
Fully Homomorphic Encryption

with k-bit Arithmetic Operations

Benjamin M. Case∗1, Shuhong Gao∗1, Gengran Hu†2, and Qiuxia Xu‡3

1School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
2School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, China

3School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006,
China

May 18, 2019

Abstract

We present a fully homomorphic encryption scheme continuing the line of works
of Ducas and Micciancio (2015, [29]), Chillotti et al. (2016, [23]; 2017, [24]; 2018,
[25]), and Gao (2018,[32]). Ducas and Micciancio (2015) show that homomorphic
computation of one bit operation on LWE ciphers can be done in less than a second,
which is then reduced by Chillotti et al. (2016, 2017, 2018) to 13ms. According to
Chillotti et al. (2018, [26]), the cipher expansion for TFHE is still 8000. The ciphertext
expansion problem was greatly reduced by Gao (2018) to 6 with private-key encryption
and 20 for public key encryption. The bootstrapping in Gao (2018) is only done one bit
at a time, and the bootstrapping design matches the previous two works in efficiency.

Our contribution is to present a fully homomorphic encryption scheme based on
these preceding schemes that generalizes the Gao (2018) scheme to perform operations
on k-bit encrypted data and also removes the need for the Independence Heuristic of
the Chillotti et al. papers. The amortized cost of computing k-bits at a time improves
the efficiency. Operations supported include addition and multiplication modulo 2k,
addition and multiplication in the integers as well as exponentiation, field inversion
and the machine learning activation function RELU. The ciphertext expansion factor
is also further improved, for k = 4 our scheme achieves a ciphertext expansion factor of
2.5 under secret key and 6.5 under public key. Asymptotically as k → ∞, our scheme
achieves the optimal ciphertext expansion factor of 1 under private key encryption and
2 under public key encryption. We also introduces techniques for reducing the size of
the bootstrapping key.

Keywords. FHE, lattices, learning with errors (LWE), ring learning with errors
(RLWE), TFHE, data security, RELU, machine learning

∗The work was partially supported by the National Science Foundation under grants CCF-1407623,
DMS-1403062 and DMS-1547399. Email: {bmcase, sgao}@g.clemson.edu
†The work was partially supported by the National Natural Science Foundation of China under grant

61602143 and was done during his stay at Clemson University as a Visiting Scholar.
‡The work was partially supported by the National Natural Science Foundation of China under grant

61772147 and was done during her stay at Clemson University as a Visiting Scholar.

1

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 2

1 Introduction

Homomorphic encryption (HE) allows computations to be done directly on encrypted data
offering a great solution to data privacy in cloud computing environments. It was first
proposed in 1978 by Rivest, Adleman and Dertouzos [55]. Fully homomorphic computing
(FHE) allows for any function of any complexity to be computed on the encrypted data;
the first FHE scheme was discovered in 2009 by Gentry [33] who introduced the idea of
bootstrapping to make the scheme fully homomorphic. Many schemes have followed in
this blueprint for FHE. Other works have taken a more pragmatic approach investigating
somewhat homomorphic schemes (SHE) which allow for some restricted family of functions
to be performed on the encrypted data.

On bootstrapping for FHE, a recent breakthrough is made by Ducas and Micciancio
(2015 [29]), who use the GSW scheme [34] and some novel homomorphic embedding to
design a bootstrapping procedure that can compute one homomorphic bit operation in less
than a second. This scheme is then improved by Chillotti et al. (2016 [23], 2017, [24];
2018, [25, 26]), who reduce the bootstrapping time down to 13ms per homomorphic bit
operation. On cipher expansion, it is stated in [23] that the ciphertext size is still 400,000
times that of the original data and noted in (2018, [26]) that the expansion factor has been be
reduced to 8000. Collectively these schemes are known as TFHE. On ciphertext expansion,
a recent breakthrough is made by Gao (2018, [32]) reducing the ciphertext expansion to 6
under private key encryption and 20 under public key encryption. Another recent technique
of Biasse and Ruiz (2015 [11]) allows for homomorphically computing arbitrary lookup
functions on encrypted data.

Our contribution. In this paper, we present a compact FHE scheme that has the
following features:

1. We generalize the scheme in [32] to work for k-bit encrypted messages and thus achieve
even better ciphertext expansion ratios, e.g. with k = 4 the expansion ratio under
private key is 2.5 and under public key is 6.5, and we remove the need for the Inde-
pendence Heuristic in the TFHE schemes.

2. Our scheme supports a variety of multibit operations including k-bit addition and
multiplication modulo 2k and addition and multiplication in the integers. Perform-
ing k-bit operations gives an improved amortized cost for homomorphic computing
compared to computing only one bit at a time.

3. We also incorporate the low ciphertext expansion under private key and other new
techniques to reduced the size of the bootstrapping key to around 1128 MB for k = 1
(down from around 12GB for similar parameters in [32]).

4. The probability of failure for each bootstrapping operation is less that 2−140 thus
practically any number of computations can be done.

5. Our scheme with suggested parameters has at least 128 bits of security.

In our scheme, the LWE ciphers after bootstrapping are always in Znr × Zr with error size
bounded 4

√
n with probability greater than 1−2−140, thus allowing practically any number

of computations.
Organization of the paper. In Section 2 we present a high level overview. In Section

3 we include some background material including LWE, RLWE, and GSW ciphers. We
also present randomized flattening and the external product, which have appeared in the
literature in one form or another, but we present them in an exact form that is important for
our scheme. In Section 4, we present our encryption schemes and show how RLWE ciphers

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 3

can be unpacked to LWE ciphers. In Section 5, we present our bootstrapping procedure,
which is modified from those of [29, 23, 11, 17] along with homomorphic operations our
scheme supports. In Sections 6 and 7, we present the parameters to instantiate an instance
of our scheme along with some efficiency and security analysis.

2 High Level Overview

In this section we give a high level overview of the scheme with a focus on the scheme’s
functionality and usage.

Key Generation. A user generates a secret key sk, which will be used for secret key
encryption and decryption, a public key pk, which will be used for public key encryption,
and finally a boostrapping key bk which will be used for performing fully homomorphic
computations by any (untrusted) third party.

Encryption and Storage. To encrypt with our scheme, data is first encoded as vectors
of length n (e.g. n = 212) with k-bit entries xi ∈ {0, 2k − 1} (e.g. k = 4). Each vector is

then converted to a message polynomial m(x) =
∑n−1
i=0 xix

i which is encrypted as an RLWE
cipher, as shown in section Section 4. This encryption can be done using either the secret
key or the public key.

SecEncrypt(sk,m(x))→ c ≡ (a(x), b(x))

and
PubEncrypt(pk,m(x))→ c ≡ (a(x), b(x))

The encrypted data c can then be stored in an untrusted cloud. For k = 4, secret key
encryption has a ciphertext expansion factor of about 2.5, and public key encryption has an
expansion factor of 6.5.

Homomorphic Computing. Homomorphic computations cannot be done directly on
these RLWE ciphers; instead, they must first be unpacked into LWE ciphers (details given
at the end of Section 4). With this unpacking, one gets an LWE cipher for each coefficient
of the message polynomial m(x): ci = Es(xi) which is a vector of length n+ 1 with entries
from Zr. These LWE ciphers have a much bigger expansion factor, so are extracted from
storage during computation only when needed.

Computations on encrypted data can now be performed on these unpacked LWE ciphers.
For any two LWE ciphers c1 = Es(x1) and c2 = Es(x2) where x1 and x2 are any k bit
integers and c1 and c2 may come from the original encryption c or new LWE ciphers during
homomorphic computing, our scheme supports a variety of operations and all the new LWE
ciphers computed are still LWE ciphers (over the same Zr and with the same error bound).

The operations supported include the addition and subtraction modulo p ≤ 2k, multi-
plication modulo p ≤ 2k for p odd or a power of 2:

1. Addition modulo p ≤ 2k,

Addmodp(Es(x1),Es(x2), p) = Es(x1 + x2 mod p).

2. Subtraction modulo p ≤ 2k,

Submodp(Es(x1), Es(x2)) = Es(x1 − x2 mod p).

3. Multiplication modulo p < 2k odd,

Multmodpodd(Es(x1),Es(x2), p) = Es(x1 · x2 mod p)

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 4

4. Multiplication modulo 2k,

Multmod2tok(Es(x1),Es(x2)) = Es(x1 · x2 mod 2k).

Also supported are the following two operations in the integers that store the result
across two new ciphertexts:

1. Addition in Z+,
AddinZ(Es(x1), Es(x2)) = (Es(y0), Es(y1)) ,

where x1 + x2 = y0 + y12k ∈ Z, y0 has k bit, and y1 has one bit.

2. Multiplication in Z+,

MultinZ(Es(x1), Es(x2)) = (Es(y0), Es(y1)) ,

where x1 · x2 = y0 + y12k ∈ Z and both y0 and y1 have k bits.

The above are all binary operations which combine two ciphertexts; we can also perform
the following unary operations on a single ciphertext:

1. Inverse modulo p ≤ 2k, with any integer x so that gcd(x, p) = 1,

Inversemodp(Es(x), p) = Es(x
−1 mod p).

2. Power modulo p ≤ 2k, with any integer i > 1,

Powermodp(Es(x), i, p) = Es(x
i mod p).

3. RELU for any integer x ∈ (−2k, 2k),

RELU(Es(x)) = Es(x
+)

where x+ := max{0, x}.

Each of these LWE ciphers is valid with a probability greater than 1− 2−140, so practi-
cally any arbitrary number of computations can be performed while still preserving a high
probability of correctness, (e.g. if 250 homomorphic computations are done, the probability
that the resulted LWE cipher is valid is still 1 − 2−90). After the desired homomorphic
computations have been performed by some untrusted party, the result can be returned to
the user encrypted as LWE ciphers, or if the number of such LWE ciphers is close to n or
larger, the LWE ciphers can be packed back into RLWE ciphers for storage in the database
or to be sent to the user. This packing technique was first introduced in [32].

3 Background concepts and techniques

3.1 Rings and norms

For q a positive integer we denote the ring of integers modulo q as Zq := Z/qZ. In order
to speak of the norms of elements in Zq, we must fix a set of representatives, which we
choose to be [−b q2c, ..., b

q
2c] for q odd and (− q2 , ...,

q
2] for q even, and we call these the norm

representatives. We then define the norm of a ∈ Zq as the absolute value of its equivalent
norm representative, e.g. for 7, 4 ∈ Z5, ||7|| = |2| and ||4|| = | − 1|. Note we still have the
inequality ||a+ b|| ≤ ||a||+ ||b|| for all a, b ∈ Zq.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 5

For any polynomial f(x) =
∑d
i=0 fix

i ∈ R[x] and for ` ≥ 1, we define the ∞-norm as
‖f(x)‖∞ := max0≤i≤d |fi|. For an integers n, q ≥ 1, let

Rn := Z[x]/(xn + 1) Rn,q := Z[x]/(xn + 1, q)

For f(x) =
∑d
i=0 fix

i inRn,q we define its norm as follows. First find the unique h(x) ∈ Zq[x]
so that deg h(x) < n and f(x) ≡ h(x) mod (xn + 1) (i.e. h(x) is the remainder of f(x)
modulo xn + 1), then fix each coefficient of h(x) to be a norm representative of Zq and then
||f(x)||∞ := ||h(x)||∞.

Form ≥ 1, elements inRmn,q are viewed as row vectors of lengthm. For u = (u1(x), . . . , um(x)) ∈
Rmn , and the norm of such a vector is defined as ‖u‖∞ = max1≤i≤m ‖ui(x)‖∞. By Rk×mn,q we
mean k ×m matrices with entries from Rn,q.

3.2 Probabilistic distributions

We shall use several probabilistic distributions. A random variable on Zq is uniform random
if it takes each element of Zq with equal probability, namely 1/q, and a random variable X
on Znq or Rn,q is uniform random if each component (or each coefficient) is independent and
uniform random on Zq. For any real number τ > 0, by τ -bounded random variable X on Z,
we mean X is random according to some distribution on the integers i with |i| ≤ τ , and X
never takes any other value. A random variable X on R is called Gaussian with parameter
α > 0 if its density function is

ρα(x) =
1

α
exp(−π(x/α)2), x ∈ R.

A Gaussian random variable with parameter α has expected value 0 and standard deviation
α/
√

2π. In this work, the analysis of sub-Gaussian random variables will be critical and from
[54] we recall several useful properties. A random variable X over R is called sub-Gaussian
with parameter α and we write X ∼ subG(α2) if E(X) = 0 and its moment generating
function satisfies

E[exp(tX)] ≤ exp(α2t2/2), ∀ t ∈ R.

Lemma 3.1 (sub-Gaussian Properties).

1. X is sub-Gaussian with parameter α if and only if its tails are dominated by a Gaussian
of parameter α, i.e.,

Prob(|X| ≥ t) ≤ 2 exp(−(t/2α)2), for all t ≥ 0.

2. A sum of independent sub-Gaussian random variables on R is still sub-Gaussian; in
particular, [54, Cor1.7] if X1, ..., Xn are n independent sub-Gaussians of parameter
α, Xi ∼ subG(α2), then for any a ∈ Rn

Prob

(∣∣∣∣∣
n∑
i=1

aiXi > t)

∣∣∣∣∣ ≤ t
)
≤ 2 exp

(−t2
2α2||a||22

)
,

or equivalently
n∑
i=1

aiXi ∼ subG((α||a||2)2).

3. A max bound over several sub-Gaussians is given by [54, Thm 1.14] as, if X1, ..., XN

are Xi ∼ subG(α2) (not necessarily independent), then for any t > 0

Prob

(
max

0≤i≤N
Xi > t

)
≤ N exp(−t2/2α2).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 6

4. A τ -bounded random variable with mean 0 is always sub-Gaussian with parameter τ
[37].

In a concurrent work [56] we study sums of sub-Gaussians where their vector of coeffi-
cients is not independent of the random variables in the sum. The main results, which will
be key in the proof of our error bound Lemma 5.2, are as follows.

Theorem 3.2. If Z1 is subG(t21) and for 2 ≤ i ≤ n, (Zi|Z1, ..., Zi−1) is subG(t2i) and t2i is
free of Z1, ..., Zi−1 and E[Zi] = 0, then Z1 + · · ·+ Zn is subG(t21 + t22 + · · ·+ t2n).

Corollary 3.3. For the sum

X1Y1 +X2Y2 + · · ·+XnYn

where Yi are iid τ -bounded variables with mean 0 and and where Xi are α-bounded variables
with mean 0 but Xi depends on X1, Y1, ..., Xi−1, Yi−1, the total sum is sub-Gaussian of
parameter

√
nτα.

It is these results that have allowed us to remove the Independence Heuristic that is
used in [27] and other FHE schemes. We hope that presenting these results in a clear way
in [56] will help them to be used to remove the need for the Independence Heuristic in other
schemes as well.

We should note that a sum of independent sub-Gaussian random variables on Zq will be
nearly uniform random when the number of variables is large enough and the width of the
sub-Gaussians are large enough relative to the size of q; see [21].

3.3 LWE and RLWE

LWE problem. Regev (2005 [52, 53]) introduced the learning with errors (LWE) problem
over Zq. Let χ be a probabilistic distribution on Z that strongly favors values with small
absolute value, and let s ∈ Znq be an arbitrary vector (corresponding to a secret key of a
user). An LWE sample is of the form (a, b) where a ∈ Znq is uniform random and

b = 〈s,a〉+ e mod q

with e ∈ Z being randomly chosen according to the error distribution χ. The LWE problem
over Zq is to find s given LWE samples in Znq × Zq where the number of samples can be
as large as one desires, but should be bounded by a polynomial in n log(q). The decision
version of the LWE problem is to distinguish LWE samples from samples with uniform
distribution on Znq × Zq.

LWE ciphers. Regev [52, 53] also introduced a cryptosystem based on the LWE prob-
lem. Let s ∈ Znq be a secret key, Dq = bq/4c (this Dq is different from the one used later)
and 1 ≤ τ < Dq/2. To encrypt a message bit x ∈ {0, 1}, pick a ∈ Znq uniform randomly and
compute

b := 〈s,a〉+ e+ xDq mod q,

where e ∈ [−τ, τ] is uniform random or truncated Gaussian. Then (a, b) is a ciphertext for
x, denoted as

Es(x) = (a, b) ∈ Znq × Zq,

called an LWE cipher of x. To decrypt a ciphertext Es(x) = (a, b), compute

b1 := b− 〈s,a〉 mod q,

where −q/2 < b1 ≤ q/2, and x1 := bb1/Dqe. Then x = x1.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 7

RLWE problem. Lyubashevsky, Peikert and Regev (2010 [45]) introduced the ring
learning with error (RLWE) problem in order to get more efficient encryption schemes. Let
s(x) ∈ Rn,q be any secret key. An RLWE sample is of the form (a(x), b(x)) ∈ R2

n,q where
a(x) ∈ Rn,q is uniform random and

b(x) := s(x)a(x) + e(x) mod (xn + 1, q),

where e(x) ∈ Rn with each coefficient small and random (according to certain distribution).
An RLWE sample v ∈ R2

n,q is said to have error size τ if

v(−s(x), 1)t ≡ e(x) (mod (xn + 1, q)), (1)

where e(x) ∈ Rn and ||e(x)||∞ ≤ τ . The RLWE problem over Zq is to find s(x) given many
RLWE samples where each sample is random and independent.

RLWE ciphers. Let m(x) =
∑n−1
i=0 mix

i where mi ∈ {0, 1}, which represents an n-bit
message. An RLWE cipher for m(x) with error size τ is of the form

REs(m(x)) = v +m(x)Dq(0, 1) ∈ R2
n,q (2)

where v ∈ R2
n,q is an RLWE sample with error size τ . Suppose REs(m(x)) = (a(x), b(x)).

Then
b(x)− s(x)a(x) ≡ m(x)Dq + e(x) mod (xn + 1, q),

where e(x) ∈ Rn is random with ||e(x)||∞ ≤ τ . When τ < Dq/2, one can recover m(x) from
b(x)− s(x)a(x), after reduced modulo (xn + 1, q).

3.4 Gadget matrix, flattening, external product and GSW ciphers

In order to perform homomorphic multiplication, Gentry, Sahai, and Waters (2013 [34])
introduced the idea of a gadget matrix so that new ciphertexts from multiplication of ci-
phertexts remain the same size, while previous methods increase the size of new ciphertexts.

Gadget matrix and Random Flattening Let B and ` be positive integers so that
B` ≥ q. Let

g = (1, B, . . . , B`−1).

Every element a ∈ Zq can be represented as

a = a0 + a1B + · · ·+ a`−1B
`−1 = (a0, a1, . . . , a`−1)gt

where ai ∈ Z has small size. For example, if we let −B/2 < ai ≤ B/2, then (a0, a1, . . . , a`−1)
is unique. We will allow |ai| to be as big as B, which allows us to take a random represen-
tation. In our scheme we shall fix ` = 2.

Lemma 3.4. Given B2 ≥ Q > B and integer d ∈ (−Q2 ,
Q
2], there exist unique integers

d0 ∈ (−B2 , B2] and d1 ∈ [−B2 , B2] s.t. d = d0 + d1 ·B.
Proof. Let

d1 = bd/Be, d0 = d− d1 ·B
where x − bxe ∈ (− 1

2 ,
1
2] for any x ∈ R. Notice that since B2 ≥ Q > B, and d ∈ (−Q2 ,

Q
2],

we have d/B ∈ (−B2 , B2]. By the fact that d/B − bd/Be ∈ (− 1
2 ,

1
2], then we know bd/Be ∈

(−B+1
2 , B+1

2), implying that d1 = bd/Be ∈ [−B2 , B2] as B is an integer. Moreover, d0 =

d− d1 ·B = (d/B − bd/Be) ·B ∈ (− 1
2 ,

1
2] ·B ∈ (−B2 , B2] as what we need.

Assume (d′0, d
′
1), (d0, d1) ∈ (−B2 , B2]× [−B2 , B2] s.t.

d = d0 + d1 ·B = d′0 + d′1 ·B,

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 8

then
d0 − d′0 = (d′1 − d1) ·B.

Since d0, d
′
0 ∈ (−B2 , B2], we know d0 − d′0 ∈ (−B,B). Notice that B | d0 − d′0, actually

d0−d′0 = 0, implying that d0 = d′0, d1 = d′1 which proves the uniqueness of d0, d1. Using
Lemma 3.4, we can prove the following random flattening approach.

Lemma 3.5. (random flattening) For B2 ≥ Q > B, let SQ = (−Q2 ,
Q
2] denote a residue

class mod Q. Given a ∈ SQ uniform random, choose k0, k1 ∈ SQ uniform randomly and
compute i1 = bk1/Be, i0 = k0 − bk0/Be ·B, where bxe denotes the integer closest to x and
bxe := k if x = k+ 1

2 for some integer k, there exists unique j0 ∈ (−B2 , B2], j1 ∈ [−B2 , B2] s.t.
a+ i0 + i1 ·B = j0 + j1 ·B mod Q, and letting a0 = j0 − i0, a1 = j1 − i1, we have

a = a0 + a1 ·B mod Q,

where a0, a1 are random variables s.t. |a0|, |a1| ≤ B and E(a0) = E(a1) = 0.

Proof. Let a′ = a+i0+i1·B mod Q ∈ SQ, then a′ is uniform in SQ since a ∈ SQ is already
uniform. By Lemma 3.4, we know that there exists unique j0 ∈ (−B2 , B2], j1 ∈ [−B2 , B2] s.t.
a′ = j0 + j1 ·B. Moreover, by the proof of Lemma 3.5,

j1 = ba′/Be, j0 = a′ − ba′/Be ·B.

Notice that a′, k1 are both uniform in SQ, we know j1 and i1 actually have the same
distribution, implying that i1 ∈ [−B2 , B2] and E(j1) = E(i1). Similarly, since k0 is also

uniform in SQ, j0 and i0 also have the same distribution, it follows that i0 ∈ (−B2 , B2] and
E(j0) = E(i0). As a result, we obtain

|a1| = |j1 − i1| ≤ |j1|+ |i1| ≤
B

2
+
B

2
= B

and E(a1) = E(j1)− E(i1) = 0. Similarly, we have

|a0| = |j0 − i0| ≤ |j0|+ |i0| ≤
B

2
+
B

2
= B

and E(a0) = E(j0)− E(i0) = 0.
We can extend this random flattening to any list of elements in Zq and thus to polyno-

mials.

Lemma 3.6. Let n be a power of 2, q = p1p2 · · · pt be the product of distinct primes such
that 2n|(pi − 1) for each i. Every polynomial a(x) ∈ Rn,q can be written as

a(x) = a0(x) + a1(x)B = (a0(x), a1(x))gt

where ||ai(x)||∞ ≤ B for 0 ≤ i ≤ ` − 1. Furthermore, we can get a(x) = a0(x) + a1(x)B
with a0(x) or a1(x) invertible in Rn,q.

Proof. Using Lemma 3.5 we can get a random flattening a(x) = a0(x) +a1(x)B. Then if we
assume q = p1p2 · · · pt is the product of district primes, we can then check if either a0(x) or
a1(x) is coprime to xm + 1 modulo pi for all i. This can be done by checking if they share a
common root, by evaluating a0(x) at all the roots of xn + 1 modulo pi, i.e. taking an FFT
of a0(x) in Rn,pi and then checking if any component is zero. If it is not coprime, we can
simply apply Lemma 3.5 again to get a new one and check if it is coprime. We will argue
next why with high probability we should get coprime with few attempts.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 9

Heuristic Assumption 3.7. In the proof of Lemma 3.6 we expect to find a coprime a0(x)
or a1(x) after a very small number of attempts.

Argument: For any pj , let α0, α1, ..., αn−1 be the roots of xn + 1 modulo pj , which have
the form αi = ω2i+1 0 ≤ i < n where ω has order 2n. The FFT of a polynomial v(x) ∈ Rn,q
has the form (v(α0), v(α1), ..., v(αn−1)). If v(x) =

∑n−1
i=0 vix

i is uniform random then the
probability that

v(α) = v0 + v1α+ v2α
2 + · · ·+ vn−1α

n−1 = 0 (mod pj)

is 1/pj . Thus the probability that any root would evaluate to zero would be less than n/qj .
Over all pj , 1 ≤ j ≤ t, the probability that any root would evaluate to zero for any pj

would be less than
(
n
p1

+ n
p2

+ · · ·+ n
pt

)
. When we use this in our scheme we will take

q = p1p2 each of size around 240 and n = 213, so this is ≈ 214/240 = 2−26. Where the
heuristic assumption comes in is that v(x) in our case is not uniform random but rather the
outcome of the random flattening process. Since it is random but not uniform random, the
probability is harder to specify.

We now define

G =

(
gt 0
0 gt

)
a (2`)× 2 matrix, called a gadget matrix. By Lemma 3.6, every (a(x), b(x)) ∈ R2

n,q can be
written as

(a(x), b(x)) = u(x)G (3)

where u(x) ∈ R2`
n is the random flattening of (a(x), b(x)) with ||u(x)||∞ ≤ B. We define

(a(x), b(x)) / G−1 = u(x).

The reader should be warned that G is not a square matrix, so it has no inverse, here we
just use G−1 as an operator that acts from the right on (a(x), b(x)), a row vector of two
polynomials with coefficients in Zq (of large size), to get u(x) = (a(x), b(x))/G−1, a random
row vector of 2` polynomials each with coefficients at most B (of small size). This is a nice
trick of trading element size for dimension. For example, when B = 3 and ` = 4, we have

G =

(
1 3 32 33 0 0 0 0
0 0 0 0 1 3 32 33

)t
,

and
(5 + 35x,−14) / G−1 = (−1− x,−1, 1 + x, x, 1, 1, 1,−1) ∈ R8

n.

since 5 = 32 − 3− 1, 35 = 33 + 32 − 1, and −14 = −33 + 32 + 3 + 1. By definition, we have

(v / G−1)G = v, for every v ∈ R2
n,q. (4)

External product. For any row vector v ∈ R2
n,q and any A ∈ R2`×2

n,q (which denotes
(2`)× 2 matrices with entries in Rn,q), their external product is defined as

v �A = (v / G−1)A ∈ R2
n,q,

which is a random vector in R2
n,q, since v / G−1 is a random row vector of length 2` and

A is an (2` × 2) matrix. This definition can be extended to define the product of any
two (m`)×m matrices (to get another (m`)×m matrix), as originally defined by Gentry,
Sahai and Waters (2013 [34]). Recently, Chillotti et al (2016 [23, 24]) observed that, for

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 10

bootstrapping, it is better to use this external product. From the definition, the external

product is right distributive, that is, for any two matrices A,B ∈ R(2`)×2
n,q , we have

v � (A+B) ≡ v �A+ v �B (mod (xn + 1, q)),

where all three terms use the same v / G−1. However, they are not equal if one computes
each term independently (unless v / G−1 is deterministic). Also, it is not left distributive,
i.e., for two vectors v1,v2 ∈ R2

n,q,

(v1 + v2)�A 6≡ v1 �A+ v2 �A (mod (xn + 1, q)),

in general, since the operator G−1 is not linear when acting on v.
GSW ciphers. Let s(x) =

∑n−1
i=0 six

i, where si ∈ {0, 1}, be an n-bit secret key of a
user. For any m(x) ∈ Rn (say with small coefficients), a GSW cipher for m(x) with error
size τ is of the form

GSWs(m(x)) = A+m(x)G ∈ R(2`)×2
n,q (5)

where A ∈ R2`×2
n,q and each row of A is an RLWE sample (chosen independent randomly) so

that
A(−s(x), 1)t ≡ w(x) mod (xn + 1, q)

where w(x) ∈ R2`
n with ||w(x)||∞ ≤ τ . The next lemma is observed by Chillotti et al (2016

[23]), here we make the error bound explicit in our error model.

Lemma 3.8. Let m0,m1 ∈ Rn be any two polynomials. For any REs(m0) with error
polynomial ||w0(x)||∞ ≤ τ0 and any GSWs(m1) with error vector ||w(x)||∞ ≤ τ1, we have

REs(m0)�GSWs(m1) = REs(m0m1),

and REs(m0m1) has error polynomial hw(x)t + m1w0(x) where h is the random fattening
of REs(m0).

Proof. By assumption, we may let

REs(m0) = v +m0Dq(0, 1) ∈ R2
n,q, GSWs(m1) = A+m1G ∈ R(2`)×2

n,q ,

where v ∈ R2
n,q and A ∈ R2`×2

n,q satisfying, modulo (xn + 1, q),

v(−s(x), 1)t ≡ w0(x), A(−s(x), 1)t ≡ w(x)t, (6)

and w0(x) ∈ Rn and w(x) = (w1(x), . . . , w2`(x)) ∈ R2`
n with ||w0(x)||∞ ≤ τ0 and ||wi(x)||∞ ≤

τ1 for 1 ≤ i ≤ 2`. Let h = REs(m0(x)) /G−1 = (h1, . . . , h2`) ∈ R2`
n , with ||h||∞ ≤ B. Com-

puting modulo (xn + 1, q), we have

REs(m0(x))�GSWs(m1(x)) ≡ h(A+m1G) = hA+m1hG

≡ hA+m1([v +m0Dq(0, 1)] / G−1)G

≡ hA+m1[v +m0Dq(0, 1)]

≡ (hA+m1v) +m0m1Dq(0, 1) ∈ R2
n,q,

where, in the second last equation, we used the property of G−1 from (4). The error
polynomial is, using (6), (hA+m1v)(−s(x), 1)t ≡ hw(x)t +m1w0(x).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 11

4 Encryption schemes

We present two encryption schemes based on the RLWE problem [45]: one using private keys
and the other using public keys. We use rounding and modulus reduction. We note that the
technique of modulus reduction has been used in [16, 14, 15] and rounding was introduced
in LWR in (2012, [9]). Brakerski [13] suggested in a comment to also use rounding to
reduce ciphertext sizes in FHE schemes, but before [32] such techniques had not led to
FHE schemes with such small expansion factors. We shall encrypt a message polynomial
m(x) =

∑n−1
i=0 mix

i, where mi ∈ [0, 2k). Using all these techniques, and by carefully
choosing error distributions, we achieve a cipher expansion of 1 + 6

k for encryption with

private keys and 2 + 12
k + log2(n)

2k for encryption with public keys. Let r be a power of 2,
Dr = r/2k+2 and Dq = bq/2k+2c.
Secret key. Randomly pick s = (s0, s1, . . . , sn−1) ∈ {0, 1}n of hamming weight at most

n/8, and let s(x) =
∑n−1
i=0 six

i.
Public key. A corresponding public key in R2

n,q is with respect to a larger modulus q ≥ 27rn
and is generated as pk = (k0(x), k1(x)) where k0(x) ∈ Rn,q is chosen uniform randomly and

k1(x) := k0(x)s(x) + e(x) mod (xn + 1, q)

with e(x) ∈ Rn bounded uniform random st ||e(x)||∞ < Dq/(512n).
Pseudo-random number generator P . We also need a pseudo-random number generator
in order to reduce ciphertext size under encryption with private keys. Suppose P is a function
that can expand any n-bit sequence u ∈ {0, 1}n (deterministically) into a sequence of 0’s and
1’s of length ndlog2(r)e, denoted by P (u). The sequence P (u) can be uniquely converted into
a polynomial in Rn,r, denoted by P (u, x). For example, one can use SHAKE-128 [51], or the
lightweight generator [7]. However, the function P needs not to have a strong cryptographic
property, but only needs to be statistically uniform, that is, when u ∈ {0, 1}n is uniform
random, P (u, x) should be nearly uniform random in Rn,r. The security of our encryption
scheme depends on the RLWE problem in Rn,r and that P (u, x) is nearly uniform random
in Rn,r.

4.1 Private-key Encryption

To encrypt a message m(x) under secret key s, our scheme is in Figure 1.

Lemma 4.1. Let (a(x), b(x)) ∈ R2
n,r be as computed in Figure 1. Then there exists w3(x) ∈

Rn with ||w3(x)||∞ < Dr
4 so that

2t−k−4b(x)− s(x)a(x) ≡ w3(x) +m(x)Dr mod (xn + 1, r).

In particular, where r = 2k+6
√
n, (u, v) returned in Step 4 has (k + 6)n bits and represents

an RLWE cipher REs(m(x)) with error size < 4
√
n.

Proof. By Step 3, since the coefficients of b1(x) are between 0 and r − 1, we have
b1(x) = 2t−k−4b(x) + b0(x) for some b0 ∈ Rn with ||b0(x)||∞ < 2t−k−4. By Step 2, we have
2t−k−4b(x)− s(x)a(x) ≡ −b0(x) +w(x) +m(x)Dr mod (xn + 1, r). Note that r = 2t+1 and
Dr = 2t−k−1, so

|| − b0(x) + w(x)||∞ ≤ ||b0(x)||∞ + ||w(x)||∞ < 2t−k−4 + Dr
8 = Dr

4 .

Therefore, the lemma holds with w3(x) = w(x)− b0(x).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 12

Private-key Encryption : REs(m(x))

Input: s(x) =
∑n−1
i=0 six

i where si ∈ {0, 1}, an n-bit secret key,

m(x) =
∑n−1
i=0 mix

i, where mi ∈ [0, 2k), a kn-bit message,
t := dlog2(r)e − 1, hence 2t < r ≤ 2t+1,
P : {0, 1}n → {0, 1}n(t+1), a pseudo-random number generator.

Output: (u,v) ∈ {0, 1}n × {0, 1}(k+5)n

Step 1. Pick u ∈ {0, 1}n uniform randomly, and compute
a(x) := P (u, x) ∈ Rn,r.

Step 2. Pick w(x) ∈ Rn uniform randomly with ‖w(x)‖∞ ≤ Dr/8, and
compute
b1(x) := a(x)s(x) + w(x) +m(x)Dr mod (xn + 1, r)
(so that each coefficient of b1(x) is between 0 and r − 1).

Step 3. Taking the highest k + 5 bits for each coefficient of b1(x):
b(x) := bb1(x)/2t−k−4c.

Let v ∈ ({0, 1}k+5)n denote the bit representation of b(x).
Step 4. Return (u,v).

Figure 1:

4.2 Public-key Encryption

The scheme is presented in Figure 2.

Lemma 4.2. Suppose n ≥ 512, r = 2t+1 ≥ 2k+6
√
n and q ≥ 27rn. Let (a(x), b(x)) =

REpk(m(x)) ∈ R2
n,r. Then with probability ≥ 1− n · 2−190, we have

2t−k−5b(x)− s(x)a(x) ≡ w3(x) +m(x)Dr mod (xn + 1, r).

for some w3(x) ∈ Rn with ||w3(x)||∞ < Dr
4 . In particular, when r = 2k+6

√
n, each cipher-

text REpk(m(x)) has n(2k+ 12 + 1
2 log2(n)) bits and the error, i.e. each coefficient of w3(x)

is random in (−4
√
n, 4
√
n).

Proof. By Step 3, we have a(x) = ra1(x)/q + v1(x), and 2t−k−5b(x) = rb1(x)/q +
v0(x) +m(x)Dr, where vi(x) ∈ R[x] with degree < n for i = 0 and 1, ||v1(x)||∞ ≤ 1/2 and
||v0(x)||∞ < 2t−k−5. By k1(x) = k0(x)s(x) + e(x) mod (xn + 1, q) and a1(x), b1(x), there
exist polynomials h1(x), h2(x) ∈ Z[x] so that

b1(x)− s(x)a1(x) = u(x)e(x) + w2(x)− s(x)w1(x) + h1(x)(xn + 1) + qh2(x).

Let w(x) = u(x)e(x) + w2(x)− s(x)w1(x). Then

2t−k−5b(x)− s(x)a(x) =
r

q
(b1(x)− s(x)a1(x)) + v0(x)− s(x)v1(x) +m(x)Dr

=
r

q
w(x) + v0(x)− s(x)v1(x) +m(x)Dr

+
r

q
h1(x)(xn + 1) + rh2(x)

≡ w3(x) +m(x)Dr mod (xn + 1, r)

where w3(x) = r
qw(x) + v0(x)− s(x)v1(x). We need to estimate the coefficient size of other

terms in w3(x)(when reduced modulo xn + 1). Since u(x) =
∑n−1
i=0 ui where ui ∈ {−1, 0, 1},

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 13

Public-key Encryption : REpk(m(x))
Input: pk = (k0(x), k1(x)) ∈ R2

n,q, t := dlog2(r)e − 1, hence 2t < r ≤
2t+1

m(x) =
∑n−1
i=0 mix

i: a kn-bit message where each mi ∈ [0, 2k),
Output: (a(x), b(x)) ∈ R2

n,r

Step 1. Pick u(x) ∈ Rn with each coefficient random in {−1, 0, 1},
Pick w1(x) ∈ Rn randomly with ||w1(x)||∞ ≤ Dq/(64n),
Pick w2(x) ∈ Rn randomly with ||w2(x)||∞ ≤ Dq/256.

Step 2. Compute:
a1(x) := k0(x)u(x) + w1(x) mod(xn + 1, q),
b1(x) := k1(x)u(x) + w2(x) mod(xn + 1, q).

(Both a1(x) and b1(x) have coefficients in [0, q − 1].)
Step 3. Modulus reduction and rounding:

a(x) :=
⌊
r
qa1(x)

⌉
, b(x) :=

⌊
1

2t−k−5 (rq b1(x) +m(x)Dr)
⌉
.

(Each coefficient of b(x) is in [0, 2k+6−1], hence has k+6 bits.)
Step 4. Return (a(x), b(x)).

Figure 2:

we have

||u(x)e(x)||∞ ≤
n−1∑
i=0

||uixie(x)||∞ =

n−1∑
i=0

||e(x)||∞ = n||e(x)||∞ ≤ n
Dq

512n
=
Dq

512
.

Similarly, since si ∈ {0, 1} and Ham(s) ≤ 1
8n, we obtain ||s(x)w1(x)||∞ ≤ 1

8n||w1(x)||∞ ≤
1
8n ·

Dq
64n =

Dq
512 . Therefore,

||w(x)||∞ ≤ ||u(x)e(x)||∞ + ||w2(x)||∞ + ||s(x)w1(x)||∞ ≤
Dq

512
+
Dq

256
+
Dq

512
=
Dq

128
.

Expanding terms of s(x)v1(x), we obtain

s(x)v1(x) =

n−1∑
i=0

six
i
n−1∑
l=0

v1,lx
l =

n−1∑
i=0

n−1∑
l=0

siv1,lx
i+l

=

n−1∑
k=0

(

k∑
i=0

siv1,k−i −
n−1∑
i=k+1

siv1,k+n−i) · xk

=

n−1∑
k=0

n−1∑
i=0

ck,isiv1,(k−i)mod n · xk

=

n−1∑
k=0

n−1∑
i=0

s′k,iv1,j · xk (mod xn + 1, q).

where s′k,i = ck,isi for ck,i ∈ {−1, 1} and j = (k− i)mod n for some v1,j ∈ R with |v1,j | ≤ 1
2 .

Thus ||s′k|| = ||s|| ≤ 1
8n for 0 ≤ k ≤ n − 1. Moreover, we know that E(v1,j) = 0 for

0 ≤ j ≤ n− 1 and all v1,j are independent, implying that v1,j ∼ subG(1
4). By Corollary 1.7

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 14

in [54], for
n−1∑
i=0

s′k,iv1,j with bound 23√
2
||s′k||2 ≤ 23

8

√
n, we obtain

P (|
n−1∑
i=0

s′k,iv1,j | >
23

8

√
n) ≤ P (|

n−1∑
i=0

s′k,iv1,j | >
23√

2
||s′k||2)

< 2 · e−132.5 < 2−190.

Since ||s(x)v1(x)||∞ = max
k
|
n−1∑
i=0

s′k,iv1,j |, we know

P (max
k
|
n−1∑
i=0

s′k,iv1,j | ≤
23

8

√
n) = 1− P (∃k′, s.t.|

n−1∑
i=0

s′k′,iv1,j | >
23

8

√
n)

≥ 1− n · 2−190.

Thus we know with probability ≥ 1− n · 2−190,

||v0(x)− s(x)v1(x)||∞ ≤ ||v0(x)||∞ + ||s(x)v1(x)||∞ ≤ 2t−k−5 +
23

8

√
n.

Since n ≥ 512, it follows that with probability ≥ 1− n · 2−190,

||w3(x)||∞ ≤
r

q
||w(x)||∞ + ||v0(x)− s(x)v1(x)||∞

<
r

128q
Dq + 2t−k−5 +

23

8

√
n

<
Dr

128
+
Dr

24
+

23

8

√
n

=
Dr

128
+
Dr

24
+

23

8
· Dr

24
=
Dr

4

where the last inequality is from r ≥ 2k+6
√
n and Dr = r/2k+2.

When r = 2k+6
√
n, we know that Dr

4 = r
2k+4 = 2k+6

2k+4

√
n = 4

√
n, which completes the

proof.

4.3 Decryption, ciphertext expansion, and unpacking

Decryption. To decrypt a ciphertext (a(x), b(x)) from REs(m(x)) or REpk(m(x)), the user
computes

b1(x) := 2t−k−4b(x)−s(x)a(x) mod (xn + 1, r), or b1(x) := 2t−k−5b(x)−s(x)a(x) mod (xn + 1, r),

and m1(x) = bb1(x)/Dre. Then m1(x) = m(x), the reason is that b1(x) ≡ w(x) +
m(x)Dr mod (xn + 1, r) for some w(x) ∈ Rn with ||w(x)||∞ < Dr/4.

4.3.1 Ciphertext expansion under private key

The ciphertext size under private key encryption is n(k + 6) bits, and encrypts kn message
bits. Thus the ciphertext expansion ratio is

n(k + 6)

kn
= 1 +

6

k
.

Thus asymtotically as k →∞ we get the optimal ciphertext expansion of 1. For the values
of k = 2, 3, 4, 5 that we suggest for practical use in this scheme we, we get expansion ratios
of 4, 3, 2.5, 2.2 respectively as shown in Figure 13.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 15

4.3.2 Ciphertext expansion under public key

As proved in Lemma 4.2 the expansion under public keys when r = 2k+6
√
n, is

n(2k + 12 + 1
2 log2(n))

kn
= 2 +

12

k
+

log2(n)

2k
.

For n = 212 and the values of k = 2, 3, 4, 5 that we suggest for practical use in this scheme
we, we get expansion ratios of 11, 8, 6.5, 5.6 respectively as shown in Figure 13.

Unpacking. Given an RLWE cipher REs(m(x)) = c for m(x) =
∑n−1
i=0 mix

i we want
to extract LWE ciphers for each coefficient in the message polynomial. Suppose c is from
private-key encryption. Then c is of the form c = (u, v) where u ∈ {0, 1}n and v ∈(
{0, 1}5

)n
. Apply the pseudo random number generator P to u to get a polynomial a(x) =

P (u, x) ∈ Rn,r, and convert v into a polynomial b(x) ∈ Rn,r. By Lemma 4.1, we have

2t−k−4b(x) ≡ a(x)s(x) +

(
n−1∑
i=0

mk,ix
i

)
Dr + w(x) mod (xn + 1, r),

where ‖w(x)‖∞ < Dr/4. In general, for any a(x) = a0 + a1x+ · · ·+ am−1x
m−1 ∈ Rm,q we

define

Extract(a(x), i) = (ai, ai−1, . . . , a0,−am−1,−am−2, . . . ,−am−(n−1−i)) ∈ Znq .

This is used to get the coefficients of a(x)s(x) mod (xm + 1). Note that, modulo xm + 1,

a(x)s(x) =

n−1∑
k=0

m−1∑
j=0

skajx
k+j ≡

m−1∑
i=0

[(s0ai + s1ai−1 + · · ·+ sia0)− (si+1am−1

+ si+2am−2 + · · ·+ sn−1am−(n−1−i))]x
i.

Hence, for 0 ≤ i ≤ n, the i-th coefficient of a(x)s(x) mod (xm + 1) is equal to the inner
product of s with Extract(a(x), i). It follows that for 0 ≤ i ≤ n− 1, an LWE cipher for mi

is
Es(mi) = (Extract(a(x), i), 2t−k−4bi) ∈ Znr × Zr

with error size < Dr/4, where bi is the coefficient of xi in b(x).
Next suppose ck is from public-key encryption. By Lemma 4.2, c is of the form

(a(x), b(x)) ∈ R2
n,r so that

2t−k−5b(x) ≡ a(x)s(x) +

(
n−1∑
i=0

mix
i

)
Dr + w(x) mod (xn + 1, r),

where ‖w(x)‖∞ < Dr/4. Hence, for 0 ≤ i ≤ n− 1, an LWE cipher for mi is

Es(mi) = (Extract(a(x), i), 2t−k−5bi) ∈ Znr × Zr

with error size < Dr/4, where bi is the coefficient of xi in b(x).

5 Multi-bit Homomorphic operations

In the previous section we saw how data stored efficiently in RLWE ciphers can be unpacked
to LWE ciphers, and in this section we will show how homomorphic operations can be done
on those LWE ciphers. We follow the approach in Ducas and Micciancio (2015 [29]) and

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 16

Chillotti et al. (2016 [23]), however, we do not need to perform key switch as they do. We
incorporate a technique of Biasse and Ruiz (2015 [11]) which is further developed by Carpov,
Izabachène, and Mollimard (2018 [17]) for doing arbitrary function lookups.

To give a high level description, we take LWE ciphers in Znr ×Zr with error size bounded
by 4
√
n, which come from the unpacking of RLWE ciphers. The error bound of 4

√
n is

very large with respect to r so only one homomorphic addition or subtraction can be done
at this step. The ciphertexts are then homomorphically lifted to Rm,Q = Z[x]/(xm + 1, Q)
by being embedded in the exponents of RLWE ciphertexts modulo a much larger Q and
mixed with the bootstrapping key in a way that homomorphically decrypts them. Further
arbitrary functions can then be applied to produce the desired arithmetic operation, and
finally the ciphertexts are mapped back down to Znr × Zr by a modulus reduction. The
resulting ciphertexts still have error bounded by the same starting bound of 4

√
n with high

probability. Thus, they can continue to be operated on any practical number of times. An
overview diagram of scheme is shown in Figure 3.

R2
m,Q R2

m,Q Zn
Q × ZQ

R2
n,r Zn

r × Zr

function extract

mod reduction
unpack

pack

HomLift

Figure 3: Boostrapping operation, Rn,r := Z[x]
(xn+1,r) .

5.1 Homomorphic Lifting

Suppose we are given LWE ciphers Es(xi) ∈ Znr × Zr for xi ∈ {0, .., 2k − 1} with error
size < Dr/4. Let s = (s0, . . . , sn−1) ∈ {0, 1}n, representing an n-bit secret key of a user.
Suppose r ≥ 2k+6

√
n is a power of 2, Q is much bigger than r (to be determined later) and

m = r/2, Dr = br/2k+2c, DQ = bQ/2k+2c.
Also take B` ≥ Q > B (we shall take ` = 2 in this paper). We shall work in the rings

Rm = Z[x]/(xm + 1), Rm,Q = Z[x]/(xm + 1, Q).

Define a bootstrapping key to be bk = (C0, . . . , Cn−1) where

Ci = GSWs(si) = Ai + siG ∈ R(2`)×2
m,Q , 0 ≤ i ≤ n− 1, (7)

where Ai ∈ R(2`)×2
m,Q is a GSW sample (chosen randomly and independently by the owner

of s) with certain error size τbk (to be determined later). Such a bootstrapping key for
the user with the secret key s is made public and can be used by anyone else to compute
homomorphic operations of ciphertexts.

Suppose Es(x1) = (a1, b1) and Es(x2) = (a2, b2) where a1,a2 ∈ Znr and

bi ≡ 〈s,ai〉+ xiDr + ei (mod r),

for some ei ∈ Z with |ei| < Dr/4 for i = 1, 2. We note that

b1 + b2 ≡ 〈s,a1 + a2〉+ (x1 + x2)Dr + e1 + e2 (mod r), (8)

b1 − b2 ≡ 〈s,a1 − a2〉+ (x1 − x2)Dr + e1 − e2 (mod r). (9)

We let u ∈ Znr × Zr, y, e be defined any one of the following three ways,

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 17

(i) (u0, . . . , un−1) = a1 + a2 ∈ Znr , un = b1 + b2 ∈ Zr, y = x1 + x2, and e = e1 + e2 ∈ Z,

(ii) (u0, . . . , un−1) = a1 − a2 ∈ Znr , un = b1 − b2 ∈ Zr, y = x1 − x2, and e = e1 − e2 ∈ Z,

(iii) (u0, . . . , un−1) = a1 ∈ Znr , un = b1 ∈ Zr, y = x1, and e = e1 ∈ Z.

In any case, |e| < Dr/2 and the equations (8) and (9) become un ≡
∑n−1
i=0 siui + yDr + e

(mod r). Let w = un −
∑n−1
i=0 siui and the equation becomes

w ≡ yDr + e (mod r). (10)

Now that the error has grown to be < Dr/2 no more additions can be made. This is
because the modulus r is small compared to the size of the error. We will use our Ho-
momorphic Lifting operation to lift this ciphertext to a larger modulus Q where more
additions can be performed. Following Ducas and Micciancio (2015 [29]), we use the group
homomorphism from the additive subgroup (Zr,+) to the following multiplicative group of
Rm,Q = Z[x]/(xm + 1, Q):

〈x〉 = {xi : 0 ≤ i ≤ r − 1} ≡ {1, x, . . . , xm−1,−1,−x, . . . ,−xm−1},

mapping i ∈ Zr to xi ∈ Rm,Q. For any subset T ⊆ Zr, let

t(x) :=
∑
i∈T

xi ∈ Rm,Q.

For example, if r = 20, m = 10 and T = {1, 2,−4, 17}, then

t(x) = x+ x2 + x−4 + x17 ≡ x+ x2 − x6 − x7(mod xm + 1).

For this t(x), its coefficient at x2 is 1, its coefficient at xm+2 = x12 is −1 (since x2 ≡
−x12), and its coefficient at x3 is 0 since none of 3 and m + 3 is in T . Also note that, if
T = {w,w + m}, then t(x) = xw + xw+m ≡ xw + (−1) · xw ≡ 0 (mod xm + 1). Hence
we should avoid using any subset T that contains w and m + w for some w. We let
T := {i ∈ Z : |i| < Dr/2}. Then by (10) we have x−w ≡ x−yDrx−e (mod xm + 1) and
multiplying by t(x) which we call the error encoding polynomial we get

t(x)x−w ≡ t(x)x−ex−yDr (mod xm + 1). (11)

Now we will show how t(x)x−w can be computed under encryption using the boostrapping
key, bk = (C0, . . . , Cn−1) from equation (7). Note that, for any z ∈ {0, 1} and u ∈ Z, we
have the identity

xzu = 1 + (xu − 1)z. (12)

Let C = GSWs(z) ∈ R(2`)×2
m,Q be any GSW cipher. One can map zu ∈ Zr to xzu, then to a

GSW cipher: G + (xu − 1)C ∈ R(2`)×2
m,Q . We describe the Homomorphic Lifting (HomLift)

operation in Figure 4. The operation is a random mapping

HomLift : (Znr × Zr)×
{
R

(2`)×2
m,Q

}n
→ R2

m,Q

(u, bk) 7→ REs(t(x)x−un+
∑uisi
k=0).

In Step 2, A is updated n times and we can prove that for the final A = (A0, A1), A0

will have uniform random and independent coefficients.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 18

Homomorphic Lifting Algorithm : HomLiftbk(u)

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

u = (u0, . . . , un−1, un) ∈ Znr × Zr
Output: REs(t(x)x−un+

∑n−1
k=0 uisi) ∈ R2

m,Q

Step 1. Initialization:
t(x) :=

∑
i∈T x

i where T := {i ∈ Z : −Dr < i < Dr},
A := (0, t(x)x−unDQ) ∈ R2

m,Q.

Step 2. For k from 0 to n− 1 do (randomness involved here)
A := A� (G+ (xuk − 1)Ck).

Step 3. Return A.

Figure 4: Homomorphic Lifting Operations

Lemma 5.1. Taking m = 2t with t > 0, in Step 2 of the Homomorphic Lifting Algorithm,
for any initial A = (A0, A1) in R2

m,Q, we can guarantee that for the final A′ = (A′0, A
′
1), A′0

will have uniform random and independent coefficients.

Proof. According to Step 2 of the Homomorphic Lifting Algorithm, for i = 0, 1, · · · , n−1,
A = A� (G+ (xui − 1) · Ci) where ui ∈ Zr and

Ci =


a1i(x) a1i(x)s(x) + e1i(x)
a2i(x) a2i(x)s(x) + e2i(x)
a3i(x) a3i(x)s(x) + e3i(x)
a4i(x) a4i(x)s(x) + e4i(x)

+ siG mod Q.

By the definition of the external product � and random flattening, we know that

A�M = (A0, A1)�M = (A0,L, A0,H , A1,L, A1,H) ·M
where A0 = A0,L + A0,H · B and A1 = A1,L + A1,H · B in Rm,Q. Plugging in the form of
G+ (xui − 1) · Ci and denoting the new A by A′ = (A′0, A

′
1), we obtain

A′0 = A0,L · ((xui − 1)(a1i(x) + si) + 1) +A0,H · ((xui − 1)(a2i(x) + siB) +B)

+A1,L · (xui − 1)a3i(x) +A1,H · (xui − 1)a4i(x)

= (xui − 1) [A0,La1,i(x) +A0,Ha2,i(x) +A1,La3,i +A1,Ha4,i] + γ

where γ = (xui − 1)si(A0,L +A0,HB) + (A0,L +A0,HB).
If ui = 0, we know that xui − 1 = 0, implying that A′0 = A0,L + A0,H · B = A0 and

A′1 = A1,L +A1,H ·B = A1. Thus A remains unchanged during this update.
Claim: If ui 6= 0, we claim that xui − 1 is invertible in Rm,Q.
To show this claim, we show xui − 1 and xm + 1 do not share any common roots. For

xm+1, xm ≡ −1 (mod Q) thus all roots have order exactly 2m. On the other hand, xui ≡ 1
(mod Q) so all the roots of xui − 1 have order dividing ui and ui < r = 2m, thus they have
no common roots. This proves the claim.

We can apply Lemma 3.6 to the initial A = (A0, A1) to obtain that at least one of Ai,L
and Ai,H , i = 0, 1 is invertible in Rm,Q. WLOG, we assume A0,L is invertible; thus

A′0 = (xui − 1)A−10,L

[
a1,i(x) +A−10,LA0,Ha2,i(x) +A−10,LA1,La3,i +A−10,LA1,Ha4,i

]
+ γ.

Now a1,i(x) has uniform random independent coefficients and is independent of all the other
terms in this expression for A′0. Thus the result of the sum

S :=
[
a1,i(x) +A−10,LA0,Ha2,i(x) +A−10,LA1,La3,i +A−10,LA1,Ha4,i

]

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 19

is uniform random with independent coefficients. Since (xui − 1)A−10,L is invertible, (xui −
1)A−10,LS is uniform random and with independent coefficients and remains so after adding
γ. Since u is an LWE cipher, least one value ui 6= 0 with extremely high probability.

Next we estimate the error bound on the final ciphertext of the HomLift algorithm. The
following lemma is due to Chillotti et. al. [23] but we make the error bound explicit for our
model.

Lemma 5.2 (Homomorphic Lifting). Let bk = C0, ..., Cn−1 be a bootstrapping key, u =
(u0, ..., un−1, un) ∈ Znr × Zr. Suppose REs(m(x)) ∈ R2

m,Q is a trivial encryption and each
Ck, 0 ≤ k ≤ n− 1, has error size at most τbk. Then

REs(m(x))� (G+ (xu0 − 1)C0)� · · · � (G+ (xun−1 − 1)Cn−1) ≡ REs
(
m(x)x

∑n−1
k=0 uksk

)
with error bounded by 15 · 2Bτbk

√
2`mn with probability 1−m2−161. In particular, we can

let m(x) = t(x)x−unDQ to get REs(t(x)x−un+
∑n−1
k=0 uksk).

Proof. By assumption for 0 ≤ k ≤ n− 1, Ck = GSWs(sk) = Ak + skG where Ak ∈ R(2`)×2
m,Q

and Ak(−s(x), 1)t ≡ w(k)(x) mod (xn + 1, Q) with w(k)(x) ∈ Rm and ||w(k)(x)||∞ ≤ τbk.
Then using the identity in (12),

G+(xuk−1)Ck = (xuk−1)Ak+(1+(xuk−1)sk)G = (xuk−1)Ak+xukskG = GSWs(x
uksk),

and the error polynomial is (xuk − 1)Ak(−s(x), 1)t ≡ (xuk − 1)w(k)(x). So the product we
need to compute becomes

REs(m(x))�GSWs(x
u0s0)� · · · �GSWs(x

un−1sn−1). (13)

Let Rk := REs(m(x)) � GSWs(x
u0s0) � · · · � GSWs(x

uksk) have error term ek(x) and

flattening h(k) ∈ R
(2`)
m,Q so in computing the (k − 2)th product Rk � GSWs(x

uk+1sk+1) ≡
REs

(
m(x)x

∑k+1
j=0 ujsj

)
by Lemma 3.8 the new error term is h(k)(xuk+1 − 1)wk+1(x)t +

xuk+1sk+1ek(x). In the full product (13) the error term is the following, letting ψα(x) :=

x
∑n−1
j=α ujsj ,

ψ0w
(−1) +ψ1(xu0 − 1)h(−1)w(0)t +ψ2(xu1 − 1)h(0)w(1)t + · · ·+ψn(xun−1 − 1)h(n−2)w(n−1)t

(14)
where w(−1) and h(−1) are the error term and flattening of REs(m(x)). Splitting this

into two parts for the sake of independence,

ψ0w
(−1) +

n∑
k=1

ψkx
uk−1h(k−2)w(k−1)t −

n∑
k=1

ψkh
(k−2)w(k−1)t, (15)

we will analyze the first n+ 1 terms together and the latter n terms together. In analyzing
the former, we can drop the ψkx

uk−1 since it just rotates the coefficients and look just at

w(−1) +

n∑
k=1

h(k−2)w(k−1)t. (16)

To analyze one inner product h(k)w(k+1)t we will drop the superscripts to ease notation and

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 20

write

hwt ≡
2∑̀
i=1

hi(x)wi(x) where hi(x), wi(x) ∈ Rm,Q

≡
2∑̀
i=1

m−1∑
j=0

hijx
j

(m−1∑
γ=0

wiγx
γ

)

≡
2∑̀
i=1

m−1∑
j=0

m−1∑
γ=0

hijwiγx
γ+j

≡
2∑̀
i=1

m−1∑
j=0

[(hi0wij + · · ·hijwi0)− (hi,j+1wi,n−1 + · · ·+ hi,n−1wi,n−(n−1−j)]︸ ︷︷ ︸
m− 1 terms

xj .

≡
m−1∑
j=0

2`(m−1)∑
γ=1

hγw̃γx
j .

where in the last line, since the wij ’s come from a distribution that is symmetric about zero,
the −wij ’s can be rewritten as w̃ij which are still iid.

Now each coefficient of xj in the sum in (16) has the form

n(2`(m−1))+1∑
γ=1

hγw̃γ .

Note that among the error terms in the boostrapping key there are 2`n(m−1) iid coefficients;
and these are all represented in these wγ ’s here. The one other term comes from the error
term of the initial REs(m(x)), which is just zero when it is a trivial ciphertext. Thus this
is the sum of N := n(2`(m − 1)) iid bounded uniform random variables |wγ | ≤ τbk or also
subG(τ2bk). However, the hγ coefficients are not independent of the wγ ’s in that in (16) h(i)

depends on all the previous h(j),w(j), j < i. Thus we cannot directly apply Cor 1.7 of [54]
to say the resulting sum is sub-Gaussian, but we can use the result form [56, Corollary 2.4]
to say this,

(Coef of xj) ∼ subG(τ2bk||h||22).

To bound the error, we need to consider bounding all m coefficients at once and do so using
Thm 1.14 of [54],

Prob

[
max

0≤j≤m−1
|Coef of xj | < t

]
≤ 2m exp

(−t2
2τ2bk||h||22

)
.

In particular, to get a bound with very high probability we choose a bound of 15 standard
deviations, t = 15(τbk||h||2) ≤ 15(τbk)

√
NB2 ≤ 15 ·Bτbk

√
2`mn =: τ1, so that the probabil-

ity of any coefficient exceeding this bound is less than 2m exp(−152/2) ≤ m2−161. Similarly
for the last n terms of Equation (15), N will be N := n(2`(m− 1)) and the probability that
any coefficient exceeds 15 ·Bτbk

√
2`mn =: τ2 is at most m2−161. Thus the probability that

any coefficient in (15) exceeds τ1 + τ2 = 15 · 2Bτbk
√

2`mn is at most m2−161.

5.2 Function Lookup.

Now for any function of the following three forms

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 21

(i) f : [0, 2k+1)→ [0, 2k),

(ii) f : (−2k, 2k)→ [0, 2k),

(iii) f : [0, 2k)→ [0, 2k),

we want to find Es(f(y)). The three domains correspond to the three choices (i,ii, iii) for
u, y, and e in Section (5.1).

Using the technique of Carpov et. al. [17] we define the function encoding polynomial as

F (x) :=
∑
i∈M

f(i)xiDr .

Multiplying equation (11) by F (x) we get

Φf (x) := t(x)x−wF (x) ≡ t(x)x−ex−yDrF (x) (mod xm + 1, Q). (17)

Now we claim that the constant term of this polynomial is f(y) (mod Q), the function value
of which we want an encryption.

Lemma 5.3. For y = x1 + x2 ∈ [0, 2k+1) and for any function f : [0, 2k+1) → [0, 2k) the
constant term of Φf (x) is f(y). Similarly, for y = x1 − x2 ∈ (−2k, 2k) and f : (−2k, 2k)→
[0, 2k), the constant term of Φf (y) is f(y). Similarly for y = x1 ∈ [0, 2k) and f : [0, 2k) →
[0, 2k).

Proof. Case 1. For the first case of f : [0, 2k+1)→ [0, 2k) we have by assumption,

Φf (x) ≡ t(x)x−ex−yDr
∑

i∈[0,2k+1)

f(i)xiDr (mod xm + 1).

The polynomial t(x) has a term xe which can cancel with x−e. F (x) has a term f(y)xyDr

which can cancel with x−yDr to give f(y). Thus, in Φf (x) there is the term

xe · x−e · x−yDr · f(y)xyDr ≡ f(y) (mod xm + 1, q).

We just need to show that this is the only constant term in Φf (x). In other words, if
|e1| < Dr/2 and i ∈ [0, 2k+1) so that xe1 is a term in t(x) and f(i)xiDr is a term in F (x)
with either e1 6= e or i 6= y, we need to show that we cannot get e1 − e + (i − y)Dr ≡ 0
(mod m). With either e1 6= e or i 6= y, we have

0 6= |(e1 − e) + (i− y)Dr| ≤ |e1 − e|+ |(i− y)Dr|
< Dr + (2k+1 − 1)Dr

= 2k+1Dr

= r/2 = m.

Thus, e1 − e+ (i− y)Dr 6≡ 0 (mod m). So the only term contributing to the constant term
of Φf (x) is f(y).

Case 2. In the second case of f : (−2k, 2k)→ [0, 2k) we have,

Φf (x) ≡ t(x)x−ex−yDr
∑

i∈(−2k,2k)

f(i)xiDr (mod xm + 1).

The polynomial t(x) has a term xe which can cancel with x−e. F (x) has a term f(y)xyDr

which can cancel with x−yDr to give f(y). Thus, in Φf (x) there is the term

xe · x−e · x−yDr · f(y)xyDr ≡ f(y) (mod xm + 1, Q).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 22

We just need to show that this is the only constant term in Φf (x). In other words, if
|e1| < Dr/2 and i ∈ (−2k, 2k) so that xe1 is a term in t(x) and f(i)xiDr is a term in F (x)
with either e1 6= e or i 6= y, we need to show that we cannot get

e1 − e+ (i− y)Dr ≡ 0 (mod m).

We have (i− y) ∈ [−2k+1 + 2, 2k+1 − 2], and with either e1 6= e or i 6= y,

0 6= |(e1 − e) + (i− y)Dr| ≤ |e1 − e|+ |(i− y)Dr|
< Dr + (2k+1 − 2)Dr

= 2k+1Dr −Dr

< r/2 = m.

Thus, e1 − e+ (i− y)Dr 6≡ 0 (mod m). So the only term contributing to the constant term
of Φf (x) is f(y).

Case 3. The proof is similar to Cases 1 and 2.
Now we will show how Φf (x) can be computed under encryption using the bootstrapping

key, bk, and Es(x1) and Es(x2). Recall,

x−w ≡ x−unx
∑n−1
i=0 siui ,

so an untrusted party performing the HE computations with bk and u = (u0, ..., un) can

compute a HomLift to get REs(t(x)x−unx
∑n−1
k=0 uksk) with the error bound given by Lemma

5.2. Getting F (x) into the product can be done by observing that

REs(Φf (x)) = REs(t(x)x−unx
∑n−1
k=0 uksk) · F (x) (18)

with the error term F (x)w(x). At this point the final error bound will partially depend on
the choice of the function f , which will vary by operation being performed. But we can
consider a worst case bound on the range of f to be [0, 2k), and since the three possible
domains M = [0, 2k+1), M = (−2k, 2k) and M = [0, 2k) have the size bounded by 2k+1 we
can proceed with a general worst case analysis. The error term is

F (x)w(x) =
∑
i∈M

f(i)xiDr
m∑
k=1

wkx
k ≡

∑
i∈M

m∑
k=1

f(i)wkx
k+iDr (mod xm + 1, Q).

Taking a worst case bound and using the bound on w(x) from Lemma 5.2 we have all the
coefficients are bounded by

||F (x)w(x)||∞ ≤ (2k · 2k+1)(15 · 2Bτbk
√

2`mn) = 15(22k+2)Bτbk
√

2`mn (19)

still with probability less than 1−m2−161. Thus we get REs(Φf (x)) with this error bound.
In (18) we can denote the parts of the REs ciphers as

(a(x)F (x), b(x)F (x)) = (a(x), b(x)) · F (x).

From Lemma 5.1, we know that a(x) is uniform random with independent coefficients.
If F (x) is invertible in Rm,Q, then a(x)F (x) will also be uniform random in Rm,Q with
independent coefficients. In almost all cases, F (x) will be invertible, and if ever we needed
to use an F (x) that was not invertible, we could encrypt F (x) as a GSW cipher using a
public key from the boostrapping key and then perform an external product. Lemma 5.1
would then guarantee that the resulting first component of REs(Φf (x)) would be uniform
random with independent coefficients.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 23

Next, we will show how to extract an LWE cipher in ZnQ × ZQ for the constant term of
Φf (x), which is f(y) by Lemma 5.3. We denote

REs(Φf (x)) = (a(x), b(x)) =

(
m−1∑
i=0

aix
i,

m−1∑
i=0

bix
i

)
.

As in Section 4.3.2, for a(x) = a0 + a1x+ · · ·+ am−1x
m−1 ∈ Rm we define

Extract(a(x), i) = (ai, ai−1, . . . , a0,−am−1,−am−2, . . . ,−am−(n−1−i)) ∈ ZnQ.

This is used to get the coefficients of a(x)s(x) mod (xm + 1). Note that, modulo xm + 1,

a(x)s(x) =

n−1∑
k=0

m−1∑
j=0

skajx
k+j

≡
m−1∑
i=0

[(s0ai + s1ai−1 + · · ·+ sia0)

−(si+1am−1 + si+2am−2 + · · ·+ sn−1am−(n−1−i))]x
i.

Hence, for 0 ≤ i ≤ n, the i-th coefficient of a(x)s(x) mod (xm + 1) is equal to the inner
product of s with Extract(a(x), i).

Let a := Extract(a(x), 0) and c := (a, b0). It follows that

b0 ≡ 〈s,a〉+ f(y)D̃Q + v (mod Q)

where |v| ≤ τ where τ is the bound in equation (19). So Es(f(y)) = (a, b0) ∈ ZnQ × ZQ is

an LWE cipher with error bounded by τ with probability 1−m2−161.
Now we will use a modulus reduction to take Es(f(y)) ∈ ZnQ × ZQ to an LWE cipher in

Znr × Zr. For the modulus reduction Lemma 5.4 we need τ ≤ Q
√
n/r which if we solve for

Q is
15(22k+2)Brτbk

√
2`m ≤ Q. (20)

Taking Q at least this big, we get after the modulus reduction Es(f(y)) ∈ Znr ×Zr has error
bounded by 4

√
n. We give the details of the modulus reduction next.

5.3 Modulus reduction

We describe how an LWE ciphertext over ZQ can be converted to an LWE ciphertext over
Zr where r is much smaller than Q in our FHE scheme. This technique of modulus reduction
is used in [14, 15, 16].

Lemma 5.4. (Modulus reduction: deterministic rounding.) If 2k+2|n, n ≥ 210,
x ∈ {0, 1, · · · , 2k − 1}, Q, r ∈ Z+ s.t. Q is odd, r ≥ 2k+6

√
n, Q ≥ 2k+2 · r, e ∈ Z with

|e| ≤ τ = Q
√
n

r , Dr = br/2k+2c, DQ = bQ/2k+2c, given a ∈ ZnQ uniformly random with
independent components, s ∈ {0, 1}n with Ham(s) ≤ ρn and

b ≡ 〈s,a〉+ e+ xDQ (mod Q),

let
b′ = brb/Qe, a′ = bra/Qe,

computed component wise, then

b′ ≡ 〈s,a′〉+ e′ + xDr (mod r)

for some e′ ∈ Z s.t. |e′| < 4
√
n with probability ≥ 1− 2−(

17.7
ρ ln 2−1).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 24

Proof. Note that

b′ =
rb

Q
+ ε0, a′i =

rai
Q

+ εi, 1 ≤ i ≤ n,

for some εi ∈ R with |εi| < 1/2 for 0 ≤ i ≤ n. The fact that |εi| 6= 1/2 comes from that Q is
odd. Let gcd(r,Q) = d, Q = q1d and r = r1d. Then rai/Q = r1ai/q1. Since all the ai are
independently uniform random in ZQ, we know all the r1ai are independently uniform in
Zq1 , implying that rai

Q are also independently uniform random on 1
q1
Z/(q1Z), (by which we

mean the set of fractions consisting of the standard representatives of Zq1 all divided by q1).
By choosing the closest integer to rai

Q , we know that E(εi) = 0 and |εi| < 1/2 for 1 ≤ i ≤ n,

implying that εi ∼ subG(1/4) and are independent. Since b = s at + e+xDQ +Qy for some
integer y, we have

rb

Q
=

n∑
i=1

si
rai
Q

+
re

Q
+ x

rDQ

Q
+ ry,

hence b′ =
∑n
i=1 sia

′
i + xDr + e′ + ry, where e′ is an integer and

e′ = ε0 −
n∑
i=1

siεi + x

(
rDQ

Q
−Dr

)
+
re

Q
.

If 2k+2|n and Q ≥ 2k+2 · r, then in fact Dr = r/2k+2. Noticing that

| r
Q
DQ −Dr| =

r

Q
|DQ −

Q

r
Dr| =

r

Q
|bQ/2k+2c −Q/2k+2| ≤ r

Q
≤ 1

2k+2
,

we know that

|x(
r

Q
DQ −Dr)| ≤ |x| ·

1

2k+2
< 2k · 1

2k+2
= 1/4.

We apply Corollary 1.7 in [54] for
∑n
i=1 siεi with bound 2.975√

ρ ‖s‖ ≤ 2.975
√
n to obtain

P (|
n∑
i=1

siεi| > 2.975
√
n) = P (|

n∑
i=1

siεi| >
2.975√
ρ
‖s‖) < 2 · e− 17.7

ρ < 2 · 2− 17.7
ρ ln 2 = 2−(

17.7
ρ ln 2−1).

Thus with probability ≥ 1− 2−(
17.7
ρ ln 2−1), since n ≥ 210,

|e′| < 1/2 + 2.975
√
n+ 1/4 +

√
n

< 3/4 + 3.975
√
n

< 0.025
√
n+ 3.975

√
n

= 4
√
n

which completes the proof.
Our generic bootstrapping algorithm is described in Figure 5, for computing one HomLift

followed by an independent number of function lookups.

Theorem 5.5. Suppose a bootstrapping key bk has error size at most τbk, r is divisible by
2k+2 and

r ≥ 2k+6
√
n, Q ≥ 15(22k+2)Brτbk

√
2`m

Then, for any LWE cipher Es(y) = u ∈ Znr × Zr with error size < Dr/2 the bootstrapping
algorithm in Figure 5 outputs random LWE ciphers Es(fj(y)), ∈ Znr × Zr, all with error
< Dr/4 = 4

√
n for any lookup functions fj : M → [0, 2k).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 25

Generic Bootstrapping Algorithm : BTbk(u)

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

u ∈ Znr × Zr where u = Es(y) .
Output: Es(fj(y)), for 1 ≤ j ≤ α for fj : M → [0, 2k) where

M = [0, 2k+1) or (−2k, 2k) or [0, 2k).
Step 1. HomLift:

A := HomLiftbk(u, bk)
Step 2. Function lookup: For j from 1 to α do

Fj(x) :=
∑
i∈M f(i)xiDr , 1 ≤ j ≤ α,

Aj := A · Fj(x)

Step 3. Extract: suppose Aj = (aj(x),
∑m−1
i=0 bjix

i) ∈ R2
m,Q. Set

aj := (Extract(aj(x), 0), bj0) ∈ ZnQ × ZQ,

Step 4. Modulus reduction: For j from 1 to α do
cj := braj/Qe ∈ Znr × Zr.

Step 5. Return cj , 1 ≤ j ≤ α.

Figure 5: Boostrapping Algorithm

Proof. Let w = un−
∑n−1
i=0 siui. By Lemma 5.2 after Step 1, A = REs(t(x)x−w) with error

bounded by 15 · 2Bτbk
√

2`mn with probability 1−m2−161.
At Step 2, letting A = (a(x), b(x)) ∈ Rm,Q, we have

bj(x) ≡ aj(x)s(x) + t(x)x−wDQ + v(x) mod (xm + 1, Q), (21)

and v(x) ∈ Rm with ||v(x)||∞ ≤ 15 ·2Bτbk
√

2`mn with probability 1−m2−161. Now letting
Aj = (a(x)Fj(x), b(x)Fj(x)), we have

bj(x)Fj(x) ≡ aj(x)Fj(x)s(x) + t(x)x−wFj(x)DQ + v(x)Fj(x) mod (xm + 1, Q), (22)

with by equation (19), ||v(x)F (x)||∞ ≤ 15(22k+2)Bτbk
√

2`mn with probability 1−m2−161.
In Step 3 let

uj := Extract(aj(x), 0).

We have
bj0 ≡ 〈s,uj〉+ cjDQ + vj0 (mod Q),

where cj is the constant term of t(x)x−wFj(x), which by Lemma 5.3 is fj(y) and |vj0| ≤
15(22k+2)Bτbk

√
2`mn with probability 1−m2−161.

At Step 5, for ρ = 1/8, we apply the modulus reduction in Lemma 5.4 to aj to get LWE
ciphers in Znr × Zr with error size < 4

√
n = Dr/4 for probability greater than 1 − 2−143.

To apply this modulus reduction, we need aj to have uniform random independent entries,
and this follows from Lemma 5.1.

5.4 Select k-bit Arithmetic Operations

Using the HomLift procedure and a variety of novel functions and relations we are able to
perform many useful arithmetic operations homomorphically.

Addition (mod p ≤ 2k). To homomorphically add x1, x2 ∈ [0, 2k) modulo p ≤ 2k, we
take y = x1 + x2 in Equation (10) and use the function

f : [0, 2k+1)→ [0, p) ⊂ Z,

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 26

y 7→ y (mod p).

Then for two ciphertext of x1 and x2 we can perform the addition using one HomLift and
f :

Addmodp(Es(x1), Es(x2)) = Es(f(x1 + x2)) = Es(x1 + x2 (mod p)).

The algorithm is show in Figure 6.

Addition (mod p ≤ 2k) : Addmodp(Es(x1),Es(x2), p)

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

v1,v2 ∈ Znr × Zr where vi = Es(xi) for x1, x2 ∈ [0, 2k).
Output: Es(x1 + x2 (mod p))
Step 1. Compute u := v1 + v2 = (u0, . . . , un−1, un) ∈ Znr × Zr.
Step 2. HomLift:

A := HomLift(u, bk)
Step 3. Function lookup:

F (x) :=
∑
i∈M f(i)xiDr , with M = [0, 2k+1)

and f(y) = y (mod p).
A := A · F (x)

Step 4. Extract: suppose A = (a(x),
∑m−1
i=0 bix

i) ∈ R2
m,Q. Set

a := (Extract(a(x), 0), b0) ∈ ZnQ × ZQ,

Step 5. Modulus reduction:
c := bra/Qe ∈ Znr × Zr.

Step 6. Return c.

Figure 6:

Subtraction (mod p ≤ 2k) To homomorphically subtract two k bit integers x1, x2 ∈
[0, 2k) modulo p ≤ 2k, we take y = x1 − x2 and use the function

f : (−2k, 2k)→ [0, p) ⊂ Z

y 7→ y (mod p).

Then for two ciphertext of x1 and x2 we can perform the following using one HomLift and
f

Submodp(Es(x1), Es(x2)) = Es(f(x1 − x2)) = Es(x1 − x2 (mod p)).

Addition in Z For x1, x2 ∈ [0, 2k), x1 + x2 = y0 + y12k ∈ Z where y0 has k bits and
y1 has one bit. Since the sum of x1 and x2 in Z will be a k + 1 bit message, if we want
to store that result in a ciphertext will need to store it across two ciphertext, since each
ciphertext is the encryption of only k message bits. We will need two functions to do this,
f0 will extract the lower k bits,

f0 : [0, 2k+1)→ Z,

y 7→ y (mod 2k) = y0.

Another function f1 will extract the 1 highest bit, f1 : [0, 2k+1)→ Z, y 7→ by/2kc = y1.
Then for ciphertexts of x1 and x2 we can get an encryption of x1 +x2 in Z spread across

two ciphertexts using one bootstrapping and two function lookups,

AddinZ(Es(x1), Es(x2)) = (Es(f0(x1 + x2)), Es(f1(x1 + x2)))

= (Es(y0), Es(y1)) .

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 27

Multiplication (mod p < 2k odd). To multiply x1, x2 ∈ [0, 2k) modulo p < 2k, p
odd, and get one cipher for x1 · x2 (mod p) ∈ [0, 2k), the key will be to use the following
identity which holds in Z

x1 · x2 =

(
x1 + x2

2

)2

−
(
x1 − x2

2

)2

. (23)

If we consider this equation modulo p for p odd, 2 will have an inverse and (23) becomes

x1 · x2 ≡ ((x1 + x2)2−1)2 − (x1 − x2)2−1)2 (mod p).

Note that if p were even, 2 would not have an inverse modulo p and this equation would

not be well defined. We will find intermediate ciphertexts for z1 :=
(
x1+x2

2

)2
(mod p) and

z2 :=
(
x1−x2

2

)2
(mod p), using two HomLifts. First for z1 :=

(
x1+x2

2

)2
(mod p) we have

x = x1 + x2 ∈ [0, 2k+1). We will use the function

f1 : [0, 2k+1)→ [0, p) ⊂ Z,

f1(x) =
(
x · 2−1

)2
(mod p).

Then one HomLift and one function lookup gives a ciphertext Es (z1) .
Now to get the intermediate ciphertext for z2 we will perform another HomLift of u :=

Es(x1)−Es(x2) and use the function

f2 : (−2k, 2k)→ [0, p) ⊂ Z,

f2(x) =
(
x(2−1)

)2
(mod p).

Thus one HomLift and one function lookup gives a ciphertext Es (z2) .
Finally, we will need to combine these two ciphertexts Es (z1) and Es (z2) to get one for

x1 · x2 ≡ z1 − z2 (mod p). We have z1 − z2 ∈ (−2k, 2k), and we will use the function

f3 : (−2k, 2k)→ [0, p) ⊂ Z,

f3(x) = x (mod p).

Now the one final HomLift and function lookup gives us a ciphertext for x1 ·x2 ≡ z1−z2
(mod p). In total, we needed three HomLifts to do this multiplication modulo p < 2k odd.
The procedure is shown in Figure 7.

Multiplication (mod 2k). To take two cipher for x1, x2 ∈ [0, 2k) and get one ciphers
for x1 ·x2 (mod 2k) ∈ [0, 2k), we cannot use the identity in (23) modulo 2k because 2 would
not have an inverse, but we can use the following modified identity that holds modulo 2k

x1 · x2 ≡
⌊

(x1 + x2)2 (mod 2k+2)

4

⌋
−
⌊

(x1 − x2)2 (mod 2k+2)

4

⌋
(mod 2k). (24)

Using this we can compute a cipher of k bits for z1 :=
⌊
(x1+x2)

2 (mod 2k+2)
4

⌋
using a HomLift

of y = x1 + x2 and the function

f1 : [0, 2k+1)→ [0, 2k),

f1(x) =

⌊
x2 (mod 2k+2)

4

⌋
.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 28

Mult (mod p < 2k odd) : Multmodpodd(Es(x1),Es(x2), p)

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

v1,v2 ∈ Znr × Zr where vi = Es(xi) for x1, x2 ∈ [0, 2k).
p < 2k odd.

Output: Es(x1 · x2 (mod p))
Step 1. Compute u := v1 + v2, ũ := v1 − v2 ∈ Znr × Zr.
Step 2. HomLift:

A1 := HomLift(u, bk), A2 := HomLift(ũ, bk)
Step 3. Function lookup:

A1 := A1 · F1(x), A2 := A2 · F2(x)

Step 4. Extract: For j = 1, 2 suppose Aj = (aj(x),
∑m−1
i=0 bjix

i) ∈
R2
m,Q. Set

aj := (Extract(aj(x), 0), bj0) ∈ ZnQ × ZQ,

Step 5. Modulus reduction: For j = 1, 2 do
cj := braj/Qe ∈ Znr × Zr.

Step 6. Compute u := c1 − c2
Step 7. HomLift:

A := HomLift(u, bk),
Step 8. Function lookup:

A := A · F3(x),

Step 9. Extract: suppose A = (a(x),
∑m−1
i=0 bix

i) ∈ R2
m,Q. Set

a := (Extract(a(x), 0), b0) ∈ ZnQ × ZQ,

Step 10. Modulus reduction:
c := bra/Qe ∈ Znr × Zr.

Step 11. Return c.

Figure 7:

We also compute a cipher of k bits for z2 :=
⌊
(x1−x2)

2 (mod 2k+2)
4

⌋
by a HomLift of

y = x1 − x2 ∈ (−2k, 2k), and the function

f2 : (−2k, 2k)→ [0, 2k),

f2(x) =

⌊
x2 (mod 2k+2)

4

⌋
.

Finally, we do another HomLift of z1 − z2 and use the function

f3 : (−2k, 2k)→ [0, 2k),

f3(x) = x (mod 2k),

to get a cipher Es(x1 · x2 (mod 2k)). In total we needed three HomLifts to do this multi-
plication modulo 2k.

Multiplication in Z Given ciphers Es(x1) and Es(x2) for x1, x2 ∈ [0, 2k), we want to
compute their product in Z, which can be express as

x1 · x2 = y0 + y12k

where y0 ∈ [0, 2k) and y1 ∈ [0, 2k − 1). We will need to store the result y0 and y1 encrypted
in two separate ciphertexts. Using our multiplication mod 2k we can get a ciphertext for y0

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 29

as y0 ≡ x1 ·x2 (mod 2k), and using two of the same HomLifts but different lookup functions
for our multiplication mod p = 2k − 1, we get an intermediate ciphertext ỹ1 := x1 · x2
(mod 2k − 1). This is equivalent to the following

ỹ1 = x1 · x2 (mod 2k − 1)

= y0 + y12k (mod 2k − 1)

≡ y0 + y1 (mod 2k − 1),

since 2k ≡ 1 (mod 2k − 1). Computing y0 and ỹ1 takes 4 HomLifts. Finally we get a
ciphertext for y1 by y1 = ỹ1 − y0 (mod 2k − 1). This brings the total HomLifts to 5. Two
pairs of HomLifts can be done in parallel, leaving the number of sequential HomLifts at 3.
The procedure is show in Figure 11 where the lookup functions are defined as follows.

1. f1 : [0, 2k+1)→ [0, 2k), f1(x) =
⌊
x2 (mod 2k+2)

4

⌋
.

2. f2 : (−2k, 2k)→ [0, 2k), f2(x) =
⌊
x2 (mod 2k+2)

4

⌋
.

3. f3 : [0, 2k+1)→ [0, 2k − 1), f3(x) =
(
x(2−1)

)2
(mod 2k − 1).

4. f4 : (−2k, 2k)→ [0, 2k − 1), f4(x) =
(
x(2−1)

)2
(mod 2k − 1).

5. f5 : (−2k, 2k)→ [0, 2k), f5(x) = x (mod 2k).

6. f6 : (−2k, 2k)→ [0, 2k), f6(x) = x (mod 2k − 1).

7. f7 = f6.

Recall that specifying the lookup function along with its domain is sufficient to define the
corresponding function encoding polynomial.

Field inverse in Fp for p < 2k. The preceding operations have all been binary,
combining two ciphertext in some way. These remaining operations are unitary operations
performed on a single ciphertext. For p < 2k prime, Zp is a field and as such every element
except for 0 has a multiplicative inverse. We can homomorphically compute the inverse
x ∈ [0, p) as follows. We let u = Es(x) and perform a HomLift following by a function
lookup using

f : (0, p)→ (0, p)

f(i) = i−1 (mod p).

Computing i−1 (mod p) is in general best done using the extended Euclidean algorithm, but
for our use here since k is not large f could be computed using a simple table lookup. At this
level, we must leave it to the designer of homomorphic circuit to avoid calling this function
for 0 which has no inverse. Having this operations completes all the basic field operations in
Fp. The procedure is giving in Figure 8 and takes one HomLift. This same operation works
if p is not prime, but in that case there will be more elements that do not have inverses,
since Zp would not be a field. In particular, x ∈ Zp is invertible if gcd(x, p) = 1.

Power operation (mod p ≤ 2k). For the ciphertext of x ∈ [0, 2k) we show how to
compute xα for any power α ∈ Z+ using only one HomLift. We perform a HomLift of
u := Es(x) and then use the function lookup,

f : [0, 2k)→ [0, 2k)

f(i) = iα (mod p).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 30

Fp Inverse : Inversemodp(Es(x), p) where p ≤ 2k is prime.

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

u ∈ Znr × Zr where u = Es(x) for x ∈ (0, 2k).
Output: Es(x

−1 (mod p))
Step 1. HomLift:

A := HomLift(u, bk)
Step 3. Function lookup:

F (x) :=
∑
i∈M f(i)xiDr , with M = (0, 2k)

and f(i) = i−1 (mod p).
A := A · F (x)

Step 4. Extract: suppose A = (a(x),
∑m−1
i=0 bix

i) ∈ R2
m,Q. Set

a := (Extract(a(x), 0), b0) ∈ ZnQ × ZQ,

Step 5. Modulus reduction:
c := bra/Qe ∈ Znr × Zr.

Step 6. Return c.

Figure 8:

The procedure is giving in Figure 9 and takes one HomLift.
RELU. The RELU function (Rectified Linear Units) is one of the most common machine

learning activation functions. For creating neural nets that can operate on encrypted data
homomorphically this is a very desirable function. The RELU problem is to compute the
following max function

x+ := max{0, x}.
There are potentially several domains that x may be chosen from. If we specify to x ∈
(−2k, 2k) ⊂ Z we can solve this. In particular, consider x ∈ (−2k, 2k), then

x+ :=

{
0 if x ∈ (−2k, 0)
x if x ∈ [0, 2k).

If we are given Es(x) for x ∈ (−2k, 2k), we can perform a HomLift of u := Es(x) and use
the lookup function f(x) = x+, and the function encoding polynomial

F (x) =
∑

i∈(−2k,2k)

f(i)xiDr

to get Es(x
+). The procedure is giving in Figure 10 and takes one HomLift.

5.5 Combining operations

In this paper, we do not get into the details of how to combine these operations when
creating a circuit. We do point out that care will need to be taken when managing cipher-
texts that store the higher and lower bits of an integer resulting from the operations of
addition/multiplication in Z.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 31

Power (mod p ≤ 2k): Powermodp(Es(x), α, p)

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

u ∈ Znr × Zr where u = Es(x) for x ∈ [0, 2k). p ≤ 2k, α ∈ Z+

Output: Es(x
α (mod p)).

Step 1. HomLift:
A := HomLift(u, bk)

Step 3. Function lookup:
F (x) :=

∑
i∈M f(i)xiDr , with M = [0, 2k)

and f(i) = iα (mod p).
A := A · F (x)

Step 4. Extract: suppose A = (a(x),
∑m−1
i=0 bix

i) ∈ R2
m,Q. Set

a := (Extract(a(x), 0), b0) ∈ ZnQ × ZQ,

Step 5. Modulus reduction:
c := bra/Qe ∈ Znr × Zr.

Step 6. Return c.

Figure 9:

RELU : RELU(Es(x))

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

u ∈ Znr × Zr where u = Es(x) for x ∈ (−2k, 2k).
Output: Es(x

+).
Step 1. HomLift:

A := HomLift(u, bk)
Step 3. Function lookup:

F (x) :=
∑
i∈M f(i)xiDr , with M = (−2k, 2k)

and f(i) = i+.
A := A · F (x)

Step 4. Extract: suppose A = (a(x),
∑m−1
i=0 bix

i) ∈ R2
m,Q. Set

a := (Extract(a(x), 0), b0) ∈ ZnQ × ZQ,

Step 5. Modulus reduction:
c := bra/Qe ∈ Znr × Zr.

Step 6. Return c.

Figure 10:

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 32

Mult in Z : MultinZ(Es(x1),Es(x2))

Input: bk = (C0, . . . , Cn−1) ∈
{
R

(2`)×2
m,Q

}n
: bootstrapping key,

v1,v2 ∈ Znr × Zr where vi = Es(xi) for x1, x2 ∈ [0, 2k).
Output: Es(y0), Es(y1) st x1 · x2 = y0 + y12k

Step 1. Compute u := v1 + v2, ũ := v1 − v2 ∈ Znr × Zr.
Step 2. HomLift:

A := HomLift(u, bk), Ã := HomLift(ũ, bk)
Step 3. Function lookup:

A1 := A · F1(x), A2 := Ã · F2(x)

A3 := A · F3(x), A4 := Ã · F4(x)

Step 4. Extract: For j = 1 to 4, suppose Aj = (aj(x),
∑m−1
i=0 bjix

i).
Set

aj := (Extract(aj(x), 0), bj0) ∈ ZnQ × ZQ,

Step 5. Modulus reduction: For j from 1 to 4 do
cj := braj/Qe ∈ Znr × Zr.

Step 6. Compute ū := c1 − c2, ü := c3 − c4
Step 7. HomLift:

Ā := HomLift(ū, bk), Ä := HomLift(ü, bk)
Step 8. Function lookup:

A5 := Ā · F5(x), A6 := Ä · F6(x)

Step 9. Extract: For j = 5, 6 suppose Aj = (aj(x),
∑m−1
i=0 bjix

i). Set
aj := (Extract(aj(x), 0), bj0) ∈ ZnQ × ZQ,

Step 10. Modulus reduction: For j = 5, 6
cj := braj/Qe ∈ Znr × Zr.

Step 11. Compute û := c6 − c5,
Step 12. HomLift:

Â := HomLift(û, bk),
Step 13. Function lookup:

A7 := Â · F7(x),

Step 14. Extract: For j = 7, suppose Aj = (aj(x),
∑m−1
i=0 bjix

i). Set
aj := (Extract(aj(x), 0), bj0) ∈ ZnQ × ZQ,

Step 15. Modulus reduction: For j = 7 do
cj := braj/Qe ∈ Znr × Zr.

Step 16. Return: c5 = Es(y0) and c7 = Es(y1).
Lookup functions:

f1 : [0, 2k+1)→ [0, 2k), f1(x) =
⌊
x2 (mod 2k+2)

4

⌋
.

f2 : (−2k, 2k)→ [0, 2k), f2(x) =
⌊
x2 (mod 2k+2)

4

⌋
.

f3 : [0, 2k+1)→ [0, p), f3(x) =
(
x(2−1)

)2
(mod p).

f4 : (−2k, 2k)→ [0, p), f4(x) =
(
x(2−1)

)2
(mod p).

f5 : (−2k, 2k)→ [0, 2k), f5(x) = x (mod 2k).
f6 : (−2k, 2k)→ [0, 2k), f6(x) = x (mod 2k − 1).
f7 = f6

Figure 11: Homomorphic integer multiplication of x1, x2 ∈ [0, 2k) with output stored
in two ciphertexts: x1 · x2 = y0 + y12k ∈ Z where both y0 and y1 have k bits,
MultinZ(Es(x1), Es(x2)) = (Es(y0), Es(y1)) .

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 33

6 Fully homomorphic encryption scheme

6.1 Parameter Conditions

We shall assume that k ∈ Z+, n ≥ 1024 is a power of 2, r is a power of 2, m = r/2, and

` = 2, r ≥ 2k+6
√
n, q ≥ 27rn.

For B and Q we need them to satisfy the assumptions of Theorem 5.5,

15(22k+2)Brτbk
√

2`m ≤ Q < B2.

This implies 15(22k+2)rτbk
√

2`m ≤ B′ < B. We will also take Q = B · B′ with both B,
B′ prime for Lemma 3.6. In practice to make the implementation more efficients, we will
choose B,B′ such that r|(B − 1) and r|(B′ − 1). This will allow more efficient FFTs when
parallelizing using the CRT. Let

Rn,r = Z[x]/(xn + 1, r), Rn,q = Z[x]/(xn + 1, q), Rm,Q = Z[x]/(xm + 1, Q),

Dr = br/2k+2c, Dq = bq/2k+2c, DQ = bQ/2k+2c.
Each user generates a secret key s ∈ {0, 1}n and a public key as described in Section 4.
Bootstrapping key (standard).

A corresponding bootstrapping key bk = (C0, C1, . . . , Cn−1) is generated as follows. For
each 0 ≤ i ≤ n− 1 do the following:

• pick aji(x) ∈ Rm,Q uniform random and independent, for 1 ≤ j ≤ 4,

• pick eji(x) ∈ Rm bounded uniform random and independent with

τbk = ||eji(x)||∞ ≤ 2
√
n, 1 ≤ j ≤ 4,

• Compute bji(x) := aji(x)s(x) + eji(x) mod (xm + 1, Q), for 1 ≤ j ≤ 4,

• Set

Ci :=


a1i(x) b1i(x)
a2i(x) b2i(x)
a3i(x) b3i(x)
a4i(x) b4i(x)

+ siG mod Q.

Bootstrapping key (smaller). Now we introduce some size optimizations for storing the
boostrapping key. We do so by storing each of the four RLWE ciphertexts that correspond to
si for each 0 ≤ i ≤ n−1 in a more compact form. Let t := dlog2(Q)e−1, hence 2t < Q ≤ 2t+1,
and assume we have a PRG P : {0, 1}m → {0, 1}4tm−2t. Sample ui ∈ {0, 1}m uniform
random and then use the PRG to expand it to represent the polynomials a3i(x), a4i(x) and
all the terms of a1i(x), a2i(x) except their constant terms, call these ã1i(x), ã2i(x). Randomly
sample the constant terms ã1i0, ã2i0 separately from ZQ. Then let

a1i(x) := ã1i(x) + ã1i0 + si

and
a2i(x) := ã2i(x) + ã2i0 + siB

with constant terms denoted as
a1i0 := ã1i0 + si

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 34

and
a2i0 := ã2i0 + siB.

Now using the bootstrapping key encryption subroutine in Figure 12 (proof similar to private
key encryption) to round the RLWE ciphertexts, we get that the bootstrapping key can be
defined as

Ci :=


a1i(x) BTs(a1i(x), 0)
a2i(x) BTs(a2i(x), 0)
a3i(x) BTs(a3i(x), si)
a4i(x) BTs(a4i(x), siB)

 mod Q.

But we only need to store the seed u and the constant terms a1i0 and a2i0. Thus we can
recreate Ci from the following

{u, a1i0, a2i0,BTs(a1i(x), 0),BTs(a2i(x), 0),BTs(a3i(x), si),BTs(a4i(x), siB)}

which is m+ 2t+ 4(t− 5)m bits. Thus the entire boostrapping key Ci, 0 ≤ i ≤ n− 1, can
be recreated from n(m+ 2t+ 4(t− 5)m) bits.

Bootstrapping key Subroutine : BTs(a(x),m(x))

Input: s(x) =
∑n−1
i=0 six

i where si ∈ {0, 1}, an n-bit secret key,
m(x) message to encrypt, a(x) uniform random
t := dlog2(Q)e − 1, hence 2t < Q ≤ 2t+1,

Output: v ∈ {0, 1}(t−5)m
Step 1. Pick w(x) ∈ Rm uniform randomly with ‖w(x)‖∞ ≤

√
n = 26,

and
b1(x) := a(x)s(x) + w(x) +m(x) mod (xm + 1, Q)
(so that each coefficient of b1(x) is between 0 and Q− 1).

Step 2. Taking the highest t− 5 bits for each coefficient of b1(x):
b(x) := bb1(x)/25c.

Let v ∈ ({0, 1}t−5)m denote the bit representation of b(x).
Step 2. Return v.

Figure 12:

Lemma 6.1. Let (a(x), b(x)) ∈ R2
m,Q be as computed in Figure 12, then there exists w3(x) ∈

Rm with ||w3(x)||∞ < 2
√
n = 27 so that

25b(x)− s(x)a(x) ≡ w3(x) +m(x)B mod (xm + 1, Q).

Proof. By Step 1, since the coefficients of b1(x) are between 0 and Q− 1, we have

b1(x) = 25b(x) + b0(x)

for some b0 ∈ Rm with ||b0(x)||∞ < 26. By Step 2, we have

25b(x)− s(x)a(x) ≡ −b0(x) + w(x) +m(x)B mod (xm + 1, Q).

Thus,

|| − b0(x) + w(x)||∞ ≤ ||b0(x)||∞ + ||w(x)||∞ <
√
n+
√
n = 2

√
n.

Therefore, the lemma holds with w3(x) = w(x)− b0(x).

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 35

6.2 Suggested Parameters Sizes

The main parameters affecting performance and security that need to be fixed in choosing
concrete parameters are n and k. To meet the necessary security constraints analyzed more
fully in the next section we will need n ≥ 212. With n = 212 we can consider several
possible values of k. In Figures 13, we list some parameters that satisfy the conditions
above. The row for cs gives the ciphertext expansion ratio under private-key encryption,
that is, the bit size of a ciphertext of an n-bit message divided by n; the row for cpk gives
the ciphertext expansion ratio under public-key encryption. The row for bk indicates the bit
size of bootstrapping keys. Note that the size of the boostrapping key grows exponentially
as k increases, and this is a reason in practice to choose a small k.

n 212 212 212 212 212

k 1 2 3 4 5
r = 2k+6

√
n 213 214 215 216 217

m = r/2 212 213 214 215 216

q ≥ 27rn 32 bits 33 bits 34 bits 35 bits 36 bits
Q 71 bits 78 bits 85 bits 92 bits 99 bits
cs 7 4 3 2.5 2.2
cpk 20 11 8 6.5 5.6
bk transmit 1128 MB 2491 MB 5452 MB 11844 MB 25,568

MB
λ1 BKZ 1000+ 1000+ 1000+ 1000+ 1000+
λ2 BKZ 838 798 762 728 696
λ3 BKZ 249 219 196 177 162

Figure 13: Suggested Parameters: The row of cs gives the cipher expansion under private-
key encryption, the row of cpk is for cipher expansion for public-key encryption, and the row
bk is for the size of bootstrapping keys. The row λi is the security estimate for ciphertexts
of Type i in Section 7

Failure probability The probability of failure has been bounded at each step, the largest
the probability of failure has grown to is less than 2−140.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 36

7 Security analysis

In this section, we give a brief analysis of the security of our homomorphic encryption
scheme. Although the LWE and RLWE problems have hardness tied to worst case lattice
problems, we still need to estimate the concrete complexity of all current attacks for our
proposed parameters. This is an active and ongoing important area of research, particularly
in light of the NIST post-quantum cryptography process.

In our scheme, according to Figure 13, n is a power of 2 and we have RLWE ciphertexts
over Zq for three choices of q:

Type 1. q = r = 2k+6
√
n and the error size is bounded by 4

√
n: corresponding to ciphertexts

in R2
n,q from private-key and public-key encryptions of the original data (see Lemmas

4.1 and 4.2);

Type 2. q ≈ 27rn and the error size is bounded by Dq/(512n) ≥ 4
√
n: corresponding to the

public key pk = (k0(x), k1(x)) ∈ R2
n,q;

Type 3. q = Q ≈ 27k+32n1.5τ2bk and the error size is bounded by τbk = 2
√
n: corresponding to

a bootstrapping key Ci ∈ R2
m,Q, 1 ≤ i ≤ n and the extractions into ZnQ × ZQ.

Number theoretic attacks.
The RLWE problem over the above two rings and more general rings of the form

Z[x]/(f(x), q) have been studied in [30, 31, 18, 19, 20, 21] using algebraic number theory.
They present several attacks that show many weak instances of the general rings. However,
their attacks do not apply to the two rings used by our scheme. In fact, one of the main
ideas of the attacks is to test if f(x) modulo q has a factor of small degree and the roots
of the factor have a small multiplicative order. For our two rings, when n is a power of 2,
xn + 1 has all roots of order 2n modulo any q > 2. Similarly for xm + 1. Hence the number
theoretic attacks can not be applied effectively to our rings.
Lattice basis reduction attacks. The most powerful attacks on RLWE/LWE is to use
the lattice basis reduction algorithm (LLL) due to Lenstra, Lenstra and Lovasz (1982, [42]);
see [50] for its practical performance and [48, 49] for its recent improvements. There is also a
BKZ variation [57, 22], which uses SVP oracles [47, 36, 58, 59, 40, 41, 10]. There are several
approaches that can reduce LWE problems over Zq to lattice problems over Z, including
the SIS method [1, 46, 43], the BKW method [12, 3, 4, 5, 28, 35, 39], the bounded distance
decoding (BBD) method [38, 43, 44, 8].

The paper by Albrecht, Player and Scott [6] gives a nice survey on these methods and
give concrete complexity analysis; they also have an LWE estimator (bitbucket.org/malb/
lwe-estimator) that is also used to give the security estimates for the HE Standards
document [2]. These LWE estimates are based on discrete Gaussian error and so do not
apply directly to our bounded uniform distribution. However, the known lattice reduction
attacks do not make use of the particular error distribution; but rather, their performance
depends on the standard deviation of the error distribution. Thus, it has become common
to use the LWE estimator even when the error distribution is not Gaussian, e.g. in the
NewHope Round 2 NIST submission the error is binomial.

We use a bounded uniform distribution with error bound τbk = 2
√
n for the boostrapping

key and τ = 4
√
n for all other ciphertexts. The variance of a discrete bounded uniform

distribution on [a, b] is
(b− a+ 1)2 − 1

12
.

Thus the variance our our τ bounded error distribution is (2τ+1)2−1
12 . Our code for using the

estimator for our parameters follows.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 37

load("https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py")

#For estimating the security of Type 1 ciphers

n = 2^12; q = 2^13; #q=2^{13,14,15,16,17}

tau = 4 * sqrt(n); var = ((2*tau +1)^2 - 1)/12; stddev = sqrt(var); alpha =

alphaf(sigmaf(stddev), q)

_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

#For estimating the security of Type 2 ciphers

n = 2^12; q = 2^32; # q = 2^{32,33,34,35,36}

tau = 4 * sqrt(n); var = ((2*tau +1)^2 - 1)/12; stddev = sqrt(var); alpha =

alphaf(sigmaf(stddev), q)

_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

#For estimating the security of Type 3 ciphers

n = 2^12; q = 2^100; # q = 2^{71,78,85,92,99}

tau = 2 * sqrt(n); var = ((2*tau +1)^2 - 1)/12; stddev = sqrt(var); alpha =

alphaf(sigmaf(stddev), q)

_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

8 Conclusions

We presented a fully homomorphic encryption scheme with a small cipher expansion and
k-bit arithmetic operations. The scheme is suitable for practical applications in distributed
networks of computers, including IoTs, blockchains and cloud servers and can protect func-
tion privacy and can be used in many applications including outsourced computing. On the
theoretical side, this is the first FHE scheme to achieve asymptotically a ciphertext expan-
sion factor of 1, and to our knowledge demonstrate k-bit multiplication done in the integers
as in Figure 11. Moreover, through more study of sub-Gaussian properties, we have been
able to avoid using an Independence Heuristic as in the Chillotti et al. [25] TFHE schemes.

References

[1] M. Ajtai, Generating hard instances of lattice problems (extended abstract), Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing (New York,
NY, USA), STOC ’96, ACM, 1996, pp. 99–108.

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Daniele Micciancio, et al.,
Homomorphic encryption standard, (2018).

[3] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret, On the complexity of the BKW algorithm on LWE, Des. Codes Cryptography
74 (2015), no. 2, 325–354.

[4] Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret,
Lazy modulus switching for the BKW algorithm on LWE, Public-Key Cryptography
– PKC 2014 (Berlin, Heidelberg) (Hugo Krawczyk, ed.), Springer Berlin Heidelberg,
2014, pp. 429–445.

[5] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert, On the efficacy of solving
LWE by reduction to unique-SVP, Information Security and Cryptology – ICISC 2013

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 38

(Cham) (Hyang-Sook Lee and Dong-Guk Han, eds.), Springer International Publishing,
2014, pp. 293–310.

[6] Martin R Albrecht, Rachel Player, and Sam Scott, On the concrete hardness of learning
with errors, Journal of Mathematical Cryptology 9 (2015), no. 3, 169–203.

[7] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang,
and Guang Gong, sliscp: Simeck-based permutations for lightweight sponge crypto-
graphic primitives, Selected Areas in Cryptography – SAC 2017 (Cham) (Carlisle
Adams and Jan Camenisch, eds.), Springer International Publishing, 2018, pp. 129–150.

[8] Shi Bai and Steven D. Galbraith, Lattice decoding attacks on binary LWE, pp. 322–337,
Springer International Publishing, Cham, 2014.

[9] Abhishek Banerjee, Chris Peikert, and Alon Rosen, Pseudorandom functions and lat-
tices, Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer, 2012, pp. 719–737.

[10] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven, New directions in near-
est neighbor searching with applications to lattice sieving, Proceedings of the Twenty-
seventh Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA,
USA), SODA ’16, Society for Industrial and Applied Mathematics, 2016, pp. 10–24.

[11] Jean-François Biasse and Luis Ruiz, Fhew with efficient multibit bootstrapping, Progress
in Cryptology – LATINCRYPT 2015 (Cham) (Kristin Lauter and Francisco Rodŕıguez-
Henŕıquez, eds.), Springer International Publishing, 2015, pp. 119–135.

[12] Avrim Blum, Adam Kalai, and Hal Wasserman, Noise-tolerant learning, the parity
problem, and the statistical query model, J. ACM 50 (2003), no. 4, 506–519. MR 2146884

[13] Zvika Brakerski, Fully homomorphic encryption without modulus switching from clas-
sical gapsvp, Proceedings of the 32Nd Annual Cryptology Conference on Advances in
Cryptology — CRYPTO 2012 - Volume 7417 (New York, NY, USA), Springer-Verlag
New York, Inc., 2012, pp. 868–886.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, (Leveled) fully homomor-
phic encryption without bootstrapping, ACM Trans. Comput. Theory 6 (2014), no. 3,
Art. 13, 36. MR 3255281

[15] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé,
Classical hardness of learning with errors, STOC’13—Proceedings of the 2013 ACM
Symposium on Theory of Computing, ACM, New York, 2013, pp. 575–584. MR 3210819

[16] Zvika Brakerski and Vinod Vaikuntanathan, Efficient fully homomorphic encryption
from (standard) LWE, SIAM Journal on Computing 43 (2014), no. 2, 831–871.

[17] Sergiu Carpov, Malika Izabachène, and Victor Mollimard, New techniques for multi-
value homomorphic evaluation and applications., IACR Cryptology ePrint Archive
2018 (2018), 622.

[18] Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren, Provably weak instances
of Ring-LWE revisited, Proceedings of the 35th Annual International Conference on
Advances in Cryptology — EUROCRYPT 2016 - Volume 9665 (New York, NY, USA),
Springer-Verlag New York, Inc., 2016, pp. 147–167.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 39

[19] Hao Chen, Kristin Lauter, and Katherine E. Stange, Security considerations for ga-
lois non-dual RLWE families, Cryptology ePrint Archive, Report 2016/193, 2016,
https://eprint.iacr.org/2016/193.

[20] Hao Chen, Kristin E. Lauter, and Katherine E. Stange, Attacks on the search-
RLWE problem with small error, Cryptology ePrint Archive, Report 2015/971, 2015,
https://eprint.iacr.org/2015/971.

[21] Yao Chen, Benjamin M. Case, Shuhong Gao, and Guang Gong, Error analysis of weak
Poly-LWE instances, Cryptography and Communications, 2017, pp. 411–426.

[22] Yuanmi Chen and Phong Q. Nguyen, BKZ 2.0: better lattice security estimates, Ad-
vances in cryptology—ASIACRYPT 2011, Lecture Notes in Comput. Sci., vol. 7073,
Springer, Heidelberg, 2011, pp. 1–20. MR 2934994

[23] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène, Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds, Advances in
Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I 22, Springer, 2016, pp. 3–33.

[24] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène, Improving
TFHE: faster packed homomorphic operations and efficient circuit bootstrapping, Cryp-
tology ePrint Archive, Report 2017/430, 2017, https://eprint.iacr.org/2017/430.

[25] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene, Tfhe: Fast
fully homomorphic encryption over the torus., IACR Cryptology ePrint Archive 2018
(2018), 421.

[26] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène, Tfhe: Fully
homomorphic encryption over the torus, Poster at Third Homomorphic Encryption
Standards workshop, 2018.

[27] , TFHE: Fast fully homomorphic encryption library, August 2016,
https://tfhe.github.io/tfhe/.

[28] Alexandre Duc, Florian Tramèr, and Serge Vaudenay, Better algorithms for LWE and
LWR, Advances in Cryptology – EUROCRYPT 2015 (Berlin, Heidelberg) (Elisabeth
Oswald and Marc Fischlin, eds.), Springer Berlin Heidelberg, 2015, pp. 173–202.

[29] Léo Ducas and Daniele Micciancio, FHEW: bootstrapping homomorphic encryption in
less than a second, Advances in cryptology—EUROCRYPT 2015. Part I, Lecture Notes
in Comput. Sci., vol. 9056, Springer, Heidelberg, 2015, pp. 617–640. MR 3344940

[30] Kirsten Eisenträger, Sean Hallgren, and Kristin Lauter, Weak instances of PLWE,
Selected Areas in Cryptography – SAC 2014 (Cham) (Antoine Joux and Amr Youssef,
eds.), Springer International Publishing, 2014, pp. 183–194.

[31] Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange, Provably weak
instances of Ring-LWE, Advances in Cryptology – CRYPTO 2015 (Berlin, Heidel-
berg) (Rosario Gennaro and Matthew Robshaw, eds.), Springer Berlin Heidelberg, 2015,
pp. 63–92.

[32] Shuhong Gao, Efficient fully homomorphic encryption scheme, Cryptology ePrint
Archive, Report 2018/637, 2018, https://eprint.iacr.org/2018/637.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 40

[33] Craig Gentry, Fully homomorphic encryption using ideal lattices, Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, 2009, pp. 169–178.

[34] Craig Gentry, Amit Sahai, and Brent Waters, Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based, Advances in
Cryptology–CRYPTO 2013, Springer, 2013, pp. 75–92.

[35] Qian Guo, Thomas Johansson, and Paul Stankovski, Coded-BKW: Solving LWE using
lattice codes, pp. 23–42, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[36] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé, Algorithms for the shortest and
closest lattice vector problems, Coding and Cryptology (Berlin, Heidelberg) (Yeow Meng
Chee, Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and
Chaoping Xing, eds.), Springer Berlin Heidelberg, 2011, pp. 159–190.

[37] Wassily Hoeffding, Probability inequalities for sums of bounded random variables, Jour-
nal of the American statistical association 58 (1963), no. 301, 13–30.

[38] Ravi Kannan, Minkowski’s convex body theorem and integer programming, Math. Oper.
Res. 12 (1987), no. 3, 415–440.

[39] Paul Kirchner and Pierre-Alain Fouque, An improved BKW algorithm for LWE with
applications to cryptography and lattices, pp. 43–62, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[40] Thijs Laarhoven and Benne de Weger, Faster sieving for shortest lattice vectors us-
ing spherical locality-sensitive hashing, Progress in Cryptology – LATINCRYPT 2015
(Cham) (Kristin Lauter and Francisco Rodŕıguez-Henŕıquez, eds.), Springer Interna-
tional Publishing, 2015, pp. 101–118.

[41] Thijs Laarhoven, Michele Mosca, and Joop van de Pol, Finding shortest lattice vectors
faster using quantum search, Des. Codes Cryptography 77 (2015), no. 2-3, 375–400.

[42] A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational
coefficients, Mathematische Annalen 261 (1982), no. 4, 515–534.

[43] Richard Lindner and Chris Peikert, Better key sizes (and attacks) for LWE-based en-
cryption, Topics in cryptology—CT-RSA 2011, Lecture Notes in Comput. Sci., vol.
6558, Springer, Heidelberg, 2011, pp. 319–339.

[44] Mingjie Liu and Phong Q. Nguyen, Solving BDD by enumeration: an update, Topics
in cryptology—CT-RSA 2013, Lecture Notes in Comput. Sci., vol. 7779, Springer,
Heidelberg, 2013, pp. 293–309. MR 3082022

[45] Vadim Lyubashevsky, Chris Peikert, and Oded Regev, On ideal lattices and learning
with errors over rings, Advances in cryptology—EUROCRYPT 2010, Lecture Notes in
Comput. Sci., vol. 6110, Springer, Berlin, 2010, pp. 1–23. MR 2660480

[46] Daniele Micciancio and Oded Regev, Lattice-based cryptography, pp. 147–191, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[47] Daniele Micciancio and Panagiotis Voulgaris, Faster exponential time algorithms for the
shortest vector problem, Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
2010, pp. 1468–1480.

Case, Gao, Hu and Xu, FHE with k-bit Arithmetic Operations 41

[48] Daniele Micciancio and Michael Walter, Practical, predictable lattice basis reduction,
Advances in cryptology—EUROCRYPT 2016. Part I, Lecture Notes in Comput. Sci.,
vol. 9665, Springer, Berlin, 2016, pp. 820–849. MR 3516393

[49] Arnold Neumaier and Damien Stehlé, Faster LLL-type reduction of lattice bases, Pro-
ceedings of the ACM on International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016, 2016, pp. 373–380.

[50] Phong Q. Nguyen and Damien Stehlé, LLL on the average, Algorithmic Number The-
ory, 7th International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Pro-
ceedings (Florian Hess, Sebastian Pauli, and Michael E. Pohst, eds.), Lecture Notes in
Computer Science, vol. 4076, Springer, 2006, pp. 238–256.

[51] National Institute of Standards and Technology, FIPS PUB 202 SHA-3 standard:
Permutation-based hash and extendable-output functions, 2015.

[52] Oded Regev, On lattices, learning with errors, random linear codes, and cryptography,
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, 2005, pp. 84–93.

[53] Oded Regev, On lattices, learning with errors, random linear codes, and cryptography,
J. ACM 56 (2009), no. 6, 34:1–34:40.

[54] Philippe Rigollet, 18. s997: High dimensional statistics, Lecture Notes), Cambridge,
MA, USA: MIT Open-CourseWare (2015).

[55] R L Rivest, L Adleman, and M L Dertouzos, On data banks and privacy homomor-
phisms, Foundations of Secure Computation, Academia Press (1978), 169–179.

[56] Anonymous SameAuthors, A note on sub-gaussians, Included in supplemental material,
to appear concurrently, 2019.

[57] C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms
and solving subset sum problems, Mathematical Programming 66 (1994), no. 1, 181–
199.

[58] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi, Improved Nguyen-
Vidick heuristic sieve algorithm for shortest vector problem, Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, ASIACCS
2011, Hong Kong, China, March 22-24, 2011, 2011, pp. 1–9.

[59] Feng Zhang, Yanbin Pan, and Gengran Hu, A three-level sieve algorithm for the short-
est vector problem, Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, 2013,
pp. 29–47.

