
Anomalies and Vector Space Search: Tools for
S-Box Analysis (Full Version)*

Xavier Bonnetain1,2, Léo Perrin1 and Shizhu Tian1,3,4

1 Inria, France
2 Sorbonne Université, Collège doctoral

3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China

4 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
xavier.bonnetain@inria.fr, leo.perrin@inria.fr, tianshizhu@iie.ac.cn

Abstract. S-boxes are functions with an input so small that the simplest way to
specify them is their lookup table (LUT). How can we quantify the distance between
the behavior of a given S-box and that of an S-box picked uniformly at random?
To answer this question, we introduce various “anomalies”. These real numbers are
such that a property with an anomaly equal to 𝑎 should be found roughly once in a set
of 2𝑎 random S-boxes. First, we present statistical anomalies based on the distribution
of the coefficients in the difference distribution table, linear approximation table, and
for the first time, the boomerang connectivity table.
We then count the number of S-boxes that have block-cipher like structures to estimate
the anomaly associated to those. In order to recover these structures, we show that
the most general tool for decomposing S-boxes is an algorithm efficiently listing all
the vector spaces of a given dimension contained in a given set, and we present such
an algorithm.
Finally, we propose general methods to formally quantify the complexity of any S-box.
It relies on the production of the smallest program evaluating it and on combinatorial
arguments.
Combining these approaches, we conclude that all permutations that are actually
picked uniformly at random always have essentially the same cryptographic properties
and the same lack of structure. These conclusions show that multiple claims made
by the designers of the latest Russian standards are factually incorrect.
Keywords: S-Box · Reverse-engineering · Vector space search · BCT · Anomaly ·
Boolean functions · Shannon effect.

1 Introduction
S-boxes are small functions with an input small enough that they can be specified by
their lookup tables. If 𝐹 is an S-box with an 𝑛-bit input then it is feasible to describe it
using only the sequence 𝐹 (0), 𝐹 (1), ..., 𝐹 (2𝑛 − 1) since, in the vast majority of the cases,
3 ≤ 𝑛 ≤ 8. S-boxes can therefore correspond to arbitrarily complex functions. In practice,
such components are the only source of non-linearity of many symmetric primitives. Most
prominently, the AES [AES01] uses an 8-bit bijective S-box.

However, because they can be specified using only their lookup tables, it is not necessary
for algorithm designers to disclose their design process. They can build an S-box using a
secret structure and then hide this structure by only disclosing the lookup table. Such

*This is the full version of the Asiacrypt’19 paper [BPT19a].

mailto:xavier.bonnetain@inria.fr
mailto:leo.perrin@inria.fr
mailto:tianshizhu@iie.ac.cn

an action is considered bad practice as it cannot foster the trust necessary to use the
algorithm so specified. And yet, there are several instances of standardized algorithms that
use secretly designed S-boxes: the DES [DES77], Skipjack [U.S98], and the pair consisting
of the hash function Streebog [Fed12] and the block cipher Kuznyechik [Fed15]. The DES
and Skipjack were American standards while Streebog and Kuznyechik are Russian ones.
Streebog is part of the standard ISO/IEC 10118-3 while Kuznyechik is being considered
for inclusion in ISO/IEC 18033-3.

The generation method used by the designers of the S-box shared by Streebog and
Kuznyechik then had to be recovered by external cryptographers who, after several
attempts [BPU16, PU16], succeeded in [Per19]. The structure presented in this last paper
is extremely rare: the probability that a random permutation has a similar one is under
2−1601. Yet, in an internal memo sent to ISO [SM18] before the publication of [Per19], the
designers of Kuznyechik stated the following.

Through thorough search current S-box was obtained [...]
No secret structure was enforced during construction of the S-box. At the
same time, it is obvious that for any transformation a lot of representations
are possible (see, for example, a lot of AES S-box representations).

In this paper, we prove that none of these statements are correct:1 it would be necessary
to generate an infeasibly large set of S-boxes to obtain one with similar differential, linear,
and boomerang properties. At the same time, the structure found had to be inserted
deliberately by its designers because the presence of any structure this simple in a random
permutation is extremely unlikely.

So far, S-box reverse-engineering has dealt with two broad questions. Let S2𝑛 be the
set of all 𝑛-bit permutations and let 𝐹 ∈ S2𝑛 .

1. What is the probability that an S-box picked uniformly in S2𝑛 has differential/linear
properties at least as good as those of 𝐹?

2. How can we recover the structure of 𝐹—if it has any?

Answering the first question can also help us better understand the properties of random
permutations and thus to better estimate the advantage of an adversary trying to distinguish
a (round-reduced) block cipher from a random permutation.

On the other hand, the second one is related to so-called white-box cryptography, i.e.
to implementation techniques that will hide a secret from an attacker with a total access
to the implementation of the algorithm. In practice, in order to try and hide for instance
an AES key, the attacker will only be given access to an implementation relying on big
lookup tables that hide the details of the computations. Recovering the original structure
of these tables can be seen as a particular case of S-box reverse-engineering.

Overall, this second question is more subtle than it may seem: a given function can
have multiple different decompositions as evidenced by the multiple results on the Russian
S-box [BPU16, PU16, Per19]. We then ask a third natural question whose answer will
allow us to both disprove a claim of [SM18], and to estimate if a random permutation can
be hoped to be efficiently implemented.

3. Can we expect a random permutation to have a simple description?

1.1 Our Contributions
A Key Concept: Anomalies. We answer the two questions asked above using different
variants of a unique approach based on what we call anomalies. Intuitively, an anomaly is

1With one exception: there are indeed many representations of the AES S-box.

2

a real number that quantifies how unlikely a property is. For example, there are very few
differentially-6 uniform 8-bit permutations,2 meaning that the anomaly of this property
should be high. However, we could argue that what matters in this case is not just the
number of differentially-6 uniform permutations but the number of permutations with a
differential uniformity at most equal to 6. In light of this, we define anomalies as follows.

Definition 1 (Anomaly). Let 𝐹 ∈ S2𝑛 and let 𝑃 be a function mapping S2𝑛 to a partially
ordered set. The anomaly of 𝑃 (𝐹) is defined as A (𝑃 (𝐹)) = − log2 (Pr [𝑃 (𝐺) ≤ 𝑃 (𝐹)]),
where the probability is taken over 𝐺 ∈ S2𝑛 . We can equivalently write

A (𝑃 (𝐹)) = − log2

(︃⃒⃒{︀
𝐺 ∈ S2𝑛 , 𝑃 (𝐺) ≤ 𝑃 (𝐹)

}︀⃒⃒
|S2𝑛 |

)︃
.

The negative anomaly of 𝑃 (𝐹) is A (𝑃 (𝐹)) = − log2 (Pr [𝑃 (𝐺) ≥ 𝑃 (𝐹)]).

Regardless of 𝑃 , we always have 2−A(𝑃 (𝐹)) + 2−A(𝑃 (𝐹)) = 1 + Pr [𝑃 (𝐺) = 𝑃 (𝐹)].
In the example given above, 𝑃 is simply the function returning the differential uniformity

of a permutation. The anomaly of the differential uniformity then gets higher as the
differential uniformity of 𝐹 decreases under the median differential uniformity as there
are fewer permutations with a low differential uniformity. At the same time, the negative
anomaly of the differential uniformity increases as the differential uniformity increases
above its median value. To put it differently, the anomaly of 𝑃 (𝐹) quantifies how many
S-boxes are at least as good3 as 𝐹 in terms of 𝑃 , and the negative one how many are at
least as bad as 𝐹 . In this paper, we study different anomalies and design new tools that
allow their estimation for any S-box.

A property with a high anomaly can be seen as distinguisher in the usual sense, i.e. it
is a property that differentiates the object studied from one picked uniformly at random.
However, unlike usual distinguishers, we do not care about the amount of data needed to
estimate the probabilities corresponding to the anomalies.

Statistical Anomalies. In [BP15] and [Per19], the notions of “differential” and “linear”
anomalies were introduced. Definition 1 is indeed a generalization of them. They are
based on properties 𝑃 that correspond to how good the differential and linear properties
are. In Section 2, we generalize this analysis to take into account the corresponding
negative anomalies, and we introduce the use of the so-called Boomerang Connectivity
Table (BCT) [CHP+18] for this purpose. To this end, we establish the distribution of the
coefficients of the BCT of a random permutation. As an added bonus, this new result
allows a better estimation of the advantage of an adversary in a boomerang attack.

Structural Anomalies. Anomalies can also be related to the presence of a structure. For
example, for 𝑛-bit Boolean functions, the existence of a simple circuit evaluating a function
is unlikely:

“almost all functions” of 𝑛 arguments have “an almost identical” complexity
which is asymptotically equal to the complexity of the most complex function
of 𝑛 arguments.

This statement of Lupanov [Lup73] summarizes the so-called Shannon effect [Sha49]. In
other words, the existence of a short description is an unlikely event for a Boolean function.
Here, we generalize this observation to permutations of F𝑛

2 and construct anomalies that
capture how “structured” an S-box is.

2We formally define differential uniformity later. All that is needed in this discussion is that the
differential uniformity is an integer which is better when lower.

3In this paper, the properties 𝑃 considered are better when lower.

3

In Section 3, we present an estimation of the number of permutations that can be
constructed using common S-box generation methods (multiplicative inverse, Feistel
networks...) and derive the corresponding anomalies. In order to identify these anomalies,
it is necessary to recover said structures when they are unknown. We present a simple
approach applicable to inversion-based S-boxes that we successfully apply to the 8-bit
S-box of the leaked German cipher Chiasmus. In other cases, we show that the detection
of structures with a high anomaly can be performed using a vector space search.

Vector Space Search. We provide an efficient algorithm performing this search: given a
set 𝒮 of elements of {0, 1}𝑛 and an integer 𝑑, this algorithm returns all the vector spaces
of dimension 𝑑 that are fully contained in 𝒮. We present it in Section 4. While such
an algorithm is needed when looking for a structure in an S-box, we expect it to find
applications beyond this area.

Kolmogorov Anomalies. The anomalies we present in Section 3 are related to specific
structures that are very common, but they correspond to functions 𝑃 with a binary output:
an S-box has the specific structure considered or it does not. It thus fails to capture the
idea behind anomalies which consists in looking at the probability that an event or a
“better” version of it occurs. To solve this problem, we take inspiration from both a proof of
Shannon [Sha49] and the Kolmogorov complexity to define an anomaly that quantifies how
simple an implementation of a function is that can be applied regardless of the specifics of
the structure considered.

Application. We apply the different methods we present to the S-box of the Russian
algorithms, 𝜋. We show that its statistical, structural, and Kolmogorov anomalies are
either high or extremely high; thus disproving the claims of its designers.

1.2 Mathematical Background
Boolean Functions. Let F2 = {0, 1}. In what follows, we consider the following subsets
of the set of all functions mapping F𝑛

2 to itself.

∙ Recall that the set of all 𝑛-bit permutations is denoted S2𝑛 . It contains 2𝑛! elements.
The compositional inverse of 𝐹 ∈ S2𝑛 is denoted 𝐹−1.

∙ The set of all 𝑛-bit linear permutations is denoted ℒ2𝑛 . Its size is such that |ℒ2𝑛 | =∏︀𝑛−1
𝑖=0 (2𝑛 − 2𝑖).

For elements of F𝑛
2 , “+” denotes the characteristic-2 addition, i.e. the XOR. In cases that

might be ambiguous, we use “⊕” to denote this operation.
Let 𝐹 ∈ S2𝑛 be an S-box. Many of its cryptographic properties can be described using

2𝑛 × 2𝑛 tables: the LAT, DDT and BCT. They are defined below.
The Linear Approximation Table (LAT) of 𝐹 is the table 𝒲𝐹 with coefficients

𝒲𝐹 (𝑎, 𝑏) =
∑︀

𝑥∈F𝑛
2
(−1)𝑎·𝑥+𝑏·𝐹 (𝑥) where 𝑥 · 𝑦 =

⨁︀𝑛−1
𝑖=0 𝑥𝑖 × 𝑦𝑖 is the scalar product of

two elements 𝑥 = (𝑥0, ..., 𝑥𝑛−1), 𝑦 = (𝑦0, ..., 𝑦𝑛−1) ∈ F𝑛
2 . Its maximum for 𝑏 ̸= 0 is

the linearity of 𝐹 and is denoted ℓ(𝐹). The LAT is used to study linear cryptanal-
ysis [TG92, Mat94]. The set of the coordinates of the coefficients equal to 0 plays a
special role, as shown in [CP19]. It is called the Walsh zeroes of 𝐹 and is denoted
𝒵𝐹 = {(𝑎, 𝑏) ∈ (F𝑛

2)2 | 𝒲𝐹 (𝑎, 𝑏) = 0} ∪ {(0, 0)}.
The Difference Distribution Table (DDT) of 𝐹 is the table 𝛿𝐹 with coefficients 𝛿𝐹 (𝑎, 𝑏) =

{𝑥 ∈ F𝑛
2 , 𝐹 (𝑥+ 𝑎) + 𝐹 (𝑥) = 𝑏}. Its maximum for 𝑎 ̸= 0 is the differential uniformity of

𝐹 and is denoted 𝑢(𝐹). The DDT is needed to study differential cryptanalysis [BS91].

4

Recently, Cid et al. introduced a new tool which they called Boomerang Connectivity
Table (BCT) [CHP+18]. It is again a 2𝑛 × 2𝑛 table ℬ𝐹 defined by

ℬ𝐹 (𝑎, 𝑏) = #
{︀
𝑥 ∈ F𝑛

2 , 𝐹
−1 (𝐹 (𝑥) + 𝑏) + 𝐹−1 (𝐹 (𝑥+ 𝑎) + 𝑏) = 𝑎

}︀
.

Its maximum value for 𝑎, 𝑏 ̸= 0 is the boomerang uniformity of 𝐹 and is denoted 𝛽𝐹 . As
hinted by its name, the BCT is relevant when studying boomerang attacks [Wag99]. Unlike
the DDT and LAT, it is necessary that 𝐹 is a permutation for the BCT to be well defined.

Statistics. Some of our results rely on both the binomial and Poisson distribution. We
denote with Binomial(𝑛, 𝑝) the binomial distribution with parameters 𝑝 and 𝑛 which
correspond respectively to the probability of an event and to the number of trial. It is
defined as follows:

Pr [𝑋 = 𝑖] = Binomial(𝑖;𝑛, 𝑝) = 𝑝𝑖(1− 𝑝)𝑛−𝑖

(︂
𝑛

𝑖

)︂
.

It has a mean equal to 𝑛𝑝 and a variance of 𝑛𝑝(1 − 𝑝). The Poisson distribution with
parameter 𝜆 is defined by

Pr [𝑋 = 𝑖] = Poisson(𝑖;𝜆) = 𝑒−𝜆𝜆𝑖

𝑖! .

The mean value and variance of this distribution are both 𝜆. A binomial distribution with
small 𝑝 can be closely approximated by a Poisson distribution with 𝜆 = 𝑛𝑝.

2 Statistical Properties
Let us consider a permutation 𝐹 that is picked uniformly at random from S2𝑛 and let us
consider one of its tables, i.e. its DDT, LAT or BCT. The coefficients in this table may be
connected to one another: for example the sum of the coefficients in a row of the DDT
have to sum to 2𝑛. Yet, in practice, the coefficients act like independent and identically
distributed random variables. In Section 2.1), we recall what the distributions of the DDT
and LAT coefficients are and we establish the distribution of the BCT coefficients.

Then, Section 2.2 presents how the knowledge of these distributions can be used
to bound the probability that a random permutation has differential/linear/boomerang
properties at least as good as those of the S-box investigated. Additionally, we explain in
Section 2.3 how our newly gained knowledge of the distribution of the BCT coefficients
allows a better estimation of the advantage of the attacker in a boomerang attack.

2.1 Coefficient Distributions
In [DR07], the authors established and experimentally verified the distribution followed by
the DDT and LAT coefficients. The distribution of the LAT coefficients was first established
in [O’C95] and then provided a different expression in [DR07]. A more thorough study of
the DDT coefficient can be found in [O’C94]. We recall these results in the following two
theorems.

Proposition 1 (DDT coefficient distribution [DR07]). The coefficients in the DDT of
a random S-Box of S2𝑛 with 𝑛 ≥ 5 are independent and identically distributed random
variables following a Poisson distribution Poisson(2−1).

5

Proposition 2 (LAT coefficient distribution [O’C95, DR07]). The coefficients in the LAT
of a random permutation4 of S2𝑛 are independent and identically distributed random
variables with the following probability distribution:

Pr [𝒲𝐹 (𝑖, 𝑗) = 4𝑧] =
(︀ 2𝑛−1

2𝑛−2+𝑧

)︀2(︀ 2𝑛

2𝑛−1

)︀ .

The situation is the same for the BCT. In order to establish the distribution of the
non-trivial coefficients of the BCT of a random permutation, we first recall an alternative
definition of the BCT that was introduced in [LQSL19].

Proposition 3 (Alternative BCT definition [LQSL19]). Let 𝐹 ∈ S2𝑛 be a permutation.
For any 𝑎, 𝑏 ∈ F𝑛

2 , the entry ℬ𝐹 (𝑎, 𝑏) of the BCT of 𝐹 is given by the number of solutions
in F𝑛

2 × F𝑛
2 of the following system of equations{︃

𝐹−1(𝑥+ 𝑏) + 𝐹−1(𝑦 + 𝑏) = 𝑎

𝐹−1(𝑥) + 𝐹−1(𝑦) = 𝑎 .
(1)

We use this theorem to obtain the distribution of the coefficients in the BCT.

Theorem 1 (BCT coefficient distribution). If 𝐹 is picked uniformly at random in S2𝑛 ,
then its coefficients with 𝑎, 𝑏 ̸= 0 can be modeled like independent and identically distributed
random variables with the following distribution:

Pr [ℬ𝐹 (𝑎, 𝑏) = 𝑐] =
∑︁

2𝑖1+4𝑖2=𝑐

𝑃1(𝑖1)𝑃2(𝑖2) ,

where 𝑃1 and 𝑃2 are stochastic variable following binomial distributions:

𝑃1(𝑖) = Binomial
(︂
𝑖; 2𝑛−1,

1
2𝑛 − 1

)︂
and 𝑃2(𝑖) = Binomial

(︂
𝑖; 22𝑛−2 − 2𝑛−1,

1
(2𝑛 − 1)2

)︂
.

Proof. For any 𝑥, 𝑦 ∈ F𝑛
2 such that 𝑥 ̸= 𝑦, we define

𝑆𝑥,𝑦 = {(𝑥, 𝑦), (𝑦, 𝑥), (𝑥+ 𝑏, 𝑦 + 𝑏), (𝑦 + 𝑏, 𝑥+ 𝑏)} ,

which is of cardinality 4 unless 𝑥+ 𝑦 = 𝑏, in which case it only contains 2 elements. These
sets are such that a pair (𝑥, 𝑦) is a solution of System (1) if and only if all the elements in
𝑆𝑥,𝑦 are as well. In order to prove this theorem, we will partition the set of all pairs of
elements of F𝑛

2 into such sets 𝑆𝑥,𝑦.
To this end, we consider the following equivalence relation: (𝑥, 𝑦) ∼ (𝑥′, 𝑦′) if and only

if the multisets 𝑆𝑥,𝑦 and 𝑆𝑥′,𝑦′ are identical. The corresponding equivalence classes are of
size 4 except when 𝑥+𝑦 = 𝑏, in which case they contain only 2 elements. There are in total
2𝑛−1 classes of size 2. As there are 2𝑛(2𝑛 − 1) ordered pairs of elements in F𝑛

2 , we deduce
that there are

(︀
2𝑛(2𝑛 − 1)− 2× 2𝑛−1)︀ /4 classes of cardinality 4, i.e. 22𝑛−2 − 2𝑛−1.

Then, in order for System (1) to have exactly 𝑐 solutions, we need that there exists 𝑖1
solutions in classes of size 4 and 𝑖2 in classes of size 2, where 2𝑖1 + 4𝑖2 = 𝑐. We deduce that

Pr [ℬ𝐹 (𝑎, 𝑏) = 𝑐] =
∑︁

2𝑖1+4𝑖2=𝑐

𝑃1(𝑖1)𝑃2(𝑖2) ,

where 𝑃1(𝑖1) (respectively 𝑃2(𝑖2)) is the probability that there exists 𝑖1 classes of size 4
(resp. 2) that are solutions of System (1). Let us now prove that the distributions of 𝑃1(𝑖1)
and 𝑃2(𝑖2) are as stated in the theorem.

4The distribution of the coefficients in the LAT of random functions (not permutations) is also provided
in [DR07].

6

Size 2. In this case, it holds that 𝑦 = 𝑥+𝑏 so that the lines of System (1) are identical. We
assume that 𝐹−1(𝑥)+𝐹−1(𝑥+𝑏) = 𝑎 holds with probability 1/(2𝑛−1) as 𝐹−1(𝑥)+𝐹−1(𝑥+𝑏)
can take any value in F𝑛

2∖{0}. Since there are 2𝑛−1 such pairs, 𝑃1(𝑖1) corresponds to
a binomial distribution with 2𝑛−1 repetitions of a Bernoulli trial that succeeds with
probability (2𝑛 − 1)−1.

Size 4. The two equations of System (1) are now independent. Using the same reasoning
as above, we assume that each line holds with probability 1/(2𝑛 − 1). Since there are
22𝑛−2 − 2𝑛−1 such pairs, 𝑃2(𝑖2) corresponds to a binomial distribution with parameters
22𝑛−2 − 2𝑛−1 and (2𝑛 − 1)−2.

2.2 Anomalies in Table Coefficients Distributions
Building upon the general approach presented in [BP15], we can define several anomalies
using the distribution of the coefficients in the tables of a permutation 𝐹 ∈ S2𝑛 . We will
then be able to estimate the values of the corresponding anomalies using the distributions
derived in the previous section.

Maximum Value. For any table, the maximum absolute value of all coefficients is a natural
property to use to construct an anomaly as the integers are ordered. Let max𝑇 : S2𝑛 → N
be the function mapping a permutation 𝐹 ∈ S2𝑛 to the maximum absolute value of the
non-trivial coefficients in a table 𝑇 . Then we can use the distributions in Propositions 1
and 2 as well as Theorem 1 to estimate the associated anomalies:

A (max𝑇 (𝐹)) = −(2𝑛 − 1)2 log2

⎛⎝max𝑇 (𝐹)∑︁
𝑖=0

𝑝𝑖

⎞⎠ ,

where 𝑝𝑖 is the probability that 𝑇 (𝑎, 𝑏) = 𝑖. Indeed, there are only (2𝑛 − 1)2 non-trivial
coefficients in the DDT, LAT and BCT as the first row and column are fixed in each
case. The (negative) anomalies corresponding to the differential uniformity, linearity
and boomerang uniformity for 𝑛 = 8 are given in Appendix B in Tables 4a, 4b and 4c
respectively.

Maximum Value and Number of Occurrences. In S28 , the anomaly of a differential
uniformity of 8 is equal to 16.2 but, for a differential uniformity of 6, it is 164.5. In
order to have a finer grained estimate of how unlikely the properties of an S-box are, we
combine the maximum coefficient in one of its tables with its number of occurrences as
was first done in [BP15]. For a 2𝑛 × 2𝑛 table of integers 𝑇 , let MO be the function such
that MO(𝑇) = (𝑐,𝑚) where 𝑐 is the maximum absolute value in 𝑇 and 𝑚 is its number of
occurrences (where the first row and column are ignored). The set N × N in which the
output of MO lives can be ordered using the lexicographic ordering, i.e. (𝑥, 𝑦) ≤ (𝑥′, 𝑦′)
if and only if 𝑥 < 𝑥′ or 𝑥 = 𝑥′ and 𝑦 ≤ 𝑦′. We then define the differential, linear and
boomerang anomalies of 𝐹 as respectively

Ad(𝐹) = A (MO(𝛿𝐹))) , Aℓ(𝐹) = A (MO(𝒲𝐹)) , and Ab(𝐹) = A (MO(ℬ𝐹)) .

This definition of the differential and linear anomalies matches with the one given in [Per19].
The boomerang anomaly was not used before. We also introduce the negative differential,
linear and boomerang anomalies as the corresponding negative anomalies.

7

We estimate these anomalies for a table 𝑇 using the following expression:

A
(︀
MO(𝑇) ≤ (𝑐,𝑚)

)︀
= − log2

⎛⎝ 𝑚∑︁
𝑘=0

(︂
(2𝑛 − 1)2

𝑘

)︂
× 𝑝𝑘

𝑐 ×
(︁ 𝑐−1∑︁

𝑗=0
𝑝𝑗

)︁(2𝑛−1)2−𝑘

⎞⎠ ,

where 𝑝𝑖 is the probability that 𝑇 (𝑎, 𝑏) = |𝑖|. For the corresponding negative anomaly, we
use the following relation:

2A(MO(𝑇)≤(𝑐,𝑚)) + 2A(MO(𝑇)≤(𝑐,𝑚)) = 1 +
(︂

(2𝑛 − 1)2

𝑚

)︂
𝑝𝑚

𝑐

(︁ 𝑐−1∑︁
𝑗=0

𝑝𝑗

)︁(2𝑛−1)2−𝑚

.

2.3 Tighter Advantage Estimations for Boomerang Attacks
The coefficient distribution we established in Theorem 1 can also be used to compute the
expected value of a BCT coefficient. This in turn implies a better understanding of the
advantage an adversary has in a boomerang attack.

Theorem 2. The expected value for each BCT coefficient of a random permutation of
S2𝑛 converges towards 2 as 𝑛 increases.

Proof. Let 𝐹 ∈ S2𝑛 be picked uniformly at random. The expected value 𝐸 of ℬ𝐹 (𝑎, 𝑏) is∑︀2𝑛

𝑐=0 Pr [ℬ𝐹 (𝑎, 𝑏) = 𝑐] 𝑐. Using Theorem 1, we express Pr [ℬ𝐹 (𝑎, 𝑏) = 𝑐] using two binomial
distributions 𝑃1 and 𝑃2 so that

𝐸 =
2𝑛∑︁

𝑐=0
𝑐×

(︃ ∑︁
2𝑖1+4𝑖2=𝑐

𝑃1(𝑖1)𝑃2(𝑖2)
)︃

=
2𝑛∑︁

𝑐=0

2𝑛−1∑︁
𝑖1=0

2𝑛−2∑︁
𝑖2=0

(2𝑖1 + 4𝑖2)𝑃1(𝑖1)𝑃2(𝑖2)× [2𝑖1 + 4𝑖2 = 𝑐] ,

where the expression between the brackets is equal to 1 if 2𝑖1 + 4𝑖2 = 𝑐, and 0 otherwise.
Reordering the sums, we obtain the following expected value:

𝐸 =
2𝑛−1∑︁
𝑖1=0

2𝑛−2∑︁
𝑖2=0

(2𝑖1 + 4𝑖2)𝑃1(𝑖1)𝑃2(𝑖2)⏟ ⏞
𝐸(𝑛)

2𝑛∑︁
𝑐=0

[2𝑖1 + 4𝑖2 = 𝑐]⏟ ⏞
≤1

. (2)

We then approximate the binomial distributions 𝑃1 and 𝑃2 by Poisson distributions, namely
𝑃1(𝑖) ≈ Poisson(𝑖; 2−1) = 𝑒− 1

2 2−𝑖/(𝑖!) and 𝑃1(𝑖) ≈ Poisson(𝑖; 4−1) = 𝑒− 1
4 4−𝑖/(𝑖!). We get

𝐸(𝑛) =
2𝑛−1∑︁
𝑖1=0

2𝑛−2∑︁
𝑖2=0

(2𝑖1 + 4𝑖2)𝑒
− 1

2 2−𝑖1

𝑖1!
𝑒− 1

4 4−𝑖2

𝑖2!

=
2𝑛−1∑︁
𝑖1=1

𝑒− 1
2 (1

2)𝑖1−1

(𝑖1 − 1)!

2𝑛−2∑︁
𝑖2=0

𝑒− 1
4 (1

4)𝑖2

𝑖2! +
2𝑛−1∑︁
𝑖1=0

𝑒− 1
2 (1

2)𝑖1

𝑖1!

2𝑛−2∑︁
𝑖2=1

𝑒− 1
4 (1

4)𝑖2−1

(𝑖2 − 1)! .

As all sums converge towards 1 as 𝑛 increases, the limit of 𝐸(𝑛) is 2. On the other hand,
we remark that 𝐸 ≤ 𝐸(𝑛) because of Equation (2), and that

𝐸 ≥
2𝑛−2∑︁
𝑖1=0

2𝑛−3∑︁
𝑖2=0

(2𝑖1 + 4𝑖2)𝑃1(𝑖1)𝑃2(𝑖2)
2𝑛∑︁

𝑐=0
[2𝑖1 + 4𝑖2 = 𝑐]⏟ ⏞

=1

= 𝐸(𝑛− 1) ,

so 𝐸(𝑛− 1) ≤ 𝐸 ≤ 𝐸(𝑛). As 𝐸(𝑛) converges to 2 as 𝑛 increases, so does 𝐸.

8

The expected probability of a boomerang characteristic

𝐸−1
𝑘 (𝐸𝑘(𝑥)⊕ 𝑏)⊕ 𝐸−1

𝑘 (𝐸𝑘(𝑥⊕ 𝑎)⊕ 𝑏) = 𝑎

is thus 21−𝑛 and not 2−𝑛 as we might expect.

2.4 Experimental Results
Verification. To check the validity of our approach to estimate the statistical anomalies,
we picked 221 permutations from S28 uniformly at random. We then counted the number
𝑁𝑡 of permutations 𝐹 such that ⌊A(𝐹)⌋ = 𝑡, and we obtained the following results (only
anomalies above 19 are listed):

Aℓ(𝐹) : 𝑁19 = 1, 𝑁21 = 1 Aℓ(𝐹) : 𝑁19 = 1
Ad(𝐹) : See below Ad(𝐹) : 𝑁20 = 1
Ab(𝐹) : 𝑁19 = 3 Ab(𝐹) : 𝑁20 = 2 .

We deduce that the anomalies other than Ad(𝐹) behave as we expect: in a set of size 2𝑡,
we can expect to see about 1 permutation with an anomaly of 𝑡.

However, for Ad(𝐹), our results do not quite match the theory. Indeed, we have found
too many permutations with a high differential anomaly for it to be a coincidence:

Ad(𝐹) : 𝑁19 = 7, 𝑁20 = 8, 𝑁21 = 2, 𝑁22 = 1, 𝑁23 = 2,
𝑁24 = 1, 𝑁25 = 1, 𝑁26 = 1, 𝑁28 = 1 .

Recall that our estimates of the table-based anomalies rely on the assumption that the
coefficients behave like independent random variables. While we experimentally found this
assumption to yield accurate models in practice for all tables, it fails to accurately predict
the behavior of the maximum value and its number of occurrences in the case of the DDT.

S-boxes from the Literature. We computed the statistical anomalies we defined above
for several 8-bit S-boxes from the literature that we obtained from [PW17]. The results are
given in Table 1. We also list the number 𝑁𝑉 of vector spaces of dimension 𝑛 contained in
𝒵𝑠; its importance will appear later in Section 3.

The statistical anomalies of the AES S-box, i.e. of the multiplicative inverse, are
unsurprisingly very large. But they are too large: an anomaly cannot be higher than
log2(|S2𝑛 |). Our estimates do not hold for objects with properties as extreme as those of
the inverse.

We can derive other results from this table. For example, 2-round SPNs have a high
negative boomerang anomaly but 3-round ones loose this property. Classical 3-round Feistel
networks, as used in ZUC_S0, have a boomerang uniformity which is maximum [BPT19b]
so it is not surprising to see that they have a boomerang anomaly so high that we could
not compute it. Even though the S-box of Zorro has a modified Feistel structure (it uses
a sophisticated bit permutation rather than a branch swap), it still has a high negative
boomerang anomaly.

As expected, the S-boxes that were generated using a random procedure have low
positive and negative statistical anomalies. The S-box of MD2 was obtained using the
digits of 𝜋, that of the newDES from the American declaration of independence, and that
of Turing from the string “Alan Turing”.

The correlation between the different statistical anomalies seems complex. On the
one hand, there are S-boxes with very different linear and differential anomalies despite
the fact that the square of the LAT coefficients corresponds to the Fourier transform of
the DDT (see e.g. Skipjack). As evidenced by the anomalies of the S-boxes of Kalyna,

9

Table 1: The statistical anomalies and number of vector spaces for some S-boxes from the
literature.

Type Cipher Ad(𝑠) Ad(𝑠) Aℓ(𝑠) Aℓ(𝑠) Ab(𝑠) Ab(𝑠) 𝑁𝑉 (𝑠)
Inverse AES 7382.13 0.00 3329.43 0.00 9000.05 0.00 2

Logarithm BelT 74.79 0.00 122.97 0.00 0.98 0.40 2
TKlog Kuznyechik 80.63 0.00 34.35 0.00 14.18 0.00 3

SPN (2S)

CLEFIA_S0 2.56 0.19 25.62 0.00 0.00 15.60 6
Enocoro 1.92 0.36 3.26 0.15 0.00 15.60 6

Twofish_p0 1.36 0.70 3.16 0.17 0.00 33.84 6
Twofish_p1 1.34 0.72 3.16 0.17 0.00 25.82 6

SPN (3S) Iceberg 17.15 0.00 3.58 0.10 0.02 3.87 2
Khazad 16.94 0.00 3.16 0.17 0.98 0.40 2

Feistel Zorro 2.19 0.27 3.37 0.13 0.00 25.82 2
ZUC_S0 16.15 0.00 3.16 0.17 0.00 NaN 368

Hill climbing

Kalyna_pi0 104.22 0.00 235.77 0.00 29.67 0.00 2
Kalyna_pi1 122.64 0.00 268.07 0.00 29.67 0.00 2
Kalyna_pi2 129.87 0.00 239.28 0.00 5.99 0.00 2
Kalyna_pi3 122.64 0.00 242.92 0.00 26.44 0.00 2

Random
Turing 0.18 1.94 1.84 0.17 0.98 0.40 2
MD2 1.36 0.70 0.10 2.41 0.98 0.40 2

newDES 0.44 0.73 0.32 1.95 0.14 1.86 2
Unknown Skipjack 0.18 1.94 54.38 0.00 0.98 0.40 2

which were obtained using a hill climbing method optimizing the differential and linear
properties [KKO13], these improvements lead to an observable increase of the boomerang
anomaly but it can be marginal.

3 Identifying Structures

In this section, we go through the most common S-box structures, and present for each of
them the density of the set of such S-boxes (up to affine-equivalence) and the methods
that can be used to identify them. In practice, S-boxes operating on at least 6 bits usually
fall into two categories: those that are based on the inverse in the finite field F2𝑛 , and
those using block cipher structures.

In both cases, the permutations are usually composed with affine permutations. In
the context of white-box cryptography, it is common to compose functions with secret
affine permutations so as to obfuscate the logic of the operations used. Hence, for both
decomposing S-boxes and attacking white-box implementation, it is necessary to be able
to remove these affine layers.

While recovering a monomial structure is simple even when it is masked by affine
permutations (see Section 3.1 and our results on the S-box of Chiasmus), it is not the
case with block cipher structures. In this section, we show how the the recovery of the
pattern used in [BPU16] to remove the affine layers of the Russian S-box can be efficiently
automatized (Section 3.2), and applied to both SPNs (Section 3.3) and Feistel network
(Section 3.4). The core algorithm needed for these attacks is one returning all the vector
spaces contained in a set of elements of F𝑛

2 . We will present such an algorithm in Section 4.
These techniques allow us to identify the structural anomalies in S-boxes. In order

to estimate the anomaly associated with each structure, we upper bound the number of
permutation that can be built using each of those that we consider. The corresponding
anomalies are summarized in Section 3.5.

10

3.1 Multiplicative Inverse
Such permutations have a very simple structure: there exists two affine permutations
𝐴 : F𝑛

2 → F2𝑛 and 𝐵 : F2𝑛 → F𝑛
2 such that the permutations 𝐹 can be written 𝐹 = 𝐵∘𝐺∘𝐴,

where 𝐺 is the permutation of F2𝑛 defined by 𝐺(𝑥) = 𝑥2𝑛−2. Their use was introduced
in [Nyb94]; the AES [AES01] uses such an S-box.

In practice, the implementation of 𝐺 requires the use of an encoding of the elements
of F2𝑛 as elements of F𝑛

2 . Usually, it is achieved by mapping 𝑥 = (𝑥0, ..., 𝑥𝑛−1) ∈ F𝑛
2 to∑︀𝑛−1

𝑖=0 𝑥𝑖𝛼
𝑖, where 𝛼 ∈ F2𝑛 is the root of an irreducible polynomial with coefficients in F2

of degree 𝑛. However, this encoding can be seen as being part of 𝐴 and 𝐵.

Density of the set. There is only one function 𝑥 ↦→ 𝑥2𝑛−2. However, there are fewer
than (|ℒ2𝑛 |2𝑛)2 distinct permutations affine-equivalent to it. Indeed, (𝑥 × 𝑚)2𝑛−2 =
𝑥2𝑛−2×𝑚2𝑛−2, meaning that for a given pair (𝐴,𝐵) of permutations of ℒ2𝑛 we can define
2𝑛 − 1 pairs (𝐴𝑖, 𝐵𝑖) ∈ (ℒ2𝑛)2 such that 𝐵𝑖 ∘𝐺 ∘𝐴𝑖 = 𝐵𝑗 ∘𝐺 ∘𝐴𝑗 for all 𝑖, 𝑗. The same
reasoning applies to the Frobenius automorphisms because (𝑥2𝑖)2𝑛−2 = (𝑥2𝑛−2)2𝑖 . In the
end, there are at most

|ℒ2𝑛 |2⏟ ⏞
𝐿𝐴 and 𝐿𝐵

× 22𝑛⏟ ⏞
𝑐𝐴 and 𝑐𝐵

× 1
(2𝑛 − 1)⏟ ⏞

multiplication

× 𝑛⏟ ⏞
Frobenius

= 2𝑛

𝑛
× (|ℒ2𝑛 |)2

distinct permutations affine-equivalent to the multiplicative inverse.

How to recognize them? The Chinese cipher SMS4 [Dt08] uses an 8-bit S-box whose
structure was not explained. This prompted Liu et al. to try and recover said struc-
ture [LJH+07]. They successfully identified it as being affine equivalent to the multiplicative
inverse using an ad hoc method.

There is a simple test that can be applied to check if a permutation is affine-equivalent
to the multiplicative inverse when the input/output size is even.

Lemma 1. Let 𝑠 : 𝑥 ↦→ 𝑥2𝑛−2 be a permutation of F2𝑛 and 𝐹 ∈ S2𝑛 with 𝑛 even be
such that 𝐹 = 𝐵 ∘ 𝑠 ∘ 𝐴 where 𝐴 : 𝑥 ↦→ 𝐿𝐴(𝑥) + 𝑐𝐴 and 𝐵 : 𝑥 ↦→ 𝐿𝐵(𝑥) + 𝑐𝐵 are affine
permutations. Let {(𝑎𝑖, 𝑏𝑖)} be the set of all coordinates such that 𝛿𝐹 (𝑎𝑖, 𝑏𝑖) = 4. Then it
holds that 𝑏𝑖 = 𝐿𝐵

(︀
𝐿𝐴(𝑎𝑖)2𝑛−2)︀ for all 𝑖, meaning that 𝑎𝑖 ↦→ 𝑏𝑖 and 𝑠 are identical up to

translations.

Proof. We have that (𝑥 + 𝑎)𝑒 + 𝑥𝑒 = 𝑏 has as many solutions as (𝑦 + 1)𝑒 + 𝑦𝑒 = 𝑏/𝑎𝑒,
meaning that all rows of its DDT contain the same coefficients: 𝛿𝑠(𝑎, 𝑏) = 𝛿𝑠(1, 𝑏/𝑎𝑒). In
the case of the inverse for 𝑛 even, 𝛿𝑠(1, 𝑐) ∈ {0, 2} for all 𝑐 ̸= 1 and 𝛿𝑠(1, 1) = 4. Such a
function was called locally-APN in [BCC11].

In our case, we have that 𝛿𝐹 (𝑎, 𝑏) = 𝛿𝑠

(︀
𝐿𝐴(𝑎), 𝐿−1

𝐵 (𝑏)
)︀
. Using the property we just

established with 𝑒 = 2𝑛 − 2, we get 𝛿𝐹 (𝑎, 𝑏) = 𝛿𝑠

(︀
1, 𝐿−1

𝐵 (𝑏)/(𝐿𝐴(𝑎))2𝑛−2)︀, where the
second coordinate simplifies into 𝐿−1

𝐵 (𝑏)× 𝐿𝐴(𝑎). As a consequence, 𝛿𝐹 (𝑎, 𝑏) = 4 if and
only if 𝐿−1

𝐵 (𝑏) = (𝐿𝐴(𝑎))2𝑛−2, which is equivalent to 𝑏 = 𝐿𝐵

(︀
𝐿𝐴(𝑎)2𝑛−2)︀.

In [Sch14] and [STW13], two separate teams independently recovered the secret block
cipher Chiasmus from an encryption tool called GSTOOL. Chiasmus is a German designed
64-bit block cipher which uses two S-boxes 𝑆 and 𝑆−1. Schuster had the intuition that
it was built similarly to the AES S-box. He was right. Using Lemma 1 and the linear
equivalence algorithm of [BDBP03], we found that the S-box of Chiasmus is also based
on a finite field inversion. However, unlike in the AES, it uses two affine mappings with
non-zero constants. A script generating the S-box of Chiasmus is provided in Appendix E.
The S-box itself can be found in a SAGE [Dev17] module [PW17].

11

We could also have recovered this structure using directly the algorithm of Biryukov et
al. [BDBP03] or the more recent one of Dinur [Din18]. However, the above approach and
these algorithms share the same shortcoming when it comes to identifying the structure
in an unknown S-box 𝐹 ∈ S2𝑛 : if we do not know the exact S-box to which 𝐹 might
be affine-equivalent then they cannot be applied. Even if we know that it might be
affine-equivalent to an SPN or a Feistel network, we cannot find the corresponding affine
masks.

To solve this problem, we identify patterns in the LAT of the permutations with specific
structures that are present regardless of the subfunctions they contain. As a consequence,
they can always be detected.

3.2 TU-Decomposition
The TU-decomposition is a general structure that was first introduced in [BPU16] where it
was shown that the S-box of the latest Russian standards has such a structure. Later, it was
encountered again in the context of the Big APN problem, a long standing open question
in discrete mathematics. Indeed, the only known solution to this problem is a sporadic
6-bit APN permutation that was found by Dillon et al. [BDMW10] and which was proved
in [PUB16] to yield a TU-decomposition. This structure was then further decomposed to
obtain the so-called open butterfly. As we will show below, some Feistel and SPN structures
also share this decomposition. Thus, the tools that can find TU-decomposition can also be
used to identify these structures even in the presence of affine masks.

Definition 2 (TU𝑡-decomposition). Let 𝑛 and 𝑡 be integers such that 0 < 𝑡 < 𝑛. We say
that 𝐹 ∈ S2𝑛 has a TU𝑡-decomposition5 if there exists:

∙ a family of 2𝑛−𝑡 permutations 𝑇𝑦 ∈ S2𝑡 indexed by 𝑦 ∈ F𝑛−𝑡
2 ,

∙ a family of 2𝑡 permutations 𝑈𝑥 ∈ S2𝑛−𝑡 indexed by 𝑥 ∈ F𝑡
2, and

∙ two linear permutations 𝜇 : F𝑛
2 → (F𝑡

2 × F𝑛−𝑡
2) and 𝜂 : (F𝑡

2 × F𝑛−𝑡
2)→ F𝑛

2

such that 𝐹 = 𝜂 ∘ 𝐺 ∘ 𝜇, where 𝐺 is the permutation of F𝑡
2 × F𝑛−𝑡

2 such that 𝐺(𝑥, 𝑦) =(︀
𝑇𝑦(𝑥), 𝑈𝑇𝑦(𝑥)(𝑦)

)︀
. This structure is presented in Figure 1a.

In other words, 𝐹 ∈ S2𝑛 has a TU𝑡-decomposition if and only if it is affine-equivalent
to 𝐺 ∈ S2𝑛 with the following property: if 𝐺�𝑡 is the restriction of 𝐺 to its 𝑡 bits of highest
weight then 𝑥 ↦→ 𝐺�𝑡(𝑥||𝑎) is a permutation for all 𝑎 ∈ F𝑛−𝑡

2 .

Density of the set. In order to define a permutation with a TU𝑡-decomposition, we need
to choose 2𝑛−𝑡 permutations of S2𝑡 , 2𝑡 permutations of S2𝑛−𝑡 and two linear permutations
operating on 𝑛 bits. However, several of the permutations generated in this way will be
identical. Indeed, we can compose each 𝑇𝑦 with a 𝑡-bit linear permutation 𝛼 ∈ ℒ2𝑡 to
obtain a permutation 𝑇 ′

𝑦 = 𝑇𝑦 ∘ 𝛼. If we use 𝑇 ′
𝑦 and compose 𝜇 with 𝛼−1, then we obtain

the same overall permutation as when 𝑇𝑦 and 𝜇 are used. More equivalent modifications
can be made using linear permutations 𝛽 ∈ ℒ2𝑛−𝑡 , 𝛾 ∈ ℒ2𝑡 and 𝛿 ∈ ℒ2𝑛−𝑡 , as summarized
in Figure 1b. Hence, the total number of 𝑛-bit permutations with TU𝑡-decompositions is
at most

#TU𝑡 ≤ |S2𝑡 |2
𝑛−𝑡⏟ ⏞

𝑇𝑦

× |S2𝑛−𝑡 |2
𝑡⏟ ⏞

𝑈𝑥

(︂
|ℒ2𝑛 |

|ℒ2𝑡 | × |ℒ2𝑛−𝑡 |

)︂2

⏟ ⏞
𝜇 and 𝜂

.

5This is a simplified version of the TU𝑡-decomposition compared to [CP19]. Indeed, in that paper, the
authors only impose that 𝑇𝑦 ∈ S2𝑛−𝑡 ; 𝑈𝑥 may have collisions. Since we are only considering bijective
S-boxes here, we consider that 𝑈𝑥 ∈ S2𝑡 .

12

𝜇

𝜂

𝑇

𝑈

𝑡 𝑛− 𝑡

𝑡 𝑛− 𝑡

𝑛

𝑛

(a) TU𝑡-decomposition.

𝜇

𝜂

𝑇

𝑈

𝛼−1

𝛼

𝛽−1

𝛽

𝛽

𝛾

𝛾−1

𝛾−1

𝛿

𝛿−1

𝜇′

𝜂′

𝑇 ′

𝑈 ′

(b) Composing its components with linear permutations.

Figure 1: Two functionally equivalent permutations.

This quantity is only a bound as permutations that are self affine-equivalent lead to
identical permutations with different 𝜇 and 𝜂. We used this bound to compute the anomaly
associated to the presence of a TU𝑡-decomposition in a permutation. It is given in Section 2.

How to recognize them? Let 𝐹 ∈ S2𝑛 be a permutation. As was established in
Proposition 6 of [CP19], the presence of a TU𝑡-decomposition is equivalent to the presence
of a specific vector space of zeroes of dimension 𝑛 in 𝒵𝐹 . Let us first recall the corresponding
proposition in the particular case of permutations.

Proposition 4 ([CP19]). Let 𝐹 ∈ S2𝑛 and let 𝒵𝐹 be its Walsh zeroes. Then 𝐹 has a
TU𝑡-decomposition without any affine layers if and only if 𝒵𝐹 contains the vector space{︀

(0||𝑎, 𝑏||0), 𝑎 ∈ F𝑡
2, 𝑏 ∈ F𝑛−𝑡

2
}︀
.

The advantage of Proposition 4 is that the pattern described depends only on the
presence of a TU𝑡-decomposition and not on the specifics of the components 𝑇 and 𝑈 .
Furthermore, recall that if 𝐺 = 𝐿2 ∘ 𝐹 ∘ 𝐿1 for some linear permutations 𝐿1 and 𝐿2 then
𝒲𝐺(𝑎, 𝑏) =𝒲𝐹

(︀
(𝐿−1

1)𝑇 (𝑎), 𝐿𝑇
2 (𝑏)

)︀
.

Corollary 1. Let 𝐹 ∈ S2𝑛 and let 𝒵𝐹 be its Walsh zeroes. Then 𝐹 has a TU𝑡-
decomposition with linear permutations 𝜇 and 𝜂 if and only if{︀(︀

(𝜇−1)𝑇 (0, 𝑎), 𝜂𝑇 (𝑏, 0)
)︀
, 𝑎 ∈ F𝑡

2, 𝑏 ∈ F𝑛−𝑡
2
}︀
⊂ 𝒵𝐹 .

It is therefore sufficient to look for all the vector spaces of dimension 𝑛 contained in
𝒵𝐹 to see if 𝐹 has TU𝑡-decomposition. If we find a vector space that is not the Cartesian
product of a subspace of {(𝑥, 0), 𝑥 ∈ F𝑛

2} with a subspace of {(0, 𝑦), 𝑦 ∈ F𝑛
2} then 𝐹 does

not have a TU𝑡-decomposition but there exists a linear function 𝐿 of F𝑛
2 such that 𝐹 + 𝐿

does [CP19]. Regardless, the key tool that allows the search for TU-decomposition is an
efficient algorithm returning all the vector spaces of a given dimension that are contained
in a set of elements of F𝑛

2 . Indeed, finding such vector spaces will allow us to recover all
the values of (𝜇−1)𝑇 (0, 𝑎) and 𝜂𝑇 (𝑏, 0) for (𝑎, 𝑏) ∈ F𝑡

2 × F𝑛−𝑡
2 , from which we will deduce

information about 𝜇 and 𝜂. We present such an algorithm in Section 4 and we used it as a
subroutine of program finding a TU𝑡-decomposition automatically (see Appendix C).

As observed in [CP19], the number of vector spaces of dimension 𝑛 in 𝒵𝐹 is the same
as the number of vector spaces of dimension 𝑛 in the set of the coordinates of the zeroes
in the DDT. Thus, we could equivalently present our results in terms of DDT.

13

3.3 Substitution-Permutation Networks
An 𝑛-bit SPN interleaves the parallel application of 𝑘 possibly distinct 𝑚-bit S-boxes with
𝑛-bit linear permutations, where 𝑘 ×𝑚 = 𝑛. We use the common [BS01] notation 𝐴𝑆 to
denote a linear layer followed by an S-box layer. A 𝑆𝐴𝑆 structure is depicted in Figure 2a.

𝑆 𝑆

𝑆 𝑆

⊕ ⊕
𝑎 𝑑𝑐 𝑏

𝑥 𝑦

𝑡 𝑢

(a) A two-round SPN (SAS).

𝐹0

𝐹1

𝐹2

⊕

⊕

⊕

𝑥 𝑦

(b) A 3-round Feistel network.

Figure 2: Two block-cipher-like S-box structures.

Let us estimate the number of 𝑟-round SPNs. As the S-box layers are interleaved with
linear layers, we need to consider not the size of S2𝑚 but instead the number of linear
equivalence classes, which is at most |S2𝑚 |/|ℒ2𝑚 |2. The number of permutations with a
𝐴(𝑆𝐴)𝑟 structure is then at most

#𝐴(𝑆𝐴)𝑟 ≤
(︂
|S2𝑚 |
|ℒ2𝑚 |2

)︂𝑟𝑛/𝑚

× |ℒ2𝑛 |𝑟+1 .

The corresponding anomalies for some values of 𝑛 are given in Section 3.5.

How to recognize them? First of all, the algebraic degree of a 2-round SPN is at most
equal to 𝑛− 2 [BC13]. Hence, if a permutation is of degree 𝑛− 1, it cannot have such a
structure.

In Theorem 3, we will establish the existence of specific vector space of zeroes in the
LAT of a 2-round SPN. However, in order to properly state this theorem, we first need to
introduce the following notion.

Definition 3 (𝑚-Valid minors). Let 𝑘,𝑚 and 𝑛 be integers such that 𝑛 = 𝑘 ×𝑚. Let
𝐿 ∈ ℒ2𝑛 be a linear permutation. We define it using a 𝑘2 block matrices 𝐿𝑖,𝑗 of dimension
𝑚×𝑚:

𝐿 =

⎡⎣ 𝐿0,0 ... 𝐿0,𝑘−1
... ...

𝐿𝑘−1,0 ... 𝐿𝑘−1,𝑘−1

⎤⎦ .

We call a minor of the matrix 𝐿 𝑚-valid if there exists a pair 𝐼, 𝐽 of subsets of {0, ..., 𝑘−1}
which are of the same size 0 < |𝐼| = |𝐽 | < 𝑘 and such that the rank of 𝐿𝐼,𝐽 = [𝐿𝑖,𝑗]𝑖∈𝐼,𝑗∈𝐽

is equal to 𝑚.

In other words, an 𝑚-valid minor of 𝐿 is a non-trivial minor of 𝐿 that is obtained by
taking complete 𝑚-bit chunks of this matrix, and which has maximum rank.

Theorem 3. Let 𝐹 ∈ S2𝑛 be an ASASA structure built using 𝐿 as its central linear layer
and two layers of 𝑚-bit S-boxes. For each 𝐼, 𝐽 ({0, ..., 𝑘 − 1} defining an 𝑚-valid minor
of 𝐿, there exists a vector space of zeroes of dimension 𝑛 in 𝒵𝐹 .

14

Proof. Because of Corollary 1, we restrict ourselves to the 𝑆𝐴𝑆 structure. If we let the
input blocks corresponding to the indices in 𝐼 take all 2𝑚|𝐼| possible values, then the
output blocks with indices in 𝐽 will also take all 2𝑚|𝐽| = 2𝑚|𝐼| possible values. There is
thus a corresponding TU𝑚|𝐼|-decomposition and hence a corresponding vector space in
𝒵𝐹 .

This verification is less efficient than the dedicated cryptanalysis methods presented
in [MDFK18]. However, the aim here is not so much to recover the ASASA structure
used, it is rather to identify the S-box as having such a structure in the first place. Using
the following corollary, we can immediately understand why 𝑁𝑉 =

(︀2×2
2
)︀

= 6 for several
S-boxes in Table 1: it is a direct consequence of their 2-round SPN structure and of the
strong diffusion of their inner linear layer.

Corollary 2. Let 𝐹 ∈ S2𝑛 be the SAS structure built using 𝐿 as its linear layer and two
layers of 𝑚-bit S-boxes, where 𝑛 = 𝑘 ×𝑚. If 𝐿 is MDS over the alphabet of S-box words,
then 𝒵𝐹 contains at least

(︀2𝑘
𝑘

)︀
vector spaces of dimension 𝑛.

Proof. As 𝐿 is MDS, all its minors and in particular those corresponding to the definition
of 𝑚-minors have a maximum rank. There are

∑︀𝑘
𝑖=1
(︀

𝑘
𝑖

)︀
×
(︀

𝑘
𝑖

)︀
such 𝑚-minors, to which

we add the “free” vector space {(𝑥, 0), 𝑥 ∈ F𝑛
2} which is always present: there are at least∑︀𝑘

𝑖=0
(︀

𝑘
𝑖

)︀2 =
(︀2𝑘

𝑘

)︀
vector spaces in 𝒵𝐹 .

3.4 Feistel Networks
The Feistel structure is a classical block cipher construction which is summarized in
Figure 2b. The number of permutations that are affine-equivalent to 𝑟-round Feistel
networks that use permutations as the round functions is at most equal to

|S2𝑛/2 |𝑟⏟ ⏞
round funcs.

× 1
(2𝑛)⌈ 𝑛

2 ⌉⏟ ⏞
constants

× |ℒ2𝑛 |2⏟ ⏞
outer layers

× 1
|ℒ2𝑛/2 |2⏟ ⏞

branch transforms

.

Indeed, we can apply 𝑛/2-bit linear permutations 𝐿 and 𝐿′ to each branch and, provided
that the round functions are modified, we can cancel them out by applying 𝐿−1 and (𝐿′)−1

on the output branches. We can also add constants freely to the output of the first ⌈𝑟/2⌉
round functions, as explained in [BLP16].

How to recognize them? There are efficient function-recovery techniques for up to
5-round Feistel networks [BLP16]. However, as soon as affine masks are added, the
corresponding techniques can no longer be applied. Still, as with the SPN structure, Feistel
networks with few rounds exhibit specific vector spaces in their Walsh zeroes as was already
observed for 4-round Feistel network in [BPU16]. This means that it is possible to detect
such structures using the vector spaces in their Walsh zeroes.

Theorem 4 ([BPU16]). Let 𝐹 be a 4-round Feistel network such that round functions 2
and 3 are permutations. Then 𝒲𝐹 (𝑥||𝑦, 0||𝑦) = 0 for all 𝑥, 𝑦 in F𝑛/2

2 .

This observation also holds for a 3-round Feistel. In fact, there are more vector spaces
in such a structure.

Theorem 5. Let 𝐹0, 𝐹1 and 𝐹2 be functions of F𝑛/2
2 such that 𝐹1 ∈ S2𝑛/2 . Let 𝐹 ∈ F𝑛

2
be the 3-round Feistel network using 𝐹0, 𝐹1 and 𝐹2 as its round functions. Then the set
𝒵𝐹 contains the following vector spaces of dimension 𝑛:

1. {(𝑥, 0), 𝑥 ∈ F𝑛
2}, {(0, 𝑦), 𝑦 ∈ F𝑛

2},

15

2.
{︀

(𝑥||0, 𝑦||0), (𝑥, 𝑦) ∈ F𝑛/2
2 × F𝑛/2

2
}︀

,

3.
{︀

(𝑥||𝑦, 𝑥||0), (𝑥, 𝑦) ∈ F𝑛/2
2 × F𝑛/2

2
}︀

,
{︀

(𝑥||0, 𝑥||𝑦), (𝑥, 𝑦) ∈ F𝑛/2
2 × F𝑛/2

2
}︀

,

4.
{︀

(𝑥||𝑦, 0||𝑦), (𝑥, 𝑦) ∈ F𝑛/2
2 × F𝑛/2

2
}︀

,
{︀

(0||𝑦, 𝑥||𝑦), (𝑥, 𝑦) ∈ F𝑛/2
2 × F𝑛/2

2
}︀

,

the fourth category being present if 𝐹0 and 𝐹2 are in ∈ S2𝑛/2 .

The proof of this theorem follows from direct applications of results in [CP19] and of
these observations:

∙ if the 3-round Feistel network implies a specific vector space, it also implies the one
with the coordinates swapped because its inverse is also a 3-round Feistel network,

∙ (𝑥, 𝑦) ↦→ 𝐹 (𝑥, 𝑦)⊕ (𝑥, 0) is a permutation if 𝐹1 ∈ S2𝑛/2 , and

∙ (𝑥, 𝑦) ↦→ 𝐹 (𝑥, 𝑦)⊕ (0, 𝑦) has a TU𝑛/2-decomposition if 𝐹2 ∈ S2𝑛/2 .

The details are provided in Appendix A.

3.5 Structural Anomalies
In light of our results, we can quantify the anomaly associated to the presence of various
structures. In this case, the mapping 𝑃 considered maps S2𝑛 to {0, 1}: a permutation has
a specific structure or it does not. The anomaly associated to a given structure is then

Astructure = − log2

(︃⃒⃒
{𝐺 ∈ S2𝑛 , 𝐺 has the structure}

⃒⃒
|S2𝑛 |

)︃
,

meaning that the set sizes we extracted above allow us to quantify the anomalies associated
to the TU𝑡-decomposition, the SPN structure, the Feistel network and the TKlog (see
below for the latter). The corresponding anomalies are summarized in Table 2 for different
values of 𝑛.

The existence of a TU-decomposition with 𝑡 = 1 for 𝐹 ∈ S2𝑛 is equivalent to the
presence of a component with a linear structure [CP19], i.e. to the existence of 𝑎 ∈ F𝑛

2
such that the Boolean function 𝑥 ↦→ 𝑎 · 𝐹 (𝑥) has a probability 1 differential. Thus, the
corresponding row of Table 2 gives the anomaly corresponding to linear structures.

We can also compute the anomaly associated to the TKlog structure [Per19] used in
the S-box of Streebog and Kuznyechik [Fed12, Fed15] called 𝜋 ∈ S28 . A TKlog is a 2𝑚-bit
permutation parametrized by an affine function 𝜅 : F𝑚

2 → F22𝑚 such that 𝜅(𝑥) = Λ(𝑥)⊕𝜅(0)
for some linear function Λ. This function must be such that Im(Λ)∪ F2𝑚 spans F22𝑚 . The
TKlog also depends on a permutation 𝑠 of S2𝑚−1. It is defined as follows⎧⎪⎨⎪⎩

𝜋(0) = 𝜅(0),
𝜋
(︀
𝛼(2𝑚+1)𝑗

)︀
= 𝜅(2𝑚 − 𝑗), for 1 ≤ 𝑗 < 2𝑚 − 1,

𝜋
(︀
𝛼𝑖+(2𝑚+1)𝑗

)︀
= 𝜅(2𝑚 − 𝑖) + 𝛼(2𝑚+1)𝑠(𝑗), for 𝑖 < 2𝑚 + 1, 𝑗 < 2𝑚 − 1 ,

(3)

where 𝛼 is a root of a primitive polynomial 𝑝 of degree 2𝑚, so that 𝛼2𝑚+1 is a multiplicative
generator of F*

2𝑚 . The number of TKlog, is then given by

2𝑚−1∏︁
𝑖=𝑚

(22𝑚 − 2𝑖)⏟ ⏞
Λ

× |S2𝑚−1|⏟ ⏞
𝑠

×
(︀
𝜑(22𝑚 − 1)/(2𝑚)

)︀⏟ ⏞
#primitive polynomials

× 22𝑚⏟ ⏞
𝜅(0)

where 𝜑 is Euler’s totient function. As for the inverse function, the encoding of the elements
of F22𝑚 as binary strings can be considered to be part of the outer affine layers.

16

Table 2: Upper bounds on the anomalies of the affine-equivalence to some structures. For
the TKlog, “AE” corresponds to permutations affine-equivalent to some TKlog and “pure”
to TKLog themselves. 𝑆/𝑟 is the number of S-boxes used in each round, i.e. the number
that are applied in parallel.

Structure. Parameters 𝑛 = 6 𝑛 = 8 𝑛 = 12 𝑛 = 16

𝑥 ↦→ 𝑥2𝑛−2 – 236.1 1570.6 42981.2 953548.5

TKlog “pure” 258.7 1601.5 42870.7 952207.7
AE 184.3 1469.0 42574.2 951683.2

TU-dec. 𝑡 = 1 8.8 95.7 1997.7 32699.7
𝑡 = 𝑛/2 13.0 201.1 5215.3 91571.2

SPN ASASA, 𝑆/𝑟 = 2 192.7 1435.4 41913.5 947036.0
ASASASA, 𝑆/𝑟 = 2 158.2 1342.3 41316.3 943662.7

Feistel 3-round, 𝐹𝑖 ∈ S2𝑛/2 205.5 1443.3 41898.2 946980.9
4-round, 𝐹𝑖 ∈ S2𝑛/2 220.8 1487.6 42194.2 948664.9

4 Vector Spaces Extraction Algorithms
Let 𝒮 be a set of elements of F𝑛

2 . In this section, we describe an algorithm which extracts
all the vector spaces of dimension at least 𝑑 that are completely contained in 𝒮. As
established in the previous section, the ability to solve this problem will allow us to identify
TU-decompositions, some SPNs, and 3,4-round Feistel networks even in the presence
of affine encodings. It can also test the CCZ-equivalence [CCZ98] of a function to a
permutation, as was done by Dillon et al. [BDMW10] to find the first APN permutation
operating on an even number of bits.

Our results can be interpreted using both the ordering relation over the integers and by
reasoning over the respective position of the zeroes of the elements in F𝑛

2 . The following
lemma links these two views.

Definition 4 (Most Significant Bit). Let 𝑥 ∈ F𝑛
2 and let us write 𝑥 = (𝑥[0], ..., 𝑥[𝑛− 1])

where 𝑥[0] is the least significant bit. We denote MSB(𝑥) the greatest index 𝑖 such that
𝑥[𝑖] = 1.

Lemma 2. For any 𝑥 ∈ F𝑛
2 , it holds that

𝑥 < 𝑥⊕ 𝑎 ⇔ 𝑥[MSB(𝑎)] = 0 ,

where the order relation is obtained by interpreting 𝑥 and 𝑥⊕𝑎 as the binary representations
of integers.

4.1 A Simple Approach and How Ours Improves It
Let us first present a naive approach to solving this problem. At its core, this approach is
a tree search that builds the complete vector spaces iteratively.

Starting from a specific element 𝑥 ∈ 𝒮 and vector space 𝑉𝑥 = {0, 𝑥}, we loop over
all the elements 𝑦 such that 𝑦 > 𝑥 and check whether (𝑥 ⊕ 𝑦) ∈ 𝒮, in which case we
build 𝑉𝑥,𝑦 = 𝑉𝑥 ∪ {𝑦 ⊕ 𝑣, 𝑣 ∈ 𝑉𝑥}. We then repeat this process by looking for 𝑧 > 𝑦 such
that (𝑧 ⊕ 𝑣) ∈ 𝒮 for all 𝑣 ∈ 𝑉𝑥,𝑦. This process can then be iterated until complete bases
(𝑥, 𝑦, 𝑧, ...) of vector spaces are found. Our approach is based on the same principles but it
significantly outperforms this naive algorithm by solving its two main shortcomings.

17

First, the basis of a vector space is not unique. The condition that it be ordered, which
is implied by the algorithm sketched above, is not sufficient to ensure uniqueness. This
implies that the algorithm will be slowed down by the exploration of the branches that
actually correspond to identical spaces, and that a post processing checking for duplicated
spaces will be needed. Our algorithm will solve this problem and return exactly one basis
for each vector space contained in 𝒮. These bases are called Gauss-Jordan Bases (GJB)
and are introduced in Section 4.2.

Second, at each iteration, we need to consider all 𝑧 ∈ 𝒮 such that 𝑧 is strictly larger
than the largest vector already in the basis being built. In our approach, we update at
each iteration a set that contains all the elements 𝑧 that could be used to construct a
larger basis using a process which we call vector extraction (see Section 4.3). Like in the
algorithm above, this set only contains elements that are strictly greater than the previous
bases elements. However, it is also strictly larger than all the elements in the vector space
spanned by this basis and its size is reduced by at least a factor 2 at each iteration. Using
vector extractions, we can also skip the test that (𝑧 ⊕ 𝑣) ∈ 𝒮 for all 𝑣 in the current vector
space which will increase the speed of our algorithm.

Besides, in each iteration, we use a heuristic method to consider only a subset of this set
of 𝑧 which is based on the number and positions of its zeroes, the Bigger MSB Condition.

In summary, we improve upon the algorithm above in the following ways:

∙ we construct exactly one basis per vector space contained in 𝒮 (using GJB, see
Section 4.2),

∙ we significantly reduce the number of vectors that can be considered in the next
iterations (using vector extractions, see Section 4.3), and

∙ we further decrease the number of vectors that need to be explored at a given
iteration using a specific filter (using the Bigger MSB condition, see Section 4.4).

Finally, the vector space extraction algorithm itself is presented in Section 4.5. An
algorithm extracting affine spaces which uses the former as a subroutine is presented in
Appendix D. We provide an implementation along with this submission, it is described in
Appendix C.

In [CDDL06], Canteaut et al. introduced an algorithm which, given an 𝑛-bit Boolean
function 𝑓 , lists all the affine spaces of dimension 𝑚 such that 𝑓 is constant (or affine) on
them. Our algorithm can easily perform the same task. Indeed, 𝑓 is affine on a subspace 𝑈
if and only if {𝑥||𝑓(𝑥), 𝑥 ∈ 𝑈} is an affine subspace, meaning that our affine space search
algorithms can list all such spaces.

Using our implementation (see Appendix C), we only need about 12 min to reprove
their Fact 22 which deals with a 14-bit Boolean function while they claim a runtime of
50 h in this case. Our machine is more recent and thus likely faster than theirs but not by
a factor 250: our algorithm is inherently more efficient. It is also far more versatile, as we
have established above.

4.2 Gauss-Jordan Bases
These objects are those which our vector space search will actually target. They were
described in the context of Boolean functions in [CDDL06].

Definition 5 (GJB [CDDL06]). For any vector space 𝑉 of dimension 𝑑, the Gauss-Jordan
Basis (GJB) of 𝑉 is the set {𝑣0, ..., 𝑣𝑑−1} such that ⟨𝑣0, ..., 𝑣𝑑−1⟩ = 𝑉 which is the smallest
such set when sorted in lexicographic order.

For any space 𝑉 there is exactly one GJB. Indeed, we can write down all of its bases,
sort the elements in each of them in increasing order and then sort the reordered bases in

18

lexicographic order. This implies that 𝑣𝑖 < 𝑣𝑖+1 for all 𝑖. Some key properties of GJBs are
given by the following lemma.

Lemma 3. GJBs have the following properties.

1. If {𝑣0, ..., 𝑣𝑖} is the GJB of ⟨𝑣0, ..., 𝑣𝑖⟩ then {𝑣0, ..., 𝑣𝑖−1} is a GJB.

2. The basis {𝑣0, ..., 𝑣𝑑−1} is a GJB if and only if{︃
∀𝑗 ∈ {0, ..., 𝑑− 2}, MSB(𝑣𝑗) < MSB(𝑣𝑗+1)
∀𝑖 ∈ {1, ..., 𝑑− 1},∀𝑗 ∈ {0, ..., 𝑖− 1}, 𝑣𝑖[MSB(𝑣𝑗)] = 0 .

(4)

3. If {𝑣0, ..., 𝑣𝑑−1} is a GJB then, for all 𝑗 ∈ {0, ..., 𝑑−1}, ⟨𝑣0, ..., 𝑣𝑑−1⟩ contains exactly
2𝑗 elements 𝑥 such that MSB(𝑥) = MSB(𝑣𝑗).

Proof. We prove each point separately.

Point 1. A basis of ⟨𝑣0, ..., 𝑣𝑖−1⟩ lexicographically smaller than {𝑣0, ..., 𝑣𝑖} could be used
to build a basis of ⟨𝑣0, ..., 𝑣𝑖⟩, lexicographically smaller than its GJB, which is impossible.

Point 2. We prove each direction of the equivalence separately.

⇒ Suppose that {𝑣0, ..., 𝑣𝑑−1} is indeed a GJB. Then MSB(𝑣𝑗) = MSB(𝑣𝑗+1) would
imply that MSB(𝑣𝑗 ⊕ 𝑣𝑗+1) < MSB(𝑣𝑗) which, in particular, would imply that
𝑣𝑗 ⊕ 𝑣𝑗+1 < 𝑣𝑗 . This would contradict that {𝑣0, ..., 𝑣𝑑−1} is a GJB. Similarly,
MSB(𝑣𝑗) > MSB(𝑣𝑗+1) would imply 𝑣𝑗 > 𝑣𝑗+1 which is also a contradiction. We
deduce that MSB(𝑣𝑗) < MSB(𝑣𝑗+1) for any 0 ≤ 𝑗 < 𝑑 − 1. Suppose now that
𝑣𝑖[MSB(𝑣𝑗)] = 1 for some 𝑗 < 𝑖. We deduce from Lemma 2 that 𝑣𝑖 ≥ 𝑣𝑖 ⊕ 𝑣𝑗 , which
is again a contradiction because {𝑣0, ..., 𝑣𝑑−1} is minimal. We have thus established
that if {𝑣0, ..., 𝑣𝑑−1} is a GJB then it must satisfy the conditions in Equation (4).

⇐ Let us now assume that these conditions hold. In this case, we have that 𝑣𝑖 <
𝑣𝑖 ⊕

⨁︀
𝑗∈𝐼 𝑣𝑗 for any subset 𝐼 of {0, ..., 𝑖− 1} because the MSB of

⨁︀
𝑗∈𝐼 𝑣𝑗 is always

strictly smaller than MSB(𝑣𝑖) and because of Lemma 2. Thus, adding 𝑣𝑖 at the end
of {𝑣0, ..., 𝑣𝑖−1} yields a GJB of ⟨𝑣0, ..., 𝑣𝑖⟩. A simple induction then gives us the
result.

Point 3. Using the first point of this lemma allows us to proceed via a simple induction
over the size of the basis. If the basis is simply {𝑣0} then the lemma obviously holds.
Then, adding an element 𝑣𝑑 to the end of a GJB of size 𝑑 will add 2𝑑 elements 𝑥 such that
MSB(𝑥) = MSB(𝑣𝑑).

The last point of Lemma 3 allows a significant speed up of the search for such GJBs.
To describe it, we introduce the following concept.

Definition 6 (MSB spectrum). Let 𝒮 be a set of elements in F𝑛
2 . The MSB spectrum of

𝒮 is the sequence {N𝑖(𝒮)}0≤𝑖<𝑛 such that

N𝑖(𝒮) = # {𝑥 ∈ 𝒮,MSB(𝑥) = 𝑖} .

Corollary 3 (MSB conditions). If a set 𝒮 of elements from F𝑛
2 contains a vector space of

dimension 𝑑, then there must exist a strictly increasing sequence {𝑚𝑗}0≤𝑗≤𝑑−1 of length 𝑑
such that

N𝑚𝑗 (𝑆) ≥ 2𝑗 .

19

4.3 Vector Extractions
We now present a class of functions called extractions which will play a crucial role in our
algorithms. We also prove their most crucial properties.

Definition 7 (Extraction). Let 𝑎 ̸= 0 be some element of F𝑛
2 . The extraction of 𝑎, denoted

𝒳𝑎, is a function mapping a subset 𝒮 of F𝑛
2 to 𝒳𝑎(𝒮), where 𝑥 ∈ 𝒳𝑎(𝒮) if and only if all of

the following conditions are satisfied:

𝑥 ∈ 𝒮 , (𝑥⊕ 𝑎) ∈ 𝒮 , 𝑎 < 𝑥 < (𝑥⊕ 𝑎) .

In particular, 𝒳𝑎(𝒮) ⊆ 𝒮. Our algorithm will iterate such extractions to construct
smaller and smaller sets without loosing any GJBs. This process is motivated by the
following theorem.

Theorem 6. Let {𝑣0, ..., 𝑣𝑖−1} be elements of some subset 𝒮 of F𝑛
2 such that 0 ∈ 𝒮 and

such that 𝑣𝑗+1 ∈ (𝒳𝑣𝑗
∘ ...∘𝒳𝑣0)(𝒮) for all 𝑗 < 𝑖. Then it holds that 𝑣𝑖 ∈ (𝒳𝑣𝑖−1 ∘ ...∘𝒳𝑣0)(𝒮)

if and only if ⟨𝑣0, ..., 𝑣𝑖⟩ ⊆ 𝒮 and {𝑣0, ..., 𝑣𝑖} is the GJB of this vector space.

Proof. In order to prove the theorem, we proceed by induction over 𝑖 using the validity of
the theorem over bases of size 𝑖 as our induction hypothesis. At step 𝑖, we assume that
𝑣0, ..., 𝑣𝑖 are elements of 𝒮 and that 𝑣𝑗+1 ∈ (𝒳𝑣𝑗 ∘ ... ∘ 𝒳𝑣0)(𝒮) for all 𝑗 < 𝑖.

Initialization i = 1. By definition of vector extraction, 𝑣1 ∈ 𝒳𝑣0(𝒮) if and only if 𝑣1 ∈ 𝒮,
and 𝑣0 ⊕ 𝑣1 ∈ 𝒮, 𝑣0 < 𝑣1 < 𝑣0 ⊕ 𝑣1. As we assume 0, 𝑣0 ∈ 𝒮, this is equivalent to
{0, 𝑣0, 𝑣1, 𝑣0 ⊕ 𝑣1} = ⟨𝑣0, 𝑣1⟩ being contained in 𝒮 and to {𝑣0, 𝑣1} being a GJB.

Inductive Step i > 1 Let 𝑣𝑖 ∈ (𝒳𝑣𝑖−1 ∘ ... ∘ 𝒳𝑣0)(𝒮). From the induction hypothesis, we
have that {𝑣0, ..., 𝑣𝑖−1} is a GJB. Using the second point of Lemma 3, we have that
its extension {𝑣0, ..., 𝑣𝑖} is a GJB if and only if 𝑣𝑖[MSB(𝑣𝑗)] = 0 (which is equivalent
to 𝑣𝑖 < 𝑣𝑖 ⊕ 𝑣𝑗) for all 0 ≤ 𝑗 < 𝑖 and MSB(𝑣𝑖) > MSB(𝑣𝑖−1).

By definition of 𝒳𝑣𝑗
, we have that 𝑣𝑖 < 𝑣𝑖 ⊕ 𝑣𝑗 for all 𝑗 such that 0 ≤ 𝑗 < 𝑖, so

{𝑣0, ..., 𝑣𝑖} is a GJB if and only if MSB(𝑣𝑖) > MSB(𝑣𝑖−1). We have 𝑣𝑖−1 < 𝑣𝑖 <
𝑣𝑖 ⊕ 𝑣𝑖−1, which implies in particular 𝑣𝑖−1 < 𝑣𝑖 ⊕ 𝑣𝑖−1, so that 𝑣𝑖[MSB(𝑣𝑖−1)] = 0.
Thus, 𝑣𝑖 > 𝑣𝑖−1 holds if and only if MSB(𝑣𝑖) > MSB(𝑣𝑖−1).

Corollary 4. If {𝑒0, ..., 𝑒𝑑−1} is the GJB of a vector space 𝑉 such that 𝑉 ⊆ 𝒮 ⊆ F𝑛
2 then,

for all 0 < 𝑗 ≤ 𝑑− 1, we have

⟨𝑒𝑗 , 𝑒𝑗+1, ..., 𝑒𝑑−1⟩ ⊆
(︀
𝒳𝑒𝑗−1 ∘ ...𝒳𝑒1 ∘ 𝒳𝑒0

)︀
(𝒮) .

Evaluating 𝒳𝑎 imposes a priori to look whether 𝑥⊕ 𝑎 belongs in 𝒮 for all 𝑥 ∈ 𝒮 such
that 𝑥 < 𝑥 ⊕ 𝑎. This verification can be implemented efficiently using a binary search
when 𝒮 is sorted. We can make it even more efficient using the following lemma.

Lemma 4. Let 𝒮 be a set of elements in F𝑛
2 and let 𝑎 ∈ 𝒮. Then we have

𝒳𝑎(𝒮) =
𝑛⋃︁

𝑖=MSB(𝑎)+1

𝒳𝑎 ({𝑥 ∈ 𝒮,MSB(𝑥) = 𝑖})

20

4.4 Bigger MSB Condition
The following lemma provides a necessary condition for some 𝑒0 ∈ 𝒮 to be the first element
of a GJB of size 𝑑.
Lemma 5 (Bigger MSB condition). If 𝑒0 is the first element in a GJB of size 𝑑 of elements
of a set 𝒮 of elements in F𝑛

2 , then 𝒮 ′ defined as

𝒮 ′ = {𝑥 ∈ 𝒮,MSB(𝑥) > MSB(𝑒0)}

must satisfy the MSB condition of Corollary 3 for dimension 𝑑− 1, i.e. there is a strictly
increasing sequence {𝑚𝑗} of length 𝑑− 1 such that

{𝑥 ∈ 𝒮,MSB(𝑥) = 𝑚𝑗} > 2𝑗 .

This lemma provides an efficient filter to know whether 𝑥 can be the start of a GJB of
size 𝑑 which depends only on the MSB of 𝑥, so that it does not need to be evaluated for
all 𝑥 ∈ 𝒮 but only once for each subset of 𝒮 with a given MSB.

4.5 Vector Space Extraction Algorithm

Algorithm 1 GJBExtraction algorithm.
1: function GJBExtraction(𝒮, 𝑑)
2: ℒ ← {}
3: for all 𝑎 ∈ 𝜑𝑑 (𝒮) do
4: 𝑠𝑎 ← 𝒳𝑎(𝒮)
5: if |𝑠𝑎| ≥ 2𝑑−1 − 1 then
6: ℒ′ ← GJBExtraction (𝑠𝑎,max(𝑑− 1, 0))
7: for all 𝐵 ∈ ℒ′ do
8: Add the GJB ({𝑎} ∪𝐵) to ℒ
9: end for

10: end if
11: end for
12: return ℒ
13: end function

If we let 𝜑𝑑 be the identity then we can directly deduce from Theorem 6 and Corollary 4
that GJBExtraction (as described in Algorithm 1) returns the unique GJBs of each
and every vector space of dimension at least equal to 𝑑 that is included in 𝒮.

This algorithm can be seen as a tree search. The role of 𝜑𝑑 is then to cut branches
as early as possible by allowing us to ignore elements that cannot possibly be the first
element of a base of size 𝑑 by implementing the Bigger MSB Condition of Lemma 5:

𝑎 ∈ 𝜑𝑑(𝒮) if and only if ∃{𝑚𝑗}0≤𝑗<𝑑,

{︃
𝑚𝑗+1 > 𝑚𝑗 > MSB(𝑎) ,
{𝑥 ∈ 𝒮,MSB(𝑥) = 𝑚𝑗} > 2𝑗 .

Note that we only need to try and build such a sequence of increasing 𝑚𝑗 once for each
value of MSB(𝑥) for 𝑥 ∈ 𝒮. It is possible to check for the existence of such a sequence in a
time proportional to |𝒮|.

5 How “Structured” is a Random S-box?
In previous sections, we have established the probability that a random S-box has given
differential, linear or boomerang properties, and we have quantified the probability that it
has some specific structures. In this section, we tackle a much more general question:

21

What is the probability that a random S-box has any structure?

In order to answer this question, we first need to define what we mean by structure in this
case. To this end, we will build upon the concept of Kolmogorov complexity of a string to
bound the complexity of a function. Like in Section 2, our aim is to measure how far the
properties of an S-box are from those that expected of a random S-box. However, we will
not rely on statistical arguments but only on the pigeon principle.

We introduce the key concept behind our analysis (the Kolmogorov anomaly of an
S-box) in Section 5.1. We then use it in Section 5.2 to establish that the number of S-boxes
with as high a structure as 𝜋 is of negligible size.

5.1 The Kolmogorov Anomaly of an S-box
The Kolmogorov complexity of a string is the length of the smallest program generating
this string. Since the LUT of an S-box is a string, it would be natural to use its Kolmogorov
complexity as an estimation of the complexity of the S-box itself. However, we do not want
to capture the complexity of its LUT so much as the complexity of the algorithm used to
evaluate the function. Thus, we instead try to estimate the Kolmogorov complexity of the
implementation of the function.

To derive information about how structured an S-box is, we need to compare the
Kolmogorov complexity of its implementation with the size of S2𝑛 . Indeed, if this length
is much smaller than log2(|S2𝑛 |) then there are very few permutations with as short
an implementation. In other words, it is an anomaly. As discussed in the introduction,
Shannon used a similar argument to bound the complexity of the circuits implementing
Boolean functions in 1949 [Sha49].

Yet, in order to do this comparison, it is necessary that we obtain a meaningful estimate
of the Kolmogorov complexity of the implementation.

The choice of the language used to implement the permutation then plays a crucial
role. We could simply define a language with a standard library containing a function
that evaluates the permutation and obtain a minimal Kolmogorov complexity for the
implementation. Nevertheless, this result would not give us any useful information. To
solve this problem, we propose to use two sets of languages: variants of the C language
(portable C11 and more relaxed K & R style) and compiled programs. As the code
for micro-controllers is expected to have a small size, we chose to use the ARM dialect
supported by the Cortex-M4 CPU as we had one at hand to test our implementation.

Definition 8 (Kolmogorov Anomaly of a Permutation for a Language). Let 𝐹 ∈ S2𝑛 be
a permutation such that there exists a program of bitlength ℓL(L) in a given language L
returning 𝐹 (𝑥) when input 𝑥. The Kolmogorov anomaly of 𝐹 for the language L is

AK
L (𝐹) = log2(2𝑛!)− ℓL(𝐹)− 1 .

The “−1” comes from the fact that there are at most 1 + 2 + 22 + ...+ 2𝑡 = 2𝑡+1 − 1
programs with length at most 𝑡. The Kolmogorov anomaly is then an anomaly in our sense.

5.2 Application to the Russian S-box
Let us estimate the Kolmogorov anomaly for 𝜋 using first C as the language and then
actual machine code.

General Approach. In all cases, our approach is based on the TKlog structure of 𝜋 which
we recalled in Equation (3). However, instead of implementing finite field arithmetic,
we build a table s such that s[𝑗] = 𝛼17𝑠(𝑗). Furthermore, the discrete logarithm that is
implicitly used can be implemented in a very compact way. In the case of 𝜋, the “logarithm”

22

of 0 is set to 0 and that of 1 to 255; the other values are as expected. The following code
snippet evaluates this function on x by setting the value of l accordingly.

1 int l=0, a=2; while ((x) && (l++, a != x)) { a=(a << 1) ^ (a >> 7)*0 x11d ; }

Indeed, if 𝑥 = 0 then this loop is not entered and l is indeed set to 0. If not, then we
multiply a value a by the generator of the multiplicative subfield using its representation
as a Galois LFSR until its value if equal to the input x. At each iteration, l is incremented.
We further save space by replacing the Boolean value a!=x with aˆx as both are equal to
0 if and only if a==x. We can also write 0x11d in decimal to save more space, i.e. 285.

We then set i=l/17, j=l%17 and need to consider two cases: if j==0 then the output
of 𝜋 is 𝜅(16− 𝑖), otherwise it is 𝜅(16− 𝑖)⊕ s[𝑗]. The way in which we evaluate 𝜅 changes
depending on the language we target.

A Portable C11 Program. Our shortest implementation in portable C11 follows. In this
case, we have implemented 𝜅 as 𝑥 ↦→𝑀(𝑥)⊕𝜅(0) where 𝑀 is a linear function implemented
using a macro.

1 # define M(x)(x &8^42)*6^(x &4^2*(x)&6)*9^ x&2
2 typedef unsigned char u;
3 u p(u x){
4 u s[]={1 ,221 ,146 ,79 ,147 ,153 ,11 ,68 ,214 ,215 ,78 ,220 ,152 ,10 ,69} ,a=2,l=0;
5 while (x&&(l++,a^x))a=2*a^a /128*285;
6 return (l%17?M(16 -l %17)^ s[l /17]: M(16 -l /17))^252;
7 }

It contains 227 characters after useless spaces and new lines are removed. If the C
standard does not specify a character source encoding, the characters expected to be
supported roughly correspond to the printable ASCII characters. Thus, we counted that
7 bits are required to encode each character. Hence, the total length of this program is
ℓC11 strict(𝜋) = 1589 and AK

C11 strict(𝜋) = 94.

A (Marginally) Less Portable C Program. We can make a much shorter program if
we use some features which are not part of the C standard but which are used by most
compilers in practice.

We consider that the character set used is the ASCII because it allows us to use strings
for our char array. Moreover, we assume that a char is only 8-bit long, which implies that
a signed int is big enough to contain the range of an unsigned char. It allows us to
use int as argument and return type.

In order to implement 𝜅, we precompute 𝑥 ↦→ 𝜅(16− 𝑥) and store it in a table k. In
order to initialize both k and s, we use character strings as they provide are a very compact
encoding as long as the values inside are printable ASCII characters other than “\”. The
non-printable character 0xNN is represented as “\xNN”.

Hence, our approach is to find two constants to xor to the elements of k and s such
that the amount of printable characters is maximal. As the amplitude of k is small, all
of them can be printable if we choose well. This is not the case for s, the best we can
achieve is 8 printable characters amongst the 15. Still, even with these two constraints,
many values for the constants remain possible.

We then add the additional constraint that the xor of the two constant shall be
237 = 252⊕ 17. We can save space by setting a variable to 17. Finally, we avoid having a
character that corresponds to a hexadecimal number following a non-printable character so
as to avoid parsing problems. In the end, we choose constants 188 for k and 173 for s, leading
to the strings @‘rFTDVbpPBvdtfR@ and \xacp?\xe2>4\xa6\xe9{z\xe3q5\xa7\xe8. We
store both in a unique array t and obtain the following implementation.

1 int p(int x){ unsigned char
2 *t="@‘ rFTDVbpPBvdtfR@ \xacp ?\xe2 >4\ xa6\xe9{z\ xe3q5 \xa7\xe8",a=2,l=0,b=17;
3 while (x&&(l++,a^x))a=2*a^a /128*29; return l%b?t[l%b]^t[b+l/b]^b:t[l/b]^188;}

23

After removing the newlines we obtain 173 characters. Each is an ASCII character so
that they can all be encoded on a 7-bit word. We deduce that ℓC+ASCII(𝜋) = 1211 and
AK

C+ASCII(𝜋) = 472.
Type declarations used to be optional in C89, and defaulted to int. This is no longer

in the standard, but many compilers (in particular, gcc and clang) still support it by
default.

Hence, we can further remove the two int in the prototype if we do not seek compliance
with the C11 standard. This would further save 8 characters, bringing the total down to
165, i.e. an anomaly of 528.

Binary Code. The previous programs were small in number of characters. However, to
reflect the inner complexity (or lack thereof) of the executed program, this approach may
not be optimal. In particular, data encoding is denser in binary, type annotations are
not in the compiled code and some short successions of C instructions may compile to a
lengthy assembly.

We then searched for the shortest program we could achieve. We built upon the
assembly of a variant of the following C program.

1 int p(int x){
2 static unsigned char
3 s[]={1 ,221 ,146 ,79 ,147 ,153 ,11 ,68 ,214 ,215 ,78 ,220 ,152 ,10 ,69} ,
4 k[]={252 ,220 ,206 ,250 ,232 ,248 ,234 ,222 ,204 ,236 ,254 ,202 ,216 ,200 ,218 ,238 ,252};
5 unsigned char a=2;
6 int l=1;
7 if (!x) return 252;
8 for (;a!=x;l++) a = (a < <1) ^ (a&128 ? 29 : 0);
9 unsigned int i=l%17 , j=l/17;

10 return (i) ? k[i]^s[j] : k[j];
11 }

This program was compiled with -Os, both for generic x86-64 and for the Cortex-M4.
The produced assembly part is in Appendix F.2. The Intel program contains 120 bytes,
including some padding, while the Cortex-M4 program is 102 bytes long.

We then decided to hand-optimize the Cortex-M4 program. The Intel instruction set
is much more complicated, hence we preferred to focus on this simpler language. Our
approach is detailed in Appendix F.1 and the assembly code itself is given in Appendix F.2.
The shortest program we obtained for the Cortex-M4 is 80 bytes long.

In the end, we have ℓgeneric x86−64(𝜋) = 120× 8 = 960 bits and ℓCortex−M4(𝜋) = 80× 8 =
639, so that AK

generic x86−64(𝜋) = 723 and AK
Cortex−M4(𝜋) = 1043.

6 Conclusion
Let us apply our results to 𝜋. Although its designers claim to have obtained it by generating
permutations uniformly at random and then filtering those according to their cryptographic
properties, we found that it has very high anomalies which we summarize in Table 3.

Table 3: Some of the anomalies of 𝜋.

Statistical Structural Kolmogorov

Diff. Linear Boom. TU4 TKlog C+ASCII ARM code size

80.6† 34.4 14.2 201.1 1601.5 472 1043
† This anomaly might be overestimated (see Section 2.4).

As we can see, the set of S-boxes with as strong a structure as the TKlog found in
𝜋 is astonishingly small. In other words, the probability that a random S-box has any

24

structure that is as simple as that of 𝜋 is negligible. Consequently, the claim of [Per19]
that the structure of 𝜋 was deliberately inserted by its designers is correct. On the other
hand, the fact that the designers of 𝜋 doubled down on their claims of randomness [YH19]
instead of acknowledging their use of a structure in light of [Per19] is sufficient for us to
urge practitioners not to use Streebog or Kuznyechik.

We finally list some open problems that we have identified while working on this paper.

Open Problem 1. How can we better estimate the differential anomaly?

Open Problem 2. Why are there so many vector spaces in 𝒵𝐹 when 𝐹 is a 3-round Feistel
network of S28?

7 Acknowledgement
We thank Jérémy Jean for shepherding the Asiacrypt’19 version of this paper [BPT19a].
We also thank Florian Wartelle for fruitful discussions about vector space search, and
Anne Canteaut for proofreading a first draft of this paper. The work of Xavier Bonnetain
receives funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 714294 – acronym
QUASYModo). The work of Shizhu Tian is supported by the National Science Foundation
of China (No. 61772517, 61772516).

References
[AES01] Advanced Encryption Standard (AES). National Institute of Standards and

Technology (NIST), FIPS PUB 197, U.S. Department of Commerce, November
2001.

[BC13] Christina Boura and Anne Canteaut. On the influence of the algebraic degree
of 𝑓−1 on the algebraic degree of 𝑔 ∘ 𝑓 . IEEE Transactions on Information
Theory, 59(1):691–702, Jan 2013.

[BCC11] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential properties
of 𝑥 ↦→ 𝑥2𝑡−1. IEEE Transactions on Information Theory, 57(12):8127–8137,
2011.

[BDBP03] Alex Biryukov, Christophe De Canniére, An Braeken, and Bart Preneel. A
toolbox for cryptanalysis: Linear and affine equivalence algorithms. In Eli
Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 33–50.
Springer, Heidelberg, May 2003.

[BDMW10] K. A. Browning, J.F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN
permutation in dimension six. In Post-proceedings of the 9-th International
Conference on Finite Fields and Their Applications, volume 518, pages 33–42.
American Mathematical Society, 2010.

[BLP16] Alex Biryukov, Gaëtan Leurent, and Léo Perrin. Cryptanalysis of Feistel
networks with secret round functions. In Orr Dunkelman and Liam Keliher,
editors, SAC 2015, volume 9566 of LNCS, pages 102–121. Springer, Heidelberg,
August 2016.

[BP15] Alex Biryukov and Léo Perrin. On reverse-engineering S-boxes with hidden
design criteria or structure. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 116–140. Springer,
Heidelberg, August 2015.

25

[BPT19a] Xavier Bonnetain, Léo Perrin, and Shizhu Tian. Anomalies and vector space
search: Tools for S-box analysis. In Advances in Cryptology – ASIACRYPT
2019, Cham, 2019. Springer International Publishing.

[BPT19b] Christina Boura, Léo Perrin, and Shizhu Tian. Boomerang uniformity of
popular S-box constructions. In WCC 2019: The Eleventh International
Workshop on Coding and Cryptography, 2019.

[BPU16] Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Reverse-engineering the
S-box of streebog, kuznyechik and STRIBOBr1. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS,
pages 372–402. Springer, Heidelberg, May 2016.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of Feal and N-hash.
In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages
1–16. Springer, Heidelberg, April 1991.

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 394–405.
Springer, Heidelberg, May 2001.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions
and permutations suitable for DES-like cryptosystems. Designs, Codes and
Cryptography, 15(2):125–156, 1998.

[CDDL06] Anne Canteaut, Magnus Daum, Hans Dobbertin, and Gregor Leander. Finding
nonnormal bent functions. Discrete Applied Mathematics, 154(2):202 – 218,
2006. Coding and Cryptography.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 683–714. Springer, Heidelberg, April / May 2018.

[CP19] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine equiva-
lence, and function twisting. Finite Fields and Their Applications, 56:209–246,
2019.

[DES77] Data encryption standard. National Bureau of Standards, NBS FIPS PUB
46, U.S. Department of Commerce, January 1977.

[Dev17] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 7.5.1), 2017. http://www.sagemath.org.

[Din18] Itai Dinur. An improved affine equivalence algorithm for random per-
mutations. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 413–442. Springer, Hei-
delberg, April / May 2018.

[DR07] Joan Daemen and Vincent Rijmen. Probability distributions of correlation and
differentials in block ciphers. Journal of Mathematical Cryptology, 1(3):221–
242, 2007.

[Dt08] Whitfield Diffie and George Ledin (translators). SMS4 encryption algorithm
for wireless networks. Cryptology ePrint Archive, Report 2008/329, 2008.
http://eprint.iacr.org/2008/329.

26

http://eprint.iacr.org/2008/329

[Fed12] Federal Agency on Technical Regulation and Metrology. Information tech-
nology – data security: Hash function. English version available at http://
wwwold.tc26.ru/en/standard/gost/GOST_R_34_11-2012_eng.pdf, 2012.

[Fed15] Federal Agency on Technical Regulation and Metrology. Information tech-
nology – data security: Block ciphers. English version available at http://
wwwold.tc26.ru/en/standard/gost/GOST_R_34_12_2015_ENG.pdf, 2015.

[Hel94] Tor Helleseth, editor. EUROCRYPT’93, volume 765 of LNCS. Springer,
Heidelberg, May 1994.

[KKO13] Oleksandr Kazymyrov, Valentyna Kazymyrova, and Roman Oliynykov. A
method for generation of high-nonlinear s-boxes based on gradient descent.
Cryptology ePrint Archive, Report 2013/578, 2013. http://eprint.iacr.
org/2013/578.

[LJH+07] Fen Liu, Wen Ji, Lei Hu, Jintai Ding, Shuwang Lv, Andrei Pyshkin, and
Ralf-Philipp Weinmann. Analysis of the SMS4 block cipher. In Josef Pieprzyk,
Hossein Ghodosi, and Ed Dawson, editors, ACISP 07, volume 4586 of LNCS,
pages 158–170. Springer, Heidelberg, July 2007.

[LQSL19] Kangquan Li, Longjiang Qu, Bing Sun, and Chao Li. New results about the
boomerang uniformity of permutation polynomials. CoRR, abs/1901.10999,
2019.

[Lup73] O. B. Lupanov. On Networks Consisting of Functional Elements with Delays,
pages 43–83. Springer US, New York, NY, 1973.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Helleseth
[Hel94], pages 386–397.

[MDFK18] Brice Minaud, Patrick Derbez, Pierre-Alain Fouque, and Pierre Karpman.
Key-recovery attacks on ASASA. Journal of Cryptology, 31(3):845–884, July
2018.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Helleseth
[Hel94], pages 55–64.

[O’C94] Luke O’Connor. On the distribution of characteristics in bijective mappings.
In Helleseth [Hel94], pages 360–370.

[O’C95] Luke O’Connor. Properties of linear approximation tables. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 131–136. Springer, Heidelberg,
December 1995.

[Per19] Léo Perrin. Partitions in the S-box of Streebog and Kuznyechik. IACR Trans.
Symm. Cryptol., 2019(1):302–329, 2019.

[PU16] Léo Perrin and Aleksei Udovenko. Exponential s-boxes: a link between the
s-boxes of BelT and Kuznyechik/Streebog. IACR Trans. Symm. Cryptol.,
2016(2):99–124, 2016. http://tosc.iacr.org/index.php/ToSC/article/
view/567.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a theorem:
Decomposing the only known solution to the big APN problem. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815
of LNCS, pages 93–122. Springer, Heidelberg, August 2016.

27

http://wwwold.tc26.ru/en/standard/gost/GOST_R_34_11-2012_eng.pdf
http://wwwold.tc26.ru/en/standard/gost/GOST_R_34_11-2012_eng.pdf
http://wwwold.tc26.ru/en/standard/gost/GOST_R_34_12_2015_ENG.pdf
http://wwwold.tc26.ru/en/standard/gost/GOST_R_34_12_2015_ENG.pdf
http://eprint.iacr.org/2013/578
http://eprint.iacr.org/2013/578
http://tosc.iacr.org/index.php/ToSC/article/view/567
http://tosc.iacr.org/index.php/ToSC/article/view/567

[PW17] Léo Perrin and Friedrich Wiemer. S-Boxes used in cryptographic schemes.
Available online at https://git.sagemath.org/sage.git/tree/src/sage/
crypto/sboxes.py, 2017.

[Sch14] Felix Schuster. Reverse engineering of chiasmus from gstool. Presentation at
the HGI-Kolloquium. Slides available at https://prezi.com/ehrz4krw2z0d/
hgi-chm/, January 2014.

[Sha49] C. E. Shannon. The synthesis of two-terminal switching circuits. The Bell
System Technical Journal, 28(1):59–98, Jan 1949.

[SM18] Vasily Shishkin and Grigory Marshalko. A Memo on Kuznyechik S-Box.
ISO/IEC JTC 1/SC 27/WG 2 Officer’s Contribution N1804, https://cdn.
virgilsecurity.com/assets/docs/memo-on-kuznyechik-s-box.pdf,
September 2018.

[STW13] Jan Schejbal, Erik Tews, and Julian Wälde. Reverse engineering of chiasmus
from gstool. Presentation at the Chaos Computer Club (CCC)., 2013.

[TG92] Anne Tardy-Corfdir and Henri Gilbert. A known plaintext attack of FEAL-4
and FEAL-6. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 172–181. Springer, Heidelberg, August 1992.

[U.S98] U.S. Department Of Commerce/National Institute of Standards and Technol-
ogy. Skipjack and KEA algorithms specifications, v2.0, 1998.

[Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE’99,
volume 1636 of LNCS, pages 156–170. Springer, Heidelberg, March 1999.

[YH19] Hirotaka Yoshida and Jonathan Hammell. Meeting report for the dis-
cussion on Kuznyechik and Streebog. ISO/IEC JTC 1/SC 27/WG 2
Meeting Report N2016, https://cdn.virgilsecurity.com/assets/docs/
meeting-report-for-the-discussion-on-kuznyechik-and-streebog.
pdf, April 2019.

28

https://git.sagemath.org/sage.git/tree/src/sage/crypto/sboxes.py
https://git.sagemath.org/sage.git/tree/src/sage/crypto/sboxes.py
https://prezi.com/ehrz4krw2z0d/hgi-chm/
https://prezi.com/ehrz4krw2z0d/hgi-chm/
https://cdn.virgilsecurity.com/assets/docs/memo-on-kuznyechik-s-box.pdf
https://cdn.virgilsecurity.com/assets/docs/memo-on-kuznyechik-s-box.pdf
https://cdn.virgilsecurity.com/assets/docs/meeting-report-for-the-discussion-on-kuznyechik-and-streebog.pdf
https://cdn.virgilsecurity.com/assets/docs/meeting-report-for-the-discussion-on-kuznyechik-and-streebog.pdf
https://cdn.virgilsecurity.com/assets/docs/meeting-report-for-the-discussion-on-kuznyechik-and-streebog.pdf

A Proof of the Vector Spaces for Feistel Networks
Our reasoning will rely on two results from [CP19]. First, if 𝐹 is a function mapping F𝑛

2
to itself then {(𝑥, 0), 𝑥 ∈ F𝑛

2} has to be in its Walsh zeroes. Second, (Lemma 2 of [CP19])
if the functions 𝐹 and 𝐺 are such that

{(𝑥,𝐺(𝑥)) , 𝑥 ∈ F𝑛
2} = ℒ

(︀
{(𝑥, 𝐹 (𝑥)) , 𝑥 ∈ F𝑛

2}
)︀

then 𝒵𝐺 = (ℒ𝑇)−1(𝒵𝐹).

𝐹0

𝐹1

𝐹2

⊕

⊕

⊕
⊕

(a) 𝑃 .

𝐹0

𝐹1

𝐹2
𝐹−1

1

⊕

⊕

⊕

(b) 𝑃 .

𝐹0

𝐹−1
1

𝐹−1
2

𝐹−1
1

⊕

⊕

⊕

(c) 𝑃 −1.

Figure 3: A permutation 𝑃 obtained by adding a linear feedforward to a 3-round Feistel
network.

Proof of Theorem 5. If 𝐹 ∈ S2𝑛 is a Feistel network then it is a well-defined permutation,
meaning that the spaces in the first category must be in 𝒵𝐹 . More generally, as the inverse
of 3-round Feistel network has the same type of structure, if said structure imposes a space
in 𝒵𝐹 then it also imposes the symmetric space where the coordinates are inverted.

The well-known integral distinguisher against 3-round Feistel networks implies the
presence of a TU𝑛/2-decomposition composed with a branch swap in its input. Thus, the
space of the second category has to be in 𝒵𝐹 .

The first space is in the third category in 𝒵𝐹 because 𝐹 + 𝐿 is a permutation when 𝐿
is the projection 𝐿(𝑥, 𝑦) = (𝑥, 0) (see Figure 3). Indeed, this space is(︃[︂

𝐼 0
𝐿 𝐼

]︂𝑇
)︃−1(︂

𝑥||𝑦
0||0

)︂
=
[︂
𝐼 𝐿𝑇

0 𝐼

]︂(︂
𝑥||𝑦
0||0

)︂
=
[︂
𝐼 𝐿
0 𝐼

]︂(︂
𝑥||𝑦
0||0

)︂
=
(︂
𝑥||𝑦
𝑥||0

)︂
where we used the fact that 𝐿𝑇 = 𝐿. The second space in this category is its symmetric.

Finally, let 𝐹2 ∈ S2𝑛/2 and let 𝐿′ be the projection such that 𝐿′(𝑥, 𝑦) = (0, 𝑦). We
have that the right hand side of 𝐹 (𝑥, 𝑦) is equal to 𝐹0(𝑥) + 𝑦+𝐹2 (𝑥+ 𝐹1 (𝑦 + 𝐹0(𝑥))), so
that the right hand side of 𝐹 +𝐿′ is a permutation of 𝑦 for any 𝑥 because (𝐹 +𝐿′)(𝑥, 𝑦) =
𝐹2 (𝐹1 (𝑦 + 𝐹0(𝑥)) + 𝑥) + 𝐹0(𝑥). It means that 𝒵𝐹 +𝐿′ contains {(𝑥||0, 0||𝑦), (𝑥, 𝑦) ∈
(F𝑛/2

2)2}, and thus that 𝒵𝐹 contains(︃[︂
𝐼 0
𝐿′ 𝐼

]︂𝑇
)︃−1(︂

𝑥||0
0||𝑦

)︂
=
[︂
𝐼 (𝐿′)𝑇

0 𝐼

]︂(︂
𝑥||0
0||𝑦

)︂
=
[︂
𝐼 𝐿′

0 𝐼

]︂(︂
𝑥||0
0||𝑦

)︂
=
(︂
𝑥||𝑦
0||𝑦

)︂
for all 𝑥, 𝑦, where we used the fact that (𝐿′)𝑇 = 𝐿′. We deduce that the first space in the
fourth category is in 𝒵𝐹 . The second one is its symmetric.

29

B Some Anomalies for 8-bit Permutations

Table 4: The anomalies associated to the maximum absolute value in each table.

𝑢(𝐹) A(𝑢(𝐹)) A(𝑢(𝐹))

4 1359.53 0.00
6 164.47 0.00
8 16.15 0.00

10 1.33 0.73
12 0.09 3.99
14 0.01 7.95
16 0.00 12.13
18 0.00 16.46
20 0.00 20.94
22 0.00 25.96

(a) DDT.

ℓ(𝐹) A(ℓ(𝐹)) A(ℓ(𝐹))

44 371.61 0.00
48 161.90 0.00
52 66.41 0.00
56 25.62 0.00
60 9.29 0.00
64 3.16 0.17
68 1.01 0.99
72 0.30 2.41
76 0.08 4.14
80 0.02 6.04
84 0.01 8.06
88 0.00 10.19
92 0.00 12.42
96 0.00 14.75

100 0.00 17.19

(b) LAT.

𝛽𝐹 A(𝛽𝐹) A(𝛽𝐹)

10 442.66 0.00
12 123.52 0.00
14 33.89 0.00
16 8.43 0.00
18 2.05 0.40
20 0.46 1.86
22 0.10 3.87
24 0.02 6.09
26 0.00 8.38
28 0.00 10.75
30 0.00 13.15
32 0.00 15.60
34 0.00 18.09
36 0.00 20.63
38 0.00 23.20

(c) BCT.

30

C GJB Search Implementation and TU-decomposition
Our implementations of GJBExtraction and CanonicalExtraction are available
online at

https://who.rocq.inria.fr/Leo.Perrin/code/tu_code.zip

They are written in C++ and use the standard library (std::thread) to handle multi-
threading. We also provide a multi-threaded function returning the Walsh zeroes. Python
bindings allow the use of these algorithms from higher level SAGE6 [Dev17] scripts.

Since the core of our library is written in C++, it is necessary to compile it. To this end,
we used cmake7 to set up the compilation—it is therefore necessary to install this tool. We
also use the Boost.Python8 library to handle the interaction between C++ and Python. On
Ubuntu9, these correspond to the packages cmake and libboost-python-dev respectively.
In order to compile it, use the following commands once cmake and Boost.Python have
been installed.

cd <directory containing the unzipped supplementary material>
cd sboxU
cmake .
make
cd ..

At that point, you are ready to run the SAGE script tu_decomposition.sage which
automatically returns the TU𝑡-decomposition of the Russian 𝜋. It recovers and prints the
8-bit binary permutations 𝐴 and 𝐵 as well as 𝑇𝑦 ∈ S24 and 𝑈𝑥 ∈ S24 that correspond to
the TU4-decomposition of this component. It then recomputes the lookup table of 𝜋 using
these subfunctions and checks whether it is identical to the original 𝜋.

This program also shows that 𝜋 has only one TU-decomposition, namely the one found
by Biryukov et al.

D Looking for Affine Spaces
Using GJBExtraction, we can build a similar algorithm returning all the affine spaces
in a set of elements of F𝑛

2 . However, for an affine space, the GJB of the underlying vector
space is not sufficient to uniquely define it. We also need to describe the offset in such a
way that it is uniquely defined. The simplest approach was presented in [CDDL06].

Definition 9 (Canonical representation of an affine space). An affine subspace of dimension
𝑑 can be represented as 𝑐⊕ ⟨𝑒0, ..., 𝑒𝑑−1⟩ where {𝑒0, ..., 𝑒𝑑−1} is the GJB of its span and
where 𝑐 verifies 𝑐 < 𝑐⊕ 𝑒𝑗 for all 𝑗 ∈ {0, ..., 𝑑− 1}. It is its canonical representation and it
is unique.

We thus build an algorithm which looks for the canonical representation of each and
every affine space contained in a set 𝒮 of elements in F𝑛

2 . It uses the following operation
whose goal is explained by the next lemma.

Definition 10 (Affine Preprocessing). We call affine preprocessing for 𝑐 ∈ F𝑛
2 the function

𝜓𝑐 mapping sets of elements of F𝑛
2 to other such sets which is such that 𝑥 ∈ 𝜓𝑐(𝒮) if and

only if 𝑥⊕ 𝑐 ∈ 𝒮 and 𝑐 < 𝑥⊕ 𝑐 (i.e. 𝑐[MSB(𝑥)] = 0).
6https://sagemath.org
7https://cmake.org/
8https://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html
9We have only tested our library and the script described below on a machine running Ubuntu.

31

https://who.rocq.inria.fr/Leo.Perrin/code/tu_code.zip
https://sagemath.org
https://cmake.org/
https://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html

Lemma 6. Let 𝒮 be a set of elements of F𝑛
2 . Then {𝑒0, ..., 𝑒𝑑−1} is the GJB of a space

in 𝜓𝑐(𝒮) if and only if 𝑐⊕ {𝑒0, ..., 𝑒𝑑−1} is the canonical representation of an affine space
contained in 𝒮.

Proof. This lemma is an equivalence so we prove each of its directions separately.

⇒ Suppose that {𝑒0, ..., 𝑒𝑑−1} is the GJB of a vector space 𝑉 ⊆ 𝜓𝑐(𝒮). As this imposes
that 𝑥⊕ 𝑐 ∈ 𝒮 for all 𝑥 ∈ 𝑉 , we deduce that 𝑐⊕ 𝑉 ⊆ 𝒮. Furthermore, as 𝑐 < (𝑐⊕ 𝑥)
for all 𝑥 ∈ 𝑉 , it holds in particular for all 𝑒𝑗 . Thus, 𝑐⊕ ⟨𝑒0, ..., 𝑒𝑑−1⟩ satisfies all the
conditions to be a canonical representation and is such that the corresponding affine
space is contained in 𝒮.

⇐ Suppose that 𝑐⊕ ⟨𝑒0, ..., 𝑒𝑑−1⟩ is the canonical representation of an affine space of
𝒮. Then, by definition, we have that 𝑐 < 𝑐 ⊕ 𝑒𝑗 for all 𝑗. Since all elements of
𝑉 = ⟨𝑒0, ..., 𝑒𝑑−1⟩ share their MSB with one of the vectors in {𝑒0, ..., 𝑒𝑑−1}, this
property holds for all 𝑥 ∈ 𝑉 . We deduce that, for all 𝑥 ∈ 𝑉 , 𝑐 < 𝑥⊕ 𝑐. As 𝑐⊕𝑉 ⊆ 𝒮,
we obviously have that 𝑥⊕ 𝑐 ∈ 𝒮 as well. Besides, as 𝑐⊕ ⟨𝑒0, ..., 𝑒𝑑−1⟩ is a canonical
representation, {𝑒0, ..., 𝑒𝑑−1} has to be minimal.
We conclude that if 𝑐⊕{𝑒0, ..., 𝑒𝑑−1} is the canonical representation of an affine space
embedded in 𝒮 then {𝑒0, ..., 𝑒𝑑−1} is a GJB and ⟨𝑒0, ..., 𝑒𝑑−1⟩ ⊆ 𝜓𝑐(𝒮).

Using Lemma 6, we easily derive that Algorithm 2 returns the unique canonical
representation of each and every affine space of dimension at least 𝑑 contained in a set 𝒮
of elements of F𝑛

2 . We use hw (𝑥) to denote the Hamming weight of 𝑥.

Algorithm 2 CanonicalExtraction algorithm.
1: function GJBExtraction(𝒮, 𝑑)
2: ℒ ← {}
3: for all 𝑐 ∈ 𝒮 such that hw (𝑐) + 𝑑 ≤ 𝑛 do
4: 𝑠𝑐 ← 𝜓𝑐(𝒮)
5: if |𝑠𝑐| ≥ 2𝑑 − 1 then
6: ℒ′ ← GJBExtraction (𝑠𝑐, 𝑑))
7: for all 𝐵 ∈ ℒ′ do
8: Add the canonical representation (𝑐⊕𝐵) to ℒ
9: end for

10: end if
11: end for
12: return ℒ
13: end function

In practice, we use only offsets 𝑐 with Hamming weight under 𝑛− 𝑑 as they need at
least 𝑑 zeroes in their binary representation in order to “fit” 𝑑 different MSBs.

32

E Generating the S-box of Chiasmus

1 #!/ usr/bin/sage
2 from sage.all import *
3
4 A = Matrix (GF (2) , 8, 8, [
5 1,1,0,1,1,1,1,0, 1,0,0,0,1,1,0,0,
6 0,1,0,1,0,1,1,0, 0,0,1,1,0,1,0,1,
7 1,1,1,1,1,0,0,0, 0,0,1,1,0,1,1,1,
8 0,1,0,1,1,0,0,0, 1,1,1,0,0,0,0,0,
9])

10
11 B = Matrix (GF (2) , 8, 8, [
12 1,1,0,1,1,0,0,0, 0,0,0,0,1,0,0,0,
13 0,1,0,1,0,1,0,0, 1,1,0,1,0,1,1,0,
14 0,0,1,1,0,1,0,0, 0,1,1,1,1,1,0,0,
15 0,1,1,1,1,0,0,0, 1,1,0,0,1,0,1,1,
16])
17
18 def apply_bin_mat (x, mat): # multiplication of an integer by a binary matrix
19 n = mat. ncols ()
20 bin_x = [(x >> i) & 1 for i in reversed (xrange (0, n))]
21 x = Matrix (GF (2) , n, 1, bin_x)
22 y = mat * x
23 bin_y = y.T [0][: mat. nrows ()]
24 return sum(int(bin_y [i]) << (7-i) for i in xrange (0, 8))
25
26
27 def oplus (x, y): # needed because of inconstencies in how XOR is handled in sage
28 return int(x). __xor__ (int(y))
29
30
31 # generating the LUT of the multiplicative inverse
32 X = GF (2). polynomial_ring ().gen ()
33 F = GF (2**8 , name="a", modulus =X**8+X**4+X**3+X **2+1)
34 mult_inv = [(F. fetch_int (x) **254) . integer_representation ()
35 for x in xrange (0, 256)]
36
37 # composing the multiplicative inverse with the affine permutations
38 c_in , c_out = 0x8f , 0x59
39 s = [oplus (apply_bin_mat (mult_inv [apply_bin_mat (oplus (x, c_in), A)], B), c_out)
40 for x in xrange (0, 256)]
41
42 # printing the result
43 print s

33

F Assembly code
F.1 Optimization Strategy
First, we optimized the discrete logarithm computation. We compute the iterated multipli-
cation in the upper byte of the registers, which allows the left shift to put the uppermost
bit of a in the carry flag, for free. Then, we suppress the specific case of the logarithm of
0 by initializing l at 0 and a at 1, and putting the test at the end of the loop. This allows
for a simple conditional jump to the last part, instead of a dedicated return. Concretely,
the discrete logarithm can be implemented as:

1 r0 = x; // Input
2 r3 = 0; // variable l
3 if (r3 == 0) jump to END;
4 r2 = 1 << 24; // variable a is initialized to 1 in the upper byte
5 r0 = r0 << 24; // Input shifted to the upper byte
6 LOOP:
7 r2 = r2 << 1; // Shifts and put the upper bit in the carry flag
8 if (carry flag set to 1)
9 r2 ^= 0 x1d000000 // xor 0x1d in the upper byte

10 r3 += 1 // Increment l
11 if (r2 != r0)
12 jump to LOOP;
13 END:

Second, the lookup can be optimized. There is a quotient and a remainder of the
division by 17 to compute, and then two different lookups to do. We first put the table s
just after k, and see a lookup to s as a lookup to k shifted of 17. Then, we compute the
different lookups as in the following pseudocode:

1 r3 = l; // Previously computed
2 r0 = 17;
3 r2 = r3/ro; // Quotient
4 r3 = r3 - r2*r0; // Remainder
5 r1 = index of table k;
6 if (r3 == 0) jump to L;
7 r3 = r1[r3]; // fetches k[l % 17]
8 r1 += r0; // Shifts the index of k to s
9 L:

10 r0 = r1[r2] // fetches either k[l/17] or s[l/17]
11 r0 ^= r3 // is either k[l/17] or s[l/17]^k[l % 17]

The assembly is presented in Appendix F.2. It corresponds to a complete 80 bytes long
program, with 32 bytes of data and 20 instructions (16 16-bit instructions and 4 32-bit
instructions). We can represent it in base64 as
ACNIsU/wgHIABlIAKL+C8OhSATOCQvjRESCz+/DyAPsSMwOhC7HLXAFEiFxYQHBH/Nz
O+uj46t7M7P7K2Mja7vwB3ZJPk5kLRNbXTtyYCkU=.

Possible improvements. The 32-bit instructions correspond to the initialization of r2,
the xoring of the modulo in the upper byte, and the division and remainder computation
for the lookups. It may be possible to reduce the size of the discrete logarithm computation
by finding a different encoding that allows to perform the multiplication with a right
shift: in that case, we could have small numbers and a direct carry initialization. We
unfortunately did not manage to find a representation that would both allow for a smaller
discrete log computation and an easy conversion of the encoding of the input.

F.2 Assembly Code
This section contains the assembly generated by x86_64-linux-gnu-gcc-7.3.0 and
arm-none-eabi-gcc-6.3.1 from the C code of 𝜋, and the shortest hand-optimized Cortex-
M4 assembly we managed to find.

The code for generic x86-64 architecture:

34

1 .text
2 .globl p
3 .type p, @function
4 p:
5 .LFB0 :
6 .cfi_startproc
7 testl %edi , %edi
8 movl $252 , %eax
9 je .L2

10 movl $1 , %eax
11 movb $2 , %dl
12 .L3:
13 movzbl %dl , %ecx
14 cmpl %ecx , %edi
15 je .L11
16 sarb $7 , %dl
17 addl %ecx , %ecx
18 incl %eax
19 andl $29 , %edx
20 xorl %ecx , %edx
21 jmp .L3
22 .L11:
23 cltd
24 movl $17 , %ecx
25 idivl %ecx
26 testl %edx , %edx
27 movl %eax , %eax
28 je .L6
29 movl %edx , %edx
30 movb k.1834 (% rdx), %dl
31 xorb s.1833 (% rax), %dl
32 movzbl %dl , %eax
33 ret
34 .L6:
35 movzbl k.1834 (% rax), %eax
36 .L2:
37 ret
38 .cfi_endproc
39
40 .section .rodata
41 .align 8
42 s.1833 :
43 .byte 1
44 .byte -35
45 .byte -110
46 .byte 79
47 .byte -109
48 .byte -103
49 .byte 11
50 .byte 68
51 .byte -42
52 .byte -41
53 .byte 78
54 .byte -36
55 .byte -104
56 .byte 10
57 .byte 69
58 .align 16
59 k.1834 :
60
61 .byte -4
62 .byte -36
63 .byte -50
64 .byte -6
65 .byte -24
66 .byte -8
67 .byte -22
68 .byte -34
69 .byte -52
70 .byte -20
71 .byte -2
72 .byte -54
73 .byte -40
74 .byte -56
75 .byte -38
76 .byte -18
77 .byte -4

35

The code for Cortex-M4:
1 .syntax unified
2 .text
3 .align 1
4 .global p
5 p:
6 cbz r0 , .L7
7 movs r3 , #1
8 movs r2 , #2
9 .L3:

10 cmp r2 , r0
11 beq .L10
12 lsls r1 , r2 , #1
13 tst r2 , #128
14 uxtb r1 , r1
15 ite ne
16 movne r2 , #29
17 moveq r2 , #0
18 eors r2 , r2 , r1
19 adds r3 , r3 , #1
20 b .L3
21 .L10:
22 movs r2 , #17
23 sdiv r2 , r3 , r2
24 add r1 , r2 , r2 , lsl #4
25 subs r3 , r3 , r1
26 ldr r1 , .L11
27 ittte ne
28 addne r3 , r3 , r1
29 ldrbne r0 , [r1 , r2] @ zero_extendqisi2
30 ldrbne r3 , [r3 , #15] @ zero_extendqisi2
31 addeq r2 , r2 , r1
32 ite ne
33 eorne r0 , r0 , r3
34 ldrbeq r0 , [r2 , #15] @ zero_extendqisi2
35 bx lr
36 .L7:
37 movs r0 , #252
38 bx lr
39 .L12:
40 .align 2
41 .L11:
42 .word .LANCHOR0
43 .size p, .-p
44 .section .rodata
45 .set .LANCHOR0 ,. + 0
46 .type s.4078 , % object
47 .size s.4078 , 15
48 s.4078 :
49 .byte 1
50 .byte -35
51 .byte -110
52 .byte 79
53 .byte -109
54 .byte -103
55 .byte 11
56 .byte 68
57 .byte -42
58 .byte -41
59 .byte 78
60 .byte -36
61 .byte -104
62 .byte 10
63 .byte 69
64 .type k.4079 , % object
65 .size k.4079 , 17
66 k.4079 :
67 .byte -4
68 .byte -36
69 .byte -50
70 .byte -6
71 .byte -24
72 .byte -8
73 .byte -22
74 .byte -34
75 .byte -52
76 .byte -20
77 .byte -2
78 .byte -54
79 .byte -40
80 .byte -56
81 .byte -38
82 .byte -18
83 .byte -4

36

The hand-optimized Cortex-M4 assembly:
1 .syntax unified
2 .text
3 .align 4
4
5 .global p
6 p:
7 movs r3 , #0
8 cbz r0 , .L2
9 mov r2 , #0 x1000000

10 lsls r0 , #24
11 .L3:
12 lsls r2 , r2 , #1
13 it cs
14 eorcs r2 , r2 , #0 x1d000000
15 adds r3 , r3 , #1
16 cmp r2 , r0
17 bne .L3
18 .L2:
19 movs r0 , #17
20 udiv r2 , r3 , r0
21 mls r3 , r0 , r2 , r3
22 adr r1 , .table_k
23 cbz r3 , .LL
24 ldrb r3 , [r1 , r3]
25 add r1 , r0
26 .LL:
27 ldrb r0 , [r1 , r2]
28 eors r0 , r0 , r3
29 bx lr
30 .align 2
31
32 .table_k :
33 .byte -4
34 .byte -36
35 .byte -50
36 .byte -6
37 .byte -24
38 .byte -8
39 .byte -22
40 .byte -34
41 .byte -52
42 .byte -20
43 .byte -2
44 .byte -54
45 .byte -40
46 .byte -56
47 .byte -38
48 .byte -18
49 .byte -4
50 .table_s :
51 .byte 1
52 .byte -35
53 .byte -110
54 .byte 79
55 .byte -109
56 .byte -103
57 .byte 11
58 .byte 68
59 .byte -42
60 .byte -41
61 .byte 78
62 .byte -36
63 .byte -104
64 .byte 10
65 .byte 69

37

	Introduction
	Our Contributions
	Mathematical Background

	Statistical Properties
	Coefficient Distributions
	Anomalies in Table Coefficients Distributions
	Tighter Advantage Estimations for Boomerang Attacks
	Experimental Results

	Identifying Structures
	Multiplicative Inverse
	TU-Decomposition
	Substitution-Permutation Networks
	Feistel Networks
	Structural Anomalies

	Vector Spaces Extraction Algorithms
	A Simple Approach and How Ours Improves It
	Gauss-Jordan Bases
	Vector Extractions
	Bigger MSB Condition
	Vector Space Extraction Algorithm

	How ``Structured'' is a Random S-box?
	The Kolmogorov Anomaly of an S-box
	Application to the Russian S-box

	Conclusion
	Acknowledgement
	Proof of the Vector Spaces for Feistel Networks
	Some Anomalies for 8-bit Permutations
	GJB Search Implementation and TU-decomposition
	Looking for Affine Spaces
	Generating the S-box of Chiasmus
	Assembly code
	Optimization Strategy
	Assembly Code

