheme is captured by the following
definition, using the standard SE’s real/ideal security game [11]
(also provided in Appendix—see Figure 14).

Definition 2.1. Suppose (KeyGen, Setup, Search) is a SE scheme
based on the above definition, let λ ∈ N be the security parame-
ter and consider experimentsReal(λ) and IdealL1,L2 (λ) presented
in Figure 14, whereL1 andL2 are leakage functions. SE is (L1,L2)-
secure if for all polynomial-size adversariesA there exist polynomial-
time simulators SimSetup and SimSearch, such that for all polynomial-
time algorithms Dist:

| Pr[Dist(v, stA) = 1 : (v, stA) ← Real(λ)] −

Pr[Dist(v, stA) = 1 : (v, stA) ← IdealL1,L2 (λ)]| ≤ neдl(λ) ,

where probabilities are taken over the coins of KeyGen and Setup
algorithms .

The above definition captures strong adversarial capabilities, i.e.,
even adaptive adversaries that can select their new queries based
on previous ones cannot learn anything more than the specified
leakage functions L1,L2 ([11]). Next, we discuss these leakage
functions in more detail.

Leakage Functions. Leakage L1 is associated with information
that is leaked from the index alone (before any queries have been
executed) and typically contains the size of the data collection
N . Leakage L2 represents the information leaked during a query.
It typically consists of the search pattern that indicates whether
the client searches for a particular w , and the access pattern that
contains the document identifiers matching the queried keyword
w , namely L2(D,w) = (id(w),D(w)).

In the above, id : ∆ → {0, 1}λ is a mapping of keywords to
λ-bit numbers. We refer to id(w) as the alias ofw . In practice, this
will be a random allocation of keywords to aliases that is used to
capture the search pattern leakage. That is, while id(w) does not
directly revealw , when querying for the same keyword repeatedly
the server observes the same id(w). Recall that D(w) contains the
document identifiers4 matching the queried keyword w and this
captures the access pattern leakage. More specifically, the access
pattern consists of (i) the size of the result which we call volume
pattern, and (ii) the document overlaps between previously queried
keywords, which we call overlapping pattern.

SE through ORAM. One way to reduce the SE query leakage
would be to replace all the memory accesses performed with oblivi-
ous memory accesses using an ORAM as a black box. In that case,
the only leaked information during queries is the result size.

Attacks on deterministically-encrypted systems. Naveed et
al. [34] proposed the frequency analysis and ℓp-optimization attacks
that apply to databases encrypted with the use of deterministic
schemes such as CryptDB [36].

The frequency analysis attack is the most basic and well-known
inference attack in the area of cryptography. We define Ck andMk
to be the ciphertext and message spaces, respectively of the deter-
ministic encryption scheme. Given a deterministically encrypted
column c over Ck and an auxiliary dataset z over Mk , the attack
works by assigning the i-th most frequent element of c to the i-th
most frequent element of z.

The ℓp-optimization attack is a family of attacks against deter-
ministic encryption. The main goal is to find an assignment from
ciphertexts to plaintexts that minimizes a given cost function, e.g.,
the ℓp distance between the histograms of the dataset. This attack
minimizes the total mismatch identified in frequencies across all
plaintext and ciphertext pairs.

3 ENCRYPTED DATABASES FROM

SEARCHABLE ENCRYPTION & ATTACKS

In this section we first show how SE can be used to support various
queries on encrypted databases, such as point/group-by/join/range
queries and then show various attacks (some existing and some

4We assume that the order of the documents does not reveal any significant information.
This can be achieved by assigning a random λ-bit number to each document

new) on these constructions. Our findings systematically reestab-
lish that using SE to implement encrypted databases [14, 18, 26] is
particularly risky when the adversary is persistent and also has ac-
cess to prior information about the underlying encrypted database
(e.g., distribution of first names/gender). For snapshot adversaries
that have no prior information about the encrypted database, there
could be value in SE-based systems, however these are assumptions
that are unlikely to hold in the real world [23, 34].

3.1 SE-based Point Queries

The most basic database query is the point query for a value v . A
point query retrieves all the tuples from table T that contain value
v in attribute x , i.e.,

SELECT * FROM T WHERE T .x = v ;
We can use an SE scheme to implement private point queries (e.g.,
see Demertzis et al. [14], and Kamara and Moataz [26]) by viewing
attribute values as keywords, and database tuples as document iden-
tifiers. In this case an SE-based point querywill return the encrypted
tuples that match this value. We call this scheme POINT-SE. Note
that POINT-SE can also be used to implement group-by queries
(e.g., see Kamara and Moataz [26]), where the client can compute
the group-by query through point queries for all distinct values of
attribute x .

Attacks on POINT-SE. When using POINT-SE, the attacker can
identify which encrypted tuples have the same value v , after he
observes the execution of a query. Finally, after he observes the exe-
cution of all queries, the attacker can group the encrypted database
tuples by value, and can therefore can compute the size of each
group. By running a frequency analysis attack or an ℓp-optimization
attack (described in Section 2), it is easy to map plaintext values to
encrypted tuples. Note that the above attack requires the attacker
to see all queries. However, in the case of group-by queries, the
very nature of the query reveals all possible point queries, resulting
in total leakage exposure with just a single query.

To conclude, observing all possible results from point queries (ei-
ther one by one or via a group-by query) turns an SE-implemented
database into a deterministically-encrypted database, making it
vulnerable to simple attacks as described before.

3.2 SE-based Join Queries

A fundamental query type for relational databases is the join query.
A simple join of two tables T and R on attribute x returns all pairs
of tuples from T and R that agree on x , i.e.,

SELECT * FROM T , R WHERE T .x = R .x ;
A simple approach that allows us to support private join queries

using SE is the following: We encrypt T with a semantically-secure
encryption scheme and R with POINT-SE for private point queries
on attribute x . Then we stream all the tuples of T to the client.
Then the client decrypts each tuple t in T and queries the SE index
for R (on attribute x) to retrieve the matching tuples of R. Clearly
this approach has high bandwidth since it requires streaming a
large number of tuples to the client. We call this scheme JOIN-SE.
To address the above bandwidth issue, Kamara and Moataz [26]
propose a construction that, in the case of two tables T and R,

precomputes the answers to join queries on each possible attribute
x . Then they store with SE a mapping from “keyword" x to the
precomputed answer (i.e., pairs of pointers to tuples from T and R
that have the same value on attribute x). This approach requires
both significant amount of storage and setup time. We call this
scheme JOIN-SE-PRECOMPUTE.

Attacks on JOIN-SE and JOIN-SE-PRECOMPUTE . It is easy to
see that both schemes JOIN-SE and JOIN-SE-PRECOMPUTE leak
the encrypted join graph. That is, for each encrypted tuple t of T ,
the respective encrypted tuples t′ of R that have the same value
on x with t are leaked (if such tuples exist).

We propose a simple attack that recovers the values of the en-
crypted tuples: Assuming we have access to (part of) the plaintext
dataset, we can compute the plaintext join graph by connecting
with an edge tuples from T and tuples from R that have the same
plaintext value on attribute x . If all tuples in T and R have at
least one incident edge the attacker can perform the frequency
analysis attack on both T and R and recover the plaintext val-
ues for the encrypted values of attribute x . In this case JOIN-SE
and JOIN-SE-PRECOMPUTE provide exactly the same security
properties for joins as more efficient encrypted systems based on
deterministic encryption (e.g., CryptDB [36]). Otherwise the at-
tack can be performed only on the leaked frequencies and JOIN-SE
and JOIN-SE-PRECOMPUTE have potentially less leakage than
systems based on deterministic encryption.

3.3 SE-based Range Queries

In the case of range queries, we want to retrieve all tuples from
table T that contain value v ∈ [l ,u] in attribute x , i.e.,

SELECT * FROM T WHERE T .x ≥ l and T .x ≤ u;

One way to support private range queries is to treat each numeric
value of attribute x as a keyword and use SE. Then, private range
queries can be supported by transforming the range [l ,u] to series
of private point queries, i.e., searching for the individual values
l , l + 1, . . . ,u − 1,u. We call this scheme RANGE-SE. Many attacks
that exploit the overlapping and volume patterns exist against
RANGE-SE—see [13, 22, 28–30, 32]. In general, these attacks first
compute an ordering of the encrypted tuples and then retrieve the
actual values after observing a certain number of queries.

To address this leakage, Faber et al. [18] and Demertzis et al. [14,
15] have proposed new private range constructions that use SE and
are response-hiding, in that they do not leak overlaps between dif-
ferent range queries. Their main idea, called LOGARITHMIC-SRC
in [14], builds a binary-tree data structure with some extra “internal”
nodes (see Figure 1) on top of the database. Each leaf corresponds
to a value k ∈ {0, 1, . . . ,M − 1} (whereM is the size of the domain
of attribute x) and stores all tuples that have value k at attribute
x (i.e., a leaf can store more than one tuples). Data stored in a leaf
is also copied to its parents. To answer a range search query, we
select the root of the smallest subtree fully covering the query. The
above data structure defines a natural key-value relationship, where
each tree node is a key with the value being its respective database
tuples. This allows us to query the data structure privately using
SE.

1 20 3 4 5 6 7

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

N1,2 N3,4 N5,6

N2,5

1 13

8 20 18

26

57

Figure 1: LOGARITHMIC-SRC [14, 15] consists of a full bi-

nary tree over the domain with an extra internal node be-

tween every two cousins. Red values denote the number of

tuples each node contains (used for the proposed attack).

LOGARITHMIC-SRC yields up to O(N) false positives where N
is the size of the database table. For example, if the range [3, 5]
is being queried in Figure 1 and there is a single tuple in the
range but the rest of the dataset has value 2, node N2,5 will be
returned and therefore the response will be the entire dataset.
LOGARITHMIC-SRC-i, proposed for this problem [14], maintains
two LOGARITHMIC-SRC-type binary trees, one on the domain
{0, . . . ,M − 1} that stores constant-size metadata in the leaves (let
us call this treeT1) and one on the domain {0, . . . ,N −1} that stores
the actual database tuples in the leaves (one per leaf) sorted by the
search attribute (let us call this tree T2). In particular, for every
value of the domain i ∈ {0, . . . ,M − 1}, T1 stores the subrange of
{0, . . . ,N − 1} that corresponds to database tuples with value i in
T2. Therefore, a range query [a,b] is transformed into two queries:
One range query [a,b] in T1 that returns information that allows
one to reconstruct the range [a′,b ′] of T2 that contains the desired
tuples, and finally one range query [a′,b ′] in T2 that returns those
tuples. This approach brings down the worst-case query cost from
O(N) to O(R + r), where R is the size of the queried range (and is
due querying T1) and r is the size of the returned result (and is due
to querying T2).

Do existing attacks apply? Most existing attacks on RANGE-
SE [13, 22, 28–30] do not apply to the above, response-hiding,
schemes. However we must note that LOGARITHMIC-SRC and
LOGARITHMIC-SRC-i leak the volume pattern and they may be
vulnerable to volume pattern attacks despite the fact that none
of the prior proposed volumetric attacks work for these schemes.
Below, we propose such a new attack for LOGARITHMIC-SRC that
could be extended also for LOGARITHMIC-SRC-i.

New attacks on LOGARITHMIC-SRC. The main idea is that if
the attacker observes the volumes of all queries, then she could
potentially reconstruct the tree and map encrypted database tuples
to plaintext values.

For simplicity, let us focus on a small LOGARITHMIC-SRC tree
with Dom = {0, 1, 2, 3} (and therefore 8 nodes, including the one
“extra" internal node—see Figure 1). Assume the adversary observes
the following sizes of results (he actually sees the respective en-
crypted tuples as well): 20, 1, 26, 18, 8, 5, 7 and 13. His goal is to
map these sizes (and the respective encrypted tuples) to the nodes

N0, N1, N2, N3, N01, N12, N23 and N03 of the tree. The tuples that
map to leaf i will therefore have value i!

To do the mapping the adversary exploits the fact that the size of
a parent is equal to the sum of the sizes of its children and therefore
sets up 4 linear equations with 8 unknowns |N0 |, |N1 |, |N2 |, |N3 |,
|N01 |, |N12 |, |N23 | and |N03 |. Of course these equations have an
infinite number of solutions but the one we are interested in is a
permutation of the observed sizes 20, 1, 26, 18, 8, 5, 7 and 13. In our
example, due the fact that all pairwise sums are different, there is a
unique assignment (up to a mirror arrangement), in particular the
assignment |N0 | = 1, |N1 | = 7, |N2 | = 13, |N3 | = 5, |N01 | = 8, N12 =
20, N23 = 18 and N03 = 26. We note here that the described attack
would not work in the case where pairwise-sums are not unique
(e.g., when all leaves have size 1) but other information could be
potentially used in that case. To conclude, this simple attack shows
that concealing the overlapping pattern (as LOGARITHMIC-SRC
is doing) is not enough for fully defending against range attacks.

Generalization of attack toLOGARITHMIC-SRC-i. Recall that
in LOGARITHMIC-SRC-i we maintain two LOGARITHMIC-SRC-
type trees: one for the metadata (T1) and one for the actual data (T2).
Every leaf in T1 has size at most one since a specific domain value
may not be present at all in the database. Thus the above attack
that exploits distinct sizes of leaves might not work very well.

However there are still ways to launch an attack. Coming back
to Figure 1, consider the tree T1 on the domain {0, 1, 2, 3}, with the
difference that all leaf nodes have size either zero or one. Suppose
after all queries have been issued onT1 the adversary observes only
three nodes of size one (and all other nodes have size zero). Looking
into this information carefully, one can tell that these nodes have to
be either N0, N0,1 and N0,3 or N3, N2,3 and N0,3 which implies that
all database tuples have the same value and this value is either 0 or
3. Note that at that point, it will be easy to recover the topology of
T2 as well since for each range query one node of T1 and one for
T2 will be accessed together. Exploring these attacks against such
schemes in more detail is left as future work.

4 SEAL: ADJUSTABLE SEARCHABLE

ENCRYPTION & DERIVED

CONSTRUCTIONS

Most of the attacks on SE-based encrypted databases that were
presented in the previous section exploit the leakage of SE such
as the search pattern, the overlapping pattern and the volume pat-
tern. In this section we propose SEAL, a family of new SE schemes
with reduced leakage with the hope that these can be used to imple-
ment more secure (yet efficient) encrypted databases that withstand
leakage-abuse attacks. Our main building blocks are an adjustable
ORAM, an ORAM that allows one to define the bits of leakage of the
index being accessed in a tunable manner, as well a an adjustable
padding algorithm that adds noise to the actual size of the list being
accessed.

4.1 Adjustable Oblivious RAM

An adjustable ORAM scheme (ADJ-ORAM-α) is parameterized by
a parameter α that defines the number of leaked bits of the ac-
cessed memory location (for traditional ORAM it is α = 0). We now

bit ← Real
ADJ-ORAM-α (λ):

1: M0 ← Adv(1λ).
2: (σ0, EM0) ↔ ADJ-OramInitialize((1λ ,M0,α),⊥).
3: for k = 1 to q do

4: ik ← Adv(1κ , EM0,m1,m2, . . . ,mk−1).
5: ((vik ,σk), EMk) ↔ ADJ-OramAccess((op, ik ,vik ,

σk−1), EMk−1).
6: return bit ← Adv(1k , EM0,m1,m2, . . . ,mq).

bit ← Ideal
ADJ-ORAM-α
Lα1 ,L

α
2

(λ):

1: M0 ← Adv(1λ).
2: (stS , EM0) ← ADJ-SimOramInitialize(1λ ,Lα1).
3: for k = 1 to q do

4: ik ← Adv(1κ , EM0,m1,m2, . . . ,mk−1).
5: (stS , EMk) ↔ ADJ-SimOramAccess(

stS , EMk−1,L
α
2 (ik)).

6: return bit ← Adv(1k , EM0,m1,m2, . . . ,mq).

Figure 2: ADJ-ORAM-α real-ideal security experiments.

Withm0,m1, . . . , we denote the messages exchanged at Line

5 of both experiments.

formally define the ADJ-OramInitialize and ADJ-OramAccess
protocols of our ADJ-ORAM-α scheme:
• (σ , EM) ↔ ADJ-OramInitialize((1λ ,M,α),⊥), takes as in-
put a security parameter λ, a memory array M of n values
(without loss of generality lets assume n is a power of 2)
(1,v1), . . . , (n,vn), a parameter α ∈ {0, 1, . . . , logn} and out-
puts secret state σ (for client), and encrypted memory EM
(for server).
• ((vi ,σ), EM) ↔ ADJ-OramAccess((op, i,vi ,σ ,α), EM) is a
protocol between the client and the server, where the client’s
input is the type of operation op (read/write), an index i and
the valuevi—for op = read client setsvi = ⊥. Server’s input
is the encrypted memory EM. Client’s output consists of the
updated secret state σ and the value vi assigned to the i-th
value of M if op = read (for op = write the returned value
is ⊥). Server’s output is the updated encrypted memory EM.

Next, we define the security of ADJ-ORAM-α in the real/ideal game
of Figure 2 parametrized by leakage functions Lα1 ,L

α
2 .

Definition 4.1. ADJ-ORAM-α is (Lα1 ,L
α
2)-secure if for any PPT

adversary Adv, there exists a PPT simulator containing algorithms
(ADJ-SimOramInitialize,ADJ-SimOramAccess) such that

| Pr[RealADJ-ORAM-α (λ) = 1] − Pr[IdealADJ-ORAM-α
Lα1 ,L

α
2

(λ) = 1]|

is at most neд(λ), where the above experiments are defined in Fig-
ure 2 and where the randomness is taken over the random bits used
by the algorithms of the ADJ-ORAM-α scheme, the algorithms of
the simulator and Adv.

The leakages Lα1 ,L
α
2 are defined in a manner similar to those of

SE, i.e., Lα1 (M) = (n,α) and L
α
2 (i) = idα (i), where idα (i) returns

the α most significant bits of a random logn-bit alias assigned to
tuple (i,vi). Intuitively, if two queries for index i are made on an

(σ , EM) ↔ ADJ-OramInitialize((1λ ,M,α),⊥)
1: LetM be in the form (1,v1), . . . , (n,vn) and µ = 2α .
2: Sample a secret key k ←$ {0, 1}λ .
3: Let πk be a PRP: {0, 1}λ × {0, 1}log2 n → {0, 1}log2 n .
4: Create S1, . . . , Sµ empty arrays of size n

µ .
5: for i = 1, . . . ,n do

6: Let ℓ be the integer representation of the α most sig-
nificant bits of πk [i] and ϕ be the integer representation
of the remaining bits of πk [i].

7: Sℓ+1[ϕ + 1] = vi .
8: for i = 1, . . . , µ do

9: (σi , EMi) ↔ OramInitialize((1λ , Si),⊥).
10: Let EM to be EM1, . . . , EMµ and σ to (σ1, . . . ,σµ).
11: return (σ , EM).
((vi ,σ), EM) ↔ ADJ-OramAccess((op, i,vi ,σ ,α), EM)
1: Parse σ as (σ1, . . . ,σµ) and EM as (EM1, . . . , EMµ)where

µ = 2α .
2: Let ℓ be the integer representation of the α most signifi-

cant bits of πk [i] and ϕ be the integer representation of
the remaining bits of πk [i].

3: ℓ = ℓ + 1 and ϕ = ϕ + 1.
4: ((vi ,σℓ), EMℓ) ↔ OramAccess((op,ϕ,vi ,σℓ), EMℓ).
5: return (vi ,σ , EM).

Figure 3: ADJ-ORAM-α using any ORAM as a black box.

ADJ-ORAM-α , the adversary should only figure out that the α most
significant bits of the queried index are the same—but nothing else.

Construction of ADJ-ORAM-α . The main idea behind our ap-
proach is that the memory array will not be stored in one ORAM,
but it will be partitioned into multiple disjoint subsets, each of
which will then be stored in a separate smaller ORAM. We use as a
black box any secure ORAM= (OramInitialize,OramAccess) to
store each subset. Our construction works by building 2α different
ORAMs ORAM1,. . . ,ORAM2α , each of which will store a part ofM
of size n/2α .

One possible way to partition M into these ORAMs would be to
deterministically assign (i,vi) based on their location inM, i.e., the
first 2α entries will be stored in ORAM1, the next 2α entries will be
stored in ORAM2 and so on. However, this might reveal sensitive
information for certain application settings, e.g., if the server knows
thatM stores vi in a sorted manner, then accessing ORAM1 reveals
that one of the smallest values inM was accessed. Hence, before
performing the partitioning, we randomly permute M using a PRP
P over [1,n] (implemented with a small-domain PRP [21, 33, 37]),
for which the key k is chosen and stored by the client. Let πk be
the corresponding mapping after k has been chosen. Then, the
partitioning of M is performed using the integer representation of
the α most significant bits of the permuted index and the remaining
bits of πk (i) correspond to the index πk (i) of tuple (i,vi) inside the
small ORAM. Our construction is given in Figure 3.

Theorem 4.2. Assuming (OramInitialize,OramAccess) is a
secure ORAM and πk is a secure PRP, then ADJ-ORAM-α presented
above is (Lα1 ,L

α
2)-secure, according to Definition 4.1.

Proof. The ORAM scheme used is secure and therefore we use its
algorithms SimOramInitialize and SimOramAccess. In particu-
lar, the ADJ-SimOramInitialize takes as an input Lα1 = (n,α)
and the security parameter λ, and it creates EM1, . . . EMµ and
σ1, . . . ,σµ using SimOramInitialize(1λ , nµ) for µ =

n
2α . The ADJ-

SimOramAccess takes as an input idα (i), from L2 leakage, which
determines in which encrypted memory EMi must be accessed, and
performs a random access using SimOramAccess(σi , EMi). Then,
the simulator properly updates EMi and σi . □

Performance and leakage of ADJ-ORAM-α . The higher the
value of α is, the more efficient ADJ-ORAM is (ORAM is applied
on a smaller parts of the array) and the larger the leakage becomes
(more accesses will be made on the same small parts of the array).
Concretely, if we assume that the ORAM used as a building block
has T (n) access overhead (e.g., T (n) = O(logn) for the most effi-
cient ORAM [35]), then ADJ-ORAM-α has an improved T (n/2α)
overhead. In Section 4.3 we discuss how ADJ-ORAM-α can be in-
stantiated using [38] and oblivious data structures [42] and we
provide a more concrete performance analysis.

4.2 Adjustable Padding

In this section we propose adjustable padding, another primitive
that will help us build more secure SE schemes. Recall that existing
SE schemes leak the query result size, i.e., |D(w)|. In particular
in a dataset with size N a keyword list can have N different sizes.
One way to eliminate this leakage is by padding all the keyword
lists D(w) to the same size N (worst-case padding). However, this
would introduce a prohibitive storage/search overhead. To avoid
this overhead, one could pad to the closest power of two, forcing
the adversary to observe at most logN + 1 sizes—thus leaking
log logN +1 bits, at most doubling the search and storage overhead.

Our proposal is a generalization of the above idea. Our padding
can be parameterized by a value x that defines the number of dif-
ferent sizes (which are exactly ⌈logx N ⌉ + 1) that the adversary can
observe. Our padding algorithm works as follows (see Figure 4).
Given a keyword list D(w) of size, we find the integer i such that
x i−1 < |D(w)| ≤ x i . Then we pad the list D(w) with x i − |D(w)|
dummy entries. Note that this padding strategy can increase the
space and search overhead by a factor of x and yields leakage of
log logx N + 1 bits! In other words the larger x is, the less efficient
the scheme becomes and the less leakage the adversary observes.
We note here that for simulation purposes, after all lists are padded,
our algorithm pads the dataset to a total of x · N entries so that to
avoid leaking any information about the dataset.

We note here that padding techniques have been used before for
concealing the size of the accessed result (e.g., see Cash et al. [10]
and Bost and Fouque [8]). However, these approaches depend on
the distribution of the input dataset, which leads to more leakage,
even prior to query execution. Instead our padding algorithm is
distribution-agnostic and can thus be simulated only by knowing
the size of the dataset N and the padding parameter x .

4.3 SEAL

We now present SEAL(α ,x), our adjustable SE construction that
uses ADJ-ORAM-α , ADJ-PADDING-x and an oblivious dictionary

D ← ADJ-Padding(x ,D)

1: N = |D|.
2: for each keywordw in D do

3: Find the smallest i: x i−1 < |D(w)| ≤ x i .
4: Pad D(w) with x i − |D(w)| dummy values.
5: Pad D with dummy records so that the total size is x · N .
6: return the padded dataset.

Figure 4: ADJ-Padding-x leading to logx N different sizes.

ODict described in Section 2 as a black boxes. We recall that pa-
rameter α is defined in the range [0, logN] and that for α = 0 all the
search/overlapping pattern bits are protected, and for α = logN all
bits are leaked. Also for larger x values, less volume pattern bits
are leaked—e.g., for value x = N no volume pattern bits are leaked.

Construction of SEAL(α ,x). SEAL(α ,x) is defined similarly with
SE (see Section 2) and it contains algorithms/protocols Setup and
Search. Our construction is described in Figure 5.

SEAL’s setup takes as input dataset D. Parameters α and x are
considered public and we do not provide them as input explicitly.
First, it uses ADJ-PADDING(x ,D) in order to transformD to a new
dataset with at most logx N + 1 distinct results sizes (see Line 2 of
setup). Then, it sorts all the (w, id) pairs in lexicographical order (see
Line 3 of setup) and places them sequentially in a memory arrayM
which is then given as input to the ADJ-OramInitialize algorithm
(see Line 8 of setup). The sorting guarantees that all (w, id) for the
same keywordw will be placed in consecutive memory locations.
All entries for w can then be retrieved if one knows the index of
the first appearance of w and the size of the padded list |D(w)|.
For every keyword w , this information is stored in an oblivious
dictionary T (see Line 7 of setup).

SEAL’s search takes as input the queried keyword w , client’s
secret state stC and the encrypted indexI, which contains the small
oblivious memories EM1, . . . as well as the oblivious dictionary T .
For a given queried keywordw , the client first performs an access to
the oblivious dictionary to retrieve the index of the first appearance
ofw inM and the padded result size (cntw) (see Lines 2-3 of search).
Then, it performs cntw accesses in the ADJ-ORAM-α in order to
retrieve the result X (see Lines 4-7 of search). Note that, due to
padding, X may contain “dummy” records which will be filtered
out by the client afterwards.

Leakage Definition for SEAL(α ,x). SEAL(α ,x) is secure accord-
ing to the standard SE/OSE definition described in Section 2 with
the following leakage functions

L
α,x
1 (D) = (N ,α ,x) and Lα,x2 (D,w) = Dx

α (w) ,

where Dx
α (w) contains the α most significant bits of the aliases

of the document identifiers in the padded list D(w) as output by
algorithm ADJ-PADDING(x ,D). For the rest of the paper we will
simply denote these leakages as L1 and L2.

Theorem 4.3. Assuming that ODict is a secure oblivious data
structure according to [42] (Def. 1) , ADJ-ORAM-α is secure according
to Def. 4.1, SEAL(α ,x) is (L1,L2)-secure according to Def. 2.1.

(stC,I) ← Setup(1λ ,D)
1: Set N = |{D(w)}w ∈W |, where W is the set of keywords in D.
2: D ← ADJ-PADDING(x ,D). ▷ Parameter x is public.
3: LetM be an array of N entries storing (w, id) pairs of D in lexicographic order and iw be the index ofw’s first occurrence inM.
4: (T ,σodict) ← ODictSetup(1λ ,N).
5: for allw ∈W do

6: Let cntw = |D(w)|.
7: (σodict,T) ↔ ODictInsert((w, iw | |cntw ,σodict),T).
8: (σoram, EM) ← ADJ-OramInitialize(1λ ,M,α). ▷ Parameter α is public.
9: stC = (σoram,σodict) and I = (EM,T).
10: return (stC ,I).
((X, stC),I) ↔ Search((stC ,w),I)

1: Parse I as (EM, T) and stC as (σodict, σoram) and let X be empty.
2: ((value,σodict),T) ↔ ODictSearch((w,σodict),T).
3: Parse value as (iw | |cntw).
4: for i = iw , . . . , iw + cntw do

5: ((vi ,σoram), EM) ↔ ADJ-OramAccess((read, i,⊥,σoram,α), EM). ▷ Parameter α is public.
6: X ← X ∪ vi .
7: return (X, stC ,I).

Figure 5: Our SEAL(α ,x) scheme using ADJ-ORAM-α , ADJ-PADDING-x , and an oblivious dictionary as black boxes.

Proof. ADJ-ORAM-α is secure—our proof uses simulator algorithms
ADJ-SimOramInitialize and ADJ-SimOramAccess. The security
parameter λ is given. The SimSetup takes as an inputL1 = (N ,α ,x).
SimSetup initializes (T ,σodict) ← ODictSetup(1λ ,N) and it in-
serts N random entries of the form (w, iw | |cntw) in the oblivious
dictionary T using ODictInsert. Then, it computes N ′ = x · N .
Finally, it uses ADJ-SimOramInitialize(1λ ,N ′,α) to create the en-
crypted memory EM and state σoram. The SimSearch algorithm
takes as an input L2 and performs one random access in the obliv-
ious dictionary T using ODictSearch, and calls |Dx

α (w)| times
the ADJ-SimOramAccess with input the α-bit identifiers inDx

α (w)
(Dx

α (w) has the required leakage for ADJ-SimOramAccess). Then,
the simulator updates EM,T and the states σodict, and σoram. □

Asymptotic Performance. Let (T (n),C(n), S(n)) be the access com-
plexity, client-space complexity and server-space complexity re-
spectively of the underlying ORAM used and let (t(n), c(n), s(n))
be the access complexity, client-space complexity and server-space
complexity respectively of the underlying oblivious dictionary used.
The server space required is always S(x · N) + s(N). Now, assum-
ing the client keeps, along with the oblivious dictionary state, the
ORAM states locally, the search complexity for a keywordw is

t(N) + x · |D(w)| ·T

(
x · N

2α

)
and the client space is 2α · C(x · N /2α) + c(N). Assuming the
client does not keep ORAM states locally and just downloads and
re-encrypts to the server, the search complexity forw becomes

t(N) + x · |D(w)| ·max
{
T

(
x · N

2α

)
,C

(
x · N

2α

)}
and the client space is just c(N). Whether one chooses to store the
local states locally or oursource them depends on the parameter α .

For example, for small values of α it is better to keep them locally,
while for larger values of α it might worth outsourcing.

Implementing ADJ-ORAM-α . We implement each small ORAM
in ADJ-ORAM-α with Path-ORAM [38]. Recall that the cost of Path-
ORAM for accessing n blocks of size B is B logn for accessing the
path andO(log3 n) for recursively updating the position map. In our
case we apply Path-ORAM on N /2a blocks of size around 2 logN
bits (logN bits for storing keywordw and logN bits for storing the
id) and therefore our total cost isO(logN log(N /2a)+ log3(N /2a)).

Implementing SEAL(α ,x). For SEAL(α ,x), apart fromADJ-ORAM-
α as described above, we also use an oblivious dictionary ODict
(for storing iw | |cntw) implemented with an oblivious AVL tree [42]
(this requires b log2 N additional additive cost where b is the bit-
size of iw | |cntw). In case the number of keywords/attributes |W|
in small, we choose to keep the dictionary locally—this requires
around 3|W| logN bits which in practice is a few megabytes and
is a common assumption in Dynamic SE [7, 9, 19, 39]. Our experi-
ments in the next section assume the dictionary is kept locally. Note
that even if we do not keep the dictionary locally, we only require
one oblivious access to it per query w . This is most of the times
subsumed by the required |D(w)| ADJ-ORAM-α queries, especially
when |D(w)| is large (e.g., Ω(log2 N)). In any case we can always
reduce the above cost with an adjustable oblivious dictionary at the
expense of leaking α bits of the search pattern. Finally, in case the
worst-case overhead of SEAL(α ,x) becomes higher than sequential
scan (which has no leakage), we perform a sequential scan.

4.4 New Constructions for Point & Join Queries

In Section 3 we presented/reviewed three constructions for point
and join queries on encrypted databases that use SE as a black box:

(i) POINT-SE, a construction for point queries on encrypted data;
(ii) JOIN-SE and JOIN-SE-PRECOMPUTE, two constructions for
join queries on encrypted data.

Our proposed new constructions reduce the leakage of the above
constructions by using SEAL(α ,x), instead of simple SE. By doing
this replacement we have the following constructions, for various
parameters of α and x ,

(1) POINT-ADJ-SE;
(2) JOIN-ADJ-SE.

Note that JOIN-ADJ-SE can be instantiated either by using JOIN-SE
or JOIN-SE-PRECOMPUTE as basis.

4.5 New Constructions for Range Queries

The first adjustable construction that we propose for range queries,
RANGE-ADJ-SE-(a,x), is based on the “naive" construction RANGE-
SE from Section 3.3, where instead of simple SE we use SEAL(a,x).

Our second construction, RANGE-SRC-SE-(a,x) comprises two
modifications LOGARITHMIC-SRC-i [14] so that the potential at-
tack presented in Section 3.3 is mitigated. Recall the attack works
by exploiting volumes exposed by treeT1 which (the treeT1) stores
metadata required to search tree T2.

Our first modification of LOGARITHMIC-SRC-i is a simple one:
Instead of outsourcing tree T1 using SE, keep tree T1 locally unen-
crypted and therefore previously exposed volume information will
not be available. The only downside is the O(|W|) client storage
that is required to storeT1, whereW is the set of values of the range
attribute. In practice this storage is minimal, e.g., none of the ranges
of the attributes shown in Table 1 of our evaluation exceed 1MB.
(Of course, if strictly necessary, we can outsource tree T1 to the
server via an oblivious dictionary without any leakage, increasing
the search time by a polylog factor.)

RANGE-SRC-SE-(α ,x).However, the abovemodification addresses
the leakage only in T1. But T2 can also leak information. For exam-
ple, (a) if the same tree node is accessed twice, there is nonzero
probability that the same range is being queried, and (b) the result
size (or an upper bound of it) is leaked from accessing T2.

To reduce the effect of leakages (a) and (b), one could reduce the
number of sizes observed by the adversary by implementing the
encrypted index for T2 using SEAL(α ,x) instead of simple SE.

Our second modification that yields our final scheme RANGE-
SRC-SE-(α ,x) does almost that, but it does not use ADJ-Padding
for reducing the volume pattern leakage—this would blow up the
space to O(xN log(xN)). Instead RANGE-SRC-SE-(α ,x) reduces
the number of sizes that are being observed to logx N +1 by storing
only as many equally distributed levels from T2. E.g., for x = 2
all levels are stored, for x = 4 half of the levels are stored, while
for x = 16 one fourth of the levels are stored. Note that by this
approach the search complexity becomes O(x · r) and the space
becomes O(N logx N).

5 EVALUATION AGAINST ATTACKS

To benchmark the effectiveness of our proposed adjustable con-
structions POINT-ADJ-SE, JOIN-ADJ-SE and RANGE-SRC-SE, we
could use existing state-of-the-art leakage-abuse attacks [10, 13,

22, 24, 28, 30]. However, these attacks are very sensitive to the ex-
act overlapping or volume pattern leakage (e.g., for ordering the
records in range queries), which is not available in our adjustable
constructions.

We introduce instead a new class of attacks where the adversary
tries to work with only the available bits of leakage, and at a high
level, tries to guess the rest of the bits. Also, our adversary is all-
powerful, having plaintext access to the input dataset. We stress
that this is a “heavy” benchmark that already covers known attacks
[10, 13, 22, 24, 28, 30]. This is because if our adjustable constructions
reduce the success rate of such a powerful attacker, a more realistic
attacker with partial knowledge of the dataset would perform even
worse (assuming the same attack strategy is followed). We now
describe the attacker model in detail.

5.1 Attacker Model

Our adversary has two goals:
(1) First, to perform a query recovery attack, namely decrypting

the client encrypted queries;
(2) Second, to perform a database recovery attack, namely map-

ping encrypted tuples to the (decrypted) client queries.5

Wenote here that a database recovery attack in the case of SE (where
α = logN) is trivial, since which encrypted records mapping to
which client queries is information that is contained in the leakage
itself. This task becomes more challenging for smaller values of α
where this information is not given in its entirety.

For our experiments, we define the query recovery success rate
QRSR as the ratio of the number of correctly decrypted queries over
the total number of considered queries. We also define the database
recovery success rate DRSR as the ratio of the number of tuples
that have been correctly mapped to (decrypted) client queries over
the total number of considered tuples.

5.2 Experimental Setup

Our experiments were conducted on a 64-bit machine with an Intel
Xeon E5-2676v3 and 64 GB RAM. We utilized the JavaX.crypto
and the bouncy castle library [2] for the cryptographic operations.
Our java implementation does not use hardware supported crypto-
graphic operations. However, this does not affect our conclusions.
The use of hardware supported cryptographic operations can fur-
ther improve the absolute time for construction and search, but it
will not affect the comparison for different parameters α and x .

We consider the following two datasets in our experimental eval-
uation. For attacking POINT-ADJ-SE-(α ,x), we use a real dataset
consisting of 6,123,276 tuples with 22 attributes of reported inci-
dents of crime in Chicago [3]. For attacking POINT-ADJ-SE-(α ,x),
JOIN-ADJ-SE-(α ,x), and RANGE-ADJ-SE-(α ,x), we used the TPC-
H benchmark [4] with scaling factor 0.1 which is widely used by
the database community6. TPC-H consists of eight separate tables
(PART, SUPPLIER, PARTSUPP, CUSTOMER, NATION, LINEITEM,
REGION, ORDERS). Our attacks take as input the leakage of all
5Note here that figuring out the mapping from encrypted tuples to decrypted client
queries allows the adversary to learn information about the content of the encrypted
tuples. E.g., in the case of point queries once you map the encrypted tuples to a
recovered query q then you know that one attribute of the encrypted tuples is q .
6We do not provide an evaluation for group-by queries since the results are identical
to those for point queries (after observing all the distinct queries).

QRSR ←QueryRecoveryAttack(T , {tq , |q |}q∈Q)
Input: Plaintext database table T and set of tokens tq to be decrypted along with their volumes |q |.
Output: The success rate QRSR of the attack.
1: Set T ← ADJ-Padding(x ,T).
2: Set correct = 0.
3: for each token tq do

4: Choose q′ at random from the set {q′ : |T (q′)| = |q |}.
5: Remove q′ from T .
6: if q′ is the correct value for tq then

7: correct++.
8: return correct/|Q |.

Figure 6: Query Recovery Attack for Point Queries.

DRSR ← DatabaseRecoveryAttack(T , {tq , Sq }q∈Q)
Input: Plaintext database table T and set of tokens tq to be decrypted along with their set Sq of α-bit identifiers of encrypted tuples.
Output: The success rate DRSR of the attack.
1: Set T ← ADJ-Padding(x ,T).
2: Set correct = 0.
3: for each pair of token/id-set (tq , Sq) do
4: Choose q′ at random from the set {q′ : |T (q′)| = |Sq |}.
5: Remove q′ from T .
6: for each id ∈ Sq do

7: Choose random suffix such that id | |suffix has not been used before with q′.
8: if q′ is the correct value for tq and suffix are the correct remaining bits of id then

9: correct++.
10: return correct/

∑
|Sq |.

Figure 7: Database Recovery Attack for Point Queries.

possible queries (worst-case leakage). The same attacks can be run
with less queries, leading to lower success rate. When evaluating
the performance of SEAL(α ,x) we store the oblivious dictionary
locally.

We denote with x = ⊥ the lack of padding, where the attacker
can observe up to N distinct result sizes.

5.3 Attacking POINT-ADJ-SE
We evaluate the effectiveness of POINT-ADJ-SE-(α ,x) against our
new query/database recovery attacks presented in Figures 6 and 7.
In both attacks we consider one attribute of one table at a time.

Our query recovery attack (see Figure 6) is very simple and uses
only volume pattern leakage. Having access to the plaintext table
T , the adversary computes the new padded table for the queried
attribute (Line 1 in Figure 6) using the padding parameter x . Now,
for a given encrypted query q with size |q | the adversary uses T to
find the candidate plaintext values which have size |q |, and chooses
one of them at random (see Line 4 in Figure 6). Note that the higher
the value of x is, the larger the set of possible values in Line 4 is
therefore reducing the success rate of the attack.

The database recovery (see Figure 7) works as follows. First the
adversary is using the x-padded volume pattern to decrypt which
keyword we are querying, as before. Then, for each returned α-bit
tuple identifier id the adversary picks the remaining suffix bits at
random and returns the respective tuple (see Lines 6-9 in Figure 7).

Attribute i
2 4 6 8 10 12 14 16

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=2
x=4
x=16
Random

(a) LINEITEM (TPC-H)

Attribute i
2 4 6 8 10 12 14 16 18 20 22

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=4
x=16
x=64
Random

(b) Crime Dataset

Figure 8: Query Recovery Attack against POINT-ADJ-SE for

various x .

If both the keyword is correctly recovered and the suffix is correctly
guessed (the probability of which drops as α decreases), then the
mapping of the specific tuple to the recovered keyword is correct.

Query Recovery Attack Evaluation. Figures 8(a), and 8(b) show
the evaluation of POINT-ADJ-SE-(α ,x) against the query recovery
attack.We only vary x sinceα does not affect the effectiveness of the
attack. Figure 8(a) demonstrates the evaluation for the LINEITEM
table (TPC-H benchmark), while Figure 8(b) presents the results for
the Crime dataset. In all figures, we additionally report the attacker’s
query recovery success rate if she just maps encrypted queries to
plaintext values at random, i.e., 1/|W|—ideally, the success rate of
our attack should be as close as possible to this “Random” approach.

Attribute i
2 4 6 8 10 12 14 16 18 20 22

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
α=17
α=19
α=21
α=23
Greedy

(a) x = ⊥

Attribute i
2 4 6 8 10 12 14 16 18 20 22

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
α=17
α=19
α=21
α=23
Greedy

(b) x = 2

Figure 9: Database Recovery Attack against POINT-ADJ-SE
for the Crime Dataset. We show all attributes.

In Figure 8(a), for x = 2 (only a 2× overhead in search time and
storage), we see that our scheme forces the attacker to perform very
close to “Random" for 14 out of 16 attributes. We observe thatQRSR
for attribute 8 is close to Random for x = 16, while for attribute 4
greater values of x are needed. Let us look why this is the case for,
say, attribute 8: There are only three values that can be queried with
highly-skewed result sizes |q1 | =1, |q2 | =1,000 and |q3 | =100,000.
Therefore the larger the number of padded sizes is, the more likely
it is that each qi will be mapped to a distinct padded size, allowing
the attacker to still distinguish between these queries. We observe
similar patterns for the other tables of TPC-H and we report in
Appendix the results for tables ORDERS and PART (Figure 15).

In Figure 8(b) we repeat the same experiment for the 22 attributes
of the crime dataset, and we observe that in 17 out of 22 attributes
for x = 4 (up to 4× performance degradation) the attacker’s QRSR
significantly drops and is close to the Random approach. For at-
tributes 6, 8, 10, 12, 15 greater values of x are needed again due to
the small number of values that these attributes have. Finally, we
observe that in attributes 15 and 18,QRSR is higher for x = 64 than
for x = 4, which is counterintuitive. This is because the query sizes
of the values in these attributes are distributed in a way that for
x = 4 there are less distinct sizes than for x = 64.

Database Recovery Attack Evaluation. As discussed above the
database recovery attack is based on the query recovery one. Thus,
due to lack of space we focus on the 22 attributes of the crime
dataset in whichQRSR is higher than the one in the TPC-H dataset.
Figure 9 shows the attacker’s success rate for the database recov-
ery attack (DRSR) for α = (17, 19, 21, 23) (α = 23 corresponds to
SEAL(logN ,x)) and for x = ⊥ and x = 2. Recall that in our threat
model the attacker has plaintext access to the input dataset, so
for the database recovery attacks we report as a reference point a
greedy strategy that the adversary may follow, in which she maps
all encrypted tuple/tuple-ids to the most frequent plaintext value
(guessing heuristically). E.g., for a binary attribute if the most fre-
quent value appears in the 70% of the tuples/tuple-ids then the
adversary achieves DRSR = 70% by following the greedy strategy.
Ideally, the goal is to find α as close as possible to logN and the
smallest possible value of x , while DRSR is below the greedy strat-
egy. As is shown in Figure 9 for α = logN − 2 = 21 and x = 2
the attacker’s success rate is always below the success rate of the
greedy strategy. In Figure 10, we provide a more detailed evaluation
for 4 specific attributes of the crime dataset for α ∈ [0, logN] and
x = ⊥, 2, 3, 4.

α

0 5 10 15 20

D
R

S
R

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
No Padding
x=2
x=3
x=4
Greedy

15 20

×10-3

0.5
1

1.5
2

2.5

(a) Attribute 4

α

0 5 10 15 20

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
No Padding
x=2
x=3
x=4
Greedy

15 20

0.02
0.04
0.06
0.08

0.1
0.12
0.14

(b) Attribute 7

α

0 5 10 15 20

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
No Padding
x=2
x=3
x=4
Greedy

15 20

×10-3

2
4
6
8

(c) Attribute 11

α

0 5 10 15 20

D
R

S
R

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
No Padding
x=2
x=3
x=4
Greedy

15 20

×10-3

2
4
6
8

10
12

(d) Attribute 20

Figure 10: Database Recovery Attack against POINT-ADJ-SE
for the Crime Dataset. Attributes 4,7,11,20.

5.4 Attacking JOIN-ADJ-SE
We evaluate the effectiveness of JOIN-ADJ-SE-(α ,x) using the data-
base recovery attack proposed for point queries (see Figures 7).
Since the database schema and the size of each table are usually
not considered private information, we do not consider join query
recovery attacks.

Attack Evaluation. Figure 11 demonstrates the database recovery
attack for foreign-key join queries. We consider foreign-key joins
between tables (i) SUPPLIER and NATION—Figure 11(a), and (ii)
CUSTOMER and NATION; the TPC-H benchmark contains only
foreign-key joins. We observe in Figure 11(b) the DRSR for α =
[0, logN], and x = ⊥, 2, 3, 4. For α = 0 and x = ⊥, DRSR is 65% in
Figure 11(a) and 97% in Figure11(b), but for α = logN −1 and x = 2,
DRSR drops below 6%. We conducted all the possible foreign-key
joins and we observe the same pattern.

5.5 Attacking RANGE-SRC-SE
We evaluate the effectiveness of RANGE-SRC-SE-(α ,x) scheme
for various x against slightly modified versions of the attacks for
point queries (Figures 6 and 7). In particular in Line 2 of both
Figure 6 and 7, we do not perform padding but we recreate T2 in
plaintext with only logx N + 1 evenly distributes levels. We report
as a baseline a scheme that does not perform padding but hides the
entire overlapping pattern leakage. For the case of query recovery
attack we set α = logN for RANGE-SRC-SE-(α ,x), since varying
α does not affect the effectiveness of the attack.

AttackEvaluation.We focus on numeric attributes PS_SupplyCost
from table PARTSUPP; P_Size and P_RetailPrice from table PART;
L_TAX, L_QUANTITY, L_DISCOUNT from table LINEITEM. The
attributes PS_SupplyCost and P_RetailPrice were transformed from
floating point decimal numbers to integers with rounding. Table 1
presents for each attribute the number of all possible range queries

α

0 2 4 6 8 10

D
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6 No Padding
x=2
x=3
x=4

6 8 10

0.04
0.06
0.08

0.1
0.12
0.14

(a) SUPPLIER 1NATION

α

0 5 10

D
R

S
R

0.2

0.4

0.6

0.8

1
No Padding
x=2
x=3
x=4

10 12 14

0.04
0.06
0.08

0.1
0.12
0.14

(b) CUSTOMER 1NATION

Figure 11: Database Recovery Attack for Foreign-key Join

Queries for the TPC-H Benchmark.

Attribute #Queries # Correctly Decrypted Queries

Baseline RANGE-SRC-SE
x = 2 x = 4 x = 16

PS_SupplyCost 500500 73446 14 6 2
P_Size 1275 1184 10 5 2

P_RetailPrice 519690 19555 18 5 2
L_Tax 45 45 8 5 3

L_Quantity 1275 1263 10 4 3
L_Discount 66 66 8 4 1
Table 1: Query Recovery Attack for Range Queries

and the number of the correctly decrypted ones using the baseline
(Column 3 of Table 1), and RANGE-SRC-SE for x = 2, x = 4 and
x = 16 (Columns 4, 5, 6 of Table 1). We observe that x = 16 drasti-
cally reduces the number of correctly decrypted queries. We omit
the presentation of the database recovery attacks for ranges, since
DRSR is primarily based on the result of the query recovery attack,
and we see in Table 1 that even for x = 2 QRSR is small.

5.6 Efficiency of adjustable constructions

Figure 12(a) shows the smallest speedup achieved by our construc-
tion SEAL(α ,x) compared to an approach that performs sequential
scan and has no leakage, and for various values of α and x . Simi-
larly in Figure 13(a) we show the largest slowdown of SEAL(α ,x)
compared to simple SE which has the maximum leakage. We do an
analysis of these plots in the next section.

Figure 12(b) and 13(b) evaluateRANGE-ADJ-SE-(0,x) andRANGE-
SRC-SE-(logN ,x). Note that both schemes hide the overlapping
pattern, the first by using ORAM, the second by construction. Also
both schemes are using the same x , allowing the adversary to ob-
serve the same number of different sizes (but not necessarily the
same sizes). Note that RANGE-SRC-SE performs much better than
RANGE-ADJ-SE. This is to be expected given RANGE-SRC-SE has
more leakage—the search pattern, which however we do not know
how to use in an attack here.7

In Appendix, we provide additional experiments regarding the
performance of our SEAL scheme. We show experiments for values
of α and x that significantly mitigate the proposed attacks and
achieve good performance (as we also discuss in the next section).
In Figure 16, we evaluate the required index size and construction
time of SEAL for a dataset with 8 million tuples and x = 1, 2, 3, 4.
Finally, in Figures 17 and 18 we evaluate the search time of our SEAL

7Although the search pattern (combined with the access pattern) has been used in
recent work by Kornaropoulos et al. [29] to attack RANGE-SE, it is not clear how it
can be used for RANGE-SRC-SE-(α, x).

α

0 5 10 15 20

S
p
e
e
d
-u

p

10
0

10
2

10
4

10
6

10
8

No Padding
x=2
x=4
x=16
x=256
x=65536
x=N

(a) SEAL(α, x)

log
2
(x)

5 10 15 20

S
p

e
e

d
-u

p

10
-2

10
0

10
2

10
4

10
6

10
8

RANGE-SRC-SE-(logN,x)
RANGE-ADJ-SE-(0,x)

(b) Range Schemes

Figure 12: Speedup from sequential scan.

α

0 5 10 15 20

S
lo

w
-d

o
w

n

10
0

10
2

10
4

10
6

10
8

No Padding
x=2
x=4
x=16
x=256
x=65536
x=N

(a) SEAL(α, x)

log
2
(x)

5 10 15 20

S
lo

w
-d

o
w

n

10
-2

10
0

10
2

10
4

10
6

10
8

RANGE-SRC-SE-(logN,x)
RANGE-ADJ-SE-(0,x)

(b) Range Schemes

Figure 13: Slowdown from SE.

scheme for two attributes of the crime dataset for α = 20, 21, 22, 23
and x = ⊥, 2, 3, 4.

5.7 Setting parameters α and x in practice

We observe that for point and join queries setting α = logN − 3
and x = 4 significantly reduces both QRSR and DRSR , while for
these values the smallest speedup from sequential scan is more than
262, 000× and the maximum slow-down from SE is 32×. There rare
cases that attributes with skewed distribution and small number of
distinct values, e.g., binary attributes, require higher values of x ,
e.g., x = 16 or x = 64. In the cases of range queries, we observe that
our RANGE-SRC-SE-(logN ,x) for x = 16 significantly mitigates
our all-powerful query recovery attack and achieves a maximum
32× slowdown from insecure RANGE-SE.

6 CONCLUSION

In this work we show the necessity of new defense mechanisms
(beyond SE) for encrypted databases. We propose SEAL a family
of new SE schemes with adjustable leakage which can be used for
building efficient encrypted databases (for point, range, group-by
and joins queries) that are robust against all-powerful attacks. We
hope that SEAL be used as benchmark for measuring the robustness
of previous/future leakage-abuse attacks.

REFERENCES

[1] [n.d.]. Attack of the week: searchable encryption and the ever-expanding leakage
function. https://blog.cryptographyengineering.com/. Accessed: 2019-06-06.

[2] [n.d.]. Bouncy Castle. http://www.bouncycastle.org. ([n. d.]).
[3] [n.d.]. Crimes 2001 to present (City of Chicago). https://data.cityofchicago.org/

Public-Safety/Crimes-2001-to-present/ijzp-q8t2. ([n. d.]).
[4] [n.d.]. TPC-H benchmark. http://www.tpc.org/tpch. ([n. d.]).
[5] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order Preserving Encryption for Numeric Data. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data. ACM, 563–574.

https://blog.cryptographyengineering.com/

[6] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based database
with privacy and data confidentiality. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. ACM, 205–216.

[7] Raphael Bost. 2016. Sofos: Forward Secure Searchable Encryption. In CCS.
[8] Raphael Bost and Pierre-Alain Fouque. [n.d.]. Thwarting Leakage Abuse Attacks

against Searchable Encryption–A Formal Approach and Applications to Database
Padding. Technical Report. Cryptology ePrint Archive, Report 2017/1060.

[9] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and backward
private searchable encryption from constrained cryptographic primitives. In
CCS.

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
abuse attacks against searchable encryption. In CCS.

[11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. [n.d.]. Searchable
Symmetric Encryption: Improved Definitions and Efficient Constructions. Journal
of Computer Security, 2011 ([n. d.]).

[12] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable
Symmetric Encryption: Improved Definitions and Efficient Constructions. In
CCS.

[13] Jonathan L Dautrich Jr and Chinya V Ravishankar. 2013. Compromising Privacy
in Precise Query Protocols. In Proceedings of the 16th International Conference on
Extending Database Technology. ACM, 155–166.

[14] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, and Minos Garofalakis. 2016. Practical Private Range Search Revisited.
In SIGMOD.

[15] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-
giannakis, Minos Garofalakis, and Charalampos Papamanthou. 2018. Practical
Private Range Search in Depth. TODS (2018).

[16] Ioannis Demertzis and Charalampos Papamanthou. 2017. Fast Searchable En-
cryption With Tunable Locality. In SIGMOD.

[17] Ioannis Demertzis, Rajdeep Talapatra, and Charalampos Papamanthou. 2018.
Efficient searchable encryption through compression. PVLDB (2018).

[18] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and
Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact Matches.
In ESORICS.

[19] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. 2018. New Constructions for Forward and Backward Private
Symmetric Searchable Encryption. In CCS.

[20] Oded Goldreich and Rafail Ostrovsky. [n.d.]. Software Protection and Simulation
on Oblivious RAMs. J. ACM, 1996 ([n. d.]).

[21] Louis Granboulan and Thomas Pornin. 2007. Perfect block ciphers with small
blocks. In International Workshop on FSE.

[22] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenny Paterson. 2018.
Pump up the Volume: Practical Database Reconstruction from Volume Leakage
on Range series. In CCS.

[23] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Why Your En-
crypted Database Is Not Secure. In Proceedings of the 16th Workshop on Hot Topics
in Operating Systems, HotOS 2017, Whistler, BC, Canada, May 8-10, 2017. 162–168.

[24] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2014. Inference
attack against encrypted range queries on outsourced databases. In Proceedings
of the 4th ACM conference on Data and application security and privacy. ACM,
235–246.

[25] Seny Kamara and Tarik Moataz. 2019. Encrypted Multi-Maps with
Computationally-Secure Leakage. (2019).

[26] Seny Kamara and Tarik Moataz. 2019. SQL on Structurally-Encrypted Databases.
ASIACRYPT (2019).

[27] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. 2018. Structured encryption
and leakage suppression. In CRYPTO.

[28] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic
attacks on secure outsourced databases. In CCS.

[29] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2020. The State of the Uniform: Attacks on Encrypted Databases Beyond the
Uniform Query Distribution. IEEE SSP 2020.

[30] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved
reconstruction attacks on encrypted data using range query leakage. In SP.

[31] Evangelia Anna Markatou and Roberto Tamassia. [n.d.]. Mitigation Techniques
for Attacks on 1-Dimensional Databases that Support Range Queries. ISC 2019.

[32] Evangelia Anna Markatou and Roberto Tamassia. 2019. Full Database Recon-
struction with Access and Search Pattern Leakage. ISC 2019.

[33] Ben Morris and Phillip Rogaway. 2014. Sometimes-Recurse Shuffle - Almost-
Random Permutations in Logarithmic Expected Time. In EUROCRYPT.

[34] Muhammad Naveed, Seny Kamara, and Charles VWright. 2015. Inference Attacks
on Property-Preserving Encrypted Databases. In CCS.

[35] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.
PanORAMa: Oblivious RAM with logarithmic overhead. In FOCS.

[36] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.
2011. CryptDB: Protecting Confidentiality with Encrypted Query Processing. In
SOSP.

[37] Emil Stefanov and Elaine Shi. 2012. FastPRP: Fast Pseudo-Random Permutations
for Small Domains. IACR (2012).

[38] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path Oram: An Extremely Simple
Oblivious Ram Protocol. In CCS.

[39] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld, Amin Sakzad, Viet
Vo, and Surya Nepal. 2018. Practical Backward-Secure Searchable Encryption
from Symmetric Puncturable Encryption. In CCS.

[40] Stephen Tu, M Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.
Processing analytical queries over encrypted data. PVLDB 6, 5 (2013), 289–300.

[41] SameerWagh, Paul Cuff, and PrateekMittal. 2018. Differentially Private Oblivious
RAM. Proceedings on Privacy Enhancing Technologies (2018).

[42] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov,
and Yan Huang. 2014. Oblivious data structures. In CCS.

[43] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. [n.d.]. All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable
Encryption. In USENIX 2016.

Real(λ)

1: (D, stA) ← A(1λ)
2: (stC ,I0) ←Setup(1λ ,D)
3: for 1 ≤ i ≤ q do

4: (wi , stA) ← A(stA ,Ii−1,M1, . . . ,Mi−1)*
5: (Xi , stC ,Ii) ↔Search(stC ,wi ,Ii−1)

6: LetM = M1 . . .Mq , I = I0 . . .Iq , X = X0 . . .Xq
7: return v = (I,M,X), stA

IdealLSETUP,LQUERY (λ)

1: (D, stA) ← A(1λ)
2: (stS ,I0) ←SimSetup(LSETUP(D))

3: for 1 ≤ i ≤ q do

4: (wi , stA) ← A(stA ,Ii−1,M1, . . . ,Mi−1)*
5: (Xi , stS ,Ii) ↔ SimSearch(stS ,LQUERY(D,wi),Ii−1)

6: LetM = M1 . . .Mq , I = I0 . . .Iq and X = X0 . . .Xq
7: return v = (I,M,X), stA

* LetMk be the messages from client to server in the Search/SimSearch protocols.

Figure 14: SE/OSE real-ideal security experiments.

Queries
0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(a) x = ⊥

Queries
0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(b) x = 2

Queries
0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

10
4

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(c) x = 3
Queries

0 50 100 150

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

10
4

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(d) x = 4

Figure 18: Search costs - Crime Dataset (Attribute 8)

Attribute i
1 2 3 4 5 6 7 8 9

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=2
x=4
x=16
Random

(a) ORDERS (TPC-H)

Attribute i
1 2 3 4 5 6 7 8 9

Q
R

S
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No Padding
x=2
x=4
x=16
Random

(b) PART (TPC-H)

Figure 15: QueryRecoveryAttack against POINT-ADJ-SE for

various x .

Dataset Size (#tuples)
×106

1 2 3 4 5 6

T
im

e
 (

s
e

c
)

1

2

3

4

5

6

7

8

9

10
No Padding
x=2
x=3
x=4

(a) Construction Time

Dataset Size (#tuples)
×106

1 2 3 4 5 6

S
iz

e
 (

M
B

)

100

200

300

400

500

600

700

800
No Padding
x=2
x=3
x=4

(b) Index Size

Figure 16: Index Costs - Crime Dataset

Queries
0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(a) x = ⊥

Queries
0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(b) x = 2

Queries
0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(c) x = 3
Queries

0 100 200 300 400

T
im

e
 (

m
s
e
c
)

10
-2

10
0

10
2

ADJ-SE(23,x)
ADJ-SE(22,x)
ADJ-SE(21,x)
ADJ-SE(20,x)

(d) x = 4

Figure 17: Search costs - Crime Dataset (Attribute 5)

	Abstract
	1 Introduction
	2 Premiliminaries
	3 Encrypted Databases from Searchable Encryption & Attacks
	3.1 SE-based Point Queries
	3.2 SE-based Join Queries
	3.3 SE-based Range Queries

	4 SEAL: Adjustable Searchable Encryption & derived constructions
	4.1 Adjustable Oblivious RAM
	4.2 Adjustable Padding
	4.3 SEAL
	4.4 New Constructions for Point & Join Queries
	4.5 New Constructions for Range Queries

	5 Evaluation against Attacks
	5.1 Attacker Model
	5.2 Experimental Setup
	5.3 Attacking POINT-ADJ-SE
	5.4 Attacking JOIN-ADJ-SE
	5.5 Attacking RANGE-SRC-SE
	5.6 Efficiency of adjustable constructions
	5.7 Setting parameters and x in practice

	6 Conclusion
	References

