
A Single Shuffle Is Enough for Secure Card-Based

Computation of Any Boolean Circuit

Kazumasa Shinagawa∗†‡, Koji Nuida§†

November 10, 2020

Abstract

Secure computation enables a number of players each holding a se-
cret input value to compute a function of the inputs without revealing
the inputs. It is known that secure computation is possible physically
when the inputs are given as a sequence of physical cards. This research
area is called card-based cryptography. One of the important problems in
card-based cryptography is to minimize the number of cards and shuffles,
where a shuffle is the most important (and somewhat heavy) operation in
card-based protocols. In this paper, we determine the minimum number
of shuffles for achieving general secure computation. Somewhat surpris-
ingly, the answer is just one, i.e., we design a protocol which securely
computes any Boolean circuit with only a single shuffle. The number of
cards required for our protocol is proportional to the size of the circuit to
be computed.

Key words: Card-based protocols; Secure computations; Garbled circuits
Mathematics Subject Classification: 94A60

1 Introduction

1.1 Background

Let x = (x1, x2, · · · , xn) ∈ {0, 1}n be a secret input and f : {0, 1}n → {0, 1} be
a Boolean function. Suppose that each bit of the secret input is encoded by a
pair of cards with the following encoding rule: ♣ ♡ if it is 0 and ♡ ♣ if it is 1.
A pair of face-down cards ? ? whose encoding value is xi ∈ {0, 1} is called a

∗The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo, 182-8585,
Japan

†National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Water-
front Bio-IT Research Building 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan

‡Corresponding author: shinagawakazumasa@gmail.com
§The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan

1

commitment to xi. The problem is as follows: given a sequence of 2n+ ℓ0 + ℓ1
cards (including commitments to x)

? ?︸︷︷︸
x1

? ?︸︷︷︸
x2

· · · ? ?︸︷︷︸
xn

♣ ♣ · · · ♣ ♡ ♡ · · · ♡ ,

where ℓ0 and ℓ1 are the numbers of ♣ and ♡ , make a commitment to the
output value f(x1, x2, · · · , xn) by applying a list of operations to the sequence of
cards, where possible operations are permutation (i.e., applying a rearrangement
according to the permutation), turn (i.e., turning over a card from face-down
to face-up or from face-up to face-down), and shuffle (i.e., applying a random
and secret permutation). If a turn operation (from face-down to face-up) reveals
some non-trivial information of the secret input, this operation is called insecure
and such operations are not permitted to apply. The research field for designing
secure protocols (i.e. protocols with no insecure operation) is called card-based
cryptography.

Crepéau and Kilian [2] showed that any Boolean function can be securely
computed. Specifically, they constructed card-based protocols for given the in-
put commitments to x, y ∈ {0, 1}, making a commitment to the AND value
x ∧ y ∈ {0, 1}, a commitment to the XOR value x ⊕ y ∈ {0, 1}, and two com-
mitments to x ∈ {0, 1} (this underlying function is called a COPY function).
(We note that the AND and XOR protocols [2] are of Las-Vegas type, where
the number of steps might not be finite but the expected number of steps is
finite. Finite-runtime protocols for these elementary functions were constructed
by Mizuki and Sone [10].) Since an output commitment can be input to another
protocol, it is possible to compute any Boolean circuit f : {0, 1}n → {0, 1} by
evaluating each gate in the circuit one-by-one. Note that from the encoding
rule of commitments, it is trivial to compute the NOT function (producing a
commitment to x := 1 − x from that of x); just by swapping the two cards.
After the work [2], a lot of works aimed to reduce the numbers of cards and
shuffles, both of them are the basic complexity measures in card-based proto-
cols. This is because the former corresponds to the space complexity and the
latter corresponds to the time complexity. In this line of research, the most
important open problem is to minimize the number of cards and shuffles in a
protocol achieving general secure computation.

In terms of the number of cards, the best known upper bound is 2n + 6
cards for computing n-variable Boolean circuit with the finite-runtime condi-
tion, which is shown by Nishida, Hayashi, Mizuki, and Sone [11]. Since it is
necessary to use 2n cards for the input commitments, the number of helping
cards is only six. Unfortunately, the number of shuffles in the protocol is al-
most 2n due to the use of an inefficient expression of Boolean function (so-called
Shannon expansion). It is worthwhile to note that if the finite-runtime condition
is removed, it is possible to reduce the number of cards. Indeed, Koch showed
that Koch, Walzer, and Härtel [7] constructed a Las-Vegas 2n-card protocol
for computing n-variable Boolean function. Although it achieves the minimum
number of cards, the expected number of shuffles is 2n.

2

In terms of the number of shuffles, the best known upper bound is n for
n-variable Boolean circuits, which is shown by Shinagawa, Mizuki, Schuldt,
Nuida, Kanayama, Nishide, Hanaoka, and Okamoto [14]1. Note that a trivial
lower bound is one because we cannot securely compute any non-trivial function
without shuffles. Indeed, if at least one of cards corresponding to the commit-
ment to x1 ∈ {0, 1} (the first input bit) is opened at some stage of the protocol,
the input bit x1 is completely revealed, thus insecure. Otherwise, the execution
of the protocol cannot depend on the input value x1, therefore the correctness
cannot be achieved.

1.2 Our Result

In this paper, we answer one of the most important open questions:

What is the minimum number of shuffles to compute any Boolean circuit?

Surprisingly, the answer is just one; it matches to the trivial lower bound.
The type of the shuffle is so-called uniform and closed (see Section 2.3). It is
considered to be relatively easy to implement. Moreover, the number of cards
required to our protocol is only proportional to the size of the circuit. This is
achieved by introducing the garbled circuit methodology [15] into the area of
card-based cryptography.

Next we consider the following question:

What is the minimum number of shuffles to compute any Boolean circuit using
well-known shuffles only?

Although we do not have the complete answer, we construct a nearly optimal
protocol that requires two pile-scramble shuffles only. This is done by developing
a new technique, which we call a batching technique. This technique enables to
combine multiple independent pile-scramble shuffles into a single pile-scramble
shuffle (using some additional auxiliary cards).

1.3 Our Techniques

Garbled circuit technique. Roughly speaking, the usual garbled circuit
technique to securely evaluate a circuit proceeds as follows; (I) represent each
gate in the circuit as the truth table of the associated function {0, 1}2 → {0, 1};
(II) randomly permute the four input-output pairs in the truth table, in order to
prevent leakage of the output value when the gate is evaluated; (III) randomly
encode each of the inputs and outputs in the truth table (in a consistent manner
between the output of the previous gate and the corresponding input(s) of the
subsequent gate(s)), in order to hide the input values; (IV) then successively
open one true output value among the four in the randomly encoded truth table
of each gate, from bottom to top. Protocol 1 in Section 3 is a translation of the

1See Protocol 5 in [14]. Note that the model of Protocol 5 is the same as ours, i.e., using
binary cards, although the paper [14] mainly studied protocols using regular polygon cards.

3

process described above into a card-based protocol, where the random permuta-
tions in (II) and the random encoding in (III) are realized by shuffle operations
(the aforementioned consistency in (III) between the gates are assured by the
property of pile-scramble shuffles). See Section 3 for details.

Based on the garbled circuit construction, we obtain a general-purpose pro-
tocol with one shuffle immediately. We call the resulting protocol Protocol
2. This is done by aggregating all shuffles in the garbled circuit construction
into one shuffle. This strategy works because all shuffles in the garbled circuit
construction are successively applied.

To the authors’ best knowledge, our present work is the first attempt to
effectively adapt the garbled circuit methodology to card-based protocols. The
reason of why the application of garbled circuits to card-based protocols has not
been investigated so far can be presumed as follows. In the early days of card-
based cryptography (from the first work by den Boer [3] in 1989 to the seminal
work by Mizuki and Sone [10] in 2009), secure multi-party computation based on
garbled circuits was considered fairly inefficient compared to the methodology
of successively evaluating fundamental gates based on the secret sharing. In
fact, the main techniques for improving the efficiency of garbled circuits was
developed in recently (e.g., free XOR gates [8] was proposed in 2008 and half
gates [16] was proposed in 2015). For this reason, in the card-based setting as
well, the techniques for securely evaluating each fundamental gate have been
well established. One of the main contributions of this work is to reveal, as
opposed to the intuition described above, that even a naive application of the
garbled circuit technique to card-based protocols is not very inefficient compared
to the aforementioned successive gate evaluation methodology.

The reason of efficiency improvement by moving to the card-based setting
can be explained as follows. In the ordinary setting of garbled circuits, in order
to prevent an attack to open more than one output value at some gate, the input
values in the truth table should be (randomly) encoded into a significantly large
string, as otherwise the adversarial party who is locally evaluating the garbled
circuit can guess the encoded inputs other than that given by the previous
gates. In contrast, in the card-based setting, a protocol is supposed to be
jointly executed by all parties in a public environment, therefore such a dishonest
attempt to open more than one output value can be automatically prevented
and consequently the garbled truth table may be as small as the original truth
table. This phenomenon reflects the typical property of card-based protocols.
Note that while the usual garbled circuit technique needs “decryption keys” to
evaluate a garbled circuit, the card-based garbled circuit technique does not
need them, as one can open a commitment by just turning the cards. Thus
in the card-based setting, an oblivious transfer, which is necessary to achieve
secure computation with the usual garbled circuits, is not needed.

Moreover, the more important property of the card-based garbled circuit
technique which we find in this work is the compatibility with parallel process-
ing of shuffles. Namely, among the four steps in the garbled circuit technique
described above, the random permutations (shuffles) for the truth tables in
step (II) can be performed in parallel for all gates, and the random encoding

4

(shuffles) of the truth tables in step (III) can be performed in parallel for all
input/output bits of the gates, too. The parallel executability of shuffles com-
bined with our batching technique explained in Section 5 achieves a protocol
with two efficiently implementable shuffles described in Section 6. In contrast,
the existing methodology of successively evaluating fundamental gates is not
compatible with the parallel processing; in fact, in this methodology, a shuf-
fle for evaluating a gate cannot be performed until the inputs to the gate are
determined by the previously evaluated gates.

Batching technique. Another main contribution of this work is to develop
a novel technique to convert a number of certain shuffles performed in parallel
into a single shuffle. This is a key tool to construct our protocol with two pile-
scramble shuffles (Protocol 3), which is an operation of applying a hidden and
uniformly random permutation to a sequence of piled cards. Here the number
of cards in a pile is supposed to be equal for all the piles in order to make
the shuffled piles indistinguishable from each other. Pile-scramble shuffles are
used in our protocols as well as in many existing card-based protocols. We also
note that this is a kind of general technique, so that this technique is expected
to lead to many other applications in card-based cryptography, which will be
future research topics.

To explain the batching technique, here we use a small example of combining
a pile-scramble shuffle of k piles and a pile-scramble shuffle of ℓ piles. The
underlying idea is to first apply a pile-scramble shuffle to the whole of k+ℓ piles
and then divide the resulting piles into the first set of k piles and the second set
of ℓ piles. Now both of the first k piles and the second ℓ piles are individually
shuffled uniformly at random whenever the shuffle for the whole of k+ ℓ piles is
uniformly random. However, this naive idea does not work in general when the
piles consist of face-down cards and the symbols on the front sides of the cards
cannot be revealed; in fact, it is impossible in this case to detect the k piles
in the first set among the k + ℓ shuffled piles. To overcome this issue, before
performing the shuffle, we append some auxiliary face-down cards to the top of
each pile, where the auxiliary cards for each of the first k piles (respectively,
the second ℓ piles) encode the information that this pile belongs to the first
(respectively, second) set of piles. Then even after the shuffle, the piles in the
two sets are still distinguishable from each other while keeping the front sides
of the original cards secret, by opening the auxiliary cards for each pile only.

We note that this technique requires two kinds of additional cards. One is
as mentioned above to make the piles from different sets of piles distinguishable
from each other. The other is to equalize the numbers of cards in the piles from
different sets of piles, which is required in general since the numbers of cards
in the piles must be equal in a pile-scramble shuffle. See Section 5 for details.
Therefore, our batching technique increases the total number of cards used in a
protocol (see Section 6 for details); but we emphasize that the number of cards
in our resulting protocol with two pile-scramble shuffles is still not very large
in comparison to the previous shuffle-efficient general-purpose protocol in [13]

5

which requires an exponentially (in the number of inputs) large number of cards.
Note that the protocol [13] was the only existing protocol with a small number
of shuffles which is fewer than the number of gates in the circuit.

1.4 Related Works

The Five-Card Trick, which is a card-based AND protocol using five cards,
was proposed by den Boer [3]. Crépeau and Kilian [2] achieved to securely
compute any function by constructing protocols for fundamental gates and suc-
cessively evaluating them. While they are Las-Vegas2 protocols, Mizuki and
Sone [10] constructed finite-runtime protocols for fundamental gates with im-
proving the numbers of cards and shuffles. It yields a general-purpose protocol
with q shuffles, where q is the number of gates in a circuit. Shinagawa et al. [13]
constructed a general-purpose protocol with 2n shuffles, where n is the number
of the input bits. However, up until now, it is still unknown that a constant
number of shuffles is sufficient to securely compute any function. In this paper,
we show that only one shuffle is sufficient to securely compute any function
f : {0, 1}n → {0, 1}m with small number of cards. Our work achieves the first
general-purpose protocol with a constant number of shuffles.

Our protocol with a single shuffle (Protocol 2) uses a uniform and closed
shuffle. On the other hand, some existing protocols used non-uniform and/or
non-closed shuffles [7,12]. It is known that uniform and closed shuffles are easy
to implement compared to non-uniform and/or non-closed shuffles. See Section
2.3 for details.

Our protocol with two shuffles (Protocol 3) uses two pile-scramble shuffles.
This kind of shuffles is first proposed by Ishikawa et al. [5] to give a protocol
which securely generates a random permutation without fixed points. One of
our contributions is to develop a new use of pile-scramble shuffles. Specifically,
we propose a new idea called the batching technique that combines a number
of pile-scramble shuffles into a single pile-scramble shuffle while the previous
works [4, 5] use them in order to rearrange a sequence according to a random
permutation.

1.5 Organization

In Section 2, we summarize basic definitions. In Section 3, we introduce a
card-based variant of the garbled circuit technique and construct Protocol 1.
In Section 4, based on the garbled circuit technique, we construct a general-
purpose protocol with one shuffle (Protocol 2). In Section 5, we present the
batching technique. In Section 6, based on the garbled circuit technique and
the batching technique, we construct a general-purpose protocol with two pile-
scramble shuffles (Protocol 3).

2We say that a protocol is a Las-Vegas protocol if the expected running time of the protocol
is finite.

6

2 Preliminaries

We use Sk to denote the k-th symmetric group for an integer k ≥ 1, i.e., Sk is
the set of all permutations on the set {1, 2, . . . , k}.

2.1 Circuits

In this paper, we use the following formulation for the circuits given in [1]. A
circuit C is defined as a six-tuple C = (n,m, q, L,R,G). Here, n ≥ 1 is the
number of input bits, m ≥ 1 is the number of output bits, q ≥ 1 is the number
of gates, L (respectively, R) is a function that takes a gate index and outputs
the left (respectively, right) incoming wire of the gate, and G is a function that
takes a gate index and two-bit input and returns an output value of the gate.
The details of these functions are described in the next paragraph. We assume
that each gate has two incoming wires and one outgoing wire, and an outgoing
wire that is not an output wire of the protocol may then branch and go into
several gates as the incoming wires. Accordingly, the outgoing wire of a gate
and the corresponding incoming wire(s) of the subsequent gate(s) are identified
with each other. We also allow a case where the two incoming wires of a gate
come from the same previous gate, in order to realize by a gate a single-input
function such as the NOT function. We do not allow an output wire (the wire
corresponding to an output bit of the circuit) to be branched. For example, a
COPY circuit that takes a single bit x and outputs two bits (x, x) must have at
least two gates in order to have two output wires (see Example 2).

Now we associate indices to the input bits, gates, wires, and the output bits
as follows: Inputs = {1, · · · , n}, Gates = {n+1, · · · , n+ q}, Wires = {1, · · · , n+
q}, Outputs = {n+ q −m+ 1, · · · , n+ q}. A wire w ∈ Wires is called an input
wire if w ∈ Inputs ∩ Wires and an output wire if w ∈ Outputs ∩ Wires. For a
wire w ∈ Wires and a gate g ∈ Gates, w is called an outgoing wire of g if w = g.
Then L,R : Gates → Wires \ Outputs are functions that map a gate to its left
(respectively, right) incoming wire. Moreover, for each w ∈ Wires \ Outputs,
we write L−1(w), R−1(w) to denote the set of the gates g satisfying L(g) = w
(respectively, R(g) = w). Finally, G : Gates×{0, 1}2 → {0, 1} is a function that
determines the functionality of each gate; given g ∈ Gates and b1, b2 ∈ {0, 1},
we often write Gg(b1, b2) = G(g, (b1, b2)) ∈ {0, 1} to simplify the description.
We require L(g) ≤ R(g) < g for all g ∈ Gates.

Example 1 We consider a function f : {0, 1}3 → {0, 1}2 given by f(x1, x2, x3) =
((x1 ∧ x2)⊕ x3, (x1 ∧ x2)∨ x3). A circuit for f can be defined by n = 3, m = 2,
q = 3, G4(b1, b2) = b1 ∧ b2, G5(b1, b2) = b2 ⊕ b1, G6(b1, b2) = b2 ∨ b1, L(4) = 1,
R(4) = 2, L(5) = 3, R(5) = 4, L(6) = 3, and R(6) = 4.

Example 2 We consider a COPY function f : {0, 1} → {0, 1}2 given by f(x) =
(x, x). A circuit for f can be defined by n = 1, m = q = 2, G4(b1, b2) =
G5(b1, b2) = b1, and L(4) = L(5) = R(4) = R(5) = 1.

7

2.2 Card-based Protocols

In this section, we introduce several definitions about card-based protocols for
describing our protocol. We follow the formalization proposed by Mizuki and
Shizuya [9]. We also follow some notations described by Koch, Walzer, and
Härtel [7]. Here, we only treat a finite-runtime protocol (i.e., a protocol always
terminates in a finite number of steps) and our protocol only needs uniform
shuffles, which are believed to be easy to implement compared to non-uniform
shuffles.

A deck D is a finite multiset of symbols ♡ and ♣. For instance, D =
[♡,♡,♣,♣] is a deck. Intuitively, the deck is the set of front-side symbols of
the physical cards used during a protocol. For a symbol c ∈ D, c

? denotes

a face-up card and ?
c a face-down card with symbol c, respectively. For a

card α (i.e., α = c
? or α = ?

c for some symbol c), top(α) and atom(α) de-
note the symbol in the upper side and the symbol distinct from ‘?’, respectively.
For instance, top(?

♡) = ? and atom(?
♡) = ♡. A card sequence Γ of D is a

vector of |D| cards (α1, · · · , α|D|) such that [atom(α1), · · · , atom(α|D|)] = D
(as a multiset). We define SeqD to be the set of all sequences of a deck D,
i.e., SeqD = {(α1, · · · , α|D|) : [atom(α1), · · · , atom(α|D|)] = D}. For a card
sequence Γ = (α1, · · · , αt), top(Γ) and atom(Γ) denote (top(α1), · · · , top(αt))
and (atom(α1), · · · , atom(αt)), respectively. For a card α, swap(α) denotes the
flipped card, i.e., swap(c?) =

?
c and swap(?c) =

c
? . A commitment of x ∈ {0, 1}∗

is a face-down card sequence whose arrangement represents x. As in the pre-
vious works, we define Com(0) = (?

♣ , ?
♡) and Com(1) = (?

♡ , ?
♣). (Note that

top(Com(0)) = top(Com(1)) = (?, ?). Intuitively, it means that Com(0) and
Com(1) are indistinguishable without turning them over.) For a bit string
x = (x1, · · · , xt) ∈ {0, 1}t, Com(x) = (Com(x1), · · · ,Com(xt)).

Intuitively, a protocol execution is a sequential process of, given an input card
sequence, transforming the current card sequence step by step where the action
at each step is adaptively determined according to the results of previous steps
(this is an analogy of the standard formalization of algorithms in terms of Turing
machines). To formalize the idea, we define a sequence trace (Γ0,Γ1, · · · ,Γt) to
be a tuple of card sequences such that Γ0 is an input card sequence and Γt is
the current card sequence, and define the corresponding visible sequence trace to
be (top(Γ0), top(Γ1), · · · , top(Γt)). We define an action to be an operation that
transforms the current card sequence Γt into a card sequence Γt+1 (and then
appends Γt+1 to the end of the sequence trace). Then a protocol is formalized
as a quadruple P = (D, U,Q,A) consisting of the following objects: D is a deck,
U ⊆ SeqD is a set of input card sequences, Q is a set of states having an initial
state q0 ∈ Q and a final state qf ∈ Q, and A : (Q \ {qf})× Vis → Q× Action is
an action function, where Vis is the set of visible sequences and Action consists
of the following actions:

• (perm, π) for π ∈ S|D|. This transforms a sequence (α1, · · · , α|D|) into a
permuted sequence (απ−1(1), · · · , απ−1(|D|)).

• (shuffle,Π) for Π ⊆ S|D|. This transforms a sequence (α1, · · · , α|D|) into

8

(απ−1(1), · · · , απ−1(|D|)), where π is uniformly and independently chosen
from Π.

• (turn, P) for P ⊆ [|D|]. This transforms a sequence (α1, · · · , α|D|) into a
sequence (β1, · · · , β|D|), where βi = swap(αi) if i ∈ P , otherwise βi = αi.

• (result, (j1, j2), · · · , (j2m−1, j2m)) for 2m disjoint positions j1, j2, . . . , j2m ∈
{1, 2, . . . , |D|}. The protocol halts with outputs (αj1 , αj2), · · · , (αj2m−1 , αj2m),
where (α1, · · · , α|D|) is the current sequence.

Definition 1 (Correctness) Let f : {0, 1}n → {0, 1}m be a function. We say
that a protocol P = (D, U,Q,A) computes f if the following holds:

• It always terminates in a finite number of steps.

• U = {Γx : x ∈ {0, 1}n} for Γx = (α1, · · · , α|D|) ∈ SeqD, where (α2i−1, α2i) =
Com(xi) and the remaining |D|− 2n helping cards α2n+1, · · · , α|D| do not
depend on the input x.

• For an execution starting from Γb for b ∈ {0, 1}n, the protocol ends (i.e.,
entering the final state qf) with the action (result, (p1, p2), · · · , (p2m−1, p2m))
such that (βp2i−1

, βp2i
) = Com(fi(b)), where Γ = (β1, · · · , β|D|) is the final

sequence and fi(b) is the i-th output bit of f(b).

Definition 2 (Security) Let P = (D, U,Q,A) be a protocol. Let ΓM be a
random variable of the input sequences U with an input distribution M. Let
V be a random variable of the visible sequence trace at the end of the protocol
execution. We say that P is secure if for any distribution M, ΓM and V are
stochastically independent.

2.3 Miscellaneous Definitions

Outcome. When P is a set of positions of size 2ℓ pointing commitments
Com(a1), · · · ,Com(aℓ), we say that (a1, · · · , aℓ) is an outcome of the turning
operation. For example, the following operation is (turn, {1, 2}) and the outcome
of it is 1 since Com(1) = (?

♡ , ?
♣).

? ? ? ? ? ? −→ ♡ ♣ ? ? ? ? .

Uniform and closed shuffles. Shuffles of our model are said to be uniform
because in a shuffle, a permutation is uniformly chosen. A shuffle (shuffle,Π) is
said to be closed if Π is closed under the composition, i.e., for any π, π′ ∈ Π, the
composite permutation π◦π′ is also contained in Π. A uniform and closed shuffle
can be implementable under the honest-but-curious assumption as follows: Each
party randomly chooses a permutation from Π, and covertly rearranges the order
of cards according to the permutation. Due to the uniform and closed property,
the resulting sequence is equivalently distributed to the sequence applied by the
shuffle (shuffle,Π). Koch and Walzer [6] showed that uniform and closed shuffles
can also be implemented by applying random cuts3 successively. Therefore, a

3It applies a random cyclic permutation. It is considered to be the simplest shuffle.

9

protocol using uniform and closed shuffles only is considered to be efficient. Our
main protocol uses a uniform and closed shuffle only.

Pile-scramble shuffle. Our protocol with two shuffles uses uniform and closed
shuffles of special type called pile-scramble shuffles [5]. Let P1, · · · , Pk ⊂ [|D|]
be k disjoint subsets of [|D|] such that each Pi has exactly ℓ elements, i.e.,
Pi = {pi,1, · · · , pi,ℓ} where pi,1 < · · · < pi,ℓ for every i ∈ {1, 2, . . . , k}. A pile-
scramble shuffle for P1, · · · , Pk denoted by (pileShuffle, P1, · · · , Pk) is defined by
(shuffle,Π) for Π = {Pile(π) : π ∈ Sk} where we define Pile : Sk → S|D| by

Pile(π)(i′) =

{
pπ(i),j if i′ = pi,j for some i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , ℓ}
i′ otherwise.

For example, a pile-scramble shuffle (pileShuffle, {1, 2, 3}, {4, 5, 6}, {7, 8, 9})
for a card sequence of nine cards is as follows.

?
•
?
•
?
•

?
◦
?
◦
?
◦

?
⋆
?
⋆
?
⋆

−→

?
•
?
•
?
•

?
◦
?
◦
?
◦

?
⋆
?
⋆
?
⋆

?
⋆
?
⋆
?
⋆

?
•
?
•
?
•

?
◦
?
◦
?
◦

?
◦
?
◦
?
◦

?
⋆
?
⋆
?
⋆

?
•
?
•
?
•

?
•
?
•
?
•

?
⋆
?
⋆
?
⋆

?
◦
?
◦
?
◦

?
◦
?
◦
?
◦

?
•
?
•
?
•

?
⋆
?
⋆
?
⋆

?
⋆
?
⋆
?
⋆

?
◦
?
◦
?
◦

?
•
?
•
?
•

It generates one of six sequences with probability exactly 1/6.
A pile-scramble shuffle is known to be implementable by physical envelopes;

each pile is put into an envelope, and then the order of envelopes is scrambled.
The number of envelopes required is the same as the number of piles.

3 Card-based Garbled Circuits

In this section, we introduce a card-based variant of the garbled circuit tech-
nique.

Let f : {0, 1}n → {0, 1}m be a function and let C = (n,m, q, L,R,G) be a
circuit computing f . For each gate g ∈ Gates, let tg ∈ {0, 1}12 be the string
representing the truth table of g defined by

tg = (0, 0, Gg(0, 0), 0, 1, Gg(0, 1), 1, 0, Gg(1, 0), 1, 1, Gg(1, 1)) .

For instance, tg = (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1) represents the truth table of an
AND gate. The initial sequence Γx for the inputs x = (x1, · · · , xn) is the con-
catenation of the input commitments Com(x1), · · · ,Com(xn) and commitments

10

Com(tn+1), · · · ,Com(tn+q) representing the truth tables of gates:

Γx = ? ?︸︷︷︸
x1

· · · ? ?︸︷︷︸
xn

24 cards︷ ︸︸ ︷
? ? · · · ?︸ ︷︷ ︸

tn+1

· · ·
24 cards︷ ︸︸ ︷

? ? · · · ?︸ ︷︷ ︸
tn+q

.

We note that Com(tn+1), · · · ,Com(tn+q) can be produced in public since all
truth tables are publicly known.

Before presenting our construction, we define some notations. A position is
defined by a subset of indices [2n+ 24q]. (Note that 2n+ 24q is the number of
cards in Γx.) For i ∈ {1, 2, . . . , n}, the position of the i-th input commitment
is defined by Pi = {2i − 1, 2i}. Let g ∈ Gates be index of a gate. (Recall
that Gates = {n + 1, · · · , n + q}.) For j ∈ {1, 2, . . . , 12}, the position of the

j-th commitment in the gate g is defined by P
(g)
j = {p(g)j , p

(g)
j + 1}, where

p
(g)
j = 2n+24(g− (n+1))+ 2j − 1. For k ∈ {1, 2, 3, 4}, the position of the k-th

row in the truth table of the gate g is defined by P̃
(g)
k = P

(g)
3k−2 ∪ P

(g)
3k−1 ∪ P

(g)
3k .

Let w ∈ Wires be index of a wire. (Recall that Wires = {1, · · · , n + q}.) The
position of the first cards corresponding to the left (resp. right) wire w is defined

by P
(w)
L = {p(g)j : g ∈ L−1(w), j ∈ {1, 4, 7, 10}} (resp. P

(w)
R = {p(g)j : g ∈

R−1(w), j ∈ {2, 5, 8, 11}}). The position of the first cards corresponding to the
wire w is defined by

P
(w)
first =

{
{2w − 1} ∪ P

(w)
L ∪ P

(w)
R if 1 ≤ w ≤ n

{p(w)
j : j ∈ {3, 6, 9, 12}} ∪ P

(w)
L ∪ P

(w)
R otherwise.

Similarly, the position of the second cards corresponding to the wire w is defined

by P
(w)
second = {j + 1 : j ∈ P

(w)
first}.

Example 3 Let C = (2, 1, 1, L,R,G) be an AND circuit such that L(3) = 1,
R(3) = 2, and G3(x1, x2) = x1 ∧ x2. The initial sequence Γx1x2 is given by

Γx1x2 =
1

?
2

?︸︷︷︸
x1

3

?
4

?︸︷︷︸
x2

5

?
6

?︸︷︷︸
0

7

?
8

?︸︷︷︸
0

9

?
10

?︸︷︷︸
0

11

?
12

?︸︷︷︸
0

13

?
14

?︸︷︷︸
1

15

?
16

?︸︷︷︸
0

17

?
18

?︸︷︷︸
1

19

?
20

?︸︷︷︸
0

21

?
22

?︸︷︷︸
0

23

?
24

?︸︷︷︸
1

25

?
26

?︸︷︷︸
1

27

?
28

?︸︷︷︸
1

.

Here the numbers (from 1 to 28) in the upper side denote positions of cards. The
positions of the 1st, 2nd, 3rd, and 4th rows in the truth table of the gate 3 are

P̃
(3)
1 = {5, 6, 7, 8, 9, 10}, P̃ (3)

2 = {11, 12, 13, 14, 15, 16}, P̃ (3)
3 = {17, 18, 19, 20, 21, 22},

and P̃
(3)
4 = {23, 24, 25, 26, 27, 28}, respectively. The positions of the first cards

corresponding to the left wire 1 and the right wire 2 are P
(1)
L = {5, 11, 17, 23} and

P
(2)
R = {7, 13, 19, 25}, respectively. The positions of the first cards corresponding

to the wires 1, 2, and 3 are P
(1)
first = {1, 5, 11, 17, 23}, P (2)

first = {3, 7, 13, 19, 25},
and P

(3)
first = {9, 15, 21, 27}, respectively.

Our garbled circuit construction proceeds as follows.

11

Protocol 1 (Card-based Garbled Circuit)

Garbling Given an initial sequence Γx, it proceeds as follows:

1. For every g ∈ Gates, perform (pileShuffle, P̃
(g)
1 , P̃

(g)
2 , P̃

(g)
3 , P̃

(g)
4).

2. For every w ∈ Wires \ Outputs, perform (pileShuffle, P
(w)
first, P

(w)
second).

3. Output the current sequence as the garbled sequence.

Evaluation Given a garbled sequence, it proceeds as follows:

1. For every i ∈ Inputs, perform (turn, Pi), and define x′
i ∈ {0, 1} by

the outcome of the turning cards.

2. For every gate g ∈ Gates (in order from n + 1 to n + q), perform
the following:

(a) For every i ∈ {1, 2, 4, 5, 7, 8, 10, 11}, perform (turn, P
(g)
i), and

define ai ∈ {0, 1} by the outcome of the turning cards.

(b) Define an index kg ∈ {3, 6, 9, 12} as follows:

(A) If (a1, a2) = (x′
L(g), x

′
R(g)), then define kg = 3.

(B) Else if (a4, a5) = (x′
L(g), x

′
R(g)), then define kg = 6.

(C) Else if (a7, a8) = (x′
L(g), x

′
R(g)), then define kg = 9.

(D) Otherwise define kg = 12.

(c) If g ≤ n + q −m, perform (turn, P
(g)
kg

), and define x′
g ∈ {0, 1}

by the outcome of the turning cards. (These values are used in
the next call of Step 2 (b).)

3. Perform (result, P
(α1)
kα1

, · · · , P (αm)
kαm

), where αi = n + q − m + i for

i ∈ {1, 2, . . . ,m}. Here P
(αi)
kαi

is regarded as an ordered list (j, j′)

for P
(αi)
kαi

= {j, j′} with j < j′.

Example 4 Before proving the correctness and the security of our construction,
we give an example of an execution of it for the circuit given in Example 3.
In Step 1 of the garbling stage, a pile-scramble shuffle is performed for every

g ∈ Gates. In this example, Gates = {3}. For g = 3, for P̃
(g)
1 = {5, 6, 7, 8, 9, 10}

(“•” group in the following), P̃
(g)
2 = {11, 12, 13, 14, 15, 16} (“◦” group), P̃

(g)
3 =

{17, 18, 19, 20, 21, 22} (“⋆” group), P̃
(g)
4 = {23, 24, 25, 26, 27, 28} (“⋄” group).

1

?
2

?
3

?
4

?
5

?
•

6

?
•

7

?
•

8

?
•

9

?
•

10

?
•

11

?
◦

12

?
◦

13

?
◦

14

?
◦

15

?
◦

16

?
◦

17

?
⋆

18

?
⋆

19

?
⋆

20

?
⋆

21

?
⋆

22

?
⋆

23

?
⋄

24

?
⋄

25

?
⋄

26

?
⋄

27

?
⋄

28

?
⋄
.

In Step 2 of the garbling stage, a pile-scramble shuffle is performed for each
wire w ∈ Wires \Outputs. In this example, Wires \Outputs = {1, 2}. For w = 1

12

(corresponding to the input wire of x1), a pile-scramble shuffle is performed for

P
(w)
first = {1, 5, 11, 17, 23} (“•” group in the following), P

(w)
second = {2, 6, 12, 18, 24}

(“◦” group).

1

?
•

2

?
◦

3

?
4

?
5

?
•

6

?
◦

7

?
8

?
9

?
10

?
11

?
•

12

?
◦

13

?
14

?
15

?
16

?
17

?
•

18

?
◦

19

?
20

?
21

?
22

?
23

?
•

24

?
◦

25

?
26

?
27

?
28

? .

Similarly, for w = 2 (corresponding to the input wire of x2), a pile-scramble

shuffle is performed for P
(w)
first = {3, 7, 13, 19, 25} (“•” group), P

(w)
second = {4, 8, 14, 20, 26}

(“◦” group).

1

?
2

?
3

?
•

4

?
◦

5

?
6

?
7

?
•

8

?
◦

9

?
10

?
11

?
12

?
13

?
•

14

?
◦

15

?
16

?
17

?
18

?
19

?
•

20

?
◦

21

?
22

?
23

?
24

?
25

?
•

26

?
◦

27

?
28

? .

In Step 1 of the evaluation stage, turning operations (turn, Pi) for every
i ∈ Inputs are performed as follows:

1

♡
2

♣
3

♣
4

♡
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

? .

The above sequence shows one possible outcome. Define x′
i ∈ {0, 1} by the

outcome of the turning cards. In this case, x′
1 = 1 and x′

2 = 0. In Step 2 (a),

turning operations (turn, P
(g)
i) for every i ∈ {1, 2, 4, 5, 7, 8, 10, 11} are performed

as follows:

1

♡
2

♣
3

♣
4

♡
5

♡
6

♣
7

♡
8

♣
9

?
10

?
11

♣
12

♡
13

♡
14

♣
15

?
16

?
17

♡
18

♣
19

♣
20

♡
21

?
22

?
23

♣
24

♡
25

♣
26

♡
27

?
28

? .

In this case, a1 = 1, a2 = 1, a4 = 0, a5 = 1, a7 = 1, a8 = 0, a10 = 0, and a11 = 0.
In Step 2 (b), the index kg is defined. In this case, kg is defined to be 9 because
(a7, a8) = (x′

1, x
′
2) = (1, 0). In this example, Step 2 (c) is skipped because it

holds that g (= 3) > n + q − m (= 2). In Step 3, the commitment at position

P
(g)
kg

is output. In this case, P
(g)
kg

= P
(g)
9 = {21, 22} as follows:

1

♡
2

♣
3

♣
4

♡
5

♡
6

♣
7

♡
8

♣
9

?
10

?
11

♣
12

♡
13

♡
14

♣
15

?
16

?
17

♡
18

♣
19

♣
20

♡
21

?
•

22

?
•

23

♣
24

♡
25

♣
26

♡
27

?
28

? .

Another example with more complicated circuit (having some branch) is
given in Appendix.

Correctness We show the correctness of the above protocol. In Step 1 of
the garbling stage, for each gate g ∈ Gates, a pile-scramble shuffle is performed

over the four sets of positions P̃
(g)
1 , P̃

(g)
2 , P̃

(g)
3 and P̃

(g)
4 . It just permutes the

four rows in the truth table tg because the cards on P̃
(g)
i are the commit-

ments to the i-th row in the truth table. In other words, it preserves the
functionality of the truth table. In Step 2 of the garbling stage, for each wire
w ∈ Wires \ Outputs, a pile-scramble shuffle is performed over two positions

13

P
(w)
first and P

(w)
second. Recall that the position P

(w)
first (resp. P

(w)
second) designates the

first (resp. second) cards of the commitments corresponding to the wire w. If

it swaps the cards on P
(w)
first and the cards on P

(w)
second, the commitments cor-

responding to the wire w are flipped. Thus it is equivalent to masking the
values of the commitments by an independent and uniformly random value
rw ∈ {0, 1}. Therefore, after applying it, each row (a, b,Gg(a, b)) correspond-
ing to the gate g turns out to be (a ⊕ rL(g), b ⊕ rR(g), Gg(a, b) ⊕ rg). Finally,
we conclude the proof by showing that the evaluation stage works correctly. If
(a1, a2) = (x′

L(g), x
′
R(g)) (i.e. it is the case (A) in Step 2(b) of the evaluation

stage), then the first row is (a1, a2, Gg(a1⊕rL(g), a2⊕rR(g))⊕rg); thus the value
of the kg-th (in this case kg = 3) commitment is Gg(a1⊕rL(g), a2⊕rR(g))⊕rg =
Gg(x

′
L(g) ⊕ rL(g), x

′
R(g) ⊕ rR(g)) ⊕ rg = Gg(xL(g), xR(g)) ⊕ rg, where xL(g) and

xR(g) are the intermediate values corresponding to the wires L(g) and R(g),
respectively. Similarly, we can observe that all four cases in Step 2(b) of the
evaluation stage work correctly. Thus in any of the final gates g whose out-
put is an output bit of the circuit, the value of the kg-th commitments is the
correct output Gg(xL(g), xR(g)). (Recall that the output wires are not masked
by randomness in Step 2 of the garbling stage.) Therefore, the above protocol
correctly computes the circuit.

Security In order to prove the security, we show that for any input distribu-
tion, a random variable of the visible sequence and a random variable of the
input sequence are stochastically independent. We can observe that the random
variable of the visible sequence is essentially equivalent to a random variable of
the outcome obtained by turning operations in Steps 1, 2(a) and 2(c) of the
evaluation stage. This is because the visible sequence (resp. the outcome) is
efficiently computable from the outcome (resp. the visible sequence). Thus it
is sufficient to show that the random variable of the outcome and the random
variable of the input sequence are stochastically independent. This follows from
the fact that the outcome distribution is computable without knowing the input.
We construct such a “simulator” as follows. First, it generates, for each gate
g, a uniformly random element πg from S4. Then the four tuple of outcomes
(a1, a2), (a4, a5), (a7, a8), (a10, a11) is set to (0, 0), (0, 1), (1, 0), (1, 1) according to
the permutation πg, i.e., if πg(1) = 1 then (a1, a2) = (0, 0), if πg(2) = 4 then
(a4, a5) = (1, 1) and so on. It can be seen that the distribution of the simu-
lated outcome is the same as the distribution of the real outcome due to the
shuffles applied in the garbling stage. Thus the random variable of the outcome
and the random variable of the input sequence are stochastically independent.
Therefore, the protocol is secure.

The number of shuffles. It is worthwhile to count the number of shuffles
in Protocol 1 to make it easier to compare it with Protocols 2 and 3. It uses
|Gates|+ |Wires \ Outputs| pile-scramble shuffles.

14

4 Our Protocol with One Shuffle

In this section, we construct our protocol with one shuffle. The key observation
is that all shuffles in Protocol 1 can be aggregated into one shuffle because they
are applied successively.

For every g ∈ Gates, there exists a closed set of permutations Π
(g)
1 such that

(shuffle,Π
(g)
1) = (pileShuffle, P̃

(g)
1 , P̃

(g)
2 , P̃

(g)
3 , P̃

(g)
4).

(Recall that pileShuffle is a sugar syntax of shuffle.) Similarly, for every w ∈
Wires \ Outputs, there exists a closed set of permutations Π

(w)
2 such that

(shuffle,Π
(w)
2) = (pileShuffle, P

(w)
first, P

(w)
second).

Define Π to be the following set of permutations:

Π = {π(n+q−m)
2 ◦ · · · ◦ π(1)

2 ◦ π(n+q)
1 ◦ · · · ◦ π(n+1)

1 : π
(g)
1 ∈ Π

(g)
1 , π

(w)
2 ∈ Π

(w)
2 },

where “◦” is the composition of permutations. We claim that Π is closed under
the composition of permutations. It is sufficient to show that for every gate g ∈
Gates, every wire w ∈ Wires\Outputs, every π

(g)
1 ∈ Π

(g)
1 , and every π

(w)
2 ∈ Π

(w)
2 ,

π
(w)
2 ◦π(g)

1 = π
(g)
1 ◦π(w)

2 . We note that the permutation π
(g)
1 ∈ Π

(g)
1 corresponds

to permuting four input-output pairs of the truth table tg and the permutation

π
(w)
2 ∈ Π

(w)
2 corresponds to masking values of the wire w by a random bit.

Since permuting and then masking is equivalent to masking and then permuting,
they are commutative. For example, let tg = (a1a2a3, b1b2b3, c1c2c3, d1d2d3) be
a truth table where each triple represents an input-output pair and each i ∈
{1, 2, 3} symbol represents a wire value. Let π

(g)
1 be a permutation over input-

output pairs which moves (⃗a, b⃗, c⃗, d⃗) to (d⃗, a⃗, b⃗, c⃗) and let π
(2)
2 be a permutation

which flips the values of the right input wire (indexed by 2). We can observe
that they are commutative as follows:

tg
π
(g)
1−−→ (d1d2d3, a1a2a3, b1b2b3, c1c2c3)

π
(2)
2−−→ (d1d2d3, a1a2a3, b1b2b3, c1c2c3),

tg
π
(g)
2−−→ (a1a2a3, b1b2b3, c1c2c3, d1d2d3)

π
(g)
1−−→ (d1d2d3, a1a2a3, b1b2b3, c1c2c3),

where the overlines denote negation.
By aggregating all shuffles in Protocol 1 into a single shuffle (shuffle,Π), our

main protocol is obtained.

Protocol 2 (Protocol with One Shuffle)

1. Arrange a sequence to be the initial sequence Γx as in Protocol 1.

2. Apply (shuffle,Π) to the sequence.

3. Perform the evaluation stage as in Protocol 1.

15

The number of cards is 2n + 24q. The correctness and security are easily
derived from those of Protocol 1.

5 Batching Technique

In this section, we introduce a new technique, the batching technique, which
converts multiple pile-scramble shuffles that are executable in parallel4 into a
single pile-scramble shuffle. First, we observe the simplest case such that two
pile-scramble shuffles are executable in parallel.

Suppose that we wish to perform two pile-scramble shuffle: one is between
“•” and “◦” (two piles), and the other is among “⋆”, “⋄” and “∗” (three piles).

?
•
?
•
?
•

?
◦
?
◦
?
◦

?
⋆
?
⋆
?
⋆

?
⋄
?
⋄
?
⋄

?
∗
?
∗
?
∗
.

The batching technique enables to combine them into a single pile-scramble
shuffle by using additional cards. First, two clubs and three hearts are inserted
in the sequence as follows:

♣ ?
•
?
•
?
•

♣ ?
◦
?
◦
?
◦

♡ ?
⋆
?
⋆
?
⋆

♡ ?
⋄
?
⋄
?
⋄

♡ ?
∗
?
∗
?
∗
.

Then the inserted cards are turned to be face-down cards. Then a pile-scramble
shuffle among “•”, “◦”, ‘⋆”, “⋄” and “∗” (five piles) is performed as follows.

?
•
?
•
?
•
?
•

?
◦
?
◦
?
◦
?
◦

?
⋆
?
⋆
?
⋆
?
⋆

?
⋄
?
⋄
?
⋄
?
⋄

?
∗
?
∗
?
∗
?
∗
.

After applying it, open the first cards of all piles as follows:

♣ ? ? ? ♡ ? ? ? ♡ ? ? ? ♣ ? ? ? ♡ ? ? ? .

(The above figure shows an example of outcomes of the turning operation.)
Finally, rearrange five piles in a way that the former two piles have ♣ and the
latter piles have ♡. In this case, the fourth pile (the underlined pile in the
following) is moved to the front of the second pile without changing the order
of cards in each pile.

♣ ? ? ? ♡ ? ? ? ♡ ? ? ? ♣ ? ? ? ♡ ? ? ? .

By ignoring opened cards (two ♣ and three ♡), the result sequence in the follow-
ing is equivalent (as probabilistic distribution) to the result sequence obtained
by applying two pile-scramble shuffle sequentially.

♣ ? ? ? ♣ ? ? ? ♡ ? ? ? ♡ ? ? ? ♡ ? ? ? .

4We say that a shuffle (shuffle,Π) touches a subset S ⊂ {1, 2, . . . , |D|} if it holds j ∈
S if and only if there exists πj ∈ Π such that π(j) ̸= j. We say that multiple shuffles
(shuffle,Π1), (shuffle,Π2), . . . , (shuffle,Πℓ) are executable in parallel if the set Si of indices
touched by (shuffle,Πi) with i = 1, . . . , ℓ is disjoint to each other.

16

This is the core idea of our batching technique.
Now we explain the batching technique in the general case. Suppose that

we wish to perform N pile-scramble shuffles: the i-th pile-scramble shuffle is
among ℓi piles of ni cards. (Thus the i-th shuffle treats ℓi · ni cards and there

are
∑N

i=1 ℓi · ni cards in total.) Suppose that they are executable in parallel.
Let σ : [N] → {♣,♡}⌈log2 N⌉ be an arbitrary injective function. The batching
technique proceeds as follows.

1. (Indexing) For every i ∈ {1, 2, . . . , N}, insert ⌈log2 N⌉ cards representing
σ(i) to each pile in the i-th shuffle as follows.

· · · ? ? ? ? ? ?︸ ︷︷ ︸
corresponding to the i-th shuffle

· · · −→ · · · ? ?︸︷︷︸
σ(i)

? ? ? ? ?︸︷︷︸
σ(i)

? ? ? · · ·

(In total,
∑N

i=1 ℓi · ⌈log2 N⌉ cards are inserted.)

2. (Padding) If n1 = · · · = nN , skip this step. Otherwise, each pile
of the i-th shuffle is appended with (nmax − ni) cards, where nmax =
max(n1, · · · , nN).

3. (Shuffle) Perform a pile-scramble shuffle among all piles of (⌈log2 N⌉ +
nmax) cards. (Note that the number of piles is

∑N
i=1 ℓi.)

4. (Turning) Turn the indexes of all piles. (In total,
∑N

i=1 ℓi · ⌈log2 N⌉ cards
are turned.)

5. (Rearrangement) Rearrange all the cards so as to the first ℓ1 piles are
those having the index σ(1), the next ℓ2 piles are those having the index
σ(2), and so on. Finally, the inserted cards in the Indexing and Padding
steps are removed. (They can be used in future steps as free cards.)

The total number ∆ of additional cards for the batching technique is:

∆ =

N∑
i=1

ℓi · (⌈log2 N⌉+ nmax − ni) .

6 Our Protocol with Two Pile-Scramble Shuffles

In this section, we construct our protocol with two shuffles. It is obtained by
applying the batching technique to our garbled circuit construction.

Protocol 3 (Protocol with Two Shuffles)

1. Arrange a sequence to be the initial sequence Γx as in Protocol 1.

2. Apply the batching technique for all shuffles in Step 1 of the garbling
stage in Protocol 1.

17

3. Apply the batching technique for all shuffles in Step 2 of the garbling
stage in Protocol 1.

4. Perform the evaluation stage as in Protocol 1.

All shuffles in Step 1 (respectively Step 2) in Protocol 1 are combined into a
pile-scramble shuffle since they are executable in parallel. On the other hand, it
is not possible to combine all shuffles in Steps 1 and 2 into a single pile-scramble
shuffle by the batching technique since they are not executable in parallel.

We note that in the former batching technique, the Padding step is not
needed because all piles are having the same number of cards. The number ∆1

of additional cards in the former batching technique is ∆1 = 4q⌈log2 q⌉. The
number ∆2 of additional cards in the latter batching technique is:

∆2 = 2(n+ q −m)⌈log2(n+ q −m)⌉+
n+q−m∑
w=1

2 · (nmax − |P (w)
first|)

where nmax = max1≤w≤n+q−m |P (w)
first|. Because the additional cards used in the

former batching are used in the latter batching, the number of additional cards
is max(∆1,∆2). Thus the total number M of cards used in our two-shuffle
protocol is M = 2n+ 24q +max(∆1,∆2).

Correctness The correctness follows from that of Protocol 1 and the fact that
the batching techniques do essentially the same as Steps 1 and 2 of Protocol 1.

Security The security proof is similar to the security proof of Protocol 1. The
only difference is that the simulator has to generate the outcome obtained by
the batching technique (Steps 1 and 2). This part of the simulation can be
easily done. The other part of the simulation is the same as that of Protocol 1.
Thus the protocol is secure.

Comparing with Protocol 2 The differences between Protocols 2 and 3 are
the number of shuffles, the type of shuffles, and the number of cards. Protocol
2 requires one uniform closed shuffle and 2n+24q cards but Protocol 3 requires
two pile-scramble shuffles and 2n + 24q + max(∆1,∆2) cards. Thus Protocol
2 is considered to be more efficient than Protocol 3 at least from a theoretical
point of view. On the other hand, from a practical point of view, Protocol 3 is
easier to implement by hand than Protocol 2 since it is easy to perform a pile-
scramble shuffle while the uniform closed shuffle used in Protocol 2 is somewhat
complicated.

Acknowledgments

The authors would like to thank members of the study group “Shin-Akarui-
Angou-Benkyou-Kai” for the valuable discussions and helpful comments. Among

18

them, the authors specially thanks Goichiro Hanaoka for his worthful sugges-
tions on this study. The authors express their appreciation to the anonymous
reviewers for their valuable comments. The first author was supported during
this work by JSPS KAKENHI Grant Numbers 17J01169 and 20J01192, Japan.
The second author was supported during this work by JST CREST Grant Num-
ber JPMJCR14D6, Japan.

References

[1] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled cir-
cuits. In the ACM Conference on Computer and Communications Security,
CCS’12, Raleigh, NC, USA, October 16-18, 2012, pp. 784–796, 2012.

[2] C. Crépeau and J. Kilian. Discreet solitary games. In Advances in Cryp-
tology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings, pp. 319–
330, 1993.

[3] B. den Boer. More efficient match-making and satisfiability: The Five
Card Trick. In Advances in Cryptology - EUROCRYPT ’89, Workshop
on the Theory and Application of of Cryptographic Techniques, Houthalen,
Belgium, April 10-13, 1989, Proceedings, pp. 208–217, 1989.

[4] Y. Hashimoto, K. Shinagawa, K. Nuida, M. Inamura, and G. Hanaoka.
Secure grouping protocol using a deck of cards. In Information Theoretic
Security - 10th International Conference, ICITS 2017, Hong Kong, China,
November 29 - December 2, 2017, Proceedings, pp. 135–152, 2017.

[5] R. Ishikawa, E. Chida, and T. Mizuki. Efficient card-based protocols for
generating a hidden random permutation without fixed points. In Un-
conventional Computation and Natural Computation - 14th International
Conference, UCNC 2015, Auckland, New Zealand, August 30 - September
3, 2015, Proceedings, pp. 215–226, 2015.

[6] A. Koch and S. Walzer. Foundations for actively secure card-based cryp-
tography. IACR Cryptology ePrint Archive, 2017:423, 2017.

[7] A. Koch, S. Walzer, and K. Härtel. Card-based cryptographic protocols
using a minimal number of cards. In Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part I, pp. 783–807, 2015.

[8] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR
gates and applications. In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz eds., Automata, Lan-
guages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,

19

Semantics, and Theory of Programming & Track C: Security and Cryptog-
raphy Foundations, Vol. 5126 of Lecture Notes in Computer Science, pp.
486–498. Springer, 2008.

[9] T. Mizuki and H. Shizuya. A formalization of card-based cryptographic
protocols via abstract machine. Int. J. Inf. Sec., 13(1):15–23, 2014.

[10] T. Mizuki and H. Sone. Six-card secure AND and four-card secure XOR.
In Frontiers in Algorithmics, Third International Workshop, FAW 2009,
Hefei, China, June 20-23, 2009. Proceedings, pp. 358–369, 2009.

[11] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. Card-based protocols for
any boolean function. In Theory and Applications of Models of Computa-
tion - 12th Annual Conference, TAMC 2015, Singapore, May 18-20, 2015,
Proceedings, pp. 110–121, 2015.

[12] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. Five-card
secure computations using unequal division shuffle. In Theory and Prac-
tice of Natural Computing - Fourth International Conference, TPNC 2015,
Mieres, Spain, December 15-16, 2015. Proceedings, pp. 109–120, 2015.

[13] K. Shinagawa, T. Mizuki, J. C. N. Schuldt, K. Nuida, N. Kanayama,
T. Nishide, G. Hanaoka, and E. Okamoto. Multi-party computation with
small shuffle complexity using regular polygon cards. In Provable Security -
9th International Conference, ProvSec 2015, Kanazawa, Japan, November
24-26, 2015, Proceedings, pp. 127–146, 2015.

[14] K. Shinagawa, T. Mizuki, J. C. N. Schuldt, K. Nuida, N. Kanayama,
T. Nishide, G. Hanaoka, and E. Okamoto. Card-based protocols using reg-
ular polygon cards. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., 100-A(9):1900–1909, 2017.

[15] A. C. Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27-29 October 1986, pp. 162–167, 1986.

[16] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In E. Oswald and M. Fis-
chlin eds., Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, Vol.
9057 of Lecture Notes in Computer Science, pp. 220–250. Springer, 2015.

Appendix

We show an example execution of Protocol 1 for a circuit having a branch.

20

Let C = (3, 1, 3, L,R,G) be a circuit where L(4) = 1, R(4) = 2, G4(x, y) =
x ∧ y, L(5) = 3, R(5) = 4, G5(x, y) = x ⊕ y, L(6) = 4, R(6) = 5, and
G6(x, y) = x ∨ y. The initial sequence Γx1x2x3 is given by

Γx1x2x3 =
1

?
2

?︸︷︷︸
x1

3

?
4

?︸︷︷︸
x2

5

?
6

?︸︷︷︸
x3

7

?
8

?︸︷︷︸
0

9

?
10

?︸︷︷︸
0

11

?
12

?︸︷︷︸
0

13

?
14

?︸︷︷︸
0

15

?
16

?︸︷︷︸
1

17

?
18

?︸︷︷︸
0

19

?
20

?︸︷︷︸
1

21

?
22

?︸︷︷︸
0

23

?
24

?︸︷︷︸
0

25

?
26

?︸︷︷︸
1

27

?
28

?︸︷︷︸
1

29

?
30

?︸︷︷︸
1

31

?
32

?︸︷︷︸
0

33

?
34

?︸︷︷︸
0

35

?
36

?︸︷︷︸
0

37

?
38

?︸︷︷︸
0

39

?
40

?︸︷︷︸
1

41

?
42

?︸︷︷︸
1

43

?
44

?︸︷︷︸
1

45

?
46

?︸︷︷︸
0

47

?
48

?︸︷︷︸
1

49

?
50

?︸︷︷︸
1

51

?
52

?︸︷︷︸
1

53

?
54

?︸︷︷︸
0

55

?
56

?︸︷︷︸
0

57

?
58

?︸︷︷︸
0

59

?
60

?︸︷︷︸
0

61

?
62

?︸︷︷︸
0

63

?
64

?︸︷︷︸
1

65

?
66

?︸︷︷︸
1

67

?
68

?︸︷︷︸
1

69

?
70

?︸︷︷︸
0

71

?
72

?︸︷︷︸
1

73

?
74

?︸︷︷︸
1

75

?
76

?︸︷︷︸
1

77

?
78

?︸︷︷︸
1

.

In Step 1 of the garbling stage, a pile-scramble shuffle is performed for ev-

ery g ∈ Gates. In this example, Gates = {4, 5, 6}. For g = 4, for P̃
(g)
1 =

{7, 8, 9, 10, 11, 12} (“•” group in the following), P̃
(g)
2 = {13, 14, 15, 16, 17, 18}

(“◦” group), P̃ (g)
3 = {19, 20, 21, 22, 23, 24} (“⋆” group), P̃ (g)

4 = {25, 26, 27, 28, 29, 30}
(“⋄” group).

1

?
2

?
3

?
4

?
5

?
6

?
7

?
•

8

?
•

9

?
•

10

?
•

11

?
•

12

?
•

13

?
◦

14

?
◦

15

?
◦

16

?
◦

17

?
◦

18

?
◦

19

?
⋆

20

?
⋆

21

?
⋆

22

?
⋆

23

?
⋆

24

?
⋆

25

?
⋄

26

?
⋄

27

?
⋄

28

?
⋄

29

?
⋄

30

?
⋄

31

?
32

?
33

?
34

?
35

?
36

?
37

?
38

?
39

?
40

?
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

Similarly, for g = 5, for P̃
(g)
1 = {31, 32, 33, 34, 35, 36} (“•” group in the follow-

ing), P̃
(g)
2 = {37, 38, 39, 40, 41, 42} (“◦” group), P̃

(g)
3 = {43, 44, 45, 46, 47, 48}

(“⋆” group), P̃
(g)
4 = {49, 50, 51, 52, 53, 54} (“⋄” group).

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?
31

?
•

32

?
•

33

?
•

34

?
•

35

?
•

36

?
•

37

?
◦

38

?
◦

39

?
◦

40

?
◦

41

?
◦

42

?
◦

43

?
⋆

44

?
⋆

45

?
⋆

46

?
⋆

47

?
⋆

48

?
⋆

49

?
⋄

50

?
⋄

51

?
⋄

52

?
⋄

53

?
⋄

54

?
⋄

55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

Similarly, for g = 6, for P̃
(g)
1 = {55, 56, 57, 58, 59, 60} (“•” group in the follow-

ing), P̃
(g)
2 = {61, 62, 63, 64, 65, 66} (“◦” group), P̃

(g)
3 = {67, 68, 69, 70, 71, 72}

(“⋆” group), P̃
(g)
4 = {73, 74, 75, 76, 77, 78} (“⋄” group).

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?
31

?
32

?
33

?
34

?
35

?
36

?
37

?
38

?
39

?
40

?
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

?
54

?
55

?
•

56

?
•

57

?
•

58

?
•

59

?
•

60

?
•

61

?
◦

62

?
◦

63

?
◦

64

?
◦

65

?
◦

66

?
◦

67

?
⋆

68

?
⋆

69

?
⋆

70

?
⋆

71

?
⋆

72

?
⋆

73

?
⋄

74

?
⋄

75

?
⋄

76

?
⋄

77

?
⋄

78

?
⋄
.

21

In Step 2 of the garbling stage, a pile-scramble shuffle is performed for each
wire w ∈ Wires \ Outputs. In this example, Wires \ Outputs = {1, 2, 3, 4, 5}.
For w = 1 (corresponding to the input wire of x1), a pile-scramble shuffle is

performed for P
(w)
first = {1, 7, 13, 19, 25} (“•” group in the following), P

(w)
second =

{2, 8, 14, 20, 26} (“◦” group).

1

?
•

2

?
◦

3

?
4

?
5

?
6

?
7

?
•

8

?
◦

9

?
10

?
11

?
12

?
13

?
•

14

?
◦

15

?
16

?
17

?
18

?
19

?
•

20

?
◦

21

?
22

?
23

?
24

?
25

?
•

26

?
◦

27

?
28

?
29

?
30

?

31

?
32

?
33

?
34

?
35

?
36

?
37

?
38

?
39

?
40

?
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

Similarly, for w = 2 (corresponding to the input wire of x2), a pile-scramble shuf-

fle is performed for P
(w)
first = {3, 9, 15, 21, 27} (“•” group), P (w)

second = {4, 10, 16, 22, 28}
(“◦” group).

1

?
2

?
3

?
•

4

?
◦

5

?
6

?
7

?
8

?
9

?
•

10

?
◦

11

?
12

?
13

?
14

?
15

?
•

16

?
◦

17

?
18

?
19

?
20

?
21

?
•

22

?
◦

23

?
24

?
25

?
26

?
27

?
•

28

?
◦

29

?
30

?

31

?
32

?
33

?
34

?
35

?
36

?
37

?
38

?
39

?
40

?
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

Similarly, for w = 3 (corresponding to the input wire of x3), a pile-scramble shuf-

fle is performed for P
(w)
first = {5, 31, 37, 43, 49} (“•” group), P (w)

second = {6, 32, 38, 44, 50}
(“◦” group).

1

?
2

?
3

?
4

?
5

?
•

6

?
◦

7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

31

?
•

32

?
◦

33

?
34

?
35

?
36

?
37

?
•

38

?
◦

39

?
40

?
41

?
42

?
43

?
•

44

?
◦

45

?
46

?
47

?
48

?
49

?
•

50

?
◦

51

?
52

?
53

?
54

?

55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

For w = 4 (corresponding to the outgoing wire of the gate 4), a pile-scramble

shuffle is performed for P
(w)
first = {11, 17, 23, 29, 33, 39, 45, 51, 55, 61, 67, 73} (“•”

group), P
(w)
second = {12, 18, 24, 30, 34, 40, 46, 52, 56, 62, 68, 74} (“◦” group). Note

that it is a branching wire since it is both a left incoming wire of the gates 4
and 5.

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
•

12

?
◦

13

?
14

?
15

?
16

?
17

?
•

18

?
◦

19

?
20

?
21

?
22

?
23

?
•

24

?
◦

25

?
26

?
27

?
28

?
29

?
•

30

?
◦

31

?
32

?
33

?
•

34

?
◦

35

?
36

?
37

?
38

?
39

?
•

40

?
◦

41

?
42

?
43

?
44

?
45

?
•

46

?
◦

47

?
48

?
49

?
50

?
51

?
•

52

?
◦

53

?
54

?

55

?
•

56

?
◦

57

?
58

?
59

?
60

?
61

?
•

62

?
◦

63

?
64

?
65

?
66

?
67

?
•

68

?
◦

69

?
70

?
71

?
72

?
73

?
•

74

?
◦

75

?
76

?
77

?
78

? .

22

For w = 5 (corresponding to the outgoing wire of the gate 5), a pile-scramble

shuffle is performed for P
(w)
first = {35, 41, 47, 53, 57, 63, 69, 75} (“•” group), P (w)

second =
{36, 42, 48, 54, 58, 64, 70, 76} (“◦” group).

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?
31

?
32

?
33

?
34

?
35

?
•

36

?
◦

37

?
38

?
39

?
40

?
41

?
•

42

?
◦

43

?
44

?
45

?
46

?
47

?
•

48

?
◦

49

?
50

?
51

?
52

?
53

?
•

54

?
◦

55

?
56

?
57

?
•

58

?
◦

59

?
60

?
61

?
62

?
63

?
•

64

?
◦

65

?
66

?
67

?
68

?
69

?
•

70

?
◦

71

?
72

?
73

?
74

?
75

?
•

76

?
◦

77

?
78

? .

In Step 1 of the evaluation stage, turning operations (turn, Pi) for every
i ∈ Inputs are performed as follows:

1

♡
2

♣
3

♡
4

♣
5

♣
6

♡
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?
31

?
32

?
33

?
34

?
35

?
36

?
37

?
38

?
39

?
40

?
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

The above sequence shows one possible outcome. Define x′
i ∈ {0, 1} by the

outcome of the turning cards. In this case, x′
1 = 1, x′

2 = 1, and x′
3 = 0.

In Step 2 of the evaluation stage, for every gate g ∈ Gates, Steps 2 (a), 2 (b),

and 2 (c) are executed. For g = 4, in Step 2 (a), turning operations (turn, P
(g)
i)

for every i ∈ {1, 2, 4, 5, 7, 8, 10, 11} are performed as follows:

1

♡
2

♣
3

♡
4

♣
5

♣
6

♡
7

♣
8

♡
9

♣
10

♡
11

?
12

?
13

♡
14

♣
15

♡
16

♣
17

?
18

?
19

♡
20

♣
21

♣
22

♡
23

?
24

?
25

♣
26

♡
27

♡
28

♣
29

?
30

?
31

?
32

?
33

?
34

?
35

?
36

?
37

?
38

?
39

?
40

?
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

In this case, a1 = 0, a2 = 0, a4 = 1, a5 = 1, a7 = 1, a8 = 0, a10 = 0, and a11 = 1.
In Step 2 (b), the index kg is defined. In this case, kg is defined to be 6 because

(a4, a5) = (x′
1, x

′
2) = (1, 1). In Step 2 (c), a turning operation (turn, P

(g)
kg

) for

P
(g)
kg

= {17, 18} is performed as follows:

1

♡
2

♣
3

♡
4

♣
5

♣
6

♡
7

♣
8

♡
9

♣
10

♡
11

?
12

?
13

♡
14

♣
15

♡
16

♣
17

♡
18

♣
19

♡
20

♣
21

♣
22

♡
23

?
24

?
25

♣
26

♡
27

♡
28

♣
29

?
30

?
31

?
32

?
33

?
34

?
35

?
36

?
37

?
38

?
39

?
40

?
41

?
42

?
43

?
44

?
45

?
46

?
47

?
48

?
49

?
50

?
51

?
52

?
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

Define x′
g ∈ {0, 1} to be x′

g = x′
4 = 1. Similarly, for g = 5, in Step 2 (a),

turning operations (turn, P
(g)
i) for every i ∈ {1, 2, 4, 5, 7, 8, 10, 11} are performed

23

as follows:

1

♡
2

♣
3

♡
4

♣
5

♣
6

♡
7

♣
8

♡
9

♣
10

♡
11

?
12

?
13

♡
14

♣
15

♡
16

♣
17

♡
18

♣
19

♡
20

♣
21

♣
22

♡
23

?
24

?
25

♣
26

♡
27

♡
28

♣
29

?
30

?
31

♡
32

♣
33

♣
34

♡
35

?
36

?
37

♣
38

♡
39

♣
40

♡
41

?
42

?
43

♣
44

♡
45

♡
46

♣
47

?
48

?
49

♡
50

♣
51

♡
52

♣
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

In this case, a1 = 1, a2 = 0, a4 = 0, a5 = 0, a7 = 0, a8 = 1, a10 = 1, and a11 = 1.
In Step 2 (b), the index kg is defined. In this case, kg is defined to be 9 because

(a7, a8) = (x′
3, x

′
4) = (0, 1). In Step 2 (c), a turning operation (turn, P

(g)
kg

) for

P
(g)
kg

= {47, 48} is performed as follows:

1

♡
2

♣
3

♡
4

♣
5

♣
6

♡
7

♣
8

♡
9

♣
10

♡
11

?
12

?
13

♡
14

♣
15

♡
16

♣
17

♣
18

♡
19

♡
20

♣
21

♣
22

♡
23

?
24

?
25

♣
26

♡
27

♡
28

♣
29

?
30

?
31

♡
32

♣
33

♣
34

♡
35

?
36

?
37

♣
38

♡
39

♣
40

♡
41

?
42

?
43

♣
44

♡
45

♡
46

♣
47

♣
48

♡
49

♡
50

♣
51

♡
52

♣
53

?
54

?
55

?
56

?
57

?
58

?
59

?
60

?
61

?
62

?
63

?
64

?
65

?
66

?
67

?
68

?
69

?
70

?
71

?
72

?
73

?
74

?
75

?
76

?
77

?
78

? .

Define x′
g ∈ {0, 1} to be x′

g = x′
5 = 0. Similarly, for g = 6, in Step 2 (a),

turning operations (turn, P
(g)
i) for every i ∈ {1, 2, 4, 5, 7, 8, 10, 11} are performed

as follows:

1

♡
2

♣
3

♡
4

♣
5

♣
6

♡
7

♣
8

♡
9

♣
10

♡
11

?
12

?
13

♡
14

♣
15

♡
16

♣
17

♣
18

♡
19

♡
20

♣
21

♣
22

♡
23

?
24

?
25

♣
26

♡
27

♡
28

♣
29

?
30

?
31

♡
32

♣
33

♣
34

♡
35

?
36

?
37

♣
38

♡
39

♣
40

♡
41

?
42

?
43

♣
44

♡
45

♡
46

♣
47

♣
48

♡
49

♡
50

♣
51

♡
52

♣
53

?
54

?
55

♣
56

♡
57

♣
58

♡
59

?
60

?
61

♣
62

♡
63

♡
64

♣
65

?
66

?
67

♡
68

♣
69

♡
70

♣
71

?
72

?
73

♡
74

♣
75

♣
76

♡
77

?
78

? .

In this case, a1 = 0, a2 = 0, a4 = 0, a5 = 1, a7 = 1, a8 = 1, a10 = 1, and a11 = 0.
In Step 2 (b), the index kg is defined. In this case, kg is defined to be 3 because
(a1, a2) = (x′

4, x
′
5) = (0, 0). In this case, Step 2 (c) is skipped because it holds

that g (= 6) > n+ q −m (= 5).

In Step 3, the commitment at position P
(g)
kg

for g = 6 is output. In this case,

P
(g)
kg

= P
(g)
3 = {59, 60} as follows:

1

♡
2

♣
3

♡
4

♣
5

♣
6

♡
7

♣
8

♡
9

♣
10

♡
11

?
12

?
13

♡
14

♣
15

♡
16

♣
17

♣
18

♡
19

♡
20

♣
21

♣
22

♡
23

?
24

?
25

♣
26

♡
27

♡
28

♣
29

?
30

?
31

♡
32

♣
33

♣
34

♡
35

?
36

?
37

♣
38

♡
39

♣
40

♡
41

?
42

?
43

♣
44

♡
45

♡
46

♣
47

♣
48

♡
49

♡
50

♣
51

♡
52

♣
53

?
54

?
55

♣
56

♡
57

♣
58

♡
59

?
•

60

?
•

61

♣
62

♡
63

♡
64

♣
65

?
66

?
67

♡
68

♣
69

♡
70

♣
71

?
72

?
73

♡
74

♣
75

♣
76

♡
77

?
78

? .

24

