
The privacy of the TLS 1.3 protocol

Ghada Arfaoui1, Xavier Bultel2,3, Pierre-Alain Fouque2,3, Adina Nedelcu1,2,3,
and Cristina Onete4

1 Orange Labs, France
2 IRISA, France

3 Rennes Univ, France
4 XLIM/CNRS 7252, France

Abstract. TLS (Transport Layer Security) is a widely deployed proto-
col that plays a vital role in securing Internet traffic. Given the numerous
known attacks for TLS 1.2, it was imperative to change and even redesign
the protocol in order to address them. In August 2018, a new version of
the protocol, TLS 1.3, was standardized by the IETF (Internet Engi-
neering Task Force). TLS 1.3 not only benefits from stronger security
guarantees, but aims to protect the identities of the server and client by
encrypting messages as soon as possible during the authentication. In this
paper, we model the privacy guarantees of TLS 1.3 when parties execute
a full handshake or use a session resumption, covering all the handshake
modes of TLS. We build our privacy models on top of the one defined
by Hermans et al. for RFIDs (Radio Frequency Identification Devices)
that mostly targets authentication protocols. The enhanced models share
similarities to the Bellare-Rogaway AKE (Authenticated Key Exchange)
security model and consider adversaries that can compromise both types
of participants in the protocol. In particular, modeling session resump-
tion is non-trivial, given that session resumption tickets are essentially
a state transmitted from one session to another and such link reveals
information on the parties. On the positive side, we prove that TLS
1.3 protects the privacy of its users at least against passive adversaries,
contrary to TLS 1.2, and against more powerful ones.

Keywords: privacy, TLS 1.3, AKE protocols

1 Introduction

The TLS protocol is one of the most commonly used secure-channel establish-
ment protocols today. It ensures the security of, for example, messages exchanged
over the Internet when incorporated in https [13,27], secure emailing, and even
Voice-over-IP (VoIP) communications [29]. As other authenticated key-exchange
(AKE) protocols, TLS consists of two steps: a handshake and subsequently, se-
cure message-exchange. During the handshake, a client and a server exchange
information over an insecure channel, allowing for (unilateral or bilateral) au-
thentication and for the computation a tuple of symmetric keys. Subsequently,

2 Arfaoui et al.

during the secure message-exchange step (also called the record layer for TLS),
these keys are used with authenticated encryption. This process guarantees the
most basic security properties of a protocol for secure-channel establishment,
namely the confidentiality and authentication of the messages.

In this paper, however, we shift the focus away from the security of secure-
channel establishment, and instead consider the privacy it provides.

In TLS, parties can choose to execute a full handshake each time they com-
municate, or they can resume a past session using session resumption. The TLS
1.3 full handshake that is most likely to be used in practice consists of a uni-
laterally (server-only) authenticated Diffie-Hellman-based key-exchange, which
guarantees perfect forward secrecy, i.e., compromising a party’s long term keys
does not affect past sessions. Once a client and a server have successfully com-
pleted a full handshake, it is possible to resume that handshake later, by using
a pre-shared key and optionally an additional Diffie-Hellman element. This im-
proves performance by avoiding authentication.

Session resumption in TLS 1.3 strongly depends on so-called session tickets.
Upon the completion of a (full or resumed) session, the server sends the client
a ticket as part of the secure session-traffic. In order to resume that session
the client sends the unencrypted ticket back in a following session, and both
parties use the associated pre-shared key (PSK) to compute new session keys.
Unfortunately, session resumption, in its pre-shared key only mode, yields no
forward secrecy.

In this paper we show that, in addition to forward secrecy, PSK-based session
resumption also loses the degree of privacy guaranteed by full-mode handshakes.
The same problem holds for PSK-DHE resumption.

1.1 The TLS 1.3 protocol

The history of the TLS protocol is littered with attacks against both the hand-
shake and the record layer subprotocols [12,30,25,3,2,26,28,9,1,10,8,4,20,11,5].
The plethora of flaws discovered in the TLS 1.2 version have led the IETF to
propose TLS 1.3 as the future de-facto AKE protocol to safeguard Internet con-
nections.5

In many ways, the design of TLS 1.3 revolutionizes real-world authenticated
key-exchange, by employing modern cryptographic mechanisms. All messages
in the the protocol are encrypted using AEAD (Authenticated Encryption with
Auxiliary Data). Additionally, HKDF (Hash Key Derivation Function), replaces
HMAC in the key schedule. The key schedule itself is much more complex than
in previous versions, respecting the paradigm of separating keys used at different
layers and for different purposes. Insecure or obsolete algorithms from previous
versions of TLS are no longer supported by TLS 1.3. The protocol is designed
with modularity in mind, which should make it easier to implement or formally
analyse. We give a more detailed description of the design elements that affect
the privacy of TLS 1.3 in Appendix A.

5 For this paper, we have relied on the August 2018 version of RFC 8446, available at
https://datatracker.ietf.org/doc/rfc8446/.

https://datatracker.ietf.org/doc/rfc8446/

The privacy of the TLS 1.3 protocol 3

1.2 Privacy notions for AKE

Beyond confidentiality, the notion of user privacy has been increasingly required
for practical cryptographic countermeasures. Such requirements were exacer-
bated by Edward Snowden’s revelations of mass surveillance attacks and large
data centers storing massive amounts of user metadata [32], which co-motivated
the emergence of GDPR [16] and e-Privacy [17] regulations. In addition, design-
ers of cryptographic primitives and protocols have taken to an “encrypt as early
as possible” paradigm, which formed the backbone of TLS 1.3.

At the very minimum, a privacy-protecting protocol can hide the identity of
the participants (both client and servers). At the level of the protocol, this can
be done by never using identifiers in plaintext; for lower layers, more complex
mechanisms such as Tor might have to be put into place. But, while learning
a party’s identity is a complete privacy breach, partial information leakage –
such as realizing whether the protocol has been run before, or linking a single,
anonymous user to two distinct sessions – can also be exploited. This is the reason
why modern privacy-preserving protocols aim to guarantee various flavours of
unlinkability, rather than the weaker property of identity-hiding. This is also
the approach we take in this paper, modelling strong adversaries and minimal
restrictions on winning conditions.

Even less ambitious goals, such as identity-hiding, can be difficult to achieve
in practice, for instance in the context of authentication. Krawczyk [23] noted
that it is impossible to design a protocol that will protect both peers’ identities
from active attacks, since the first peer must disclose its identity to its partner
before authentication can take place. As TLS 1.3 is expected to mainly run –
like its predecessors – with only unilateral authentication, we may hope that
it protects the identity of the server from passive and active adversaries. This
would be a vast improvement with respect to previous versions of TLS, in which
the server’s identity is usually sent in clear together with its certificate.

In addition to the revolutionary design of its full handshake, TLS 1.3 en-
ables session resumption in two modes: PSK and PSK-DHE. This latter mode
adds freshness in session key computation. Both modes make use of the so-called
session tickets. However, there seems to be no consensus about its implementa-
tion, especially that TLS 1.3 specification gives only generic guidelines about
its construction. In this paper, we analyse the privacy of the different modes of
TLS handshake and discuss the privacy impact of the way session tickets are
constructed.

1.3 Our contributions

Our three main contributions are as follows: we formalized a game-based Left-or-
Right indistinguishability definition for the properties attained by the protocol;
we described a number of inevitable attacks in AKE protocols (providing for
them in our model); and finally we proved the privacy properties guaranteed by
the full handshake and the session-resumption mechanisms. We discuss below in
more detail each of these contributions.

4 Arfaoui et al.

Our privacy model. We define the privacy of TLS as a type of unlinkability
of protocol sessions. The adversary is an active Man-in-the-Middle, who can
interact with protocol participants arbitrarily, akin to Bellare-Rogaway AKE
adversaries [7]. However, as opposed to [7] models, in which the adversary knows
whom he is interacting with, in our definitions we use the notion of virtual
identifier taken from the RFID privacy framework of Hermans et al. [22]. Our
adversaries will repeatedly be able to query a drawing oracle, which takes as
input two (possibly distinct) parties of the same type (clients or servers) and
outputs either the left or the right party, depending on a secret bit b. The goal
of our adversary will be to guess b with a probability significantly larger than 1

2 .

A key aspect of our model is that we view resumed sessions as being linked to
the previous session in which the PSK (and the ticket) is computed; we account
for this by allowing clients and servers to have a state. The concept of tying
sessions together in this way lies at the core of our model, and is one of the
strongest ways in which the adversary can try to link sessions. Unfortunately,
this inter-connection between the session also implies some restrictions in terms
of the Left-or-Right, Corruption, and Revealing queries that the adversary is
allowed to make.

A non-trivial design choice in our model concerns Left-or-Right queries. Ide-
ally, we would like the adversary to be able to make multiple drawing queries,
under reasonable restrictions (such as: one cannot make draw the same party
twice without first freeing it). Unfortunately this seems impossible: during the
proof the reduction to the AEAD security of the channel over which the ticket
is sent would require guessing a large, combinatorial number of instances. Con-
sequently, we have a choice of whether to define selective privacy (the adversary
declares in advance which parties it will later draw), or allowing a single Draw-
Party query, which is –however– adaptive. We choose the latter approach.

Trivial Attacks. Ideally, we would have liked our games to have a “clean”
winning condition: the adversary would win if he managed to output a correct
guess for the bit b. Unfortunately, this is not possible. Even for the full TLS 1.3
handshake an adversary can win by impersonating a client – since we consider
server-only authentication. We call such an attack trivial, in the sense that it
automatically allows the adversary to win, regardless of the design of the proto-
col.

Resumption brings out many more attacks against user privacy, which we
detail in Section 3. The easiest way in which an attacker can break our Left-
or-Right privacy notion is to choose (by using the Draw oracle) two parties
such that, for some given partner, one of the two parties holds a resumption
ticket with that partner, while the other does not. In that case, the adversary’s
strategy would be to force resumption and distinguish between the drawn parties
based on whether resumption worked (the handshake runs to completion) or not
(there is an abort). Thus, we must restrict the adversary’s winning conditions to
capture the indistinguishability between two parties that have similar resumption
profiles. We note that these threats are generalizable to a wider category of

The privacy of the TLS 1.3 protocol 5

protocols supporting resumption. Indeed, the attacks do not exploit features
specific to TLS 1.3, but rather, weaknesses of session resumption in general.

Proving the privacy of TLS 1.3. In order to prove the privacy of TLS 1.3, we
employ techniques often used in provable security for analysing AKE or other
types of protocols. We reduce the problem of breaking the privacy of TLS users
to either breaking down the atomic cryptographic primitives (like the signature
or the authenticated encryption) or solving computational problem presumed
hard (such as computational Diffie-Hellman). As long as these assumptions hold
true, TLS guarantees the privacy of its users up to a certain number of intrinsic
trivial attacks that we exclude from the model.

1.4 Applicability and impact

Our results are, to some degree, tailored to TLS 1.3, and to some degree more
generic, covering a wider class of protocols. We point out some of the limitations
below.

Protocol limitations. Analysing the privacy of complex protocols, such as
TLS 1.3, is a daunting task. As a result, we only focus on some of its features,
including the full handshake, session resumption in PSK and PSK-DHE mode,
but not 0-RTT. The precise protocol we analyse in this paper is described in
Section 2.2.

Although we strove to include as many of the protocol’s privacy-preserving
features as possible, some seem difficult to model, including parameter negoti-
ation and error messages. The former can be serious privacy risks, since they
can be used to profile the server’s or client’s behaviour, which in turn can help
link sessions of the same party. Another feature we omit is the Server Name
Indication (SNI) extension, which allows a single server to run TLS handshakes
on behalf of multiple domains, using multiple public keys. Defining privacy in
this context is tricky, since we would have to model the fact that certain servers
are allowed to run handshakes for one domain, while others cannot.

Finally, we only considered one possible implementation of session tickets,
which is also implemented by, for instance, WolfSSL6: namely, the server will
encrypt the resumption master secret and a nonce within the session ticket, using
a long-term symmetric key. However, we also discuss other implementations in
our concluding remarks. Session tickets are non-reusable in our model.

Model limitations. Our model is also restricted to unilaterally, server-only-
authenticated protocols in which the client sends the first message. However, we
can trivially transform a protocol for which the server is the initiator into one
in which it is the responder (by just adding a dummy message from the client,
prompting the communication) without impacting the security analyses; It is
only slightly more complicated to capture a mutually-authenticated handshake:
we must add a winning condition that prohibits the adversary from imperson-
ating a client.

6 https://www.wolfssl.com/

https://www.wolfssl.com/

6 Arfaoui et al.

We also assume that servers have a way of a priori distinguishing whether
the handshake will be run in full, PSK, or PSK-DHE modes, thus excluding
some tampering attempts by the adversary. In the TLS 1.3 protocol, no such a
priori knowledge is needed since the server adjusts to the format of the client’s
first message. Finally, the mechanics of the Left-or-Right party-drawing oracle
amount to a number of artificially destroyed tickets, which have no correspon-
dence in real life.

Our attacks. In this paper we present a number of ways in which a generic
adversary can link protocol sessions, both when session resumption is used (most
attacks), and when it is not. These attacks exploit weaknesses which appear in
TLS 1.3, but that are generalizable to larger classes of protocols. Informally
speaking, it is the resumption mechanism in general introduces weakness, not
the TLS 1.3 resumption in particular.

For session resumption, most of our attacks are, to some extent, paralleliz-
able, but have a limited real-world impact. The attacks generally exploit the
fact that resumed sessions imply the existence of a previous, linked session in
which the ticket was forwarded. This allows an attacker to always distinguish
between a party that should be able to resume a session, and a party that can-
not. In the real world, even if an adversary can distinguish between such two
parties, he would require auxiliary information to fully identify the parties as
the sets of resuming and non-resuming parties, depending on the use case, can
be prohibitively large. Nonetheless, as resumption is often used, for instance,
when accessing multiple resources on the same webpage, this would still give
an attacker important information about a user’s access patterns. Consequently,
such attacks are included in our analysis.

Privacy in isolation. In this paper, we prove the privacy of the TLS 1.3 proto-
col in isolation, without considering its composition with lower-layer protocols,
nor other encapsulating primitives. We argue that this is still meaningful, for
two main reasons. First, note that as a general rule, privacy tends to be either
preserved or lost : it is much harder to “create” it. In other words, if TLS 1.3
did not preserve privacy, then its use – even encapsulated in privacy-preserving
lower-layer protocols – would still lead to privacy breaches. In this paper, our
goal was to show precisely what kind of privacy TLS 1.3 preserves. In some
ways, this indicates how much privacy we can hope for, when TLS 1.3 is used as
a protocol in computer networks.7 We do note that one way to extend our result
would be to verify the possibility of composing it with known results on privacy-
preserving routing protocols, such as Tor. This deserves to be the subject of a
separate paper.

7 Note, however, that the reverse is unfortunately not true: even if TLS 1.3 does
preserve privacy, this does not by default guarantee the privacy of its encapsulation
in lower-layer protocols. This is an important limitation of our result.

The privacy of the TLS 1.3 protocol 7

1.5 Related work

To the best of our knowledge, this work proposes the first analysis of the pri-
vacy achieved by TLS 1.3. Our model has some similarities with existing work
on privacy. We combine authenticated key-exchange models akin to Bellare-
Rogaway [7] with game-based privacy in authentication, as defined by Hermans
et al. [22]. This approach was previously taken by Fouque et al. [19] but in the
context of mobile network communications (without public-key primitives and
session resumption). Although we rely on both the Bellare-Rogaway definition
of secure AKE and on the Hermans et al. notion of privacy-preserving RFID
authentication, our model is a non-trivial extension of these two frameworks.
The definitions in this paper are much closer to characteristics such as the uni-
lateral server-only authentication of TLS 1.3, its complex key schedule, and the
ticket-based mechanism of session resumption.

Since TLS is a network protocol, our work also touches upon the field of
anonymous communication in computer networks. An early formalization of
anonymous channels is provided by Hevia and Micciancio [21], who describe
an adversary that is given a matrix of messages in a given protocol, and his goal
is to distinguish between them. The adversary is passive and cannot corrupt par-
ties. Their framework defines several types of privacy properties (such as sender
and/or receiver unlinkability, anonymity) and shows existing reductions (either
trivial, or by using techniques such as cryptography or padding). The model of
Hevia and Micciancio focuses more on the number of messages, their sender,
receiver, and size, and can be seen as a more global view of a network protocol
when subjected to traffic analysis. Our goal here is different: we aim to describe
the properties that are achieved by the TLS 1.3 protocol somewhat in isolation
(thus characterizing the design of TLS 1.3, rather than the way it is used). We
argue that this allows us to consider the effects of stronger adversaries, which
are allowed to corrupt parties, reveal keys, and play active Man-in-the-Middle
roles.

Hermans et al. [22] take an approach closer to ours and formalize privacy
in authentication protocols, particularly in the context of RFID authentication.
They build on previous work dating back to the privacy model of Vaudenay [31].
The adversary is an active Man-in-the-Middle which can interact with parties,
adaptively corrupt them, and learn the result of protocol executions. A central
concept of this framework is that of virtual tag, which is a handle meant to
hide the identity of a party (namely an RFID tag) from the adversary while the
latter interacts with that tag. We adopt this concept here, and follow the general
design of the Left-or-Right (LoR) indistinguishability game used by Hermans et
al.. As a result, our definition captures the unlinkability of TLS 1.3 sessions.

Our results are orthogonal to those of research on the security achieved by
the TLS protocol, such as [14,?], although our model does rely on a simplification
of the multistage security defined by Fischlin and Günther [18].

We assume that implementers follow best practices and ticket anti-replay
measure are in place. Therefore, the Selfie attack [15] would not occur in our
model.

8 Arfaoui et al.

This paper focuses on the privacy achieved by TLS 1.3 in isolation. We do
not focus on its privacy when composed with lower-level protocols, a limitation
which we discuss in Section 1.4. In that sense, our results are orthogonal to work
which covers the privacy of anonymous networking protocols like Tor [6].

Outline of the paper. The paper is structured as follows. In Section 2, we
model the TLS 1.3 protocol and introduce cryptographic assumptions. In Section
3 we describe several trivial attacks. We develop a model for privacy of the full
handshake in Section 4 and extend the model by adding resumption in Section
5. We conclude in Section 6.

2 Preliminaries

The results in this paper are proved for an abstract form of the full and resumed
TLS 1.3 handshake. We stress that our model of the TLS 1.3 handshakes is in-
complete as detailed in Section 1.4. In this section we first describe the way we
model the TLS 1.3 full handshake and two resumption modes. We then describe
in more detail the key scheduling and a protocol idealization in Section 2.1. We
introduce cryptographic assumptions in Section 2.2. They are formally defined in
Appendix B. We illustrate, in Figure 1, an idealization of the TLS 1.3 handshake
in full mode. We designate this protocol as ΠTLS. Then, we also illustrate, in
Figure 2, session resumption in both pre-shared key (PSK) and in pre-shared key
with ephemeral Diffie Hellman (PSK-DHE) modes. We denote this by ΠTLS+res.
To clarify, in ΠTLS+res the parties can execute either full handshakes or session
resumptions, while in ΠTLS they can only execute full handshakes. The nota-
tions we use when describing the protocols are summarized in Table 1. The key
schedule is presented in Figure 3.

2.1 TLS 1.3 handshake and session resumption

In TLS 1.3, the client chooses the handshake mode by the way it constructs its
first message protocol. From that point onward, the execution of the protocol
follows the path illustrated in the figures. If a message is ill-formed, incomplete,
invalid or out of order, the session is terminated with a relevant error message.
Anticipating a bit, we model this by having the Send oracle returning ⊥ (we do
not model the multiple error messages defined in the RFC).

Overview. We can distinguish three main phases in the TLS protocol: the key
exchange, the server authentication and the session authentication8. During the
first phase, the client and the server exchange desired session parameters and

8 We use terminology that is slightly different than the one used in the RFC, for
readability purposes.

The privacy of the TLS 1.3 protocol 9

es early secret
hs handshake secret
ms master secret
C.hs/ S.hs client/server handshake secret
C.htk/ S.htk client/server handshake traffic key
C.fk/ S.fk client/server finished key
C.ts/ S.ts client/server traffic secret
C.tk/ S.tk client/server traffic key
rms resumption master secret
psk preshared key
STicket session ticket
NT ,in.NT ticket nonces
in. (out.) prefixes (see Fig 2, Fig 11)
bk binder key
bnd preshared key binder
`0...`9 labels/strings
PRF pseudo-random fct.
MAC message auth. code

RO random oracle
k server’s ticket encrypt. key
CHello...FinC TLS messages
g generator of a group G
‖ concatenation
| or operator
{}key AE encryption with key
{}−1
key AE decryption with key

”” empty string
Hτ hash of the partial transcript:

C.hs, S.hs: H(CHello....KES)
C.ts, S.ts: H(CHello....FinS)
rms: H(CHello....FinC)
FinS : H(CHello....CVf)
FinC : H(CHello....FinS)
resumption specific:
bnd: H(CHello....STicket)
FinS : H(CHello....KES)

Table 1. List of notations used in Figure 1 and Figure 2.

key share components. This allows them to compute an intermediate secret and
temporary encryption keys, which they use to encrypt the rest of the handshake.
In the second phase, the server sends his certificate and a signature; the client
uses them to authenticate the server. At the end of the protocol, the client and
server exchange a Message Authentication Code (MAC) over the transcript. If
they correctly verify these messages, they compute a new secret, from which
they derive the traffic encryption keys.

At this stage, the server can send some secret data (i.e., a ticket) to the user
enabling him to later on “jumpstart” a new session. This is so-called session
resumption. In order to initiate a resumption, a client will send a ticket to a
server, followed by an associated MAC. If the ticket is valid, this allows parties
to simplify the negotiation/key exchange phase and completely eliminate the
second phase, that of server authentication. Resumption comes in two flavours:
pre-shared key (PSK) and pre-shared key with ephemeral Diffie Hellman (PSK-
DHE) modes, depending on whether or not a Diffie-Hellman key exchange is
executed. Incorporating the Diffie-Hellman into resumption offers stronger secu-
rity guarantees, at the price of extra computation and protocol messages.

Key schedule. The key schedule of TLS 1.3 appears in Figure 3. We distinguish
three main secrets: the early secret es, the handshake secret hs and the master
secret ms. In a full mode handshake, es is simply a publicly-computable string.
However, it is used to “inject” the preshared key psk into the key schedule
when resuming a session. The handshake secret hs is used to derive client and
server handshake secrets (C.hs and S.hs), from which the parties compute two
handshake traffic keys (C.htk and S.htk) as well as message authentication keys
for the Finished messages (C.fk and S.fk). We introduce the prefix “C.” to
designate the client secrets and keys used to send data to the server. Similarly,

10 Arfaoui et al.

Client C Server S
(skS , kS)

· ·Key Exchange ·

es := RO(0; 0)
1.CHello,KEC=gx−−−−−−−−−→ es := RO(0; 0)
2.SHello,KES=g

y

←−−−−−−−−−
hs := RO(gxy; es‖`0) hs := RO(gxy; es‖`0)
C.hs := PRF(hs; `1, Hτ) C.hs := PRF(hs; `1, Hτ)
S.hs := PRF(hs; `2, Hτ) S.hs := PRF(hs; `2, Hτ)
C.htk := PRF(C.hs; `3,””) C.htk := PRF(C.hs; `3,””)
S.htk := PRF(S.hs; `3,””) S.htk := PRF(S.hs; `3,””)
· ·Server Authentication ·

Verify CertS ,CVf
3.{CertS ,CVf}S.htk←−−−−−−−−− CVf := Sign.Sign(skS , Hτ)

S.fk := PRF(S.hs; `4,””) S.fk := PRF(S.hs; `4,””)
C.fk := PRF(C.hs; `4,””) C.fk := PRF(C.hs; `4,””)
· ·Session Authentication ·

Verify FinS
4.{FinS}S.htk←−−−−−−−−− FinS := MAC(S.fk;Hτ)

FinC := MAC(C.fk;Hτ)
5.{FinC }C.htk−−−−−−−−−→ Verify FinC

ms := RO(0; hs‖`0) ms := RO(0; hs‖`0)
C.ts := PRF(ms; `5, Hτ) C.ts := PRF(ms; `5, Hτ)
S.ts := PRF(ms; `6, Hτ) S.ts := PRF(ms; `6, Hτ)
C.tk := PRF(C.ts; `3,””) C.tk := PRF(C.ts; `3,””)
S.tk := PRF(S.ts; `3,””) S.tk := PRF(S.ts; `3,””)

rms := PRF(ms; `7, Hτ) rms := PRF(ms; `7, Hτ)

STicket := {rms,NT}k
Secure record layer with tk(second model only)

6. {STicket,NT}S.tk
←−−−−−−−−−−−−−−−−−−

Fig. 1. Our modelling of the TLS 1.3 handshake - full handshake mode. We do not
explicitly include the length of parameters. The sections in boxes concern only the
extended protocol, ΠTLS+res.

we use the prefix “S.” to designate the secrets and keys of the server used to
send data to the client. The master secret ms is first used to compute the client
and server secrets (C.ts and S.ts), and ultimately the traffic (encryption) keys:
C.tk and S.tk. Optionally, the master secret can be used to derive a resumption
secret rms and, from it, the preshared key psk. The preshared key and associated
ticket are needed in order to resume a session.

The privacy of the TLS 1.3 protocol 11

Client C Server S

(in.rms,in.NT ,in.STicket) (skS ,k)

· ·Key Exchange ·

psk := PRF(in.rms; `8, in.NT)

es := RO(psk; 0)
1′.CHello, KEC = gx

−−−−−−−−−→
bk := PRF(es; `9,””)

2′ in.STicket−−−−−−−−−→
bnd := MAC(bk;Hτ) (in.rms, in.NT) :=

3′.bnd−−−−−−−−−→ {in.STicket}−1
k

psk := PRF(in.rms; `8, in.NT)
es := RO(psk, 0)

bk := PRF(es; `9,””)
bnd := MAC(bk;Hτ)

4′.SHello, KES = gy

←−−−−−−−−− Verify bnd

hs := RO(gxy |0; es‖`0) hs := RO(gxy |0; es‖`0)

· ·Session Authentication ·

Verify FinS
5′.{FinS}S.htk←−−−−−−−−− FinS := MAC(S.fk;Hτ)

FinC := MAC(C.fk;Hτ)
6′.{FinC }C.htk−−−−−−−−−→ Verify FinC

Secure record layer with tk

7′. {out.STicket,out.NT}S.tk←−−−−−−−−−−−−−−−−−−−

Fig. 2. Our modelling of the TLS 1.3 handshake- session resumption, both preshared
key-only and preshared key with Diffie Hellman key exchange. In the boxes we have
the protocol elements specific to the pre-shared key with Diffie-Hellman key exchange
mode. We have prefixed the NT , rms, STicket used at the beginning of the session with
in, and those created at the end of a session by out. This emphasises they are different
variables.

Modelling the key derivation. In order to perform the key derivation, TLS
1.3 uses the Hash Key-Derivation Function (HKDF) [24], which has two main
operations: Extract and Expand. The Extract operation is applied to an input
key material, with some (optional) salt. Its role is to transform a sufficiently
random input into a secret that has high entropy and is compact. The Expand
operation takes a secret, a label and an input. The secret is usually the output of
a preceding Extract operation. The label is a publicly-known string and serves
to have different outputs for the same inputs. For example, two keys might be
computed in almost the same way, but using different labels will produce distinct
and independent keys for different contexts. The input is usually a session hash

12 Arfaoui et al.

0

es0|psk

hs

bnd (ticket MAC key)

gxy|0
C.hs

C.htk (temp. enc. key)

C.fk (MAC key)

S.hs
S.htk (temp. enc. key)

S.fk (MAC key)
ms0

C.ts C.tk (final enc. key)

S.ts S.tk (final enc. key)

rms psk

Fig. 3. The key schedule of TLS 1.3, with bidirectional keys. We use psk if it is
a resumption and 0 otherwise. We use gxy if the handshake mode requires a Diffie-
Hellman key exchange, and 0 otherwise. Encrypting the handshake and record layer
messages with distinct sets of keys is one of the improvements of TLS 1.3.

(the hash applied to the partial transcript), but it can sometimes be an empty
string ””.

Although the original protocol uses the HKDF function [24] to extract key
material, then expand it into keys, we choose to model the extraction steps
as a random oracle (RO), and the expansion steps as runs of a pseudorandom
function (PRF). Using the random-oracle model is a strong idealization; however,
we deem it acceptable for two reasons: (1) previous analyses of TLS 1.3 do show
that the keys obtained through HKDF are indistinguishable from random [14],
under stronger assumptions like PRF-ODH; (2) our focus here is privacy, and
not the security of keys – in idealizing the key derivation, our proofs are cleaner
and easier to follow.

Protocol messages. A TLS 1.3 protocol run consists of the following messages.
The numbers in brackets indicate the position of these messages in Fig 1 and
Fig 2.

CHello(1,1’): The Client Hello message consists of the protocol version(s), a
nonce NC generated by the client, as well as lists of supported cryptographic
primitives and client extensions.

KEC (1,1’): Both in the full handshake, and in the case of session resumption with
PSK+DHE, the client provides a client key-share message KEC consisting
of (the description of) a series of groups and an element gx in each group,
respectively9.

9 This key-share is also present in the PSK resumption mode; however, if only PSK
resumption is used, the DH element provided by the client is not used.

The privacy of the TLS 1.3 protocol 13

SHello(2,4’): The Server Hello message includes the server’s nonce NS , as well as
the server’s selection of the version, extensions, and supported cryptographic
primitives (from amongst the alternatives stated in CHello).

KES (2,4’): The server’s key-share element consists of a single element gy chosen
for one single group, chosen from amongst those sent in KEC .

CertS (3): The server’s certificate CertS is modelled here as just a public key,
which we assume is only attributed to one legitimate entity holding the
corresponding private key.

CVf(3): The server issues the Certificate Verify message to authenticate to the
client as the owner of the key in CertS . The CVf is a signature on the hash
of the handshake messages, up to, and including CertS .

FinS (4,5’): The server Finished message FinS is a MAC keyed with the Server
Finished Key S.fk, on input the current session hash, up to, and including
CVf.

FinC (5,6’): The client Finished message FinC is a MAC keyed with the key C.fk,
on input the session hash up to, and including FinS .

STicket(6,2’,7’): At the end of a handshake, the server may send a client a session
resumption ticket STicket followed by a nonce NT . The STicket encapsulates
rms and a nonce NT in an encrypted and authenticated manner. These values
will be used to compute psk. The NT needs to be forwarded to the client as
well. When resuming a session, a client sends the STicket after CHello and
KEC .

bnd(3’): In the cases of PSK and PSK+DHE, the client sends a pre-shared key
binder bnd, which is a MAC keyed with the key bk, on input CHello, KEC (if
present) and STicket. The key bk is derived from the early secret es, which
takes as input the pre-shared key psk.

2.2 Cryptographic assumptions

Let A designate an algorithm, commonly referred to as an adversary. We denote
a

$← A if the element a is uniformly randomly sampled from the set A.

The Computational Diffie-Hellman (CDH). Let G be a multiplicative cyclic

group of order |G| and g a generator. Let us define ExpCDH
G (A) : x, y

$← |G|,
g, gx, gy → A, g∗ ← A. We define the advantage ofA as AdvGCDH(A) = P[g∗ = gxy].
Any adversary A against CDH in the group G running in time t and making at
most q queries has an advantage of at most εCDH: εCDH ≥ AdvGCDH(A).

Pseudorandom functions (prf). Let K be a keyspace. Let PRF : K×{0, 1}m →
{0, 1}n be some function family. Let Rm→n be the set of all functions from
{0, 1}m to {0, 1}n and f a function from Rm→n . We define the following or-
acle PRFb(z): If b = 1, output PRF(k; z); otherwise, output f(z). Let us define

ExpprfPRF(A): b
$← {0, 1}, k $← K, f

$← Rm→n, d← APRFb(·). We define the advan-

tage of A as AdvPRFprf (A) =
∣∣∣P[b=d]− 1

2

∣∣∣. Any adversary A against the prf property

of PRF running in time t and making at most q queries has an advantage of at
most εCDH: εCDH ≥ AdvGCDH(A).

14 Arfaoui et al.

Existential unforgeability (EUF-CMA). A digital signature scheme Sign is a
tuple of three algorithms: (Gen, Sign, Vfy). Gen() outputs a pair of a signing key
sk and a verification key pk. The algorithm Sign takes as input the key sk and
a message msg and outputs a signature σ. The algorithm Vfy takes as input the
key pk, a message msg, and a signature σ, and outputs 1 if the signature σ is
valid for the message msg and 0 otherwise.

We define an oracle Sign(msg) that returns Sign.Sign(sk, msg) and stores

msg in a list Lsig. Let us define ExpEUF-CMA
Sign (A): b

$← {0, 1}, Lsig ← ∅, sk, pk ←
Sign.Gen() ,(msg∗, sk∗)← ASign(·) . We define the advantage ofA as AdvSignEUF-CMA(A) =
P[Sign.Vfy(pk; sk∗) = 1 ∧msg∗ /∈ Lsig]. Any adversary A against the EUF-CMA
property of Sign running in time t and making at most q queries has an advan-
tage of at most εEUF-CMA: εEUF-CMA ≥ AdvSignEUF-CMA(A).

AE is a stateful-length hiding authenticated encryption scheme (or stLHAE).
Such a scheme provides confidentiality of communication, integrity of ciphertexts
and additional data, protection against message reordering and replay, as well
as hiding the length of the messages to some degree. An adversary A against
stLHAE is given access to encryption and decryption oracles, AEncb and ADec.
Informally, an adversary wins the security game if he can distinguish between
two possible outputs of AEnc (he chooses two messages and receives a ciphertext
encrypting one of them) or if he can desynchronize the ADec oracle by inputting
a successful forgery.

We formally define the stLHAE security experiment in Appendix B.

3 Trivial attacks

In this section we detail trivial attacks applicable to TLS and related protocols,
using an intuitive pseudo-protocol notation.

Parties (Alice, Bob, or a website W/W’) exchange messages. The messages
are written on top of arrows going from a sender to a receiver of that message.
Rather than formally defining a full protocol and its set of messages, we infor-
mally describe message contents or their intended role in between commas. If a
party knows a symmetric encryption key k or a session resumption ticket t, this
is noted as a superscript. An encrypted text is written within accolades, with
the encryption key specified as a subscript.
A denotes the adversary. If a text is emphasised, this is a precondition or

an assumption (on the powers of the adversary) needed for the attack. Non-
emphasised text is a comment or an explanation. If we list two parties, followed
by a question mark, this means the adversary is unsure which of the two is the
real sender or receiver of the message.

3.1 Full handshake attacks

Trivial privacy leaks (Figure 4). Messages used to authenticate a user are,
by their nature, privacy-sensitive. The party sending the first authentication

The privacy of the TLS 1.3 protocol 15

message in a protocol has no way of knowing, at the time the message is sent, if
they are communicating with an honest or malicious party. In previous versions
of TLS, the server used to send its certificate in the clear. This trivially leaks
the identity of the server to any eavesdropper. Encrypting the message protects
it to some degree. Sessions between honest parties no longer leak sensitive in-
formation, but active adversaries could mount a man-in-the-middle attack by
initiating a protocol session. As discussed in [23], AKE protocols cannot hide
the identity of both parties against active adversaries.

a)Alice
“I am W’’←−−−−−−W

Eavesdroppers can read the message.

b)Ak {“I am W”}k←−−−−−−−−Wk

Man-in-the-middle attack against privacy.

Fig. 4. Unencrypted versus encrypted authentication messages: encrypting provides
stronger privacy guarantees, but it cannot defend against adversaries impersonating
the unauthenticated party.

Impersonating a server leaks information about clients. Specifically,
if they want to connect or not to that server. (Figure 5). Assume Alice
wants to have a session with a website, either W or W’. However, assume there
exists an adversary that can convince Alice that he is, for example, the website
W. Alice will accept the session if and only if the adversary impersonated the
correct website. Even if the adversary impersonates the wrong server, he still
ends up learning something about Alice that he didn’t know before mounting
the attack: namely, Alice did not wish to initiate a session with that particular
server.

A is able to impersonate W.

Alice
“Start new session ”−−−−−−−−−−−−−−−−−→W or W’?

· ·
Alice

“I am W’’←−−−−−− A(W)
a)If Alice accepts the session, W is the intended partner.

b)If Alice rejects, W’6=W is the intended partner.

Fig. 5. If an adversary can convince Alice he is W, he can learn whether Alice intended
to start a session with W or with another server.

16 Arfaoui et al.

3.2 Resumption attacks

Client with a ticket, distinguishable from a client without a ticket
(Figure 6). Alice and Bob wish to connect to a website W. Alice has a resump-
tion ticket, Bob does not. An adversary sees either Alice or Bob establishing a
session with W. If it is a session resumption, he can, by process of elimination,
conclude that it was Alice who initiated the resumption.

a)Alicet
“Start new session”−−−−−−−−−−−−−−−−−→W

b)Bob
“Start new session”−−−−−−−−−−−−−−−−−→W

c)Alicet
“Resume session using t”−−−−−−−−−−−−−−−−→W

Fig. 6. Alice can either start a new session or resume an older one, while Bob can only
start a new session. This makes them distinguishable.

We can apply the same argument for servers. Assume that Alice has a re-
sumption ticket from a website W, but she doesn’t have such a ticket from a
website W’. If she resumes, she is clearly in a session with W, and not with W’.

Session Linking (Figure 7). An adversary can learn more about the identity
of the participants in a session, if he is able to “link” it to another one he
knows more about. This is possible due to session resumption tickets that appear
identical in succeeding sessions. However, to mount this attack, the adversary
must first retrieve the ticket, e.g., by decrypting the first message encoding
the ticket. The attack works as follows. We assume the adversary obtains the
transcripts of various protocol sessions, amongst which, a full handshake and
its resumption. Let us assume he has a way of “accessing” the ticket the server
sent in the first session. Because he sees the same ticket in both sessions, he can
conclude that one session is the resumption of the other.

Assume the adversary is uncertain about the identity of the parties in one of
the sessions. Due to this additional information (having linked the two sessions),
he may now resolve this uncertainty. We illustrate one such example in Figure
7.

Alicek
{Ticket t}k←−−−−−−−Wk

A retrieves Alice’s ticket t.
Alice or Bob?t

“Resume session using t”−−−−−−−−−−−−−−−−−−−−→W
A concludes Alice, and not Bob resumed the session.

Fig. 7. By seeing the same ticket in two sessions, the adversary concludes that one
session is the resumption of the other one. Alice, who received the ticket in the initial
session, is the party who resumed the session.

The privacy of the TLS 1.3 protocol 17

Ticket redirection (Figure 8). Assume Alice wishes to resume a session with
a server unknown to the adversary. To find out to whom Alice wishes to connect,
the adversary will intercepts her first message in the protocol and forward it to
various servers. When he encounters a server W that accepts the ticket, he has
identified Alice’s intended website.

Alicet
“Resume session with W using t”−−−−−−−−−−−−−−−−−−−−−−−−−−→ A

A “Resume session with W using t”−−−−−−−−−−−−−−−−−−−−−−−−−−→W or W’?

Fig. 8. The adversary reroutes a ticket meant for W to a server he is uncertain about.
If the server accepts, it is W. If not, it is some other website.

Cascading pre-shared key compromise (Figure 9). It’s not exactly a
stand-alone attack, but a “feature” that exacerbates other types of attacks, such
as session linking.

TLS’s pre-shared key only resumption mode does not ensure perfect forward
secrecy. Thus, once the adversary obtains the key material in a session, he can
compute the keys and secrets of their session resumption.

Session linking appeared when an adversary identified the same ticket in a
session and its resumption. If that session is instead resumed n number of times
using pre-shared key only resumption and the first session is compromised, then
an adversary could pair any of the n sessions in order to obtain information
about one of the parties.

Alicek
{Ticket t}k←−−−−−−−Wk

A obtains t and its associated preshared key.
Using the preshared key, A computes the
key schedule of subsequent resumptions.

......................

Alicek
′ {Ticket t′}k′←−−−−−−−−Wk′

Alice or Bob?t
′ “Resume session using t′”−−−−−−−−−−−−−−−−−−−−−→W

Fig. 9. Assume the adversary compromises a session. Then he can compromise any
subsequent resumptions if they do not include a Diffie Hellman exchange. This allows
him to mount the session linking attack even after an n-th resumption.

Ticket encryption key compromise (Figure 10). Assume an adversary that
knows the key a website W is using to encrypt its tickets. Next, the adversary
tries to decrypt any tickets he sees on the network. If the decryption succeeds,
he knows the messages are meant for W.

18 Arfaoui et al.

A has W’s ticket encryption key.

Alicek
{Ticket t}k←−−−−−−−W or W’?k

A decrypts t, concludes Alice is talking to W
if and only if decryption succeeds.

Fig. 10. Assume that A has the long term ticket encryption key of a server W. He
then decrypts any tickets on the network. If decryption succeeds, the ticket is meant
for W.

3.3 Other attacks

There exist other implicit trivial attacks. First of all, TLS allows the parties
to propose from and choose between various cryptographic primitives and ex-
tensions. As a consequence, one can certainly distinguish between parties that
implement the protocol differently or do not support the same extensions. This
will happen in any protocol that offers “freedom of choice”. But for sets of parties
that implement the protocol in the same manner, our results apply. Secondly,
traffic in the record layer can also be a distinguishing factor, for example by
number of messages sent and received during a session. The model by Hevia
and Micciancio [21] better captures what happens at the record layer in terms
of privacy, what guarantees we have and do not have. In our model, we only
analyse the handshake.

4 TLS full handshake mode

In this section, we formally model the privacy of TLS’ full handshake mode
(unilateral authentication and no resumption). We begin by introducing the
concept of a virtual identifier. Next, we formally define the parties and instances
involved in the protocol, including their attributes. In the following section, we
describe a set of auxiliary functions and lists that allow us to elaborate the
oracles and the winning conditions. We provide a theorem and a proof regarding
the privacy achieved by ΠTLS in this model.

4.1 Virtual identifiers

Central to our model is the concept of virtual identifier, or vid. The adversary
has access to an oracle allowing him to bind together two parties, Pi and Pj . The
output of the oracle is a string vid=Pi|Pj , the concatenation of the two parties.
The adversary will use the vid to interact with the party “behind” it, which
is either Pi or Pj , based on a secret bit b. The adversary wins if he correctly
identifies b, given certain winning conditions.

The adversary can choose Pi = Pj . Such sessions help him learn more about
the party and the protocol, but they leak no information about the bit b.

The adversary can create multiple vids, as long as a party is not bound inside
two or more “active” vids at a time. He can also “activate” and “deactivate” the
same vid multiple times.

The privacy of the TLS 1.3 protocol 19

4.2 Parties, instances and attributes

Let C = {Ci ,Cj ...} be a set of clients and S = {Si ,Sj ...} a set of servers. We
denote by P = {Pi ,Pj ...} the set of parties, namely the disjoint union S] C.
Each party has the following attributes:

– pk and sk: the public key in the certificate and the corresponding secret key.
Clients have undefined certificates (⊥);

– corr: a corruption attribute which is initialized to 0 (uncorrupted) and be-
comes 1 if the adversary has corrupted that party using a query;

A party may run multiple instances. We denote by πsi the sth instance of the
party Pi . We often substitute i by vid, and πsvid instantiates the real party behind
a vid. Each instance possesses a series of attributes:

– pk, sk and corr, inherited from the real party behind a vid;
– sid, a unique session identifier, used for matching instances. What constitutes

the session identifier is protocol specific. In some protocols, one party gen-
erates a unique string as the session identifier. In Bellare-Rogaway models,
two instances are involved in the same session if their transcript, up to the
last message, is the same. In the case of ΠTLS and ΠTLS+res, we will consider
the sid to be the concatenation of the nonce of the client and the nonce of
the server. Note that this constitues a subset of the transcript;

– pid, the partner of πsi , initialized to ⊥;
– the accept bit, initialized to ⊥. It takes the value 1 when the instance finishes

in an accepting state and 0 if the instance aborts/rejects. A value of 1 also
implies that partner authentication succeeded (if it was the case);

– the keys: C.htk - the client handshake traffic key, S.htk - the server handshake
traffic key, C.tk - the client traffic key and S.tk - the server traffic key ;

– for all session keys key ∈ {C.htk, S.htk, C.tk, S.tk}, there exists a reveal bit
ρkey, set to 1 when the adversary obtains the value of the key.

At the beginning of the privacy game we run an algorithm called Setup(·).
Setup(1λ) takes as input a security parameter λ in unary notation. From the
security parameter we determine the nrsv (number of servers), nrcl (number of
clients), and the keyspaces for all cryptographic primitives. We then initialize
the parties and create the keys for the servers. We initialize all lists to the empty
list and any required cryptographic primitives involved in the protocol. The set
P containing all parties is then given to the adversary.

4.3 Auxiliary functions and lists

We also define a set of auxiliary functions and lists. These are simply tools we
use in modelling.

type(Pi) If Pi ∈ S, return S . Otherwise return C .
type(vid) Specifies whether the vid corresponds to a client or a server. Let

vid = Pi|Pj . If Pi,Pj ∈ S, return S . Otherwise return C .

20 Arfaoui et al.

real(vid) Outputs the true party behind a vid. For all i, j, including i = j:
If vid = Pi|Pj ∧ b = 0, return Pi .
If vid = Pi|Pj ∧ b = 1, return Pj .
The bit b is uniformly randomly sampled by the challenger at the
beginning of the privacy game. This function is not accessible by the
adversary.

We further denote:

Lvid The list of active vids. A vid is active if it is the output of a DrawParty and it
was not deactivated by a corresponding Free query. We detail these queries
in the next section. A party can appear in at most one active vid at a time.

Lact The list of active parties. A party is active if it is part of an active vid.
Linst The list of all instances πsvid ever created.
Lchg The challenge list contains the list of server instances such that their vid is

binding distinct servers and they execute a full handshake. Otherwise said,
it contains instances πsvid such that vid = Sk|Sl, with Sk 6= Sl.

4.4 Adversarial oracles

The attack capabilities of a probabilistic polynomial time adversary A are mod-
elled by providing him access to the following oracles (also see pseudocode form
in Fig. 11):

– DrawPartyb(Pi , Pj) allows the adversary to obtain a vid binding two parties,

activating it. It adds Pi,Pj to Lact, creates a vid = Pi|Pj , adds vid to
Lvid and returns vid. This oracle aborts if type(Pi) 6= type(Pj) (they are a
server and a client) or one of the parties is already bound in an active vid at
the time of the query: Pi ∈ Lact ∨ Pj ∈ Lact. We also abort if the adversary
queries two distinct clients: type(Pi) = type(Pj) = C ∧ Pi 6= Pj ;

– NewSession(vid, vid′) creates a new instance of a given active vid that will

communicate with a specified partner vid′. It returns a new instance πsvid,
with πsvid.pid = real(vid′). Its other attributes are set to default values. If
vid = Pi|Sj with either Pi.corr = 1 or Pj .corr = 1, then πsvid.corr = 1. If
vid = Sk|Sl with Sk 6= Sl, we add πsvid to Lchg. We add πsvid to Linst and return
πsvid. This oracle aborts if vid /∈ Lvid, if vid′ /∈ Lvid, or if type(vid) = type(vid′).
The vids should be active at the time of the oracle call, and they should
partner with a party of the opposite type.

– Send(πsvid, msg) enables an adversary to send the message msg to πsvid and

outputs msg′, the next message in the protocol. If πsvid is a freshly-initialized
client instance and msg is the string prompt, πsvid starts the protocol with
πsvid.pid.

– Reveal(πsvid, key) returns to the adversary the key πsvid.key, where key ∈
{C.htk, S.htk, C.tk, S.tk}, and sets πsvid.ρkey to 1.

– Corrupt(Pi) is an oracle that returns Pi .sk and sets Pi .corr to 1. This auto-
matically updates any existing and future instances of a vid containing Pi:
∀πsvid, vid = Pi|Pj ∨ Pj |Pi, πsvid.corr = 1.

The privacy of the TLS 1.3 protocol 21

– Free(vid) allows the adversary to release the parties from the binding of a
vid and terminates any sessions involving that vid. It removes vid from Lvid

and the corresponding parties from Lact. For all instances of vid and all
instances with pid = real(vid), if πsi .accept = ⊥, it sets πsi .accept = 0 (session
rejected/aborted).

22 Arfaoui et al.

4.5 Privacy experiment

Roughly speaking, an adversary is capable of winning the privacy game if he is
able to distinguish between two parties of his choice, either by identifying them
or by studying their behaviour. We formally define the privacy game in Table 2.

Expfull.privΠ (A):

Setup(1λ);

b
$← {0, 1}

d← ADrawPartyb(·,·),NewSession(·,·),Send(·,·),Reveal(·,·),Corrupt(·),Free(·)

∀vid ∈ Lvid,Free(vid)

A wins if b = d and:
• ∀πsvid ∈ Lchg ∃πtvid′ ∈ Linst s.t.
◦ πsvid.sid = πtvid′ .sid
◦ πsvid.accept = πtvid′ .accept = 1
◦ ∀key ∈ {S.htk}, πsvid.ρkey = πtvid′ .ρkey = 0
◦ πsvid.corr = πtvid′ .corr = 0

Table 2. Privacy experiment.

The privacy game proceeds in the following way. First, the challenger runs
Setup(1λ). He then uniformly samples a bit b. The adversary interacts with the
challenger, using the oracles that have been given to him. Then the adversary
outputs a bit d. The challenger Frees all active vid, thus terminating any ongoing
sessions if any still exist. The adversary wins the game if d = b (he correctly
determined b) and he fulfilled the winning conditions:

We require that for all server instances where the vid binds distinct servers
(∀πsvid ∈ Lchg), there exists an honest client instance (∃πtvid′ ∈ Linst) such that
the two instances have had a matching conversation (πsvid.sid = πtvid′ .sid), they
were not trivially Revealed/opened by the adversary (∀key ∈ {S.htk}, πsvid.ρkey =
πtvid′ .ρkey = 0) and that they both accepted the session (πsvid.accept = πtvid′ .accept =
1). This circumvents the first trivial attack, where the adversary creates a ses-
sion with a challenge server and obtains its certificate. In addition, the adversary
cannot corrupt the servers involved in the challenge (∀πsvid ∈ Lchg, π

s
vid.corr =

πtvid′ .corr = 0). This circumvents the second trivial attack, where the adversary
impersonates one of the challenge servers to the users.

Definition 1. The advantage εfull.priv of an adversary running in time t′ to win

the game Expfull.privΠTLS
is :

εfull.priv =
∣∣∣P[A wins Expfull.privΠTLS

]− 1

2

∣∣∣.
Theorem 1. Let G be a group of order |G|, let 2t be the size of the nonce space,
and let 2r be the size of the codomain of the RO. The advantage εfull.priv of an
adversary running in time t′, interacting with at most nrsv servers, making at

The privacy of the TLS 1.3 protocol 23

Setup(1λ)

Compute nrcl, nrsv from 1λ

P = ∅,Lvid = ∅,Lact = ∅,Linst = ∅,Lchg = ∅
for i := 1 to nrcl do

Ci.pk = ⊥
Ci.sk = ⊥
Ci.corr = 0

P = P ∪ {Ci}
for k := 1 to nrsv do

(Sk.pk,Sk.sk) = Sign.Gen()

Sk.corr = 0

P = P ∪ {Sk}

NewSession(vid, vid′)

if vid /∈ Lvid ∨ vid′ /∈ Lvid

return ⊥
if type(vid) = type(vid)

return ⊥
πsvid.pid← real(vid′)

πsvid.sid← ⊥
πsvid.pk← real(vid).pk

πsvid.sk← real(vid).sk

πsvid.corr← real(vid).corr

if vid = Si|Sj ∧ (Si.corr = 1 ∨ Sj .corr = 1)

πsvid.corr = 1

πsvid.freed← 0

πsvid.accept, π
s
vid.C.htk, π

s
vid.S.htk, π

s
vid.C.tk, π

s
vid.S.tk← ⊥

if vid = Sk|Sl ∧ Sk 6= Sl

Lchg ← Lchg ∪ vid

Linst ← Linst ∪ πsvid
return πsvid

Reveal(πsvid, key)

πsvid.key = 1

return πsvid.key

Corrupt(Pi)

Pi.corr = 1

∀πsvid, vid = Pi|Pj ∨ vid = Pj |Pi
πsvid.corr = 1

return Pi.sk

DrawParty(Pi,Pj)

if Pi ∈ Lact ∨ Pj ∈ Lact

return ⊥
if type(Pi) 6= type(Pj)

return ⊥
if type(Pi) = type(Pj) = C ∧ Pi 6= Pj

return ⊥
Lact ← Lact ∪ {Pi,Pj}
Lvid ← Lvid ∪ vid

vid← Pi|Pj
return vid

Send(πsvid,msg)

if πsvid.freed = 1

return ⊥
if msg = prompt ∧ type(vid) = C ∧ πsvid.sid = ⊥

Update πsvid.sid

return msg′(Start protocol with πsvid.pid)

if msg is valid

Update πsvid.sid

return msg′

else return ⊥

Free(vid)

Lvid = Lvid − vid;

if vid = Pi|Pj
Lact = Lact − {Pi,Pj}

for πsvid ∈ Linst

if πsvid.accept = ⊥
πsvid.accept = 0

πsvid.freed = 1

for πtvid′ ∈ Linst

if πsvid.sid = πtvid′ .sid ∧ πtvid′ .accept = ⊥
πtvid′ .accept = 0

πtvid′ .freed = 1

Fig. 11. Adversarial oracles in the full handshake mode model.

24 Arfaoui et al.

most qi queries to NewSession and at most qro queries to RO and q′ queries to
all its oracles is:

εfull.priv ≤
q2i
2t

+
q2i
|G|

+
q2ro
2r

+ qroεCDH + 4qiεprf + 2qiεstLHAE +
1

nrsv
εEUF-CMA,

where εCDH, εprf , εstLHAE, εEUF-CMA represent the maximum advantage of an ad-
versary against the CDH, prf, stLHAE, and EUF-CMA respectively.

4.6 Proof of Theorem 1

An honest instance is an instance that was generated as a result of a NewSession
query and is not under adversarial control (the adversary has not substituted
the messages it has generated or compromised the instance in any way).

G0: The original privacy game Expfull.privΠTLS
.

G1: We abort G0 if two honest instances generate the same nonce. This
ensures that no two sessions have the same sid. Once the server receives the first
message in the protocol, we can identify which two instances are supposed to
form a session together. There are at most qi(qi − 1)/2 pairs of instances, and
the probability of a collision occurring is 1/2t, where 2t is the size of the nonce
space:

P[A wins G0] ≤ P[A wins G1] + q2i /2
t.

G2: We abort the game if two sessions between honest instances obtain the
same Diffie-Hellman value gxy. There are at most qi(qi − 1)/2 pairs of sessions
(identifying a session by its client instance) and with a 1/|G| chance of a collision.
To obtain the chance of a collision, consider gx, gy, gx

′
fixed. Then gy

′
must be

equal to gxy−x
′

in order to have a collision, and there is a 1/|G| chance of this
occurring:

P[A wins G1] ≤ P[A wins G2] + q2i /|G|.

G3: We abort the game if two hs collide on different input to the RO. Coupled
with G1, this ensures that two instances obtain the same hs if and only if they
provide the same input to the RO:

P[A wins G2] ≤ P[A wins G3] + q2ro/2
r.

G4: The same as G3, but we abort if the adversary queries RO(gxy, Hsid),
where gxy corresponds to values gx and gy generated by honest instances. If A
would make this query, we show how to construct an adversary RCDH against
CDH.
RCDH initializes the privacy game and guesses a client instance πsC . Let πtS

be its partnering server instance. We essentially guess the session the adver-
sary is trying to compromise by computing the hs by himself, in an attempt
to win the privacy game. Next, RCDH answers most oracle queries for A as
defined in the privacy game. However, when answering Send(πsC , prompt) and
Send(πtS ,Send(πsC , prompt)), RCDH inserts the values gx and gy given by his own

The privacy of the TLS 1.3 protocol 25

challenger. Since RCDH cannot compute hs, he instead uniformly randomly sam-
ples a value to use as the handshake secret, to which the restriction of G3 also
applies.

As per our assumption, A will query RO(gxy, Hsid), but we cannot identify
which one is correct, so we have to guess which query contains the gxy. We
forward our guess to the challenger and win with a 1/qro chance of success.

P[A wins G3] ≤ P[A wins G4] + qroεCDH.

G5: We replace the C.htk and S.htk computations with calls to a truly random
function f with the same domain and codomain as PRF. This means that keys
can be seen as independent from the context that generated them.

We go session by session and key by key using a hybrid argument. We present
an intermediate hop. The adversaryRprf against PRF simulates the privacy game
for the game distinguisher. For the first i sessions, the function f is used. For
the i + 2th session onwards, PRF is used. To obtain the C.htk or S.htk for the
i+ 1th session, Rprf queries his own challenger and uses that value as the C.htk
or S.htk. Rprf forwards the guess bit of the distinguisher to his own challenger:

P[A wins G4] ≤ P[A wins G5] + 4qiεprf .

G6: We abort if the adversary injects, in any of the challenge sessions, a
ciphertext that decrypts incorrectly. Since doing so would make him lose the
game, the probability of winning the game remains unchanged:

P[A wins G5] = P[A wins G6].

G7: We abort the game if the adversary submits a new, valid ciphertext in
a challenge session. We use this to build an adversary RstLHAE against stLHAE.
The adversary RstLHAE guesses the session in which A will inject the encrypted
message. RstLHAE simulates G6 but, for that particular session, he asks his chal-
lenger to encrypt any messages (m0 = m1). When A injects the new encryption,
RstLHAE forwards this message to ADec, having made sure the oracle is in a con-
sistent state. RstLHAE answers his challenge depending if the output is ADec is
⊥ or a message.

P[A wins G6] ≤ P[A wins G7] + qiεstLHAE.

G8: In a challenge session, when a server instance has to send the encrypted
message (CertS , CVf), we replace it with an encryption of the bit 0 of matching
length. This change also propagates throughout the transcript of the session. We
use a hybrid argument, going session by session. If a hop distinguisher exists,
we can build an adversary RstLHAE against stLHAE. We describe an intermediate
hop.

Consider that we have made this transition in the first i sessions. For the
i+ 1th session, RstLHAE simulates G8.i but, sends to his encryption oracle m0 =
(CertS ,CVf) and m1 = {0}, receives a ciphertext and returns that as the Send
answer. He proceeds analogously for FinS , which has to be encrypted with the

26 Arfaoui et al.

same unknown key. RstLHAE has to simulate the challenge sessions without de-
crypting and doing consistency checks.

Due to G6 and G7, we reject all new ciphertexts we see on the network.
At this point, the adversary has no other choice but to faithfully relay mes-

sages, if he hopes to win. In particular, it implies RstLHAE can successfully sim-
ulate the privacy game even in the absence of a decryption oracle, to which we
have limited access (due to the way the stLHAE game works).
RstLHAE forwards the guess bit of the G7/G8 distinguisher to win the game.

P[A wins G7] ≤ P[A wins G8] + qiεstLHAE.

G9: We abort if the adversary successfully forges the certificate of a challenge
server, in an attempt to impersonate it to a client. We guess the server the
adversary will try to impersonate. For this server, instead of generating the pk
and the sk, the adversary against EUF-CMA will use the pk and the Sign oracle
in order to simulate the privacy game. When the adversary sends the forged
certificate to an honest client, REUF-CMA forwards it to the challenger in the
EUF-CMA game.

P[A wins G8] ≤ P[A wins G9] +
1

nrsv
εEUF-CMA.

G10: We abort if the adversary succeeds in forging a FinS or FinC message
to an honest instance. However, in order to for the instance to accept the mes-
sage, the instance must also verify the integrity of the encryption. Or, this is
already captured by the previous game hops. FinS is protected by S.htk, and the
adversary would need to decrypt the previous messages in the protocol in order
to create the forged C.htk(and he has no access to S.htk, as per the winning
conditions). The probability of winning the game remains unchanged.

P[A wins G9] ≤ P[A wins G10].

At this point, the adversary can only guess the challenge bit, therefore
P[A wins G10] = 1

2 . We obtain the theorem by combining the intermediate re-
sults.

5 TLS with session resumption

Session resumption is an integral feature of the TLS protocol. At the end of
a handshake, a server can choose to send one or multiple tickets to a client.
The client may then use these tickest to “jumpstart” their next sessions. In our
extended model, we limit the adversary to a single pair of clients or servers
that he can challenge in the game. Once he makes a valid query of the form
DrawParty(Pi,Pj) with Pi 6= Pj and type(Pj) = type(Pj), we register the Pi,Pj
parties as “challenged”. The adversary is not allowed to compromise these par-
ties, their instances or their partnering parties/instances. He can fully compro-
mise all other parties and sessions instead.

The privacy of the TLS 1.3 protocol 27

Remember the trivial attack where Alice has a ticket, Bob does not, and an
adversary can distinguish them based on their (in)ability to resume a session.
For this reason, we make sure that parties have the same number of tickets given
to/received from all parties when creating a DrawParty query and when releasing
the challenge vid using Free.

5.1 Global Lists

In our model, we introduce two new lists, Lchg.pty and Lchg.vid and modify the
definition of Lchg.

Lchg.pty The list of parties the adversary queried as DrawParty(Pi,Pj) by the
adversary, with Pi 6= Pj . sessions.

Lchg.vid The list of vids to which particular winning conditions apply. When the
adversary queries for the first time DrawParty(Pi,Pj) with Pi 6= Pj , we
register in this list Pi|Pj , Pj |Pi, Pi|Pi, Pj |Pj .

Lchg A subset of Linst, namely instances πvid
s where vid ∈ Lchg.vid.

5.2 Local ticket management

Each party stores internally information about valid unused tickets. We refer to
this data as Ltickets and call Pi.Ltickets the list associated to Pi. If any change
occurs to the locally-stored list Pi.Ltickets, then all instances of Pi will instantly
have access to the new list. The elements of Pi.Ltickets contain entries of the type
(STicket, rms,NT ,S), detailed below. Server parties will store ⊥ for any attribute
except the STicket.

STicket: the value of the ticket sent by the server to the client. The client will
resend this string when resuming. The server will decrypt and authenticate
this string and, if this succeeds, he will use the information stored inside to
compute the pre-shared key.

rms: the value of the resumption master secret.

NT : the nonce used to compute the pre-shared key.

S : The identity of the server who created the ticket (this is used by the client
to select the right ticket to resume).

Additionally, every instance stores two ticket tuples: the so called input ticket
(in.STicket, in.rms, in.NT , psk) referring to the ticket used in the resumption and
output ticket (out.STicket, out.rms, out.NT), the ticket created/received at the
end of the handshake. The prefixes in and out distinguish between the two tuples.
The psk is part of the key scheduling, but we don’t need to compute it at the
end of session, so there is no need for an out.psk attribute. Also see Figure 12.

28 Arfaoui et al.

πsvid πtvid′
in.STicket

{..., out.STicket}S.tk

Fig. 12. An intuitive figure to illustrate the in.STicket and out.STicket. πsvid is a client
instance and πtvid′ is a server instance.

5.3 Additional attributes and lists

In addition to the previous lists, we also introduce the following attributes for
both parties and instances.

– The handshake mode mode is an instance-specific attribute. There are three
modes: mode ∈ {dhe, psk, psk + dhe}, corresponding to a full handshake
mode, pre-shared key only mode, or a pre-shared key with Diffie-Hellman
key exchange. This attributes indicates which protocol the instance is or will
be following.

– k, a server party attribute, is the symmetric encryption key that the server
uses to encrypt and decrypt the tickets. This is ⊥ for clients.

– a (server) party attribute corrk. Initialized to 0, it becomes 1 when the ad-
versary obtains the long term encryption key of the server using a TCorrupt
query (defined below). For clients, this is ⊥.

left(vid) If vid = Pi|Pj , returns Pi.
right(vid) If vid = Pi|Pj , returns Pj .
count(Pi,Pj) Returns the number of tuples (tickets) in Pi.Ltickets received from

the Pj (if Pi is a client and Pj is a server) or given to Pj (if Pi is
a server and Pj is a client).

We add one extra line to the Setup(·, ·) algorithm: chg = 0. This is a flag we
will set once the adversary makes a DrawParty query using two distinct parties
(of the same type).

5.4 Adversarial oracles

We define privacy in terms of a game similar to that one defined in the full
mode. Indeed, the privacy game for resumption can be viewed as an extension
of the much-simpler notion that we used on the full mode (cf. Section 4). The
adversary interacts with the system via oracles, as before. We briefly recall the
purpose of each oracle and mention below only the changes and additions we
make to those oracles.

– DrawPartyb(Pi , Pj) outputs a vid binding two parties and activates it. In
this model, the adversary is only allowed to query only one vid of the
form Pi |Pj with Pi 6= Pj . We call this the challenge vid. We also allow
creating the reverse of the challenge vid, namely Pj |Pi . When creating

The privacy of the TLS 1.3 protocol 29

(or reactivating) a challenge vid, the query will return ⊥ if the parties do
not have the same number of tickets. Succesive reactivations of the chal-
lenge vid or it reverse are permitted, as long as the condition regarding
the number of tickets holds true. If chg = 0 and Pi 6= Pj , we set chg
to 1 and register Pi ,Pj in Lchg. If chg = 1 and Pi 6= Pj , we abort if
Pi ∨ Pj /∈ Lchg. If type (vid) = S , if there exists a client Ck such that
count(left(vid),Ck) 6= count(right(vid),Ck), we abort. If type (vid) = C , if
there exists a server Sk such that count(left(vid),Sk) 6= count(right(vid),Sk),
we abort.

– NewSession(vid, vid′, mode) serves to create a new instance of a given active

vid that will communicate with a partner vid′. If the vid is a client, type
(vid) = C , we set πsvid.mode=mode. If resuming, we also select a ticket from
real (vid).Ltickets such that real (vid′)=S . We set πsvid.in.rms , πsvid.in.NT to
the values from the tuple and compute πsvid.in.psk using the two values. We
abort if resumption is demanded but no ticket is available in (vid).Ltickets.

– Send(πsvid, msg) enables an adversary to send the message msg to πsvid and out-

puts msg′, the next message in the protocol. Also allows ticket creation. If πsvid
is a server instance receiving its first message, we set πsvid.mode accordingly.
If πsvid is a server instance that has accepted the session key (πsvid.accept = 1)
and msg is the string prompt, then the server creates and sends a new session
ticket to the client, as defined by the protocol.

– TCorrupt(Pi) is a new, resumption-specific oracle. It allows the adversary to
obtain the long-term ticket encryption key of a server. Therefore, it returns
Pi .k and sets Pi .corrk to 1.

– Free(vid) Inactivates a vid. In case of a challenge vid or its reverse, we delete
the minimum of tickets to make the parties indistinguishable by number of
tickets given to or received from another party.

30 Arfaoui et al.

5.5 Privacy experiment

Informally speaking, it should be impossible for an adversary to distinguish be-
tween two parties, even when adding the possibility of session resumption. We
formally define the privacy experiment Expres.privΠTLS+res

(A) in Figure 3. The privacy
game consists in an interaction between a challenger and an adversary as de-
scribed before.

Expres.privΠTLS+res
(A):

Setup(1λ);

b
$← {0, 1}

d← ADrawPartyb(·,·),NewSession(·,·),Send(·,·),Reveal(·,·),Corrupt(·),TCorrupt(·),Free(·)

∀vid ∈ Lact,Free(vid)

A wins if b = d and:
• If Lchg.pty contains two clients:
◦ ∀πsvid ∈ Lchg

∗ πsvid.ρS.tk = 0
◦ ∀πtvid′ ∈ Linst s.t.∃πsvid ∈ Lchg, π

s
vid.sid = πtvid′ .sid

∗ πtvid′ .ρS.tk = πtvid′ .corr = πtvid′ .corrk = 0
• If Lchg.pty contains two servers:
◦ ∀πsvid ∈ Lchg, π

s
vid.ρS.tk = 0

∗ πtvid′ .ρS.tk = πtvid′ .corr = πtvid′ .corrk = 0
∗ If πsvid.mode 6= dhe, πsvid.accept = 1

◦ ∀πtvid′ ∈ Linst s.t. ∃πsvid ∈ Lchg, π
s
vid.sid = πtvid′ .sid

∗ πtvid′ .ρS.tk = 0
◦ ∀πsvid ∈ Lchg s.t. πsvid.mode = dhe∃πtvid′ ∈ Linst s.t.
∗ πsvid.sid = πtvid′ .sid
∗ πsvid.accept = πtvid′ .accept = 1
∗ ∀key ∈ {S.htk}, πsvid.ρkey = πtvid′ .ρkey = 0

Table 3. Resumption privacy experiment.

The winning conditions can be described informally as follows. We use Lchg to
identify the sessions that are “challenged” and to which certain restrictions apply.
For example, for all sessions of challenge servers (∀πsvid ∈ Lchg), we look for their
matching client instances (∀πtvid′ ∈ Linst s.t.∃πsvid ∈ Lchg, π

s
vid.sid = πtvid′ .sid). For

client instances, the S.tk key must be fresh(πsvid.ρS.tk = 0). For server instances,
their S.tk key must be fresh and their long term keys must be uncorrupted
(πsvid.corr = πsvid.corrk = 0). If the adversary is trying to attack to distinguish
between two servers, two additional constraints apply. First of all, the winning
conditions from the first model apply (last white bullet point) to all challenge
full handshake sessions(πsvid.mode = dhe). Additionally, all resuming challenge
server instances must accept the session(If πsvid.mode 6= dhe, πsvid.accept = 1).
This prevents ticket redirection attacks.

Definition 2. The advantage εfull.priv of an adversary running in time t′ to win

the game Expfull.privΠTLS+res
is :

εfull.priv =
∣∣∣P[A wins Expfull.privΠTLS+res

]− 1

2

∣∣∣.

The privacy of the TLS 1.3 protocol 31

Setup(1λ)

Compute nrcl, nrsv from 1λ

P = ∅,Lvid = ∅,Lact = ∅,Linst = ∅,Lchg = ∅
for i := 1 to nrcl do

Ci.pk = ⊥,Ci.sk = ⊥,Ci.corr = 0

P = P ∪ {Ci}
for k := 1 to nrsv do

(Sk.pk,Sk.sk) = Sig.Gen()

Sk.corr = 0

P = P ∪ {Sk}
chg = 0

NewSession(vid, vid′,mode)

if vid /∈ Lvid ∨ vid′ /∈ Lvid

return ⊥
if type(vid) = type(vid)

return ⊥
πsvid.pid← real(vid′)

πsvid.sid← ⊥
πsvid.pk← real(vid).pk

πsvid.sk← real(vid).sk

πsvid.corr← real(vid).corr

if vid = Si|Sj ∧ (Si.corr = 1 ∨ Sj .corr = 1)

πsvid.corr = 1

πsvid.freed← 0

πsvid.accept, π
s
vid.C.htk, π

s
vid.S.htk, π

s
vid.C.tk, π

s
vid.S.tk← ⊥

if vid = Sk|Sl ∧ Sk 6= Sl

Lchg ← Lchg ∪ vid

Linst ← Linst ∪ πsvid
if type(vid) = C

πsvid.mode = mode

if πsvid.mode 6= dhe ∧ count(real(vid), real(vid′) = 0

return ⊥
if πsvid.mode 6= dhe

real(vid).Ltickets = real(vid).Ltickets − (STicket, rms, t, real(vid′))

πsvid.in.STicket = STicket, πsvid.in.rms = rms, πsvid.in.NT = NT

return πsvid

TCorrupt(Pi)

Pi.corrk = 1

∀vid, real(vid) = Pi, π
s
vid.corrk = 1

return Pi.k

DrawParty(Pi,Pj)

if Pi ∈ Lact ∨ Pj ∈ Lact

return ⊥
if type(Pi) 6= type(Pj)

return ⊥
if Pi 6= Pj ∧ chg = 0

chg = 1,Lchg.pty = {Pi,Pj}
if Pi 6= Pj ∧ chg = 1

if Pi /∈ Lchg.pty ∨ Pj /∈ Lchg.pty

if type(Pi) = type(Pj) = C

if ∃Sk, count(left(vid),Sk) 6= count(right(vid),Sk)

return ⊥
if type(Pi) = type(Pj) = S

if ∃Ck, count(left(vid),Ck) 6= count(right(vid),Ck)

return ⊥
Lact ← Lact ∪ {Pi,Pj},Lvid ← Lvid ∪ vid

return vid← Pi|Pj

Send(πsvid,msg)

if πsvid.freed = 1

return ⊥
if msg = prompt ∧ type(vid) = C ∧ πsvid.sid = ⊥

Update πsvid.sid

return msg′(Start protocol with πsvid.pid)

if msg is valid

Update πsvid.Ltickets if/as needed

Update πsvid.sid

return msg′

else return ⊥

Free(vid)

Lvid = Lvid − vid;

if vid = Pi|Pj
Lact = Lact − {Pi,Pj}

for πsvid ∈ Linst

if πsvid.accept = ⊥
πsvid.accept = 0

πsvid.freed = 1

for πtvid′ ∈ Linst

if πsvid.sid = πtvid′ .sid ∧ πtvid′ .accept = ⊥
πtvid′ .accept = 0, πtvid′ .freed = 1

if vid ∈ Lchg.vid update Ltickets such that

∀Pk, count(left(vid),Pk) 6= count(right(vid),Pk)

Fig. 13. Adversarial oracles in the extended model. See Figure 11 for the Reveal and
Corrupt oracles.

32 Arfaoui et al.

Theorem 2. Let G be a group of order |G|, let 2t be the size of the nonce space,
and let 2r be the size of the codomain of the RO. The advantage εfull.priv of an
adversary running in time t′, interacting with at most nrsv servers, making at
most qi queries to NewSession,qSend queries to Send, qro queries to RO and q′

queries to all its oracles is:

εres.priv ≤
q2i
2t

+
q2i
|G|

+
q2ro
2r

+ qroεCDH + 8qiεprf + (3qi + qSend)εstLHAE +
1

nrsv
εEUF-CMA,

where εCDH, εprf , εstLHAE, εEUF-CMArepresent the maximum advantage of an ad-
versary against the CDH, prf, stLHAE, and EUF-CMArespectively.

5.6 Proof of Theorem 2

A challenge session is any instance in Lchgor any partnering instance (that have
matching sid).

G0′ : The original privacy game Expres.privΠ .
G1′ : We execute the game steps G0 - G8 for sessions executing a full hand-

shake. We apply steps G6 - G8 only for challenge sessions.

P[A wins G0′] ≤ P[A wins G1′] + εfull.priv.

G2′ : We abort if two ms values coincide:

P[A wins G1′] ≤ P[A wins G2′] + q2ro/2
r.

G3′ : We replace PRF by a random function when computing rms.

P[A wins G2′] ≤ P[A wins G3′] + 2qiεprf .

G4′ : In challenge sessions, we replace the content of messages encrypting
tickets with encryptions of 0, while forwarding (in an out of band manner) the
real tickets to the honest parties. This proceeds almost as in G6 to G8, with a
slight difference. On one hand, we no longer care about parsing invalid message.
On the other hand, if the adversary somehow submits a valid ticket (however
improbable), he will detect being in a simulation if he fails to resume that ticket.

G4.1′ :We abort if the adversary injects a valid ciphertext. We will have to
guess the query (and the session) where he will do his first such forgery. We will
forward this to the Dec and answer b = 0 if the oracle returns ⊥ or b = 1 if the
oracle succesfully decrypts the forgery.

G4.2′ We substitute ticket contents with 0, while forwarding the real content
to the parties in an out of band manner. Then, were he to distinguish between two
succesive hops (where the first contains the real ticket, and the second contains
the encryption of 0), we would be able to use this adversary in order to win
against stLHAE. As before, we simulate the privacy game to the adversary by
querying our AEnc oracle. As the S.tk key must be fresh (as per the winning
conditions), we have no problems simulating the game.

The privacy of the TLS 1.3 protocol 33

P[A wins G3′] ≤ P[A wins G4′] + (qSend + qi)εstLHAE.

The adversary cannot impersonate any servers involved in challenge sessions,
as their long term keys must be fresh. He can also not inject any bad messages in
the record layer of challenge full handshakes, as that would break stLHAE. At this
point, all challenge client instances have only legitimate tickets. Additionally, he
can no longer link sessions in order to compromise the privacy of either clients or
servers. When we replaced the tickets given by the server in the full handshake
by encryptions of 0, we have broken the connection between a session and its
resumption.

G5′ : We abort the game if the adversary redirects a ticket to a server such
that the vid of the server who issued the ticket is different from the vid of
the server receiving the ticket (ticket redirection attack). However, as per our
winning conditions, the adversary will lose the game if does this and he guesses
incorectly (so the instance rejects the sessions). Therefore, the probability of the
adversary winning the game remains the same.

P[A wins G4′] = P[A wins G5′].

G6′ : We abort the game if the adversary injects a fresh ticket to a server
involved in the challenge. However, as the server keeps a list of all tickets he has
created, Ltickets, it will reject any ticket it hasn’t created. Bad forgeries will make
the adversary lose the game.

Note that, in the real protocol, our maintaining of Ltickets corresponds to
employing anti-replay techniques. The RFC strongly recommends storing some
information about past sessions, even in an condensed manner (e.g. a hash of
CHello).

P[A wins G5′] = P[A wins G6′].

G7′ : In any sessions involving a vid = Pi|Pj with Pi 6= Pj (or succeeding
such a session in the resumption chain), we substitute psk with a truly random
function.

P[A wins G6′] ≤ P[A wins G7′] + 2qiεprf .

As psk is an integral part of the key schedule, we must take care not to
substitute the psk with a random value in any place where the adversary is
allowed to compromise keys, hence the slightly different requirement.

A resumption chain is a succession of sessions, ‘linked’ to each other by tickets
(the ticket created in one is used to start another session). In the case of multiple
tickets being created, this can even form a tree of sessions. Once we see a session
involving a vid= Pi|Pj with Pi 6= Pj in a chain, we can start applying the game
hop. After this moment, we know these sessions are part of the challenge and
can apply the game hop, knowing the adversary cannot open the tickets and
detect our substitution. Before this moment, only ‘simple’ vids are part of the
game, and the adversary cannot hope to do a linking attack to win the privacy

34 Arfaoui et al.

game, so it’s ok if we don’t apply this game hop for these sessions (even if they
are technically part of the challenge).

After this game hop, the adversary cannot hope to use any ticket he sees
on the network to open any challenge session, as the content they encrypt is no
longer linked to the key schedule.

Up until this point, we have proven that the transcript or tickets do not
allow the adversary to win the privacy game. However, our proof only covers full
handshakes and the early steps of their resumption.

G8′ : We repeat the earlier games for the resumptions of full handshakes. We
then repeat this game for resumptions of resumptions of full handshakes and so
on, until all sessions are exhausted. The upper bounds in the earlier steps are
large enough to include this game. We make the observations that not all games
apply to all sessions, e.g. G2 and G4 don’t apply for sessions that don’t execute
a Diffie-Hellman key exchange, and games G6 to G8 don’t apply to resumptions
(the servers don’t authenticate with a certificate).

6 TLS 1.3 privacy in perspective

Our results show that TLS 1.3, when considered in isolation, does provide some
measure of privacy. For full handshakes, the protocol provides a notion of server
unlinkability, which must be relaxed in order to account for the server-only
authentication of the protocol.

By contrast, session resumption introduces a means of linking sessions be-
tween the same two parties. The simple fact of possessing and using a resumption
ticket already leaks out some information about a party (the existence of at least
one session in the past). We showed in this paper that TLS 1.3 privacy does in-
deed suffer when resumption is considered; however, this lack of privacy seems
inherent to the use of session tickets. In that sense, TLS 1.3 offers an optimal
degree of privacy.

The results we prove in this paper depend heavily on how session tickets are
implemented. In this paper we included only one such implementation, which is
also featured in WolfSSL: namely, the server encrypts the session resumption-
state with a long-term symmetric key known only to itself. Alternative ap-
proaches are also possible. In our proof, we replace the session ticket in question
with a random string of the same length; essentially any other implementation
of session tickets for which this can still hold would provide the same degree of
privacy.

Interestingly, this rules out session tickets that include public information,
such as the session identifier of the session in which we generated the ticket. This
would allow the adversary to immediately link that session with the resumed ses-
sion, thus winning the game. Similarly, just using a counter that is incremented
at every session also leads to privacy breaches.

Future work could explore either TLS in conjunction of protocols in the
network layer, or features of the TLS that we did not model (more significantly,
the SNI extension).TLS 1.3 is run as part of a stack of protocols, not all of

The privacy of the TLS 1.3 protocol 35

which are privacy-preserving. We discuss the limitations of our results in that
sense both in Section 1.4 and in Section 1.5. One of the main problems of the
encapsulation of TLS messages appears at the network layer. The best bet to
achieve better privacy in this context is to use protocols such as Tor; however,
to our knowledge, no current result for Tor would allow for a composition with
the type of property we are proving here.

Acknowledgements

The authors thank the anonymous reviewers of PETS for their helpful com-
ments. This work was supported in part by the French Agence Nationale de
Recherche(ANR) through grant 16 CE39 0012 (SafeTLS).

References

1. David Adrian, Kartihkeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella Béguelin, and Paul
Zimmermann. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In
Proceedings of ACM CCS 2015, pages 5–17. IEEE, 2015.

2. Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poet-
tering, and Jacob C. N. Schuldt. On the security of RC4 in TLS and WPA. In
USENIX Security Symposium, 2013.

3. Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In IEEE Symposium on Security and Privacy (SP’13),
2013.

4. Antoine Delignat-Lavaud and Kartihkeyan Bhargavan. Network-based origin con-
fusion attacks against HTTPS virtual hosting. In Proceedings of WWW’15, pages
227–237. Springer, 2015.

5. Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and
Yuval Shavitt. Drown: Breaking TLS using SSLv2. https://drownattack.com,
2016.

6. Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Esfan-
diar Mohammadi. Anoa: A framework for analyzing anonymous communication
protocols. In Proceedings of CSF. IEEE, 2013.

7. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO, pages 232–249, 1993.

8. Benjamin Berdouche, Kartikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming the composite state machines
of TLS. In Proceedings of IEEE S&P 2015, pages 535–552. IEEE, 2015.

9. Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming the composite state machines
of TLS. In Proceedings of IEEE S&P 2015, pages 535–552. IEEE, 2015.

https://drownattack.com

36 Arfaoui et al.

10. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo
Pironti, and Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking
and fixing authentication over TLS. In Proceedings of IEEE S&P 2014, pages
98–113. IEEE, 2014.

11. Karthikeyan Bhargavan and Gaetan Leurent. Transcript collision attacks: Breaking
authentication in TLS, IKE, and SSH. In Accepted at NDSS 2016, to appear, 2016.

12. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard pkcs #1. In Proceedings of (CRYPTO’98), volume 1462
of LNCS, pages 1–12, 1998.

13. Tim Dierks and Eric Rescorla. The transport layer security (TLS) protocol version
1.2. RFC 5246, August 2008.

14. Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryp-
tographic analysis of the TLS 1.3 handshake protocol candidates. In ACM CCS,
pages 1197–1210, 2015.

15. Nir Drucker and Shay Gueron. Selfie: reflections on tls 1.3 with psk. Cryptology
ePrint Archive, Report 2019/347, 2019. https://eprint.iacr.org/2019/347.

16. EU. General Data Protection Regulation - GDPR.

17. EU. Regulation on Privacy and Electronic Communications.

18. Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of google’s
QUIC protocol. In ACM CCS, pages 1193–1204, 2014.

19. Pierre-Alain Fouque, Cristina Onete, and Benjamin Richard. Achieving better
privacy for the 3gpp aka protocol. In Proceedings of PETS (PoPETS), volume 4,
2016.

20. Christina Garman, Kenneth G. Paterson, and Thyla Van der Merwe. Attacks
only get better: Password recovery attacks against RC4 in TLS. In Proceedings of
USENIX 2015, pages 113–128. USENIX Association, 2015.

21. Alejandro Hevia and Daniele Micciancio. An indistinguishability-based character-
ization of anonymous channels. In Proceedings of PETS, volume 5134 of LNCS,
pages 24–43. Springer, 2008.

22. Jens Hermans and Andreas Pashalidis and Frederik Vercauteren and Bart Preneel.
A New RFID Privacy Model. In Computer Security - ESORICS 2011 - 16th Euro-
pean Symposium on Research in Computer Security, Leuven, Belgium, September
12-14, 2011. Proceedings, 2011.

23. Hugo Krawczyk. SIGMA: the ’sign-and-mac’ approach to authenticated diffie-
hellman and its use in the ike-protocols. In Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 2003, Proceedings, pages 400–425, 2003.

24. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Advances in Cryptology — CRYPTO 2010, volume 6223 of LNCS. Springer,
2010.

25. Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In Advances in Cryptology
— ASIACRYPT 2011, volume 7073 of LNCS, pages 372–389. Springer-Verlag,
2011.

26. Angelo Prado, Neal Harris, and Yoel Gluck. SSL, gone in 30 seconds: A BREACH
beyond CRIME. Black Hat 2013, 2013.

27. Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446, August 2018.

28. Juliano Rizzo and Thai Duong. The CRIME attack. Ekoparty 2012, 2012.

https://eprint.iacr.org/2019/347

The privacy of the TLS 1.3 protocol 37

29. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, June
2002.

30. Serge Vaudenay. Security flaws induced by CBC padding – applications to SSL,
IPSEC, WTLS. In Proceedings of EUROCRYPT 2002, volume 2332 of LNCS,
pages 534–545, 2002.

31. Serge Vaudenay. On privacy models for RFID. In Advances in cryptology – ASI-
ACRYPT, volume 4833 of LNCS, pages 68–87. Springer, 2007.

32. Wikipedia. Global surveillance disclosures (2013–present).

A TLS and privacy-preservation

Please note that we only focus on aspects that concern privacy, rather than
giving a complete analysis of the entire TLS protocol. For more details about
the latter, we refer the interested reader to the TLS specifications.

The design of the TLS protocol up to, and including TLS 1.2 was not privacy-
centric. Its goal was to simply allow two parties, a client and a server, to securely
establish session keys. In the following paragraphs we describe the elements of
TLS 1.2 which are relevant to privacy, then underline the differences between
how TLS 1.2 and TLS 1.3 handled those elements.

The full handshake. In the full TLS 1.2 handshake, the client and server
compute keys from a secret value called a pre-master secret, which they can
both compute. The standard gives a choice of using several types of key-exchange
methods: RSA, static Diffie-Hellman, ephemeral Diffie-Hellman or Anonymous
Diffie-Hellman. In all but the Anonymous Diffie-Hellman key-exchange cipher
suite, the server has to provide a certificate for a public key – either used for
signatures, or used for public-key encryption. The certificate is sent in clear,
allowing sessions featuring the same server to be linked. Moreover, although
TLS 1.2 is mostly used in practice with server-only authentication, RFC 5246
does allow the handshake to use mutual authentication as well, in which case
the client had to also provide a certificate to be sent in clear.

It is worth noting that although TLS 1.3 does revolutionize the design of mod-
ern key-exchange protocols, its core key-exchange algorithm is signed ephemeral
Diffie-Hellman, which was also used by TLS 1.2. One key difference is that in TLS
1.3 the certificate is no longer sent in clear, but rather, it is AEAD-encrypted
with keys derived from the so-called handshake secret. This has two immediate
consequences:

– The certificate, hence server identity, remains confidential as long as the
adversary cannot break the AEAD security of the encrypted message. This
allows us to formulate some privacy properties for the use of ephemeral
Diffie-Hellman in TLS 1.3, however, no such properties can be formulated
for TLS 1.2.

– The handshake secret is computed before the authentication step takes place.
This, ironically, detracts from the privacy of the full handshake, as it opens
the door to trivial Man-in-the-Middle attacks which do not harm the security

38 Arfaoui et al.

of the keys, but do affect privacy. This is reflected in our winning conditions
for the full-handshake privacy game.

We also note that in giving less choice regarding the key-exchange algorithm,
TLS 1.3 actually gains one protocol move, reducing the full handshake to three
moves (or 1.5 rounds).

Session resumption. Session resumption was introduced as an orthogonal
mechanism that allows TLS 1.2 connections to bypass length authentication
and derive fresh session keys based on previously-authenticated keys. In the
case of TLS 1.2 the new keys are derived from the resumed session nonces and
the previous-session’s master secret. In many ways, TLS 1.2 session resumption
resembles TLS 1.3 PSK-only session resumption, with a few key differences:

– In TLS 1.3 all session keys (including the pre-shared secret psk value) are
computed from the same secrets (early keys are computed from the hand-
shake secret, post-authentication keys from the master secret), but this is
done via independent calls to the key-derivation function. This has a dual ef-
fect: first nothing is revealed about the master secret in the execution of both
handshakes and session resumption; and secondly, learning one computed
key does not immediately imply the insecurity of the other keys computed
in that session.

– In TLS 1.3 all session keys (including the psk) are computed using the entire
protocol transcript, and not just the session nonces. This bypasses attacks
such as the Triple Handshake attack [10] or version-downgrade problems
like FREAK or LogJam [9,1], which rely on a Man-in-the-Middle changing
protocol parameters such that the key remains unaffected.

– A ticket-nonce is added in the computation of a new ticket, to prevent re-
plays.

In terms of privacy, the changes made to the computation of the preshared
key psk will allow us to prove stronger privacy statements, by allowing the ad-
versary better corruption and revelation capabilities. However, as we show in
this paper, session resumption inherently brings some session linkability. This is
how resumption was designed, since the only way to authenticate the resumed
key is by linking it to a key established in a fully-authenticated handshake. In
this sense, both TLS 1.2 and TLS 1.3 session resumption present serious privacy
flaws despite not using concrete authentication elements, such as certificates.

In addition to PSK-only resumption, TLS 1.3 also allows session to resume
by using PSK-DHE handshakes. In this case, additional freshness is injected, by
using two Diffie-Hellman elements, which are in their own turn not authenticated.
While this provides a measure of backward security, it does nothing to improve
privacy.

The Server Name Indication extension. The SNI extension is indeed a very
interesting feature of TLS 1.3, which somehow expands the scope of the privacy
game. We did initially want to include this extension in our analysis; however,

The privacy of the TLS 1.3 protocol 39

it soon became clear that the task of defining and quantifying privacy in that
context is far from being a trivial extension of our current result. First, note
that although non-trivial, it would not be overly hard to extended the model
mechanics (syntax, oracles) to capture multiple domains. When defining privacy
in that context, however, we would no longer be speaking of server- and client-,
but rather server-, client-, and domain-privacy. This raises serious complications
in terms of the restrictions on the adversary’s actions in the winning conditions,
since (a) not all domains exist on all servers(implicitly allowing an adversary
to distinguish between potential servers); (b) the fact that the domain name
appears in cleartext in the full handshake may implicitly make that domain
name traceable if the parties subsequently resume. In our opinion, this topic is
relevant and deserves its own paper.

B Cryptographic Experiments

B.1 Stateful length hiding authenticated encryption

A stateful length-hiding authenticated encryption scheme (stLHAE) consists of
three algorithms: AE = (Init,Enc,Dec). We use the following notations:

k A symmetric key, sampled uniformly random from a keyspace K;
h A message header;
msg A message;
c A ciphertext;
l The desired ciphertext length;
stD State corresponding to decryption;
stE State corresponding to encryption;
Lcip An ordered list of ciphertexts. Lcip.i accesses or modifies the ith ciphertext.

The algorithms are:

– Init(): Returns the initial values of stE and stD (deterministic algorithm).
– Enc(k; l, h, msg, stE): Returns ⊥ in case of failure or a ciphertext c of length
l. It also returns an updated state stE.

– Dec(k, h, c, stD): Returns ⊥ in case of failure or a message msg. It also
returns an updated state stD.

A AE scheme is correct if the decrypting a sequence of ciphertexts ci recovers
the initial messages msgi, in the right order, if several initial conditions are met:
if a) k was generated by AE.Gen b) the initial states of stE and stD were generated
by Init and c)there exists no ci = ⊥ in the sequence.

In the security game, we give the adversary access to two oracles, defined
below. We will use two auxiliary global values, i and j, to keep track of the
number of encryptions, respectively decryptions, executed. We also use a global
variable in-sync that takes the value 0 when an inconsistency appears in the
decryption oracle.

40 Arfaoui et al.

– AEncb(l, h, msg0,msg1): Increment i. We encrypt both messages and, if at

least one encryption fails, we return ⊥. Let (cb, stE
b) be the output of Enc

when encrypting the message msgb (msgb = msg0 if b = 0, and msgb = msg1
otherwise). We store the ciphertext Lcip.i← cb, update stE=stEb, and return
cb to the adversary.

– ADecb(h, c): If b = 0, return ⊥. Otherwise, increment j and decrypt c using
the header h. If j > i or Lcip.j 6= c then in-sync is set to 0. If in-sync equals
0 then output the decrypted message msg, else output ⊥.

The same oracles, in pseudocode format:

AEncb(l, h, msg0,msg1)

i = i+ 1

(c0, stE0)← AE.Enc(k; l, h,msg0, stE)

(c1, stE1)← AE.Enc(k; l, h,msg1, stE)

if c0 = ⊥
return ⊥

if c1 = ⊥
return ⊥
Lcip.i = cb

stE = stEb

return cb

ADecb(c, h)

j = j + 1

if b0 = ⊥
return ⊥

(msg, stD)← AE.Dec(k;h, c, stD)

if j > i

in-sync = 0

if c 6= Lcip.j

in-sync = 0

if in-sync = 0

return msg

return ⊥

Note the asymmetric nature of the ADec oracle. Its output is different from
⊥ if and only if b = 1 and the adversary queries a ciphertext c that somehow
passes the integrity checks inherent in Dec.

The security game is as follows:

ExpstLHAEAE (A):

k
$← K

(stE, stD)← Init()
Lcip ← ∅
i, j ← 0
in-sync← 1

b
$← {0, 1}

d← AAEnc(·,·,·,·),ADec(·,·)

A wins if b = d.

The privacy of the TLS 1.3 protocol 41

Definition 3. An authenticated encryption scheme AE is a stateful length hid-
ing (t, q, εstLHAE)-secure authenticated encryption scheme if, for all adversaries
A running in time t and making at most q queries:

|P[A wins ExpstLHAEAE (A)]− 1

2
| ≤ εstLHAE.

	The privacy of the TLS 1.3 protocol

