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Abstract
Mobile messengers like WhatsApp perform contact discov-

ery by uploading the user’s entire address book to the service
provider. This allows the service provider to determine which
of the user’s contacts are registered to the messaging service.
However, such a procedure poses significant privacy risks and
legal challenges. As we find, even messengers with privacy in
mind currently do not deploy proper mechanisms to perform
contact discovery privately.

The most promising approaches addressing this problem
revolve around private set intersection (PSI) protocols. Un-
fortunately, even in a weak security model where clients are
assumed to follow the protocol honestly, previous protocols
and implementations turned out to be far from practical when
used at scale. This is due to their high computation and/or
communication complexity as well as lacking optimization
for mobile devices. In our work, we remove most obstacles
for large-scale global deployment by significantly improving
two promising protocols by Kiss et al. (PoPETS’17) while
also allowing for malicious clients.

Concretely, we present novel precomputation techniques
for correlated oblivious transfers (reducing the online commu-
nication by factor 2x), Cuckoo filter compression (with a com-
pression ratio of≈ 70%), as well as 4.3x smaller Cuckoo filter
updates. In a protocol performing oblivious PRF evaluations
via garbled circuits, we replace AES as the evaluated PRF
with a variant of LowMC (Albrecht et al., EUROCRYPT’15)
for which we determine optimal parameters, thereby reducing
the communication by factor 8.2x. Furthermore, we imple-
ment both protocols with security against malicious clients
in C/C++ and utilize the ARM Cryptography Extensions
available in most recent smartphones. Compared to previ-
ous smartphone implementations, this yields a performance
improvement of factor 1,000x for circuit evaluations. The on-
line phase of our fastest protocol takes only 2.92s measured
on a real WiFi connection (6.53s on LTE) to check 1,024
client contacts against a large-scale database with 228 entries.
∗Please cite the conference version of this paper published at USENIX

Security’19 [KRS+19]

As a proof-of-concept, we integrate our protocols in the client
application of the open-source messenger Signal.

1 Introduction

After installation, mobile messaging applications first per-
form a so-called contact discovery. This allows new users to
automatically connect with all other users of the messaging
service whose phone numbers are stored in their address book.
There exist various ways to perform contact discovery. For
example, WhatsApp simply uploads the user’s entire address
book on a regular basis to match contacts [wha19].

However, revealing all personal contacts to a service
provider poses significant privacy risks: from the social graph
of users a variety of personal information can be inferred
and journalists, for example, may need to cover the identity
of some of their informants to protect whistleblowers from
potential consequences. When installing a mobile messaging
application, users also jeopardize the privacy of people who
are not even connected to the particular service by transmit-
ting their contact information without consent. An illustrative
example of a severe breach of privacy can be seen in the case
of WhatsApp, which was acquired by Facebook in 2014 and
shared its database with the parent company: Facebook users
received friend recommendations of strangers who happened
to see the same psychiatrists [Hil16].

Unfortunately, applying simple protection mechanisms like
hashing the phone numbers of contacts locally before the up-
load to the service provider is not helpful since these hashes
are vulnerable to brute-force and dictionary attacks due to the
relatively small range of possible pre-images. Furthermore,
the service provider can still tell whether two users share a
contact even a long time after running the discovery routine by
storing the received hash values. Custom wrappers1 for mes-
saging applications can somewhat circumvent these problems
by allowing users to manually select contacts to expose to the
messaging application. However, this approach only protects

1e.g., https://www.backes-srt.com/en/solutions-2/whatsbox
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the contacts of users actually using such custom wrappers.
Furthermore, manually selecting the contacts to match is a
usability problem.

One possible solution to this dilemma is to apply a par-
ticular form of secure two-party computation. In general,
secure two-party computation allows parties P1 and P2 to
jointly compute a publicly known function f on their respec-
tive inputs X1 and X2 s.t. the parties learn no information
from the protocol execution but the result. The research area
of private set intersection (PSI) focuses on optimized pro-
tocols for the case where X1 and X2 are sets of elements,
and f is the intersection function. PSI has been studied in
great depth in the past years, yielding very efficient proto-
cols (e.g., [PSSZ15, KKRT16]) based on oblivious transfer
extensions (OTe, cf. [IKNP03, ALSZ15, KOS15]). However,
while these protocols are very efficient in many scenarios,
they turn out to be impractical for use-cases like private con-
tact discovery on mobile devices, where the input set of the
service provider is much larger (sometimes by a factor of a
few million) than the input set of the user. This is because the
online phase of these protocols (which depends on the actual
inputs) has a computation and communication complexity
that is linear in the size of the larger set.

Therefore, other PSI protocols for the case of unbalanced
set sizes were developed (e.g., [KLS+17, CLR17, RdFA18,
DRRT18]). However, only [KLS+17] actually provides an
implementation on real mobile smartphone clients. The exper-
iments performed by the authors of [KLS+17] show a rather
large discrepancy between protocol execution on x86-based
PC hardware and Android smartphones where performance-
critical cryptographic operations are implemented in Java. In
fact, their performance results do not encourage real-world
deployment. For example, their fastest protocol that can eas-
ily be made secure against malicious clients requires more
than 52s on a smartphone with WiFi connection to check a
single client contact against a database with only 220 entries.

The developers of Signal, a mobile messaging service sim-
ilar to WhatsApp but with focus on privacy, considered the
use of PSI protocols for contact discovery. However, they
refrained from actually implementing PSI since the aca-
demic research in PSI and the related private information
retrieval (PIR) protocols “is quite a disappointment” [Mar14].
Instead, they presented a technology preview that protects the
contact discovery task on the server side with Intel Software
Guard Extensions (SGX), a trusted execution environment
that can be attested by remote users [Mar17]. In theory, this
yields a secure contact discovery service with negligible per-
formance overhead compared to plain computation. However,
Intel SGX is a proprietary engineering-driven solution with
no cryptographic security guarantees and vulnerable to se-
vere attacks, e.g., the recent Foreshadow attack [BMW+18]
managed to reliably extract confidential data from enclaves.
Moreover, some fixes for hardware security designs such as
Intel SGX require hardware changes that can take years to

enter the market and result in repeated acquisition costs. In
contrast, fixes for flawed implementations of provably secure
cryptographic protocols can be deployed quickly with an up-
dated version of the application.

Thus, we revisit state-of-the-art unbalanced PSI protocols
which provide cryptographic security and show that using new
optimizations and native implementations they turn out to be
practical on modern smartphones. Furthermore, we achieve
security against malicious clients: since every user could run a
manipulated version of the messaging application, deviations
from the protocol may lead to revealing information about
the server’s database. On the other hand, we assume that
the server behaves semi-honestly, i.e., it follows the protocol
but tries to learn as much information as possible. This is a
reasonable assumption since there are legal requirements and
financial incentives to behave correctly: once misconduct gets
known publicly, users will abandon the misbehaving service
and switch to a more trustworthy alternative.

1.1 Our Contributions

As a motivation, we investigate how contact discovery is
handled in widely used mobile messaging applications. For
this, we conduct a survey where we analyze privacy policies,
source code, and network traffic. Our results show that in
practice none of these applications protect the users’ privacy
during contact discovery.

We optimize two protocols for unbalanced PSI that can
easily be made secure against malicious clients and are suit-
able for private contact discovery: one that uses oblivious
evaluations of the Naor-Reingold PRF (NR-PSI, cf. [NR04,
HL10, KLS+17]) and one that uses Yao’s garbled circuits
(GC-PSI, cf. [PSSW09, KLS+17, PSZ18]) to run oblivious
AES evaluations. For both protocols we apply new forms of
correlated random OT precomputation (reducing the online
communication by factor 2x, which is of independent interest)
and introduce a method for Cuckoo filter compression (with
a compression ratio of ≈ 70% and negligible computational
overhead) as well as 4.3x smaller Cuckoo filter updates to
reduce the required network communication. Moreover, we
improve the GC-PSI protocol by instantiating the PRF with
LowMC [ARS+15], a cipher specifically designed for effi-
cient evaluation in secure protocols, instead of the default
choice AES. While this was already proposed in [KLS+17],
we find optimal parameter sets for LowMC and provide im-
plementations. Compared to AES, we thereby reduce the
communication by factor 8.2x.

We provide C/C++ implementations for both protocols with
security against malicious clients that make use of the Cryp-
tography Extensions (CE) in the ARMv8 architecture avail-
able in most recent smartphones for hardware-accelerated
execution. Thereby, we improve the runtime of the online
phase of the GC-PSI protocol by more than a factor of 1,000x
compared to the previous work of [KLS+17] that only im-
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plements security against semi-honest clients. We overcome
further shortcomings of previous works w.r.t security and scal-
ability by evaluating the implementations using recommended
security parameters, reasonable false positive probabilities,
and considering large-scale set sizes on the server side.

Our fastest protocol takes only 2.92s measured on a real
WiFi connection (6.53s on LTE) and 6.07MiB of communica-
tion in the online phase to check 1,024 client contacts against
a database with 228 entries (more than the number of monthly
active users for popular messengers like Telegram [Sta19]).
For the setup phase it is required to transfer a compressed
Cuckoo filter once whose size is linear in the number of the
database entries (≈ 1GiB for 228 entries); since the filter is
identical for all clients, service providers can handle the re-
sulting traffic efficiently via CDNs. To remain practical for
even larger set sizes (the market leader WhatsApp currently
has more than 1.6 billion users [Sta19]), we suggest multiple
extensions, e.g., combining our protocols with multi-server
PIR s.t. the overall client-server communication complexity
becomes logarithmic in the size of the server database.

As a proof-of-concept, we integrate both of our protocols
in the Signal Android client, thereby positioning our secure
cryptographic approach as a practical alternative to vulnerable
trusted execution environments like Intel SGX.

In short, we summarize our contributions as follows:

• We survey “secure” mobile messengers and find that
none of them properly protects privacy during contact
discovery.

• We optimize the NR-PSI and the GC-PSI protocols for
private contact discovery with Cuckoo filter improve-
ments and novel precomputation techniques (reducing
the online communication by factor 2x). For the GC-PSI
protocol, we propose optimal parameters for the LowMC
cipher to replace AES as the employed PRF (reducing
the initial setup communication by factor 8.2x).

• We demonstrate practicability by providing C/C++ im-
plementations and performing a large-scale evaluation
on Android smartphones. We also present a prototypical
integration into the Signal client on Android.

Overall, we demonstrate that private contact discovery is
practical – even on mobile devices.

1.2 Motivating Survey
To determine how contact discovery is currently being done
in practice, we conducted a survey on a comprehensive se-
lection of mobile messengers that are “secure” in the sense
that they offer end-to-end encryption. Each application was
analyzed by evaluating the mandatory privacy policy, which
is supposed to state exactly which data the application trans-
mits to its server and how the server processes and stores

Messenger Hashed Salted Analysis Technique

Confide* 3 7 Privacy policy
Dust* 7 7 Network traffic
Eleet* 7 7 Privacy policy
G DATA Secure Chat 3 7 Network traffic
Signal (legacy) 3 7 Source code
SIMSme 3 3 Network traffic
Telegram 7 7 Privacy policy
Threema 3 7 Privacy policy
Viber 7 7 Privacy policy
WhatsApp 7 7 Privacy policy
Wickr Me 3 7 Privacy policy
Wire 3 7 Privacy policy

Table 1: Results of our contact discovery survey on secure mo-
bile messengers. All applications upload contact information
either in the clear or hashed (with salt). Messengers marked
with * denote that contact discovery is optional.

that data. Unfortunately, these policies are not always pre-
cise enough to determine the employed contact discovery
method. In these cases, we inspected the source code (if pub-
licly available) or the network communication by means of the
man-in-the-middle proxy mitmproxy2. We circumvented cer-
tificate pinning by using the Xposed3 framework together with
the JustTrustMe4 plugin that can disable certificate checking
routines in several commonly used security libraries.

Our results are summarized in Tab. 1. All surveyed messen-
gers upload contact information (at least the contact’s phone
number) either in the clear or in hashed form. While this form
of contact discovery is very efficient (requiring only a few
bytes of communication per element), it threatens the privacy
of users directly or indirectly via brute-force or dictionary
attacks. Furthermore, even if the server cannot determine the
actual contact data, it can still tell whether two users share a
contact by comparing uploaded hash values.

This can be somewhat mitigated by using salted hashing
s.t. the hashes received by the server are different whenever
a client triggers contact discovery. However, only one of the
surveyed messengers employs this approach as it requires to
hash the entire server database for each fresh salt received by
a client. Furthermore, brute-force attacks are still feasible.

2 Related Work

In this section, we discuss existing unbalanced PSI protocols
and other works that focus on PSI in the smartphone setting.

Unbalanced PSI. Kiss et al. [KLS+17] discuss multiple un-
balanced PSI protocols with precomputation (cf. §3.5) and se-

2https://mitmproxy.org
3https://repo.xposed.info
4https://github.com/Fuzion24/JustTrustMe
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curity against semi-honest adversaries. Their NR-PSI and GC-
PSI protocols (based on [HL10] and [PSSW09], respectively)
are the foundation of our work. We augment these protocols
with new OT precomputation techniques, efficient Cuckoo fil-
ters [FAKM14, RdFA18], a specialized cipher [ARS+15] for
the GC-PSI protocol, and security against malicious clients.
The authors of [KLS+17] also evaluate their protocols on
smartphones, but based on less efficient Java implementa-
tions. In our work, we present C/C++ implementations that
make use of the hardware-accelerated cryptography available
in most recent smartphones.

Resende and de Freitas Aranha [RdFA18] use techniques
similar to [KLS+17], but replace Bloom filters [Blo70] with
the more efficient and versatile Cuckoo filters [FAKM14] to
efficiently represent the encrypted server database (cf. §3.4)
in a Diffie-Hellman style PSI protocol [BBC+11] with secu-
rity against semi-honest adversaries. In our work, we opti-
mize communication by proposing methods for Cuckoo filter
compression and updates, and perform evaluations with rea-
sonable parameters: while in [RdFA18] the authors settle
with an error probability of ≈ 2−13, which results, on aver-
age, in one false positive when 10 clients match 210 contacts
each, we propose realistic Cuckoo filter parameters for error
probabilities ≈ 2−29 and ≈ 2−39.

Demmler et al. [DRRT18] present a different approach as-
suming multiple non-colluding servers. Their idea is to first
perform a variant of private information retrieval (PIR) to
reduce the server’s input set and then perform a traditional
PSI protocol on the reduced sets. While this approach is very
performant, the requirement of non-colluding servers presents
challenges for the data-owners: they not only need to guaran-
tee that these servers do not collude, but also need to ensure
that their client data is not leaked to other parties. This leads
to the difficult situation where the server party needs to trust
a second server but simultaneously is assumed to not collude
with it. However, even if servers are malicious and/or collude,
they cannot learn more about client inputs than in currently
deployed naive hashing-based contact discovery methods.

Chen et al. [CLR17] give a PSI protocol based on fully
homomorphic encryption (FHE). Therefore, the server per-
forms almost all of the work in their protocol, while the clients
only perform encryptions and decryptions.The authors present
multiple optimizations that make the protocol practically vi-
able. Their work was improved and extended to the special
use case of labeled PSI [CHLR18], where for intersecting
items an associated label is transferred and security is not
only guaranteed in case of malicious clients but also mali-
cious servers (with some controlled leakage). The advantage
of the protocols of [CLR17, CHLR18] is that their commu-
nication complexity is sublinear instead of linear in the size
of the server set. However, this comes at the cost of repeated
high computational overhead, whereas the online phase of
our protocols is very efficient and requires no cryptographic
operations on the server side.

We compare to all previous single-server proto-
cols [KLS+17, RdFA18, CLR17, CHLR18] and further
highlight the differences in §6.2.

Mobile PSI. Huang et al. [HCE11] provided first perfor-
mance results for secure computation on smartphones with
security against semi-honest adversaries. They implemented a
circuit-based PSI protocol on Android. Their implementation
managed to evaluate ≈ 100 AND gates per second, taking
about 10min to intersect two sets of 256 items each.

Asokan et al. [ADN+13] implemented an RSA-based PSI
protocol with security against semi-honest adversaries on
smartphones for secure mobile resource sharing.

Carter et al. [CMTB13] presented a maliciously secure
system for secure outsourced garbled circuit evaluation on
mobile devices with minimal processing power. Subsequently,
Mood et al. [MGBF14] showed how to further optimize out-
sourced evaluationby reusing encrypted values and consid-
ering stateful applications. They also point out how their
framework can be used to implement a secure friend finder.

“PROUD” [PCAM18] is a decentralized approach for pri-
vate contact discovery based on the DNS system. It enables
users to privately discover the current network addresses of
friends, which differs from the scenario of a centralized mes-
saging service we consider. Moreover, friendship bootstrap-
ping requires an out-of-band communication channel between
users to exchange public keys and other information.

In [YPG+18], the authors present “MEG”, a collection of
techniques for memory and energy efficient garbled circuit
evaluation on smartphones. Their techniques for optimized
batching and multi-threading could be used to enhance our
implementation as part of future work.

Compared to these works, we optimize protocols for unbal-
anced PSI with a central service provider and provide native
implementations for maximum performance on smartphones.

3 Background

In the following, we introduce cryptographic building blocks
that are required for the remainder of this work.

3.1 Oblivious Transfer (Extensions)
Oblivious transfer (OT) [Rab81] is a cryptographic protocol
that in its most basic form allows a sender P1 to obliviously
transfer one out of two messages (m0,m1) to a receiver P2
based on a selection bit b chosen by P2 s.t. P1 learns nothing
about b and P2 learns only mb but nothing about m1−b.

It was shown in [IR89] that performing OTs always requires
some form of public key cryptography. However, with OT
extension (OTe) protocols [Bea96, IKNP03], a small number
(e.g., 128) of “base OTs” can be extended to a large number of
OTs using only efficient symmetric cryptographic operations.
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There exist several flavors of OTe with reduced communi-
cation complexity [ALSZ17]: In random OT (R-OT), neither
party inputs any values, but the inputs of sender and receiver
are randomly chosen by the protocol. In correlated OT (C-
OT), m0 is chosen at random, whereas m1 is computed as a
function f of m0: m1 = f (m0), where f is privately known
to P1 only.

It is possible to precompute OTs s.t. all computation-
ally expensive operations are performed via R-OTs in ad-
vance [Bea95]. Later, the random values obtained via R-OTs
are used to mask the actual inputs, requiring only cheap XOR
operations in the style of one-time-pad encryption.

3.2 Garbled Circuits
Yao’s garbled circuits (GC) [Yao86] is one of the most promi-
nent techniques for secure two-party computation. (In the
following the two parties are called garbler and evaluator.)
The idea is to represent the function that is evaluated as a
Boolean circuit and to replace each logical two-input gate by
a garbled gate. Each wire of the garbled gate is given two
random wire labels, representing 0 and 1. To garble a gate, the
garbler uses all four combinations of the gate’s two input wire
labels to encrypt the corresponding output wire label, based
on the truth table of the original gate, and sends the resulting
ciphertexts, the so-called garbled table, to the evaluator. The
evaluator can then use the two input wire labels it possesses
to decrypt one of the four ciphertexts and receive the output
wire label, which is then used as input for subsequent gates.

We now describe how the evaluator obtains the wire la-
bels corresponding to the inputs of the two parties: Since the
garbler knows all wire labels, it can send the wire labels corre-
sponding to its input bits to the evaluator. However, to ensure
input privacy for the evaluator, the wire labels corresponding
to the evalutor’s input bits are retrieved via OTs. The garbler
also sends information that allows the evaluator to decode the
final output wire labels to 0 or 1.

Several optimizations for Yao’s original scheme have
been presented s.t. today it is most efficient to combine the
following techniques: Point-and-Permute [BMR90], Free-
XOR [KS08], fixed-key AES garbling [BHKR13], and Half-
Gates [ZRE15].

3.3 OPRF Evaluation
An oblivious pseudorandom function (OPRF) is a protocol
between two parties: sender P1 holding key k and receiver P2
holding input x. After the invocation of the protocol, P2 learns
the output fk(x) of a keyed pseudorandom function (PRF) f .
Additionally, it is guaranteed that P1 does not learn anything
about x and P2 does not learn anything about k.

OPRF evaluations can be used to build PSI protocols as
proposed in [FIPR05, HL08, PSSW09, KLS+17]: The server
samples a key k uniformly at random, evaluates the PRF fk(xi)

on each of its items xi ∈ X , and sends the results to the client.
Server and client now engage in the OPRF protocol, where
the server inputs key k and the client inputs elements y j ∈ Y .
After this step, the client obtains fk(y j) for each item y j ∈ Y
and can perform a plain intersection between the items fk(xi)
and fk(y j). The client then outputs the elements y j corre-
sponding to the values in the intersection.

In this work, we instantiate the PRF either using the Naor-
Reingold PRF [NR04] (NR-PSI) or a garbled circuit-based
evaluation of a block cipher (GC-PSI). In [JL09], the authors
describe an alternative algebraic OPRF construction based on
a PRF by Dodis-Yampolskiy [DY05]. However, due to the
use of Paillier encryption, this construction is likely slower
than the Naor-Reingold PRF and their follow-up work [JL10],
the basis for [RdFA18] (cf. §6.2). Moreover, it requires a
common reference string in the form of an RSA modulus
with unknown factorization.

3.4 Cuckoo Filters

Cuckoo filters [FAKM14] are an alternative to the more
popular Bloom filters [Blo70]. Like Bloom filters, they are
a data structure for compact set representation that allows
for fast membership testing with controllable false positive
probability (FPP). Cuckoo filters employ a hashing tech-
nique similar to Cuckoo hashing [PR01], which has been
used in the past as a building block in PSI protocols (e.g.,
[PSZ14, PSSZ15, KKRT16, PSZ18, PSWW18, PSTY19]).

Resende and de Freitas Aranha [RdFA18] first used Cuckoo
filters in a PSI protocol. This is due to several advantages over
Bloom filters when representing the server’s database, namely
they (i) support inserting and deleting items subsequently,
whereas standard Bloom filters only support inserting items,
and variants that do support deletion such as counting Bloom
filters have much higher storage costs; (ii) have better lookup
performance; and (iii) use less space in many scenarios while
having the same false positive probability.

Cuckoo filters consist of a table of buckets with fixed bucket
size b. Inside the buckets, so-called tags are stored. Tags are
small bitstrings obtained by hashing items. More precisely,
to represent an item x in a Cuckoo filter, we first calculate
its tag tx = Ht(x), where Ht is a hash function with output
bitlength v. This tag is stored in one out of two possible
buckets. The position of the first possible bucket is calculated
as p1 = H(x), where H is another hash function that maps the
input to a position in the table of buckets. In case this bucket
is already full, the tag is stored in the second possible bucket
at position p2 = p1⊕H(tx). Note that it is always possible to
determine the other candidate bucket p j just from knowing
its tag tx and the current position pi: p j = pi⊕H(tx). If both
buckets are full, one tag in one of the buckets is chosen at
random, removed from that bucket, and moved to its other
possible bucket. This procedure is repeated recursively until
no more relocations are necessary.
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To check whether an item is contained in the Cuckoo filter,
one computes its tag and both possible bucket locations and
compares the tags stored there for equality. For deleting the
item, the matching tag is removed from the filter.

Due to hash collisions, two items may produce equal tags.
As a consequence, lookups can lead to false positives. The
false positive probability εmax is mainly dependent on the
tagsize v and also slightly on the bucket size b since larger
buckets result in more possible collisions within each bucket.

3.5 Unbalanced PSI with Precomputation
For private contact discovery, the following properties are de-
sired: (i) the server performs the computationally expensive
tasks; (ii) all computationally expensive and communication
intensive tasks are performed only once; and (iii) the actual in-
tersection computation is very fast and also allows for efficient
updates. Therefore, [KLS+17] suggest to use PSI protocols
with precomputation, where most time consuming tasks are
performed ahead of the actual intersection.

The PSI protocols for unbalanced set sizes described in our
work share a common structure. Following the precomputa-
tion approach of [KLS+17], they are divided into the follow-
ing four phases: (i) The base phase is completely independent
of any input data and consists, e.g., of OT precomputation. Its
complexity is linear in the maximum number of contacts a
client expects to match in future protocol executions before
the base phase is re-run. (ii) The complexity of the setup
phase is linear in the size of the large set held by the server.
It involves encrypting all elements in the server database via
PRF evaluations as described in §3.3 and inserting them into
a Cuckoo filter for compact representation, which is trans-
ferred to the client. (iii) During the online phase client and
server jointly perform OPRF evaluations on all elements of
the client. The client then looks up all received encryptions
in the Cuckoo filter to determine the intersection. Thus, the
complexity of the online phase is only linear in the size of the
small client set. (iv) Changes in the server database trigger
the update phase, where the Cuckoo filter on the client side is
updated by sending a small delta for each inserted or deleted
database entry.

4 Optimizing OPRF-based PSI Protocols

We propose more efficient database representations and PRFs,
give the full descriptions for our optimized NR- and GC-
PSI protocols, enable security against malicious clients, and
suggest multiple extensions to further increase practicality.

4.1 More Efficient Database Representations
Realistic Cuckoo Filter Parameters. Resende and de Fre-
itas Aranha [RdFA18] propose using Cuckoo filters as an
extension to the DH-based PSI protocol of [BBC+11] and

they perform experiments to find optimal Cuckoo filter param-
eters based on the number of server items and the desired error
probability. While their findings are directly applicable to our
use case, they set very aggressive Cuckoo filter parameters
(tagsize v = 16, bucket size b = 3) and settle for a maximum
false positive probability (FPP) of εmax ≈ 2−13. We find this
FPP not practical since it implies that about one in 10 clients
performing PSI for 210 elements receives a false positive.

Instead, we propose to use tagsize v = 32 to reach a FPP of
εmax ≈ 2−29 or tagsize v= 42 to reach a FPP of εmax ≈ 2−39

while still maintaining a bucket size of b = 3. For our experi-
ments, we choose the parameter set v = 32,b = 3, and choose
the size of the Cuckoo filter to have a load factor of ≈ 66%,
leading to a Cuckoo filter size of 6MiB per 220 items.

Novel Cuckoo Filter Compression. The size of Cuckoo
filters can be reduced by applying a simple but effective com-
pression technique that to the best of our knowledge was not
considered before: For each entry of a Cuckoo filter, an ad-
ditional bit is transmitted that indicates whether this entry is
empty or holds a tag. The entry itself is only transmitted if it
is not empty. This way, the filter is represented as a bit map
and a list of tags. For a Cuckoo filter storing n items with
tagsize v, bucket size b, and load factor l, this reduces the size
from n

l · v bits to n
l +n · v bits. In the example above, the size

of the Cuckoo filter is reduced from 6MiB to 4.19MiB, i.e.,
by ≈ 30%. An advanced version of the compression tech-
nique presented above encodes the number of tags (0 to b) in
each bucket with log2(b+1) bits instead of sending b bits per
bucket. This is possible since the actual position of each tag
within a bucket is not important.

This compression technique is especially useful for very
sparse Cuckoo filters, which appear in use cases where the set
of items is expected to grow fast (e.g., during the release phase
of a new messaging application). For example, if only 10% of
a Cuckoo filter storing a maximum of 220 items is occupied,
it can be compressed by a factor of 8.3x.

In concurrent and independent work, Breslow and
Jayasena [BJ18] proposed Morton filters, which combine
these compression techniques with cache-optimized layouts
and further optimizations. Morton filters provide higher inser-
tion, lookup, and deletion throughput than traditional Cuckoo
filters, while usually having equal or slightly lower storage
costs. We leave the evaluation and usage of Morton filters in
our protocols for future work.

In [Mar14] it was suggested to use the dictionary com-
pression algorithm LZMA [Pav15] to compress Bloom filter
updates. Using this technique to compress Cuckoo filters
yields only ≈ 5% worse results in terms of size compared to
our compression strategy. However, compressing a Cuckoo
filter representing 228 items with LZMA or similar algorithms
takes more than 8min on a desktop PC. Likewise, decompres-
sion takes more than 1min. Since both operations need to be
performed on a regular basis on a mobile device when ap-
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plying Cuckoo filter updates, the use of LZMA compression
turns out infeasible. In contrast, our compression strategy can
be applied on-the-fly with negligible computation overhead.

Better Cuckoo Filter Updates. In [RdFA18], when per-
forming an update after new elements are inserted into or
deleted from the server’s set, each encrypted element to be
updated is sent to the client where it is inserted into the exist-
ing Cuckoo filter. However, for Cuckoo filters, all information
required to insert a new item is its tag and the index of one of
its candidate buckets. From this information, it is possible to
calculate the second candidate bucket in case relocations are
necessary. The same information is also sufficient to delete
an item. For example, the bucket index in a Cuckoo filter
storing n = 228 items with bucket size b = 3 and load fac-
tor ≈ 66% can be represented with 27 bits. This results
in sending 59 bits per updated element for tagsize v = 32.
In comparison, in [RdFA18] an encrypted element is repre-
sented by one point on the GLS-254 binary elliptic curve,
which results in 256 bits of communication when using point
compression with two trace bits, which needs 4.3x more com-
munication than our approach.

4.2 More Efficient PRF for GC-PSI
During the online phase of the GC-PSI protocol, both parties
interactively evaluate an OPRF on the client’s items using
garbled circuits. For each of the client’s items, the server
prepares a garbled circuit P̃RFk that evaluates the chosen
PRF under the server’s key k. The choice of this PRF has a
significant impact on both the runtime and the communication
complexity of the overall protocol. Several improvements for
Yao’s GC protocol [Yao86] have appeared in recent years that
changed the desired properties of the functions to be evaluated.
Most notably is the Free-XOR [KS08] optimization, which
allows XOR gates to be evaluated securely “for free”, meaning
all necessary operations can be performed locally without any
communication between the parties. This optimization has
lead to research in the area of ciphers with a low number of
AND and instead many free XOR gates.

In all previous implementations of GC-PSI, the natural
choice of the PRF was AES-128. Using the optimized S-
Box implementation of [BP10], an AES-128 circuit (without
key schedule) has 5,120 AND gates [HS13], serving as the
baseline for our comparison.

In this section, we focus on variants of LowMC [ARS+15],
a highly parameterizable block cipher designed for use cases
in multi-party computation (MPC) and fully-homomorphic
encryption (FHE). [KLS+17] mentioned the possibility of
using LowMC instead of AES for GC-PSI. We look at several
instantiations of LowMC and present optimized parameter
sets specifically for the use case of GC-PSI and mobile contact
discovery. In the following, we give a short description of
LowMC and highlight the different parameter choices.

LowMC [ARS+15] is a block cipher where block size n,
key size k, number of S-Boxes per substitution layer m, and
allowed data complexity d can be chosen freely up to some
sanity constraints. The required number of rounds r to reach
the security claims is then derived from these parameters.

Data Complexity. The data complexity of a cipher is the
number of plaintext-ciphertext pairs allowed to be released
before the security claims no longer hold. In the GC-PSI
protocol, we can exactly control the maximum number of
published plaintext-ciphertext pairs by limiting the number
of client queries, and therefore can reduce the number of
LowMC rounds required for security.

We set the allowed data complexity to be d = 264, allowing
for 220 contact discoveries of 210 items for each of the 228

clients, while still being below the security margin by a factor
of over 100x. For smaller-scale applications, we also give a
parameter set for 232 total data complexity, which suffices to
run 220 queries of 210 items each. While we could also use this
parameter set for larger-scale applications, the system needs
to be re-keyed after the data complexity has been reached.

Key Schedule. In many MPC applications using OPRF
evaluations, one party knows the entire secret key and can,
therefore, perform any key-scheduling algorithm (e.g., for
AES or LowMC) offline. The circuit is then modified to take
the expanded key as an input. In many cases, this can be a per-
formance improvement since the key-schedule algorithm does
not have to be computed using the MPC protocol. However,
when performing OPRF evaluations using garbled circuits,
the party holding the secret key needs to send wire labels
for each input bit, increasing the communication. While for
AES-128, only 11x more wire labels need to be transferred for
the expanded key, some instantiations of LowMC require sev-
eral hundreds of rounds. Sending labels for the expanded key
essentially removes the advantage of the lower AND count
that comes with such a large number of rounds. However, we
observe that in the GC-PSI protocol the OPRF evaluation is
always performed with the same key. Thus, we can bundle all
of the client’s circuits together into one large circuit and evalu-
ate the key-schedule only once. This means that we only need
to send the wire labels corresponding to the non-expanded
key once, and therefore save ≈ 2KiB for each subsequent
client item when using a 128-bit key. It is also possible to
only evaluate parts of the garbled circuit if the number of
client items is lower than the number of precomputed circuits.

LowMC Instances. For use in our GC-PSI protocol, we
highlight several LowMC instances, exploring different pa-
rameter choices. In Tab. 2, we give the parameters and com-
pare the number of AND gates to AES-128. The number of
rounds is calculated according to the LowMCv3 round for-
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PRF n k m d r #ANDs

(1) LowMC 128 128 42 264 13 1,638
(2) LowMC 128 128 31 264 13 1,209
(3) LowMC 128 128 1 264 208 624
(4) LowMC 128 128 1 232 192 576
(5) LowMC 128 128 1 2128 287 861

(6) AES-128 128 128 16 2128 10 5,120

Table 2: Comparison of PRF instances for use in the GC-PSI
protocol. The recommended instance is highlighted in bold.

mula5, which was updated by the LowMC team to take new
cryptanalysis of LowMC (cf. [DEM15, DLMW15, RST18])
into consideration.

We can observe some interesting properties: LowMC in-
stances (1) and (2) require the same number of rounds to be
secure, but instance (1) has the maximum number of possi-
ble S-Boxes, while (2) does not. Since instance (2) provides
the same security as (1) while requiring fewer S-Boxes, and
therefore a lower amount of AND gates, it should always
be preferred. LowMC instance (3) has the smallest possi-
ble S-Box layer with only one S-Box per round and also the
lowest number of AND gates. While its 208 rounds can be
a drawback in some protocols, Yao’s GC protocol [Yao86]
has a constant number of communication rounds and there-
fore the large number of LowMC rounds does not decrease
performance in high-latency networks. Additionally, using
the optimizations presented by [DKP+19], the large number
of linear layer computations can be reduced, bringing the
evaluation time of (3) close to (1) and (2).

For these reasons, we recommend the use of instance (3) for
GC-PSI, which requires 8.2x fewer AND gates than standard
AES-128 (6). Thus, we perform all performance evaluations
using instance (3). For use cases with small data complexity
requirements, we recommend LowMC instance (4), which is
a small improvement of 8.3 % in runtime and communication
compared to (3). For completeness and direct comparison
to AES-128, we also give a variant of LowMC with data
complexity of 2128 in (5).

Other Ciphers. In recent years, several other ci-
phers designed especially for use in MPC or FHE
have emerged [CDG+17], including FLIP [MJSC16],
Keyvrium [CCF+16], MiMC [AGR+16], and
Rasta [DEG+18].

However, all of these ciphers have properties that make
them unsuitable for use in OPRF-based PSI protocols:
Keyvrium, FLIP, and Rasta are stream ciphers, primarily de-
signed for FHE ciphertext expansion. Thus, building a se-
cure and efficient PRF from them is not straightforward.
MiMC [AGR+16] is a block cipher with low multiplicative

5https://github.com/LowMC/lowmc/blob/master/determine_r
ounds.py

complexity over larger fields Fp. However, since our GC-PSI
implementation is built around garbled circuits, MiMC is not
a natural choice.

4.3 Optimized GC-PSI Protocol

The idea of using Yao’s GC protocol for OPRF evaluations
was first proposed in [PSSW09] and used to construct a PSI
protocol in the precomputation setting in [KLS+17]. The full
description of our protocol is given in Fig. 1.

We propose an optimization that halves the online commu-
nication for the OTs (which is the only communication in the
online phase). This optimization is of independent interest as
it improves the practicality of Yao’s GC protocol in arbitrary
use cases with precomputation. It is based on the observa-
tion that with the Free-XOR technique [KS08] for Yao’s GC
protocol [Yao86], the client receives one of the two labels l0

and l1 = l0⊕∆ via OT depending on its input bit, where l0

is chosen at random and ∆ is a random global constant only
known by the garbler. A natural consideration would be to
replace the real OTs, as used in [KLS+17], with correlated
OTs (C-OTs) (cf. §3.1). Unfortunately, since the client input
is unknown in the base phase, this prevents either the precom-
putation of the garbled circuits or the OTs. This is because in
the online phase when using OT precomputation [Bea95], the
random messages r0 and r1 obtained by the sender in the base
phase need to be swapped in case the random choice made
by the receiver differs from its actual input. Thus, it would
be necessary to swap input wire labels in the garbled circuits,
which requires recomputing and resending at least the first
layer of those circuits.

Our novel precomputation method circumvents this
dilemma: In the base phase we run C-OTs via OT extension
s.t. the garbler on input ∆ learns the random but correlated
values r0 and r1 = r0⊕∆, whereas the evaluator upon random
choice c learns rc. For garbling we choose the labels for the in-
put wires of the circuit as l0 = r0⊕δ and l1 = l0⊕∆. Here, δ

is a newly introduced random value that in contrast to ∆ is
not global but chosen individually for each label pair. In the
online phase of the protocol, the evaluator sends a correction
bit b = c⊕ y stating whether its random choice c differs from
the actual input y. The garbler responds with B = rb⊕ l0. This
way, the evaluator learns either δ or δ⊕∆. It then sets the label
for its input to l = rc⊕B. As one can easily verify for the four
possible combinations of random choices c and correction
bits b, the evaluator always retrieves the correct label.

The security of the C-OT precomputation is based on the
same arguments as standard OT precomputation [Bea95] and
since we use a fresh uniformly random δ for each wire label,
the resulting wire label is also uniformly random. In other
words, we resolve the problem by fixing the wire labels but if
necessary swapping the masks required to retrieve the correct
label from the initial C-OT result.
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Server Client
Input: X = {x1, . . . ,xNs} of bitlength α Input: Y = {y1, . . . ,yNc}
Output: ⊥ Output: X ∩Y
Generate random PRF key k and Free-XOR offset ∆ Base Phase S := {}
For i = 1 to Npre

C : Agree on ε,v,b For i = 1 to Npre
C :

For j = 1 to α: For j = 1 to α:

∆

r0
i, j,r

1
i, j = r0

i, j⊕∆

Run αNpre
C random C-OTs

via OT Extension

random ci, j

rci, j
i, j

for i = 1 to Npre
C :

(P̃RF i
k, l

0
i,1, . . . , l

0
i,α) = GC.Build(PRF,k,r0

i,1, . . . ,r
0
i,α,∆)

P̃RF i
k

Initialize Cuckoo filter CF with parameters Ns,ε,v,b Setup Phase

for i = 1 to NS:

CF.Insert(PRFk(xi)) CF

for i = 1 to NC: Online Phase for i = 1 to NC:

for j = 1 to α: for j = 1 to α:

bi, j = ci, j⊕yi[ j]

Bi, j = rbi, j
i, j ⊕ l0

i, j li, j = rci, j
i, j ⊕Bi, j

PRFk(yi) = GC.Eval(P̃RF i
k, li,1, . . . , li,α)

If CF.Contains(PRFk(yi)):

put yi into S

Output S
Update Phase

Insert / Delete NU items

U := {}
For i = 1 to NU :

compute tag ti and CF position pi for PRFk(ui)

Put (ti, pi) into U

U,op ∈ {Insert,Delete} for i = 1 to NU :

Insert / Delete ti in CF at position pi or pi⊕H(ti)

Figure 1: Our optimized GC-PSI protocol (based on [PSSW09, KLS+17, RdFA18]). Wire labels are computed as l0
i, j = r0

i, j⊕δi, j

and l1
i, j = l0

i, j⊕∆, where the values δi, j are chosen at random while building the garbled circuit. Npre
C ≥ NC denotes the number of

precomputed OTs and garbled circuits; the base phase must be repeated before further online phase executions once Npre
C queries

are exceeded.

4.4 Optimized NR-PSI Protocol
The usage of the Naor-Reingold PRF (NR-PRF) [NR04] for
PSI was first proposed in [HL10] and the resulting PSI proto-
col transformed into the precomputation setting in [KLS+17].
The NR-PRF for key k and element xi is defined as

fk(xi) = ga0·∏α
j=1 a

xi, j
i mod p, (1)

where, when using a plain finite field, p is a prime, q is
a prime divisor of p− 1, g ∈ Z∗p is a generator of order q,

a0,a1, . . . ,aα are random numbers in Z∗q forming key k, and α

is the bitlength of element xi.
Among all protocols for mobile contact discovery evaluated

in [KLS+17], NR-PSI is the only protocol besides GC-PSI
that can easily be made secure against malicious clients by
employing malicious secure OT extensions (cf. §4.5). Further-
more, according to the empirical performance comparison
in [KLS+17], the NR-PSI protocol causes ≈ 30x less com-
munication overhead than GC-PSI without our optimizations.
This is why we also consider the NR-PSI protocol in this work
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Server Client
Input: X = {x1, . . . ,xNs} of bitlength α Input: Y = {y1, . . . ,yNc}
Output: ⊥ Output: X ∩Y

Base Phase S := {}
Generate p,q,g,a = (a0,a1, . . . ,aα) Agree on ε,v,b, p,q

For i = 1 to Npre
C : For i = 1 to Npre

C :

For j = 1 to α: For j = 1 to α:

r0
i, j,r

1
i, j

Run αNpre
C R-OTs

via OT Extension

random ci, j

rci, j
i, j

Initialize Cuckoo filter CF with parameters NS,ε,v,b Setup Phase

For i = 1 to NS:

Ci = a0

α

∏
j=1

axi[ j]
j mod q

CF.Insert(gCi mod p) CF

For i = 1 to NC: Online Phase For i = 1 to Nc:

For j = 1 to α: For j = 1 to α:

bi, j = ci, j⊕yi[ j]

ri, j = rbi, j
i, j

r1−bi, j
i, j ⊕ (rbi, j

i, j ·a j)

rinv
i = (

n

∏
j=1

ri, j)
−1 mod q Ri, j = rci, j

i, j ⊕yi[ j] · (r
1−bi, j
i, j ⊕ (rbi, j

i, j ·a j))

g̃i = ga0·rinv
i mod p C′i =

α

∏
j=1

Ri, j mod q

g̃i

If CF.Contains(g̃C′i
i mod p) then

put yi into S
Output S

Figure 2: Our optimized NR-PSI protocol (based on [HL10, KLS+17, RdFA18]). When using a plain finite field, the modulus p
is prime, q is a prime divisor of p−1, g ∈ Z∗p is of order q, and a0,a1, . . . ,aα as well as r0

i, j,r
1
i, j are random numbers in Z∗q. The

update phase is omitted since it is similar to the GC-PSI protocol (cf. Fig. 1), except using the NR-PRF to compute tag ti and
Cuckoo filter position pi.

and compare it to our optimized GC-PSI implementation in §6.
The full description of our protocol is given in Fig. 2.

We propose an optimization that improves the online com-
munication for OTs by factor 2x. The optimization is based
on the observation that in the definitions of [HL10] the client
chooses between a random r and r ·a depending on the current
bit of its input element. This implies that C-OTs (cf. §3.1) can
be used instead of real OTs, thereby sending only one message
in the size of the symmetric security parameter instead of the
two messages when using the OTe protocols of [ALSZ13].

Since we use the precomputation form of [KLS+17], we
propose a novel combination of OT precomputation [Bea95]
and C-OT [ALSZ13]. As in OT precomputation, the client

sends a correction bit b stating whether its random choice c
in the precomputation phase equals its real input. Depend-
ing on b, the server then decides which of the two random
messages obtained during OT precomputation is chosen as r
and which is used to mask the correlated message r · a that
is sent to the client. Likewise, the client either proceeds with
the message obtained during OT precomputation as r or uses
this message to unmask the received correlated message.

4.5 Malicious Security

As observed already in [KLS+17], the only messages sent
by the client in the GC-PSI and NR-PSI protocols are those
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in the base OT and OT extension protocols as well as the
correction bits during the online phase when applying OT
precomputation [Bea95]. Therefore, both protocols can easily
be made secure against a malicious client by using a mali-
ciously secure OTe protocol such as [ALSZ15] or [KOS15],
together with maliciously secure base OTs such as [PVW08].
As the OT extension contributes only a small percentage to
the total runtime of the PSI protocols and today’s maliciously
secure OTe protocols are only slightly less efficient than the
passively secure OT extension of [ALSZ13], the total runtime
of the PSI protocols does not increase by a noticeable amount
when replacing the OTe protocols.

Please note that enumeration attacks (i.e., querying the
server repeatedly with different inputs) are still possible when
using our protocols. However, even an ideal functionality for
PSI (e.g., a trusted third party) and currently deployed non-
private contact discovery methods cannot prevent this. We
recommend to employ well-established measures like rate
limiting to mitigate such attacks.

The case of a malicious server is different: it could, for
example, send wrong wire labels, use wrong circuit descrip-
tions, or send a wrong server set. In general, the client does
not reveal the intersection result to the server, so a malicious
server can only influence the correctness of the client’s com-
putation, but cannot learn any information about the client’s
items when using maliciously secure OTs. Unfortunately, in
most mobile messaging applications, the client sends infor-
mation about the intersection (most likely even the entire
intersection) to the server. This allows a malicious server to
learn information about the client’s items that are not part
of the intersection of the two actual input sets. Therefore,
we need to assume a semi-honest server in such scenarios.
Preventing malicious behavior on the server side could be
done by combining our protocols with a trusted execution en-
vironment for hardware-enforced code and remote attestation
capabilities s.t. the server’s protocol deviation possibilities
are restricted to wrong inputs for the Cuckoo filter construc-
tion. However, assuming a semi-honest server is reasonable
since there are legal requirements and financial incentives for
a service provider to behave correctly: once misconduct gets
known publicly, users will abandon the malicious service and
switch to a more trustworthy alternative.

4.6 Further Extensions

The bottleneck for very large server sets is the communication
required to send the Cuckoo filter to the client. For example, a
compressed Cuckoo filter for 228 server items with false posi-
tive probability εmax ≈ 2−29 has a size of ≈ 1GiB, which is
prohibitively large for transmission on mobile network speeds
and data plans. For even larger server databases, the proto-
cols eventually become impractical. For example, for a server
database with 231 entries, it would be necessary to download
a Cuckoo filter of size ≈ 8GiB. Therefore, we describe how

to reduce the overall client-server communication to be loga-
rithmic in the size of the server database. We propose further
extensions to increase practicality in App. A.

Combination with Private Information Retrieval (PIR).
In their PIR-PSI protocol, Demmler et al. [DRRT18] pro-
pose the use of multiple non-colluding servers together with
a multi-server PIR protocol. Applied to our PSI protocols,
the extension works as follows: After the server prepared the
Cuckoo filter, it is not transmitted to the client, but to a second
non-colluding server instead. Since the Cuckoo filter only con-
tains the results of PRF evaluations, the second server does not
learn anything about the items in the main server’s set. The
client then performs the OPRF evaluation for each of its items
with the first server and then runs a multi-server PIR protocol
to retrieve the fingerprints stored in the Cuckoo filter. The
communication complexity for the multi-server PIR lookup is
O(κ logn), where κ is the symmetric security parameter and n
the size of the server database [BGI16, DRRT18]. Since the
overall client-server communication therefore is logarithmic
and not linear in the size of the server database, our protocols
are expected to remain practical even for server databases
with more than a billion items. In practice, the remaining
challenge for messaging services is to find a trustworthy part-
ner operating the second PIR server while at the same time
making it credible to users that no collusion is happening.

5 Android Implementation

To demonstrate the feasibility of our optimized PSI protocols
for performing private contact discovery on mobile devices,
we provide implementations for smartphones running on An-
droid.6 Previous works [HCE11, KLS+17] presented experi-
ments on dedicated mobile devices, but the performance of
these implementations was not sufficient for real-world usage.
For example, the Java implementation of [KLS+17], which
is based on the ObliVM framework [LWN+15], takes more
than a second to evaluate a single garbled AES-128 circuit.

In our implementation, we make use of native C/C++ code
support in Android and also use hardware acceleration for
cryptographic operations available in modern smartphones.
More precisely, native AES-128 instructions are used both as
a PRNG and during the creation and evaluation of the gar-
bled circuit. These features allow our implementation to reach
truly practical performance. Compared to the Java-based im-
plementation of [KLS+17], we evaluate a garbled AES-128
circuit more than 1,000x faster.

5.1 Base OTs and OT Extension
For performing base OTs, we use the OT protocol of Chou
and Orlandi [CO15] with the additional verification step pro-

6https://contact-discovery.github.io
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posed by Doerner et al. [DKLa18]. Together with the (C-)OT
extension protocol of Keller, Orsini, and Scholl [KOS15], this
results in a maliciously secure protocol (cf. [DKLa18]).

Our OT implementation is based on libOTe by
Rindal [Rin], which is heavily optimized for the x86 archi-
tecture. Therefore, we ported large parts of the library to
the ARMv8 architecture to achieve high performance on mo-
bile devices. At the same time, we kept the library compatible
with its x86 counterpart to facilitate natural development of
client-server applications.

5.2 GC-PSI Implementation
For the GC-PSI protocol, we implement Yao’s GC protocol
(cf. §3.2) with Free-XOR [KS08] and Half-Gates [ZRE15],
resulting in no communication for XOR-gates and two wire
labels of κ bits each per AND gate, where κ = 128 is the
symmetric security parameter.

For creating and evaluating the garbled tables, the most
efficient choice today is fixed-key AES [BHKR13], mainly
due to the hardware support for AES that is widespread in
modern x86 CPUs. The ARM Cryptography Extensions (CE)
introduced in the ARMv8 architecture similarly provide hard-
ware instructions for AES, SHA-1, and SHA-2 variants, re-
sulting in AES speedups of factor 35x compared to a standard
AES software implementation. This allows us to use fixed-key
AES [BHKR13] for garbling in our implementation.7

Additionally, the ARMv8 architecture provides instructions
for vector operations on 128-bit registers (the so-called NEON
instruction set), which we use to efficiently work with 128-bit
wire labels. In Tab. 7 in App. B, we demonstrate the wide
availability of ARM CE in most recent smartphones.

5.3 NR-PSI Implementation
For implementing the NR-PSI protocol, we use the modified
libOTe version described in §5.1 for C-OT precomputation
as well as the GNU GMP8 library for modular arithmetic oper-
ations and the MIRACL9 library for instantiating the protocol
with elliptic curve P-256. The advantage of instantiating the
NR-PSI protocol with ECC instead of using a plain finite field
with comparable security parameters is that the size of the
values g̃i transferred during the online phase (cf. Fig. 2) is re-
duced by factor 8x. Also, computationally expensive modular
exponentiations are replaced with point multiplications. We
refer to this variant as ECC-NR-PSI in the following. All li-
braries are compiled specifically for the ARMv8 architecture.

7As recently reported by [GKWY19], many secure computation
implementations use fixed-key AES incorrectly. However, according
to [GKWY19], our instantiation for garbling following the definitions
of [ZRE15] is not affected. In contrast, libOTe [Rin] is currently vulnera-
ble. The suggested fixes however are not expected to result in a significant
negative performance impact [GKWY19].

8https://gmplib.org
9https://github.com/miracl/MIRACL

6 Performance Evaluation

We empirically evaluate the performance of our optimized
GC-PSI and NR-PSI protocols and compare them to other
unbalanced PSI protocols from the literature.

Benchmark Settings. For easy comparison to related work,
we choose similar sizes for the server’s and the client’s set:
Ns ∈ {220,224,226,228} and Nc ∈ {1,28,210}. Here, Nc = 1
represents the case where a client wants to check a new con-
tact. All items have a bitlength of α = 128. We instantiate all
primitives and protocols with 128-bit security.

In all of our experiments, the sever is equipped with an
Intel CoreTM i7-4600U CPU @ 2.6GHz and 16GiB of RAM.
The client is a Google Pixel XL 2 smartphone with a Snap-
dragon 835 CPU @ 2.45GHz and 4GiB of RAM. We con-
sider two network settings: (i) an IEEE 802.11ac WiFi con-
nection with ≈ 230Mbit/s down-/upload and 70ms RTT
and (ii) a mobile LTE connection with 42Mbit/s down-
load (S→C), 4Mbit/s upload (S←C), and 80ms RTT.

Note that the LTE network speeds are real-world param-
eters and exhibit a significant difference in the down- and
upload rates. This is common in commercially available data
plans and often not taken into account in previous evaluations.

6.1 GC-PSI and NR-PSI Protocol
The runtime and communication costs for the base, setup,
and online phase of our protocols are shown in Tab. 3, Tab. 4,
and Tab. 5, respectively, and are averaged over 100 executions
(except for the setup phase, where we chose 10 or less execu-
tions due to the larger runtime). We use LowMC instance (3)
from Tab. 2 for the evaluation.

In all tests, only a single thread was used for both the server
and the client. Since all phases of our protocols can be paral-
lelized trivially, we expect a near-linear speedup when using
multiple threads, except in situations where the bottleneck is
network bandwidth. Furthermore, note that in the base and
online phases of the GC-PSI protocol, only one party actually
performs the computationally expensive task of garbling or
evaluating the circuit. Therefore, if both parties are ready,
the base and online phases of the GC-PSI protocol can be
interleaved in a pipelined fashion, where the server sends the
garbled circuits and the client evaluates them as soon as parts
of them are available. This method can reduce the runtime
of the combined base and online phase to the runtime of the
slower phase.

We observe that using LowMC instead of AES in the GC-
PSI protocol leads to 7.4x less communication and thus to
a much smaller runtime in the base phase, while the on-
line phase of both protocol versions is very comparable.
Only during the one-time setup phase, the AES version is
more efficient due to AES-NI instructions. Using a hardware-
accelerated implementation of LowMC could reduce this run-
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Parameters Time [s] Comm. [MiB]
Npre

c Protocol WiFi LTE S→C S←C

210
AES-GC-PSI 7.14 38.98 162.52 2.02
LowMC-GC-PSI 1.85 6.57 22.01 2.02
ECC-NR-PSI 0.61 4.21 0.01 1.99

Table 3: Base phase of our PSI protocols. Precomputation for
checking Npre

c client contacts. Best results marked in bold.

Parameters Server Setup [s] Transmission [s] Comm. [MiB]
Ns Protocol WiFi LTE S→C

228
AES-GC-PSI 23.94

32.66 211.30 1072LowMC-GC-PSI 1,869.13
ECC-NR-PSI 52,332.38

226
AES-GC-PSI 4.87

8.13 52.55 268LowMC-GC-PSI 467.29
ECC-NR-PSI 12,787.79

224
AES-GC-PSI 1.12

2.13 13.05 67LowMC-GC-PSI 116.66
ECC-NR-PSI 3,297.96

220
AES-GC-PSI 0.06

0.25 0.63 4.19LowMC-GC-PSI 7.27
ECC-NR-PSI 241.54

Table 4: Setup phase of our PSI protocols. Server setup run
once for all clients. The Cuckoo filter parameters are set as
described in §4.1 (εmax = 2−29.4,v = 32,b = 3). Best results
marked in bold. Note that the size of the client set does not
influence the runtime of the setup phase and the client does
not send any data during the setup phase in any protocol.

time close to the one of AES, but we again stress that the
setup phase is a one-time cost. This confirms our choice of
LowMC over AES as the PRF in GC-PSI.

ECC-NR-PSI is the most efficient protocol during the base
phase since it does not send garbled circuits to the client: com-
pared to the LowMC version of GC-PSI, it requires 12x less
communication. The ECC-NR-PSI online phase is slightly
slower than both GC-PSI protocols, while being the fastest for
a single item. The one-time setup phase of the ECC-NR-PSI
protocol is much slower than both GC-PSI protocol versions
due to elliptic curve operations.

6.2 Comparison with Related Work
We now highlight differences to other works in the literature
and compare our optimized GC- and NR-PSI protocols and
implementations to other unbalanced PSI implementations
available for Android in Tab. 6. Comparisons with implemen-
tations for the x86 architecture are given in App. D.

Chen et al. [CLR17,CHLR18]. The protocols of [CLR17,
CHLR18] for unbalanced PSI are based on leveled fully ho-
momorphic encryption (FHE). They both work as follows:
the client encrypts all its items and sends them to the server,
which then computes the intersection under encryption with

Parameters Time [s] Comm. [KiB]
Nc Protocol WiFi LTE S→C S←C

210
AES-GC-PSI 1.43 1.86 2,048 16.00
LowMC-GC-PSI 1.71 2.02 2,048 16.00
ECC-NR-PSI 2.31 2.32 4,147 16.00

28
AES-GC-PSI 0.34 0.47 512 4.00
LowMC-GC-PSI 0.37 0.48 512 4.00
ECC-NR-PSI 0.61 0.61 1,037 4.00

1
AES-GC-PSI 0.03 0.03 2.00 0.02
LowMC-GC-PSI 0.04 0.05 2.00 0.02
ECC-NR-PSI 0.01 0.02 4.06 0.04

Table 5: Online phase of our PSI protocols. Best results
marked in bold. The influence of the server set size on runtime
and communication is negligible and therefore not listed.

all of its own items and returns the result in encrypted form.
The client can then decrypt the received ciphertexts to find
the intersection.

The protocol in [CLR17] is only defined for 32bit strings,
a limitation that stems from the parameter choice of the FHE
scheme. Since the universe of possible items is larger than 232

in the use case of contact discovery, we exclude this protocol
from further comparisons. However, this limitation was lifted
in the subsequent work [CHLR18] where arbitrary length
items are supported. The benefits of [CHLR18] compared to
our protocols are that the client is not required to store any
data and that the total communication is sublinear in the size
of the server database. For example, for Ns = 228, the total
communication in the protocol of [CHLR18] is only 18.4MB.

However, there is a huge computational overhead during
the online phase of the protocol: even on a high-end server it
takes more than 12s on 32 threads to compute the intersection
with Nc = 1024 client elements. Unfortunately, the online
phase needs to be repeated whenever there are updates on
client or server side. Also, due to the employed FHE batching
optimizations, the runtime for a single item is almost equal
to the runtime for thousands of items. Assuming that each of
the Ns = 228 registered clients runs one update per day, this
would require the service provider to pay for 228 ·12.1 ·32≈
28.9 million core hours every day. In contrast, the online
phases of our protocols run in ≈ 2s for Nc = 1024 in the
WiFi setting on a single-threaded smartphone and require no
cryptographic operations on server side.

The evaluation of [CHLR18] was performed on two servers
with Intel Xeon CPUs in a 10Gbit/s local network. Therefore,
it is also unclear how the FHE encryption and decryption
routines perform in a mobile setting on real smartphones.

Resende and de Freitas Aranha [RdFA18]. In [RdFA18],
the authors present implementation improvements for the PSI
protocol of [BBC+11]. For each element in the client’s set,
they perform 3 point multiplications and transmit 2 group
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Parameters PSI Protocol Base + Online Time [s] Communication [MiB] Setup Communication / Setup Transfer [s] Server Setup [s]
Ns Nc WiFi LTE S→C S←C Client Storage [MiB] WiFi LTE

228

1,024

AES-GC-PSI [KLS+17] 1,507.73 2,742.66 177.23 4.00 1,380.25 42.05 272.06 26.70
NR-PSI [KLS+17] 171.23 221.20 64.25 2.02 1,380.25 42.05 272.06 194,130.21
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 1,072.00 32.66 211.30 1,869.13
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 1,072.00 32.66 211.30 52,332.38

1

AES-GC-PSI [KLS+17] 1.53 2.95 0.18 0.02 1,380.25 42.05 272.06 26.70
NR-PSI [KLS+17] 0.17 0.21 0.06 0.01 1,380.25 42.05 272.06 194,130.21
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 1,072.00 32.66 211.30 1,869.13
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 1,072.00 32.66 211.30 52,332.38

224

1,024

AES-GC-PSI [KLS+17] 1,507.73 2,742.66 177.23 4.00 86.26 2.74 16.80 1.18
NR-PSI [KLS+17] 171.23 221.20 64.25 2.02 86.26 2.74 16.80 12,174.40
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 67.00 2.13 13.05 116.66
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 67.00 2.13 13.05 3,297.96

1

AES-GC-PSI [KLS+17] 1.53 2.95 0.18 0.02 86.26 2.74 16.80 1.18
NR-PSI [KLS+17] 0.17 0.21 0.06 0.01 86.26 2.74 16.80 12,174.40
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 67.00 2.13 13.05 116.66
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 67.00 2.13 13.05 3,297.96

220

1,024

AES-GC-PSI [KLS+17] 1,507.73 2,742.66 177.23 4.00 5.39 0.32 0.81 0.05
NR-PSI [KLS+17] 171.23 221.20 64.25 2.02 5.39 0.32 0.81 758.40
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 4.19 0.25 0.63 7.27
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 4.19 0.25 0.63 241.54

1

AES-GC-PSI [KLS+17] 1.53 2.95 0.18 0.02 5.39 0.32 0.81 0.05
NR-PSI [KLS+17] 0.17 0.21 0.06 0.01 5.39 0.32 0.81 758.40
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 4.19 0.25 0.63 7.27
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 4.19 0.25 0.63 241.54

Table 6: Comparison of PSI protocols with smartphone implementations. Numbers for protocols of [KLS+17] are obtained by
running their implementations in our benchmarking environment. In all tests Npre

c = Nc. Best in class marked in bold.

elements. This results in a lower communication than our
approaches (64B for 2 group elements vs. 22KiB per garbled
circuit vs. 6KiB per item in NR-PSI).

However, one major contribution of [RdFA18] is a signif-
icant optimization of the GLS-254 curve for x86 CPUs. It
is therefore unclear how their protocol performs on smart-
phones with ARMv8-A hardware. Furthermore, their Cuckoo
filters parameters allow for a false positive probability that is
too high for real-world deployment (cf. §4.1). Finally, their
protocol assumes semi-honest adversaries, and while a ma-
liciously secure variant [JL10] of their basic protocol exists,
its performance has not yet been evaluated. Performing such
an evaluation and providing an implementation for mobile
smartphone clients is an area for future work.

Kiss et al. [KLS+17]. In [KLS+17], the authors consider
various semi-honest PSI protocols, from which their GC-PSI
and NR-PSI protocols are the foundation of our work.

Their Android implementation (in pure Java) takes
about 1.5s for a single oblivious AES evaluation in their
GC-PSI protocol. The authors therefore conclude that instead
their ECC-DH-PSI protocol is most suited for the mobile use
case since the evaluation time for a single item is 23ms. How-
ever, both of our optimized protocols with security against
malicious clients are more than competitive with an evalua-

tion time of less than 2ms for a single item. For Nc = 1024
client elements, the combined base and online time of our
optimized GC- and NR-PSI protocols improves by more than
a factor of 300x and 30x, respectively, compared to the unop-
timized semi-honest implementations of [KLS+17] in both
the WiFi and the LTE network setting.

Also, the total communication during the base and online
phase improves by factors 7.5x and 10.9x compared to the
respective GC- and NR-PSI protocols of [KLS+17].

7 Conclusion

Our native implementations of our optimized NR- and GC-
PSI protocols are two almost equivalently outstanding solu-
tions for large-scale mobile private contact discovery with
security against malicious clients.

The Signal developers stated that to actually deploy PSI-
based contact discovery, it would need to be able to handle
a server database with 1 billion users while address books
are assumed to contain up to 10,000 contacts. In terms of la-
tency, lookups are required to take less than 2s, while in terms
of throughput a single core should be able to handle 1,600
contacts per second. Clearly, we cannot meet these demand-
ing requirements yet. Therefore, as part of future work, we
suggest to implement and evaluate our proposed extensions
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(especially the combination with PIR) to take the next impor-
tant steps towards real-world deployment.
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A Protocol Extensions

We propose further extensions for improving practicality.

Combination with FHE Protocols. Protocols for unbal-
anced PSI based on fully homomorphic encryption (FHE),
e.g., [CHLR18], are computationally expensive and thus much
slower during the online phase than our protocols (cf. §6.2).
However, their advantage is that the total amount of commu-
nication is sublinear in the size of the server database. When
clients install a new messaging application and are not con-
nected to a high-speed WiFi network, such FHE-based pro-
tocols likely produce faster contact discovery results, which
leads to higher user satisfaction.

Thus, we recommend the following hybrid use of con-
tact discovery protocols: Directly after installation of
a mobile messaging application, a FHE-based protocol
(e.g., [CHLR18]) is used to perform the initial contact dis-
covery. Then, while the phone is charging overnight and is
connected to a WiFi network, the base and setup phase of
one of our protocols is performed. This leads to very efficient
online phases for future protocol runs, which are performed
regularly when updates on client or server side happen (poten-
tially over mobile data plans where communication matters).
See also §6.2 for a more detailed comparison between FHE-
based unbalanced PSI protocols and our work.

Dedicated Server for Cuckoo Filter Membership Tests.
In many scenarios, a large number of clients is part of a sin-
gle organization. For example, consider the mobile malware
detection scenario discussed in [KLS+17], where all applica-
tions installed on a client’s smartphone are checked against a
database of malicious applications. When employing such a
malware detection service in an enterprise context, a company
usually buys a volume license for all of its employees.

To reduce the overall data communication, the company
could host a dedicated server which would receive the large en-
crypted database of server items represented as a compressed
Cuckoo filter once. If a client then wants to compute the inter-
section between installed and malicious applications, it only
communicates with the malware detection service provider to
perform OPRF evaluations and then hands off the encrypted
items to the trusted company server, which performs the set
intersection on behalf of the clients and reports back the result.
Since this trusted server does not have knowledge of the PRF
key, it cannot directly deduce which items the client holds.

However, since the OPRF result is deterministic when using
the same secret key, the trusted server can learn when multiple
clients request the same item. Furthermore, it could interact
with the malware detection service provider itself to obtain
encryptions of known items, which it can compare to the
encrypted items of the clients. However, this kind of leakage
can be argued to be acceptable in many settings, such as the
company-internal setting mentioned above.
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Partitioning the Database. A simple solution to reduce the
required communication during the setup phase is to partition
the server database s.t. clients only download Cuckoo filters
relevant for the contacts in their address book (for example
w.r.t. number prefixes, states, countries, or regions).

Assuming that the majority of users has contacts in only
very few such partitions, this approach leads to practical data
transmission sizes even for services with billions of users. In
the worst case (i.e., a user has contacts in all partitions or
prefers to leak no information at all), multiple runs of our
protocols can cover the worldwide user base.

However, this solution presents a significant performance /
privacy trade-off since clients leak information about their
social graph. For example, intelligence agencies might find it
suspicious if US citizens evidently have contacts in middle
eastern countries. How severe the privacy of users is threat-
ened also depends on how fine-grained the chosen partitions
are: if they are too small, it might even be possible to identify
an individual just by observing Cuckoo filter downloads.

B ARM Cryptography Extensions (CE)

The wide availability of the ARM Cryptography Exten-
sions (CE) in modern smartphone processors is highlighted
in Tab. 7.

System-on-a-Chip (SoC) Example Smartphones and Tablets CE

Apple A4, A5, A6 iPhone 4, iPad, iPad 2, iPhone 5 7
Apple A7, A8, A9 iPhone (5s,6), iPad Air, iPad mini 2 3
Apple A10, A11, A12 iPhone (7,8,X,Xs), iPad (2018), iPad Pro 3
Snapdragon 801 HTC One (E8), OnePlus One 7
Snapdragon 805 Galaxy S5+, Nexus 6 7
Snapdragon 808 Nexus 5X, LG G4, Moto X Style 3
Snapdragon 810 OnePlus 2, Nexus 6P, Sony Xperia Z5 3
Snapdragon 820 OnePlus 3, Galaxy S7, LG G5 3
Snapdragon 821 Google Pixel (XL), LG G6 3
Snapdragon 835 Google Pixel 2 (XL), Galaxy S8 3
Snapdragon 845 OnePlus 6, Galaxy S9, Sony Xperia Z2 3

Table 7: Availability of ARM Cryptography Extensions (CE)
in modern smartphone and tablet systems-on-a-chip (SoCs).

C Signal Integration Demonstrator

As a proof-of-concept, we modified the client application of
the open-source messenger Signal to perform contact discov-
ery using our PSI protocols. To be able to run the modified
client with the official servers, the integration works as fol-
lows: Whenever Signal triggers the contact discovery routine,
we run one of the PSI protocols with our own PSI server10

that can be selected when first launching the application. The
resulting matches are then used as input for the unmodified
Signal contact discovery routine. This way, the official Signal

10In practice, this PSI server would be run by Signal and use the actual
database of Signal users.

server only learns the hashes of phone numbers which are
already registered to the service. Our changes to the user in-
terface of the Android version of the Signal application are
depicted in Fig. 3.

(a) Signal registration. (b) Contact discovery result.

Figure 3: Screenshots of our prototype integration into the
open-source messenger Signal.

D Comparison of Unbalanced PSI Protocols
on the x86 Architecture

The goal of our paper is to provide efficient private contact
discovery for mobile messaging applications via improved
unbalanced PSI protocols with implementations optimized for
smartphones. Therefore, we focus our implementation and
evaluation efforts on the mobile use case and perform our
experiments on real smartphones with ARMv8 architecture.
However, to present the complete picture, we give a compari-
son to protocols for unbalanced PSI running on x86 hardware
and communicating in a local network in Tab. 8.
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Parameters Protocol Online Time [s] Online Communi- Setup Communication / Server Setup [s]
Ns Nc cation [MiB] Client Storage [MiB]

228 1,024

[RdFA18] ∗0.16 0.07 806 ∗182
[CHLR18] ∗12.10 18.57 0 ∗4,628
LowMC-GC-PSI (Ours) 0.93 24.01 1,072 1,869
ECC-NR-PSI (Ours) 1.34 6.06 1,072 52,332

224

11,041

[RdFA18] 0.71 0.67 48 342
[CLR17] 44.70 23.20 0 71
[CHLR18] 20.10 41.48 0 656
LowMC-GC-PSI (Ours) 12.51 258.79 67 117
ECC-NR-PSI (Ours) 11.94 65.24 67 3,298

5,535

[RdFA18] 0.35 0.34 48 342
[CLR17] 40.10 20.10 0 64
[CHLR18] 22.01 16.39 0 806
LowMC-GC-PSI (Ours) 5.63 129.73 67 117
ECC-NR-PSI (Ours) 5.93 32.71 67 3,298

220

11,041

[RdFA18] 0.71 0.67 3 22
[CLR17] 6.40 11.50 0 6.4
[CHLR18] 4.49 14.34 0 43
LowMC-GC-PSI (Ours) 12.51 258.79 4.2 7.3
ECC-NR-PSI (Ours) 11.94 65.24 4.2 242

5,535

[RdFA18] 0.35 0.34 3 22
[CLR17] 4.30 5.60 0 4.3
[CHLR18] 4.23 11.50 0 43
LowMC-GC-PSI (Ours) 5.63 129.73 4.2 7.3
ECC-NR-PSI (Ours) 5.93 32.71 4.2 242

Table 8: Comparison of unbalanced PSI protocols in the LAN setting (10Gbit/s, 0.02ms RTT) on PC hardware (x86 architecture).
Numbers for other protocols are taken from [CHLR18]. All numbers are from single-core executions, except those marked
with ∗, which was an execution with 32 cores on the server side and 4 cores on the client side. The bit length α of all items is 128,
except for [CLR17], where α = 32 due to limitations of the protocol.
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