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Abstract

We construct a broadcast and trace scheme (also known as trace and revoke or broadcast, trace and
revoke) with N users, where the ciphertext size can be made as low as O(Nε), for any arbitrarily
small constant ε > 0. This improves on the prior best construction of broadcast and trace under
standard assumptions by Boneh and Waters (CCS ‘06), which had ciphertext size O(N1/2). While
that construction relied on bilinear maps, ours uses a combination of the learning with errors (LWE)
assumption and bilinear maps.

Recall that, in both broadcast encryption and traitor-tracing schemes, there is a collection of N users,
each of which gets a different secret key ski. In broadcast encryption, it is possible to create ciphertexts
targeted to a subset S ⊆ [N ] of the users such that only those users can decrypt it correctly. In a
traitor tracing scheme, if a subset of users gets together and creates a decoder box D that is capable
of decrypting ciphertexts, then it is possible to trace at least one of the users responsible for creating
D. A broadcast and trace scheme intertwines the two properties, in a way that results in more than
just their union. In particular, it ensures that if a decoder D is able to decrypt ciphertexts targeted
toward a set S of users, then it should be possible to trace one of the users in the set S responsible
for creating D, even if other users outside of S also participated. As of recently, we have essentially
optimal broadcast encryption (Boneh, Gentry, Waters CRYPTO ‘05) under bilinear maps and traitor
tracing (Goyal, Koppula, Waters STOC ‘18) under LWE, where the ciphertext size is at most poly-
logarithmic in N . The main contribution of our paper is to carefully combine LWE and bilinear-map
based components, and get them to interact with each other, to achieve broadcast and trace.

1 Introduction

Broadcast Encryption. In broadcast encryption, as introduced by Fiat and Naor [FN94], a broadcaster
can encrypt a message m to an arbitrary subset S ⊆ [N ] of indexed users, which results in a ciphertext ct.
The i-th user is given a secret key ski and can decrypt the ciphertext ct iff i ∈ S. When designing broadcast
encryption systems, a primary goal is to achieve short ciphertexts, ideally independent of the number of
users N . (In order to decrypt, one must also know the description of S, but we count this separately from
the ciphertext size.) Almost all of the earliest proposed solutions were not collusion resistant [FN94, Sti97,
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SVT98, GSW00, HS02, DF02, GST04], but in 2005 Boneh, Gentry and Waters [BGW05] gave a collusion-
resistant system from bilinear maps with ciphertext size that is independent of N ; in particular, ciphertexts
consist of just three group elements.1

Traitor Tracing. A closely related primitive called traitor tracing was introduced by Chor, Fiat and
Naor [CFN94]. Here, a broadcaster encrypts messages to the entire set of N users, where the i-th user is
given a secret key ski that always decrypts the broadcaster’s ciphertexts. If some subset T ⊆ [N ] of users
(“traitors”) gets together and pools their secret keys to produce a decoder algorithm D that can decrypt the
broadcaster’s ciphertexts, then there is a tracing procedure that can identify at least one of the users in the
set T .2 While earlier tracing systems [CFN94,SW98,CFNP00,SSW01,PST06] were not collusion resistant,
Boneh, Sahai and Waters [BSW06] showed how to leverage bilinear maps to provide collusion resistant

systems with N
1
2 sized ciphertexts. Very recently, Goyal, Koppula and Waters [GKW18] constructed a

traitor tracing scheme with essentially optimal ciphertext size, which only scales poly-logarithmically in the
number of users N , under the Learning with Errors (LWE) assumption.

Broadcast and Trace. The concepts of broadcast encryption and traitor tracing are naturally intertwined
to form a broadcast and trace system [NP00,NNL01] (also known as a “trace and revoke” or “broadcast,trace
and revoke” system). Here we want the ability to broadcast to an arbitrary set of users and the ability to
trace any rogue decoding algorithm or box. However, the combination of broadcast and tracing security is
more than just the sum of the parts – the two requirements interact with each other in a non-trivial way. In
particular, the tracing property now also incorporates the broadcast set S as follows. If some subset T of
users get together and construct a decoder algorithm D that can decrypt ciphertexts targeted to a certain
set S, then there is a tracing procedure that can identify at least one of the users in T ∩ S that contributed
to constructing D, even if some other users outside of S also participated. At that point one might take
certain punitive actions against such a user and most likely remove them from the broadcast set S used in
future encryptions.

The requirement that the tracing procedure identifies a user in the set T ∩S rather than just any user in T
is important here. For example, consider a scenario where a broadcast encryption scheme is used to encrypt
messages to various subgroups within a company, and one of the board members colludes with an intern to
publish a decoder that decrypts ciphertexts targeted to the set S of all board members. In this case, we
want to trace the responsible board member and not just the intern. Alternately, even in settings involving a
flat hierarchy where with no distinctions between different types of users (e.g., broadcasting cable TV), this
requirement is important. Assume some user i publishes an illegal decoder D online, and then gets identified
and revoked from the broadcast set S, causing D to stop working. But then a new traitor j colludes with i
to publish a new decoder D′ that is able to decrypt newly created ciphertexts for the new broadcast set S.
In this case, we need to identify the new traitor j (and not just the old traitor i who is already known) so
that we can also revoke j them from the broadcast set, and eventually revoke all misbehaving users through
this process.

The requirement that the tracing procedure identifies a user in T ∩ S and not just T is also what makes
the problem of achieving broadcast and trace more technically challenging than just tackling the problems
of broadcast encryption and traitor tracing separately. Otherwise, one could trivially construct a broadcast
and trace cryptosystem with a basic combination of a broadcast encryption and a traitor tracing, by secret
sharing the message across the two systems.

Historically, progress on broadcast and trace has followed progress on the two problems separately. For
example, soon after the construction of the first broadcast with optimally succinct ciphertexts [BGW05] and

the first traitor tracing scheme with N
1
2 sized ciphertexts [BSW06], the work of Boneh and Waters [BW06]

1In a collusion-resistant system, there is no a-priori bound on the number of secret keys the adversary can see. Our discussion
and comparisons will be in the collusion resistant setting.

2For both broadcast and traitor tracing, we require that the encryption procedure is public key. In traitor tracing, while
some prior works also require that the tracing procedure is public key, here we consider secret-key tracing.
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built upon these works to give a broadcast and trace system with N
1
2 sized ciphertexts by carefully com-

bining techniques from the two bilinear map-based schemes. We also have essentially optimal constructions
of broadcast and trace using (positional) witness encryption [GVW19], but we don’t currently have any

construction that beats the N
1
2 barrier under any standard assumptions. Very recently, we finally reached

the point where we have essentially optimal ciphertext size in both broadcast and traitor tracing separately,
and therefore the time is ripe to revisit the problem of constructing an optimal broadcast and trace system
under standard assumptions. However, the optimal broadcast scheme [BGW05] is based on bilinear maps
and the optimal traitor tracing scheme [GKW18] is based on LWE. 3 Can we still come up with a way to
combine these different techniques to get an optimal broadcast and trace scheme? In particular, can we
meaningfully combine bilinear-map and LWE based components and get them to interact with each other
to get something beyond just the sum of the parts?

Our Results. In this work, we show how to combine bilinear-map and LWE based techniques to construct
broadcast and trace.

Theorem 1.1 (informal). Under the Decisional Bilinear Diffie-Hellman Exponent (DBDHE) assumption
and the Learning with Errors (LWE) assumptions, for any constant ε > 0, there exists a broadcast and trace

scheme with ciphertext size Õ(Nε)poly(λ), where N is the number of users and λ is the security parameter.

As a tool in our construction, we rely on a black-box use of attribute-based encryption (ABE) with
succinct ciphertexts, whose size is essentially independent of the attribute size (the attribute is assumed to
be known by the decryption procedure but is not counted in the ciphertext size). This can be seen as a
generalization of broadcast encryption, which is a special case of succinct ABE where the attribute is S
and keys ski are associated with policies that allow decryption iff i ∈ S. Currently, we can instantiate such
succinct ABE schemes for NC1 circuits using bilinear maps [HLR10,ALDP11,AHL+12,YAHK14]. However
we note that: (1) while the best current construction of succinct ABE relies on the DBDHE assumption,
it is very conceivable that this could be improved to milder bilinear assumptions in future work, and (2)
while current constructions only work for NC1 circuits, if we had a succinct ABE for even the slightly
larger class of TC1 circuits, we could leverage it to get essentially optimal broadcast and trace with only a
poly-logarithmic dependence on N . Therefore, we state the following more general result of our work, which
shows that future advances in succinct ABE will also lead to advances in broadcast and trace:

Theorem 1.2 (informal). Assuming the existence of ABE with succinct ciphertexts for NC1 and the
LWE assumption, for any constant ε > 0, there exists a broadcast and trace scheme with ciphertext size
Õ(Nε)poly(λ). Assuming the existence of ABE with succinct ciphertexts for TC1 and the LWE assumption,
there exists a broadcast and trace scheme with ciphertext size poly(logN,λ).

Overall, picking a smaller constant ε yields shorter ciphertexts, at the cost of making both the secret
keys bigger and the decryption time longer, with the exact tradeoff depending on the parameters of the
underlying ABE.

Our main technique is to use a bilinear-based succinct ABE scheme for NC1 and use it to evaluate an
LWE-based scheme, which we carefully engineer to be in NC1. This allows us to meaningfully combine the
cryptographic properties of both schemes and achieve more than just their union. We provide a detailed
technical overview below.

1.1 Technical Overview

We now give a technical overview of our result. We start by giving a high-level description of the state of
the art construction of traitor tracing based on the works of [BSW06,GKW18,CVW+18a]. Then we discuss
our approach to incorporate broadcast and get a broadcast and trace system. Concretely, we describe a
3-step construction of traitor tracing and then show how to augment each of the steps to also accommodate
broadcast. Finally, we discuss the complications that arise in realizing the augmented steps and our solutions.

3There are actually no known collusion resistant broadcast encryption schemes from LWE other than the trivial one with
N -sized ciphertexts.
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1.1.1 Traitor Tracing in Three Steps

The following is a high-level description of a 3-step approach to construct traitor-tracing based on the works
of [BSW06,GKW18,CVW+18a].

Step 1: Traitor Tracing from PLBE. The first step is to construct traitor tracing from a conceptually
simpler primitive called private linear broadcast encryption (PLBE) [BSW06]. A PLBE scheme is initialized
with a master public key pk, a master secret key msk, and N user secret keys sk1, . . . , skN . There is a “public
encryption” procedure which encrypts a message m under pk and guarantees that every user secret key ski
will decrypt it correctly. There is also a “secret encryption” procedure which encrypts a message m under
msk with respect to some index ind ∈ [N + 1] and guarantees that a user secret key ski will decrypt m
correctly iff i ≥ ind. Moreover, one cannot distinguish a public encryption from a secret encryption or a
secret encryption with one index ind versus another index ind′ unless one has a secret key ski that correctly
decrypts in one case but not the other. Lastly, a secret encryption with the index ind = N + 1 should hide
the message m even given all the secret keys. An important subtlety, discovered by [GKW18], is that these
indistinguishability properties must hold even if the adversary is given a single arbitrary query to the secret
encryption oracle, in addition to getting the challenge ciphertext.

A PLBE scheme can directly be used as a traitor tracing scheme, where the “secret encryption” procedure
is used to implement the tracing algorithm. Assume some subset of users get together and create a decoder
D that can correctly decrypt ciphertexts produced by the public encryption procedure. Then D should also
correctly decrypt ciphertexts produced by the secret encryption procedure with index ind = 1 (since these
are indistinguishable even given all the user secret keys). On the other hand the decoder cannot correctly
decrypt ciphertexts produced by the secret encryption procedure with index ind = N + 1 (since these are
undecryptable even given all the user secret keys). Therefore there must be at least one index ind∗ where
the decoder’s probability of successful decryption drops significantly between being given secret encryptions
with index ind∗ and ind∗ + 1. But this can only be the case if the decoder was created with knowledge of
skind∗ (since otherwise the two cases are indistinguishable). Therefore, this allows the tracing algorithm to
finger user ind∗ as a traitor.4

Step 2: PLBE from ABE and mixed FE. The work of [GKW18] showed how to construct PLBE from
two simpler primitives. The first primitive is a (key-policy) attribute-based encryption (ABE) [SW05] for
circuits, which is already known from LWE [GVW13]. The second primitive is a restricted form of functional
encryption for the comparison function, called mixed functional encryption (Mixed FE).

In Mixed FE, private keys ski are associated with values i and the adversary can collect an unrestricted
number of such keys. There is a “secret encryption” algorithm which requires the master secret key and is
used to encrypt an index ind. If a user with a secret key for input i decrypts a ciphertext encrypting an
index ind, the output is 1 if i ≥ ind and 0 otherwise. Security says that, given an encryption of ind and many
secret keys {ski}i∈T , the adversary does not learn anything about ind beyond the decryptions. Security
must hold even if the attacker is also allowed to make 1 query to the secret encryption oracle, in addition
to getting the challenge ciphertext. So far, the above can be thought of as a secret-key FE scheme for the
comparison functions with security for unbounded number of keys and two ciphertexts, which can actually
be constructed based only on one-way functions via garbled circuits [GVW12, KMUW18]. The additional
property that makes mixed FE different, is that it also requires a public encryption algorithm, which only
uses a public key and generates ciphertexts ct that always decrypt to 1 under all private keys. Such an
algorithm is a bit unusual in that there is no further choice in the index. The security of the system requires
that an attacker who makes a single query to the “secret encryption” oracle cannot distinguish a public

4 The above argument implicitly assumes that, if an adversary can create a decoder D that can distinguish between certain
types of ciphertexts, then the adversary himself can also distinguish. As observed by [GKW18], this is more subtle than it
appears and not true in general. The issue arises from a discrepancy between the decoder’s advantage, which is calculated
only over the choice of the encryption randomness after the keys have been fixed, and the advantage of the adversary, which is
calculated also over the choice of the keys and randomness simultaneously. To make this step work, [GKW18] showed that one
needs to start with a stronger form of PLBE security, where the adversary also gets one query to the secret encryption oracle.
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encryption versus a secret encryption or a secret encryption with one index ind versus another index ind′

unless he has a secret key ski that decrypts to 0 in one case and 1 in the other. The name “Mixed FE” is
derived from the fact that the scheme has both a public and secret encryption procedure.

The semantics of mixed FE scheme are already very close a PLBE; in both cases there is a “public
encryption” and “secret encryption” algorithm and one should not be able to distinguish different types
of ciphertexts without having a secret key that decrypts differently in one case versus the other. The one
important difference is that, in PLBE, the ciphertext also incorporates a message m, while in mixed FE
there is no message. The work of [GKW18] showed how to use ABE on top of a mixed FE to incorporate
a message into the ciphertext and get PLBE. Essentially, the PLBE scheme uses a mixed FE ciphertext as
an attribute and then encrypts the message m under this attribute via an ABE scheme. In more detail,
to implement public PLBE encryption (resp. secret PLBE encryption for index ind), first create public
mixed-FE ciphertext (resp. secret mixed-FE ciphertext for the index ind) denoted ctmfe and then use the
ABE scheme to encrypt the message m under the attribute ctmfe. To create a PLBE secret key ski for index
i, first create a mixed-FE secret key skmfe,i for the index i and then set ski to be an ABE secret key for the
function fskmfe,i

which takes as input ctmfe and decrypts it with skmfe,i. This incorporates the message m
into the PLBE scheme, while having the mixed FE dictate whether or not the message is decryptable and
preserving the mixed FE security properties.

Step 3: Constructing mixed FE. The work of [GKW18] gave a self-contained albeit somewhat com-
plex construction of mixed FE from the LWE assumption. Later, the work of [CVW+18a] gave two sim-
ple and modular constructions of mixed FE from previously studied primitives: one from lockable (a.k.a.,
compute-and-compare) obfuscation [WZ17, GKW17] and one from (key-homomorphic) private constrained
PRFs (PCPRFs) [CC17,BTVW17,CVW18b]. Since either of these can be instantiated under LWE, so can
the final mixed FE and traitor-tracing schemes.

We recall the PCPRF-based construction of mixed FE from [CVW+18a], which we will later rely on
for our results. A PCPRF consists of a pseudorandom function (PRF) family FK(·) with a key K. The
constrained property states that given K, there is a way to generate a constrained key KP for some program
P such that FK(x) = FKP (x) if P (x) = 0. In addition, the constraints are private in that, one cannot
distinguish between seeing the constrained key KP , along the evaluations of yi = FK(xi) on various inputs
xi for which P (xi) = 1, versus being given a “dummy key” that does not depend on P along with uniformly
random values yi.

Given a PCPRF for the comparison functions Pind(i) = 1 iff i ≥ ind, one can construct a simple mixed
FE scheme as follows. The master secret key is a PRF key K and the secret key for an input i is the value
y = FK(i). An encryption is a PRF key K∗ and the decryption algorithm outputs 1 iff y 6= FK∗(x). A public
encryption consists of a “dummy key” K∗. A secret encryption of some index ind consists of the constrained
key K∗ = KPind

. It’s relatively easy to see that the above gives a mixed FE scheme that is secure with q = 0
queries to the secret encryption oracle. In particular, the only way to distinguish different types of PRF keys
is to have an evaluation on some i for which one is constrained and the other is not.

To get a mixed FE scheme with security for q = 1 queries to the secret encryption oracle, which is
needed for traitor tracing, we rely on a PCPRF with an additional key homomorphic property saying that
FK(x) + FK′(x) = FK+K′(x). The construction is only slightly more complex. Now the master secret
key consists of 2λ PRF keys {Kj,b}j∈λ,b∈{0,1} and the secret key for an input i consists of the values

{yj,b = FKj,b(i)}j∈λ,b∈{0,1}. An encryption is a PRF key K∗ and some “tag” value z ∈ {0, 1}λ and the

decryption algorithm outputs 1 iff
∑λ
j=1 yj,zj 6= FK∗(i). A public encryption consists of a random z and a

“dummy key” K∗. A secret encryption for some index ind consists of a random z along with the constrained
key K ′Pind

where K ′ =
∑λ
j=1Kj,zj . The above gives a mixed FE scheme which is secure with q = 1 queries

to the secret encryption oracle. With overwhelming probability, the z value used in the challenge ciphertext
differs from the one used by the oracle in answering the encryption query in some position j, and therefore
we can rely on the security of the PRF FKj,zj in essentially the same way as was done in the q = 0 query
case.
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1.1.2 Adding Broadcast to Traitor Tracing

We now discuss how to “upgrade” the above ideas to construct a broadcast and trace scheme.
Perhaps the first approach one would try is to combine broadcast and traitor-tracing directly; e.g., secret-

share the message and encrypt one share via a broadcast scheme and the other share via a traitor-tracing
scheme. Indeed, we can use the broadcast scheme to restrict the set S of users that can recover the first
share and therefore the encrypted message. Also, any decoder D that decrypts the full ciphertext correctly
must also necessarily decrypt the second share, and therefore we can use the traitor-tracing scheme to trace
at least one user i ∈ [N ] that participated in constructing D. However, even if the decoder D can decrypt
ciphertexts targeted toward some restricted set S of users, the traitor tracing procedure might find a user
i /∈ S, which is not good enough for a broadcast and trace scheme, as explained earlier. To fix this, we need
to incorporate the broadcast set S into the tracing procedure itself. We revisit the 3-step approach outlined
above and show how to upgrade it to get a broadcast and trace scheme.

Updated Step 1: Broadcast and Trace from AugBE. We previously saw how traitor-tracing can be
constructed from “private linear broadcast encryption” (PLBE). The work of [BW06] showed that broadcast
and trace can analogously be constructed from an augmented version of PLBE, called “augmented broadcast
encryption” (AugBE), which can be thought of as combining PLBE and broadcast encryption. In particular,
an AugBE scheme has a master public key pk, a master secret key msk, and N user secret keys sk1, . . . , skN .
There is a “public encryption” procedure using pk, which encrypts a message m to a target set S, and
guarantees that a secret key ski will decrypt correctly iff i ∈ S. There is also a “secret encryption” procedure
using msk, which encrypts a message m to a target set S with respect to some index ind ∈ [N + 1], and
guarantees that a secret key ski will decrypt correctly iff i ∈ S ∧ i ≥ ind. Moreover, one cannot distinguish
a public encryption from a secret encryption or a secret encryption with one index ind versus another index
ind′ (all with the same set S) unless one has a secret key ski that correctly decrypts in one case but not the
other. A secret encryption with the index ind = N+1 should hide the message even given all the secret keys.
As before, these indistinguishability properties must hold even if the adversary is given a single query to the
secret encryption oracle. We want the ciphertext size to be small, much smaller than N . As in broadcast
encryption, the decryption algorithm is also given the set S separately, but we do not count it as part of the
ciphertext size.

The notion of AugBE already incorporates the broadcast encryption requirements directly in the defini-
tion. To see that it also allows us to trace a traitor in the set S, one can adapt the previous argument that
PLBE implies tracing. The tracing algorithm tests the decoder’s success probability on secret encryptions
with the fixed broadcast set S and all possible values of ind ∈ [N + 1]. As before, the decoder must be
successful when ind = 1 (since it is successful with public encryptions and the two are indistinguishable) but
cannot be successful when ind = N + 1 (since such encryptions hide the message by definition) and so there
must be some value ind∗ such that success probability drops significantly between ind∗ and ind∗ + 1. But
this means that the decoder can distinguish between these two types of ciphertexts and, in order for that
to happen, the decoder must have been created using knowledge of skind∗ with ind∗ ∈ S. Thus the tracing
algorithm can finger the user ind∗ ∈ S as a traitor.

Updated Step 2: AugBE from Succinct ABE and BMFE. Recall that the work of [GKW18]
constructed of PLBE from ABE and mixed FE. As our first contribution, we given an analogous result
showing how to construct AugBE (the augmented form of PLBE) from two simpler primitives: a (succinct)
ABE scheme and an augmented variant of mixed FE that we call “broadcast mixed FE” (BMFE). At a high
level, we incorporate the set S into the ABE to ensure that only users i ∈ S can decrypt correctly. But we
also incorporate the set S into the mixed FE to ensure that the keys of users i /∈ S cannot help to distinguish
between ciphertexts with different values of the index ind. We now go into more detail on how this is done.

A BMFE scheme can be thought of as an augmented form of mixed FE that includes the set S. In
particular, a BMFE has master public key pk, a master secret key msk and allows us to create user secret
keys ski for values i ∈ [N ]. There is a “public encryption” procedure using pk, which takes as input a set
S ⊆ [N ] and outputs a ciphertext ct that decrypts to 1 under all secret keys ski. There is also a “secret
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encryption” procedure using msk, which takes as input a set S and an index ind and outputs a ciphertext
ct that decrypts to 1 under ski if i /∈ S ∨ i ≥ ind and decrypts to 0 otherwise. The security of the system
requires that an attacker with q = 1 queries to the “secret encryption” oracle cannot distinguish a public
encryption versus a secret encryption or a secret encryption with one index ind versus another index ind′ (all
with the same set S) unless he has a secret key ski that decrypts to 0 in one case and 1 in the other.

Note that the decryptability conditions of AugBE (i ∈ S ∧ i ≥ ind) and of BMFE (i /∈ S ∨ i ≥ ind)
differ from each other. However, these decryptability conditions match up to ensure that the only way to
distinguish between ciphertexts with some index ind versus ones with index ind′ > ind is to have a key ski
for some i ∈ S ∩ [ind, ind′).

We can construct AugBE by combining together ABE with BMFE. In particular, the ABE scheme allows
us to simultaneously add a message m to the BMFE and also to ensure that only the users in S can decrypt
correctly. In more detail, the AugBE encryption consists of creating a BMFE ciphertext ctbmfe with some
set S and index ind and then using the ABE to encrypt the message m under attribute a = (S, ctbmfe). The
AugBE secret key ski is an ABE secret key for a function fi,skbmfe,i

which has the BMFE secret key skbmfe,i

inside it and checks that i ∈ S and that ctbmfe decrypts to 1 under skbmfe,i. It is easy to see that the above
construction ensures that the set S and the index ind correctly determine whether an AugBE ciphetext is
decryptable while preserving the BMFE indistinguishability properties.

Up until now we have completely ignored efficiency and, in particular, the requirement that ciphertexts
are small. To ensure this we need the following:

• Firstly, we need a succinct ABE where the ciphertext size is essentially independent of the attribute size,
since the attribute includes the set S (the decryption algorithm gets the attribute, but we don’t count
it as part of the ciphertext). Succinct ABE can be thought of as generalizing broadcast encryption,
where the latter is a special case of succinct ABE in which attributes are sets S, and keys are associated
with policies of the form fi(S) = 1 iff i ∈ S. Unfortunately, the current ABE systems from the LWE
assumption [GVW13, BGG+14] do not satisfy this form of succinctness, and we do not know how
to achieve even broadcast encryption from LWE. On the positive side, we do have constructions of
succinct ABE from bilinear maps [HLR10,ALDP11,AHL+12,YAHK14]; however, these constructions
can only support policies for circuits in NC1, unlike the LWE-based ones that can support circuits
of arbitrary depth. Recall that, in our case, the ABE policy checks that i ∈ S and that a BMFE
ciphertext decrypts to 1. The first part is in NC1 and therefore we need to ensure that the BMFE
decryption is in NC1.

• Secondly, we need a succinct BMFE scheme, where decryption is in NC1 and the ciphertext size is
much smaller than N (the decryption procedure gets S but we do not count it in the ciphertext size).
We next show how to construct this primitive under LWE.

Note that we are using a bilinear-based succinct ABE to evaluate the decryption of an LWE-based BMFE
scheme, which will be in NC1. This allows us to meaningfully combine the security properties of a bilinear-
based scheme and an LWE-based scheme to achieve more than just the union of their capabilities.

Updated Step 3: Constructing BMFE in NC1. Our goal now is to construct a succinct BMFE with
decryption in NC1. Recall that BMFE is an augmented form of mixed FE for which we have constructions
from LWE [GKW18,CVW+18a]. We face two challenges:

• We need to incorporate the set S into mixed FE to get BMFE.

• We need to ensure that BMFE decryption is in NC1.

Let’s start by showing how to augment mixed FE to get BMFE. Recall that we previously outlined
the [CVW+18a] construction of mixed FE from (key-homomorphic) private constrained PRFs (PCPRFs)
for comparison constraints: Pind(i) = 1 iff i ≥ ind. We now outline how to upgrade this construction to get a
BMFE scheme. For simplicity, we describe how to get BMFE with security against q = 0 queries to the secret
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encryption oracle; to get security for q = 1 queries, as is needed for broadcast and trace, we then employ the
same trick as in the mixed FE case. The master secret key of the BMFE scheme now consists of N PCPRF
keys {Kj}j∈N . The secret key of user i consists of the values {yi,j = FKj (i)}j 6=i for i, j ∈ [N ]. To create a
“secret encryption” to a set S with respect to an index ind, the encryptor computes a key K+ =

∑
j 6∈S Kj

and then constrains it on the program Pind to get K∗ = K+
Pind

. To create a “public encryption” to a set
S, the encryptor chooses a dummy constrained key K∗. The decryption procedure takes a ciphertext K∗

and outputs 1 iff FK∗(i) 6=
∑
j 6∈S yi,j . We rely on the fact that, the only way to distinguish different types

of BMFE ciphertexts (i.e., PRF keys), is to have a complete set of values {FKj (i)}j 6∈S for some i which is
constrained in one case but not the other, which requires having the BMFE key of some user i such that
i ∈ S (as no secret key contain the value FKi(i)), and where i is constrained in one case but not the other.

In our BMFE scheme, the decryption procedure is in NC1 if the underlying PCPRF evaluation FK∗(i)
with a constrained key K∗ is in NC1. If we go under the hood, and look at the PCPRF construction
of [CVW18b], the constrained keys consist of logN tuples of square matrices {Dj,0,Dj,1}j∈[logN ] of dimension

poly(λ), and the evaluation on some input i = (b1, . . . , blogN ) computes a subset-product
∏logN
j=1 Dj,bj followed

by rounding. While the product of a constant number of matrices and the rounding are in NC1, multiplying
logN matrices is only known to be in TC1, which is not good enough for us.

We solve this problem by “pre-processing” the key which makes it longer but allows us to evaluate in
NC1. In particular, we first group the logN matrix tuples into c groups of (logN)/c tuples each. Next,
we pre-compute all possible 2(logN)/c = N1/c subset-products within each group. This increases the key
size from 2 logN original matrices to c · N1/c pre-processed matrices, but now the evaluation only needs
to multiply together c of the pre-processed matrices; as long as c is a constant (which can be arbitrarily
large), this can be done in NC1. In other words, for any constant ε > 0 there is a PCPRF with key size
O(Nε) (ignoring factors poly(λ) independent of ε) and evaluation in NC1. This translates into a BMFE with
ciphetext size O(Nε) and decryption in NC1. Combining with succinct ABE for NC1, this in turn leads to
an a AugBE scheme and eventually a Broadcast and Trace scheme with ciphertext size O(Nε). Note that if
we instead had a succinct ABE for TC1 then we could avoid the pre-processing step and that would lead to
the ciphertext size only poly logN .

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We denote the set of all positive integers upto
n as [n] := {1, 2, . . . , n}. Throughout this paper, unless specified, all polynomials we consider are positive
polynomials. For any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly,
for any distribution D, x← D denotes an element x drawn from distribution D. The distribution Dn is used
to represent a distribution over vectors of n components, where each component is drawn independently
from the distribution D.

2.1 Broadcast and Trace Systems

Here we recall the framework of broadcast and trace systems5 and describe its security properties. In this
work, we study broadcast and trace systems with secret key tracing. A broadcast and trace scheme BT,
for message spaces M = {Mλ}λ∈N, consists of four polytime algorithms (Setup,Enc,Dec,Trace) with the
following syntax:

Setup(1λ, 1N ) → (pk, tk, {sk1, sk2, . . . , skN}). The setup algorithm takes as input a security parameter λ
and number of users N . It outputs a public key pk, tracing key tk, and secret keys for N users
{sk1, sk2, . . . , skN} respectively.

Enc(pk, S,m) → ct. The encryption algorithm takes as input public key pk, a set S ⊆ [N ] of users, a
message m and outputs a ciphertext ct.

5Prior works [NP00,NNL01,BW06] referred to such systems as Trace and Revoke.
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Dec(ski, S, ct)→ m or ⊥. The decryption algorithm takes as input a user secret key, a set of users S ⊆ [N ],
a ciphertext ct, and outputs either a message m or special reject symbol ⊥.

TraceD(tk, SD,m0,m1, 1
1/ε) → S∗. The tracing algorithm takes as input a tracing key tk, a set of users

SD, two messages m0, m1 and parameter ε < 1. The algorithm has a black-box access to the decoder
D and outputs a set of indices S∗ ⊆ [N ].

Intuitively, the goal of the tracing algorithm is that when the decoder D can distinguish between
encryptions of messages m0 and m1 encrypted to the set SD with probability more than ε, the tracing
algorithm should output a set S∗ which is a subset of traitors (i.e., keys used to build decoder D).
Here we consider the notion of secret key tracing, that is the algorithm takes as input a private tracing
key to carry out the tracing procedure.

Correctness. A broadcast and trace system is said to be correct if there exists a negligible function negl(·)
such that for every λ ∈ N, any number of users N ∈ N, every subset of users S ⊆ [N ], every message
m ∈Mλ, every user i ∈ S, the following holds

Pr

[
Dec(ski, S, ct) = m :

(pk, tk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc(pk, S,m)

]
≥ 1− negl(λ).

where the probability is taken over the random coins used during setup and encryption.

Security. Intuitively, the system is said to be secure if it is IND-CPA secure as well as if no poly-time
adversary can produce a decoder that can fool the tracing algorithm. We formally define both of these
properties below.

Definition 2.1 (Selective IND-CPA security). We say that a broadcast and trace scheme is selective IND-CPA
secure if for every stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
the following holds

Pr

A(ct) = b :

(1N , S∗)← A(1λ);
(pk, tk, {ski}i∈[N ])← Setup(1λ, 1N );

(m0,m1)← A(pk, {ski}i∈[N ]\S∗);
b← {0, 1}; ct← Enc(pk, S∗,mb)

 ≤ 1

2
+ negl(λ).

Next, we describe the secure tracing definition and experiment. Intuitively, it states that if an adversary
A outputs a decoding box D such that D can distinguish between encryptions of messages m0 and m1

encrypted to the set SD ⊆ [N ] with some non-negligible probability ε, then the tracing algorithm Trace,
given oracle access to D, outputs (with all but negligible probability) a non-empty set of user indices such
that all of them were corrupted by A. Formally, it is described below.

Definition 2.2 (Selective Secure Tracing). Let BT = (Setup,Enc,Dec,Trace) be a broadcast and trace
scheme. For any non-negligible function ε(·) and stateful PPT adversary A, consider the experiment
Expt-BTA,ε(λ) defined as follows.

Based on the above experiment, we now define the following (probabilistic) events and the corresponding
probabilities (which are a functions of λ, parameterized by A, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk, SD,mb)] ≥ 1/2 + ε(λ), and
Pr -G-DA,ε(λ) = Pr[Good-Decoder]

• Cor-Tr : |S∗| > 0, S∗ ⊆ S ∩ SD, and
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr]

• Fal-Tr : S∗ 6⊆ S ∩ SD, and
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr]
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Experiment Expt-BTA,ε(λ)

• (1N , SD)← A(1λ).

• (pk, tk, (sk1, . . . , skN ))← Setup(1λ, 1N ).

• (D,m0,m1)← AO(·)(pk).

• S∗ ← TraceD(tk, SD,m0,m1, 1
1/ε(λ)).

Here, O(·) is an oracle that has keys {ski}i∈[N ] hardwired, takes as input an index i ∈ [N ] and outputs ith

key ski. Let S be the set of indices queried by A.

Figure 1: Experiment Expt-BT

A broadcast and trace scheme BT is said to satisfy selective secure tracing property if for every PPT adversary
A, polynomial q(·) and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such
that for all λ ∈ N satisfying ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ),

Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).

2.2 Augmented Broadcast Encryption

In this section, we define Augmented Broadcast Encryption (AugBE) and its security properties. The notion
of AugBE was introduced by Boneh and Waters [BW06] as a building block towards realizing broadcast and
trace systems. The original definition was described such that it could be used to build broadcast and
trace scheme with public traceability. Here we relax the original definition since we only target secret key
traceability. Specifically, the index encryption algorithm will now be a secret key algorithm, instead of being
a public key algorithm. Below we describe the syntax.

Setup(1λ, 1N ) → (pk,msk, {sk1, . . . , skN}). The setup algorithm takes as input security parameter λ
and number of users N . It outputs a public key pk, a master secret key msk and user secret keys
{sk1, . . . , skN}, where ski is the secret key for user i.

Enc(pk, S,m) → ct. The encryption algorithm takes as input public key pk, a set of users S ⊆ [N ], and a
message m. It outputs a ciphertext ct.

Enc-index(msk, S,m, ind)→ ct. The index encryption algorithm takes as input master secret key msk, a set
of users S ⊆ [N ], a message m, and an index ind ∈ [N + 1]. It outputs a ciphertext ct.

Dec(ski, S, ct) → m or ⊥. The decryption algorithm takes as input a secret key for ith user ski, a set of
users S ⊆ [N ], a ciphertext ct, and outputs a message m or ⊥.

Correctness. An AugBE system is said to be correct if there exists a negligible function negl1(·), negl2(·)
such that for every λ ∈ N, any number of users N ∈ N, every subset of users S ⊆ [N ], any index ind ∈ [N+1],
every message m ∈Mλ, every user i ∈ S, the following holds

Pr

[
Dec(ski, S, ct) = m :

(pk,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc(pk, S,m)

]
≥ 1− negl1(λ),

i ≥ ind⇒ Pr

[
Dec(ski, S, ct) = m :

(pk,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc-index(msk, S,m, ind)

]
≥ 1− negl2(λ).

where the probabilities are taken over the random coins used during setup and encryption.
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Security. Below we describe the security properties required from an AugBE scheme. The definitions are
modelled after the bounded-ciphertext-query PLBE definitions [GKW18].

Definition 2.3 (q-query Selective Normal Hiding Security). Let q(·) be any fixed polynomial. An AugBE
scheme is said to satisfy q-query selective normal hiding security if for every stateful PPT adversary A, there
exists a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

[
AEnc-index(msk,·,·,1)(ctb) = b :

(1N , S∗)← A(1λ);(
pk,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

m← AEnc-index(msk,·,·,1) (pk, {ski}i∈[N ]

)
b← {0, 1}; ct0 ← Enc(pk, S∗,m)

ct1 ← Enc-index(msk, S∗,m, 1)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, 1) oracle. Note that here A is only allowed to
query for ciphertexts corresponding to index 1.

Definition 2.4 (q-query Selective Index Hiding Security). Let q(·) be any fixed polynomial. An AugBE
scheme is said to satisfy q-query selective index hiding security if for every (admissible) stateful PPT adver-
sary A, there exists a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

[
AO(·),Enc-index(msk,·,·,·)(ct) = b :

(1N , ind ∈ [N ], S∗)← A(1λ)(
pk,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

m← AO(·),Enc-index(msk,·,·,·) (pk)
b← {0, 1}; ct← Enc-index(msk, S∗,m, ind + b)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, ·) oracle. Here O(·) is an oracle that has
keys {ski}i∈[N ] hardwired, takes as input an index i ∈ [N ] and outputs ski. Let the set of keys queried by
the adversary be S. The adversary is admissible if and only if the challenge index ind it chooses satisfies
ind /∈ (S∗ ∩ S).

Definition 2.5 (q-bounded Selective Message Hiding Security). Let q(·) be any fixed polynomial. An AugBE
scheme is said to satisfy q-query selective message hiding security if for every stateful PPT adversary A,
there exists a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr

[
AEnc-index(msk,·,·,·)(ct) = b :

(1N , S∗)← A(1λ);
(
pk,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

(m0,m1)← AEnc-index(msk,·,·,·) (pk, {ski}i∈[N ]

)
b← {0, 1}; ct← Enc-index(msk, S∗,mb, N + 1)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, ·) oracle.

We refer for the full version of the paper for a construction of a broadcast and trace system from an
AugBE scheme. The formal theorem is provided later.

2.3 Key-Policy Attribute Based Encryption with Short Ciphertexts

In this work we require a key-policy attribute based encryption (KP-ABE) scheme with short ciphertexts
for obtaining our final result. Here we recall the definition of KP-ABE with short ciphertexts, and state the
prior results with explicit succinctness guarantees.

A KP-ABE scheme ABE, for set of attribute spaces X = {Xκ}κ, predicate classes C = {Cκ}κ and message
spacesM = {Mκ}κ, consists of four polytime algorithms (Setup,Enc,KeyGen,Dec) with the following syntax:

Setup(1λ, 1κ)→ (pp,msk). The setup algorithm takes as input the security parameter λ and a functionality
index κ, and outputs the public parameters pp and master secret key msk.

Enc(pp, x,m) → ct. The encryption algorithm takes as input public parameters pp, an attribute x ∈ Xκ
and a message m ∈Mκ. It outputs a ciphertext ct.
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KeyGen(msk, C)→ skC . The key generation algorithm takes as input master secret key msk and a predicate
C ∈ Cκ. It outputs a secret key skC .

Dec(skC , ct, x) → m or ⊥. The decryption algorithm takes as input a secret key skC , a ciphertext ct and
an attribute x. It outputs either a message m ∈Mκ or a special symbol ⊥.

We point out that in our syntax the decryption algorithm takes the attribute x as explicit input. This
is done so to simplify stating the succinctness requirement. Below we describe the correctness and security
requirements, and later state the results achieving the requisite notion.

Correctness. A key-policy attribute based encryption scheme is said to be correct if there exists negligible
functions negl(·) such that for all λ, κ ∈ N, for all x ∈ Xκ, C ∈ Cκ, m ∈Mκ, such that C(x) = 1 the following
holds

Pr

Dec(skC , ct, x) = m :
(pp,msk)← Setup(1λ, 1κ);

skC ← KeyGen(msk, C);
ct← Enc(pp, x,m)

 ≥ 1− negl(λ)

where negl(·) is a negligible function, and the probabilities are taken over the random coins used during
setup, key generation, and encryption procedures.

Security. The standard notion of security for a KP-ABE scheme is that of IND-CPA security. It is formally
defined as follows.

Definition 2.6. A key-policy attribute based encryption scheme ABE = (Setup,Enc,KeyGen,Dec) is said
to be selectively secure if for every stateful PPT adversary A, there exists a negligible function negl(·), such
that for every λ ∈ N the following holds:∣∣∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :

(1κ, x)← A(1λ);
(pp,msk)← Setup(1λ, 1κ)

(m0,m1)← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp, x,mb)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x) = 0.

Below we state the result proved in [AHL+12] about a KP-ABE scheme with short ciphertexts from assump-
tions over bilinear maps. Concretely, they relied on the n-DBDHE assumption studied in [BGW05,BBG05].
Below we state the formal theorem.

Theorem 2.1 ( [AHL+12, Theorem 4, Paraphrased]). Assuming κ-DBDHE assumption holds, there exists
a selectively-secure (Definition 2.6) KP-ABE scheme for non-monotonic access structures with length κ
attributes (/number of parties). Additionally, the size of public parameters, secret keys, ciphertexts grow
with λ and κ as follows — |pp| = O(κ · λ), |skC | = O(κ · λ · |C|), and |ct| = O(λ).

We point out that the size of the ciphertext does not depend on the length of the attributes, that is the
KP-ABE scheme has short ciphertexts.

2.4 Key-Homomorphic Private Constrained PRFs

In this section, we recall the notion of almost-key-homomorphic private constrained PRFs (PCPRFs) from
[CVW+18a]. As in [CVW+18a], we also work with PCPRFs that satisfy simulation-based security given one
constrained key and many input queries. The existence of a simulator will be useful for the purpose of this
paper. Below we describe the syntax and definition of PCPRFs.

A constrained PRF consists of five PPT algorithms (PPGen, SKGen, Constrain, Eval, Constrain.Eval) along
with a domain family {Dλ}λ∈N, a range family {Rλ}λ∈N, and a constraint family C = {Cλ = {C : Dλ → {0, 1}}}λ∈N.
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PPGen(1λ)→ PP. The public parameter generation algorithm takes the security parameter λ and generates
the public parameters PP.

SKGen(1λ,PP)→ SK. The secret key generation algorithm takes the security parameter λ, and the public
parameters PP, and generates a secret key SK.

Eval(SK, x) → y. The evaluation algorithm takes SK, an input x ∈ Dλ, and deterministically outputs
y ∈ Rλ. We will also use the alternative notation y = FSK(x).

Constrain(1λ,PP,SK, C) → CKC . The constraining algorithm takes SK, a constraint C ∈ Cλ, outputs the
constrained key CKC .

Constrain.Eval(CKC , x) → y. The constrained evaluation algorithm takes a constrained key CKC , an input
x, outputs y = FCKC (x).

Definition 2.7 (Key-homomorphic private constrained PRF). A constrained PRF (PPGen, SKGen, Constrain,
Eval, Constrain.Eval) is a family of almost-key-homomorphic private constrained PRF for C if it satisfies the
following properties:

Functionality preservation for C(x) = 0. For any constraint C ∈ Cλ, any input x ∈ Dλ s.t. C(x) = 0,

Pr[Eval(SK, x) = Constrain.Eval(CKC , x)] ≥ 1− negl(λ),

where the probability is taken over the randomness used in algorithms PPGen, SKGen and Constrain.

Pseudorandomness and constraint-hiding. There exists a polynomial time algorithm Sim such that for
every stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds:

Pr

AEval(SK,·)(PP,CKC) = 1 :
C ← A(1λ); PP← PPGen(1λ)

SK← SKGen(1λ,PP)
CKC ← Constrain(1λ,PP,SK, C)


− Pr

[
AO(·)(PP,CKC) = 1 :

C ← A(1λ);
(PP,CKC)← Sim(1λ, 1|C|)

]
≤ 1

2
+ negl(λ).

where the oracle O(·) is defined as follows. On each query x made by the adversary, if C(x) = 0 then
it responds with y = Constrain.Eval(CKC , x), otherwise it responds with y ← Rλ.

Distribution requirement on the secret keys. The space of keys Kλ is a group for all λ ∈ N. Let + de-
note the group operation over Kλ. We additionally require that for PP← PPGen(1λ), for SK1,SK2,SK′

sampled from SKGen(1λ,PP) with uniform and independent randomness, SK1 + SK2, SK1 + (−SK2),
and SK′ are identically distributed.

Almost-key-homomorphism. Let B ∈ N, and suppose Rλ is endowed with a norm ‖·‖ and a group opera-
tion + (by abuse of notation; whether we are considering addition over Rλ or over Kλ will be clear from
the context) for all λ ∈ N . A constrained PRF (PPGen, SKGen, Constrain, Eval, Constrain.Eval) with
domain Dλ and range Rλ is called B-almost-key-homomorphic if for PP ← PPGen(1λ), SK1,SK2 ←
SKGen(1λ,PP), and any input x ∈ Dλ:

‖Eval(SK1, x) + Eval(SK2, x)− Eval(SK1 + SK2, x)‖ ≤ B.

To instantiate the definition above, we will use PCPRFs from LWE [CC17, CVW18b], which happen
to satisfy 1-almost-key homomorphism. We defer a more detailed exposition of the parameters and the
efficiency of those PCPRFs to Section 6.1.
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3 Broadcast Mixed FE for Comparison

The notion of mixed functional encryption was introduced in [GKW18] towards building efficient collusion-
resistant Traitor Tracing systems. In this work, we adapt the notion of Mixed FE to additionally provide
broadcast capabilities. We call this new primitive Broadcast Mixed FE. This new notion is a central com-
ponent of our approach to building Broadcast and Trace schemes. Let us first recall the notion of Mixed FE
scheme for comparisons. In such a scheme, both the secrets keys as well as ciphertexts are associated with a
message string (say all positive integers for instance) with the comparison predicate being implemented. In
a Mixed FE system, there are two modes of encryption — secret-key and public-key. In the public-key (or
normal) encryption mode, the algorithm takes as input only the public parameters and outputs a encryption
of ‘one’ (i.e., inherently it encrypts a “canonical” always-accepting function ‘≥ 1’). Whereas in the secret-key
mode, it takes as input the master secret key and a string x, and encrypts x. Now the functional secret keys
are associated with a unique string as well. The decryption algorithm in a Mixed FE system works similar
to that in standard FE, that is decrypting an encryption of message x using secret key for string i outputs
1 iff ‘i ≥ x’ (i.e., decryption evaluates the comparison function).

Here we extend this to provide a broadcast functionality as well. This means that now in both the
public-key and secret-key modes, the encryption algorithms also take as input a set S ⊆ [N ]. And, now
the decryption functionality is altered as follows — decrypting an encryption of message x for set S using
secret key for string i outputs 1 iff ‘i /∈ S ∨ i ≥ x’. In other words, the decryption algorithm evaluates the
comparison function only if i ∈ S, so that users outside of the broadcast set S cannot infer any information
about x from their secret key. Next, we formally describe it.

A broadcast mixed functional encryption scheme BMFE consists of four polytime algorithms (Setup, Enc,
SK-Enc, Dec) with the following syntax:

Setup(1λ, 1N ) → (pp,msk, {sk1, . . . , skN}). The setup algorithm takes as input the security parameter λ
and number of users N , and outputs the public parameters pp, the master secret key msk and N user
keys {ski}i∈[N ].

Enc(pp, S)→ ct. The normal encryption algorithm takes as input public parameters pp and a set S ⊆ [N ],
and outputs a ciphertext ct.

SK-Enc(msk, S, j) → ct. The secret key encryption algorithm takes as input master secret key msk, set
S ⊆ [N ], and an index j ∈ [N + 1]. It outputs a ciphertext ct.

Dec(ski, S, ct) → {0, 1}. The decryption algorithm takes as input a secret key ski, set S ⊆ [N ] and a
ciphertext ct, and it outputs a single bit.

Correctness. A broadcast mixed functional encryption scheme is said to be correct if there exists negligible
functions negl1(·), negl2(·), negl3(·) such that for all λ,N ∈ N, for every set S ⊆ [N ], and for all user indices
i ∈ [N ] and j ∈ [N + 1], the following holds

Pr

[
Dec(ski, S, ct) = 1 :

(pp,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← Enc(pp, S)

]
≥ 1− negl1(λ),

(i ∈ S ∧ i < j) =⇒ Pr

[
Dec(ski, S, ct) = 0 :

(pp,msk, {ski}i∈[N ])← Setup(1λ, 1N );
ct← SK-Enc(msk, S, j)

]
≥ 1− negl2(λ).

where the probabilities are taken over the random coins used during setup and encryption.

Security. The security notions are derived from the mixed FE security notions of function indistinguisha-
bility and accept indistinguishability as follows. Informally, the idea is that no PPT adversary should be able
to distinguish between a normal ciphertext and a secret-key ciphertext encrypting index 1. Additionally, it
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should be hard to distinguish between two secret-key ciphertexts unless the adversary can trivially distin-
guish between using the keys given to it. As in prior works, we are only interested in broadcast mixed FE
schemes that guarantee security against adversaries which make a bounded number of secret key encryption
queries. Below we formally define it.

Definition 3.1 (q-query Selective Index Indistinguishability). Let q(·) be any fixed polynomial. A broadcast
mixed functional encryption scheme BMFE = (Setup,Enc,SK-Enc,Dec) is said to satisfy q-query selective
index indistinguishability security if for every stateful PPT adversary A, there exists a negligible function
negl(·), such that for every λ ∈ N the following holds:

Pr

[
ASK-Enc(msk,·,·)(pp, ct,Keys) = b :

(1N , ind ∈ [N ], S∗)← A(1λ)(
pp,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

b← {0, 1}; ct← SK-Enc(msk, S∗, ind + b)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to SK-Enc(msk, ·, ·) oracle. And, Keys is the following set of secret
keys — Keys = {ski}i∈[N ]\{ind} if ind ∈ S∗, otherwise Keys = {ski}i∈[N ].

Definition 3.2 (q-query Selective Mode Indistinguishability). Let q(·) be any fixed polynomial. A broadcast
mixed functional encryption scheme BMFE = (Setup,Enc,SK-Enc,Dec) is said to satisfy q-query selective
mode indistinguishability security if for every stateful PPT adversary A, there exists a negligible function
negl(·), such that for every λ ∈ N the following holds:

Pr

[
ASK-Enc(msk,·,1)(pp, ctb, {ski}i∈[N ]) = b :

(1N , S∗)← A(1λ);(
pp,msk, {ski}i∈[N ]

)
← Setup(1λ, 1N )

b← {0, 1}; ct0 ← Enc(pp, S∗)
ct1 ← SK-Enc(msk, S∗, 1)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to SK-Enc(msk, ·, 1) oracle.

4 Building Augmented BE from Broadcast Mixed FE and Key-
Policy ABE with Short Ciphertexts

In this section we provide our construction for augmented BE from broadcast mixed FE and KP-ABE with
short ciphertexts.

Let ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a key-policy attribute based encryption
scheme for set of attribute spaces {Xκ}κ, predicate classes {Cκ}κ and message spaces {Mκ}κ, and BMFE =
(BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) be a broadcast mixed functional encryption scheme for
comparison with ciphertexts of length ` = `(λ,N). Also, let κ = κ(λ,N) be the lexicographically smallest
functionality index such that every string of length ` can be uniquely represented in attribute class Xκ (i.e.,
{0, 1}` ⊆ Xκ). We will suppose that for all i ∈ [N ] and bmfe.sk generated by BMFE.Setup, Cκ contains the
circuit Ci,bmfe.sk defined as:

Ci,bmfe.sk(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.sk, S, bmfe.ct) = 1),

which composes a BMFE decryption with testing membership in S ⊆ [N ].
Below we describe our construction.

Setup(1λ, 1N ) →
(

pk,msk, {ski}i∈[N ]

)
. The setup algorithm runs ABE.Setup and BMFE.Setup to gener-

ate ABE and broadcast mixed FE public parameters and master secret key as (abe.pp, abe.msk) ←
ABE.Setup(1λ, 1κ) and (bmfe.pp, bmfe.msk, {bmfe.ski}i∈[N ])← BMFE.Setup(1λ, 1N ).

Now let Ci,bmfe.ski : {0, 1}` × [N ]→ {0, 1} denote the following circuit:

Ci,bmfe.ski(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.ski, S, bmfe.ct) = 1).
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That is, it corresponds to BMFE decryption circuit with key bmfe.ski hardwired along with a set
membership check for index i. Next, it computes N ABE secret keys abe.ski as

∀ i ∈ [N ], abe.ski ← ABE.KeyGen(abe.msk, Ci,bmfe.ski)

Finally, it sets pk = (abe.pp, bmfe.pp), msk = (abe.msk, bmfe.msk) and ski = abe.ski for i ∈ [N ].

Enc(pk, S,m) → ct. Let pp = (abe.pp, bmfe.pp). The encryption algorithm first computes ctattr ←
BMFE.Enc(bmfe.pp, S). Next, it encrypts message m as ct ← ABE.Enc(abe.pp, attr = (ctattr, S),m),
and outputs ciphertext (ct, ctattr).

Enc-index(msk, S,m, ind)→ ct. Let msk = (abe.msk, bmfe.msk). The index-encryption algorithm first com-
putes ctattr ← BMFE.SK-Enc(bmfe.msk, S, ind). Next, it encrypts messagem as ct← ABE.Enc(abe.pp, attr =
(ctattr, S),m), and outputs ciphertext (ct, ctattr).

Dec(sk, S, (ct, ctattr)) → m or ⊥ . The decryption algorithm runs ABE.Dec on ct using key sk as y =
ABE.Dec(sk, ct, (ctattr, S)), and sets y as the output of decryption.

Correctness.

Theorem 4.1. Suppose ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a correct attribute based
encryption for set of attribute spaces {Xκ}κ, predicate classes {Cκ}κ and message spaces {Mκ}κ, and
BMFE = (BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a correct broadcast mixed functional en-
cryption scheme for comparison, then the above construction satisfies correctness.

Proof. For all λ,N ∈ N, message m ∈ Mλ, public parameters and master secret keys (abe.pp, abe.msk) ←
ABE.Setup (1λ, 1κ), (bmfe.pp, bmfe.msk, {bmfe.ski}i∈[N ]) ← BMFE.Setup(1λ, 1N ), the secret keys ski for
i ∈ [N ] are simply the ABE keys abe.ski ← ABE.KeyGen(abe.msk, Ci,bmfe.ski). For any index i ∈ [N ] and set
S ⊆ [N ] such that i ∈ S, consider the following two cases:

1. Normal encryption. For any ciphertext ct computed as ct ← ABE.Enc(abe.pp, (ctattr, S),m), where
ctattr ← BMFE.Enc(bmfe.pp, S), we know that with all but negligible probability:

BMFE.Dec(bmfe.ski, S, ctattr) = 1

by correctness of broadcast mixed FE scheme. Since i ∈ S, we get that Ci,bmfe.ski(ctattr, S) = 1.
Therefore, by correctness of ABE scheme, we have that with all but negligible probability:

ABE.Dec(sk, ct, (ctattr, S)) = m.

2. Index encryption. For any index j ∈ [N + 1] and ciphertext ct computed as ct← ABE.Enc(abe.pp,
(ctattr, S),m), where ctattr ← BMFE.SK-Enc(bmfe.msk, S, j), we know that with all but negligible prob-
ability BMFE.Dec(bmfe.ski, S, ctattr) = 1 if i ≥ j by correctness of broadcast mixed FE scheme as i ∈ S.
In other words, Ci,bmfe.ski(ctattr, S) = (i ≥ j). Therefore, by correctness of ABE scheme, we have that
with all but negligible probability ABE.Dec(sk, ct, (ctattr, S)) = m for i ≥ j.

Therefore, the above construction satisfies the correctness condition.

4.1 Security

We will now show that the scheme described above is 1-query secure as per Definitions 2.3 to 2.5. In other
words, it satisfies normal hiding, index hiding, and message hiding security properties. Formally, we prove
the following.
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Theorem 4.2. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a selectively-secure attribute based
encryption for set of attribute spaces {Xκ}κ, predicate classes {Cκ}κ and message spaces {Mκ}κ satisfying
Definition 2.6, and BMFE = (BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a broadcast mixed func-
tional encryption scheme satisfying 1-query selective mode indistinguishability (Definition 3.2) and 1-query
selective index indistinguishability (Definition 3.1) properties, then the above construction is a secure aug-
mented broadcast encryption scheme, for messages spaces {Mκ}κ, satisfying 1-query selective normal, index
and message hiding security properties as per Definitions 2.3 to 2.5. Additionally, the size of ciphertexts in
the AugBE system is `+ ˜̀, where ` = `(λ,N) and ˜̀= ˜̀(λ, κ) are the sizes of broadcast mixed FE and ABE
ciphertexts, respectively.

Our proof is divided in three components/lemmas, one for each AugBE security property. Let A be any
PPT adversary that wins the normal/index/message hiding game with non-negligible advantage. We argue
that such an adversary must break security of at least one underlying primitive.

Normal Hiding Security.

Lemma 4.1. If BMFE = (BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a broadcast mixed func-
tional encryption scheme satisfying 1-query selective mode indistinguishability property, then the above
construction is an augmented broadcast encryption scheme satisfying 1-query selective normal hiding secu-
rity.

Proof. Suppose there exists an adversary A such that A’s advantage in 1-query selective normal hiding
security game is non-negligible. We construct an algorithm B that can distinguish normal encryptions from
secret key encryptions , therefore break 1-query selective mode indistinguishability security of the broadcast
mixed FE scheme.

The reduction algorithm B receives (1N , S∗) from A. It sets κ as in the construction, and sends (1N , S∗)
to the BMFE challenger. The challenger generates the key tuple (bmfe.pp, bmfe.msk, {bmfe.ski}i∈[N ]) and
sends (bmfe.pp, {bmfe.ski}i∈[N ], ct∗attr) as the public parameters, user secret keys, and the challenge ciphertext

to B. The reduction algorithm then chooses an ABE key pair (abe.pp, abe.msk) ← ABE.Setup(1λ, 1κ), and
computes N ABE keys as abe.ski ← ABE.KeyGen(abe.msk, Ci,bmfe.ski) for i ∈ [N ]. It sends (abe.pp, bmfe.pp)
and {abe.ski}i∈[N ] as the AugBE public parameters and secret keys to A. Here A is allowed to make index

encryption query (before or after challenge query). The reduction algorithm B responds to a query (m,S)
as follows — it queries the BMFE challenger for secret key encryption on set S, then it computes the
AugBE ciphertext as ct← ABE.Enc(abe.pp, (ctattr, S),m) where ctattr is the challenger’s response, and sends
(ct, ctattr) to A as the response to its index encryption query. Now consider that A makes a challenge query
on m∗, then B computes ciphertext ct∗ as ct∗ ← ABE.Enc(abe.pp, (ct∗attr, S

∗),m∗), and sends (ct∗, ct∗attr) as
the challenge ciphertext to A. Note that A could instead have sent its challenge query before sending the
index encryption query. Finally, A sends its guess b to B, and B forwards b as its own guess.

First, note that both A and B are allowed to make at most 1 index encryption and secret key encryption
queries, respectively. Also, note that since A is only allowed to make encryption queries to index 1 (in the
1-query selective normal hiding security game), thus B also needs to query BMFE challenger on index 1
only. Therefore, queries made by B are admissible if A’s queries are admissible. Finally, note that if BMFE
challenger computed ct∗attr as a normal BMFE ciphertext, then B computes (ct∗, ct∗attr) as a normal AugBE
ciphertext, otherwise B computes it as a secret key AugBE ciphertext for index 1. Thus, B perfectly simulates
the 1-query selective normal hiding security game for A. As a result, if A’s advantage is non-negligible, then
B breaks 1-query selective mode indistinguishability security with non-negligible advantage. This completes
the proof.

Index Hiding Security.

Lemma 4.2. If BMFE = (BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a broadcast mixed func-
tional encryption scheme satisfying 1-query selective index indistinguishability property, then the above
construction is an augmented broadcast encryption scheme satisfying 1-query selective index hiding security.
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Proof. The proof of this lemma is similar to that of Lemma 4.1. For completeness, we provide a complete
reduction.

Suppose there exists an adversary A such that A’s advantage in 1-query selective index hiding security
game is non-negligible. We construct an algorithm B that can distinguish between secret key encryptions ,
therefore break 1-query selective index indistinguishability security of the broadcast mixed FE scheme.

The reduction algorithm B receives (1N , ind ∈ [N ], S∗) from A. It sets κ as in the construction, and sends
(1N , ind, S∗) to the BMFE challenger. The challenger generates the key tuple (bmfe.pp, bmfe.msk, {bmfe.ski}i∈[N ])
and sends (bmfe.pp, ct∗attr,Keys) as the public parameters, challenge ciphertext, and user keys to B. Recall
that Keys = {bmfe.ski}i∈[N ]\{ind} if ind ∈ S∗, otherwise Keys = {bmfe.ski}i∈[N ]. The reduction algorithm

then chooses an ABE key pair (abe.pp, abe.msk) ← ABE.Setup(1λ, 1κ). It sends (abe.pp, bmfe.pp) as the
AugBE public parameters to A. Now A is allowed to query B for AugBE secret keys as well as index
encryptions on set-message-index tuple (S,m, i) of its choice. For a key query on some index i by A, reduc-
tion B computes and sends an ABE key as abe.ski ← ABE.KeyGen(abe.msk, Ci,bmfe.ski) to A. Note that if

ind ∈ S∗ then A is not allowed to query for indth user’s secret key, thus Bcan always answer all key queries
from A. Next, for a index encryption queries on set-message-index tuple (S,m, i), B responds as follows
— it queries the BMFE challenger for secret key encryption on set-index pair (S, i), then it computes the
AugBE ciphertext as ct← ABE.Enc(abe.pp, (ctattr, S),m) where ctattr is the challenger’s response, and sends
(ct, ctattr) to A as the response to its index encryption query. Now consider that A makes a challenge query
on m∗. B computes ciphertext ct∗ as ct∗ ← ABE.Enc(abe.pp, (ct∗attr, S

∗),m∗), and sends (ct∗, ct∗attr) as the
challenge ciphertext to A. Note that A could instead have sent its challenge query before sending the index
encryption query. Finally, A sends its guess b to B, and B forwards b as its own guess.

First, note that both A and B are allowed to make at most 1 index encryption and secret key encryption
queries, respectively. Also, note that both A and B are restricted to choose challenge index ind such that
ind /∈ (S∗ ∩ S) where S is the set of keys queried. Therefore, if A is an admissible adversary, then so is
Bsince it has received appropriate secret keys from BMFE challenger to answer the key query. Finally, note
that if BMFE challenger computed ct∗attr as a secret key BMFE ciphertext for index ind, then B computes
(ct∗, ct∗attr) as a secret key AugBE ciphertext for index ind as well, otherwise B computes it as a secret
key AugBE ciphertext for index ind + 1. Thus, B perfectly simulates the 1-query selective index hiding
security game for A. As a result, if A’s advantage is non-negligible, then B breaks 1-query selective index
indistinguishability security with non-negligible advantage. This completes the proof.

Message Hiding Security.

Lemma 4.3. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a selectively-secure attribute based
encryption, then the above construction is an augmented broadcast encryption scheme satisfying 1-query
selective message hiding security.

Proof. Suppose there exists an adversary A such that A’s advantage in 1-query selective message hiding
security game is non-negligible. We construct an algorithm B that can distinguish between ABE encryptions
of two different messages, therefore break selective security of the ABE scheme.

The reduction algorithm receives (1N , S∗) from A. It sets κ as in the construction, and starts by choosing
BMFE parameters as (bmfe.pp, bmfe.msk, {bmfe.ski}i∈[N ])← BMFE.Setup(1λ, 1N ). It then computes ct∗attr ←
BMFE.SK-Enc(bmfe.msk, S∗, N + 1), and sends to the ABE challenger 1κ and (ct∗attr, S

∗) as its challenge
attribute. The ABE challenger generates a key pair (abe.pp, abe.sk) and sends abe.pp to B. For i ∈ [N ], B
sends Ci,bmfe.ski as a predicate query to the ABE challenger and receives back secret key abe.ski. Next, it sends
(abe.pp, bmfe.pp) and {abe.ski}i∈[N ] as the AugBE public parameters and secret keys to A. After receiving

all the keys, A makes a single index encryption query (S,m, i) to B. B answers it by computing ciphertexts
ctattr ← BMFE.SK-Enc(bmfe.msk, S, i) and ct ← ABE.Enc(abe.pp, (ctattr, S),m), and sends (ct, ctattr to A as
its response. A also sends two challenge message (m∗0,m

∗
1) to B. B then forwards (m∗0,m

∗
1) as its challenge

messages to ABE challenger. Next, B forwards the challenge ciphertext (ct∗, ct∗attr) it receives from ABE
challenger to A. Note that A could instead have sent its challenge query before sending the index encryption
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query. In that case, the reduction algorithm simply answers that first. Finally, A sends its guess b to B, and
B forwards b as its own guess.

First, note that the challenge attribute ct∗attr on each predicate (Ci,bmfe.ski) queried by B evaluates to 0,
with all but negligible probability. Concretely, we know that for i /∈ S∗, Ci,bmfe.ski(ct∗attr, S

∗) = 0 because
the membership check i ∈ S∗ fails. Similarly, we know that for i ∈ S∗, Ci,bmfe.ski(ct∗attr, S

∗) = 0 because the
decryption check fails as ct∗attr encrypts set S∗ for index N +1. This follows from the correctness condition of
BMFE system. Thus, with all-but-negligible probability, reduction algorithm B is an admissible adversary in
the ABE security game. Thus, B perfectly simulates the 1-query6 selective message hiding security game for
A. As a result, if A’s advantage is non-negligible, then B breaks ABE security with non-negligible advantage.
This completes the proof.

5 Building Broadcast Mixed FE for Comparison from PCPRFs

In this section we present our construction of a broadcast mixed FE for comparison with 1-query security
based on almost-key-homomorphic private constrained PRFs.

In the following, if we let N ∈ N (which is the number of users), we will consider N + 1 tuples of PCPRF
keys indexed by {0, . . . , N}. This can be viewed as adding a dummy user “0” who is never authorized to
decrypt, so that no sums are empty (and in particular our scheme makes sense even if the set S ⊆ [N ] is
[N ]). As a result, in this whole section, whenever we consider a sum, unless specified otherwise, the set of
indices is {0, . . . , N}. For instance, for S ⊆ [N ], j /∈ S will stand for j ∈ {0, . . . , N} \ S.

Let PCPRF = (PPGen, SKGen, Constrain, Eval, Constrain.Eval) along with a family of constraints C be a
PCPRF (Definition 2.7) satisfying B-almost-key homomorphism. For all j ∈ Dλ, let Cj : i 7→ [i ≥ j] be a
circuit that outputs 1 if i ≥ j and 0 otherwise. We will suppose that for all j ∈ Dλ, Cj ∈ Cλ, that is Cj are
valid constraints for the PCPRF. Let |Cλ| = poly(λ) be a common size for such circuits.

We define our broadcast mixed FE scheme as follows:

Setup(1λ, 1N )→ (pp,msk, {sk1, . . . , skN}): The setup algorithm first samples PP← PPGen(1λ,Fλ). It then
generates for all 0 ≤ i ≤ N , t ∈ [λ] and b ∈ {0, 1}: SKi,t,b ← SKGen(1λ,PP).

It then sets pp = PP, msk = {SKi,t,b}0≤i≤N,t∈[λ],b∈{0,1}, and for all i ∈ [N ]:

ski = {i, Eval(SKj,t,b, i)}j 6=i,t∈[λ],b∈{0,1}.

Enc(pp, S) → ct. The normal encryption algorithm first picks a random tag z ← {0, 1}λ. It then runs the
PCPRF simulator: CK← Sim(1λ, 1|Cλ|), and sets ct = (z,CK).

SK-Enc(msk, S, j)→ ct. The secret key encryption algorithm first samples z← {0, 1}λ. It computes:

SKS,z =
∑

i/∈S,t∈[λ]

SKi,t,zt ,

(where the sum denotes the group operation over PCPRF keys). Note that this sum is never empty,
as i /∈ S stands for i ∈ {0, . . . , N} \ S, so that it always contains the secret keys SK0,t,b for all
t ∈ [λ], b ∈ {0, 1}. The algorithm computes the constrained key

CKS,z,j ← Constrain(1λ,PP,SKS,z, Cj),

where Cj is defined above. It finally sets ct = (z,CKS,z,j).

6We would like to point out that the current construction actually gives a AugBE scheme that satisfies q-query selective
message hiding security property for arbitrary q, i.e. the number of queries need not be bounded, as long as the ABE scheme
is not q-query selectively-secure.
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Dec(ski, S, ct) → {0, 1}. The decryption algorithm parses ct as (z,CK). If i /∈ S where i is the secret key
index, the decryption algorithm outputs 1.

Otherwise, it computes Constrain.Eval(CK, i), and outputs:{
0 if ‖Constrain.Eval(CK, i)−

∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i)‖ ≤ (N + 1) · λ ·B

1 otherwise.

Theorem 5.1. Suppose PCPRF = (PPGen, SKGen, Constrain, Eval, Constrain.Eval) along with a constraint
family C and range Rλ is a PCPRF (Definition 2.7) satisfying B-almost-key homomorphism for a norm ‖ · ‖.
Suppose furthermore that Prx←Rλ [‖x‖ ≤ (N + 1)λB] ≤ negl(λ), that is, random elements in the range of
the PCPRF have large norm. Then the above construction satisfies correctness.

Theorem 5.2. If PCPRF = (PPGen, SKGen, Constrain, Eval, Constrain.Eval) along with a constraint family
C is a PCPRF (Definition 2.7) satisfying B-almost-key homomorphism, then the above construction is a
secure BMFE for comparison satisfying 1-query selective index indistinguishability and 1-query selective
mode indistinguishability, as per Definitions 3.1 and 3.2.

First, we argue that our construction is well-defined, and in particular that the constraining operation
in the index encryption algorithm is well-defined. This is by the distribution requirement on the secret keys
(Definition 2.7), which implies that SKS,z is a valid input to the Constrain algorithm.

Correctness. We show here that if (PPGen, SKGen, Constrain, Eval, Constrain.Eval) is a PCPRF satisfying
B-almost-key homomorphism such that the probability that an uniform element of Rλ has norm at most
(N + 1)λB is negligible, then the broadcast mixed FE for comparison (Setup, Enc, SK-Enc, Dec) satisfies
correctness. Looking ahead, in the case of instantations from LWE [CC17, CVW18b], we have B = 1, the
range is Rλ = Zm×mp where m = poly(λ) and the norm is ‖ · ‖∞. In particular, the condition above is
achieved whenever, for some constant C > 1, we have p ≥ C(N + 1)λ.

1. Normal encryption. For all S ⊆ [N ] and z ∈ {0, 1}λ, the security of the PCPRF (Definition 2.7)
implies that for all i ∈ [N ], Constrain.Eval(CK, i) −

∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i) is indistinguishable

from uniform in Rλ where CK ← Sim(1λ, 1|Cλ|). This is because ConstrainEval(CK, ·) is a PRF if
CK ← Sim(1λ, 1|Cλ|), even given the other keys SKj,t,zt . Indeed, by considering the security exper-
iment of the PCPRF with the all-0 circuit as the constraint query, we have that by functionality
preserving, the output of Constrain.Eval(CK, ·) where CK← Sim(1λ, 1|Cλ|) is indistinguishable from the
output of Eval(SK, ·) for a random key SK ← SKGen(1λ,PP). But Eval(SK, ·) is also a PRF (and this
can be seen by considering the same experiment but now using the all-1 circuit as the constraint).
Note that in all those experiments, a reduction can sample the additional keys SKj,t,zt and compute∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i) itself. Therefore Constrain.Eval(CK, i) −

∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i) is pseu-

dorandom in Rλ, and in particular the decryption algorithm outputs 0 with negligible probability by
assumption on Rλ. In other words the decryption algorithm outputs 1 with overwhelming probability.

2. Index encryption.

• If i /∈ S, then Dec(ski, S, ct) = 1 by definition.

• If i ≥ j, then CKS,z,j is constrained on i, and therefore the sum
∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i) is

pseudorandom even given on CKS,z,j , in which case the decryption algorithm outputs 1 with
overwhelming probability, as in the normal encryption.

More formally, in a first hybrid, we switch the term
∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i) to uniform and the

constrained key CKS,z,j to a simulated one. In more details, a reduction to the PCPRF security
submits Cj as the constraint query, and implicitly treats the PCPRF key of the experiment as
SKS,z =

∑
j /∈S,t∈[λ] SKj,t,zt , and the constrained key as CKS,z,j . However the key-homomorphism

is only approximate: we have
∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i) = Eval(

∑
j /∈S,t∈[λ] SKj,t,zt , i) + N(λ, S)
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for some (small) noise term N(λ, S). But the distribution of N(λ, S) is samplable efficiently
thanks to the distribution requirement of the PCPRF secret keys: to do so, pick fresh keys

S̃Kj,t,zt ← SKGen(1λ,PP) for all j /∈ S, t ∈ [λ], and set N(λ, S) = Eval(
∑
i/∈S,t∈[λ] S̃Ki,t,zt , i) −∑

j /∈S,t∈[λ] Eval(S̃Kj,t,zt , i). Overall, the reduction can simulate the term
∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i)

by querying i to the evalution oracle from the PCPRF experiment and adding N(λ, S) which it
samples itself.

In a second hybrid, we switch back the simulated constrained key to the initial constrained key
CKS,z,j (while still keeping the sum random): this follows from a similar hybrid, but without any
PCPRF evaluation query, where the reduction sets the sum to be uniformly random by itself.

In particular, the sum
∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i) is pseudorandom even given CKS,z,j , and there-

fore the decryption algorithm outputs 1 with overwhelming probability by assumption on Rλ.

• Conversely suppose i ∈ S and i < j. Then Eval(SKj,t,zt , i) ∈ ski for all j /∈ S, t ∈ [λ]. Fur-
thermore Cj(i) = 0, so that by functionality preserving and almost-key-homomorphism, we have
‖Constrain.Eval(CKS,z,j , i) −

∑
j /∈S,t∈[λ] Eval(SKj,t,zt , i)‖ ≤ (N − |S| + 1) · λ · B ≤ (N + 1) · λ · B

(where we recall that the sum always includes the terms corresponding to j = 0), and therefore
the decryption algorithm always outputs 0.

Security. We now show that our broadcast mixed FE for comparison is secure; namely that it achieves both
1-query selective index indistinguishability and 1-query selective mode indistinguishability. In the following
we analyze both of those properties separately.

1-query Selective Index Indistinguishability. We argue that both distributions induced by picking
b = 0 and b = 1 are computationally indistinguishable from an intermediate hybrid, which is defined as
follows:

• Hybrid distribution. Sample ahead of time uniform tags z(0), z(1) ← {0, 1}λ. If z(0) = z(1), the

experiment aborts. Otherwise, let t∗ ∈ [λ] be the smallest index such that z
(0)
t∗ 6= z

(1)
t∗ . On input

(1N , ind ∈ [N ], S∗ ⊆ [N ]) from the adversary, compute pp normally. The way the secret keys are
computed depend on whether ind ∈ S∗:

– if ind ∈ S∗, replace for all i ≥ ind + 1 all the values Eval(SK
0,t∗,z

(0)

t∗
, i) by uniform values, and

compute all the other components as in the original scheme.

– if ind /∈ S∗, replace for all i ≥ ind + 1 all the values Eval(SK
ind,t∗,z

(0)

t∗
, i) by uniform values, and

compute all the other components as in the original scheme.

Compute the challenge ciphertext as CK ← Sim(1λ, 1|Cλ|). On encryption query from the adversary,
use the tag z(1) to generate the ciphertext.

The core idea is that if ind ∈ S∗, the adversary does not see skind so the value Eval(SK
0,t∗,z

(0)

t∗
, ind) is

not needed to generate BMFE keys; and if ind /∈ S∗ then the value Eval(SK
ind,t∗,z

(0)

t∗
, ind) is not needed to

generate BMFE keys by construction (as for all t ∈ [λ], b ∈ {0, 1}, no secret key contain any evaluation of
the form Eval(SKj,t,b, j)).

We now directly argue that both distributions induced by picking b = 0 and b = 1 are indistinguishable
from the hybrid distribution above assuming PCPRF security. As the reductions are very similar we proceed
to describe both at the same time, while highlighting the differences.

In the sequel, we use j∗ to denote

j∗ =

{
0 if ind ∈ S∗,
ind otherwise.
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Note that j∗ /∈ S∗ always as per the notation above. Looking ahead, the reduction to PCPRF security will
implicitly treat the secret key in the PCPRF game as SKS∗,z(0) , and set:

SK
j∗,t∗,z

(0)

t∗
= SKS∗,z(0) −

∑
j /∈S∗

(j,t)6=(j∗,t∗)

SK
j,t,z

(0)
t
.

The reduction samples ahead of time tags z(0), z(1) ← {0, 1}λ. If z(0) = z(1), the reduction aborts. Otherwise,

let t∗ ∈ [λ] be the smallest index such that z
(0)
t∗ 6= z

(1)
t∗ .

To reduce indistinguishability of the distribution where b = 0 and the intermediate one, the reduction to
the PCPRF security queries Cind as the constraint; and similarly queries Cind+1 to argue indistinguishability
with the distribution where b = 1. It receives a constrained key CK, and sets the challenge ciphertext to be
ct = (z(0),CK).

The reduction then samples all the PCPRF secret keys with indices (j, t, b) 6= (j∗, t∗, z
(0)
t∗ ) itself, and can

compute all the corresponding BMFE secret keys as a result. To provide the BMFE secret key components
v(i) corresponding to Eval(SK

j∗,t∗,z
(0)

t∗
, i), the reduction queries i in the PCPRF experiment, receives a value

w(i) and sets

v(i) = w(i)−N(λ, S)−
∑
j /∈S∗

(j,t) 6=(j∗,t∗)

Eval
(

SK
j,t,z

(0)
t
, i
)
,

where N(λ, S) is some homomorphism error sampled as in the proof for index encryption correctness. Now,
as noted before, the reduction never needs to query ind (which is the only input point at which constraint
functions Cind, Cind+1 disagree):

• if ind ∈ S∗ then the adversary does not get the secret key skind containing the evaluation Eval(SK
j∗,t∗,z

(0)

t∗
, ind);

• if ind /∈ S∗ then Eval(SK
j∗,t∗,z

(0)

t∗
, ind) does not appear in any secret key by construction.

Finally, for the ciphertext query, the reduction uses his knowledge of the PCPRF secret keys with indices

(j, t, b) 6= (j∗, t∗, z
(0)
t∗ ) to produce a ciphertext with tag z(1).

Now the reduction aborts (which happens whenever z(0) = z(1)) with neglibible probability. If it does
not, then if the reduction queries Cind, then it respectively produces the view of the adversary corresponding
either to b = 0 or the intermediate hybrid distribution; if queries Cind+1 then it respectively produces the
view of the adversary corresponding either to b = 1 or the intermediate hybrid distribution.

1-query Selective Mode Indistinguishability. We argue that both distributions are computationally
indistinguishable. To do so, we consider a hybrid distribution defined as follows.

• Hybrid distribution. Sample ahead of time tags z(0), z(1) ← {0, 1}λ. If z(0) = z(1), the experiment

aborts. Otherwise, let t∗ ∈ [λ] be the smallest index such that z
(0)
t∗ 6= z

(1)
t∗ . On input (1N , S∗ ⊆ [N ])

from the adversary, compute pp normally. Compute the challenge ciphertext as CK ← Sim(1λ, 1|Cλ|).
To generate BMFE secret keys, replace the components corresponding to Eval(SK

0,t∗,z
(0)

t∗
, i) by uniform

values in Rλ for all i ∈ [N ]. On encryption query from the adversary, use the tag z(1) to generate the
ciphertext.

We first argue indistinguishability of the hybrid distribution and the one induced by the secret-key encryption.
Upon receiving a set S∗ ⊆ [N ] from the adversary, the reduction first samples (ahead of time) two random

tags z(0), z(1) ← {0, 1}λ. If z(0) = z(1), it aborts and fails. Otherwise, it picks some arbitrary t∗ ∈ [λ], such

that z
(0)
t∗ 6= z

(1)
t∗ . In the PCPRF experiment, the reduction implicitly treats the secret key of the experiment

as SKS∗,z(0) . It queries the circuit C1 as the constraint, receives a constrained key CK, and sets the challenge

ciphertext to be ct = (z(0),CK).
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To generate the secret keys {ski}, the reduction picks itself SKj,t,b for all (j, t, b) 6= (0, t∗, z
(0)
t∗ ), and

implicitly sets

SK
0,t∗,z

(0)

t∗
= SKS∗,z(0) −

∑
j /∈S∗

(j,t)6=(0,t∗)

SK
j,t,z

(0)
t
.

For all i ∈ [N ], the reduction computes itself Eval(SKj,t,b, i) for all (j, t, b) 6= (0, t∗, z
(0)
t∗ ). To compute

Eval(SK
0,t∗,z

(0)

t∗
, i), the reduction queries i to the evaluation oracle, receives a value w(i), and computes:

v(i) = w(i)−N(λ, S)−
∑
j /∈S∗

(j,t)6=(0,t∗)

Eval
(

SK
j,t,z

(0)
t
, i
)
,

where N(λ, S) is the homomorphism error which can be simulated efficiently as in the proof of correctness
for the index encryption. It then implicitly sets Eval(SK

0,t∗,z
(0)

t∗
, i) = v(i), and sets the BMFE secret keys ski

for all i ∈ [N ] accordingly.
Finally, for the ciphertext query, the reduction uses his knowledge of the PCPRF secret keys with

indices (j, t, b) 6= (0, t∗, z
(0)
t∗ ) to produce a ciphertext with tag z(1), and outputs ct′ = (z(1),CK′) where

CK′ ← Constrain(1λ,PP,SKS,z(1)).

Overall, the reduction aborts (which happens when z(0) = z(1)) with probability 1/2λ. Now, in the
PCPRF experiment, the constrained key is either generated as CK ← Sim(1λ, 1|Cλ|) or CK ← Constrain(1λ,
PP, SKS∗,z, C1). In the first case, the view of the adversary is as in the hybrid distribution; in the second it
is as in the secret-key encryption mode.

It now suffices to argue that in the view of the adversary in the public-key encryption mode, the values
corresponding to Eval(SK

0,t∗,z
(0)

t∗
, i) are pseudorandom. On a high level, this follows by pseudorandomness

on constrained inputs (as the view of the adversary can be generated given the (simulated) constrained key);
more formally this is done via a proof very similar to the done in the index encryption correctness.

6 Efficiency

In this section we analyze the efficiency of our different constructions, in order to evaluate the efficiency of
our broadcast and trace scheme.

6.1 Efficient PCPRF for Comparison Constraints

We first focus on the PCPRF used in Section 5. Looking ahead, it will be crucial that the resulting BMFE
has short ciphertext and efficient decryption. More precisely, we will require to have the BMFE to have
decryption in NC1 while having as short ciphertexts as possible.

Looking at our construction in Section 5, we first need to analyze the complexity of evaluating a PCPRF
constrained evaluation for comparison constraints (which is performed during BMFE decryption, and there-
fore required be in NC1), as well as the size of the constrained keys (which are the BMFE ciphertexts). We
do so by analyzing and tailoring the PCPRFs from the literature ( [CC17,CVW18b]) for our needs.

Almost-key-homomorphic PCPRFs from LWE. For our constructions, we will focus on constructions
of PCPRFs from LWE supporting (polynomial length) branching program constraints [CC17, CVW18b],
where the range is Rλ = Zm×mp where p is the output modulus of the PRF, and m = poly(n) where n is the
lattice dimension in the underlying learning with errors assumption. They additionally satisfy 1-almost-key-
homomorphism with the infinity norm ‖ · ‖∞ [CVW+18a]. For more details on the parameters, we refer the
reader t the relevant sections of [CC17,CVW18b].

Again, we will be most interested in both the size of the constrained keys and the complexity of computing
a constrained evaluation. In the constructions of [CC17, CVW18b], if we consider branching programs of
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constant width and length h ∈ N, then constrained keys consist of a set of 2h matrices in Zm×mq and a single
matrix in Zn×mq , where m = poly(n) and n and q are respectively the lattice dimension and modulus of the
underlying learning with errors assumption. In other words, the constrained keys are of the form:

CK = (A, {Di,b}i∈[h],b∈{0,1}),

where A ∈ Zn×mq and Di,b ∈ Zm×mq for all i ∈ [h], b ∈ {0, 1}, and where m = poly(n), and q is exponential
in h (for correctness). Constrained evaluation is performed by multiplying elements in the constrained key,
namely the matrix A, and a subset of h matrices determined by the input to the evaluation. For an input
x ∈ {0, 1}`, we have:

Constrain.Eval(CK, x) =

A ·
∏
i∈[h]

Di,x(i mod `)


p

, 7

where, for q > p ≥ 2, b·ep : Zq 7→ Zp rounds element in Zq to Zp, that is, bxep = bx · p/qe where b·e
denotes the usual rounding to the nearest integer; and b·ep extends over matrices by applying the rounding
pointwise. In particular, for m = poly(n) and q ≤ 2poly(n), such a computation can be implemented by a
circuit of depth O(log h · log n) (by computing the h matrix products using a binary tree). Actually, as
both matrix multiplication and rounding (which is computable using integer multiplication, division and
rounding) can be performed in TC0 in this regime (e.g. [RT92]), constrained evaluation can be performed
in TC1.

Theorem 6.1 (PCPRFs from LWE [CC17, CVW18b]). Assuming the hardness of LWE (with appropriate
parameters), there exists PCPRFs satisfying 1-almost-key-homomorphism supporting branching program
constraints. Additionally for any class of branching program constraints of width O(1) and length h ≤
poly(n), the constrained keys have size O(h · poly(n) · log q), and constrained evaluation can be computed in
TC1, where n and q are respectively the lattice dimension and modulus of the underlying LWE assumption.

Pre-processing the constrained evaluation. As noted earlier, we will crucially need to be able to
compute constrained evaluations in NC1. We note here that in the constructions of [CC17, CVW18b] of
PCPRFs for branching program constraints (with index-to-input map independent of the program), we can
improve the complexity of computing a constrained evaluation by pre-process the constrained keys. Recall
that constrained keys contains matrices {Db

i}i∈[h],b∈{0,1}, where h ∈ N is the length of the branching program.
Let 0 < ε < 1 be a fixed constant, such that 1/ε ∈ N, and that εh ∈ N (this is without loss of generality
up to padding the branching program with a constant number ≤ 1/ε of dummy levels). To pre-process
the constrained keys, we pre-compute all the products of blocks of εh matrices.8 In other words, for all
y ∈ {0, 1}εh and all j ∈ {0, . . . , 1/ε− 1}, the pre-processing phase computes:

Mj,y =

εh∏
i=1

Djεh+i , yi mod `
.

For x ∈ {0, 1}`, j ∈ {0, . . . , 1/ε − 1}, let y(j) = (xjεh+1 mod `, . . . , x(j+1)εh mod `) be the j-th block of εh

consecutive coordinates of x, ranging from jεh + 1 mod ` to (j + 1)εh mod `. Then, given those 2εh · 1/ε
matrices {Mj,y}0≤j<1/ε, y∈{0,1}εh , and the original matrix A, one can compute for all x ∈ {0, 1}`:

Constrain.Eval(CK, x) = bA ·
1/ε−1∏
j=0

Mj,y(j)ep.

7Later, we will need the index-to-input map ι of the branching program to be independent of the program; we consider here
ι : i 7→ (i mod `) for simplicity. This is without loss of generality up to a blow-up in the branching program length by a factor
`.

8We rely here on the fact that the index-to-input ι is independent of the branching program.
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In other words, given the pre-processed constrained key, constrained evaluation can be performed by multi-
plying the appropriate (1/ε) pre-computed block products together with A (and rounding). In particular,
this only requires a constant number of matrix muliplications (as opposed to h originally). This is at the cost
of using a pre-processed constrained key consisting of 2εh × 1/ε matrices (which can seen as pre-processed
constrained keys).

Efficient construction for comparison constraints. We note now that the BMFE of Section 5 does
not need to support general constraints, but only comparison functions. Recall that for a parameter N ∈ N
and for ind ∈ [N ], the function Pind, on input i ∈ [N ], outputs 1 if i ≥ ind and 0 otherwise.

However, naively invoking Barrington theorem [Bar86] to obtain a generic branching program computing
Pind, only yields a branching program of length log2(N), which makes the pre-processing described above
output super -polynomially many matrices. Instead, we directly build a branching program for comparison
constraints, with constant width and length O(logN), which will be good enough for our purposes.

Lemma 6.1. Let N ∈ N be an integer. Then for all ind ∈ [N ], there exists a (non-permutation) branching
program of width 3 and length logN + 2 computing Pind (defined as Pind(i) = 1 if i ≥ ind and 0 otherwise),
with index-to-input map ι is independent of ind.

We exhibit such a branching program in the full version of the paper. Note that this particular branching
program is not a permutation branching program, which excludes the PCPRF of [CC17]. Fortunately
[CVW18b] does support general (non-permutation) branching program constraints. Now, for 0 < ε < 1
being a fixed constant, pre-processing the constrained keys results in Nε matrices of size poly(n) log q (where
n and q are respectively the lattice dimension and the modulus of the underlying LWE assumption), while
now multiplying 1/ε matrices can be performed using a circuit of depth O(log(1/ε) log(n)). The following
Lemma follows by the fact that rounding can be computed in TC0 ( [RT92]).

Lemma 6.2. Let N ∈ N be an integer and 0 < ε < 1 be a constant. Assuming the hardness of LWE (with
appropriate parameters), there exists a PCPRF for comparison constraints (as defined above) satisfying
1-almost-key homomorphism. Furthermore, for Cλ = {Pind}ind∈[N ] (defined above), that is if the constraints
compare integers in [N ], then the constrained keys have size Nε · poly(n) (where n is the lattice dimension
in the underlying LWE assumption) and constrained evaluation is in NC1.

6.2 Wrapping-up

Efficiency and parameters of the BMFE. We are here most interested in the size of a BMFE ciphertext
and its decryption complexity. First, adding polynomially many poly(n)-bit numbers, and comparing poly(n)-
bit numbers can be done in TC0, and therefore in NC1. Therefore, combined with Lemma 6.2, we obtain
that BMFE decryption from Section 5 can be evaluated in NC1, as summing PCPRF evaluations, taking
their infinity norm and comparing them to the threshold are in NC1as well.

Alternatively, we can directly use the PCPRFs of [CVW18b] (without pre-processing the constrained
keys). Combined our branching program for comparison (Lemma 6.1), this gives a BMFE with ciphertext
size logN · poly(λ) with decryption in TC1.

Lemma 6.3. Suppose N = poly(λ), and let ε be a constant such that 0 < ε < 1. Assuming the hardness of
LWE with (sufficiently large) quasi-polynomial modulus-to-noise ratio, there exists:

• a BMFE for comparison with ciphertext size Nε · poly(λ) and decryption in NC1;

• a BMFE for comparison with ciphertext size log(N) · poly(λ) and decryption in TC1.

For the parameters of the LWE assumption, we can take those of [CVW18b, Remark 7.2] for branching
programs of width w = 3 and length h = logN + 2, with the additional requirement that p ≥ C · Nλ for
some fixed constant C > 1 (e.g. C = 1.1), which we use to argue correctness of the BMFE. In particular,
for N = poly(λ), this corresponds to assuming the hardness of LWE with a quasi-polynomial modulus to
noise ratio. Looking ahead, this will be parameters of the LWE assumption of our final broadcast and trace
scheme.
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Efficiency of the broadcast and trace. The final broadcast and trace system directly inherits the
ciphertext size from the augmented BE. Using the construction from Section 4, the resulting augmented
BE scheme inherits its ciphertext size from its underlying ABE, assuming the ABE support the class of
predicates Ci,bmfe.ski(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.ski, S, bmfe.ct) = 1) defined by the BMFE
decryption procedure.

In conclusion, assuming the ABE has succinct ciphertexts of size independent of their attribute, then
our broadcast and trace system has ciphertext size dominated by the size of the BMFE ciphertexts. Overall,
Combining Lemma 6.3, and Theorem 2.1, we get the desired result:

Theorem 6.2. Let N = poly(λ), and let ε be a constant such that 0 < ε < 1. Assuming the hardness of
LWE with (sufficiently large) quasi-polynomial modulus-to-noise ratio, and:

• assuming that the N -DBDHE assumption holds, there exists a broadcast and trace scheme with ci-
phertext size Nε · poly(λ).

• assuming the existence of an ABE for TC1 predicates with ciphertext size polylogarithmic in its
attribute length, there exists a broadcast and trace scheme with ciphertext size poly(logN,λ).
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A Broadcast and Trace via Augmented Broadcast Encryption

In this section, we give a construction for a broadcast and trace system from an AugBE scheme. The
construction is identical to the [BW06] transformation, except here we are targetting secret-key tracing
instead public-key tracing. The security proofs provided here are identical to that provided in [GVW19],
but adapted to the secret-key setting with selective security.

Let AugBE = (AugBE.Setup,AugBE.Enc,AugBE.Enc-index,AugBE.Dec) be an augmented broadcast en-
cryption scheme for message spaces M = {Mλ}λ∈N. Below we give a construction of a broadcast and trace
system.

Setup(1λ, 1N ) → (pk, tk, {ski}i∈[N ]). It runs AugBE setup as (augbe.pk, augbe.msk, {augbe.ski}i∈[N ]) ←
AugBE.Setup(1λ, 1N ), and outputs keys as pk = augbe.pk, tk = augbe.msk and ski = augbe.ski for
all i ∈ [N ].

Enc(pk, S,m)→ ct. It computes the ciphertext as ct← AugBE.Enc(pk, S,m).

Dec(ski, S, ct)→ m. It computes the plaintext as m = AugBE.Dec(ski, S,m).
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TraceD(tk, SD,m0,m1, 1
1/ε) : The tracing procedure works as follows:

For index i = 1 to N + 1:
Set count = 0
For step = 1 to T : (T = 8λ(N/ε)2)

Sample b← {0, 1}
ct← AugBE.Enc-index(tk, S,mb, i)
if D(ct) = b then count = count + 1

Set p̂i = count
T

Output {i : i ≤ N, p̂i − p̂i+1 ≥ ε
4N }.

The correctness of the above scheme follows from the correctness of the underlying AugBE scheme. We
now prove that the above scheme is a secure broadcast and trace system assuming that the underlying
AugBE scheme has normal, index, and message hiding properties.

Theorem A.1. If the augmented broadcast encryption scheme AugBE is a 1-query selective normal hid-
ing, index hiding, and message hiding secure as per Definitions 2.3 to 2.5, then the broadcast and trace
system described above is selective IND-CPA secure and achieves selective secure tracing property as per
Definitions 2.1 and 2.2.

The proof of above theorem is provided in three parts. First, we argue IND-CPA security, next we prove
the no-false tracing condition, and finally prove correct tracing condition.

A.1 IND-CPA security

The proof of security is identical to that provided in [BW06], so we only present a high level sketch. The
proof proceeds using a sequence of hybrids defined as follows.

Hybrid 0. This is the selective IND-CPA game defined in Definition 2.1.

Hybrid i (i ∈ [N+1]). This is identical to hybrid 0, except the challenge ciphertext is an index encryption
to index i.

For any PPT Adversary A, the advantage of A in hybrid i is defined as advAi (λ) = Pr[A wins in Hybrid i]−
1/2. Using a sequence of lemmas, we can argue that the scheme described above achieves selective IND-CPA
security. That is, advA0 is at most a negligible function.

Lemma A.1. Assuming 1-query normal hiding property of AugBE, for every stateful PPT adversary A,
there exists a negligible function negl(·) such that advA0 (λ)− advA1 (λ) ≤ negl(λ).

Lemma A.2. Assuming 1-query index hiding property of AugBE, for every stateful PPT adversary A,
i ∈ [N ], there exists a negligible function negl(·) such that advAi (λ)− advAi+1(λ) ≤ negl(λ).

Lemma A.3. Assuming 1-query message hiding property of AugBE, for every stateful PPT adversary A,
there exists a negligible function negl(·) such that advAN+1(λ) ≤ negl(λ).

The proof of above lemmas follows directly from the security of the AugBE scheme. We would like to point
out that for this part of the proof it is sufficient if the underlying AugBE scheme is only 0-query (normal,
index, message hiding) secure. Combining above lemmas, it follows that the construction is IND-CPA secure.

A.2 Correctness of Tracing

We now prove that no stateful PPT adversary can fool the tracing mechanism of the above scheme. The
following analysis is mostly taken verbatim from [GVW19] which analyzes the broadcast and trace construc-
tion from augmented broadcast encryption (AugBE) with the only modification being the security model we
consider here is selective and the scheme only provides secret-key tracing.
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False Trace Probability. We prove that the above tracing algorithm does not falsely accuse any user.
Specifically, no stateful PPT adversary can output a decoder such that the tracing algorithm when executed
on the decoder falsely outputs an index, that is either not in target broadcast set or was not queried by the
adversary, with non-negligible probability. Formally, we prove the following theorem.

Theorem A.2. Assuming 1-query selective index hiding property of AugBE, for every stateful PPT adver-
sary A, polynomial q(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that
for all λ ∈ N satisfying ε(λ) ≥ 1/q(λ),

Pr -Fal-TrA,ε(λ) ≤ negl(λ).

Proof. Consider any stateful PPT adversary A in the tracing game described in Definition 2.2. It outputs
a decoder D, a target set SD (at the beginning) and a pair of messages m0,m1. Let S be the set of keys
queried by A. For 1 ≤ i ≤ N + 1, let pi = Pr [D(ct) = b : b← {0, 1}, ct← AugBE.Enc-index(tk, SD,mb, i)].
For 1 ≤ i ≤ N , let us define the events Diff-Advi,ε : pi−pi+1 ≥ ε

8N and Diff-Advε : ∨k/∈S∩SDDiff-Advk,ε. Note
that

Pr -Fal-TrA,ε(λ) ≤ Pr[Fal-Tr|Diff-Advε] + Pr[Fal-Tr ∧ Diff-Advε]

≤ Pr[Fal-Tr|Diff-Advε] + Pr[Diff-Advε]

≤ Pr[Fal-Tr|Diff-Advε] +
∑
i∈[N ]

Pr[i /∈ S ∩ SD ∧ Diff-Advi,ε]

We hereby show that each of the terms in the expression is upper bounded by a negligible function.

Lemma A.4. For every stateful PPT adversary A, polynomial q(·) and non-negligible function ε(·), there
exists a negligible function negl1(·) such that for all λ ∈ N satisfying ε(λ) ≥ 1/q(λ),

Pr[Fal-Tr|Diff-Advε] ≤ negl1(λ).

Proof. We are given that ∧i/∈S∩SDpi − pi+1 < ε/8N and we would like to prove that Pr[∨i/∈S∩SD p̂i − p̂i+1 ≥
ε/4N ] ≤ negl1(λ). Let us compute Pr[p̂i−p̂i+1 ≥ ε/4N ] for some i /∈ S∩SD. The tracing algorithm iteratively
samples b ← {0, 1}, ct ← AugBE.Enc-index(tk, SD,mb, i) and checks if D(ct) = b. Let Xi,j be an indicator
random variable which takes value 1 if the check succeeds in the jth iteration. Let Zi,j = Xi,j − Xi+1,j .

We know that, ∀i, j, p̂i = 1
T

T∑
j=1

Xi,j ,E[Xi,j ] = pi and µi = E[Zi,j ] = pi − pi+1. Since Zi,js are independent

samples, by applying the chernoff bound, we get Pr[ 1T
∑
j Zi,j ≥ 2 · ε

8N ] ≤ Pr[ 1T
∑
j Zi,j ≥ 2 · µi] ≤ 2−O(λ).

Using this, we can say that for every i /∈ S ∩ SD, Pr[i ∈ S∗|Diff-Advε] ≤ 2−O(λ), where S∗ is the output of
the tracing algorithm. Using union bound, we obtain

Pr[Fal-Tr|Diff-Advε] ≤ N · 2−O(λ) = negl1(λ)

Lemma A.5. Assuming 1-query selective index hiding property of AugBE, for every PPT adversary A,
polynomial q(·) and non-negligible function ε(·), there exists a negligible function negl2(·) such that for all
λ ∈ N satisfying ε(λ) ≥ 1/q(λ) and i ∈ [N ],

Pr[i /∈ S ∩ SD ∧ Diff-Advi,ε] ≤ negl2(λ).

Proof. Suppose there exists a PPT adversary A, polynomial q(λ) and non-negligible functions ε(·), δ(·) such
that for every λ ∈ N satisfying ε(λ) ≥ 1

q(λ) , there exists an i∗ ∈ [N ] such that Pr[i∗ /∈ S∩SD∧Diff-Advi∗,ε] ≥
δ(λ). We use this adversary A to build a reduction algorithm B that can break index hiding property of the
underlying AugBE scheme. Let δ = δ(λ) and ε = ε(λ).
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The reduction algorithm B receives number of users (1N , SD) from A and chooses a random i← [N ]. B
then sends (1N , i, SD) to the AugBE challenger. The challenger sends the public key to B, and B forwards it
to A. A then adaptively queries B for secret keys. If A queries for index j such that j ∈ SD and j = i, then B
outputs a uniform random bit and aborts. Otherwise if A queries for an index j, then B forwards the query
j to the challenger, and the challenger responds with the corresponding secret key to B, which forwards the
secret key to A. After all queries, A sends a decoding box D, messages m0,m1 to B. Next B chooses a
random bit γ ← {0, 1} and sends mγ to the AugBE challenger. The challenger chooses a random bit α and
responds with ct∗ ← AugBE.Enc-index(tk, S,mγ , i+α) as the challenge ciphertext. B then chooses a random
bit β and queries the encryption oracle with message-index pair (mγ , i+ β) and receives the corresponding
index-encryption ciphertext ct. B then runs the decoder D on ciphertexts ct∗, ct independently and outputs
β if D(ct1) = D(ct2), otherwise it outputs 1 − β. (Here the reduction algorithm wins if its output is equal
to α.)

First, note that B acts as an admissible adversary in the 1-query selective index hiding game. This is
because it selectively commits to the target set SD and index i, and makes exactly one index-encryption
query, as well as it never queries for a secret key j such that j = i and j ∈ SD (since B aborts whenever this
happens). Now by a probability analysis identical to that of [GVW19, Lemma 3.2], we can argue that the

reduction algorithm B wins with probability at least 1
2 + ε2δ

256N3 . Therefore, the lemma follows.

Combining the above two lemmas, the theorem follows that false tracing probability Pr -Fal-TrA,ε(λ) ≤
negl1(λ) +N · negl2(λ) = negl(λ).

Correct Trace Probability. We prove that whenever an adversary produces a good decoder, the tracing
algorithm correctly traces at least one of the keys queried by the adversary with all but negligible probability.
Formally, we prove the following theorem.

Theorem A.3. Assuming 1-query selective normal hiding and message hiding properties of AugBE, for
every stateful PPT adversary A, polynomial q(·) and non-negligible function ε(·), there exists a negligible
function negl(·) such that for all λ ∈ N satisfying ε(λ) ≥ 1/q(λ),

Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ).

Proof. Consider a stateful PPT adversary A of the tracing game described in Definition 2.2. It outputs a
decoder D, a target set SD (at the beginning) and a pair of messages m0,m1. Let

p0 = Pr [D(ct) = b : b← {0, 1}, ct← AugBE.Enc(pk, SD,mb)] ,

and S∗ ← TraceD(tk, SD,m0,m1, 1
1/ε). We first compute the probability that S∗ is non-empty.

If the event Good-Decoder occurs, we have p0 ≥ 1/2 + ε. We also know that p0 − p1 ≤ negl(λ) and
pN+1 ≤ 1/2 + negl(λ) for some negligible function negl(·) due to the normal hiding and message hiding
property of the underlying AugBE scheme, respectively. Hence if Good-Decoder occurs, the set R = {i ∈
[N ] : pi − pi+1 ≥ ε

2N } is non-empty. By Chernoff bound, we obtain ∀i ∈ R,Pr
[
p̂i − p̂i+1 <

ε
4N

]
< negl′(λ)

for some negligible function negl′(·). Hence if Good-Decoder occurs, S∗ is a non-empty set with all but
non-negligible probability i.e.,

Pr[S∗ = ∅ | Good-Decoder] ≤
∑
i∈[N ]

Pr
[
p̂i − p̂i+1 <

ε

4N

∣∣∣ i ∈ R] ≤ N · negl′(λ).

This implies,

Pr[S∗ 6= ∅] ≥ Pr[S∗ 6= ∅ ∧ Good-Decoder]

≥ (1−N · negl′(λ)) · Pr -G-DA,ε(λ)

≥ Pr -G-DA,ε(λ)− negl(λ)

for some negligible function negl(·). Combining this result with Theorem A.2, we get Pr -Cor-TrA,ε(λ) ≥
Pr -G-DA,ε(λ)− negl(λ).
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B Efficient Branching Programs for Comparisons

We present in this section our matrix branching program for comparing integers in [N ] from Lemma 6.1.
We refer to [CVW18b] for a precise definition of matrix branching programs.

Recall that our goal is to build, for all j ∈ [N ], a branching program for Pj , which on input i outputs
1 if i ≥ j and 0 otherwise. In words, our branching program scans its input i ∈ [N ] starting from its most
significant bit, and compares them successively with the corresponding bit of j. The branching program has
three layers:

• layer 1 corresponds to “i and j are equal so far”,

• layer 2 corresponds to “i > j”,

• layer 3 corresponds to “i < j”.

If the program lands in layer 2 or 3 anytime during its execution, the program stays in the same layer till
the end of the computation; if it is in layer 1, then it moves to the corresponding next layer according to the
values of the current bits being compared. Finally, we add an extra level to merge layers 1 and 2.

More formally, let N be an integer and j ∈ [N ]. Let us define the associated branching program BPj :

• The branching program has width w = 3 and length h = dlogNe + 1, and takes inputs of bit-size
` = dlogNe.

• The index-to-input map ι : [h]→ [`] is defined as ι(i) = h− i+ 1 mod `.

• For all k ∈ {1, . . . , dlogNe}, b ∈ {0, 1}, define:

Mk,b :=

 eTk,b
0 1 0
0 0 1

 ∈ {0, 1}3×3,
where, if jι(k) denotes the ι(k)-th bit of j:

eTk,b =


(1, 0, 0) if b = jι(k)

(0, 1, 0) if b > jι(k)

(0, 0, 1) if b < jι(k)

.

We set the last matrix independently of b: for all b ∈ {0, 1}:

MdlogNe+1,b :=

1 0 0
1 0 0
0 1 0

 ∈ {0, 1}3×3.
• The sets of target matrices are:

P1 =


1 0 0

1 0 0
0 1 0

 ,

P0 =


0 1 0

1 0 0
0 1 0

 .

Lemma B.1. Let N ∈ N be an integer, and, for all j ∈ [N ], let Cj be the function that outputs 1 if i ≥ j
and 0 otherwise. Then for all j ∈ [N ], BPj is a oblivious matrix branching program of width 3 and length
dlogNe+ 1 computing Cj .
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Let N ∈ N and j ∈ [N ]. For all i ∈ [N ], we have by construction that:

dlogNe∏
k=1

Mk,iι(k) =



1 0 0

0 1 0

0 0 1

 if i = j

0 1 0

0 1 0

0 0 1

 if i > j

0 0 1

0 1 0

0 0 1

 if i < j

.

Multiplying by MdlogNe+1,b (which consists in sending layers 1 and 2 to layer 1, and layer 3 to layer 2) gives
correctness.

Note that this is not a permutation branching program as the matrices Mi,b are not all permutations.
However, this is a Type II matrix branching program (as introduced in [CVW18b], where v = (1, 0, 0)).
In other words, starting at level 1 at layer 1, the computation finishes on layer 1 at level h if and only
if Cj(i) = 1, and in layer 2 otherwise. Therefore, the PCPRF of [CVW18b] with appropriate parameters
supports constraints BPj .
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