
Dual Isogenies and Their Application to
Public-key Compression for Isogeny-based

Cryptography

Michael Naehrig1 and Joost Renes2?

1 Microsoft Research, Redmond, WA, USA
mnaehrig@microsoft.com

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
j.renes@cs.ru.nl

Abstract. The isogeny-based protocols SIDH and SIKE have received
much attention for being post-quantum key agreement candidates that
retain relatively small keys. A recent line of work has proposed and fur-
ther improved compression of public keys, leading to the inclusion of
public-key compression in the SIKE proposal for Round 2 of the NIST
Post-Quantum Cryptography Standardization effort. We show how to
employ the dual isogeny to significantly increase performance of com-
pression techniques, reducing their overhead from 160–182% to 77–86%
for Alice’s key generation and from 98–104% to 59–61% for Bob’s across
different SIDH parameter sets. For SIKE, we reduce the overhead of (1)
key generation from 140–153% to 61–74%, (2) key encapsulation from
67–90% to 38–57%, and (3) decapsulation from 59–65% to 34–39%. This
is mostly achieved by speeding up the pairing computations, which has
until now been the main bottleneck, but we also improve (deterministic)
basis generation.

Keywords: Post-quantum cryptography, public-key compression, su-
persingular elliptic curves, dual isogenies, reduced Tate pairings.

1 Introduction

Isogeny-based protocols are an alternative to the more mainstream proposals
for post-quantum key agreement, such as lattice-based or code-based schemes.
Beyond their reliance on a different type of hard computational problem, the
main distinguishing characteristics of isogeny-based key exchange and key en-
capsulation schemes are their small keys and low communication costs. This
is for example seen in the supersingular-isogeny Diffie–Hellman (SIDH) scheme
first proposed by Jao and De Feo [19, 12], its IND-CCA secure key encapsula-
tion variant SIKE [17] and the more recent CSIDH proposal of Castryck, Lange,
Martindale, Panny and Renes [5].

? Partially supported by the Technology Foundation STW (project 13499 – TY-
PHOON & ASPASIA), from the Dutch government.



The supersingular isogeny key encapsulation scheme SIKE — one of the 17
key encapsulation mechanisms that advanced to the second round of the NIST
standardization process for post-quantum cryptography [23] — has the advan-
tage of small public keys and ciphertexts, with sizes in the low hundreds of bytes.
For example, the Round 1 submission of SIKE [18] supports public keys of 378
bytes and ciphertexts of 402 bytes at NIST security level 1. In comparison, at the
same security level the lattice-based scheme Saber [11] uses 672 byte public keys
and 736 byte ciphertexts, while Kyber [4] uses 800 byte public keys and 736 byte
ciphertexts. However, such compact keys and ciphertexts in SIKE are contrasted
by comparatively high latencies. The recent CSIDH protocol, a non-interactive
key exchange scheme and a potential candidate as a drop-in replacement for the
standard Diffie-Hellman key exchange, exhibits these characteristics in an even
more extreme fashion. It supports even smaller keys, with significantly larger
runtimes.

In a similar fashion, techniques for public-key compression for the SIDH pro-
tocol also amplify these characteristics. They allow to reduce the communication
bandwidth further, but come at the cost of a large computational overhead com-
pared to the uncompressed variant of SIDH. The same techniques apply to SIKE
and reduce its public key and ciphertext sizes. Compression has been included in
the Round 2 submission of SIKE [17] and, along with the introduction of new pa-
rameter sets, has enabled public keys of merely 196 bytes and ciphertexts of only
209 bytes for NIST level 1. We propose several techniques to reduce the large
computational overhead, making the use of public-key compression significantly
more interesting for practitioners.

Public-key compression for SIDH. Let `,m be distinct primes and e`, em
be strictly positive integers such that p = `e` · mem − 1 is prime. Let E/Fp2
be a supersingular elliptic curve such that #E(Fp2) = (p + 1)2, and let φ` :
E → E/〈R〉 be an isogeny of degree `e` such that kerφ` = 〈R〉 for some point
R ∈ E[`e` ]. Similarly, let φm : E → E/〈S〉 be an isogeny of degree mem such
that kerφm = 〈S〉 for some point S ∈ E[mem ]. Fix parameters P`, Q` such that
〈P`, Q`〉 = E[`e` ] and Pm, Qm such that 〈Pm, Qm〉 = E[mem ]. The public keys
for SIDH are encoded by the triples of x-coordinates of the form[

xφ`(Pm), xφ`(Qm), xφ`(Pm−Qm)

]
,
[
xφm(P`), xφm(Q`), xφm(P`−Q`)

]
,

which can be represented with 6 log2 p bits each.
It is possible to further reduce the size of the public key to 4 log2 p, as first

proposed by Azarderakhsh, Jao, Kalach, Koziel, and Leonardi [1], by deter-
ministically generating points Um, Vm such that 〈Um, Vm〉 = (E/〈R〉)[mem ] and
computing a0, b0, a1, b1 ∈ Z/memZ such that[

φ`(Pm)
φ`(Qm)

]
=

[
a0 b0
a1 b1

] [
Um
Vm

]
.

Although initially believed to be orders of magnitude more expensive than the
original isogeny computation, the work of Costello, Jao, Longa, Naehrig, Renes,

2



and Urbanik [7] significantly reduced the cost to a factor 2.4 slowdown, while si-
multaneously compressing the public keys to 7

2 log2 p bits. Further computational
improvements have since been made by Zanon, Simplicio, Pereira, Doliskani and
Barreto [29]. An interesting observation by Zanon et al. [29, §2] is that one can
equivalently compute c0, d0, c1, d1 ∈ Z/memZ such that[

Um
Vm

]
=

[
c0 d0
c1 d1

] [
φ`(Pm)
φ`(Qm)

]
, i. e.

[
a0 b0
a1 b1

]
=

[
c0 d0
c1 d1

]−1
,

which they refer to as reverse basis decomposition. Its main upside is that the
pairing value

g0 := τmem (φ`(Pm), φ`(Qm)) = τmem (Pm, Qm)`
e`
,

where τmem is the order-mem reduced Tate pairing [20], solely depends on pub-
lic parameters and can therefore be precomputed. The computation of the full
compression algorithm is then typically divided into three stages.

1. (Basis generation) Compute the basis Um, Vm.
2. (Pairing computation) Compute the pairings

g1 = τmem (φ`(Pm), Um) , g2 = τmem (φ`(Pm), Vm) ,

g3 = τmem (φ`(Qm), Um) , g4 = τmem (φ`(Qm), Vm) .
(1)

3. (Discrete logarithm computation) Find c0, d0, c1, d1 ∈ Z/memZ such that

g1 = gd00 , g2 = gd10 , g3 = g−c00 , g4 = g−c10 .

The first stage is easy for m = 2, in which case an entangled basis can be
computed at extremely low cost [29, §3]. The case of m = 3 is more complicated;
the work of Costello et al. [7] proposes to use techniques related to explicit 3-
descent by Schaefer and Stoll [26] to generate points in (E/〈R〉) \ [3](E/〈R〉),
while Zanon et al. [29, §3] find that näıve generation of such points via cofactor
multiplication yields better results. We observe that the difficulty of applying the
3-descent techniques seems to lie in the fact that there are no known non-trivial
3-torsion points, requiring initial cofactor multiplications to find such points.

The most costly part of the algorithm is the second phase, in which 4 simulta-
neous pairings are computed. Although optimizations can be made by observing
that inputs are shared and by choosing an optimal curve model E/〈R〉, the large
cost remains.

Finally 4 (simultaneous) discrete logarithms need to be computed, which is
feasible due to the smoothness of the group order of points on the elliptic curve.
This can be done relatively cheaply with very little requirements on memory [7,
§5], and can be sped up through the use of precomputed tables [29, §6].

Contributions. We propose several improvements that together significantly
reduce the computational overhead imposed on SIDH and SIKE by public-key

3



compression. The main idea behind our optimizations is to utilize the fact that
the pairing values in Eqn. (1) satisfy

g1 = τmem (Pm, φ̂`(Um)) , g2 = τmem (Pm, φ̂`(Vm)) ,

g3 = τmem (Qm, φ̂`(Um)) , g4 = τmem (Qm, φ̂`(Vm)) ,

where φ̂` denotes the (unique) dual isogeny of φ`.
Our first contribution (see §3) is to propose explicit efficient formulas for

computing duals of isogenies of degree 2, 4 and prime ` > 2 between Montgomery
curves, as proposed by Costello and Hisil [6] and Renes [24]. Through the use
of optimal strategies, these can be used to compute dual isogenies of degrees
`e` for any prime `. However, the crucial observation is that the efficiency of
evaluating φ̂` increases significantly by re-using values that are obtained during
the computation of φ`. In Proposition 3 we describe the kernels of all `-isogenies
appearing in the decomposition of φ̂`, and we give details on the computation
and the values to store in §3.1 and §3.2. Having an efficient way to compute the
dual, we gain the flexibility to apply the following idea.

Instead of evaluating φ` on the basis points Pm and Qm, we pull back the
deterministically generated basis points Um and Vm through φ̂` from E/〈R〉 to
E. This has several advantages, as the starting curve is a fixed system parameter
and does not change throughout multiple executions of the protocol. As such,
the starting curve can be chosen to have special properties, leading to more
efficient operations. For example, precomputing E(Fp2)[3] leads to more efficient
basis generation (see §4.3), while E being defined over Fp and having the basis
points Pm and Qm (almost) defined over Fp has significant advantage for the
pairing computation (see §5). More specifically, we summarize our contributions
as follows.

– The main contribution is the proposal to use the dual isogeny to pull back
computations from E/〈R〉 to E. For this purpose we show how to decompose

φ̂` as a sequence of `-isogenies and how to evaluate them with very little
overhead.

– We show how to utilize the dual isogeny in the basis generation phase. First,
we adapt the entangled basis construction to an x-only setting. More im-
portantly, we show that pulling back order and independence checking to
E gives new interest to 3-descent methods. We analyze these methods in
more detail, proving a strong relation to the reduced Tate pairing. Using
this connection, we can reduce the cofactor scalar multiplications on E to
exponentiations in Fp2 (i. e. pairings), significantly reducing the cost.

– We address the main bottleneck of public-key compression, namely the pair-
ing computation. In the case of ` = 2 we pull back the pairing to the A = 0
curve, on which a distortion basis for the mem-torsion is available which
greatly simplifies the pairing computation. For ` > 2 and m = 2 we can pull
back to the A = 6 curve, for which we can find basis points P2 and Q2 such
that [2]P2 is Fp-rational and [2]Q2 = (x, iy), where x, y ∈ Fp. This constrains
many of the field operations to Fp.

4



– As the mem-torsion is a fixed parameter, we propose to use affine Weierstrass
coordinates for the pairings and to precompute all Miller line functions.
This leads to line functions that are very simple to evaluate, at the cost
of a precomputed table. However, these tables are only several hundreds of
kilobytes large and significantly smaller than those (already) used for discrete
logarithms. Therefore, the memory overhead is small.

We have implemented3 our techniques on top of the C library provided in the
Round 2 submission package of SIKE, and compared our implementation to the
uncompressed and compressed versions of SIKE as submitted to NIST across
all parameter sets SIKEpXXX, where XXX ∈ {434, 503, 610, 751}. Our results show
that public-key compression for SIDH can be implemented with an induced
overhead of 77–86% (resp. 59–61%), compared to the previously best 160–182%
(resp. 98–104%) of [17, 29] for Alice (resp. Bob) across the different parameter
sets (see Table 4a). Moreover, the compression techniques for SIKE induce an
overhead of 61–74% (was 140–153%) for key generation, of 38–57% (was 67–90%)
for encapsulation and 34–39% for decapsulation (was 59–65%) for the different
parameter sets (see Table 4b). Finally, our results show that we speed up the
pairing phase by a factor at least 2.97 for ` = 2 and a factor at least 2.70 for
` = 3, while also increasing efficiency of basis generation and decompression for
` = 2. (see Table 2).

Remark 1. As the implementation focuses on {`,m} = {2, 3}, which seems to
be the optimal parametrization for SIKE, our descriptions often also make this
assumption for the sake of simplicity. Everything that is described in this work
naturally generalizes to other primes. In that case it should be noted that ` = 2
often exhibits special behavior (e. g. the existence of an entangled basis, or a
special case for isogeny formulas [24, Proposition 1]) so we treat it separately,
but our contributions work perfectly well by selecting m to be an arbitrary odd
prime. Of course, one is also free to choose both ` and m to be odd primes
without any (theoretical) problems.

Remark 2. The techniques that we describe rely on being able to evaluate the
dual isogeny φ̂` on a torsion basis (E/〈R〉)[mem ], which is equivalent to being
able to evaluate φ` on E[mem ]. That is, given a point U ∈ (E/〈R〉)[mem ] we
could (efficiently) solve the two-dimensional discrete logarithm U = [a]φ`(Pm) +
[b]φ`(Qm) for some a, b ∈ Z/memZ, from which it follows that

φ̂`(U) = [`e`a]Pm + [`e`b]Qm .

Thus, computing on the points φ̂`(U) and φ̂`(V) leaks no more information about
the secret key than computing on φ`(P) and φ`(Q) does.

On the other hand, the evaluation of the dual isogeny itself does rely on
secret data, while the intermediate points that are stored are also sensitive (as

3 The implementation is available as part of the SIDH Library v3.2, https://github.
com/microsoft/PQCrypto-SIDH.

5

https://github.com/microsoft/PQCrypto-SIDH
https://github.com/microsoft/PQCrypto-SIDH


is the case with the evaluation of φ`). We simply apply the same protections to
the dual evaluation as are applied to φ`, which in the implementation of SIKE
just means that all algorithms are constant-time (see §3).

2 Preliminaries and Notation

We begin by recalling the basic theory, to remind the reader of typical notions
and to establish notation for the rest of this work. As we already discussed
public-key compression techniques related to SIDH and SIKE in §1, we omit
those details here.

Elliptic curves. Let p > 3 be prime. An elliptic curve E defined over a field k of
characteristic p is a smooth projective curve of genus 1 with specified base point
OE . Although typically defined by the Weierstrass model [28, §III.1], we shall
always assume E to be described by the (less general) Montgomery form [22]

E : y2 = x3 +Ax2 + x

for some A ∈ k such that A2 6= 4, and may write EA to emphasize the curve
coefficient. As is the case for the Weierstrass model, the base point OE is the
unique point at infinity. The points on E form an abelian group with neutral
element OE , and for any m ∈ Z we let [m]P = P + . . . + P be the sum of m
copies of P (and a negation if m is negative). For any such non-zero m ∈ Z, we
let

E[m] = {P ∈ E | [m]P = OE}

be the m-torsion subgroup and say that E is supersingular whenever #E[p] = 1.
In that case we have j(E) ∈ Fp2 [28, Theorem V.3.1], so that E is isomorphic
to a curve defined over Fp2 . The number of isomorphism classes of supersingular

elliptic curves over k of characteristic p is seen to be exactly bp/12c + εp [14,
Theorem 9.11.11], where

εp =


0 if p ≡ 1 mod 12 ,

1 if p ≡ 5, 7 mod 12 ,

2 if p ≡ 11 mod 12 .

Indeed, in this work we only concern ourselves with Montgomery curves defined
over Fp2 for some (large) prime p.

Isogenies and their duals. Given any two elliptic curves E and E defined
over k, an isogeny φ : E → E is a non-constant morphism such that φ(OE) =
OE . It induces a field embedding φ∗ : k(E) → k(E), and we say that φ is
separable whenever the finite [28, Theorem II.2.4(a)] field extension k(E)/φ∗k(E)
is separable, in which case we define deg φ = [k(E) : φ∗k(E)]. The map φ 7→ kerφ
defines a correspondence between separable isogenies defined over k emanating

6



from E and subgroups of E that are invariant under the action of Gal(k/k),
up to post-composition with an isomorphism [14, Theorem 9.6.19]. Given any

isogeny φ defined over k, there exists a unique isogeny φ̂ defined over k of the
same degree as φ such that φφ̂ = φ̂φ = [deg φ]. The isogeny φ̂ is called the dual
isogeny of φ [28, Theorem III.6.1].

Reduced Tate pairing. Now let k = Fq be a finite field containing the (cyclic)
group of m-th roots of unity µm. We denote by

τm : E(k)[m]× E(k)/mE(k)→ µm

the reduced Tate pairing [20] of order m defined by τm(S, T ) = fm,S(T )(q−1)/m,
where fm,S is a rational function with divisor m(S) −m(O). Interestingly, we
have

τm(φ(S), T ′) = τm(S, φ̂(T ′))

for any isogeny φ : E → E′ and points S ∈ E(k)[m], T ′ ∈ E′(k)/mE′(k) [3,
Theorem IX.9]. Although not generally true, in the cases of our interest we shall
always have E(Fq)/mE(Fq) ∼= E(Fq)[m], and have the additional property that
τm(S, T ) = τm(T, S)−1 for any S, T ∈ E(Fq)[m].

SIDH & SIKE. First we consider the SIDH protocol, proposed in 2011 by
Jao and De Feo [19]. Let `,m be distinct primes and e`, em be strictly positive
integers such that p = `e` · mem − 1 is prime. Let E/Fp2 be a supersingular
elliptic curve such that #E(Fp2) = (p + 1)2, and let φ` : E → E/〈R〉 be an
isogeny of degree `e` such that kerφ` = 〈R〉 for some point R ∈ E[`e` ]. Similarly,
let φm : E → E/〈S〉 be an isogeny of degree mem such that kerφm = 〈S〉 for
some point S ∈ E[mem ]. The shared secret is then (derived from) j(E/〈R,S〉).
Notably, this is not feasibly computable from R and E/〈S〉 or from S and E/〈R〉
respectively.

Instead, we fix public parameters P`, Q` ∈ E[`e` ] and Pm, Qm ∈ E[mem ] and
derive the points R, S from secret keys s0, s1 ∈ Z/`e`Z and t0, t1 ∈ Z/memZ
such that

R = [s0]P` + [s1]Q` , S = [t0]Pm + [t1]Qm

have the desired order. That is, not both s0 and s1 (resp. t0 and t1) are divisible
by ` (resp. m). The (näıve) public keys are then [E/〈R〉, φ`(Pm), φ`(Qm)] and
[E/〈S〉, φm(P`), φm(Q`)], observing that

(E/〈R〉) /〈[t0]φ`(Pm) + [t1]φ`(Qm)〉
∼= E/〈R,S〉
∼= (E/〈S〉) /〈[s0]φm(P`) + [s1]φm(Q`)〉 .

It was noted by Costello, Longa and Naehrig [8, §6] that the public keys can be
encoded (up to simultaneous sign) by the triples of x-coordinates[

xφ`(Pm), xφ`(Qm), xφ`(Pm−Qm)

]
,
[
xφm(P`), xφm(Q`), xφm(P`−Q`)

]
,

7



which can be represented with 6 log2 p bits each.
Unfortunately, the SIDH key exchange scheme combined with static keys is

insecure as the result of an active adaptive attack by Galbraith, Petit, Shani
and Ti [15]. Consequently, one must resort to using ephemeral public keys. Al-
ternatively, one can apply standard protocol transformations [16, 13] to turn
the IND-CPA key exchange into an IND-CCA key encapsulation mechanism.
The resulting scheme is referred to as SIKE [17] and is currently part of the
NIST Post-Quantum Cryptography Standardization effort [23]. Although we re-
fer to [17] for more detail on the submission, we remark that the secret keys are
chosen such that s0 = 1 and t0 = 1, simplifying some of the treatment.

Field operations. We denote by M and S the cost of an Fp2 field multiplication
and squaring respectively, and by A a field addition or subtraction (which are
therefore assumed to have the same cost). We denote by E the cost of a square
root in Fp2 . Similarly, we write m and s for the cost of an Fp field multiplication
and squaring respectively, while a denotes an addition or subtraction in Fp.
Reflecting the properties of the SIKE implementation, we use M = 3m+5a and
S = 2m + 3a.

3 Evaluating Dual Isogenies

In this section we consider the computation of the dual isogeny in the context
of SIDH and SIKE. That is, we look towards the case where E is a Montgomery
curve defined over some field k with char(k) 6= 2 and φ` : E → E/〈R〉 a separable
isogeny of degree `e` with kernel 〈R〉 for some point R ∈ E[`e` ]. In addition, we
could let p = `e` · mem − 1 be a prime, and let E be a supersingular elliptic
curve defined over k = Fp2 such that #E(Fp2) = (p+ 1)2. Then R lies in E(Fp2)
and, as a result, all arithmetic can be performed over Fp2 . The latter is merely
a computational advantage and not necessary for the statements below.

The first step to computing φ̂` is finding its kernel. For this we note that
φ̂`φ` = [`e` ], hence ker(φ̂`φ`) = E[`e` ] ∼= 〈R,S〉 for some point S ∈ E[`e` ]

of order `e` . From kerφ` = 〈R〉 it is then immediate that ker φ̂` = 〈φ`(S)〉.
However, in cryptographic contexts the degree of φ` is too large for φ` to be
computed directly, while the same is true for φ̂`. Instead, φ` is decomposed as

φ` = φ
(e`−1)
` ◦ · · · ◦ φ(0)`

as a sequence of `-isogenies. We begin by showing (see Proposition 3) how φ̂` can
be decomposed in a similar fashion, and describe the kernel of all intermediate
`-isogenies.

Proposition 3. Let E be an elliptic curve defined over a field k and let φ` :
E → E/〈R〉 be an isogeny of degree `e` with kernel 〈R〉 for some point R ∈
E[`e` ]. Let φ` = φ

(e`−1)
` ◦ · · · ◦ φ(0)` , where kerφ

(0)
` = 〈[`e`−1]R〉 and kerφ

(i)
` =

8



〈[`e`−1−i](φ(i−1)` ◦ · · · ◦ φ(0)` )(R)〉 for i = 1, . . . , e` − 1. Then

φ̂` = φ̂
(0)
` ◦ · · · ◦ φ̂

(e`−1)
` , with ker φ̂

(i)
` = 〈(φ(i)` ◦ · · · ◦ φ

(0)
` )([`e`−1]S)〉

for i = 0, . . . , e` − 1 and any S ∈ E[`e` ] such that 〈R,S〉 = E[`e` ].

Proof. The first part follows by uniqueness of the dual isogeny, and since

φ̂
(0)
` ◦ · · · ◦ φ̂

(e`−1)
` ◦ φ(e`−1)` ◦ · · · ◦ φ(0)`

= φ̂
(0)
` ◦ · · · ◦ φ̂

(e`−2)
` ◦ φ(e`−2)` ◦ · · · ◦ φ(0)` ◦ [`]

...

= [`e` ] .

Now observe that E[`] = 〈[`e`−1]R, [`e`−1]S〉, so by using a similar argument as

above it follows that ker φ̂
(0)
` = φ

(0)
` ([`e`−1]S). As any linear relation between the

`e`−1-torsion points φ
(0)
` (R) and φ

(0)
` ([`]S) leads to one between R and S, they

form a basis for (E/〈[`e`−1]R〉)[`e`−1]. The statement then follows by proceeding
via induction on e`. ut

It is now clear how we can evaluate φ̂`. We select an arbitrary point S, linearly
independent of the kernel point R, and during the computation of φ` we evaluate
and store the intermediate evaluations of [`e`−1]S. These determine the kernels

of the `-isogenies appearing in the decomposition of φ̂`, so it remains to show
how to compute the dual of an `-isogeny (i. e. the case e` = 1). This of course
strongly depends on the choice for φ`, for which we restrict to the parameters of
SIKE. That is, we assume E and E/〈R〉 to be Montgomery curves and consider
the cases where ` > 2 (§3.1) and where ` = 2 (§3.2 and §3.3) separately.

Remark 4. This is especially easy in the case of SIKE, where R = P`+[s1]Q` for
some s1 ∈ Z/`e`Z. In that case we simply select S = Q` and store intermediate
evaluations of [`e`−1]Q`.

We note that we can write φ` = (f`(x), cyf ′`(x)) for some rational function
f`(x) in k(x) [14, Theorem 9.7.5] and some c ∈ k∗, where f ′`(x) is the for-
mal derivative df`(x)/dx of f`(x). Therefore, the isogeny φ` is determined by
f`(x) up to a possible twisting of the y-coordinate by varying c. As the only
monomial containing y in Montgomery form is y2, which has coefficient 1, it
follows that f`(x) determines φ` up to composition by [±1]. Similarly, the dual

φ̂` = (f̂`(x), ĉyf̂ ′`(x)) is determined by f̂`(x) up to composition [±1]. As it suffices
for SIDH to compute φ` up to sign, and for our purposes it suffices to compute
φ̂` up to sign, in what follows we focus on the description of the function f̂`.

3.1 The Case ` > 2

First we consider the case where ` > 2 (which turns out to be the simplest)
and let R be a point of order ` (i. e. e` = 1). In that case, the isogeny φ` =

9



(f`(x), cyf ′`(x)) with

f`(x) = x ·
∏

T∈〈R〉\{O}

xxT − 1

x− xT
(2)

is an `-isogeny with kernel 〈R〉, see [6, Theorem 1]. The case ` = 3 is used for
computations in the SIKE proposal [17] and in our implementation, but since
the more general case follows analogously we also treat it here.

Proposition 5. Let E : y2 = x3 +Ax2 +x be a Montgomery curve defined over
a field k with char(k) 6= 2. Let R and S be two linearly independent points of
(prime) order ` and let φ` = (f`(x), cyf ′`(x)) with

f`(x) = x ·
∏

T∈〈R〉\{O}

xxT − 1

x− xT

be an `-isogeny of Montgomery curves with dual φ̂` = (f̂`(x), ĉyf̂ ′`(x)). Then

f̂`(x) = x ·
∏

T∈〈φ`(S)〉\{O}

xxT − 1

x− xT
.

Proof. Let φ` = (f`(x), cyf ′`) be an isogeny with

f`(x) = x ·
∏

T∈〈φ`(S)〉\{O}

xxT − 1

x− xT
.

It is clear that φ`(S) is a point of order ` on E/〈R〉, so applying [6, Theorem 1]
to φ`(S) shows that φ` is indeed an isogeny such that kerφ`φ` = E[`]. As the

kernels are equal, φ` is equal to φ̂` up to post-composition with an isomorphism.
We finish the proof by showing that the only possible isomorphisms are [±1].

For that purpose we consider the point (1,
√
A+ 2) of order 4 on E, which

satisfies [`](1,
√
A+ 2) = (1,±

√
A+ 2) depending on the value of ` mod 4. No

matter which is the case, it follows that [`] = φ̂`φ` fixes x-coordinate 1 or, in

other words, that f̂`f`(1) = 1. Similarly, considering the point (0, 0) of order 2

shows that f̂`f`(0) = 0.
Now note that indeed f`f`(1) = 1 and f`f`(0) = 0, so that any isomorphism

post-composed with φ` to obtain φ̂` must act as the identity on the x-coordinates
0 and 1. By [28, Proposition III.3.1(b)], the only such isomorphisms are [±1].

Therefore, φ` = [±1]φ̂` and the result follows. ut

Interestingly, Proposition 5 shows that we can compute duals of `-isogenies
using the exact same formulas for the isogeny φ` itself. In the case of ` = 3 this
(i. e. its projectivized version) can be computed at the cost of 4M + 2S + 4A
for each first evaluation, and 4M + 2S + 2A for each subsequent evaluation [6,
Appendix A].

10



3.2 The Case of 4-isogenies

Now assume that ` = 2 and that the point R has order 4 (i. e. e2 = 2) such that
[2]R 6= (0, 0). Again, the isogeny φ2 = (f2(x), cyf ′2(x)) can be described by an
equation of the form (2), see [24, Proposition 1]. If S is any other point of order

4 linearly independent from R, i. e. E[4] = 〈R,S〉, then again ker φ̂2 = 〈φ2(S)〉.
However, in contrast to the case of ` > 2, applying the formulas from the SIKE
proposal [17] (which are essentially those from [24, Proposition 1]) leads to a
point φ2(S) such that xφ2(S) = 1 and [2]φ2(S) = (0, 0). As a result, the dual
isogeny can not be described by the formulas of [24, Proposition 1].

Instead, the original work of De Feo–Jao–Plût [12, Eqn. (18)–(21)] describes
formulas for a 4-isogeny whose kernel is generated by a point with x-coordinate 1.
Unfortunately, unlike before, there is no reason that this isogeny has the correct
co-domain. As such, we post-compose with an appropriate isomorphism. One
option for such an isomorphism is given in [12, Eqn. (15)], but it is described
through the knowledge of a point of order 2. As such a point is not readily (or
cheaply) available in our context, one needs to compute a (typically expensive)
doubling. We show that this is much cheaper due to the assumption that R has
order 4. We summarize this in Proposition 6.

Proposition 6. Let E : y2 = x3 +Ax2 +x be a Montgomery curve defined over
a field k with char(k) 6= 2. Let R be a point of order 4 such that [2]R 6= (0, 0),

and let φ2 = (f2(x), cyf ′2(x)) : E → E/〈R〉 : y2 = x3 + Âx2 + x with

f2(x) = x ·
∏

T∈〈R〉\{O}

xxT − 1

x− xT

be a 4-isogeny of Montgomery curves with dual φ̂2 = (f̂2(x), ĉyf̂ ′2(x)). Then

f̂2(x) =
(x2R − 1)X + (x2R + 1)Z

2xRZ
,

where

X = (x+ 1)2
(

(x+ 1)2 − 4(1− Â24)x
)
, Z = 4(1− Â24)x(x− 1)2 ,

and Â24 = (Â+ 2)/4.

Proof. Let S = (1,
√
A+ 2) be a point on E, which has order 4 and is linearly

independent from R. As a result, the kernel of the dual of φ2 is generated by
φ2(S). As f2(1) = 1, the kernel of φ̂2 is generated by a point with x-coordinate
equal to 1.

The map φ4(x) (not to be confused with φ2) computed from [12, Eqn. (18)–
(21)] as the concatenation of the maps

(x, y) 7→
(

(x− 1)2

x
, y
(

1− 1

x2

))

11



followed by

(x, y) 7→

(
1

2− Â
(x+ 4)(x+ Â+ 2)

x
,

y

2− Â

(
1− 4(2 + Â)

x2

))

is seen to be an isogeny of degree 4 such that the generator of its kernel has
x-coordinate 1, and satisfies φ4(x) = X/Z. Thus φ4 on E/〈R〉 determines an

isogeny equal to φ̂2 up to post-composition by an isomorphism. As ker φ̂4 is
generated by a point of x-coordinate equal to 1 [12, §4.3.2], while xR 6= 1, it

follows that φ̂4 6= φ2. Taking duals on both sides, we find that φ4 6= φ̂2 [28,
Theorem III.6.2]. Instead, the isomorphism

ψ : (x, y) 7→
(
x− x[2]R
xR − x[2]R

,
y

xR − x[2]R

)

described in [12, Eqn. (15)] maps 〈R〉 to ker φ̂4, from which we can conclude that

φ̂2 = ψ−1φ4.

At first glance the map ψ requires the use of (the x-coordinate of) [2]R,
which is generally costly to compute. We show that this simplifies due to R
being a point of order 4. Writing ψ−1 = (h(x), yh′(x)), we note that h(1) =
xR and h(0) = x[2]R. Also, let T = ψ(0, 0) be a point of order 2 such that

(−1,
√
A− 2) = (1,

√
A+ 2) +T for an appropriate choice of square roots. Then

ψ−1(−1,
√
A− 2) = ψ−1(1,

√
A+ 2) + (0, 0) ,

implying that h(−1) = 1/xR. Again, by [28, Proposition III.3.1(b)] we have
h(x) = ax + b for some a, b ∈ k, for which the above restrictions imply that
b + a = xR, b − a = 1/xR and b = x[2]R. It follows that x[2]R = (xR + 1/xR)/2
and thus

h(x) = (xR − x[2]R)x+ x[2]R =
(x2R − 1)x+ x2R + 1

2xR
,

completing the proof. ut

Projectivizing and writing xR = XR/ZR, x = X/Z and Â24 = â24/ĉ24, we

can compute f̂2(x) as follows. First we compute the coefficients [K0,K1,K2] =
[X2

R − Z2
R, X

2
R + Z2

R, 2XRZR] through the sequence of operations

T0 ← X2
R , T1 ← Z2

R , K0 ← T0 − T1 , K1 ← T0 + T1 ,

K2 ← XR + ZR , K2 ← K2
2 , K2 ← K2 −K1 ,

that can be computed at a cost of 3S + 4A. We note that these operations
are independent of x and can therefore be shared among multiple evaluations
of f̂2(x) at distinct points. Moreover, in the context of SIDH and SIKE such
an evaluation is always preceded by an evaluation of f2 in which X2

R, X2
Z and

12



XR + ZR are computed. Storing those intermediate values reduces the cost to
1S+3A. We then complete the computation of f̂2(x) = X ′/Z ′ via the operations

T0 ← X + Z , T1 ← X − Z , T0 ← T 2
0 , T1 ← T 2

1 , T2 ← T0 − T1 ,
T3 ← ĉ24 − â24 , T3 ← T2 · T3 , T2 ← ĉ24 · T0 , T2 ← T2 − T3 , X ← T2 · T0 ,
Z ← T3 · T1 , X ′ ← K0 ·X , T0 ← K1 · Z , X ′ ← X ′ + T0 , Z

′ ← K2 · Z ,

at a cost of 7M+2S+6A. Summarizing, assuming having stored the intermediate
values [â24, ĉ24, X

2
R, Z

2
R, 2XRZR], the first evaluation of f̂2(x) can be performed

at a cost of 7M + 3S + 9A. Any subsequent evaluation can be computed at a
cost of 7M + 2S + 6A. For comparison, the evaluation of f2 in SIKE currently
has a cost of 6M + 2S + 6A. Hence, although the dual is more expensive than
the original 4-isogeny, the difference is small.

3.3 The Case of 2-isogenies

Finally consider ` = 2 and assume that R 6= (0, 0) is a point of order 2. We
note that 2-isogenies are only employed in the SIKE proposal whenever e` 6≡
0 mod 4, and in that case only a single one is computed. Therefore its cost is
negligible to the overall cost of the isogeny. The 2-isogeny is computed as in [24,
Proposition 2], and we refer to Proposition 7 for the computation of its dual.

Proposition 7. Let E : y2 = x3 + Ax2 + x be a Montgomery curve defined
over a field k with char(k) 6= 2. Let R 6= (0, 0) be a point of order 2 and let
φ2 = (f2(x), cyf ′2(x)) with

f2(x) = x · xxR − 1

x− xR

be a 2-isogeny of Montgomery curves with dual φ̂2 = (f̂2(x), ĉyf̂ ′2(x)). Then

f̂2(x) =
(x+ 1)2

4xRx
.

Proof. First we note that ker φ̂2 = 〈(0, 0)〉 by [24, Corollary 1]. An isogeny with
such a kernel can be computed by composing the maps

(x, y) 7→
(

(x− 1)2

x
, y
(

1− 1

x2

))
from [12, Eqn. (19)] followed by the map

(x, y) 7→

(
x+ Â+ 2√
Â2 − 4

,
y√

Â2 − 4

)
,

as observed in [24, Remark 6], where Â = 2(1− 2x2R) [24, Proposition 2]. After
twisting the y-coordinate, this lands on the curve defined by the equation

y2 = x3 − 2Â√
Â2 − 4

x2 + x

13



whose dual is again generated by (0, 0). Finally, we post-compose with an iso-
morphism ψ(x, y) = (h(x) = ax + b, yh′(x)). As noted earlier, using the fact
that taking duals acts as an involution implies that h(0) = xR and thus b = xR.
Writing out the curve equation for ψ(x, y) and noting that the coefficient of x2

is A shows that

a = −
√
Â2 − 4 (3xR +A) /

(
2Â
)
.

Composing all these maps leads to the result, for which we omit the details as
they are straightforward yet tedious. ut

Letting x = X/Z and xR = XR/ZR, the following sequence of operations

T0 ← X + Z , T0 ← T 2
0 , X

′ ← ZR · T0 , T1 ← X − Z ,
T1 ← T 2

1 , T1 ← T0 − T1 , Z ′ ← XR · T1 ,

computes f̂2(x) = X ′/Z ′ at a cost of 2M + 2S + 3A.

4 Generation of Torsion Bases

As usual we let p = `e` ·mem − 1 be a prime, and let E : y2 = x3 +Ax2 +x be a
supersingular elliptic curve defined over k = Fp2 such that #E(Fp2) = (p+ 1)2.
Again, we let φ` : E → E/〈R〉 be a separable isogeny of degree `e` with kernel
〈R〉 for some point R ∈ E[`e` ]. The aim of this section is to describe how to

compute φ̂`(Um) and φ̂`(Vm) for some deterministically generated basis points
Um and Vm such that (E/〈R〉)[mem ] = 〈Um, Vm〉. This is (näıvely) done in a few
steps.4

1. Deterministically generate a first point U ∈ E/〈R〉.
2. Repeat 1–2 until Um = [`e` ]U has order mem .
3. Deterministically generate a second point V ∈ E/〈R〉.
4. Repeat 3–4 until Vm = [`e` ]V has order mem and (E/〈R〉)[mem ] = 〈Um, Vm〉.
5. Compute φ̂`(Um) and φ̂`(Vm).

For ` = 3 we do not deviate much from this, yet we remark that it is not
necessary to generate the full points U2 and V2. Instead, since the dual isogeny
computes only on x-coordinates, it suffices to compute xU2 and xV2 . In fact, it is
even enough to only obtain xU and xV , as the cofactor multiplications naturally
factor out during the pairing and discrete logarithm phase [29, §3.1]. However,
for the pairing to remain consistent we need to also deterministically compute
xU−V (without recovering yU and yV). We show how this can be done in §4.1
and how this applies to the entangled basis generation of Zanon et al. [29, §3] in
§4.2.

In the case of ` = 2 we do take an alternative approach. The difference is that
checking the order of U and V has to be done through cofactor multiplications

4 Note that when considering φ` of degree `e` , we generate a basis of the mem -torsion.

14



[3e3−12e2 ]U and [3e3−12e2 ]V, both of which are very costly. We propose generat-
ing the basis in the following way, recalling that the dual isogeny is defined as

φ̂2 = (f̂2(x), ĉyf̂ ′2).

1. Deterministically generate xU for a point U ∈ E/〈R〉.
2. Compute f̂2(xU) and recover φ̂2(U).

3. Repeat 1–3 until [2e2 ]φ̂2(U) has order 3e3 .
4. Deterministically generate xV for a point V ∈ E/〈R〉.
5. Compute f̂2(xV) and recover φ̂2(V).

6. Repeat 4–6 until E[3e3 ] = 〈[2e2 ]φ̂2(U), [2e2 ]φ̂2(V)〉.
7. Deterministically generate xU−V and compute f̂2(xU−V).

8. Modify signs of φ̂2(U), φ̂2(V) so that xφ̂2(U)−φ̂2(V)
= f̂2(xU−V).

We can then obtain φ̂2(U3) = [2e2 ]φ̂2(U) and φ̂2(V3) = [2e2 ]φ̂2(V), but we show in
§4.3 that this is never explicitly necessary. This presents some trade-offs, which
we briefly discuss. Firstly, we note that more computation is wasted when a
point of the wrong order is generated (i. e. in step 3) or when it is not indepent

from another generated point (i. e. in step 6). That is, the evaluation of f̂2
would unfortunately have been done for nothing. However, since E[3] ∼= Z/3Z×
Z/3Z, we expect the points to have full order with probability 8/9 and to be
independent with probability 3/4. Thus on average we require to perform steps
1–3 only 9/8 times and step 4–6 only 3/2 times.

Moreover, we observe that we can check the order of φ̂2(U) and φ̂2(V) on E
as opposed to E/〈R〉. The main advantage is that E is a fixed public parameter,
whereas E/〈R〉 varies per choice of R. This allows pre-computation on E, and in
particular the generation of 3-torsion points to apply the 3-descent methods of
Schaefer and Stoll [26]. We further analyze this in §4.3 and show how this leads
to improved performance.

4.1 Deterministically Generating X-coordinates

The generation of the points U (and similarly for V) is done in two steps. First,
one uses the Elligator 2 map [2] to generate an x-coordinate xU in Fp2 , after
which the y-coordinate can be recovered (which is guaranteed to lie in Fp2).
Therefore, the generation of the two points U and V requires performing two
square roots in Fp2 (although only a single one is needed for the entangled basis,

see §4.2). Evaluating the abscissa as well as the ordinate of φ̂` on U and V is
also very costly. We show how this can be done much more efficiently.

Instead, we take the approach of SIDH and only ever evaluate f̂` (i. e. the

abscissa of φ̂`) on U and V, and thus never require their y-coordinates. As usual,

we also evaluate f̂` at their difference (i. e. in step 8) for the computation to
remain consistent. This leaves us with the problems of deterministically com-
puting xU−V , and consistently recovering the signs of φ̂`(U) and φ̂`(V) from
xφ̂`(U), xφ̂`(V)

, and xφ̂`(U−V).

15



For the generation of xU−V we refer to the techniques applied in the qDSA [25]
signature scheme of Renes and Smith. More specifically, in [25, Proposition 3] it
is shown that a · x2U−V − 2b · xU−V + c = 0, where

a = (xU − xV)
2
, c = (xUxV − 1)

2
,

b = (xUxV + 1) (xU + xV) + 2ÂxUxV ,

and where Â is the Montgomery curve coefficient of E/〈R〉. It follows that

xU−V =
−b±

√
b2 − 4ac

2a
,

allowing to (projectively) compute xU−V at a cost of 1E+ 6M+ 5S+ 15A. This

is made deterministic by fixing the choice for
√
b2 − 4ac in Fp2 . As we evaluate f̂`

projectively, there is no need for an inversion to obtain an affine representation.
Notably, the computation above does not affect decompression, which uses the
points in an x-only three-point ladder.

For the recovery of φ̂`(U) and φ̂`(V) we refer to [22, §10.3.1]. Writing

φ̂`(U) = (x1, y1) , φ̂`(V) = (x2, y2) , φ̂`(U − V) = (x3, y3) ,

we have

x3 =
(x2y1 + x1y2)2

x1x2(x1 − x2)2
=
x22y

2
1 + x21y

2
2 + 2x1x2y1y2

x1x2(x1 − x2)2
. (3)

Using the curve equation for φ̂`(V), a simple reorganization shows that

y2 =
x1x2x3(x1 − x2)2 − x22y21 + x21(x32 +Ax22 + x2)

2x1x2y1
. (4)

Therefore, it suffices to compute y1 at the cost of a single square root, after
which y2 is determined. Note that this only recovers φ̂`(U) and φ̂`(V) up to

simultaneous sign, determined by the choice of y-coordinate for φ̂`(U). As we
are only interested in subgroups generated by linear combinations of these two
points, this is not an issue. If we only want to verify that our choices of signs are
consistent, it suffices to check that Eqn. (3) holds. This is what we use in step 8
above, and in §4.3.

4.2 X-only Entangled Basis Generation for ` = 3

The work of §4.1 becomes especially simple in the case of ` = 3, where U and V
are generated as an entangled basis [29, §3]. That is, U = (x1, y1), where x1 =

−Â/(1 + t2) is a quadratic non-residue and t ∈ Fp2 \ Fp such that t2 ∈ Fp2 \ Fp,
and V = (x2, y2) where x2 = −x1 − Â and y2 = t · y1 [29, Theorem 1]. Writing
U − V = (x3, y3), we have

x3 =
(y1 + y2)2

(x1 − x2)2
− Â− x1 − x2 =

(y1 + y2)2

(x1 − x2)2
=

(x31 + Âx21 + x1)(1 + t)2

(x1 − x2)2
,

16



see [22, §10.3.1] again. As done by Zanon et al. [29], we fix u0 = 1 + i and
run over t = u0 · r for r = 1, 2, . . . until we succeed. Building tables (r, v) for
r = 1, 2, . . . and v = 1/(1 + ur2) of quadratric and non-quadratric residues, we

can select x1 = −Âv, after which the values of x2 and x3 can be computed as
above. We note that this does not require the computation of y1, but merely
requires checking whether x31 + Âx21 + x1 is a square (which has a lower cost).

Having generated xU , xV and xU−V , we evaluate the values f̂3(xU), f̂3(xV)

and f̂3(xU−V). After a square root computation to recover φ̂3(U), we use Eqn. (4)

to (consistently) recover φ̂3(V).

4.3 Basis Generation with the Reduced Tate Pairing for ` = 2

The situation is more complex for ` = 2, for which there is no (known) analogue
of an entangled basis. Instead, checking the order of U and V is done through
cofactor multiplications [3e3−12e2 ]U and [3e3−12e2 ]V. For that purpose, we revisit
the 3-descent techniques of Schaefer and Stoll [26].

More precisely, let T = (xT , yT ) ∈ E/〈R〉 be a point of order 3, necessarily
Fp2-rational, and let gT (x, y) = y− (λx+µ) be the function defining the tangent
line at T . Then Costello et al. [7, §3.3] observe that U ∈ [3](E/〈R〉) if and only
if gT (U) is a cube in Fp2 for all non-trivial 3-torsion points T ∈ (E/〈R〉)[3] (and
similarly for gT (V)). This method is more complicated due to the fact that 3-
torsion points are not readily available on E/〈R〉. As such, Costello et al. [7] first
find a point of order 3 (and potentially immediately find U), and only afterwards
apply the 3-descent techniques. Moreover, since only a single 3-torsion point is
found (as opposed to all of (E/〈R〉)[3]), a slightly weaker check is performed. It
was shown by Zanon et al. [29, §4] that this does not lead to better results than
näıve cofactor multiplications.

Explicit 3-descent and the reduced Tate pairing. We begin our analysis
by relating the 3-descent techniques to the reduced Tate pairing τ3e3 . That is,
we note that for any T ∈ (E/〈R〉)[3] we have that gT (U) is a cube in Fp2 if and

only if gT (U)(p
2−1)/3 = 1. We observe that

gT (U)(p
2−1)/3 = τ3e3 (T,U) ,

which is easily seen by observing that the only non-trivial Miller line function
is the first one, which equals gT (x, y). By properties of the Tate pairing, it
follows that τ3e3 (T,U) = 1 if and only if [3e3−12e2 ]U ∈ 〈T 〉. In particular, if
U ∈ [3](E/〈R〉), then [3e3−12e2 ]U = O. Thus all pairings are trivial and we
recover the statement from Costello et al. (i. e. gT (U) is a cube for all 3-torsion
points T ).

As #(E/〈R〉)[3] = 9, this still leaves many pairings to be computed to
test whether U ∈ [3](E/〈R〉). We can simplify the treatment by fixing a ba-
sis for (E/〈R〉)[3e3 ]. Let S, T ∈ E/〈R〉 such that (E/〈R〉)[3e3 ] = 〈S, T 〉, and let

17



S = [3e3−1]S and T = [3e3−1]T form a basis for (E/〈R〉)[3]. Then it follows by
bilinearity of τ3e3 that

U ∈ [3](E/〈R〉) ⇐⇒ τ3e3 (S,U) = τ3e3 (T,U) = 1 ,

leaving only 2 pairings to be computed. Although this is a good start, we can
do a lot more.

For that purpose, we define h0 = τ3e3 (T, S) and note that h0 = τ3e3 (S, T )−1.
Then there exist (unique) a, b ∈ Z/3e3Z such that [2e2 ]U = [a]S + [b]T , while

τ3e3 (S,U)2
e2

= h−b0 , τ3e3 (T,U)2
e2

= ha0 .

As h0 has order 3 and 2e2 is invertible modulo 3, these discrete logarithms can
easily be solved to retrieve a, b mod 3. Hence, we can compute [3e3−12e2 ]U =
[a mod 3]S + [b mod 3]T at the cost of a single point addition (or, by simply
selecting it from a pre-computed table). In practice we can ignore the factor
2e2 mod 3, since it only changes a and b up to a simultaneous factor, while
it is enough to compute any generator of 〈[3e3−12e2 ]U〉 as opposed to finding
[3e3−12e2 ]U itself.

We can repeat the above by (deterministically) generating U ∈ E/〈R〉 until
not both a = 0 and b = 0, in which case U ∈ E/〈R〉 \ [3](E/〈R〉). Once that is
done, we repeatedly (and deterministically) generate V until

τ3e3 ([3e3−12e2 ]U, V) 6= 1 ,

which implies that [3e3−12e2 ]V 6∈ 〈[3e3−12e2 ]U〉, and in turn that (E/〈R〉)[3e3 ] =
〈[2e2 ]U, [2e2 ]V〉. Under the assumption that S, T , S, T and h0 are all precom-
puted, the cost of generating U is determined by the cost of the 2 pairings,
while the generation of V requires a single pairing. As before, the first needs to
be repeated 9/8 times on average, while the latter (cheaper) step needs to be
repeated 3/2 times on average.

The main drawback of this method is that S, T form a basis of (E/〈R〉)[3e3 ],
so to compute a basis we assume to already know one. In fact we do not know
such a basis on E/〈R〉, seemingly making this much less interesting (which is

the exact problem that Costello et al. [7] faced). However, by evaluating φ̂2 on U
and V before checking that they are independent (i. e. multiply to independent
3e3-torsion points) and have the right order, we can apply the above to the
public parameter E where we can precompute as much as we want. This allows
us to check the independence and orders of φ̂2(U) and φ̂2(V) on E much more
efficiently than via näıve cofactor multiplication. For completeness, we provide
a full description of the method.

1. Deterministically generate xU for a point U ∈ E/〈R〉.
2. Compute f̂2(xU) and recover φ̂2(U).
3. For h0 := τ3e3 ([3e3−1]P3, Q3), compute a, b ∈ Z/3Z such that

τ3e3 ([3e3−1]P3, φ̂2(U)) = hb0 , τ3e3 ([3e3−1]Q3, φ̂2(U)) = h−a0 ,

and repeat 1–3 until not both a and b are zero.

18



4. Deterministically generate xV for a point V ∈ E/〈R〉.
5. Compute f̂2(xV) and recover φ̂2(V).

6. Repeat 4–6 until τ3e3 ([a · 3e3−1]P3 + [b · 3e3−1]Q3, φ̂2(V)) 6= 1.

7. Deterministically generate xU−V and compute f̂2(xU−V).

8. Modify signs of φ̂2(U), φ̂2(V) so that xφ̂2(U)−φ̂2(V)
= f̂2(xU−V).

As both P3 and Q3 are public parameters, the points [3e3−1]P3 and [3e3−1]Q3

can be precomputed and the above sequence of steps does not involve any scalar
multiplication on E or E/〈R〉. Although the improvement is obvious by com-
paring the number of required field operations, we simply confirm the feasibility
of our approach through our implementation in Table 1, leading to a speedup of
about 17% across the different parameter sets. Note that by including the iso

operation, we also count the overhead generated by evaluating φ̂2 as opposed to
φ2. That is, Table 1 shows that checking independence and orders on E not only
makes up for this slowdown, but even leads to a speedup. This showcases the
utility of the methods even before we arrive at the main optimization (i. e. the
pairings, see §5).

Table 1: Performance benchmarks (rounded to 103 cycles) on a 3.4GHz Intel Core i7-
6700 (Skylake) processor, for the isogeny (iso) + basis generation (basis) operation
for ` = 2. The columns labeled comp denote the results from SIKE, and the columns
labeled dual denote our results. Cycle counts are averaged over 10 000 iterations.

p434 p503 p610 p751

comp dual comp dual comp dual comp dual

iso + basis 9 649 7 921 13 332 11 039 24 238 20 269 37 294 30 922

Remark 8. The points U and V (resp. φ̂2(U) and φ̂2(V)) that are generated are
not a basis for the 3e3 -torsion, as they do not have order 3e3 . Instead, we should
use the points U3 = [2e2 ]U and V3 = [2e2 ]V (resp. [2e2 ]φ̂2(U3) and [2e2 ]φ̂2(V3)),
and by doing so would generate the exact same basis as in the SIKE proposal [17].
However, as noted by Zanon et al. [29, §3.1] in the context of the entangled basis
for ` = 3, the cofactors 2e2 naturally factor out during the pairing and discrete
logarithm phase and thus do not need to be performed explicitly.

Remark 9. For simplicity the focus of this section is limited to the SIKE param-
eters where ` = 2 and m = 3. However, at no point is any restriction on m made
(except not being equal to `), so the above works equally well for any other odd
prime m.

19



5 Pairing Computation

We now turn to the pairing, which is the phase of the compression algorithm on
which the use of the dual isogeny has the largest effect. Recall that the reason
for computing pairings of the images φ`(Pm) and φ`(Qm) with respect to the
deterministically generated basis points Um and Vm is that in this way, we can
transfer the discrete logarithm problems that yield the basis decomposition to
the finite field Fp2 . They are then solved in the multiplicative group µmem of
mem-th roots of unity instead of in the elliptic curve group on the co-domain.
This is more efficient, even including the pairing computation, than solving the
discrete logarithm problems on the elliptic curve because field operations are
much more efficient and it is possible to precompute large tables of powers of a
fixed basis in µmem , as described in [29]. Still, the pairings constitute the main
bottleneck of the compression and we discuss how to significantly reduce their
computational cost.

5.1 Pulling Back Pairing Arguments

First, recall that we fix a generator g0 of the group of mem-th roots of unity
(and the base for the discrete logarithms) as

g0 := τmem (φ`(Pm), φ`(Qm)) = τmem (Pm, Qm)`
e`
.

As noted in [29], g0 can be precomputed via the latter pairing, which only de-
pends on system parameters. We aim to find c0, d0, c1, d1 ∈ Z/memZ such that

g1 = gd00 , g2 = gd10 , g3 = g−c00 , g4 = g−c10 ,

where the gi are computed as the four pairing values

g1 = τmem (φ`(Pm), Um) , g2 = τmem (φ`(Pm), Vm) ,

g3 = τmem (φ`(Qm), Um) , g4 = τmem (φ`(Qm), Vm) .

Utilizing the dual isogeny φ̂` and the torsion basis generation algorithms from the
previous section, we compute the pairings with the points φ̂`(Um) and φ̂`(Vm)
on E instead. That is, the Tate pairing satisfies the property τm(φ(S), T ) =

τm(S, φ̂(T )) as stated in §2, so that the gi can be computed as

g1 = τmem (Pm, φ̂`(Um)) , g2 = τmem (Pm, φ̂`(Vm)) ,

g3 = τmem (Qm, φ̂`(Um)) , g4 = τmem (Qm, φ̂`(Vm)) .

This has the great advantage that the first arguments of all pairings are now
fixed torsion basis points on the starting curve.

To see why this is useful, we consider Miller’s algorithm [21] for comput-
ing pairings, which consists of a loop that carries out a scalar multiplication in
a double-and-add fashion of the first pairing argument. On the way, it evalu-
ates and accumulates corresponding line functions at the second argument via a

20



square-and-multiply approach. It was first noted by Scott [27] and further dis-
cussed by Costello and Stebila [10] that all information depending on the fixed
first argument can be precomputed and stored in a lookup table. This includes
all required multiples of the first argument as well as the coefficients of the cor-
responding line functions. The online phase of the Miller loop consequently only
needs to evaluate line functions at the second argument and accumulate them.
In particular, this setting thus favors the use of affine coordinates because all
inversions for computing the line slopes for point doublings and additions are
done as a precomputation and the line functions take a very simple form for
affine coordinates. We return to this in §5.3 and §5.4.

5.2 Special Curves and Torsion Bases for SIKE

From now on we restrict the discussion to the specific setting of SIKE. In par-
ticular, we make use of the special starting curve with A = 6 that is used in the
SIKE proposal.

Let ` = 2 and m = 3. Then we are concerned with computing the Tate
pairing τ3e3 with either P3 or Q3 as the first argument. This is a special case
since there exists a 2-isogeny χ : E0 → E6, while the endomorphism ring of
E0 contains the distortion map ψ : (x, y) 7→ (−x, iy). As such, there exists a
point P ∈ E0(Fp)[3e3 ] (any such non-trivial point suffices) such that E0[3e3 ] =
〈P,ψ(P )〉, i. e. there exists a distortion basis, and we set up P3 and Q3 such that
P3 = χ(P ) and Q3 = χψ(P ). Finally, by duality of the Tate pairing, we observe
that

g1 = τmem (P, χ̂φ̂`(Um)) , g3 = τmem (ψ(P ), χ̂φ̂`(Um)) ,

g2 = τmem (P, χ̂φ̂`(Vm)) , g4 = τmem (ψ(P ), χ̂φ̂`(Vm)) .

Hence, by applying an extra (dual of a) 2-isogeny (see §3.3) we can assume
the first arguments to compose a distortion basis. The choice of this basis does
not matter, and we simply set P = [2e2 ](x0, y0) where x0 ∈ Fp is the smallest
(positive) integer such that P has order 3e3 . As E0 is in short Weierstrass form,
we can immediately compute with affine Weierstrass coordinates.

The situation is slightly different for ` = 3 and m = 2. It is not immediately
obvious how to map to E0 since it is not 3-isogenous to E6. Also, even if we
could, it is not possible to pick a distortion basis for E0(Fp2)[2e2 ] according to [8,
Lemma 1]. Instead, we map to the Weierstrass curve Ea,b : y2 = x3 +ax+ b over
Fp where a = −11 and b = 14, which is isomorphic to E6 via the isomorphism
E6 → Ea,b : (x, y) 7→ (x + 2, y). Since E6(Fp)[2e2 ] ∼= Z/2e2−1Z× Z/2Z, the
best we can do is to pick P2 ∈ Ea,b(Fp2)[2e2 ] such that [2]P2 ∈ Ea,b(Fp). The
second basis point Q2 ∈ Ea,b(Fp2) can be chosen such that [2]Q2 = (x, iy), where
x, y ∈ Fp [9, §3.1].

By setting up the curves and torsion bases this way, the pairings in both the
2e2- and the 3e3 -torsion groups can be improved by making use of the fact that
all operations depending on the first argument are essentially operations in Fp.
Furthermore, the distortion basis for the 3e3 -torsion group ensures that pairings

21



with first argument Q3 can use the same pre-computed table as those with first
argument P3. We explain how this works in detail for both cases.

5.3 Precomputation and the Miller loop for ` = 3

For ` = 3 we compute order-2e2 pairings of the form τ2e2 (P,U), meaning that
the Miller loop consists of only doubling steps. Recall that for any point P =
(x1, y1) ∈ Ea,b(Fp2) with y1 6= 0 its double is given by [2]P = (x2, y2), where
x2 = λ21 − 2x1, y2 = λ1(x1 − x2) − y1 and λ1 = (3x21 + a)/(2y1). A Miller
doubling step with running point P and pairing value f ∈ Fp2 then updates f
by computing f ← f2 · g/v, where the tangent g and vertical line v, evaluated
at the second pairing argument U = (xU , yU ) ∈ Ea,b(Fp2), are given as

g = λ1(xU − x1) + y1 − yU , v = xU − x2 .

Hence, we can precompute all doublings of the first pairing argument, and store
the point coefficients and the slopes used in the doubling formulas. We obtain
two tables in the specific setting using the basis points P2 and Q2 fixed above
as follows.

For P2 we simply create the table where

TP2
[j] = [xj+1, yj+1, λj ] , for j = 0, . . . , e2 − 2 ,

denoting (xj , yj , λj) = (x[2j ]P2
, y[2j ]P2

, (3x2j + a)/(2yj)). Since P2 has order 2e2

and we only carry out e2− 1 doublings, all doubling operations are well-defined.
Note that by the choice of P2 all point coordinates xj+1 and yj+1 are in Fp,
as are the slopes computed from them, except for the first slope λ1 ∈ Fp2 \ Fp.
Therefore, there are exactly e2− 1 triples and hence 3 · (e2− 1) field elements in
the table. There is an additional Fp element due to the first slope being an Fp2
element, but the last triple contains a point of order 2 which has y-coordinate 0
and does not have to be stored, keeping the overall element count at 3 · (e2− 1).

The precomputed table for the point Q2 is computed similarly. The only
difference is that the multiples of Q2 have the form (x, iy) with x, y ∈ Fp instead
of being fully defined over Fp. Since all multiples have this form, we can just store
x and y and take care of the factor i when computing the line functions in the
online phase of the algorithm. The same holds for the slope, as (3x2+a)/(2iy) =
−i · (3x2 + a)/(2y). Thus the table TQ2

is defined analogously as

TQ2 [j] = [wj+1, zj+1, κj ] , for j = 0, . . . , e2 − 2 ,

writing (wj , zj , κj) = (x[2j ]Q2
, y[2j ]Q2

, (3w2
j +a)/(2zj)). Again, this table consists

of e2 − 1 triples of Fp elements, except for the first slope, which is in Fp2 and
the last y-coordinate, which is 0. So the table stores 3 · (e2 − 1) elements in Fp,
and the total table size for storing the precomputed values needed to compute
the four τ2e2 pairings is 6 · (e2 − 1) Fp-elements.

Algorithms 1 and 2 show pseudo-code for computing the Miller functions
f2e2 ,P2

(U0), f2e2 ,P2(U1), and f2e2 ,Q2(U0), f2e2 ,Q2(U1) on input of the precom-
puted tables TP2 and TQ2 , the points P2 and Q2 and two second arguments

22



U0 = φ̂3(U2) and U1 = φ̂3(V2). Note that inversions of line functions can be done
by conjugation due to the final exponentiation. The notation h∗ in the algorithms
denotes the conjugate of the Fp2-element h. The first Miller iteration for each of
the two functions can be computed using 2·(3M+S+8a) ≈ 2·(11m+26a), after
which a single Miller iteration can be computed in 2 · (2M + 1S + 2m + 6a) ≈
2 · (10m + 19a). For all four pairings (we assume m ≈ s), this amounts to
40m + 76a for each Miller iteration except the first (which is slightly more ex-
pensive). For comparison, Zanon et al. [29] state the cost 55m + 126a for only
two pairings, or 110m + 252a for all four.

Algorithm 1: The Miller loop for the τ2e2 pairings on the 2e2-torsion
basis point P2.

Input : The precomputed table TP2 , points P2, U0, U1 ∈ Ea,b(Fp2)

Output: Function values f2e2 ,P2(U0), f2e2 ,P2(U1)

1 x← xP2 , y ← yP2 , f0 ← 1, f1 ← 1

2 for k ∈ {0, 1, . . . , e2 − 2} do
3 (x2, y2, λ1)← TP2 [k]

4 for j ∈ {0, 1} do
5 t0 ← xUj − x, t1 ← yUj − y, t0 ← l1 · t0, g ← t0 − t1,

6 h← xUj − x2, h← h∗, g ← g · h,

7 fj ← f2
j , fj ← fj · g,

8 x← x2, y ← y2,

9 for j ∈ {0, 1} do
10 g ← xUj − x,

11 fj ← f2
j , fj ← fj · g,

12 return f0, f1

5.4 Precomputation and the Miller loop for ` = 2

For ` = 2 we compute order-3e3 pairings of the form τ3e3 (P,U), meaning that
the Miller loop consists of only tripling steps instead. Again, for any point P =
(x1, y1) ∈ Ea,b(Fp2) with y1 6= 0 its double is given by [2]P = (x2, y2) as before,
where λ1 = 3x21/(2y1) (note that here a = 0). If x2 6= x1, its triple [3]P = (x3, y3)
is given by x3 = λ22−x2−x1, y3 = λ2(x1−x3)−y1 and λ2 = (y2−y1)/(x2−x1).
A Miller tripling step with running point P and pairing value f ∈ Fp2 then
updates f by computing f ← f3 ·g/v, where g and v are now quadratic functions
evaluated at U = (xU , yU ) given by

g = (λ1(xU − x1) + y1 − yU )(λ2(xU − x1) + y1 − yU ) ,

v = (xU − x2)(xU − x3) .

23



Algorithm 2: The Miller loop for the τ2e2 pairings on the 2e2-torsion
basis point Q2.

Input : The precomputed table TQ2 , points Q2, U0, U1 ∈ Ea,b(Fp2)

Output: Function values f2e2 ,Q2(U0), f2e2 ,Q2(U1)

1 x← xQ2 , y ← yQ2 , f0 ← 1, f1 ← 1

2 (x2, y2, λ1)← TQ2 [0]

3 for j ∈ {0, 1} do
4 t0 ← xUj − x, t1 ← yUj − y, t0 ← l1 · t0, g ← t0 − t1,

5 h← xUj − x2, h← h∗, g ← g · h,

6 fj ← f2
j , fj ← fj · g,

7 x← x2, y ← y2,

8 for k ∈ {1, . . . , e2 − 2} do
9 (x2, y2, λ1)← TQ2 [k]

10 for j ∈ {0, 1} do
11 t0 ← x− xUj , t1 ← yUj − i · y, t0 ← i · l1 · t0, g ← t0 − t1,

12 h← xUj − x2, h← h∗, g ← g · h,

13 fj ← f2
j , fj ← fj · g,

14 x← x2, y ← y2,

15 for j ∈ {0, 1} do
16 g ← xUj − x,

17 fj ← f2
j , fj ← fj · g,

18 return f0, f1

To compute g, we can precompute λ1, λ2, n1 = y1 − λ1x1 and n2 = y1 − λ2x1,
so that g = (λ1xU +n1−yU )(λ2xU +n2− yU ). As for the function v, we expand
it to v = x2U − (x2 + x3)xU + x2x3. Now we precompute x2p3 = x2 + x3 and
x23 = x2x3 and on input of U at the beginning of the loop also xU,2 = x2U . Then
v = xU,2 + x23 − x2p3xU .

Now let P ∈ E0(Fp) be the point of order 3e3 such that {P,ψ(P )} is the
distortion basis of E0[3e3 ]. We denote

(x
(j)
2 , y

(j)
2 ) = [2 · 3j ]P , (x

(j)
3 , y

(j)
3 ) = [3j+1]P , for j = 0, . . . e3 − 2 ,

and define x
(−1)
3 = x1 and y

(−1)
3 = y1. Then we define the table TP by

TP [j] =
[
λ
(j)
1 , λ

(j)
2 , n

(j)
1 , n

(j)
2 , x

(j)
2p3, x

(j)
23

]
,

24



where

λ
(j)
1 = 3(x

(j−1)
3 )2/(2y

(j−1)
3 ) , λ

(j)
2 = (y

(j)
2 − y

(j−1)
3 )/(x

(j)
2 − x

(j−1)
3 ) ,

n
(j)
1 = y

(j−1)
3 − λ1x(j−1)3 , n

(j)
2 = y

(j−1)
3 − λ2x(j−1)3 ,

x
(j)
2p3 = x

(j)
2 + x

(j)
3 , x

(j)
23 = x

(j)
2 · x

(j)
3 .

For the last iteration of the Miller loop we append the four extra values x
(e3−2)
3 ,

y
(e3−2)
3 , λ

(e3−1)
1 and x

(e3−1)
2 . The second point in the distortion basis has the

form ψ(P ) = (x1, iy1). This means that the functions g and v for pairings with
ψ(P ) as the first argument are

g = (−iλ1xU + in1 − yU )(−iλ2xU + in2 − yU ) ,

v = xU,2 − x23 + x2p3xU .

As a result, the same precomputed values can be used for those pairings without
changes. The different signs and factors of i can be adjusted in the online phase
of the pairing. The overall table size for all four τ3e3 pairings is thus 6·(e3−1)+4
elements in Fp.

In Algorithm 3 we show pseudo-code for the Miller functions f3e3 ,P (U0),
f3e3 ,P (U1), f3e3 ,ψ(P )(U0) and f3e3 ,ψ(P )(U1) on input of the precomputed table

TP and two second arguments U0 = χ̂φ̂2(U3) and U1 = χ̂φ̂2(V3). A single Miller
iteration can be computed in 2 · (8M + 2s + 6m + 18a) ≈ 68m + 128a for
all four pairings (we assume m ≈ s). For comparison, Zanon et al. [29] list
104m + 2s + 266a for only two pairings.

The Final Exponentiation. The final exponentiation raises all four pairing
values to the power (p2 − 1)/mem . This is done as usual and as described in
[7]. It is split up into the easy part, i.e. the power p− 1, which is computed by
one application of the Frobenius endomorphism and one inversion per pairing
value. Here, inversions are pushed down to the subfield Fp and shared using
Montgomery’s inversion sharing trick. The hard part of the final exponentiation
is raising to the power (p + 1)/mem . As p + 1 = `e` · mem , this is performed
through a sequence of e` cyclotomic powerings by ` (e. g. squarings for ` = 2 and
cubings for ` = 3).

Remark 10. We obtain significant speedups during the pairing computation as
the use of the dual isogeny allows us to fix the first pairing arguments as system
parameters, which benefits us for two reasons. Firstly, it allows us to pick the
basis points Pm and Qm of special form, either chosen as a distortion basis for
m = 3 or as a basis such that the coefficients of (multiples of) [2]Pm are in Fp
and the coefficients of (multiples of) Qm are of the form (x, iy) for x, y ∈ Fp for
m = 2. In this case, most point doublings, triplings and line functions can be
computed with arithmetic in Fp instead of Fp2 . When using a distortion basis,
all four pairings (as opposed to only two) share many of these computations.

25



Algorithm 3: The Miller loop for the τ3e3 pairings on the 3e3-torsion
basis points P and ψ(P ).

Input : The precomputed table TP , points U0, U1 ∈ E0(Fp2)

Output: Function values f3e3 ,P (U0), f3e3 ,P (U1), f3e3 ,ψ(P )(U0), f3e3 ,ψ(P )(U1)

1 f0 ← 1, f1 ← 1, f2 ← 1, f3 ← 1

2 s0 = x2U0
, s1 = x2U1

3 for k ∈ {0, 1, . . . , e3 − 2} do
4 (λ1, λ2, n1, n2, x2p3, x23)← TP [k]

5 for j ∈ {0, 1} do
6 t0 ← xUj · λ1, t2 ← xUj · λ2, t4 ← sj + x23, t5 ← xUj · x2p3,

7 t1 ← t0 − yUj , t1 ← t1 + n1, t3 ← t2 − yUj , t3 ← t3 + n2,

8 g ← t1 · t3, h← t4 − t5, h← h∗, g ← g · h,

9 tf ← f2
j , fj ← tf · fj , fj ← fj · g,

10 t1 ← −i · t0 − yUj , t1 ← t1 + i · n1, t3 ← −i · t2 − yUj , t3 ← t3 + i · n2,

11 g ← t1 · t3, h← t4 + t5, h← h∗, g ← g · h,

12 tf ← f2
j+2, fj+2 ← tf · fj+2, fj+2 ← fj+2 · g.

13 for j ∈ {0, 1} do
14 (x, y, x2, λ1)← TP [e3 − 1]

15 t0 ← xUj − x, t1 ← λ1 · t0, t2 ← yUj − y, t1 ← t1 − t2,

16 g ← t1 · t0, h← xUj − x2, h← h∗, g ← g · h,

17 tf ← f2
j , fj ← tf · fj , fj ← fj · g,

18 t0 ← xUj + x, t1 ← λ1 · t0, t2 ← yUj + i · t1, t2 ← t2 − i · y,

19 g ← t2 · t0, h← xUj + x2, h← h∗, g ← g · h,

20 tf ← f2
j+2, fj+2 ← tf · fj+2, fj+2 ← fj+2 · g.

21 return f0, f1, f2, f3

Secondly, having fixed system parameters enables large precomputations. Al-
though it leads to very significant speedups, it does have an impact on the
memory usage. If, instead, one chooses to not use precomputation to keep the
memory footprint of the implementation small, the special characteristics of the
bases still lead to a reasonable speedup. Simply sharing operations across all four
pairings for m = 3 and replacing general Fp2 operations by subfield operations
can be implemented in the pairing algorithms as they are described by Zanon
et al. in [29, §5] using extended Jacobian coordinates and by moving back to
the starting curve. Operation counts predict savings of roughly 30% for the four
Tate pairings of order 2e2 and about 40% for the Tate pairings of order 3e3 .

6 Implementation Results

We have added all of our techniques to the software library that is part of the
SIKE proposal [17], so consider the set of primes p ∈ {p434, p503, p610, p751},

26



where

p434 = 2216 · 3137 − 1 , p503 = 2250 · 3159 − 1 ,

p610 = 2305 · 3192 − 1 , p751 = 2372 · 3239 − 1 ,

targeting the different security levels specified by NIST. The software is com-
piled with clang version 6.0.1 with the -O flag, and benchmarked on a 3.4GHz
Intel Core i7-6700 Skylake processor running Ubuntu version 16.04.3 LTS with
TurboBoost turned off. This is the exact same setting that was used for the per-
formance numbers of SIKE Round 2 [18, Table 2.1]. Although we rederive their
cycle counts for fairness of comparison, there is indeed a negligible difference
(see Table 4).

We distinguish between functions in the SIKE library without the use of
public-key compression techniques (SIKEpXXX), functions in the SIKE library
with the use of public-key compression (SIKEpXXX comp), and the functions used
in our software (SIKEpXXX dual). We begin by comparing the functions related to
public-key compression to those in the SIKE library in Table 2, showing that we
significantly improve the functions that currently bottleneck the computation,
and analyze where the remaining bottlenecks are. We consider the impact on the
key generation and exchange functions in the IND-CPA secure SIDH protocol
in Table 4a and look at the impact on SIKE in Table 4b.

6.1 Cycle Counts for Compression Functions

In this section we discuss the performance of several functions as they are used
in public-key compression. For the results we refer to Table 2.

iso. This function takes a secret key as input, and computes the isogeny φ` to
obtain the co-domain curve E/〈R〉 and potentially the images of basis points.
The original compression techniques evaluate φ` at three (x-coordinates of)
points, while we do not need to evaluate any points for ` = 2. This leads to
a speedup of 18–19% for ` = 2. For ` = 3 we evaluate φ3 at [2e2−1]Q2 to
obtain the intermediate kernels for the dual, leading to a speedup of only
10–11%.

basis. This function starts where iso left off, and outputs Um and Vm or φ̂`(Um)

and φ̂`(Vm), respectively. For ` = 2 we apply the techniques described in §4.3,
leading also to a speedup of 13–15%. For ` = 3 the basis generation does not
change significantly (as described in §4.2), while there is the added overhead

of applying φ̂`. This leads to a slowdown for this function of 151–186%.
However, since basis generation for ` = 3 contributed only 4% of the total
cost, this is much less bad in absolute terms.

pair. We see that the pairing computation significantly bottlenecked compres-
sion for ` = 3, while also being the most expensive operation for ` = 2.
Applying the results from §5 leads to a speedup of at least 66% for ` = 2,
and a speedup of 62–63% for ` = 3. This has an impressive impact on the
efficiency of the full algorithm.

27



dlog. We have not made any changes to the discrete logarithm computations.
decomp. Decompression is slightly sped up due to simplifications to x-only basis

generation in §4.1 and due to the avoidance of cofactor multiplications of the
basis points. We obtain a 14–15% speedup for ` = 2, and a 6–7% speedup
for ` = 3.

As a result of the improvements, we note that the pairing phase is no longer
a bottleneck for public-key compression. For ` = 2 it is actually significantly
cheaper than basis generation, while for ` = 3 it is only moderately more expen-
sive than the basis generation and discrete logarithm phases.

Table 2: Performance benchmarks (rounded to 103 cycles) on a 3.4GHz Intel Core i7-
6700 (Skylake) processor, for the compression operations: co-domain generation (iso),
basis generation (basis), pairing computation (pair), discrete logarithm computation
(dlog) and decompression (decomp). Cycle counts are averaged over 10 000 iterations.

` iso basis pair dlog decomp

SIKEp434 comp 2 5 811 3 838 5 821 923 2 549

SIKEp434 dual 2 4 690 3 231 1 954 923 1 910

SIKEp434 comp 3 6 464 598 4 921 1 222 1 890

SIKEp434 dual 3 5 750 1 618 1 821 1 223 1 741

SIKEp503 comp 2 8 141 5 191 8 033 1 556 3 513

SIKEp503 dual 2 6 594 4 445 2 676 1 554 2 613

SIKEp503 comp 3 9 015 844 6 716 1 532 2 551

SIKEp503 dual 3 7 992 2 219 2 486 1 535 2 380

SIKEp610 comp 2 15 430 8 808 13 458 2 351 5 868

SIKEp610 dual 2 12 778 7 491 4 525 2 349 4 403

SIKEp610 comp 3 15 490 1 340 11 365 2 685 4 365

SIKEp610 dual 3 13 747 3 750 4 214 2 685 4 039

SIKEp751 comp 2 23 133 14 161 21 908 3 529 9 434

SIKEp751 dual 2 18 898 12 024 7 348 3 528 7 135

SIKEp751 comp 3 26 133 2 125 18 224 5 030 6 914

SIKEp751 dual 3 23 316 6 081 6 727 5 055 6 489

6.2 Impact on SIDH & SIKE

Finally, we summarize the impact of improved public-key compression when
included in a cryptographic protocol. The schemes that are of interest for this
purpose are the passively secure SIDH protocol, and its actively secure variant

28



SIKE. Although one can of course argue about the best metric for comparison,
we believe the most interesting from an implementers perspective is the overhead
that is caused by including public-key compression. This gives a relatively clear
idea of the loss of efficiency that is to be paid for a reduction of the size of the
public keys.

In Table 4a we see that, across different SIDH parameter sets, for key gen-
eration the overhead is reduced from 160–182% to 77–86% for ` = 2 and from
98–104% to 59–61% for ` = 3, respectively. The overhead for the key exchange
phase is reduced by about 10–13% in both cases. For SIKE (see Table 4b), we
reduce the overhead of (1) key generation from 140–153% to 61–74%, (2) key
encapsulation from 67–90% to 38–57%, and (3) decapsulation from 59–65% to
34–39%. Following the SIKE specification [17, Table 2.1], we also provide the
impact on the “total” cost, i. e. on the sum of the costs of encapsulation and
decapsulation. This reduces from 62–83% to an overhead of 36–48% across the
different parameter sets.

Memory constraints. Having remarked on the memory usage before, we pro-
vide some more detail here. The first notable consequence of our techniques is
that we need to build a table containing the kernels of all intermediate `-isogenies
appearing in the decomposition of φ̂`. For ` = 2, and assuming that e2 is even
for simplicity (if not the difference is very minor), we compute a sequence of
e2/2 4-isogenies. For each such isogeny we store 5 elements (see §3.2), resulting
in a table of 5 · e2/2 Fp2 -elements or simply 5 · e2 elements of Fp. For ` = 3, for
each 3-isogeny we simply store a generator of the kernel of its dual, requiring
2 elements of Fp2 . Hence we store a table containing 4 · e3 Fp-elements. Note
that these are not precomputed, but need to be temporarily stored on the stack.
However, recall from §5 that we do precompute a table of 6 · (e2 − 1) elements
in Fp for ` = 3 and 6 · (e3 − 1) + 4) for ` = 2 to compute the pairings, i. e. in
contrast to the intermediate kernel information, pairing tables are precomputed
public parameters.

To aid the discrete logarithm computation, Zanon et al. [29] introduced the
use of large precomputed tables. For some fixed window w3, the discrete loga-
rithms for ` = 2 use a table containing e3/w3 · 3w3 or 2 · de3/w3e · 3w3 elements
in Fp2 when w3 | e3 or w3 - e3, respectively. Similarly, the discrete logarithms
for ` = 3 use a table of size e2/w2 · 2w2 resp. de2/w2e · 2w2+1 when w2 | e2 resp.
w2 - e2, for some window size w2. Though small windows of course lead to rela-
tively small tables, for SIKE we always have 4 ≤ w ≤ 6 and the current SIKE
submission contains very large tables for the discrete logarithms. We summarize
memory requirements in terms of the number of field elements in Fp for the
different parameters in Table 3.

Section 2.3 of the SIKE specification points out that due to the large tables,
the current compression method cannot be used in a straightforward manner
on constrained devices. Our methods add another possibility for a time-memory
trade-off. As pointed out earlier in Remark 10, the choice of special bases already
improves the performance even without precomputation. The precomputed ta-

29



Table 3: Required memory in Fp-elements for storing intermediate information used
for computing the dual isogeny (iso) and for the precomputed tables for the pairing
(pair) and discrete logarithm computation (dlog).

` iso pair dlog ` iso pair dlog

SIKEp434 dual

2

1 080 820 26 244

3

548 1 290 1 728

SIKEp503 dual 1 250 952 30 132 636 1 494 3 200

SIKEp610 dual 1 525 1 150 46 656 768 1 824 3 904

SIKEp751 dual 1 860 1 432 45 684 956 2 226 2 976

bles can be adjusted in size linearly, where computation of required values can
be moved to the online phase. Given that the main bottleneck in both [7] and
[29] is clearly the pairing phase, it might be worthwhile to use memory for the
pairing tables instead of the discrete logarithm tables and find a more space
efficient trade-off than the one currently deployed in the SIKE submission.

Acknowledgements. We thank the anonymous Asiacrypt 2019 reviewers for
their detailed remarks and Paulo S.L.M. Barreto for valuable feedback to improve
the paper. We also thank Federico Pintore for his comments.

References

[1] R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi. Key Compression
for Isogeny-Based Cryptosystems. In AsiaPKC 2016, pages 1–10. ACM, 2016.

[2] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In ACM SIGSAC 2013,
pages 967–980. ACM, 2013.

[3] I. Blake, G. Seroussi, N. Smart, and J. W. S. Cassels. Advances in Elliptic Curve
Cryptography. Cambridge University Press, 2005.

[4] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS - Kyber: A CCA-Secure Module-
Lattice-Based KEM. In EuroS&P 2018, pages 353–367. IEEE, 2018.

[5] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An Effi-
cient Post-Quantum Commutative Group Action. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, pages 395–427. Springer, 2018.

[6] C. Costello and H. Hisil. A Simple and Compact Algorithm for SIDH with Arbi-
trary Degree Isogenies. In ASIACRYPT 2017, pages 303–329. Springer, 2017.

[7] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. Effi-
cient Compression of SIDH Public Keys. In EUROCRYPT 2017, pages 679–706.
Springer, 2017.

[8] C. Costello, P. Longa, and M. Naehrig. Efficient Algorithms for Supersingular
Isogeny Diffie-Hellman. In CRYPTO 2016, pages 572–601. Springer, 2016.

[9] C. Costello, P. Longa, M. Naehrig, J. Renes, and F. Virdia. Improved Classical
Cryptanalysis of the Computational Supersingular Isogeny Problem. Cryptology
ePrint Archive, Report 2019/298, 2019. https://eprint.iacr.org/2019/298.

30

https://eprint.iacr.org/2019/298


Table 4: Performance benchmarks (rounded to 103 cycles) on a 3.4GHz Intel Core i7-
6700 (Skylake) processor. Cycle counts are averaged over 10 000 iterations. The label oh
denotes the cpu overhead over the corresponding uncompressed version of the function.

(a) The SIDH operations: public key generation (isogen2 and isogen3) and key ex-
change (isoex2 and isoex3).

isogen2 isoex2 isogen3 isoex3

cyc oh cyc oh cyc oh cyc oh

SIKEp434 5 821 – 4 726 – 6 469 – 5 467 –

SIKEp434 comp 16 397 182% 5 425 15% 13 208 104% 6 825 25%

SIKEp434 dual 10 836 86% 5 298 12% 10 412 61% 6 192 13%

SIKEp503 8 154 – 6 745 – 9 002 – 7 623 –

SIKEp503 comp 22 931 181% 7 582 12% 18 107 101% 9 466 24%

SIKEp503 dual 15 310 88% 7 422 10% 14 270 59% 8 651 13%

SIKEp610 15 438 – 12 881 – 15 464 – 13 282 –

SIKEp610 comp 40 097 160% 14 458 12% 31 031 101% 16 251 22%

SIKEp610 dual 27 270 77% 14 170 10% 24 527 59% 14 796 11%

SIKEp751 23 229 – 18 961 – 26 024 – 22 255 –

SIKEp751 comp 62 998 171% 21 517 13% 51 443 98% 27 257 22%

SIKEp751 dual 41 778 80% 21 104 11% 41 298 59% 24 952 12%

(b) The SIKE operations: public key generation (KeyGen), encapsulation (Encaps), and
decapsulation (Decaps).

Size (B) KeyGen Encaps Decaps

pk ct cyc oh cyc oh cyc oh

SIKEp434 330 346 6 482 – 10 563 – 11 290 –

SIKEp434 comp 196 209 16 397 153 % 20 056 90% 18 622 65%

SIKEp434 dual 196 209 10 849 67% 16 600 57% 15 682 39%

SIKEp503 378 402 9 043 – 14 950 – 15 749 –

SIKEp503 comp 224 248 23 066 155% 27 665 85% 25 646 63%

SIKEp503 dual 224 248 15 294 69% 22 875 53% 21 841 39%

SIKEp610 462 486 15 651 – 28 346 – 28 603 –

SIKEp610 comp 273 297 40 078 156% 47 279 67% 45 536 59%

SIKEp610 dual 273 297 27 277 74% 39 238 38% 38 371 34%

SIKEp751 564 596 26 064 – 42 102 – 45 361 –

SIKEp751 comp 331 363 62 663 140% 78 895 87% 72 924 61%

SIKEp751 dual 331 363 41 909 61% 66 096 57% 62 337 37%

31



[10] C. Costello and D. Stebila. Fixed Argument Pairings. In LATINCRYPT 2010,
pages 92–108. Springer, 2010.

[11] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. Saber: Module-
LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure KEM. In
AFRICACRYPT 2018, pages 282–305. Springer, 2018.

[12] L. De Feo, D. Jao, and J. Plût. Towards Quantum-Resistant Cryptosystems
from Supersingular Elliptic Curve Isogenies. Journal of Mathematical Cryptology,
8:209–247, 2014.

[13] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In CRYPTO 1999, pages 537–554. Springer, 1999.

[14] S. D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University
Press, 2012.

[15] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the Security of Supersingular
Isogeny Cryptosystems. In ASIACRYPT 2016, pages 63–91. Springer, 2016.

[16] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A Modular Analysis of the Fujisaki-
Okamoto Transformation. In Theory of Cryptography 2017, pages 341–371.
Springer, 2017.

[17] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes,
V. Soukharev, and D. Urbanik. SIKE, 2019. Submission to round 2 of [23].
http://sike.org.

[18] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, and
D. Urbanik. SIKE, 2016. Submission to [23]. http://sike.org.

[19] D. Jao and L. De Feo. Towards Quantum-Resistant Cryptosystems from Su-
persingular Elliptic Curve Isogenies. In PQCrypto 2011, pages 19–34. Springer,
2011.

[20] S. Lichtenbaum. Duality theorems for curves over P -adic fields. Inventiones
Mathematicae, 7:120–136, June 1969.

[21] V. S. Miller. The Weil Pairing, and Its Efficient Calculation. Journal of Cryptol-
ogy, 17(4):235–261, Sep 2004.

[22] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation, 48(177):243–264, 1987.

[23] National Institute of Standards and Technology. Post-quantum cryptog-
raphy standardization, December 2016. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization.
[24] J. Renes. Computing Isogenies Between Montgomery Curves Using the Action of

(0, 0). In PQCrypto 2018, pages 229–247. Springer, 2018.
[25] J. Renes and B. Smith. qDSA: Small and Secure Digital Signatures with Curve-

Based Diffie–Hellman Key Pairs. In ASIACRYPT 2017, pages 273–302. Springer,
2017.

[26] E. Schaefer and M. Stoll. How to do a p-descent on an elliptic curve. Transactions
of the American Mathematical Society, 356(3):1209–1231, 2004.

[27] M. Scott. Implementing Cryptographic Pairings. In Pairing 2007, pages 177–196.
Springer, 2007.

[28] J. H. Silverman. The Arithmetic of Elliptic Curves, 2nd Edition. Graduate Texts
in Mathematics. Springer, 2009.

[29] G. H. M. Zanon, M. A. Simplicio, G. C. C. F. Pereira, J. Doliskani, and P. S.
L. M. Barreto. Faster Key Compression for Isogeny-Based Cryptosystems. IEEE
Transactions on Computers, 68(5):688–701, May 2019.

32

http://sike.org
http://sike.org
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

	Dual Isogenies and Their Application to Public-key Compression for Isogeny-based Cryptography

