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Abstract. Lattice-based cryptosystems are less efficient than their number-theoretic counterparts
(based on RSA, discrete logarithm, etc.) in terms of key and ciphertext (signature) sizes. For
adequate security the former typically needs thousands of bytes while in contrast the latter only
requires at most hundreds of bytes. This significant difference has become one of the main concerns
in replacing currently deployed public-key cryptosystems with lattice-based ones. Observing the
inherent asymmetries in existing lattice-based cryptosystems, we propose asymmetric variants of
the (module-)LWE and (module-)SIS assumptions, which yield further size-optimized KEM and
signature schemes than those from standard counterparts.
Following the framework of Lindner and Peikert (CT-RSA 2011) and the Crystals-Kyber proposal
(EuroS&P 2018), we propose an IND-CCA secure KEM scheme from the hardness of the asym-
metric module-LWE (AMLWE), whose asymmetry is fully exploited to obtain shorter public keys
and ciphertexts. To target at a 128-bit security, the public key (resp., ciphertext) of our KEM only
has 896 bytes (resp., 992 bytes), which gives an improvement of 192 bytes (resp.,160 bytes) over
Kyber.
Our signature scheme bears most resemblance to and improves upon the Crystals-Dilithium scheme
(ToCHES 2018). By making full use of the underlying asymmetric module-LWE and module-
SIS assumptions and carefully selecting the parameters, we obtain better compromise between
computational costs, storage overheads and security and therefore construct an SUF-CMA secure
signature scheme with shorter public keys and signatures. For a 128-bit security, the public key
(resp., signature) of our signature scheme only has 1312 bytes (resp., 2445 bytes), which gives an
improvement of 160 bytes (resp, 256 bytes) over Dilithium.
We adapt the best known attacks and their variants to our AMLWE and AMSIS problems and
conduct a comprehensive and thorough analysis of several parameter choices (aiming at different
security strengths) and their impacts on the sizes, security and error probability of lattice-based
cryptosystems. Our analysis demonstrates that AMLWE and AMSIS problems admit more flexible
and size-efficient choices of parameters than the respective standard versions. Furthermore, imple-
mentations of our proposed schemes appear to be (slightly) more computationally efficient than
their counterparts.

1 Introduction

Despite the tremendous success of traditional public-key cryptography (a.k.a. asymmetric-
key cryptography), the typical public-key cryptosystems in widespread deployment on
the Internet are based on number-theoretic hardness assumptions such as factoring and
discrete logarithms and thus are susceptible to quantum attacks [41] once large-scale
quantum computers become a reality. With the rapid advancement of quantum com-
puting technology in recent years [25], developing post-quantum cryptography (PQC)
with resistance to both classical and quantum computers has become a primary prob-
lem as well as a priority issue for the crypto community. In response to the quantum



crisis, several government agencies and standardization organizations have announced
plans to solicit and standardize PQC algorithms. In 2015, the NSA [37] has announced
its schedule for migration to PQC. In 2016, the NIST initiated its standardization pro-
cess for post-quantum public-key encryption (PKE), key-establishment (KE) and digital
signatures. Among the 69 PQC submissions received worldwide, 17 candidate PKE and
key-establishment algorithms (e.g., Kyber [12]), and 9 candidate signature schemes (e.g.,
Dilithium [19]) have been selected to the 2nd round of the NIST PQC standardization,
where 12 out of the total 26 2nd-round candidates are lattice-based algorithms.

Most lattice-based cryptosystems base their security on the conjectured quantum
hardness of the Short Integer Solution (SIS) problem [1, 35] and the Learning With Errors
(LWE) problem [40]. Informally speaking, the two problems are both related to solving
systems of linear congruences (and are in some sense dual to each other). Let n, m, q be
integers and α, β be reals, and let χα be some distribution (e.g., a Gaussian distribution)
with parameter α defined over Z. The SIS problem SIS∞n,m,q,β in the infinity norm asks

to find out a non-zero vector x ∈ Zm, given a random matrix A
$←− Zn×mq , such that

Ax = 0 mod q and ‖x‖∞ ≤ β. Correspondingly, the search LWE problem LWEn,m,q,α

searches for s ∈ Znq from samples (A,b = As + e) ∈ Zm×nq × Zmq , where A
$←− Zm×nq ,

s
$←− Znq and e

$←− χmα . Decisional LWE problem asks to distinguish (A,b = As + e) from
uniform over Zm×nq × Zmq . For certain parameters the two (search and decisional) LWE
problems are polynomially equivalent [40, 33].

It has been shown that the two average-case problems SIS and LWE are at least as
hard as some worst-case lattice problems (e.g., Gap-SIVP) for certain parameter choices
[40, 35]. Moreover, quantum algorithms are not known to have substantial advantages
(beyond polynomial speedup) over classical ones in solving these problems, which makes
SIS and LWE ideal candidates for post-quantum cryptography. We mention a useful
variant of LWE, called the (Hermite) normal form of LWE, where the secret s is sampled
from noise distribution χnα (instead of uniform). The standard LWE and its normal form
were known to be equivalent up to a polynomial number of samples [6]. Furthermore, the
use of a “small” secret in the normal form of LWE comes in handy in certain application
scenarios, e.g., for better managing the growth of the noise in homomorphic encryptions
[16, 13].

SIS is usually used in constructing signature schemes, and LWE is better suited for
public-key encryption schemes. However, the standard LWE and SIS problems seem to
suffer some constraints in choosing parameters for some practical cryptographic schemes.
For example, the LWE parameter for achieving a 128-bit security typically cannot provide
a matching decryption error probability ν (say ν = 2−128) for the resulting LWE-based
PKE scheme. Note that a larger ν (i.e., ν > 2−128) will sacrifice the security, and a smaller
ν (i.e., ν < 2−128) may compromise the performance. To this end, we introduce special
variants of SIS and LWE, referred to as asymmetric SIS (ASIS) and asymmetric LWE
(ALWE).

Informally, the ASIS problem ASIS∞n,m1,m2,q,β1,β2
refers to the problem that, given a

random A
$←− Zn×(m1+m2)

q , find out a non-zero x = (xT1 ,x
T
2 )T ∈ Zm1+m2 satisfying Ax =

0 mod q, ‖x1‖∞ ≤ β1 and ‖x2‖∞ ≤ β2. It is easy to see that ASIS∞n,m1,m2,q,β1,β2
is at least
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as hard as SIS∞n,m1+m2,q,max(β1,β2)
. In particular, we have

SIS∞n,m1+m2,q,max(β1,β2)
� ASIS∞n,m1,m2,q,β1,β2

� SIS∞n,m1+m2,q,min(β1,β2)
.

This lays the theoretical foundation for constructing secure signatures based on the ASIS
problem. In addition, we investigate a class of algorithms for solving the ASIS problem,
and provide a method for selecting appropriate parameter values for different security
levels with reasonable security margin.

Correspondingly, the ALWE problem ALWEn,m,q,α1,α2 asks to find out s ∈ Znq from

samples (A,b = As+e) ∈ Zm×nq ×Zmq , where A
$←− Zm×nq , s

$←− χnα1
, e

$←− χmα2
. The hardness

of ALWE may depend on the actual distribution from which s (or e) is sampled, and
thus we cannot simply compare the hardness of LWE and ALWE like we did for SIS and
ASIS. However, the relation below remains valid for our parameter choices in respect to
all known solving algorithms despite the lack of a proof in general 4

LWEn,m,q,min(α1,α2) � ALWEn,m,q,α1,α2 � LWEn,m,q,max(α1,α2).

More importantly, the literature [22, 15, 34] suggests that ALWE can reach comparable
hardness to standard LWE as long as the secret is sampled from a distribution (i.e., χnα1

)
with sufficiently large entropy (e.g., uniform distribution over {0, 1}n) and appropriate
values are chosen for other parameters. This shows the possibility of constructing secure
cryptographic schemes based on the ALWE problem. We also note that Cheon et al. [18]
introduced a variant of LWE that is quite related to ALWE, where s and e are sampled
from different distributions (notice that s and e in the ALWE problem are sampled from
the same distribution χ, albeit with different parameters α1 and α2). By comprehensively
comparing, analyzing and optimizing the state-of-the-art LWE solving algorithms, we
establish approximate relations between parameters of ALWE and LWE, and suggest
practical parameter choices for several levels of security strength intended for ALWE.

The definitions of the aforementioned variants can be naturally generalized to the
corresponding ring and module versions, i.e., ring-LWE/SIS and module-LWE/SIS. As
exhibited in [19, 12], module-LWE/SIS allows for better trade-off between security and
performance. We will use the asymmetric module-LWE problem (AMLWE) and the asym-
metric module-SIS problem (AMSIS) to construct a key encapsulation mechanism (KEM)
and a signature scheme of smaller sizes.

Technically, our KEM scheme is mainly based on the PKE schemes in [12, 30], except
that we make several modifications to utilize the inherent asymmetry of the (M)LWE
secret and noise in contributing to the decryption error probabilities, which allow us to
obtain smaller public keys and ciphertexts. In Section 3.1, we will further discuss this
asymmetry in the design of existing schemes, and illustrate our design rationale in more
details. For a targeted 128-bit security, the public key (resp., ciphertext) of our KEM
only has 896 bytes (resp., 992 bytes), which gives an improvement of 192 bytes (resp.,160
bytes) over Kyber [12].

Our signature scheme bears most resemblance to Dilithium in [19]. The main differ-
ence is that we make several modifications to utilize the asymmetric parameterization of
the (M)LWE and (M)SIS to reach better trade-offs among computational costs, storage

4 In fact, the reductions can be established for certain χ (e.g., discrete Gaussian).
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overheads and security, which yields smaller public keys and signatures without sacrific-
ing the security or computational efficiency. In Section 4.1, we will further discuss the
asymmetries in existing constructions, and illustrate our design rationale in more details.
For a targeted 128-bit security, the public key (resp., signature) of our signature only has
1312 bytes (resp., 2445 bytes), which gives an improvement of 160 bytes (resp, 256 bytes)
over Dilithium [19].

We make a comprehensive and in-depth study on the concrete hardness of AMLWE
and AMSIS by adapting the best known attacks (that were originally intended for MLWE
and MSIS respectively) and their variants (that were modified to solve AMLWE and AM-
SIS respectively), and provide several choices of parameters for our KEM and signature
schemes aiming at different security strengths. The implementation of our schemes (and
its comparison with the counterparts) confirms that our schemes are practical and com-
petitive. We will compare our KEM with Kyber [12] in Section 1.1, and compare our
signature with Dilithium [19] in Section 1.2.

1.1 Comparison with Kyber

Table 1. Comparison between Our KEM scheme ΠKEM and Kyber

NIST
Schemes

KeyGen Encap Decap |pk| |sk| |C| |ss| Dec. Quantum

Category (AVX2) (AVX2) (AVX2) (Bytes) (Bytes) (Bytes) (Bytes) Failure Sec.

I
Kyber 70 665 86 235 73 722 736 1632 800 32 2−145 100

Our ΠKEM 71 352 76 583 64 634 672 1568 672 32 2−82 102

III
Kyber 105 516 131 607 116 223 1088 2400 1152 32 2−142 161

Our ΠKEM 90 335 99 780 85 622 896 2208 992 32 2−128 147

V
Kyber 138 915 176 151 158 931 1440 3168 1504 32 2−169 218

Our ΠKEM 146 304 174 560 140 894 1472 3392 1536 64 2−211 213

In Table 1, we compare our KEM scheme ΠKEM with Kyber [12]. The first column
provides the targeted security strength in terms of the NIST recommended 5 categories,
which aim at achieving the same security levels as AES128, SHA256/SHA3-256, AES192,
SHA384/SHA3-384, and AES256, respectively. The software is implemented in C lan-
guage with optimized number theory transform (NTT) and vector multiplication using
AVX2 instructions. The running times of KeyGen, Encap and Decap algorithms are mea-
sured in averaged CPU cycles of 10000 times running on a 64-bit Ubuntu 14.4 LTS
ThinkCenter desktop (equipped with Intel Core-i7 4790 3.6 GHz CPU and 4GB mem-
ory). The sizes of public key |pk|, secret key |sk|, ciphertext |C| are measured in terms
of bytes. The column |ss| gives the size of the session key that is encapsulated by each
ciphertext. The column “Dec. Failure” lists the probabilities of decryption error. The last
column “Quantum Sec.” gives the estimated quantum security level expressed in bits.

Note that the estimated quantum security of our KEM scheme ΠKEM is slightly lower
than that of Kyber, but we emphasize that our parameter choices have left out sufficient
security margin reserved for further development of attacks. For example, the NIST Cat-
egory III requires a quantum security at most 128 bits (this is why we set the parameter
to reach a probability 2−128 for decryption error), while our parameter is set to achieve
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an estimated quantum security of 147 bits. We also note that our KEM scheme ΠKEM

at Category V has slightly larger sizes than Kyber. This is because we choose to set
the parameters to encapsulate a key of length 64 bytes, which is twice the size of that
achieved by Kyber (we note that this is achieved by only slightly increasing the sizse of
the public key and ciphertexts, i.e., 32 bytes). This decision is based on the fact that a
32 bytes session key cannot provide more than 128 bits quantum security by the Grover
algorithm [23], and we hope the parameter setting at Category V can achieve much higher
quantum security bits, e.g., 192 bits. In all, our KEM has better overall performance (in
particular, having shorter public keys and ciphertexts) than Kyber.

Very recently, the authors of Kyber [12] had made several modifications in their revised
submission to the 2nd round NIST PQC standardization process, which chooses new
parameters sets and removes the compression of the public key. We have not tested
their new algorithm on our computer, but note that all their updates are not aiming at
reducing the size of public key or ciphertext (actually, their new parameters are chosen
to maintain the total sizes of the public key and ciphertexts), and the sizes of our KEM
at all categories are still smaller than that of their new scheme. Besides, it seems that
our techniques can also be used to improve the new Kyber scheme.

1.2 Comparison with Dilithium

Table 2. Comparison between Our Signature Scheme ΠSIG and Dilithium

NIST
Schemes

KeyGen Sign Verify |pk| |sk| |σ| Quantum

Category (AVX2) (AVX2) (AVX2) (Bytes) (Bytes) (Bytes) Sec.

I
Dilithium 151 624 661 854 142 930 1184 2800 2044 91

Our ΠSIG 137 705 453 504 124 819 1056 2448 1852 90

II
Dilithium 222 650 927 313 198 865 1472 3504 2701 125

Our ΠSIG 224 199 696 280 195 537 1312 3376 2445 128

III
Dilithium 273 155 907 609 275 418 1760 3856 3366 158

Our ΠSIG 329 762 902 933 296 631 1568 3888 3046 163

We compare our signature scheme ΠSIG with Dilithium [19] in Table 2. Similarly, the
running times of the KeyGen, Sign and Verify algorithms are measured in the average
number of CPU cycles (over 5000 times) running on a 64-bit Ubuntu 14.4 LTS Think-
Center desktop (equipped with Intel Core-i7 4790 3.6 GHz CPU and 4GB memory). The
sizes of public key |pk|, secret key |sk|, signature |σ| are counted in bytes.

Note that the estimated quantum security of our signature ΠSIG at Category I is
slightly lower than that of Dilithium, but those at Categories II and III are slightly
higher. We also note that the signing time of our signature is (slightly) shorter than that
of Dilithium at all Categories, and all other running times are also comparable to each
other. In all, our signature has better overall performance (in particular, having shorter
public key and signatures) than Dilithium.

We note that the authors of Dilithium [19] had made various optimizations in the
implementation of their revised submission to the 2nd round NIST PQC standardization
process. We did not test their new implementation on our computers, but it seems that
their optimizing techniques can also be used in our implementations.
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1.3 Organizations

Section 2 gives the preliminaries and background information. Section 3 describes the
KEM scheme from AMLWE. Section 4 presents the digital signature scheme from AMLWE
and AMSIS. Section 5 analyzes the concrete hardness of AMLWE and AMSIS by adapting
the best known attacks.

2 Preliminaries

2.1 Notation

We will use κ to denote the security parameter. For a real number x ∈ R, dxc denotes the
closest integer to x (with ties being rounded down, i.e., d0.5c = 0). We denote by R the
ring R = Z[X]/(Xn + 1) and by Rq the ring Rq = Zq[X]/(Xn + 1), where n is a power
of 2 so that Xn + 1 is a cyclotomic polynomial. For any positive integer η, Sη denotes
the set of ring elements of R that each coefficient is taken from {−η,−η + 1 . . . , η}. The
regular font letters (e.g., a, b) to represent elements in R or Rq (including elements in Z
or Zq), and bold lower-case letters (e.g., a, b) denote vectors with coefficients in R or
Rq. By default, all vectors will be column vectors. Bold upper-case letters (e.g., A, B)
represent matrices. We denote by aT and AT the transposes of vector a and matrix A
respectively.

We denote by x
$←− D sampling x according to a distribution D and by x

$←− S denote
sampling x from a set S uniformly at random. For two bit-strings s and t, s‖t denotes
the concatenation of s and t. We use logb to denote the logarithm function in base b (e.g.,
2 or natural constant e) and log to represent loge.

We say that a function f : N→ [0, 1] is negligible, if for every positive c and all suffi-
ciently large κ it holds that f(κ) < 1/κc. We denote by negl : N→ [0, 1] an (unspecified)
negligible function. We say that f is overwhelming if 1− f is negligible.

2.2 Definitions

Modular reductions. For an even positive integer α, we define r′ = r mod± α as
the unique element in the range (−α

2
, α
2
] such that r′ = r mod α. For an odd positive

integer α, we define r′ = r mod± α as the unique element in the range [−α−1
2
, α−1

2
] such

that r′ = r mod α. For any positive integer α, we define r′ = r mod+ α as the unique
element in the range [0, α) such that r′ = r mod α. When the exact representation is not
important, we simply write r mod α.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. The
`∞ and `2 norms of a ring element w = w0 + w1X + · · · + wn−1X

n−1 ∈ R are defined as
follows:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w0‖2∞ + . . .+ ‖wn−1‖2∞ .

Similarly, for w = (w1, . . . , wk) ∈ Rk, we define

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2 .
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Modulus switching. For any positive integers p, q, we define the modulus switching
function d·cq→p as:

dxcq→p = d(p/q) · xc mod+ p.

It is easy to show that for any x ∈ Zq and p < q ∈ N, x′ = ddxcq→pcp→q is an element
close to x, i.e,

|x′ − x mod± q| ≤
⌈
q

2p

⌋
.

When d·cq→p is used to a ring element x ∈ Rq or a vector x ∈ Rk
q , the procedure is applied

to each coefficient individually.

Binomial Distribution. The centered binomial distribution Bη with some positive in-
teger η is defined as follows:

Bη =

{
η∑
i=1

(ai − bi) : (a1, . . . , aη, b1, . . . , bη)
$←− {0, 1}2η

}

When we write that sampling a polynomial g
$←− Bη or a vector of such polynomials

g
$←− Bη, we mean that sampling each coefficient from Bη individually.

2.3 High/Low Order Bits and Hints

Our signature scheme will adopt several simple algorithms proposed in [19] to extract the
“higher-order” bits and “lower-order” bits from elements in Zq. The goal is that given an
arbitrary element r ∈ Zq and another small element z ∈ Zq, we would like to recover the
higher order bits of r + z without needing to store z. Ducas et al. [19] define algorithms
that take r, z and generate a 1-bit hint h that allows one to compute the higher order bits
of r+z just using r and h. They consider two different ways which break up elements in Zq
into their “higher-order” bits and “lower-order” bits. The related algorithms are described
in Algorithms 1–6. We refer the reader to [19] for the illustration of the algorithms.

Algorithm 1: Power2Roundq(r, d)

1 r := r mod+ q;

2 r0 := r mod± 2d;

3 r1 := (r − r0)/2d;
4 return (r1, r0);

The following lemmas claim some crucial properties of the above supporting algo-
rithms, which are necessary for the correctness and security of our signature scheme. We
refer to [19] for their proofs.

Lemma 1. Let q and α be positive integers such that q > 2α, q mod α = 1 and α is
even. Suppose that r, z are vectors of elements in Rq, where ‖z‖∞ ≤ α/2. Let h,h′be
vectors of bits. Then, algorithms HighBitsq, MakeHintq and UseHintq satisfy the following
properties:
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Algorithm 2: Decomposeq(r, α)

1 r := r mod+ q;
2 r0 := r mod± α;
3 if r − r0 = q − 1 then
4 r1 := 0;
5 r0 := r0 − 1;

6 else
7 r1 := (r − r0)/α;
8 end
9 return (r1, r0);

Algorithm 3: HighBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α);

2 return r1;

Algorithm 4: LowBitsq(r, α)

1 (r1, r0) := Decomposeq(r, α);

2 return r0;

Algorithm 5: MakeHintq(z, r, α)

1 r1 := HighBitsq(r, α);

2 v1 := HighBitsq(r + z, α);

3 if r1 6= v1 then
4 h := 1;
5 else
6 h := 0;
7 end
8 return h;

Algorithm 6: UseHintq(h, r, α)

1 k := (q − 1)/α;
2 (r1, r0) := Decomposeq(r, α);

3 if h = 1 and r0 > 0 then
4 r1 := (r1 + 1) mod+ k;
5 end
6 if h = 1 and r0 ≤ 0 then
7 r1 := (r1 − 1) mod+ k;
8 end
9 return r1;
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– UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
– Let v1 = UseHintq(h, r, α). Then ‖r − v1 · α‖∞ ≤ α + 1. Furthermore, if the number

of 1’s in h is at most ω, then all except for at most ω coefficients of r − v1 · α will
have magnitude at most α/2 after centered reduction modulo q.

– For any h,h′, if UseHintq(h, r, α) = UseHintq(h
′, r, α), then h = h′.

Lemma 2. If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2− β, then we have:

HighBitsq(r, α) = HighBitsq(r + s, α).

3 An Improved KEM from AMLWE

Our scheme is based on the key encapsulation mechanism in [12, 30]. The main difference
is that our scheme uses a (slightly) different hard problem, which gives us a flexible way
to set the parameters for both performance and security.

3.1 Design Rationale

For simplicity and clarity, we explain the core idea using the (A)LWE-based public-key en-
cryption (PKE) scheme as an example. Note that most LWE-based PKE schemes mainly
follow the framework in [30] up to the choices of parameters and noise distributions. Let
n, q ∈ Z be positive integers, and let χα ⊂ Z be a discrete Gaussian distribution with
standard variance α ∈ R. The LWE-based PKE works as follows:

– Key generation: randomly choose A
$←− Zn×nq , s, e

$←− χnα and compute b = As + e.
Return the public key pk = (A,b) and secret key sk = s.

– Encryption: given the public key pk = (A,b) and a plaintext µ ∈ {0, 1}, randomly

choose r,x1
$←− χnα, x2

$←− χα and compute c1 = AT r + x1, c2 = bT r + x2 + µ · d q
2
c.

Finally, return the ciphertext C = (c1, c2).
– Decryption: given the secret key sk = s and a ciphertext C = (c1, c2), compute
z = c2 − sTc1 and output dz · 2

q
c mod 2 as the decryption result.

For a honestly generated ciphertext C = (c1, c2) that encrypts plaintext µ ∈ {0, 1},
we have:

z = c2 − sTc1 = µ ·
⌈q

2

⌋
+ eT r− sTx1 + x2︸ ︷︷ ︸

noise e′

. (1)

Thus, the decryption algorithm is correct as long as |e′| < q
4
. Since |x2| � |eT r− sTx1|,

the magnitude of |e′| mainly depends on |eT r− sTx1|. That is, the LWE secret (s, r) and
the noise (e,x1) contribute almost equally to the magnitude of |e′|. Moreover, for a fixed
n the expected magnitude of |eT r− sTx1| is a monotonically increasing function of α:

larger α ⇒ larger |eT r− sTx1| ⇒ larger |e′|.

Let ν be the probability that the decryption algorithm fails, and let λ be the complexity
of solving the underlying LWE problem. Ideally, for a targeted security strength κ, we
hope that ν = 2−κ and λ = 2κ, since a small ν (i.e., ν < 2−κ) will sacrifice the overall
security, and a large λ (i.e., λ > 2κ) may compromise the overall performance. Since
both ν and λ are strongly related to the ratio α/q of the Gaussian parameter α and the
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modulus q, it is hard to come up with an appropriate choice of (α, q) to simultaneously
achieve the best of the two worlds.

To obtain smaller public keys and ciphertexts (and thus improve the communication
efficiency), many schemes use the modulus switching technique [16, 14] to compress public
keys and ciphertexts. We refer to the following scheme that adopts modulus switching
technique to compress public keys and ciphertexts, where p1, p2, p3 ∈ Z are parameters
for compression (p1 for the public key and p2, p3 for ciphertexts).

– Key generation: pick A
$←− Zn×nq and s, e

$←− χnα and compute b = As + e. Then,
return the public key pk = (A, b̄ = dbcq→p1) and the secret key sk = s.

– Encryption: given the public key pk = (A, b̄) and a plaintext µ ∈ {0, 1}, randomly

choose r,x1
$←− χnα, x2

$←− χα, and compute c1 = AT r + x1 and c2 = db̄cTp1→qr + x2 +
µ · d q

2
c. Return the ciphertext C = (c̄1 = dc1cq→p2 , c̄2 = dc2cq→p3).

– Decryption: given the secret key sk = s and a ciphertext C = (c̄1, c̄2), compute
z = dc̄2cp3→q−sT dc̄1cp2→q and output dzcq→2 = dz · 2

q
c mod 2 as the decryption result.

Let ē = ddbcq→p1cp1→q − b, x̄1 = ddc1cq→p2cp2→q − c1, and x̄2 = ddc2cq→p3cp3→q − c2.
It is easy to verify ‖ē‖∞ ≤

q
2p1
, ‖x̄1‖∞ ≤

q
2p2

, and |x̄2| ≤ q
2p3

. For any valid ciphertext

C = (c̄1, c̄2) that encrypts µ ∈ {0, 1} we have

z = dc̄2cp3→q − sT dc̄1cp2→q
= µ · d q

2
c+ (e + ē)T r− sT (x1 + x̄1) + (x2 + x̄2)︸ ︷︷ ︸

noise e′

(2)

Apparently, the smaller values for p1, p2, p3 the better compression rate is achieved for
public keys and ciphertexts. At the same time, however, by the definitions of ē, x̄1, x̄2 we
know that smaller p1, p2, p3 also result in a larger noise e′. Notice that when p1, p2, p3 are
much smaller than q, we will have ‖ē‖∞ � ‖e‖∞, ‖x̄1‖∞ � ‖x1‖∞ and |x̄2| � |x2|, which
further leads to asymmetric roles of (e,x1, x2) and (s, r) in contributing to the resulting
size of |e′|, i.e., for specific (p1, p2, p3) decreasing (resp., increasing) ‖s‖∞ or ‖r‖∞ would
significantly reducing (resp., enlarging) the noise |e′|, and in contrast, changing the size
of ‖e‖∞, ‖x1‖∞ and |x2| would not result in substantial change to |e′|.

The asymmetry observed above motivates the design of our ALWE-based PKE, which
uses different noise distributions χα1 and χα2 (i.e., same distribution with different param-
eters α1 and α2) for the secrets (i.e., s and r) and the errors (i.e., e,x1, x2), respectively.

– Key generation: pick A
$←− Zn×nq , s

$←− χnα1
and e

$←− χnα2
, compute b = As + e.

Then, return the public key pk = (A, b̄ = dbcq→p1) and the secret key sk = s.

– Encryption: given the public key pk = (A, b̄) and a plaintext µ ∈ {0, 1}, randomly

choose r
$←− χnα1

,x1
$←− χnα2

, x2
$←− χα2 , compute c1 = AT r + x1 and c2 = dbcTp1→qr +

x2 + µ · d q
2
c, and return the ciphertext C = (c̄1 = dc1cq→p2 and c̄2 = dc2cq→p3).

– Decryption: Given the secret key sk = s and the ciphertext C = (c̄1, c̄2), compute
z = dc̄2cp3→q−sT dc̄1cp2→q and output dzcq→2 = dz · 2

q
c mod 2 as the decryption result.

Similarly, for ciphertext C = (c̄1, c̄2) we have the same z and e′ as defined in (2), where
the difference is that now ‖s‖∞ and ‖r‖∞ are determined by α1, and that ‖e‖∞, ‖x1‖∞
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and |x2| are determined by α2. Intuitively, we wish to use small α1 in order to keep |e′|
small, and at the same time choose relatively large α2 to remedy the potential security
loss due to the choice of a small α1.

While the intuition seems reasonable, it does not shed light on the choices of param-
eters, in particular, how parameters α1 and α2 (jointly) affect security. To this end, we
consider the best known attacks and their variants against (A)LWE problems, and ob-
tain the following conclusions: Let χα1 and χα2 be subgaussians with standard variances
α1, α2 ∈ R respectively, then we have the following approximate relation between the
hardness of ALWE and LWE:

ALWEn,m,q,α1,α2 ≈ LWEn,m,q,
√
α1α2 ,

where the equivalence is trivial for α1 = α2. This confirms the feasibility of our idea: use
a small α1 to keep the probability ν of decryption failures small while pick a relatively
larger α2 remain the security of the resulting PKE scheme.

The above idea can be naturally generalized to the schemes based on the ring and
module versions of LWE. Actually, we will use AMLWE for achieving a better trade-off
between computational and communication costs.

3.2 The Construction

In this section, we give the formal description of a CCA-secure KEM from AMLWE. For
ease of implementation, we will use centered binomial distributions instead of Gaussian
distributions as in [5, 12]. We first give an intermediate IND-CPA secure PKE, which is
then transformed into an IND-CCA secure KEM by applying a slightly tweaked Fujisaki-
Okamoto (FO) transformation [24, 21].

An IND-CPA Secure PKE Let n, q, k, η1, η2, dt, du, dv be positive integers. Let H :
{0, 1}n → Rk×k

q be a hash function, which is modeled as a random oracle. The PKE
scheme ΠPKE consists of three algorithms (KeyGen,Enc,Dec):

– ΠPKE.KeyGen(κ): randomly choose ρ
$←− {0, 1}n, s

$←− Bk
η1
, e

$←− Bk
η2

, compute A =
H(ρ) ∈ Rk×k

q , t = As + e ∈ Rk
q and t̄ = dtcq→2dt . Then, return the public key

pk = (ρ, t̄) and the secret key sk = s.
– ΠPKE.Enc(pk, µ): given the public key pk = (ρ, t̄) and a plaintext µ ∈ R2, randomly

choose r
$←− Bk

η1
, e1

$←− Bk
η2
, e2

$←− Bη2 , compute A = H(ρ), u = AT r + e1, v =

dt̄cT2dt→qr + e2, and return the ciphertext

C = (ū = ducq→2du , v̄ = dv + µ · dq
2
ccq→2dv ).

– ΠPKE.Dec(sk, C): given the secret key sk = s and a ciphertext C = (ū, v̄), compute
z = dv̄c2dv→q − sT dūc2du→q, output dzcq→2 = dz · 2

q
c mod 2.

Let ct ∈ Rk satisfy that

dt̄c2dt→q = ddAs + ecq→2dtc2dt→q = As + e− ct.
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Let cu ∈ Rk satisfy that

dūc2du→q = ddAT r + e1cq→2duc2du→q = AT r + e1 − cu.

Let cv ∈ R satisfy that

dv̄c2dv→q = dddt̄cT2dt→qr + e2 + dq/2c · µcq→2dv c2dv→q
= dt̄cT2dt→qr + e2 + dq/2c · µ− cv
= (As + e− ct)

T r + e2 + dq/2c · µ− cv
= (As + e)T r + e2 + dq/2c · µ− cv − cTt r.

Using the above equations, we have

z = dv̄c2dv→q − sT dūc2du→q
= eT r + e2 − cv − cTt r− sTe1 + sTcu︸ ︷︷ ︸

= w

+dq/2c · µ

= w + dq/2c · µ.

It is easy to check that for any odd number q, we have that µ = dzcq→2 holds as long
as ‖w‖∞ < dq/4c. In Section 3.4, we will choose the parameters such that the decryption
algorithm succeeds with overwhelming probability.

IND-CCA Secure KEM Let G : {0, 1}∗ → {0, 1}n, and H : {0, 1}∗ → {0, 1}n×{0, 1}n
be two hash functions, which are modeled as random oracles. By applying a slightly
tweaked Fujisaki-Okamoto (FO) transformation [24, 21], we can transform the above IND-
CPA secure PKE ΠPKE into an IND-CCA secure KEM (with implicit rejection) ΠKEM =
(KeyGen,Encap,Decap) as follows.

– ΠKEM.KeyGen(κ): randomly choose z
$←− {0, 1}n, compute (pk′, sk′) = ΠPKE.KeyGen(κ).

Then, return the public key pk = pk′ and the secret key sk = (pk′, sk′, z).

– ΠKEM.Encap(pk): given the public key pk, randomly choose µ
$←− {0, 1}n, compute µ′ =

H(µ), (K̄, r) = G(µ′‖H(pk)) C = ΠPKE.Enc(pk, µ
′; r) and K = H(K̄‖H(C)), where

the notation ΠPKE.Enc(pk, µ
′; r) denotes running the algorithm ΠPKE.Enc(pk, µ

′) with
fixed randomness r. Finally, return the ciphertext C and the encapsulated key K.

– ΠKEM.Decap(sk, C): given the secret key sk = (pk′, sk′, z) and a ciphertext C, compute
µ′ = ΠKEM.Dec(sk

′, C) and (K̄ ′, r′) = G(µ′‖H(pk′)), C ′ = ΠKEM.Enc(pk, µ
′; r′). If

C = C ′, return K = H(K̄ ′‖H(C)), else return H(z‖H(C)).

3.3 Provable Security

In the appendix A, we will show that under the hardness of the AMLWE problem and
its rounding variant AMLWE-R (which is needed for compressing the public key), our
scheme ΠKEM is provably IND-CCA secure. Formally, we have the following theorem.

Theorem 1. Under the AMLWE assumption and the AMLWE-R assumption, ΠKEM is
IND-CCA secure in the random oracle model.
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Notice that the algorithm Decap will always return a random ”session key” even
if the checks fails (i.e., implicit rejection). Furthermore, the paper [26] showed that if
the underlying PKE is IND-CPA secure, then the resulting KEM with implicit rejection
obtained by using the FO transformation is also IND-CCA secure in the quantum random
oracle model (QROM). Given the results in [26] and Theorem 5, we have the following
theorem.

Theorem 2. Under the AMLWE assumption and the AMLWE-R assumption, ΠKEM is
IND-CCA secure in the QROM.

3.4 Choices of Parameters

Table 3. Parameters Sets for ΠKEM

Parameters (n, k, q) (η1, η2) (dt, du, dv) |pk| |sk| |C| |ss| Dec. Failure Quantum Sec.

PARAMS I (256, 2, 7681) (2, 12) (10, 9, 3) 672 1568 672 32 2−82 100

PARAMS II (256, 3, 7681) (1, 4) (9, 9, 4) 896 2208 992 32 2−128 147

PARAMS III (512, 2, 12289) (2, 8) (11, 10, 4) 1472 3392 1536 64 2−211 213

In Table 3, we give three sets of parameters (namely, PARAMS I, PARAMS II and
PARAMS III) for ΠKEM, aiming at providing quantum security of at least 80, 128 and 192
bits, respectively. Those parameters are carefully chosen such that the decryption error
probabilities (i.e., 2−82, 2−128 and 2−211, respectively) commensurate with the respective
targeted security strengths. A concrete estimation of the security strength provided by the
parameter sets will be given in Section 5. Among them, PARAMS II is the recommended
parameter set. Since the existence of quantum searching algorithms [23], 2κ-bit session
key can only provide at most κ security. In order to achieve security larger than 128,
the parameter set PARAMS III is chosen to support an encryption of 64-bytes (512-bit)
session key. Note that PARAMS I and PARAMS II only support an encryption of 32-byte
(256-bit) session key.

We implemented the scheme ΠKEM on a 64-bit Windows 10 Thinkpad X1 notebook
(equipped with Intel Core-i7 6500U 2.5 GHz CPU and 8GB Memory) and a 64-bit Ubuntu
14.4 LTS ThinkCenter desktop (equipped with Intel Core-i7 4790 3.6 GHz CPU and 4GB
memory), respectively. Particularly, the codes are written in the standard C language
for the reference implementation. We also give an optimized implemention which uses
AVX2 instructions to speedup some basic operations such number theory transform and
vector multiplication. Table 4 and table 5 shows the average CPU cycles of running the
corresponding algorithms over 10000 times on Windows 10 and Ubuntu, respectively.

Table 4. Performances of ΠKEM on Windows 10 (in CPU Cycles)

Parameter KeyGen Encap Decap KeyGen (AVX2) Encap (AVX2) Decap (AVX2)

PARAMS I 137 751 196 576 213 957 54 838 73 018 65 752

PARAMS II 205 866 268 938 291 920 76 778 102 015 92 686

PARAMS III 308 050 440 070 460 837 128 651 185 796 153 445
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Table 5. Performances of ΠKEM on Ubuntu 14.4 LTS (in CPU Cycles)

Parameter KeyGen Encap Decap KeyGen (AVX2) Encap (AVX2) Decap (AVX2)

PARAMS I 159 764 216 617 244 179 71 352 76 583 64 634

PARAMS II 232 102 295 222 331 524 90 335 99 780 85 622

PARAMS III 335 478 460 563 506 319 146 304 174 560 140 894

4 An Improved Signature Scheme from AMLWE and AMSIS

Our signature scheme is based on the “Fiat-Shamir with Aborts” technique [31], and
bears most resemblance to the signature scheme in [19]. The main difference is that our
scheme uses the asymmetric MLWE and MSIS problems, which provides a flexible way
to make a better trade-off between performance and security.

4.1 Design Rationale

Several lattice-based signature schemes were obtained by applying the Fiat-Shamir heuris-
tic [20] to three-move identification schemes. For any positive integer n and q, let R =
Z[x]/(xn + 1) (resp., Rq = Zq[x]/(xn + 1)). Let H : {0, 1}∗ → R2 be a hash function.
Let k, `, η be positive integers, and γ, β > 0 be reals. We first consider an identification
protocol between two users A and B based on the MSIS∞n,q,k,`,β problem. Formally, user
A owns a pair of public key pk = (A, t) ∈ Rk×`

q × Rk
q and secret key sk = x ∈ R`

q. In
order to convince another user B (who knows the public key pk) of his ownership of sk,
A and B can execute the following protocol: 1) A first chooses a vector y ∈ R` from some
distribution, and sends w = Ay to user B; 2) B randomly chooses a bit c ∈ Rq, and
sends it as a challenge to A; 3) A computes z := y + cx and sends it back to B; B will
accept the response z by check if Az = w + ct.

For the soundness (i.e., user A cannot cheat user B), B also has to make sure that
β2 = ‖z‖∞ is sufficiently small (to ensure that the MSIS∞n,q,k,`,β problem is hard), otherwise
anyone can easily complete the proof by solving a linear equation. Moreover, we require
that β1 = ‖x‖∞ is sufficiently small and ‖y‖∞ � ‖x‖∞ (and thus β2 � β1) holds to
prevent user B from recovering the secret x from the public key pk or the response
z. Typically, we should require β2/β1 > 2ω(log κ), where κ is the security parameter. This
means that the identification protocol as well as its derived signature from the Fiat-Shamir
heuristic will have a very large parameter size. To solve this problem, Lyubashevsky [31,
32] introduce the rejection sampling, which allows A to abort and restart the protocol
(by choosing another y) if he thinks z might leak the information of x. This technique
could greatly reduce the size of z (since it allows to set β2/β1 = poly(κ)), but the cost
is painful for an interactive identification protocol. Fortunately, this technique will only
increase the computation time of the signer when we transform the identification protocol
into a signature scheme.

For any positive integer η, Sη denotes the set of elements of R that each coefficient
is taken from {−η,−η + 1 . . . , η}. By the Fiat-Shamir heuristic, one can construct a
signature scheme from the MSIS problem as follows:

– Key generation: randomly choose A
$←− Rk×`

q ,x
$←− S`η, and compute t = Ax. Return

the public key pk = (A, t) and secret key sk = (x, pk).
– Signing: given the secret key sk = (x, pk) and a message µ ∈ {0, 1}∗,
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1. randomly choose y
$←− S`γ−1;

2. compute w = Ay and c = H(w‖µ);
3. compute z = y + cx;
4. If ‖z‖∞ ≥ γ − β, restart the computation from (1), where β is a bound such that
‖cx‖∞ ≤ β for all possible c and x. Otherwise, return the signature σ = (z, c).

– Verification: given the public key pk = (A, t), a message µ ∈ {0, 1}∗ and a signature
σ = (z, c), return 1 if ‖z‖∞ < γ − β and c = H(Az− ct‖µ), otherwise return 0.

Informally, we require the MSIS∞n,q,k,`,η problem to be hard for the security of the
secret key (i.e., it is computationally infeasible to compute sk from pk). Moreover, we
also require the MSIS∞n,q,k,`,2γ problem to be hard for the unforgeability of signatures (i.e.,
it is computationally infeasible to forge a valid signature). Since ‖cx‖∞ ≤ β, for any (c,x)
and z output by the signing algorithm there always exists a y ∈ S`γ such that z = y + cx,
which guarantees that the signature will not leak the information of the secret key. In

terms of efficiency, the signing algorithm will repeat about
(

2(γ−β)−1
2γ−1

)−n·`
times to output

a signature, and the signature size is about n`dlog2(2(γ − β)− 1)e+ n. Clearly, we wish
to use a small ` for better efficiency, but the hardness of the underlying MSIS problems
require a relatively large `.

To mediate the above conflict, one can use the MLWE problem, which can be seen
as a special MSIS problem, to reduce the size of the key and signature. Formally, we can
obtain the following improved signature scheme:

– Key generation: randomly choose A
$←− Rk×`

q , and s1
$←− S`η, s2

$←− Skη , compute
t = As1 + s2. Return the public key pk = (A, t) and secret key sk = (s1, s2, pk).

– Signing: given the secret key sk = (s1, s2, pk) and a message µ ∈ {0, 1}∗,
1. randomly choose y

$←− S`+kγ−1;
2. compute w = (A‖Ik)y and c = H(w‖µ);

3. compute z = y + c

(
s1
s2

)
;

4. If ‖z‖∞ ≥ γ − β, restart the computation from (1), where β is a bound such that∥∥∥∥c(s1
s2

)∥∥∥∥
∞
≤ β holds for all possible c, s1, s2. Otherwise, output the signature

σ = (z, c).
– Verification: given the public key pk = (A, t), a message µ ∈ {0, 1}∗ and a signature
σ = (z, c), return 1 if ‖z‖∞ < γ − β and c = H((A‖Ik)z− ct‖µ), otherwise return 0.

Furthermore, since w = (A‖Ik)y = Ay1 +y2 where y = (yT1 ,y
T
2 ) and γ � q, we have

that the higher bits of (each coefficient of) w is almost determined by high order bits of
(the corresponding coefficient of) Ay1. This fact has been utilized by [8, 19] to compress
the signature size. Formally, denote HighBits(z, 2γ2) and LowBits(z, 2γ2) be polynomial
vector defined by the high order bits and low order bits of a polynomial vector z ∈ Rk

q

related to a parameter γ2. We can obtain the following signature scheme:

– Key generation: randomly choose A
$←− Rk×`

q , and s1
$←− S`η, s2

$←− Skη , compute
t = As1 + s2. Return the public key pk = (A, t) and secret key sk = (s1, s2, pk).

– Signing: given the secret key sk = (s1, s2, pk) and a message µ ∈ {0, 1}∗,
1. randomly choose y

$←− S`γ1−1;
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2. compute w = Ay and c = H(HighBits(w, 2γ2)‖µ);
3. compute z = y + cs1;
4. If ‖z‖∞ ≥ γ1−β or LowBits(Ay−cs2, 2γ2) ≥ γ2−β, restart the computation from

(1), where β is a bound such that ‖cs1‖∞, ‖cs2‖∞ ≤ β hold for all possible c, s1, s2.
Otherwise, output the signature σ = (z, c).

– Verification: given the public key pk = (A, t), a message µ ∈ {0, 1}∗ and a signature
σ = (z, c), return 1 if ‖z‖∞ < γ1 − β and c = H(HighBits(Az− ct, 2γ2)‖µ), otherwise
return 0.

Essentially, the checks in step (4) are used to ensure that 1) the signature (z, c) will
not leak the information of s1 and s2; and 2) HighBits(Az − ct, 2γ2) = HighBits(Ay −
cs2, 2γ2) = HighBits(w, 2γ2) (note that w = Ay = Ay−cs2+cs2, LowBits(Ay−cs2, 2γ2) <
γ2 − β and ‖cs2‖∞ ≤ β). By setting γ1 = 2γ2, we require the MLWEn,k,`,q,η problem and
the (variant of) MSIS∞n,k,(`+k+1),q,2γ1+2 problem to be hard to ensure the security of the
secret key and the unforgeability of the signature, respectively.

By a careful examination on the above scheme, one can find that the computational
efficiency of the signing algorithm is determined by the expected number of repetitions
in step (4): (

2(γ1 − β)− 1

2γ1 − 1

)−n·`
︸ ︷︷ ︸

=N1

·
(

2(γ2 − β)− 1

2γ2 − 1

)−n·k
︸ ︷︷ ︸

=N2

,

where N1 and N2 are determined by the first and second checks in step (4), respectively.
Clearly, it is possible to modify N1 and N2 while keeping the total number of repetitions
N = N1 · N2 unchanged. Note that the size of the signature is related to γ1 and is
irrelevant to γ2, which means that a shorter signature can be obtained by using a smaller
γ1. However, simply using a smaller γ1 will also give a bigger N1, and thus a worse
computational efficiency. In order to obtain a short signature size without (significantly)
affecting the computational efficiency:

– We use the AMLWE problem for the security of the secret key, which allows us to use
a smaller γ1 by reducing ‖s1‖∞ (and thus β = ‖cs1‖∞ in the expression of N1);

– We use the AMSIS problem for the unforgeability of the signatures, which further
allows us to use a smaller γ1 by increasing γ2 to keep N = N1 ·N2 unchanged.

Note that reducing ‖s1‖∞ (by choosing a smaller η1) may weaken the hardness of the
underlying AMLWE problem (if we do not change other parameters). We choose to
increase η2 (and thus ‖s2‖∞) to remain the hardness. Similarly, increasing γ2 will weaken
the hardness of the underlying AMSIS problem, and we choose to reduce γ1 to remain the
hardness. Both strategies crucially rely on the asymmetries of the underlying problems.

4.2 The Construction

Let n, k, `, q, η1, η2, β1, β2, γ1, γ2, ω ∈ Z be positive integers. Let R = Z[x]/(xn + 1) and
Rq = Zq[x]/(xn + 1). Denote B60 as the set of elements of R that have 60 coefficients
are either −1 or 1 and the rest are 0, and |B60| = 260 ·

(
n
60

)
. When n = 256, |B60| >

2256. Let H1 : {0, 1}256 → Rk×`
q ,H2 : {0, 1}∗ → {0, 1}384, H3 : {0, 1}∗ → S`γ1−1 and

H4 : {0, 1}∗ → B60 be four hash functions. We now present the description of our scheme
ΠSIG = (KeyGen, Sign,Verify):
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– ΠSIG.KeyGen(κ): first randomly choose ρ,K
$←− {0, 1}256, s1

$←− S`η1 , s2
$←− Skη2 . Then,

compute A = H1(ρ) ∈ Rk×`
q , t = As1 + s2 ∈ Rk

q , (t1, t0) = Power2Roundq(t, d) and
tr = H2(ρ‖t1) ∈ {0, 1}384. Finally, return the public key pk = (ρ, t1) and secret key
sk = (ρ,K, tr , s1, s2, t0).

– ΠSIG.Sign(sk,M): given the secret key sk = (ρ,K, tr , s1, s2, t0) and a message M ∈
{0, 1}∗, first compute A = H1(ρ) ∈ Rk×`

q , µ = H2(tr‖M) ∈ {0, 1}384, and set ctr = 0.
Then, perform the following computations:
1. y = H3(K‖µ‖ctr) ∈ S`γ1−1 and w = Ay;
2. w1 = HighBitsq(w, 2γ2) and c = H4(µ‖w1) ∈ B60;
3. z = y + cs1 and u = w − cs2;
4. (r1, r0) = Decomposeq(u, 2γ2);
5. if ‖z‖∞ ≥ γ1−β1 or ‖r0‖∞ ≥ γ2−β2 or r1 6= w1, then set ctr = ctr+1 and restart

the computation from step (1);
6. compute v = ct0 and h = MakeHintq(−v,u + v, 2γ2);
7. if ‖v‖∞ ≥ γ2 or the number of 1’s in h is greater than ω, then set ctr = ctr + 1

and restart the computation from step (1);
8. return the signature σ = (z,h, c).

– ΠSIG.Verify(pk,M, σ): given the public key pk = (ρ, t1), a message M ∈ {0, 1}∗ and
a signature σ = (z,h, c), first compute A = H1(ρ) ∈ Rk×`

q , µ = H2(H2(pk)‖M) ∈
{0, 1}384. Then, compute u = Az − ct1 · 2d,w′1 = UseHintsq(h,u, 2γ2) and c′ =
H4(µ‖w′1). Finally, return 1 if ‖z‖∞ < γ1 − β1, c = c′ and the number of 1’s in h
is ≤ ω, otherwise return 0.

We note that the hash function H3 is basically used to make the signing algorithm
Sign deterministic, which is needed for a (slightly) tighter security proof in the quantum

random oracle model. One can remove H3 by directly choosing y
$←− S`γ1−1 at random. We

also note that the hash function H4 can be constructed by using an extendable output
function such as SHAKE-256 [38] and a so-called “inside-out” version of Fisher-Yates
shuffle algorithm [29]. The detailed constructions of hash functions H3 and H4 can be
found in [19].

Correctness Note that if ‖ct0‖∞ < γ2, by Lemma 1 we have UseHintq(h,w − cs2 +
ct0, 2γ2) = HighBitsq(w − cs2, 2γ2). Since w = Ay and t = As1 + s2, we have that

w − cs2 = Ay − cs2 = A(z− cs1)− cs2 = Az− ct,
w − cs2 + ct0 = Az− ct1 · 2d,

where t = t1 · 2d + t0. Therefore, the verification algorithm computes

UseHintq(h,Az− ct1 · 2d, 2γ2) = HighBitsq(w − cs2, 2γ2).

As the signing algorithm checks that r1 = w1, this is equivalent to

HighBitsq(w − cs2, 2γ2) = HighBitsq(w, 2γ2).

Hence, the w1 computed by the verification algorithm is the same as that of the signing
algorithm, and thus the verification algorithm will always return 1.
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Number of Repetitions Since our signature scheme uses the rejection sampling [31,
32] to generate (z,h), the efficiency of the signing algorithm is determined by number
of repetitions that will be caused by steps (5) and (7) of the signing algorithm. We first
estimate the probability that ‖z‖∞ < γ1−β1 holds in step (5). Assuming that ‖cs1‖∞ ≤ β1
holds, then we always have ‖z‖∞ ≤ γ1 − β1 − 1 whenever ‖y‖∞ ≤ γ1 − 2β1 − 1. The size
of this range is 2(γ1 − β1) − 1. Note that each coefficient of y is chosen randomly from
2γ1 − 1 possible values. That is, for a fixed cs1, each coefficient of vector z = y + cs1 has
2γ1 − 1 possibilities. Therefore, the probability that ‖z‖∞ ≤ γ1 − β1 − 1 is(

2(γ1 − β1)− 1

2γ1 − 1

)n·`
=

(
1− β1

γ1 − 1/2

)n·`
≈ e−n`β1/γ1 .

Now, we estimate the probability that

‖r0‖∞ = ‖LowBitsq(w − cs2, 2γ2)‖∞ < γ2 − β2

holds in step (5). If we (heuristically) assume that each coefficient of r0 is uniformly
distributed modulo 2γ2, the probability that ‖r0‖∞ < γ2 − β2 is(

2(γ2 − β2)− 1

2γ2

)n·k
≈ e−nkβ2/γ2 .

By Lemma 2, if ‖cs2‖∞ ≤ β2, then ‖r0‖∞ < γ2−β2 implies that r1 = w1. This means
that the overall probability that step (5) will not cause a repetition is

≈ e−n(`β1/γ1+kβ2/γ2).

Finally, under our choice of parameters, the probability that step (7) of the signing
algorithm will cause a repetition is less than 1%. Thus, the expected number of repetitions
is roughly en(`β1/γ1+kβ2/γ2).

4.3 Provable Security

In the appendix B, we will show that under the hardness of the AMLWE problem and a
rounding variant AMSIS-R of AMSIS (which is needed for compressing the public key),
our scheme ΠSIG is provably SUF-CMA secure. Formally, we have the following theorem.

Theorem 3. If H1 : {0, 1}256 → Rk×`
q and H4 : {0, 1}∗ → B60 are random oracles,

the outputs of H3 : {0, 1}∗ → S`γ1−1 are pseudo-random, and H2 : {0, 1}∗ → {0, 1}384 is a
collision-resistant hash function, then ΠSIG is SUF-CMA secure under the AMLWEn,q,k,`,η1,η2

and AMSIS-R∞n,q,d,k,`,4γ2+2,2γ1
assumptions.

Furthermore, under an interactive variant SelfTargetAMSIS of the AMSIS problem
(which is an analogue of the SelfTargetMSIS problem introduced by Ducas et al. [19]),
we can also prove that our scheme ΠSIG is provably SUF-CMA secure. Formally, we have
that following theorem.

Theorem 4. In the quantum random oracle model, the scheme ΠSIG is SUF-CMA se-
cure under the following assumptions: AMLWEn,q,k,`,η1,η2, AMSIS∞n,q,d,k,`,4γ2+2,2(γ1−β1) and
SelfTargetAMSIS∞H4,n,q,k,`1,`2,4γ2,(γ1−β1).
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Table 6. Parameters for ΠSIG (the sizes of public key pk, secret key sk and signature σ are counted in Bytes.
The column ”Exp. Reps” indicates the excepted number of repetitions that the signing algorithm takes to output
a valid signature)

Parameters (n, k, `, q, d, ω) (η1, η2) (β1, β2) (γ1, γ2) |pk| |sk| |σ| Exp. Reps Quantum Sec.

PARAMS I (256, 4, 3, 2021377, 13, 80) (2, 3) (120, 175) (131072, 168448) 1056 2448 1852 5.86 90

PARAMS II (256, 5, 4, 3870721, 14, 96) (2, 5) (120, 275) (131072, 322560) 1312 3376 2445 7.61 128

PARAMS III (256, 6, 5, 3870721, 14, 120) (1, 5) (60, 275) (131072, 322560) 1568 3888 3046 6.67 163

4.4 Choices of Parameters

In Table 6, we provide three sets of parameters (i.e., PARAMS I, PARAMS II and
PARAMS III) for our signature scheme ΠSIG, which provide 80-bit, 128-bit and 160-
bit quantum security, respectively (corresponding to 98-bit, 141-bit and 178-bit classical
security, respectively). A concrete estimation of the security provided by the parameter
sets will be given in Section 5. Among them, PARAMS II is the recommended parameter
set.

We implemented the scheme ΠSIG under the same configurations as in Section 3.4.
The codes are written in the standard C language for the reference implementation. We
also give an optimized implementation by using the AVX2 instructions to speedup some
basic operations such as number theory transform and vector multiplication. Table 7 and
Table 8 give the average CPU cycles of running the corresponding algorithms over 5000
times on Windows 10 and Ubuntu operating systems respectively.

Table 7. The Performance of Signature Scheme ΠSIG on Windows 10 (in CPU Cycles)

Parameters KeyGen Sign Verify KeyGen (AVX2) Sign (AVX2) Verify (AVX2)

PARAMS I 309 850 1 303 320 315 179 142 510 473 735 136 506

PARAMS II 489 230 2 079 377 479 762 238 702 729 374 211 466

PARAMS III 668 976 2 449 580 656 770 348 429 957 242 318 072

Table 8. The Performance of Signature Scheme ΠSIG on Ubuntu (in CPU Cycles)

Parameters KeyGen Sign Verify KeyGen (AVX2) Sign (AVX2) Verify (AVX2)

PARAMS I 306 742 1 559 697 316 905 139 098 456 173 126 537

PARAMS II 469 611 2 507 741 470 712 227 770 705 465 197 961

PARAMS III 635 949 2 941 045 639 161 340 136 916 605 307 146

5 Known Attacks against AMLWE and AMSIS

Solvers for LWE mainly include primal attacks, dual attacks (against the underlying
lattice problems) and direct solving algorithms such as BKW and Arora-Ge [4]. BKW
and Arora-Ge attacks need sub-exponentially (or even exponentially) many samples, and
thus they are not relevant to the public-key cryptography scenario where only a restricted
amount of samples is available. Therefore, for analyzing and evaluating practical lattice-
based cryptosystems, we typically consider only primal attacks and dual attacks. Further,
these two attacks, which are the currently most relevant and effective, seem not to have
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additional advantages in solving RLWE/MLWE over standard LWE. Thus, when analyz-
ing RLWE or MLWE based cryptosystems, one often translates RLWE/MLWE instances
to the corresponding LWE counterparts [19, 12] and then applies the attacks. In par-
ticular, one first transforms AMLWEn,q,k,`,α1,α2 into ALWEnk,q,k`,α1,α2 , and then applies,
generalizes and optimizes the LWE solving algorithms to ALWE. Since any bounded cen-
trally symmetric distribution can be regarded as subgaussian for a certain parameter,
for simplicity and without loss of generality, we consider the case that secret vector and
error vector in ALWEn,q,m,α1,α2 are sampled from subgaussians with parameters α1 and
α2 respectively. Formally, the problem is to recover s from samples

(A,b = As + e) ∈ Zm×nq × Zmq ,

where A
$←− Zm×nq , s← χnα1

and e← χmα2
.

In Appendix C, we will not only consider the traditional primal attack and dual attack
against ALWE, but also consider two variants of primal attack and three variants of dual
attack, which are more efficient to solve the ALWE problem by taking into account the
asymmetry of ALWE.

As for the best known attacks against (A)SIS. The BKZ lattice basis reduction algo-
rithm and its variants are more useful for solving the `2-norm (A)SIS problem than the
`∞-norm counterpart. Note that a solution x = (xT1 ,x

T
2 )T ∈ Zm1+m2 to the infinity-norm

ASIS instance A ∈ Zn×(m1+m2−n)
q , where (In‖A)x = 0 mod q and ‖x‖∞ ≤ max(β1, β2) <

q, may have ‖x‖ > q, whose `2-norm is even larger than that of a trivial solution
u = (q, 0, . . . , 0)T . We will follow [19] to solve the `∞-norm SIS problem. Further, we
can always apply an `2-norm SIS solve to the `∞-norm SIS problem due to the rela-
tion ‖x‖∞ ≤ ‖x‖. Hereafter we refer to the above two algorithms as `∞-norm and `2-
norm attacks respectively, and use them to estimate the concrete complexity of solving
ASIS∞n,q,m1,m2,β1,β2

. As before, when analyzing RSIS or MSIS based cryptosystems, one of-
ten translates RSIS/MSIS instances to the corresponding SIS counterparts [19] and then
applies the attacks.

In appendix D, we will not only consider the traditional `2 norm attack and `∞ norm
attack against ASIS, but also consider one variant of `2 norm attack and two variants
of `∞ norm attack, which are more efficient to solve the ASIS problem by taking into
consideration the asymmetry of ASIS .

In the following two subsections, we will summarize those attacks against our ΠKEM

and ΠSIG schemes.

5.1 Concrete Security of ΠKEM

The complexity varies for the type of attacks, the number m of samples used and choice
of b ∈ Z to run the BKZ -b algorithm. Therefore, in order to obtain an overall security
estimation of the ΠKEM under the three proposed parameter settings, we enumerate
all possible values of m (the number of ALWE samples) and b to reach a conservative
estimation about the computational complexities of primal attacks and dual attacks,
by using a python script. Table 9 and Table 10 estimate the complexities of the three
parameter sets against primal attacks and dual attacks by taking the minimum of 2sec

over all possible values of (m, b). Taking into account the above, Table 11 shows the
overall security of ΠKEM.

20



Table 9. The security of ΠKEM against primal attacks

Parameters
Attack Traditional Variant 1 Variant 2
Model (m, b, sec) (m, b, sec) (m, b, sec)

PARAMS I
Classical (761, 390, 114) (531, 405, 118) (476,385,112)
Quantum (761, 390, 103) (531, 405, 107) (476,385,102)

PARAMS II
Classical (1021, 640, 187) (646, 575, 168) (556,560,163)
Quantum (1021, 640, 169) (646, 575, 152) (556,560,148)

PARAMS III
Classical (1526, 825, 241) (886, 835, 244) (786,815,238)
Quantum (1531, 825, 218) (886, 835, 221) (786,815,216)

Table 10. The security of ΠKEM against dual attacks

Parameters
Attack Traditional Variation 1 Variation 2 Variation 3
Model (m, b, sec) (m, b, sec) (m, b, sec) (m, b, sec)

PARAMS I
Classical (766, 385, 112) (736, 395, 115) (595, 380, 111) (711,380,111)
Quantum (766, 385, 102) (736, 395, 104) (596,380,100) (711,380,100)

PARAMS II
Classical (1021, 620, 181) (881, 570, 166) (586,555,162) (776,555,162)
Quantum (1021, 620, 164) (881, 570, 151) (586,555,147) (776,555,147)

PARAMS III
Classical (1531, 810, 237) (981, 810, 239) (906, 805, 236) (1171,805,235)
Quantum (1531, 810, 215) (981, 810, 217) (906, 805, 214) (1171,805,213)

Further, in order to study the complexity relations of asymmetric (M)LWE and stan-
dard (M)LWE, we give a comparison in Table 12 between the AMLWE and the corre-
sponding MLWE, in terms of the parameter choices used by ΠKEM. Concrete evaluation
results show that the hardness of AMLWEn,q,m,α1,α2 and MLWEn,q,m,

√
α1α2 is approxi-

mately equivalent in the following sense:

AMLWEn,q,m,α1,α2 ≈ MLWEn,q,m,
√
α1α2 .

Recall that the above equivalence is only for security. The corresponding MLWE, for the
parameters given in Table 12, if ever used to build a KEM, cannot achieve the same
efficiency and correctness as our ΠKEM does.

5.2 Concrete Security of ΠSIG

As before, in order to obtain an overall security estimation of the ΠSIG under the three
proposed parameter settings against key recovery attacks, we enumerate all possible values
of m (the number of ALWE samples) and b to reach a conservative estimation about
the computational complexities of primal attacks and dual attacks by using a python
script. Table 13 and Table 14 estimate the complexities of the three parameter sets of
the underlying ALWE problem against primal attacks and dual attacks by taking the
minimum of 2sec over all possible values of (m, b).

Likewise, we enumerate all possible values of m (the number of samples) and b to
reach a conservative estimation about the computational complexities of `2-norm and
`∞-norm attacks. Table 15 and Table 16 estimate the complexities of the three parameter
sets of the underlying ASIS problem against `2-normal and `∞-normal attacks by taking
the minimum of 2sec over all possible values of (m, b).

In Table 17, we give the overall security of ΠSIG under the three parameter settings
against key recovery and forgery attacks, which takes account of both AMLWE and
AMSIS attacks.
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Table 11. The overall security of ΠKEM

Parameters Classical Security Quantum Security

PARAMS I 111 100

PARAMS II 162 147

PARAMS III 235 213

Table 12. Comparison between AMLWE and MLWE under “equivalence” parameters

Parameters (n, k, q, η1, η2) Classical Security Quantum Security η1 · η2
PARAMS I (256, 2, 7681, 2, 12) 111 100 24

MLWE Parameter I (256, 2, 7681, 5, 5) 112 102 25

PARAMS II (256, 3, 7681, 1, 4) 162 147 4

MLWE Parameter II (256, 3, 7681, 2, 2) 163 148 4

PARAMS III (512, 2, 12289, 2, 8) 235 213 16

MLWE Parameter III (512, 2, 12289, 4, 4) 236 214 16

Table 13. The security of ΠSIG against AMLWE primal attacks (The last row of the third column has no figures,
because the complexity (i.e., sec) of the traditional attack for PARAMS III is too large, and our python script
fails to compute it)

Parameters
Attack Traditional Variant 1 Variant 2
Model (m, b, sec) (m, b, sec) (m, b, sec)

PARAMS I
Classical (1021, 555, 162) (671, 345, 100) (741,340,99)
Quantum (1021, 555, 147) (671, 345, 91) (741,340,90)

PARAMS II
Classical (1276, 1060, 310) (996, 500, 146) (896,490,143)
Quantum (1276, 1060, 281) (996, 500, 132) (896,490,129)

PARAMS III
Classical - (1101, 660, 193) (1106,615,179)
Quantum - (1101, 660, 175) (1106,615,163)

Table 14. The security of ΠSIG against AMLWE dual attacks

Parameters
Attack Traditional Variant 1 Variant 2 Variant 3
Model (m, b, sec) (m, b, sec) (m, b, sec) (m, b, sec)

PARAMS I
Classical (1021, 550, 160) (786,340,99) (706,340,99) (706,340,99)
Quantum (1021, 550, 145) (786,340,90) (706,340,90) (706,340,90)

PARAMS II
Classical (1276, 1050, 307) (1121, 495, 144) (966,485,141) (966,485,141)
Quantum (1276, 1050, 278) (1121, 495, 131) (966,485,128) (966,485,128)

PARAMS III
Classical (1535, 1535, 464) (1381, 650, 190) (1031,615,179) (1036,615,179)
Quantum (1235, 1535, 422) (1381, 650, 172) (1031,615,163) (1036,615,163)

Table 15. The security of ΠSIG against two-norm attack (for ASIS problem)

Parameters
Attack Traditional Variation 1
Model (m, b, sec) (m, b, sec)

PARAMS I
Classical (2031, 750, 219) (2031,665,194)
Quantum (2031, 750, 198) (2031,665,176)

PARAMS II
Classical (2537, 1100, 321) (2537,900,263)
Quantum (2537, 1100, 291) (2537,900,238)

PARAMS III
Classical (3043, 1395, 408) (3043,1140,333)
Quantum (3043, 1395, 370) (3043,1140,302)

22



Table 16. The security of ΠSIG against infinity-norm attack (for ASIS problem)

Parameters
Attack Traditional Variant 1 Variant 2
Model (m, b, sec) (m, b, sec) (m, b, sec)

PARAMS I
Classical (1831, 385, 112) (1781, 385, 112) (1731,360,105)
Quantum (1831, 385, 102) (1781, 385, 102) (1731,360,95)

PARAMS II
Classical (2387, 495, 144) (2387, 545, 159) (2187,485,141)
Quantum (2387, 495, 131) (2387, 545, 144) (2187,485,128)

PARAMS III
Classical (2743, 630, 184) (2793, 690, 201) (2543,615,179)
Quantum (2743, 630, 167) (2793, 690, 183) (2543,615,163)

Table 17. The Overall Security of ΠSIG

Parameters Classical Security Quantum Security

PARAMS I 99 90

PARAMS II 141 128

PARAMS III 179 163
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A Security Proof for ΠKEM

AMLWE Problem (with Binomial Distributions). Let k, ` ≥ 1, η1, η2 be positive
integers. The decisional AMLWE problem
AMLWEn,q,k,`,η1,η2 asks to distinguish (A,b = As + e) and uniform over Rk×`

q × Rk
q ,

where A
$←− Rk×`

q , s
$←− B`

η1
, e

$←− Bk
η2

. Obviously, when η1 = η2, the AMLWE problem is
the standard MLWE problem.

In order to compress the public key, we also require a variant AMLWE-R (i.e.,
AMLWE with rounding) of the AMLWE problem for the security proof. Specifically,
the (decisional) AMLWE-R problem AMLWE-Rn,q,p,k,`,η1,η2 asks to distinguish

(A, t̄ = dtcq→p,A
T s + e, dt̄cTp→qs + e)

from (A′, dt′cq→p,u, v) ∈ R`×k
q × R`

p × Rk
q × Rq, where A,A′

$←− R`×k
q , s

$←− B`
η1
, e

$←−
Bk
η2
, e

$←− Bη2 , t, t
′ $←− R`

q,u
$←− Rk

q , v
$←− Rq.

Definition 1 (AMLWE Assumption). For appropriate choice of parameters n, q, k,
`, η1, η2 ∈ Z, there is no quantum polynomial time adversary solves the AMLWEn,q,k,`,η1,η2

problem.

Definition 2 (AMLWE-R Assumption). For appropriate choice of parameters n, q,
p, k, `, η1, η2 ∈ Z, there is no quantum polynomial time adversary solves the
AMLWE-Rn,q,p,k,`,η1,η2 problem.

Under the above two assumptions, we can prove that the PKE scheme ΠPKE is IND-
CPA secure and the KEM scheme ΠKEM is IND-CCA secure in the (quantum) random
oracle model. Specifically, in random oracle model (ROM)[10], the adversary A can query
a random oracle for any polynomial number of times. In quantum random oracle model
(QROM)[11], the adversary A can query the quantum random oracle with superpositions
of any input string for any polynomial number of times.

A.1 IND-CPA Security of ΠPKE

We prove that ΠPKE is IND-CPA secure under the AMLWE and AMLWE-R assumptions.
Formally, we have the following theorem.

Theorem 5. Let H : {0, 1}n → Rk×k
q be a random oracle. If both problems

AMLWEn,q,k,k,η1,η2 and AMLWE-Rn,q,2dt ,k,k,η1,η2 are hard, then the scheme ΠPKE is IND-
CPA secure.
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Proof. This proof proceeds via a sequence of games G0,G1,G2. In the final game, we
show that the advantage of any probabilistic polynomial time (PPT) adversary A is
negligible.

Game G0. This game is the real game for the IND-CPA security. In this game, the
adversary A has access to a random oracle H, and is given a public key pk = (ρ, t̄).
Adversary A chooses two plaintexts µ0, µ1 ∈ R2, and then obtains a challenge cipher-
text C = (ū, v̄) on message µb, where b is a random bit. Finally, A outputs a bit
b′ ∈ {0, 1} as the guess of b ∈ {0, 1}.

Game G1. This game is the same as G0, except that picking t
$←− Rk

q at random and
using t̄ = dtcq→2dt as a part of pk.
If there exists a PPT adversary A that can distinguish G1 from G0, then we can
construct a PPT algorithm B solving the AMLWEn,q,k,k,η1,η2 problem. Specifically,
given an instance (A, t) of the AMLWE problem, B aims to decide whether (A, t) is
sampled from a uniform distribution of Rk×k

q ×Rk
q . Formally, B behaves exactly as in

game G0, except that it chooses a random ρ
$←− {0, 1}n, programs the random oracle

H such that H(ρ) = A, and returns pk = (ρ, t̄ = dtcq→2dt ) to A. Since H is a random
oracle, the probability that H(ρ) has already been defined is negligible. If (A, t) is
uniformly random in Rk×k

q ×Rk
q , then B behaves as in game G1. Otherwise, B behaves

as in game G0. In other words, if A can distinguish G0 and G1 with non-negligible
probability, then B can solve the AMLWE problem with non-negligible probability.

Game G2. This is the same as G1, except that using uniformly random values to replace
u = AT r+e1 and v = dt̄cT2dt→qr+e2 used in the generation of the challenge ciphertext.
If there exists a PPT adversary A who can distinguish G2 from G1, then we can
construct a PPT algorithm B that solves the AMLWE-Rn,q,k,k,η1,η2 problem. Specifi-
cally, given an instance (A, dtcq→2dt ,u, v) of the AMLWE-R problem, B aims to decide

whether (A, t,u, v) is sampled from a uniform distribution in Rk×k
q × Rk

q × Rk
q × Rq.

Formally, B chooses a random ρ
$←− {0, 1}n, programs the random oracle H such that

H(ρ) = A, and returns pk = (ρ, t̄ = dtcq→2dt ) to A. After receiving two plaintexts

µ0, µ1
$←− R2 from A, B picks b

$←− {0, 1} at random, computes ū = ducq→2du , v̄ =
dv+µb · d q2ccq→2dv , and then gives the ciphertext C = (ū, v̄) to A. If (A, t,u, v) is uni-

formly random in Rk×k
q ×Rk

q ×Rk
q ×Rq, then B simulates as in game G2. Otherwise, B

simulates as in in game G1. Thus, if A can distinguish G2 and G1 with non-negligible
probability, then B can solve the AMLWE-R problem.

In the final game G2, µb in the challenge ciphertext is perfectly hidden by uniformly ran-
dom v. Therefore, the advantage of A is 0 in G2, which completes the proof of Theorem 5.

A.2 IND-CCA Security of ΠKEM

Since ΠKEM is obtained by applying a slighlty tweaked Fujisaki-Okamoto (FO) transfor-
mation [24, 21] to the PKE scheme ΠPKE, given the results in [24, 12] and Theorem 5, we
have the following theorem.

Theorem 6. Under the AMLWE assumption and the AMLWE-R assumption, ΠKEM is
IND-CCA secure in the random oracle model.
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Notice that the algorithm Decap will always return a random ”secret key” even if
the checks fails (i.e., implicit rejection). Furthermore, the paper [26] showed that if the
underlying PKE is IND-CPA secure, then the resulting KEM with implicit rejection
obtained by using the FO transformation is also IND-CCA secure in the quantum random
oracle model (QROM). Given the results in [26] and Theorem 5, we have the following
theorem.

Theorem 7. Under the AMLWE assumption and the AMLWE-R assumption, ΠKEM is
IND-CCA secure in the QROM.

B Security Proof for ΠSIG

We present an asymmetric variant of a standard lattice hardness problem MSIS, called
AMSIS. To compress the public key, we need also a variant of the AMSIS problem,
referred to as AMSIS-R, which is used to guarantee the unforgeability of signatures in
the classical random oracle model (ROM). The unforgeability of our signature scheme
in the quantum random oracle model (QROM) is based on an asymmetric variant of
SelfTargetMSIS introduced by Ducas et al. [19], which is called SelfTargetAMSIS. In
ROM, there is a (non-tight) reduction from AMSIS to SelfTargetAMSIS, which is very
similar to the (non-tight) reduction from MSIS to SelfTargetMSIS [19].

The AMSIS Problem. Given a uniform matrix A ∈ Rk×(`1+`2−k)
q , the (Hermite Normal

Form) AMSIS problem AMSIS∞n,q,k,`1,`2,β1,β2 over ring Rq asks to find a non-zero vector
x ∈ R`1+`2

q \{0} such that (Ik‖A)x = 0 mod q, ‖x1‖∞ ≤ β1 and ‖x2‖∞ ≤ β2, where

x =

(
x1

x2

)
∈ R`1+`2

q ,x1 ∈ R`1
q ,x2 ∈ R`2

q .

Obviously, when β1 = β2, the AMSIS problem is the standard MSIS problem. In
particular, we are easy to prove the following hardness relation of MSIS and AMSIS
problems:

MSISn,q,k,`1+`2,max(β1,β2) ≤ AMSISn,q,k,`1,`2,β1,β2 ≤ MSISn,q,k,`1+`2,min(β1,β2).

In other words, for suitable parameter choices, we can always guarantee that the AMSIS
problem is hard.

The AMSIS-R Problem. Given a uniformly random matrix A ∈ Rk×(`1+`2−k)
q and a

uniformly random vector t ∈ Rk
q , the AMSIS-R problem AMSIS-R∞n,q,d,k,`1,`2,β1,β2 over ring

Rq asks to find a non-zero vector x ∈ R`1+`2+1
q \{0} such that

(
Ik‖A‖t1 · 2d

)
x = 0 mod q,

‖x1‖∞ ≤ β1, ‖x2‖∞ ≤ β2 and ‖x3‖∞ ≤ 2, where x =

x1

x2

x3

 ∈ R`1+`2+1
q ,x1 ∈ R`1

q ,x2 ∈

R`2
q , x3 ∈ Rq and (t1, t0) = Power2Roundq(t, d).

The SelfTargetAMSIS Problem. Let H : {0, 1}∗ → B60 is a (quantum) random

oracle. Given a uniformly random matrix A ∈ Rk×(`1+`2−k)
q and a uniform vector t ∈ Rk

q ,
the SelfTargetAMSIS problem SelfTargetAMSIS∞n,q,k,`1,`2,β1,β2 over ring Rq asks to find a

vector y =

y1

y2

c

 and µ ∈ {0, 1}∗, such that ‖y1‖∞ ≤ β1, ‖y2‖∞ ≤ β2, ‖c‖∞ ≤ 1 and

H (µ, (Ik‖A‖t)y) = c holds.
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In the ROM, we prove that signature scheme ΠSIG satisfies strongly existential un-
forgeability under chosen message attacks (SUF-CMA) in Theorem 3. For the sake of
simplicity, in the proof of Theorem 3, we will assume that the adversary A obtains
t = As1 + s2 instead of t1 as the public key. Note that this assumption would be favor-
able to A, as in the real scheme ΠSIG it only gets the high order bits t1 of t. Therefore,
in fact, the signature scheme ΠSIG may be even more difficult to break for the adversary.
For convenience, we restate Theorem 3 in the following.

Theorem 8. If H1 : {0, 1}256 → Rk×`
q and H4 : {0, 1}∗ → B60 are random oracles, the

outputs of H3 : {0, 1}∗ → S`γ1−1 are pseudo-random, and H2 : {0, 1}∗ → {0, 1}384 is a
collision-resistant hash function, then the scheme ΠSIG is SUF-CMA secure under the
AMLWEn,q,k,`,η1,η2 and AMSIS-R∞n,q,d,k,`,4γ2+2,2γ1

assumptions.

Proof. This proof will proceed via a sequence of games, i.e., G0,G1, . . . ,G4. We will show
that the difference between two successive games is negligible.

Game G0. This game is the real game, where the adversary A will obtain a public key
pk and have access to a signing oracle. Finally, A will forge a signature σ = (z,h, c)
on a message M .

Game G1. This game is the same as G0, except for aborting if there exists two messages
M and M ′ output by A such that H2(H2(pk),M) = H2(H2(pk),M ′) and M 6= M ′.
Since H2 is collision-resistant, G1 will abort with negligible probability. In other words,
G1 is computationally indistinguishable from G0.

Game G2. This game is the same as G1, except that directly picking y
$←− S`γ1−1 instead

of computing y from H3 and a key K for each signing query, and using the same
randomness y for signing queries with the same message.
H3 can be considered as a pseudo-random function with a key K and messages in the
form of µ‖ctr. If the adversary A can distinguish G2 from G1, then we can easily
construct an algorithm breaking the pseudo-randomness of H3. Therefore, we have
that G2 is computationally indistinguishable from G1.

Game G3. This game is the same as G2, except that using a zero-knowledge simulator
S without knowing secret key sk defined in the following Lemma 3 to respond all
signing queries.
Based on Lemma 3, we know that G3 is computationally indistinguishable from G2.

Game G4. This game is the same as G3, except for using a uniform vector t
$←− Rk

q

rather than t = As1 + s2 as a part of public key pk.
If there exists a PPT adversaryA distinguishing G4 from G3, then we can construct an
algorithm B that solves the AMLWEn,q,k,`,η1,η2 problem. Specifically, given an instance
(A, t) ∈ Rk×`

q ×Rk
q , the goal of B is to decide whether (A, t) is uniformly distributed

over Rk×`
q × Rk

q . B behaves exactly as in G3, except that it picks ρ
$←− {0, 1}256 and

programs random oracle H1 such that H1(ρ) = A. For a random ρ ∈ {0, 1}256, the
probability that H1(ρ) has already been defined is negligible. If (A, t) is uniformly
distributed over Rk×`

q × Rk
q , then B behaves as in G4. If t = As1 + s2, then B be-

haves as in G3. Therefore, if A can distinguish G4 from G3, then B can solve the
AMLWEn,q,k,`,η1,η2 problem.

28



In G4, if the adversary can forge a signature with non-negligible probability, then we
can use the extractor E defined in the following Lemma 4 to find a solution of the
AMSIS-R∞n,q,d,k,`,4γ2+2,2γ1

problem with non-negligible probability.

Lemma 3. If H is a random oracle, then there exists a PPT simulator S can generate
the signature on any message without knowing the secret key sk.

Proof. Prior to giving the construction of zero-knowledge simulator S, we first analyze
the probability distribution of (z = y+ cs1, c = H4(µ‖w1)) computed in ΠSIG.Sign, where
the probability is taken from the randomness of y and random oracle H4. We have the
following:

Pr[(z, c)] = Pr[c] · Pr[y = z− cs1|c] (3)

Since ‖cs1‖∞ ≤ β1 (with overwhelming probability), when ‖z‖∞ < γ1 − β1 we have
‖y‖∞ = ‖z − cs1‖∞ ≤ γ1 − 1, which is a valid value of y. Therefore, if ‖z‖∞ < γ1 − β1,
then the above probability 3 is exactly the same for each such tuple (z, c). If ΠSIG.Sign
outputs z such that ‖z‖∞ < γ1 − β1, then the resulting distribution of (z, c) will be
uniformly random over S`γ1−β1−1 ×B60.

The simulation of signatures follows [8, 32, 19]. Specifically, simulator S is only given
a public key pk = (ρ, t), and can simulate a valid signature σ = (z,h, c) on any message
M by programming the random oracle H4. Firstly, S computes A = H4(ρ) and µ =

H2(H2(pk)‖M). Then, S picks (z, c)
$←− S`γ1−β1−1 × B60 such that the following relation

holds:
‖LowBitsq(Az− ct, 2γ2)‖∞ < γ2 − β2.

By the correctness, we have w − cs2 = Az− ct. Thus, we have:

‖r0‖∞ = ‖LowBitsq(w − cs2, 2γ2)‖∞ < γ2 − β2.

In other words, when ‖cs2‖∞ ≤ β2, by Lemma 2, we have:

r1 = HighBitsq(w − cs2, 2γ2) = HighBitsq(w, 2γ2) = w1

Thus, S does not need to perform the check that r1 = w1, and can always assume that
it passes. Then, S can compute w1 = HighBitsq(w − cs2, 2γ2) = HighBitsq(Az− ct, 2γ2),
and program H4 such that

H4(µ‖w1) = c.

If H4(µ‖w1) has not been defined, then the pair (z, c) simulated by S has the same
distribution as the one in a genuine signature. Furthermore, based on the randomness
of y, we know the probability that H4(µ‖w1) have been defined is negligible. By the
correctness, we have w − cs2 + ct0 = Az− ct1 · 2d. Therefore, S can compute

h = MakeHintq(−ct0,w − cs2 + ct0) = MakeHintq(−ct0,Az− ct1 · 2d),

where (t1, t0) = Power2Roundq(t).
In conclusion, if we choose parameters such that ‖cs1‖∞ ≤ β1 and ‖cs2‖∞ ≤ β2 holds

with overwhelming probability, then S can simulate a signature σ = (z,h, c) which has
the same distribution as a genuine signature with overwhelming probability.
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Lemma 4. Forging a signature would imply that solving the AMSIS-R∞n,q,d,k,`,4γ2+2,2γ1

problem. In particular, for uniformly random matrix A ∈ Rk×`
q and vector t ∈ Rk

q , this
problem requires finding u1, u2 and u3 such that

‖u1‖∞ ≤ 2γ1, ‖u2‖∞ ≤ 4γ2 + 2, ‖u3‖∞ ≤ 2,
Au1 + u2 = u3t1 · 2d,
(u1,u2, u3) 6= 0,
u2has at most 2ω coefficients of absolute value greater than 2γ2,

where (t1, t0) = Power2Roundq(t, d).

Proof. If a PPT adversary A forges a valid signature in game G4, we show that there
exists an extractor E who can solve the hardness problem stated in the above lemma.

Given (A, t), E picks ρ
$←− {0, 1}256 and programs H1 such that H1(ρ) = A. As ρ is chosen

uniformly at random, H1(ρ) has not been defined with overwhelming probability. E gives
(ρ, t) to A as the public key. For all signing queries from A, E uses the simulator S defined
in Lemma 3 to respond.

If A forges a valid signature σ = (z,h, c) on a message M , then A must make the
following query with overwhelming probability:

H4

(
µ‖w1 = UseHintq(h,Az− ct1 · 2d, 2γ2)

)
= c, (4)

where µ = H2(H2(pk),M).

Case 1. If c is queried during a signing query, then S has responded another signature
(z′,h′, c) on a message M ′. According to the winning condition of the SUF-CMA ex-
periment, we have (M ′, (z′,h′, c)) 6= (M, (z,h, c)). Let µ′ = H2(H2(pk),M ′). Thus, there
exists the associated w′1 such that H4(µ‖w1) = c = H4(µ

′‖w′1). Since H4 is a random
oracle, this implies µ = µ′ and w1 = w′1 with overwhelming probability. If G4 does not
abort, then we have M = M ′, as H2 is collision-resistant. Since w1 = w′1, it must be that

UseHintq(h,Az− ct1 · 2d, 2γ2) = w1,
UseHintq(h

′,Az′ − ct1 · 2d, 2γ2) = w1.

If z = z′, then by Lemma 1 we must have h = h′, which is in contradiction with that
(M ′, (z′,h′, c)) 6= (M, (z,h, c)). Thus, we must have that z 6= z′. By Lemma 1, we have
the following relations:

‖Az− ct1 · 2d −w1 · 2γ2‖∞ ≤ 2γ2 + 1,
‖Az′ − ct1 · 2d −w1 · 2γ2‖∞ ≤ 2γ2 + 1.

By the triangular inequality, this implies that

‖A(z− z′)‖∞ ≤ 4γ2 + 2.

In other words, there exists vectors u1 ∈ R`
q,u2 ∈ Rk

q such that ‖u1‖∞ ≤ 2γ1, ‖u2‖∞ ≤
4γ2 + 2 and Au1 + u2 = 0, where u1 = (z − z′) 6= 0. As h and h′ have all except for ω
elements equal to 0, by Lemma 1, we know that all but ω coefficients of Az−ct1·2d−w1·2γ2
and Az′ − ct1 · 2d − w′1 · 2γ2 have magnitude at most γ2. Hence, all but 2ω coefficients
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of u2 have magnitude at most 2γ2. In all, E finds a solution (u1,u2, 0) 6= 0 of the AMSIS
problem.

Case 2. Now we handle the case that c is queried by adversary A. That is, A made a
query (µ′,w′1) to random oracle H4 and obtained c such that H

(
µ′‖w′1) = c. In the ROM,

we have µ′ = µ = H2(H2(pk),M) and w′1 = w1 = UseHintq(h,Az − ct1 · 2d, 2γ2), with
overwhelming probability.

From the standard forking lemma [39, 9], E can with non-negligible probability extract
two signatures (z,h, c) and (z′,h′, c′) for c 6= c′ such that

UseHintq(h,Az− ct1 · 2d, 2γ2) = w1,
UseHintq(h

′,Az′ − c′t1 · 2d, 2γ2) = w1.

By Lemma 1, we have:

‖Az− ct1 · 2d −w1 · 2γ2‖∞ ≤ 2γ2 + 1,
‖Az′ − c′t1 · 2d −w1 · 2γ2‖∞ ≤ 2γ2 + 1.

By the triangular inequality, this implies that

‖A(z− z′)− (c− c′)t1 · 2d‖∞ ≤ 4γ2 + 2.

In other words, there exists u1 ∈ R`
q,u2 ∈ Rk

q , u3 ∈ Rq such that ‖u1‖∞ ≤ 2γ1, ‖u2‖∞ ≤
4γ2 + 2, ‖u3‖∞ ≤ 2 and Au1 + u2 = u3t1 · 2d, where u1 = (z − z′), u3 = c − c′ 6= 0.
Since the number of 1’s of h and h′ is at most ω, by Lemma 1 we know that all but ω
coefficients of Az− ct1 · 2d−w1 · 2γ2 and Az′− ct1 · 2d−w1 · 2γ2 have magnitude at most
γ2. Therefore, u has at most 2ω coefficients whose absolute value is greater than 2γ2. In
conclusion, E finds a solution (u1,u2, u3) 6= 0 of the AMSIS-R problem.

For convenience, we restate Theorem 4 in the following.

Theorem 9. In the quantum random oracle model, the scheme ΠSIG is SUF-CMA se-
cure under the following assumptions: AMLWEn,q,k,`,η1,η2, AMSIS∞n,q,d,k,`,4γ2+2,2(γ1−β1) and
SelfTargetAMSIS∞H4,n,q,k,`1,`2,4γ2,(γ1−β1).

Intuitively, the AMLWE assumption is used to guarantee the security against key
recovery, the SelfTargetAMSIS assumption is used to protect against the forgery of sig-
nature on a new message, and the AMSIS assumption is required for strong unforgeability.

The proof of Theorem 4 can be obtained by extending the proof of the Dilithium
signature scheme in QROM by Kiltz et al. [28]. Here, we only give a proof sketch. For
the sake of simplicity, we can assume that no collision occurs for hash function H2 and
H3 is a perfect pseudo-random function, based on the proof of Theorem 3.

Kiltz et al. [28] show that for a zero-knowledge deterministic signature scheme, if an
adversary, who has quantum access to oracle H4 and classical access to a signing oracle,
can forge a signature on a new message, then there exists another adversary who can
produce a forgery without querying to the signing oracle (i.e., the adversary only obtains
the public key). The latter security model is called unforgeability under no message
attacks (UF-NMA). In QROM, we can assume that the public key is (A, t) rather than
(ρ, t) for the sake of simplicity, as we can always program H1 such that H1(ρ) = A. Under
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the AMLWE assumption, we know that the public key (A, t = As1 + s2) ∈ Rk×`
q × Rk

q

is computationally indistinguishable from (A, t) ∈ Rk×`
q × Rk

q for a uniformly random
t ∈ Rk

q . Based on Lemma 3 and the formal proof in [28], one can prove that the signature
scheme ΠSIG is zero-knowledge.

Thus, under the AMLWEn,q,k,`,η1,η2 assumption, we only need to analyze the UF-NMA
security of ΠSIG, when the adversary is given a uniformly random (A, t). The adversary
needs to output a valid message-signature pair (M,σ = (z,h, c)) such that

‖z‖∞ < γ1 − β1
H4(µ‖UseHintq(h,Az− ct1 · 2d, 2γ2)) = c
the number of 1’s in h is ≤ ω,

where µ = H2(H2(pk)‖M). From Lemma 1, we can rewrite

UseHintq(h,Az− ct1 · 2d, 2γ2) = Az− ct1 · 2d + u, (5)

where ‖u‖∞ ≤ 2γ2 + 1. Furthermore, at most ω coefficients of u have magnitude greater
than γ2. If we write t = t1 ·2d+t0 where ‖t0‖∞ ≤ 2d−1, then we can re-write equation (5)
as follows:

Az− ct1 · 2d + u = Az− c(t− t0) + u = Az− ct + (ct0 + u) = Az− ct + u′

We note that the worst-case upper-bound of u′ is

‖u′‖∞ ≤ ‖ct0‖∞ + ‖u‖∞ ≤ ‖c‖1 · ‖t0‖∞ + ‖u‖∞
≤ 60 · 2d−1 + 2γ2 + 1 < 4γ2

Therefore, if a (quantum) adversary A can successfully forge a signature on a new mes-
sage, then it is able to find (M, (z, c,u′)) such that ‖z‖∞ < γ1−β1, ‖c‖∞ = 1, ‖u′‖∞ < 4γ2,
M ∈ {0, 1}∗, and the following holds:

H4

H2(H2(pk),M), [Ik‖A‖t] ·

 u′

z
−c

 = c, (6)

where µ = H2(H2(pk)‖M). Since (A, t) is uniformly random, the problem defined in the
above equation (6) is exactly the definition of the SelfTargetAMSIS problem.

To prove strong unforgeability, we only have to consider the case that the adversary
sees a message/signature pair (M,σ = (z,h, c)) from the signing oracle and forges a
signature σ′ = (z′,h′, c) on the same message M . From Case 1 of Lemma 4, this implies
that finding non-zero vectors u1 ∈ R`

q,u2 ∈ Rk
q such that ‖u1‖∞ ≤ 2(γ1 − β1), ‖u2‖∞ ≤

4γ2 + 2 and Au1 + u2 = 0. In other words, the adversary needs to find a solution of the
AMSIS problem.

C Concrete Attacks against AMLWE

Solvers for LWE mainly include primal attacks, dual attacks (against the underlying
lattice problems) and direct solving algorithms such as BKW and Arora-Ge [4]. BKW
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and Arora-Ge attacks need sub-exponentially (or even exponentially) many samples, and
thus they are not relevant to the public-key cryptography scenario where only a restricted
amount of samples is available. Therefore, for analyzing and evaluating practical lattice-
based cryptosystems, we typically consider only primal attacks and dual attacks. Further,
these two attacks, which are the currently most relevant and effective, seem not to have
additional advantages in solving RLWE/MLWE over standard LWE. Thus, when analyz-
ing RLWE or MLWE based cryptosystems, one often translates RLWE/MLWE instances
to the corresponding LWE counterparts [19, 12] and then applies the attacks. In par-
ticular, one first transforms AMLWEn,q,k,`,α1,α2 into ALWEnk,q,k`,α1,α2 , and then applies,
generalizes and optimizes the LWE solving algorithms to ALWE. Since any bounded cen-
trally symmetric distribution can be regarded as subgaussian for a certain parameter,
for simplicity and without lose generality, we consider the case that secret vector and
error vector in ALWEn,q,m,α1,α2 are sampled from subgaussians with parameters α1 and
α2 respectively. Formally, the problem is to recover s from samples

(A,b = As + e) ∈ Zm×nq × Zmq ,

where A
$←− Zm×nq , s← χnα1

and e← χmα2
.

C.1 Primal Attack and Its Variants

The basic intuition behind primal attack is to convert ALWE problem to the correspond-
ing bounded distance decoding (BDD) problem or shortest vector problem by embedding.
The classification of primal attacks is mainly determined by the ways of embedding. We
consider primal attack and its variants aiming at ALWEn,q,m,α1,α2 .

Traditional primal attack. The primal attack using Kannan’s embedding [27, 3] trans-
lates the LWE problem to unique Shortest Vector Problem (uSVP) on lattice. First, define
a m-dimensional lattice

Λ = {y ∈ Zm|y = Ax mod q,x ∈ Znq } ,

For m > n the m× n matrix A has full rank with high probability. Assume WLOG that
the first n rows of A are independent (otherwise swap the rows to make it), and denote

by A1 ∈ Zn×nq the submatrix by keeping the first n rows of A, i.e., A =

(
A1

A2

)
. Denote

A1’s inverse by A−11 ∈ Zn×nq , and let A′ =

(
In

A2A
−1
1

)
. Then, we have

Λ = {y|y = Ax mod q,x ∈ Znq } = {y|y = A′x mod q,x ∈ Znq } ⊂ Zm ,

and the columns of the following matrix

B =

(
In 0

A2A
−1
1 qIm−n

)
∈ Zm×m

constitutes a basis of Λ. It is easy to see det(Λ) = qm−n. We have by b = As + e mod q
that the distance between vector b and lattice Λ is ‖e‖. If we could find the closest
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lattice point u ∈ Λ to b, then we have e = b− u with high probability. In other words,
the problem can be reduced to bounded distance decoding (BDD) problem on Λ, and
then one applies the nearest planes algorithm [30] to solve. Furthermore, using Kannan’s
embedding [27, 3] one can reduce BDD to unique shortest vector problem (uSVP). In
detail, consider lattice Λ′ spanned by the column vectors of the following matrix:

B′ =

 In 0
b

A2A
−1
1 qIm−n

0 0 t

 ∈ Z(m+1)×(m+1),

where t ∈ Z is an ajustable parameter. Theoretically, the algorithm works best when
t = ‖e‖. However, empirical experiments suggest that best performance is achieved when
t = 1, which is the typical value we choose. In this case, we have that v = (eT , 1)T ∈ Zm+1

is the unique shortest vector in Λ′ with high probability. To summarize, we work on uSVP
problem in Λ′ to fine out the error vector e ∈ Zm, which is in turn used to solve the system
of linear congruences to recover s ∈ Znq , i.e, As = b− e. Besides, since every element in
vector e is sampled from subgaussian χα2 , we have ‖v‖ ≈ ‖e‖ ≈ α2

√
m, namely, v is of

small norm.

Primal attack: variant 1. When α1 = α2, it gives the best known primal attack [7, 5].
Define lattice

Λ = {v = (xT ,yT , z)T ∈ Zn+m+1|(A‖Im‖ − b)v = 0 mod q},

It is easy to verify that the column vectors of

B =

 In 0 0
−A qIm b

0 0 1

 ∈ Z(m+n+1)×(m+n+1)

constitute a basis of Λ. Clearly, the dimension of lattice Λ is d = m + n + 1. Further,
we have that det(Λ) = qm and v = (sT , eT , 1)T ∈ Zn+m+1 is a short vector in Λ (i.e.,
‖v‖ ≈

√
α2
1n+ α2

2m as s ← χnα1
and e ← χnα2

). Therefore, we can recover s ∈ Zmq by
working out the (u)SVP on Λ.

Primal attack: variant 2. This variant is adapted from [7, 5], which is most effective
for α1 6= α2 but the values of α1 and α2 are close. Formally, let c = α2/α1 and consider
lattice

Λ =

v =

 cx
y
α2z

 ∈ Rn+m+1

∣∣∣∣∣∣(A‖Im‖ − b)u = 0 mod q,u =

x
y
z

 ∈ Zn+m+1

 ,

Then the column vectors of matrix

B =

 cIn 0 0
−A qIm b

0 0 α2

 ∈ R(n+m+1)×(n+m+1),
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constitutes a basis of Λ. We observe that Λ is of dimension m+ n+ 1, det(Λ) = α2c
nqm,

and that v = (csT , eT , α2)
T ∈ Rm+n+1 is a short vector in Λ (i.e., ‖v‖ ≈ α2

√
n+m+ 1).

Therefore, we recover s by solving (u)SVP on lattice Λ.
Intuitively, the basic idea of this variant is to scale the components of target vector

to the same magnitude . Experiments show that solvers for (u)SVP are more likely to
output vector with components of roughly the same magnitude.

Estimating the computational cost of primal attacks. The best known SVP solver
is the BKZ-b lattice basis reduction algorithm and its variants. Given a d-dimensional
basis as input, the algorithm translates the lattice basis reduction problem to the SVP
problem on b-dimensional sublattice (b < d). BKZ-b repeats the SVP solving procedure
O(d) times (the actual number may depend on the specific algorithm used) on different
b-dimensional sublattices to reduce the norm of the basis (of the original d-dimensional
basis). Therefore, the cost of BKZ-b basis reduction algorithm is mainly decided by SVP
solving algorithm for b-dimensional lattice.

Assume that the reduced basis obtained from running BKZ-b on d-dimensional lattice
basis B ∈ Zd×d satisfies the Geometry Series Assumption (GSA), which is the best
scenario for adversary. Let B̂ = (b̂1, . . . , b̂d) be a reduced basis, then we have

‖b̂1‖ = δd det(Λ)1/d, ‖b̂∗i ‖ = δ−2d(i−1)/(d−1)‖b̂1‖,

where δ = ((πb)1/b · b/2πe)
1

2(b−1) [17], B̂∗ = (b̂∗1, . . . , b̂
∗
d) is the orthogonalized matrix of B̂

(i.e., b̂1 = b̂∗1). Specifically, [5, 3] show that when the norm of the projection of the unique
shortest vector v into the space spanned by the last b orthogonal vectors (b̂∗d−b+1, . . . , b̂

∗
d)

is less than ‖b̂∗d−b+1‖, then the BKZ-b basis reduction algorithm recovers v.

The norm of v’s projection into the space spanned by b orthogonal vectors (b̂∗d−b+1, . . . ,

b̂∗d) approximately equals `
√
b/d, where ` = ‖v‖. That is, we assume every component

of vector v’s projection is of roughly the same size. In this case, the computational cost
of primal attack and its variant is mainly decided by the minimal value of b that satisfies
the constraint

`
√
b/d ≤ δ(−d

2+2db−d)/(d−1) det(Λ)1/d . (7)

Following [5], our (conservative) estimation of the complexity of solving uSVP on
d-dimensional lattice is based on that of solving SVP on b-dimensional lattice, where b
satisfy inequality (7) (recall that the SVP solving algorithm is invoked on b-dimensional
lattice several times). Furthermore, same as previous works (e.g., [5, 19, 12]), we use
costb = 20.292b and costb = 20.265b to distinguish between the complexities of classical al-
gorithm and quantum algorithm (for solving SVP on b-dimensional lattice) respectively.
In conclusion, the complexity of primal attack and its variants in the above conservative
model is mainly decided by the b satisfying (7).

C.2 Dual Attack and Its Variants

Dual attack translates the LWE problem to a SIS problem, whose solution is used to
solve the decisional LWE by distinguishing between subgaussians (for certain parameters)
and uniform distribution over Znq . We mainly consider the following dual attack and its
variants aiming at solving the ALWEn,q,m,α1,α2 problem.
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Traditional Dual Attack. The first dual attack was given in [36]. The attack only
cares about the error distribution of the LWE-like problem, and thus does not distinguish
between LWE and ALWE. In other words, the traditional dual attack solves ALWE the
same way as it does to LWE, and it appears more efficient when α1 � α2. Formally, let

Λ = {x ∈ Zm|ATx = 0 mod q},

be a lattice of dimension d = m � n. Note that A has full rank with high probability
and we assume WLOG the submatrix A1 ∈ Zn×nq made up by the first n columns of AT

has rank n and AT = (A1‖A2) ∈ Zn×mq . Let A′ = (In‖A−11 A2). Then, we have that the
column vectors of

Λ = {x ∈ Zm|ATx = 0 mod q} = {x ∈ Zm|A′x = 0 mod q},

and matrix

B =

(
qIn −A−11 A2

0 Im−n

)
∈ Zm×m

constitute a basis of lattice Λ and det(Λ) = qn. Traditional dual attack first solves the SIS
problem by finding out a short vector v ∈ Zm with ATv = 0 mod q in lattice Λ with basis
B. It then computes u = 〈v,b〉 = 〈v, e〉 mod q in order to distinguish between subgaus-
sian and uniform distributions. Specifically, if the norm ` = ‖v‖ is relatively small, then
the value of 〈v, e〉 is relatively small too and u can be seen as random variable drawn from
subgaussian distribution with standard variance `α2, which can be distinguished from
uniform distribution on Zq with probability 4 exp(−2π2τ 2), where τ = `α2/q. Therefore,
intuitively using large value for α2 improves the hardness of ALWE against traditional
dual attacks.

Dual Attack: Variant 1. We generalize [5] so that the attack [5] falls into a special case
(of our generalized attack) for α1 = α2. Formally, define the following lattice of dimension
d = m+ n (m� n)

Λ = {(xT ,yT )T ∈ Zm+n|ATx = y mod q},

Likewise, we assume WLOG that AT = (A1‖A2) ∈ Zn×mq and A1 ∈ Zn×nq has full rank.

Let A′ = (In‖A−11 A2), then we have

Λ = {(xT ,yT )T |ATx = y mod q}
= {(xT ,yT )T |A′x = A−11 y mod q} ,

and the column vectors of matrix

B =

qIn −A−11 A2 A−11

0 Im−n 0
0 0 In

 ∈ Z(m+n)×(m+n)

constitutes a basis of lattice Λ, where det(Λ) = qn. We first find out a short vector
v = (xT ,yT )T ∈ Zm+n with ATx = y mod q on (m+n)-dimensional lattice Λ with basis
B. Then, we compute

u = 〈x,b〉 = 〈y, s〉+ 〈x, e〉 mod q,
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and thus distinguish subgaussian and uniform distributions. In particular, when the norm
` = ‖v‖ is relatively small, then the values of 〈y, s〉 and 〈x, e〉 are relatively small too.
Furthermore, assume the components of v are of approximately the same magnitude, then
u = 〈y, s〉+ 〈x, e〉 can be regarded as following subgaussian distribution with parameter

`
√

α2
1m+α2

2n

m+n
. In this case, one can distinguish subgaussian-distributed u from uniform

element with probability 4 exp(−2π2τ 2), where τ = `
√

α2
1m+α2

2n

m+n
/q.

Dual Attack: Variant 2. The variant is the most effective dual attack [5] on standard
LWE (ALWE for α1 = α2) and we generalize to the ALWE problem where α1 and α2 are
(not necessarily equal but) of approximately the same size. Formally, define lattice

Λ = {(xT ,yT/c)T ∈ Rm+n|ATx = y mod q,x ∈ Zm,y ∈ Zn} ,

where Λ has dimension d = m + n, m � n and c = α2

α1
. Assume WLOG that AT =

(A1‖A2) ∈ Zn×mq and A1 ∈ Zn×nq has full rank, and let A′ = (In‖A−11 A2). Then, we have

Λ = {(xT ,yT/c)T |ATx = y mod q}
= {(xT ,yT/c)T |A′x = A−11 y mod q} ,

and the column vectors of matrix

B =

qIn −A−11 A2 A−11

0 Im−n 0
0 0 1

c
In

 ∈ R(m+n)×(m+n)

constitutes a basis of lattice Λ with det(Λ) = (q/c)n. Likewise, we find out a short vector
v = (xT , ŷT )T ∈ Rm+n with ATx = cŷ mod q from (m + n)-dimensional lattice Λ with
basis B, and then compute computes

u = 〈x,b〉 = c · 〈ŷ, s〉+ 〈x, e〉 mod q,

and therefore distinguish the above u from uniform. Specifically, the values of c · 〈ŷ, s〉
and 〈x, e〉 are relatively small for small ` = ‖v‖. Thus, u = c · 〈ŷ, s〉+〈x, e〉 can be almost
regarded as following subgaussian distribution with parameter `α2. This enable efficient
algorithms that distinguish the subgaussian-distributed u from uniform with probability
4 exp(−2π2τ 2), where τ = `α2/q.

At last, we stress that the variant is symmetric about parameters α1 and α2. We can
use c′ = α1/α2 to launch the dual attack, which takes the same complexity as that using
c = α2/α1 under our estimation model.

Dual Attack: Variant 3. This variant is derived from [2], and is similar to variant
2, where the main difference is the choice of c. First, we compute a short vector v =
(xT , ŷT )T ∈ Rm+n with ATx = cŷ mod q, where c = α2

√
m

α1
√
n

. Then, we compute

u = 〈x,b〉 = c · 〈ŷ, s〉+ 〈x, e〉 mod q,

and thus distinguish the above u from uniformly random element from Zq. That is,
we consider u = c · 〈ŷ, s〉 + 〈x, e〉 as being distributed to subgaussian with parameter
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`α2

√
2m
m+n

, where ` = ‖v‖, and thus efficiently distinguish it from uniformly random

element over Zq with probability 4 exp(−2π2τ 2) probability, where τ = `α2

√
2m
m+n

/q.

Likewise, the attack is also symmetric between α1 and α2, i.e., the attack using coefficient
c′ = α1

√
n

α2
√
m

takes the same complexity as that using c = α2
√
m

α1
√
n

under our estimation model.

Estimating Computational Cost of Dual Attack. As shown in the previous sections,
the computational costs of dual attack and its variants is mainly dominated by the cost of
solving SIS problem and transforming distinguishing attacks into secret recovery attacks
(with success probability more than half) for the ALWE problem. We use the model
of primal attack to estimate the cost of solving SIS problem. That is, applying BKZ-b
to reduce the basis of d-dimensional lattice yields a short vector v of norm ` = ‖v‖ =
δd det(Λ)1/d. Substituting this into the previous analysis, we distinguish ALWE problem
with advantage ε = 4 exp(−2π2τ 2), where τ is fully decided by ` and the actual dual
attack algorithm. To obtain the final secret recovery attack with probability greater than
1/2, we need 1/ε2 short vectors. Taking into account that each invocation of the sieving
yields 20.2075b short vectors, we need to repeat it R = 1/max(1, 1/(20.2075bε2)) times.

Following the cost estimation model for primal attacks, we use the complexity of
SVP solving algorithm on b-dimensional lattice to (conservatively) estimate the cost of
solving SVP on d-dimensional lattice (since the latter will invoke the former many times).
Furthermore, we use costb = 20.292b and costb = 20.265b as estimated complexities of
classical and quantum algorithms (for solving SVP problem on b-dimensional lattices)
respectively. Under this model, the complexity of dual attack is estimated to

1/max(1, 1/(20.2075b · 16 exp(−4π2τ 2))) · costb, (8)

where τ is decided by b and other parameters of the dual attack.

D Concrete Attacks against AMSIS

In this section, we consider the best known attacks and their variants against AMSIS.
The BKZ lattice basis reduction algorithm and its variants are more useful for solving
the `2-norm (A)SIS problem than the `∞-norm counterpart. Note that a solution x ∈
Zm1+m2 to the `∞-norm ASIS instance A ∈ Zn×(m1+m2−n)

q , where (In‖A)x = 0 mod q
and ‖x‖∞ ≤ max(β1, β2) < q, may have ‖x‖ > q, whose `2-norm is even larger than
that of a trivial solution u = (q, 0, . . . , 0)T . We will follow [19] to solve the `∞-norm SIS
problem. Further, we can always apply an `2-norm SIS solve to the `∞-norm SIS problem
due to the relation ‖x‖∞ ≤ ‖x‖. Hereafter we refer to the above two algorithms as `∞-
norm and `2-norm attacks respectively, and use them to estimate the concrete complexity
of solving ASIS∞n,q,m1,m2,β1,β2

.

D.1 Two-Norm Attack and Its Variants

Traditional `2-Norm Attack. This attack was originally used to solve SVP. Formally,
define

Λ = {x ∈ Zm1+m2|(In‖A)x = 0 mod q}.
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Then, the column vectors of matrix

B =

(
qIn −A
0 Im1+m2−n

)
∈ Z(m1+m2)×(m1+m2)

constitute a basis of lattice Λ of dimension d = m1+m2 and det(Λ) = qn. The complexity
of this algorithm is that of applying BKZ-b, where the resulting `2-norm solution satisfying
‖x‖ ≤ β = min(β1, β2) constitutes a solution to the `∞-norm ASIS problem.

`2-Norm Attack: Variant 1. This attack hopes to optimize by balancing the compo-
nents of target solution. Formally, let c = β2/β1 and define lattice

Λ =

{
x =

(
cx1

x2

)
∈ Rm1+m2

∣∣∣∣ (In‖A)v = 0 mod q,v =

(
x1

x2

)
∈ Zm1+m2

}
,

Then, the column vectors of matrix

B =

(
cIm1 0

0 Im2

)(
qIn −A
0 Im1+m2−n

)
∈ R(m1+m2)×(m1+m2)

constitute a basis of lattice Λ of dimension d = m1 + m2 and det(Λ) = cm1qn. Clearly,
we obtain the solution (xT1 ,x

T
2 )T ∈ Zm1+m2 of the ASIS problem, by finding out x =

(cxT1 ,x
T
2 )T ∈ Rm1+m2 with ‖x‖ ≤ β2 in lattice Λ. Therefore, the complexity of this attack

is essentaily that of running BKZ-b in search for x with ‖x‖ ≤ β2.

Estimating the Complexity Cost of `2-Norm Attack. Let

δ = ((πb)1/b · b/2πe)
1

2(b−1)

, and apply the BKZ-b to reduce the basis B ∈ Zd×d of d-dimensional lattice to obtain a
lattice vector x with ‖x‖ ≈ δd det(Λ)1/d. Thus, the `2-Norm attack on ASIS is successful
if we have

δd det(Λ)1/d ≤ β . (9)

Same as the estimation for the ALWE problem, we use the complexity of solving SVP
algorithm on b-dimensional lattice to (conservatively) estimate that of solving SVP on
d-dimensional lattice (since the later will invoke the former several times). Likewise, we
use costb = 20.292b and costb = 20.265b to distinguish between the complexities of classical
and quantum algorithms respectively for solving SVP on b-dimensional lattice. Under
this model, the complexity of `2-Norm attack is decided by the b satisfying (9).

D.2 Infinity-Norm Attack and Its Variants

Traditional `∞-Norm Attack. This attack is derived from the deterministic method
in [19]. Formally, define

Λ = {x ∈ Zm1+m2|(In‖A)x = 0 mod q}.
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Then, column vectors of matrix

B =

(
qIn −A
0 Im1+m2

)
∈ Z(m1+m2)×(m1+m2)

constitute a basis of lattice Λ of dimension d = m1 + m2 and det(Λ) = qn. Applying
the BKZ-b lattice basis reduction algorithm to B yields a reduced basis B̂ ∈ Zd×d. Let
B̂∗ = (b̂∗1, . . . ,b

∗
d) be the orthogonalized matrix of B̂ by means of the Gram-Schmidt

process, and `i = log2(‖b̂∗i ‖), then there exist integers 1 ≤ i ≤ j ≤ d such that

– For the first i vectors, we have `1 = · · · = `i = log2 q;
– For the middle j−i vectors, we have `j′ = log2 q+s ·(j′−i) for each j′ ∈ {i+1, . . . , j};
– For the last d− j vectors, we have `j+1 = `j+2 = · · · = `d = 0.

where s = 1
b−1 log2(

b
2πe

(πb)1/b) < 0 and (j − i)(i+ j + 1)s = −2(n− i) log2 q.
Although BKZ-b algorithm has no guarantee of reaching a valid solution to the ASIS

problem, it takes as input B̂ ∈ Zd×d and obtains (
√

4/3)b vectors at the computational
cost of solving the SVP problem on b-dimensional lattice[19], where the orthogonal pro-
jections of these vectors onto the space spanned by the first i vectors of B̂∗ have `2-norm
of roughly 2`i+1 . By properly modelling the distribution of these (

√
4/3)b vectors, we can

estimate the probability of getting a solution of ASIS problem from these vectors. The
complexity of BKZ-b divided by this success probability gives the overall complexity of
this attack.

`∞-Norm Attack: Variant 1. This attack is derived from the randomized algorithm
in [19]. Formally, define

Λ = {x ∈ Zm1+m2|(In‖A)x = 0 mod q}.

Then, the column vectors of matrix

B =

(
qIn −A
0 Im1+m2

)
∈ Z(m1+m2)×(m1+m2)

constitute a basis of lattice Λ of dimension d = m1 + m2 and det(Λ) = qn. Randomize
matrix B to get B′ such that B′ has no trivial vectors like qei, where ei is the i-th
unit vector. Then, run BKZ-b on B′ to get a reduced basis B̂ ∈ Zd×d. Let matrix B̂∗ =
(b̂∗1, . . . ,b

∗
d) be the Gram-Schmidt orthogonalized matrix of B̂ and `i = log2(‖b̂∗i ‖). We

have that there exists integer j ∈ {1, 2, · · · , d} such that:

– For the first j vectors, we have `j′ = −s · (j − j′ + 1) for each j′ ∈ {1, . . . , j};
– For the last d− j vectors, we have `j+1 = `j+2 = · · · = `d = 0,

where s = 1
b−1 log2(

b
2πe

(πb)1/b) < 0 and j(j + 1) = −2n log2 q
s

. Likewise, apply BKZ-b to

B̂ ∈ Zd×d such that the resulting (
√

4/3)b vectors have `2-norm roughly equal to 2`1

[19]. By properly modeling the distribution of these (
√

4/3)b vectors, we can estimate the

probability of finding a solution of the ASIS problem from these (
√

4/3)b vectors. The
overall complexity of the attack is the complexity of BKZ-b algorithm divided by this
probability.
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`∞-Norm Attack: Variant 2. This method intends to optimize the attack by balancing
the components of the target vector. Formally, let c = β2/β1 and define lattice

Λ =

{
x =

(
cx1

x2

)
∈ Rm1+m2

∣∣∣∣ (In‖A)v = 0 mod q,v =

(
x1

x2

)
∈ Zm1+m2

}
.

Then, the column vectors of matrix

B =

(
cIm1 0

0 Im2

)(
qIn −A
0 Im1+m2−n

)
∈ R(m1+m2)×(m1+m2)

constitute a basis of lattice Λ of dimension d = m1 + m2 and det(Λ) = cm1qn. Clearly,
we can get the solution (xT1 ,x

T
2 )T ∈ Zm1+m2 to the ASIS problem by finding out x =

(cxT1 ,x
T
2 )T ∈ Rm1+m2 with ‖x‖∞ ≤ β2 on lattice Λ.

We further randomize matrix B to get B′, where B′ has no trivial vector such as qei
and ei is the i-th unit vector. Then run BKZ-b on B′ to get a reduced basis B̂ ∈ Zd×d
an let B̂∗ = (b̂∗1, . . . ,b

∗
d) be the Gram-Schmidt orthogonalized matrix of B̂. Denote

`i = log2(‖b̂∗i ‖). We have that there exists j ∈ {1, · · · , d} such that:

– For the first j vectors, we have `j′ = −s · (j − j′ + 1) for each j′ ∈ {1, . . . , j};
– For the last d− j vectors, we have `j+1 = `j+2 = · · · = `d = 0,

where s = 1
b−1 log2(

b
2πe

(πb)1/b) < 0 and j(j + 1) = −2n log2 q
s

. Similary, by paying the cost

of solving SVP problem on b-dimensional lattice, we obtain from B̂ ∈ Zd×d a sequence
of (
√

4/3)b vectors with `2-norm roughly equal to 2`1 [19]. By reasonably modeling the

distribution of the (
√

4/3)b vectors, we can estimate the probability of finding a solution
of ASIS problem from these vectors, and the overall complexity of this attack is that
of BKZ-b divided by the successful probability. Finally, we add that the attack is also
symmetric about β1 and β2, i.e., setting c′ = β1/β2 is equivalent to that using c = β2/β1
under this model.

Estimating the Computational Cost of `∞-Norm Attack. Let integers i < j ≤
m1 +m2 be the integers in the aforementioned infinity-norm attack and its variants (for
variant 1 and 2, set i = 0). Following [19], we assume that the (

√
4/3)b vectors follow

the distribution below: the coefficients for the first i dimensions follow the uniform distri-
bution on Zq, those for the (i+ 1)-th to j-th dimension follow the Gaussian distribution
with standard variance 2`i+1/

√
j − i, and the last d− j one are zero. Clearly, the proba-

bility that any of the first i coefficients is less than β1 is relatively small (approximately
β1/q). To increase the success probability of traditional infinity-norm attack and variant
1, we further assume β1 > β2 (namely, we assume that there exist efficient algorithms
that obtain vectors whose leading coefficients are less-than-max(β1, β2) values, although
we do not know whether the assumption is realistic or not, making such an assumption
can only make the estimation conservative). Under this model, we compute the proba-
bilities of the three algorithms in finding a vector x = (xT1 ,x

T
2 )T satisfy ‖x1‖∞ ≤ β1 and

‖x2‖∞ ≤ β2 from (
√

4/3)b vectors. Further, we use the complexity of solving SVP on
b-dimensional sublattice as the estimate for that of solving SVP on d-dimensional lattice,
which is conservative (since the latter invoke the former as a sub-routine many times).
Under this conservative model, the overall complexity of `∞-norm attack is costb/p.
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