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Abstract—As messaging applications are becoming increas-
ingly popular, it is of utmost importance to analyze their
security and mitigate existing weaknesses. This paper focuses
on one of the most acclaimed messaging applications: Signal.

Signal is a protocol that provides end-to-end channel se-
curity, forward secrecy, and post-compromise security. These
features are achieved thanks to a key-ratcheting mechanism
that updates the key material at every message. Due to its
high security impact, Signal’s key-ratcheting has recently
been formalized, along with an analysis of its security.

In this paper, we revisit Signal, describing some attacks
against the original design and proposing SAID: Signal
Authenticated and IDentity-based. As the name indicates,
our protocol relies on an identity-based setup, which allows
us to dispense with Signal’s centralized server. We use the
identity-based long-term secrets to obtain persistent and ex-
plicit authentication, such that SAID achieves higher security
guarantees than Signal.

We prove the security of SAID not only in the Authen-
ticated Key Exchange (AKE) model (as done by previous
work), but also in the Authenticated and Confidential Chan-
nel Establishment (ACCE) model, which we adapted and
redefined for SAID and asynchronous messaging protocols
in general into a model we call identity-based Multistage
Asynchronous Messaging (iMAM). We believe our model to
be more faithful in particular to the true security of Signal,
whose use of the message keys prevents them from achieving
the composable guarantee claimed by previous analysis.

1. Introduction

Secure asynchronous messaging protocols aim to en-
able secure-channel establishment between two peers who
may not be simultaneously online. Arguably, the most
popular and frequently-used such protocol today is Signal,
deployed in environments such as the Signal application,
WhatsApp, and the secret conversation feature of Face-
book Messenger. An attractive feature of this protocol,
which is introduced as privacy that fits in your pocket,
is that is has been cryptographically analyzed, and its
properties have been formalized and proved [1]. Thus,
Signal was shown to provide end-to-end message encryp-
tion, implicit entity authentication, forward secrecy, and a
form of post-compromise security [2]. The latter is a rare
property in secure channel-establishment, and captures

the “healing”, in time, of the security of a compromised
channel. Signal achieves these properties by means of an
ingenious mechanism called key-ratcheting.

Signal is a public-key protocol, in which the users’
public keys are stored and forwarded by a centralized
server; the latter is a means of providing trust without
certification. Whenever a registered initiator Alice wants
to talk to a registered responder, Bob (who is potentially
offline), the server must forward Bob’s credentials to
Alice. In return, Bob will also rely on the server to
forward him Alice’s correct information. This approach
requires the server to be always available. In addition
to the authenticated channel required at setup for the
transfer of the public-key information, users must also
each establish a unilaterally authenticated communication
channel to the server, for each new conversation.

Once the user receives its partner’s key information
from the server, it can proceed to calculating an initial
master secret, from which the first keys can be derived.
Afterwards, the user regularly ratchets newly-established
secrets in order to generate fresh message keys. The mes-
sage keys are then used to encrypt messages, authenticate
them along with some additional data, which are sent in
plaintext.

As observed by Cohn-Gordon et al. [1], Signal’s ratch-
eting is not strongly authenticated. The existing authen-
tication is implicit and relies on the input used for the
ratcheting. This opens easy ways of hijacking sessions
or running Denial-of-Service attacks, making the formal-
ization of the security notions unnecessarily difficult and
inelegant. Finally, in order to decrypt delayed messages,
the receiver must keep the related key-material even after
ratcheting them. This is a caveat of the forward-security
properties of the keys in Signal, which only applies to
receiving parties.

In this paper, we aim to improve Signal’s authentica-
tion and post-compromise security. We rely on a differ-
ent trust assumption, replacing Signal’s centralized server
with an Identity-Based infrastructure. Our main idea is
to ensure that at each ratchet the user authenticates in
a strong way. The outcome is SAID (for Signal, Au-
thenticated and IDentity-based), a secure asynchronous
messaging protocol that is comparably efficient to Signal
and provides better security.



1.1. Our contributions

We claim two fundamental contributions: a formaliza-
tion of a security model for asynchronous messaging that
is more realistic than the previous ones, and a proposition
for a new, efficient asynchronous messaging protocol we
call SAID, which is provably secure in our security model.
We detail each of these contributions below.

A new security model. Cohn-Gordon et al. [1] have
provided a first quantification of the security that Sig-
nal achieves. Their model was tailored to the complex
computation of the message keys, but without captur-
ing the message transmission. With this separation, one
can prove that the message keys are indistinguishable
from random by a Man-in-the-Middle adversary. This is
a strong, composable security guarantee: it implies that
those keys can be securely used for any symmetric-key
primitive requiring a key of that size.
In Signal, however, the message keys are used for
authenticated encryption with additional data (AEAD);
the users send plaintext information like ratcheting keys
as part of the AD. This allows the adversary to trivially
distinguish between real and random message keys. Al-
though the message keys can still be used to construct
a secure channel, one cannot generalize this property to
other symmetric-key properties, so we lose composability.
This is similar to the authenticated and confidential chan-
nel establishment (ACCE) property, originally defined in
the context of TLS 1.2 [3].
We argue that this is not necessarily bad, since Signal’s
purpose is to construct a secure channel, and define a new,
fine-grained security model which formalizes:
Confidentiality: an ACCE-like property for the security
of exchanged messages, including forward secrecy;
Authentication: persistent authentication of the two com-
munication partners, which is explicit at each ratchet;

Healing: a degree of post-compromise security which is
stronger than for Signal; indeed, compromising the key-
chain at a given moment will affect usually fewer or at
worst as many key-stages as for Signal.

Our security model, entitled iMAM (for identity-
based multistage asynchronous messaging) is tailored to
identity-based (IB) protocols and provides fine-grained
(adaptive) corruption capabilities. We provide the adver-
sary with three distinct corruption oracles: one that leaks
a user’s long-term keys, a second one that reveals stage-
specific ephemeral information (including the message key
if it has been computed by that user), and a third that
enables black-box access to computations with the long-
term user keys. Our adversaries are unrestricted in their
oracle queries; however, some combinations of queries
impact the freshness of specific stage keys.

We define security in terms of the security of the
channel established in various stages (including post-
compromise and forward security), and persistent authen-
tication. All these properties are defined per stage, captur-
ing a single ratchet of the keys. The adversary is a Man-in-
the-Middle that can query any sequence of oracles, and a
freshness notion indicates which stages the adversary can
then attack.

A new trust model. Our security definitions are specif-
ically meant to capture protocols in the IB setting. Con-

sequently, we need not take into account Signal’s central-
ized server, but rather consider a Key-Distribution Center
(KDC), which generates key-material for all the users. We
note that the KDC only needs to be available when a new
user requests credentials, not for each conversation.

Cohn-Gordon et al. [1] prove security only in the
presence of a semi-trusted centralized server. A malicious
server could set up Man-in-the-Middle attacks in each on-
going conversation without being noticed. In our security
model, we do not explicitly consider a malicious KDC;
however, we do take that scenario into account by giving
the adversary the ability to corrupt long-term keys. Thus,
our security statements do cover malicious KDCs.

The SAID protocol. As a second main contribution, we
propose a new protocol called SAID (for Signal, Au-
thenticated and IDentity-based). Each user is associated
in our setting with a unique identity and a long-term
key generated by a Key-Distribution Center. The user’s
identity acts as a public key, allowing an initiator Alice
to contact any responder Bob whose identity she knows.

Our protocol splits the communication between the
two peers into doubly-indexed stages, like Signal. Sym-
metric ratchets are used when the same sender chooses to
send a new message, while asymmetric ratchets indicate a
change of sender. The message keys in SAID are derived
from base keys, as in the case of Signal. However, we also
bring several non-trivial modifications to that protocol.

Our most fundamental modification is adding persis-
tent authentication (via the user’s long-term key) at each
ratchet and key-computation. The initial master secret
computed during session setup relies on the responder’s
long-term keys and on randomness generated by the ini-
tiator. To explicitly authenticate the latter, the message
containing that randomness is signed by the initiator using
an IB signature. The master secret will subsequently enter
in the computation of every ratchet and KDF-call, authen-
ticating the parties that communicate. Moreover, we add
a pseudorandom value into symmetric ratchets, to further
improve our post-compromise security.

Authenticating each ratchet and key-computation sig-
nificantly improves the security guarantees of our protocol
over those of Signal. In the latter, compromising a single
base-key would result in compromising the entire chain
of stages corresponding to subsequent symmetric ratchets.
In our case, one requires leakage of both ephemeral and
long-term secrets to achieve the same goals. Knowledge
of only ephemeral information yields compromises only
a single stage. Knowing only the long-term key will com-
promise the stages until the initiator’s first honest ratchet.
Even compromising both long-term and ephemeral secrets
will only yield information until the first asymmetric
ratchet of the user who was sending at the time of the
compromise.

Our protocol requires a single pairing computation for
the master secret, a single IB signature, and the two KDFs
required by Signal. We formalize and prove the security
properties of SAID in the Random Oracle Model (ROM)
— as for Signal.

KDC versus Server. An important difference between
Signal and SAID lies in the latter’s IB setup. Yet, for
both protocols, the most dangerous kind of adversary is a
corrupted trusted party: for Signal, its centralized server,



in our case, the KDC. In that worst case, we lose the
same security as Signal in terms of compromised stages;
however, for SAID, the KDC learns user secret keys,
whereas for Signal, the attacker learns nothing but public
keys. Consequently for our protocol it is essential that
the key used for asynchronous messaging is not used in
any other application. Moreover, contrary to a corrupted
server, a corrupted KDC does not need to be active to
corrupt the master secret key, which makes it undetectable
from the users’ point of view.

Separate leakage queries. The best security for our
protocol is obtained when the adversary learns either
ephemeral, stage-specific information, or long-term
information, but not both. However, in order for that
security to be achieved in practice, long-term and
ephemeral information must be separated in terms of
storage and handling. This could be done by using a
trusted execution environment, a secure module, or other
such mechanisms. In other words, the security of our
protocol — which is much stronger than that of Signal
— can be achieved, as long as the implementation does
not easily allow the adversary access to both ephemeral
and long-term data, even if the adversary has access to
black-boxes that simulates the functions implemented in
the trusted environment.

We stress that our two contributions (the identity-
based master-secret generation and its use in the KDFs)
are independent. Thus, SAID could use a master-secret
generated using public keys as in Signal, resulting into a
protocol that achieves the same security.

1.2. Related Work

Cohn-Gordon et al. were the first to formalize the
security properties of Signal in 2017 [1]. They proved the
properties attained by the underlying key-establishment
and ratcheting designs. This analysis — though innovative
— does not faithfully capture the way the key-establishment
protocol is used in Signal, as we explained in more detail
in Section 1.1. In this paper, we show that the most that
can be proved for those keys is a weaker, non-composable
ACCE-like guarantee [3].

Jaeger and Stepanovs [4] very recently studied the
security of bidirectional channels against state compro-
mise, introducing both a new security notion and a new
construction, which they show is stronger than Signal in
their model. In their construction, they define and use
key-updatable schemes for encryption and signature. One
major difference between Signal and their construction is
that their key-updates take the transcript as input, when
Signal’s ratchets only take the previous key. In particular,
this means that they consider the reordering (or dropping)
of messages to be an attack, as a message cannot be
decrypted unless the previous one was received, whereas
Signal views their handling of so-called out-of-order mes-
sages as a feature. Even though both sides have valid
arguments, we choose to stay close to Signal and allow
messages of the same “batch” to arrive in any order.

Authenticated Key-Exchange and Asynchronous Mes-
saging. Cohn-Gordon et al.’s [1] groundbreaking paper
was followed by an extension of secure asynchronous

messaging in group chats [5] and more generic treatments
of ratcheted encryption and key-exchange [6], [7]. The
focus of the latter works is much larger than that of the
original analysis of [1]: instead of simply analyzing a real-
world protocol, [6] and [7] formalize (stronger) security
requirements, which they argue should be achieved by
any ratcheted key-exchange scheme. Subsequently, they
instantiate their primitive and prove the security of their
constructions. However, both these approaches once more
focus on the key-establishment protocol, rather than con-
sidering its encapsulation into the messaging mechanism.
By contrast, in this paper, we stay close to the full
details of the protocols we present. Although subject to
different limitations, asynchronous-messaging protocols
share many elements of construction and modelling with
authenticated key-exchange (AKE) protocols [8]. In this
paper, we will combine elements specific to the ACCE
security introduced in the context of TLS by Jager et
al. [3] with aspects of multi-stage AKE security [9]. How-
ever, both notions we propose in this paper are adapted
from the AKE setting to that of asynchronous messaging,
specifically capturing ratcheting mechanisms, out-of-order
messaging, and the way the established keys are used.

Identity-based cryptography. This concept was intro-
duced by Adi Shamir [10] with the goal of alleviating the
excessive reliance on a public key infrastructure. Assum-
ing the existence of an authority, users are now determined
by an identity that is short and easy to remember, e.g.,
an email address or a phone number. The first (publicly
available) instantiations of identity-based encryption [11]
were followed by works focusing on identity-based signa-
tures [12] and authenticated key exchange protocols in the
AKE model [13]. In this paper, an identity-based signature
scheme supersedes Signal’s key storage server, bringing
the additional advantage of public verification with respect
to a known identity (in lieu of a given verification key).

2. Preliminaries

Notations. Identities, e.g., A, P, are binary strings of
arbitrary length. The security parameter of cryptographic
schemes is denoted by 1. Empty strings of opportune
length are denoted with the symbol .

Identity-based Signatures. An Identity-Based Signa-
ture (IBS) [12] scheme is made up of four possibly
randomized algorithms IBS = (IBS.Setup, IBS.Extr,
IBS.Sign, IBS.Vrfy)with the following properties:

IBS.Setup(1*) outputs a master-secret-key IBS.msk a
master publi -key IBS.mpk, and some public parameters
IBS.paramthat are implicit input to all of the following
algorithms.

IBS.Extr(IBS.msk, ): on input the public parame-
ters, the master secret key and an identity 7 € {0,1}*,
the key-extraction algorithm outputs a private signing key
IBS.skj.

IBS.Sign(IBS.mpk, IBS.sky, M): on input the public
parameters, a user’s signing key and a message, the sign
algorithm returns a signature sgn.

IBS.Vrfy(IBS.mpk, I, M,sgn): on input the public
parameters, an identity, a message and a signature, the
verification algorithm returns 1 (to accept) or 0 (to reject)
user P’s signature.



In this work, we consider the notion of existential un-
forgeability against chosen message attacks (EUF-CMA).
We consider an adversary & that receives a master-public-
key from some challenger, and that has access to an
extraction oracle that simulates the extraction algorithm
for chosen identities, and a signature oracle that simu-
lates the signature algorithms for chosen identities and
messages. An IBS is said to be EUF-CMA-secure if for
any polynomial time &/, the probability that &/ outputs a
fresh signature for an identity that was never queried to
the extraction oracle is negligible.

We define the experiment of existential unforgeability
against chosen message attacks in Experiment 1, and
define the advantage of a probabilistic polynomial time
algorithm & as:

AGVEEMA(1Y) = B [1 o ExpEEMA(1)]

An IBS scheme is said to be EUFCMA-secure if the
following advantage is negligible:

AdvE,UFCMA(l)‘) = max {AdvglfIFDCMA(lA)} .

Experiment 1 : ExpEfL’j;CMA(l’\)

I:'s = (IBS.msk, IBS.mpk, IBS.param) —
1BS.Setup(1*)
2: (O = {1BS.Extr(IBS.msk, ),IBS.Sign(IBS.sk.,IBS.mpk, )}
(sgn, I, M) + d°(s)
4: if (I,M) was not sent to the oracle Sign and I was
not sent to the oracle Extr and IBS.Vrfy(IBS.param,
I, M, sgn)=1 then
return 1 // the adversary wins
else
return O // the adversary loses
end if

W

Authenticated Encryption with Associated Data. An
Authenticated-Encryption scheme with Associated Data
(AEAD) [14] is made up of three algorithms AEAD =
(AEAD.Gen, AEAD.Enc, AEAD.Dec) with the following prop-
erties:

AEAD.Gen(1*) outputs the sets of keys KeySet C
{0, 1}*, nonces NonceSet = {0, 1}", messages MsgSet C
{0,1}*, and associated data (header) HeadSet C {0,1}*;
where the last two sets have a linear-time membership
test.

AEAD.Enc(K, N, M, AD) the encryption algorithm is
deterministic and takes as input a key K € KeySet, a
nonce N € NonceSet, a message M € MsgSet and
associated data AD € HeadSet. It returns the ciphertext
ctx € {0,1}*. For brevity, we often represent this algo-
rithm as AEAD[M, AD].

AEAD.Dec(K, N, ctx, AD) is a deterministic algorithm
that given a key K € KeySet, a nonce N € NonceSet, a
ciphertext ctx € {0,1}*, and associated data AD returns
either a string in MsgSet or a distinguished symbol L
(invalid).

In this work, we consider the notion of length-hiding
security LH-AEAD introduced by Paterson et al. [15]. We
consider an adversary & that interacts with a challenger
that picks a bit b at random, and generates a secret key K.

The adversary has access to an encryption oracle that takes
as input a couple of messages (My, M) and an additional
data AD, and that returns AEAD.Enc(K, N, M;, AD), and
has access to a decryption oracle that takes as input a
ciphertext C' and an additional data AD, and that returns
AEAD.Dec(K, N,C,AD) if b = 1 and C was not generated
by the encryption oracle, | otherwise. An AEAD is said
to be LH-AEAD-secure if for any polynomial time &/, the
probability that of outputs b is negligently close to 1/2.

We define the LH-AEAD experiment in Experiment 2.
We define the advantage of a probabilistic polynomial time
algorithm & as:

Adv;‘:‘;AEAD(l)\) —
[P0« ExplHAEP(1Y)] — P [1  Explf2P0(1%)] |

An AEAD is said to be LH-AEAD-secure if the following
advantage is negligible:

AdvLH-AEAD (1X) max {Advél_jlj};’-\EAD(l)\)}

Experiment 2 : ExpL';;:'Z,\)EAD(lA)
I: set = (KeySet, NonceSet, MsgSet, HeadSet) <«
AEAD.Gen(1?)

K& KeySet
O = {oLoR.AEAD.Enc;, (K, N,-,-),0LoR.AEAD.Decy, (K, N,-,-)}
b* + o9 (set)
if b = b* then
return 1 // the adversary wins
else
return O // the adversary loses
end if

R AN A o

The oLoR.AEAD.Ency, (K, N, (Mo, M), AD) oracle

1: At the first call, set € := 0

2: Cp AE‘.A]:).EDC(I(7 N, My, AD)
3: Cp + AEAD.EDC(K, N, Ml, AD)
4: if CO =1 v C7 =1 then

5. return L

6: end if

7. € =6 U {Cb}

8: return C

The oRoR.AEAD.Dec, (K, N, C, AD) oracle
: M <+ AEAD.Dec,(K, N,C, AD)
if b=1AC & € then
return M
end if
return |

A

Problems and Hardness Assumptions. Our proofs of
security rely on standard cryptographic hardness assump-
tions related to the DH key exchange and bilinear pairings.
Let G = (g) be a cyclic group of prime order p generated
by g. Let G = (G, p, g), we define the following function:

econ (1Y) = maxg {P[@(G,ga,gb) =g*:a,b & Zp]}.

Let Gi = (1), G2 = (g2) and Gr = (g7)
be 3 cyclic groups of the same prime order p. Let



e be a bilinear pairing e Gy x G — Gr. Let
Gp = (G1,G2,Gr,p,€,91,92), we define: egcon(1*) =
maxgy {PID (G, 97,95, 95) = e(91,92)™ s a,b,c & L]}
We use the following cryptographic hardness assumptions.
The Computational Diffie-Hellman [16] (CDH) states
that ecpp(1*) is negligible. The Bilinear Computational
Diffie-Hellman [11] (BCDH) states that egcpn(1?) is
negligible.

3. Overview of the Signal Protocol

In this section, we present a high-level description of
the Signal protocol using a somewhat simpler notation
than [1]. A summary of the protocol flow is provided in
Figure 1.

Signal is a communication protocol for end-to-end en-

cryption in asynchronous communications. It begins with
a user, e.g., Bob, who registers to a server by providing
a unique identifier B (e.g., a phone number) together
with: a user public key idpkg (for which only Bob
knows the corresponding secret key), a mid-term pre-key
prepkp, a signature on prepkz (that can be verified using
idpk 5), and a series of ephemeral public keys ephpk’; for
i1=1,2,...,n.
At any point in time, another registered user, Alice (with
identifier A), can setup a session with Bob as follows.
Alice queries the server for Bob’s public key idpky, the
current! mid-term pre-key prepk 5, and one ephemeral key
ephpk ;. Alice generates a master secret msp using her
secret key idsk 4, together with idpky, prepkg, ephpkg,
and some randomness. The ms4p is then fed to a Key
Derivation Function (KDF), to obtain what is called a root
key rk®) and a base key? bk(®?). The base key is fed to
another KDF to produce the next base key bk(®Y) and the
message key k(0 which Alice will use to encrypt (and
authenticate) her first message. The KDFs are detailed in
the next section. The relation between the keys is reported
in Formula (1):

rk(®)

KDF (0,1)
mspp —— bk(0,0) KDF2 { EE(O 0 (1

In addition, Alice generates a random ratcheting secret

key rchskff) and the corresponding public key rchpkff).

Alice’s message to Bob then includes: the (encrypted) first
message of the application layer and, in the associated data
(AD), the ratcheting public key rch pk(f) together with the
information needed for Bob to reconstruct the shared keys.
Using the AD, Bob will retrieve Alice’s public information
from the server, and make sure they match what she sent.

In Signal, each pair of users may only have at most
one session together in their entire lifetimes. Therefore,
after a session has been initialized, the parties take turns
in refreshing the shared secrets by sending new ratchet
keys which are used to update the root keys (and the
base keys of index (-, 0)), via the ratcheting key exchange
mechanism explained below.

1. Bob will update this key semi-regularly, hence its appellation “mid-
term”.
2. This key is called sending/receiving chain key in [1].

3.1. Key-Ratcheting in the Signal Protocol

Ratcheting is a procedure that securely updates a
shared secret in a unidirectional fashion, i.e., given a key,
it is possible to derive the next key, but not the previous
one. The key-schedule of Signal requires that each mes-
sage is encrypted with a different key. Moreover, Alice’s
encryption keys should be different from and unlinkable to
the keys used by Bob to encrypt to Alice. The evolution of
the keys is triggered by two factors: changing the message
sender (asymmetric ratchet); or the same user sending or
receiving a new message (symmetric ratchet).

To keep track of the current stage of the key mate-
rial, we use the two superscript indexes (x,y) where:
x denotes the number of asymmetric ratchets that have
happened before the key was generated®, and y denotes
the current number of symmetric ratchets (for level x).

Symmetric Ratchet. This technique is performed by a
user alone, say Alice, and consists in applying a KDF to
obtain one new key k(**¥) per message to be (authenti-
cated) encrypted if Alice is sending messages and Bob is
silent, or decrypted, if she is receiving more messages.
The starting point of a symmetric ratcheting is a base
key bk®¥) obtained via asymmetric ratcheting if y = 0,
or symmetric ratcheting, if ¥ > 0. A one-step symmetric
ratcheting, has the following flow, i.e., this is KDFs:

bk(%y)’o HMAC, P (@y+1)

bk(®¥) 1 HMAC, | HKDF  (q) )
Symmetric key ratcheting can be composed sequentially
to derive a chain of keys k(®0) k(@1 k@2) that
authenticate-encrypt or -decrypt an uninterrupted stream
of messages by the same user.

Asymmetric Ratchet. This technique is performed by
a user, say Bob, when changing his role from receiver
to sender and vice versa. This mechanism updates the
shared secrets common to both Alice and Bob using fresh
randomness input by both parties. Cohn-Gordon et al. [1]
split asymmetric ratchets in two phases, the first from
Bob’s point of view and the second from Alice’s.

Phase I. To perform the x-th asymmetric ratchet, a
user, say Bob, generates a random ratcheting secret key

rchskg) and computes a new shared ratchet key A(®) that

combines rchskg) and the previously received rch pkf_l),

sent by Alice (e.g., in a DH-like fashion). The new root
key rk'®) and base key bk @9 are derived as follows, i.e.,
this is KDF;:

(x)
(rk(g”*l)’A(-’”)) HKDF { Lll(((z,o) 3)

With bk®?), Bob can perform a symmetric key ratcheting
to generate k(*9) and authenticate-encrypt his messages to
Alice. Bob shall also include rchpkg) in the AD of every
level x message to Alice. Several symmetric ratchets may
happen, until Alice comes online and wishes to reply, for
which she needs to contribute with her own randomness
and start the next asymmetric ratchet.

3. Note that all even values of  mean that Alice is the sender, while
odd values means she is the receiver.
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(z)
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ctx(@:y)
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Figure 1: Protocol flow of the core parts of Signal [1] using the notation adopted in this paper, where g is the generator

of a group of prime order p.

Phase II. Upon receiving rchpk(m), Alice can compute
the shared ratchet key which she will use, along with
the root key k@1 to derive rk® and bk®? via (3).
Then, after decrypting the messages, in order to reply
to Bob, Alice generates a new random ratcheting secret
key rchskfﬂ), thus performing the x + 1-th asymmetric
ratchet, and computes a new shared ratchet key A+
that combines rchsk" ™) and rchpkg). She then derives
the new root key rk®*1) and her base key bk(**10) gs:

rk(w—‘rl)

She can then perform symmetric ratchets. Alice will in-
clude rchpkffﬂ) in the AD of every level x + 1 message
to Bob.

Remark. In [1], stages are counted differently: level z
starts when Bob sends his new ratchet key, and ends once
he sends the next; with Alice sending her randomness in
between. This means that there can be two separate stages
of index (z,y): one where Bob sends his y-th message for
level z, and one where Alice does. Note that in our model,
rchpk(g) exists only for odd values of x, while rchpk(f)
exists only for even x. The two models are equivalent,
and our choice is motivated by the need to lighten the
sub- and superscripts, to simplify the notations.

3.2. On the Security of the Signal Protocol

Cohn-Gordon et al. [1] performed the first formal anal-
ysis of Signal as an authenticated key-exchange protocol.
They showed that under standard cryptographic assump-
tions, Signal provides implicit AEAD key-authentication,
forward secrecy and, if used correctly, a form of post-
compromise security. The authentication of the keys is
implicit, since it is derived from the fact that only the
intended party could compute the key; however, Signal
gives no explicit guarantee that the intended party actually
did compute the key. Forward secrecy assures that, if at a
certain point in time ¢* an adversary corrupts a party, it is
still impossible for the adversary to decrypt a message
sent at any time ¢ < t*. In particular, all ratchet keys
used before the moment of corruption remain secure. Post-
compromise security is a healing property: after a party
has been corrupted at time ¢* the key material at time ¢*
is no longer secure, but if the party performs an honest
asymmetric ratcheting, all the subsequent keys (produced
at any time ¢t > t* 4 J) are again secure.

4. Some problems in Signal

Despite its innovative features and good security guar-
antees [1], Signal does have some weaknesses. In this
section, we present some problems in the design of the



Signal protocol; we defer our mitigations to Section 5.
We remark that the threats described below fall outside the
security model considered in [1] and come from looking at
Signal from a new perspective: Cohn-Gordon ef al. aimed
to show which security properties Signal does guarantee,
we focus on possible flaws and new, stronger proposals.

Symmetric Ratcheting. In Signal, as long as Alice con-
tinues to send messages to Bob without receiving a reply,
the sending-key chain grows via symmetric ratcheting. In
this setting, an attacker that manages to expose one base
key will be able to learn any future base- and message-
keys in that chain. In particular, all future messages sent
from the moment of the exposure, and until the next
asymmetric ratcheting, can be decrypted by the attacker.

Session Hijacking. When performing asymmetric ratch-
eting, the two parties contribute with fresh Diffie-Hellman
elements that are authenticated only by the current mes-
sage keys. Thus, an attacker that can expose Alice’s
current ephemeral state can hijack her session from the
next asymmetric ratchet. Concretely, the attacker chooses
what fresh ratcheting information to send to Bob, and will
be able to derail Bob on a new track of key-chains that
diverges from the honest one, and impersonate Alice in
the long run, even without knowing her secret key.

An Online Credential Server. Signal’s session initializa-
tion heavily relies on a server that stores and forwards
users’ public data. Consequently, this server must be
online at all times and users must trust the long-term
credentials of their partners provided by the server. While
users’ credentials are not confidential information, the fact
that it is sent without authentication from the server’s
side gives room for Man-in-the-Middle attacks that are
undetectable by the users.

Out-of-order Messages. In asynchronous messaging, the
order in which Alice sends messages might be different
from the order in which Bob receives them. When this
happens, Bob advances his chain of keys to keep up with
the received messages’ states and stores the keys related
to the pending (not yet delivered) messages. In such a
scenario, an attacker that retains all of Alice’s messages
apart from the last one, and then exposes Bob’s current
state, is able to decrypt all the withheld ciphertexts using
Bob’s stored key-chain.

5. SAID

We present now the first of our main contributions, the
SAID protocol. Our aim is to stay as close as possible to
the original Signal protocol while mitigating some of the
threats discussed in Section 4. Concretely, we make three
major changes.

1) We replace the semi-trusted credential server with
a Key-Distribution Center (KDC) that provides
identity-based secret keys for all the users. In this
way, the KDC has to be online at each user-
registration and no longer at any session-setup. In
addition, the identity-based infrastructure rules out
the chance of Man-in-the-Middle attacks.

2) We upgrade the key ratcheting mechanism to in-
clude long term identity-based secrets that guarantee
stronger and explicit partner authentication.

3) Finally, we introduce the use of a trusted execution
environment to securely implement the execution of
functions on sensitive data.

The SAID protocol has four main phases (more details in
the following sections):

Parameter Generation run once, by a trusted party,
to set up the public parameters of the protocol.

User Registration performed by users at installa-
tion time (and subsequently periodically) to create their
identity-based cryptographic data in the KDC.

Session Initialization performed by a user A to begin
a chat with a registered user B. In this phase, A generates
a long-term master secret that will be shared with B only
(see top of Figure 2 for details).

Messaging takes place when two users communicate
in a session. This phase is characterized by sequences
of symmetric and asymmetric ratchets (see bottom of
Figure 2 for details).

5.1. Parameter Generation

The KDC sets up its master secret keys and the public
parameters used by SAID as follows.

o AEAD.param = (KeySet, NonceSet, MsgSet, HeadSet),
obtained from AEAD.Gen(1%),

o (IBS.param, IBS.mpk, IBS.msk) < IBS.Setup(1*),

e a description of a DH bilinear mapping & =
(Gh GQa GTapa 91, 92, e)’

« a random secret master key for handling identities,
ID.msk <& Z,, and a corresponding master public
key ID.mpk = giP-msk € G,

« a description of a hash function H: {0,1}* — G7.

« a description of two Key Derivation Functions KDF;
and KDFy. The first KDF is used to generate the
next root- and base-key KDF; : Gp x Gy X
{0,1}512e(bk) N {0’1}size(rk) % {O’l}size(bk) and is
defined as in Signal. The other one is used to generate
the next key for AEAD and base-key: Let HMAC :
{0,1}* — {0,1}57¢(5%) and HKDF : {0, 1}s7e(k) —
{0,1}57¢()  be two hash functions, KDF, :
Gr x {071}size(bk) % {071}size(p) N {O’l}size(k) %
{0, 1}52¢(®k) is defined as follows: KDFy(z,y,2) —
(HKDF (HMAC(z||y[| 2)), HMAC(z[[y)).

SAID public parameters set pparam includes all the
public parameters AEAD.param, IBS.param, IBS.mpk, &,
ID.mpk, and all the descriptions of H, KDF;, and KDFs.
The master secrets, kept by the KDC only, are IBS.msk
and I1D.msk.

5.2. User Registration

A user A registers to the system by send-
ing her identity, A, to the KDC. The KDC re-
turns the user’s secret signing key IBS.skg <«

IBS.Extr(IBS.param, IBS.msk, A) and her secret identifi-
cation key idsk4 € G; generated as* idsk 4 = H(A)'D-msk,
The KDC also adds A into a list of registered users, and
replies to any future attempt to register A with the error
message ‘username taken’.

4. The user’s secret identification key is essentially a Boneh-Franklin
key for identity-based encryption [11].
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Figure 2: Session initialization (above) and ratchets (below) in SAID, where N,_o denotes the number of messages
that the sender sent at level x — 2, and M denotes the plaintext of the current stage.

5.3. Session Initialization

In SAID any registered user A can initiate a session
with another registered user B (without the KDC being
online), following the procedure depicted on the top of
Figure 2.

In detail, A chooses a random ratchet secret key,
rchsk(o), and computes its corresponding D H public key
rchpk £ ). As it is in Signal, these ratchet keys are not
used yet, but the target responder B will need them to
make his first asymmetric ratchet and respond to A’s
messages. In addition, A picks a random r and computes
h = g5. At this point A signs sgn < IBS.Sign(IBS.mpk,
IBS.ska,d = (4, B, rchpkff), h)) where the identities are
included in the signed message to avoid replay attacks.
The values h and sgn will be part of the AD of any level-
0 message sent to B. The master secret shared between
A and B is msyp = e(H(B),|D.mpk)". To generate
the initial root key rk® and base-key bk(®?) the values
(msap, g1,¢€) are input to KDF;. With bk(®9 A can per-
form the first symmetric ratchet, i.e., she generates a ran-
dom tag(®%) and computes KDF5(ms 4 5, bk(®?) | tag(0:0))
to obtain the first AEAD key k(®0) together with the next
base-key bk (@1, Finally, A authenticate-encrypts the mes-
sage M with AD = (A,B,rchpkff),(),h, sgn, tag(©:0)),
and sends AEAD,0.0)[M,AD] to B.

For the session initialization to be successful, the
responder (paired user B) needs to reply to A’s message
consistently. This happens only if both of the following
conditions hold true:

1) 1 = IBS.Vrfy(IBS.param, A,d,sgn), i.e., A’s signa-
ture verifies for identity A; and

2) msap = e(idskg,h), ie, if A and B generate
the same master secret (and consequently the same
encryption/decryption key k(0-0)),

5.4. Messaging

Following the way Signal works, in SAID the key
material also evolves through symmetric and asymmetric
ratcheting.

Symmetric Ratcheting. A user performs a symmetric
ratchet when she wishes to obtain a base- and a message-
key, to either encrypt one more message, without having
received a reply; or to decrypt one more message before
responding. In particular, recall that a symmetric ratchet
increases the y counter of the chat state, so if the starting
stage is (z, y), after the symmetric ratchet we land at stage
(x,y+1).

The process of a symmetric ratchet is depicted in the
lower part of Figure 2, lines 3 and 4 for Alice, or 5 and 7
for Bob. In a nutshell, A inputs the shared master secret,
the current base key (of stage (z,y)), and a fresh random
tag to KDF4 and obtains the authentication-encryption key
of stage (x,y) and the next base-key for stage (z,y +1).
Note that, as it is in Signal, KDF, is split in two parts, as
shown in Formula 5: one that generates the next base-key,
and one that generates the encryption key — only the latter
uses the random tag as input, in order to handle out-of-
order messages, i.e., the base-keys could be computed
simply from the previous ones, but not the encryption
keys.

ms a5, bk ) 2, p( D) 5
(%)
msag, bk(w’y),tag(w»y)) HMAC, , HKDF, \ (z,y)

The random tag will be included in the additional data to
enable the responder to generate the same key k(*¥).

Asymmetric Ratcheting. Whenever a message is sent
by the party who is not the sender of the last message



in the chat, an asymmetric ratchet happens. Asymmetric
ratcheting increases the = counter and resets the y counter
of the chat state, so if the starting stage is (x,y), after the
asymmetric ratchet we land at stage (z + 1,0).

The process of asymmetric ratcheting is depicted in
the lower part of Figure 2, lines 1 and 2 for Alice, or 1 to
3 for Bob. Assume that A has sent the last message (which
includes her level x — 1 ratchet key rch pkff_l) in AD),
then, to send his response, B selects a random ratchet
secret key rchskg) and computes the DH shared secret

A®) = (rchpkf_l))“mkg). He then inputs the shared
master secret, the newly computed DH secret, and the
current root key (of level £ — 1) to KDF; and obtains
the level x root key together with the new base-key for
stage (x,0). Finally, B performs a symmetric ratchet to
generate the authentication-encryption key of stage (z,0)
(and the next base-key for stage (x, 1)).

Note that, furthermore, as depicted in Figure 2, the
additional data sent along with the message at stage (z,y)
contains Alice and Bob’s identity, the level z ratchet
public key of the current sender, the index counter y, the
number N,_o of messages that the sender sent at level
x — 2 (set to 0 for N_; and N_,), and, finally, the tag
tag(wvy).

5.5. Long-term secret key in SAID.

Signal requires private keys with different security
needs, i.e., ephemeral, mid-term and long-term keys.
However, in the AKE security model of [1], authors do not
distinguish these different levels of security, in the sense
that each key can be corrupted in the same way by the
adversary using the so-called “reveal” oracles. In SAID,
we assume that for any pair of user A, keys sk4 and
ms4p (for each user B that interacts with A) are long-
term keys, and we define a security model that provides a
fine-grained analysis of the long-term keys compromise,
following the definition of Cohn-Gordon in [2]. More
precisely, we distinguish three level of compromise:

Total compromise: the adversary learns the key sk or
msap. In this case, SAID has the same security as
Signal, because the adversary can run the key derivation
functions on her own, as in Signal.

Weak compromise: the attacker does not have knowl-
edge of the key, however she can compute operations
that use the long-term keys sky and mssp. More
precisely, she has access to a compromise oracle that
simulates all routines that require these keys over a
given period of time. Intuitively, the oracle can be used
for signing a given message using the user’s secret key,
and for computing key derivation functions on the mas-
ter secret ms4p and some input values. The routines
simulated by the oracle are detailed in Algorithms 3,
4 and 5. In this case, the adversary cannot deduce
the keys of the next symmetrical ratchets because she
cannot predict what random tags will be chosen the
future, so she cannot pre-compute the future message
keys using the oracle.

No compromise: the conversation is fully secure, as ev-
ery message key depends on the long-term secret keys.

In practice, the weak compromise requires some hard-
ware hypothesis, as the long-term keys and the corre-

sponding routines must be implemented in a trusted mod-
ule called a Hardware Security Module (HSM), e.g., a
Trusted Execution Environment (TEE) [17]. On a smart-
phone, the sim card can also play the role of the
HSM [18]. Another solution is to use a trusted proxy
that implements the routines. For instance, the user sends
messages using SAID on his smartphone, and he interacts
with the proxy to run the sensitive routines. Moreover,
the HSM can be simulated by Trusted Platform Modules
(TPM)’, which are software modules with equivalent se-
curity guarantees.

We assume that the trusted environment securely
stores the master secret keys of every instance of a user.
However, SAID can also be securely implemented using
an environment without this feature. In this case, the idea
is to have r be the hash of the concatenation of the
user’s secret key and the identity of the user’s partner,
instead of picking it randomly. More formally, that means
replacing the r & Z,, instruction by r <« H'(idska, B),
where H' is a hash function in Algorithm 4. Hence, the
initiator of a chat can re-compute r on-demand without
the need to adaptively store data (ms4p) in the trusted
environment. However, the responder must compute the
pairing e(idskp, k) in the HSM to retrieve ms, g at each
stage, which obviously impacts the protocol’s efficiency.
An other more efficient solution is to store the encryption
of each ms,4 g, then to send it to the HSM at each query.

5.6. Performances

In this section, we show that Signal and SAID have
equivalent computational cost. First, we remark that SAID
has the same complexity as Signal, except at the initializa-
tion phase, which is run only once per instance. To com-
pare the initialization cost of Signal and SAID, we give
the number of exponentiations, paring computations, and
signature computations for both protocols, which are the
dominant operations. The sender’s initialization algorithm
requires 3 exponentiations on a pairing friendly, prime-
order group, 1 pairing computation, and 1 identity-based
signature generation; and the receiver’s initialization al-
gorithm requires 1 exponentiation, 1 pairing computation
and 1 identity-based signature verification. By using the
certificate based IBS given in [12] instantiated with the
Shnorr signature [19], the signature algorithm requires 1
exponentiation, and the verification algorithm requires 4
exponentiations. By instantiating our pairing as in [20], a
Tate pairing computation costs approximately 4 times the
cost of an exponentiation® in G;. To sum up, initialization
cost of SAID is equivalent to 8 exponentiations for the
sender, and 9 for the receiver. On the other hand, the
Signal initialization algorithm requires 6 exponentiations
for the sender, and 5 for the receiver.

5. The International Standard for the TPM is given in https://www.
iso.org/standard/66510.html

6. For instance, for a security of 256 bits, a Tate pairing costs 8726- M
and the exponentiation costs 2863 - M, where M is the multiplication
cost in a field and is approximately 13, 000 clock cycles [20].



Algorithm 3 Routine

IBS.sky, -):
1: on input m;
2: return o < IBS.Sign(IBS.param, IBS.sk4,m)

R.IBS.Sign(IBS.param,

Algorithm 4 (initiator) Routine R.KDF.(ms4 g, -):
. on input (z1,z2);
if this is the first call to this routine then
r Zyp; h = g5; msap = e(H(B), ID.mpk)”
end if
Y KDF*(msAB, 1‘1,.%2)
return (h,y)

AN

6. Identity-Based Multi-Stage Asynchronous
Messaging Protocols

Before defining and modeling Multi-Stage Asynchronous
Messaging Protocols in Definition 1, we set the context by
formalizing the notions of stages, roles, and party instance.

6.1. Groundwork

Parties and roles. We consider a system made of multiple
parties. Each party P is associated with a unique party
identifier: its identity. By abuse of notation, we use P
to denote both the party and its identity. In the spirit of
Signal, we simplify the model by allowing each party
P to only have one single protocol session with each
other party throughout their entire lifetimes. We denote
the protocol session (or instance) between P and @) as
wg, if seen from P’s point of view, and 7'('5, from Q’s
side. The party that begins the session is called initiator
while its partner is called responder.

Stages and Execution Time-Line. In multi-stage pro-
tocols, the key material evolves according to the stage
the conversation is at. To keep track of this process,
stages are defined using an ordered pair of non-negative
integers s (z,y). The first index, z, tells who is
currently speaking: even values indicate the initiator of
the conversation; odd values indicate the responder. The
second index, y, counts how many messages the party
that is the current sender has already sent since it started
speaking (again).

Each stage has one sender and one receiver, i.e., there
is one and only one role per user, and both users cannot
have the same role. Stages can evolve in two different
ways:

« the current sender sends an additional message, in
which case, stage (x,y) turns into stage (x,y + 1);
« there is a switching of sender, and stage (x,y) turns
into stage (z + 1,0).
We denote by next(s) the subsequent stages to a stage s =
(z,y), thus next(s) = {(z,y+1), (z+1,0)}. For example,
for s = (0,0) we have next(0,0) = {(0,1),(1,0)}, and as
the initiator keeps sending messages without getting a reply
the y index increases: (0,1), (0,2), etc. The responder’s
first reply triggers the transition from stages (0, -) to stage
(1,0). Stages are ordered lexicographically. For practical
purposes we assume the protocol implicitly defines a
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Algorithm 5 (responder) Routine R.KDF,(msap, -, [h]):

1: on input (z1,x2);

2: if this is the first call to this routine then
3: mspp = e(idSkB7 h)

4: end if

5. return y < KDF.(msap,z1,22)

maximal value ymax > 0 of messages that a party can
send in a row.

6.2. Syntax

Our definition of Identity-Based Multi-Stage Asyn-
chronous Messaging protocols (iMAM for short) is meant
to be general and does not tailor specifically to our SAID
proposal.

Let 7719 be the (unique) protocol instance between
P and @. For iMAM protocols, we define instances as
handles of attributes that can be either static (i.e., once
set, the value does not change for the whole duration of
the session), or non-static (i.e., the value is updated during
the protocol run, usually at every stage).

A partner identifier wg.pid, consisting of the identity @
of the intended party partnered in the protocol session.
This attribute is static.

A session identifier wg.sid, consisting of the concatena-
tion of the identity of the initiator and the responder,
as well as some protocol-specific auxiliary information
aux, (P, Q,aux).

A stage list wg.stages, consisting of a list of
Q

“booleans” such that 75 .stages[s] € {1, L}. We have

7 stages[s] = 1 if and only if a message was sent or

received (correctly) at stage s, otherwise ﬂg.stages[s]
doesn’t “exist”, i.e., is L. By abuse of notation, we
say s € m% if w%.stages[s|] = 1. This attribute is non-
static.

A transcript W?.TT, consisting of a list of ordered data

wg.TT[s] = D. For clarity, wg.TT contains all data
sent and received by party P during its chat with Q.
This attribute is non-static.

A reception indicator list wg.rec, consisting of a list of

integers such that ﬂg.rec[s] € [0, Ymax] U {L}, if P is

the receiver for the stage s = (z,y), then wg.rec[s] =
ys is such that the message of index (x,y;) is the first
message of level x that P received’, and if P did not
yet receive a message at level z, or is the sender, then
72 recls] is L.

Several lists of ephemeral elements wg.var, such
that var € 77 where 7" is the set of (kinds of)
ephemeral elements. For example, in SAID, we define
7" = {k, A, bk, rk, rchpk, rchsk, tag}. Each Wg.var is
an ordered list (indexed by stage) of the var elements
that are specific to each stage s € ﬂg.stagesg. This
attribute is non-static and can be updated in an

7. This list exists because we can handle out-of-order messages, and
therefore it is likely that ys 7 0. In particular, the ratchet public key
contained in the AD of the message of stage (x, ys) is the one used for
the z-th asymmetric ratchet, independently of the value contained in the
additional data of the other level = messages.

8. For example, in SAID, Wg.rk[(:p,y)}, ie., var = rk, is rk(®),



append-only fashion. In practice, however, ephemeral
elements that are no longer needed are removed from
the list. Note that wg.rch pk[(x, y)] is @’s latest ratchet
public key, either sent at level  — 1 (if P is the current
sender) or level = (if @ is the sender). Similarly,
ﬂg.rchsk[(x,y)} is the latest ratchet private key of
P, either created at level x — 1 (if P is the current
receiver) or level = (if Q is the receiver).

Definition 1 (Identity-Based Multi-Stage Asynchronous
Messaging Protocols). An Identity-Based Multi-Stage
Asynchronous Messaging Protocol (iMAM for short)
is a tuple of five algorithms iMAM = (aSetup,
aUReg, aStart, aRKGen, aSend, aReceive), such
that:

aSetup(1*) — (msk, mpk) :

ter (in unary) 1%, the system setup algorithm outputs a
master secret key msk and a master public key® mpk.

aUReg(P, msk) — ltkeysp : on input a user identity P,
and the master secret key msk, the user registration
algorithm outputs the user-specific (long-term) secret
keys ltkeysp and a user identifier P.

aStart(ltkeysp, role, Q) — (wg) : on input a user P’s
long term keys Itkeysp, a role € {initiator, responder}
for the party P, and the intended partner’s identity
@ # P, the start-a-conversation algorithm initializes
and outputs the protocol instance 7 5.

aRKGen (1) — (rchsk, rchpk) : on input a security pa-
rameter (in unary) 17, the ratchet key generation al-
gorithm outputs a public/private pair of ratchet keys
(rchsk, rchpk).

on input a security parame-

aSend(ltkeysp, s, Wg, M, [rch, mspg]) — (ﬂ'g, C, [mspg]) :

on input a user’s long-term secret keys ltkeysp, an
instance wg, a stage s = (x,y), a message M, if
s # (0,0), a master secret mspq, and, if z = 0, a
public/private ratchet key pair rch = (rchsk, rchpk),
the send algorithm outputs an updated instance n,?, a
new message C (usually a ciphertext with AD), and,
if s = (0,0), a master secret key mspg. The behavior
of this algorithm highly depends on the input stage s
and the party instance 7.
aReceive(ltkeysp, S,ﬂ'g,C) — (ﬂg, M, [mspg]) : on

input a party’s secret keys Itkeysp, an instance ﬂ'g,
a stage s = (z,y), and a message C (usually a
ciphertext), the receive algorithm outputs an updated
instance Tg, and a message M (usually the decryption
of Q).

SAID as iMAM. In the case of SAID, the protocol setup
aSetup outputs the parameters explained in section 5.1.
In particular, mpk includes the public parameters of an
identity-based signature scheme, the description of the
prime order groups, a hash function, two key derivation
functions, and algorithms of an AEAD scheme. User P’s
long-term secret keys, as returned by algorithm aUReg,
are one identity secret key idskp and one identity signing
key IBS.skp. The aStart algorithm initializes an empty

9. This key is input to all the subsequent algorithms and contains a
value Ymax > O that bounds the maximal horizontal growth of stages.
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instance wg. Note that the party instance wg is storing

all the keys necessary to run the algorithms correctly as
explained in Section 6.2. The aSend algorithm is defined
according to the input stage s: if s = (0,0) it runs
the asymmetric ratchet procedure depicted in Figure 2;
if s = (z,y) for some y > 0, it runs the symmetric
ratchet procedure depicted in Figure 2; if s = (z,0) for
some x > 0, it runs the asymmetric ratchet procedure
depicted in the Figure 2. In all cases, aSend computes
C < AEAD.Enc,([M,AD] where the additional data
contains the value N,_o corresponding to the number
of messages sent by the party last time it was acting
as sender (N_o and N_; are set to O by default). The
aReceive algorithm is defined exactly as aSend except
that instead of encrypting messages, it decrypts cipher-
texts, i.e., M — AEAD.Dec,(s)[C, AD]. Finally, the aRKGen
algorithm returns a ratchet key pair made up of a random

element rchsk < Z,, along with rchpk = gi*"*k € G;.

Correctness. In what follows, we define the notion of
correctness for iMAM protocols. Loosely speaking, a
protocol is correct if, for any pair of users P and @
that run the protocol honestly, any message sent at any
stage by P will be correctly decrypted and authenticated
by the user (). Note that our definition considers out-of-
order message delivery, i.e., the messages are correctly
decrypted even if they are received out-of-order by the
user (.

Definition 2 (correctness). An Identity-Based Multi-Stage
Asynchronous Messaging Protocol is correct if for any
pair of distinct honest users (P, @), given the party
instances wg and wg, let R[s] € {P,Q} (resp. S[s])
denote the receiver (resp. sender) at a given stage s,
for any stage s = (z,y) such that:

o if z #£ 0, there exists s’ = (z — 1,y) € ﬂg N 775,
i.e., at least one message was sent and received at
level z — 1, meaning both parties know the previous
ratchet key,

o if y£0 then (z,y—1) € Trg[[:]],
sent at the previous stage,

then, for:

« any message M, and

e any rch® = (rchsk(Sm[Z], rchpk(Sm[Z]
aRKGen(1?), and

e any 3-uple (775[[:]] ,C,[mspg]) generated by the algo-

rithm aSend(Itkeysgy, s, wg[[;]], M, [rch® mspg)),
M’, [mspg]) generated by

i.e., a message was

) generated by

it holds that for any (m ?H;h

aReceive(ltkeys gy, s, 775[[85]]@% we have M/ = M.

The conditions in Definition 2 allow us to model out-
of-order message delivery, and state that if the receiver of
stage s gets the message sent by its interlocutor, it will
decrypt correctly (implying that both parties were using
the same key for encryption). In particular, our notion of
correctness implies that the transcripts are matching on
every stage in which the current receiver actually got the
message delivered.

7. Security model for iMAM protocols

Our security model for iMAM protocols is inspired to
the authenticated and confidential channel establishment



notion of Jager et al. [3]. However, to ease notation and
understanding, we follow the one single chat approach [1]
adopted for messaging protocols, and allow only one pro-
tocol instance between any two parties. This simplification
does not affect security and it is still possible to derive the
generic model from ours. Compared to the security model
for Signal [1], that resembles the notion of authenticated
key exchange protocol (AKE) ignoring messages and ad-
ditional data sent during chats, we prove SAID secure in a
more realistic model that captures the notions of persistent
authentication and confidential channel establishment. To
this end, for the unique protocol instance denoted by ﬂ'g,
we consider the following attribute (in addition to the ones
described in the Section 6.2).

Challenge bit Wg.b[s], consisting of a binary value cho-
sen identically and independently at random whenever
a new stage s € wg of an instance is created. The
value of a challenge bit is static and will be used by
the encryption and decryption algorithms (and by the
oSend, oReceive, oLoR.AEnc, and oLoR.ADec oracles)
in our channel-security game.
Recall that with abuse of notation we write s € Wg for
wg.stages[s] = 1, to refer to a stage s that has either
hfg)pened before in the chat, or is the current stage (of
)

7.1. Adversarial model

We model the adversary as a PPT algorithm & that can
(adaptively) call a series of oracles: oUReg to register
users to the system; oCorrupt to corrupt users and learn
their long term keys; oStart to initialize a session between
two users; oReveal to reveal user’s ephemeral keys at a
chosen stage; oAccessHSM oracle to simulate momentary-
access to a user’s device; oSend to simulate the send
algorithm; oReceive to simulate the reception algorithm.
In the AKE model, the adversary has access to the oTest
oracle which returns the message key of a given stage or
a random key depending on a challenge bit. In the ACCE
model, the adversary has access to the oLoR.AEnc and
oRoR.ADec oracles to encrypt and decrypt messages for
a given stage. Our oAccessHSM oracle can be seen as a
sophisticated twist to the corruption oracle, and follows
the notion of trusted environment oracle access given
in [21]: we assume that users’ long-term secrets are stored
within a HSM to which the adversary can only have black-
box access.

7.2. Security Games

Let II be an iMAM and let & be a polynomial time
algorithm. In this section we define the AKE (resp. ACCE)
experiment of & against II. We let the adversary &/
interact in an adaptive way with all the oracles described
in the next paragraph. We consider an additional entity,
the challenger €, that runs the aSetup algorithm at the
beginning of the experiment, sends mpk to </, and msk to
the oracles it administrates. At the end of the experiment
& outputs a tuple (wg.sid, s*,b%).

We consider both the AKE and the ACCE security
experiments in this section. We first describe the oracles
that are used identically in both experiments, then we
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define the oracles that are, respectively, only used in
the AKE and in the ACCE experiment. As in [1], our
AKE model considers a truncated version of the iMAM
protocol. More precisely, the users only send the key-
exchange material without encrypting or authenticating
any message, i.e., they only send the AD when they run
the send algorithm. Without this restriction, the adversary
may encrypt or decrypt any message of the protocol, and
then she may trivially deduce whether a given key is
the real message key or not. On the contrary, our ACCE
experiment captures the actual messaging.

on input a party P, the user registration
oracle runs aUReg(P, msk) — (ltkeysp, P).

on input a user identity P the corruption
oracle checks if P is a registered user, in which case
it returns ltkeysp. Otherwise, it returns L.

oStart(P, role, Q) — wg

a role role € {initiator, responder} and the iden-
tity of its intended partner (), the start-conversation
oracle checks if P, are registered users, and
if not it returns 1. For existing users, it runs
aStart(Itkeysp, role, Q) — wg and from then on
considers w5 to be an existing chat.

on input a user identity P,

oReveaI(Wg.sid, var, s)

on input a session identifier

Wg.sid, a variable var € 7" and a stage s = (z,y) the

reveal-state oracle checks if 7r§ exists, and if s € 7.

If both conditions hold, then it returns wg.var[s}.

oAccessHSM(ﬂg.sid,fct,q.input) on input a session

identifier wg .sid, some function fct implemented on the
trusted module, and a query input q.input, the access-
trusted-module oracle returns the result of the black-
box on the given inputs fct(q.input).

Oracles for the AKE model
oTest(n 2 sid, s) | on input a session identifier 72 .sid
and a stage s, if:

o ’/Tg does not exist, or

o 5¢& wg, or

o 7% K[s] =L, or

« this oracle has already been called on (wg.sid, s) or
(ﬂg.sid, s)

then the test oracle returns L. Otherwise, if ﬂg.b[s] =

0, it returns a randomly generated key k E , else it
returns the actual message key wg.k[s} (which corre-
sponds to what is generally called the session key in
the AKE model).

oSend(7 ¥ sid, s, AD)
Wg.sid, a stage s = (x,y), and a (possibly empty)
string of additional data AD, this sending oracle checks
that:
1) Wg exists,
2) s¢ 71'1(;2,
3) P is the sender for stage s,
4) there exists s’ € Wg such that s € next(s’),
then if one of these conditions does not hold, the
oracle returns 1. Otherwise, if AD is not empty, it
simulates the sending algorithm (i.e., it updates 75 as

on input a session identifier




aSend would) using AD as additional data, which it
then returns; alternatively, it generates aRKGen(l’\) —
(rchskg),rchpksf)), then runs aSend(ItkeysP,s,ﬂg,
L,(rchskgf),rchpkgf)),mSPQ) and returns the addi-
tional data. Without loss of generality, we suppose that
the AD given by the attacker can always be parsed
into something correct, even if that means truncating
or padding it. Note that only the sender’s transcript is
updated when this oracle is called, under the condition
it had not been called at that stage before, i.e., its
usage is restricted to once per stage. If AD is empty,
this oracle sets SHU(T('P, s) = 1 to denote that it has
been sent like an honest user on stage s, else it sets
SHU(7¥ 5,s)=0.

oRecelve(TrP sid, s, AD)

on input a session identifier

Wg.sid, a stage s = (x,y), and a string of additional
data AD, this receiving oracle checks condition 1 from
oSend along with:
5) P is the receiver for stage s,
6) if x # 0, there exists s’ = (
that 2’ =2 — 1,
then if one of these conditions does not hold, the
oracle returns _L. This oracle then runs aReceive with
AD. As it was for oSend, the AD is “automatically”
assumed to be correct. Note that only the receiver’s
transcript is updated by this oracle, allowing out-of-
order messages or derailing, in case the AD is different
from the one used in the sendmg oracle for that level. If
72.Tr[s] = AD and SHU(m(;, s) = 1, then this oracle
sets RHU(’/Tg, s)=1to denote that it has been received
like an honest user on stage s, else RHU(wg, s)=0

Oracles for the ACCE model

oSend(ﬂ'g.sid, $,Mg,M1,AD,C) | is very similar to
oSend for AKE, with the additional input of two mes-
sages Mg, My, and a ciphertext C (empty if AD is),
checking conditions 1-4 to know if it should return L.
If the conditions hold, if AD and C are not empty, it
simulates the sending algorithm using AD as additional
data and ng.b[s] as the message (i.e., it updates 7719 as
aSend would) and returns C; alternatively, it generates
aRKGen(1*) — rch® = (rchsk® rchpk®), then
runs aSend(ltkeysp, s 7TP M 9 bls] rch(® ,mspg) to
obtain a ciphertext C’, and return it. As it is in AKE, if
AD and C are empty, this oracle sets SHU(T(']?, s)=1,
else it sets SHU(?T?, s) = 0. Finally, this oracle adds
Cor C' to alist Zpgs.

oLoR.AEnc(n ¥ sid, s, Mg, My, AD)

identifier Wg.sid, a stage s = (w,y), two messages
Mg, M1, and a (possibly empty) string of additional
data AD, the encryption oracle checks condition 1, and
that s € ﬂg, then encrypts both messages using either
AD or some additional data generated by aRKGen, then
if either encryption is L, it returns L, otherwise it
returns the result C of the encryption of Mﬂ'l(‘,).b[s]' Note
that this oracle is meant to be for the adversary to play
with, no message is ever sent or received. Finally, this
oracle adds C to a list Zp g .

oReceive(7rI(3.sid7 s,C,AD)

Q

x',y') € mg stages such

on input a session

this receiving oracle is al-
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Figure 3: An illustration of which keys are computable
(in grey) if the adversary reveals stage (z,0) (dotted) and
injects the ratchet key of level x + 1 (dashed).

most identical to the one for AKE, with the addi-
tional input of a ciphertext C. It checks conditions 1-2
and 5-6, and returns L if they do not hold. If they
hold, then this oracle runs aReceive for C, which
returns the message M. If C € ZLpg . U Zg ps Or
72 b[s] = 0, then this oracle returns L, else it returns
M. ng.Tr[s] = AD and SHU(w], s) = 1, then this
oracle sets RHU(7), s) = 1, else RHU(7(,), 5) = 0.

oRoR.ADec(ﬂg.sid, s,C,AD)

tifier wg.sid, a stage s = (x,y), a ciphertext C, and
a string of additional data AD, the decryption ora-
cle checks condition 1, and that s € =g, then if
C € ProsUZLops or m2.b[s] = 0, this oracle
returns | '°, else it decrypts the ciphertext and returns
the result to the adversary.

on input a session iden-

Winning conditions of SAID. We recall that at the end
of the experiment, the adversary outputs (7rP sid, s*,0%).

We will now list the conditions under which an adver-
sary trivially knows or computes a message key ﬂg.k(s)
for a stage s depending on which oracles were called.
Unless specified otherwise, the calls are made on P’s side.
We choose to separate the oracle calls into two categories:
those that induce the compromise of the long-term shared
key mspq, weak or full (in this case the security of SAID
becomes equivalent to the security of Signal for previous
stages), and the others (the adversary cannot compute past
keys by herself).

Since we allow the adversary to “derail” the users by
giving them a different ratchet key at the same level, i.e.,
giving a different AD to oSend and oReceive, it is p0s51ble
that 7 Q k() £ 7T15 k(*). This is verifiable formally by
checklng the transcripts on both sides. However, since
the challenge is based on a key for a specific user, this
means that it has to be taken into account in the winning
conditions.

Similarly, the adversary could derail the users right
from the beginning of the conversation, if she intercepts
all of the initiator’s messages, and calls oAccessHSM on
the routine IBS.Sign(IBS.mpk,IBS.skp,:) in order to
obtain a valid signature from the initiator on a value of

10. The decryption returns _L if the bit is 0, as in decription oracle of
the LH-AEAD security model.



her choice, which is then sent to the responder, she will
derail the conversation and know the (fake) master secret,
but she has to take the initiator’s place and thus trivially
knows every key on the receiver’s side. The initiator’s side,
however, is still secure — note that since the responder
never replied, there is only one level.

The adversary could make SAID fall back in Signal’s
security if the master secret is compromised, i.e., is known
and/or used, which happens if:

1) she impersonates the initiator via the attack described
above, or

2) she called oCorrupt on the session’s responder R —
and thus knows idsk z, which gives the master secret
e(idskg, h) —, or

3) she simply called oAccessHSM on the routine
KDF.(mspg,-) at stage s4 = (x4,ya), thus poten-
tially leaking any previous stage.

Note that cases 1 and 2 are full compromises, when
case 3 is a weak compromise. If we are in this situa-
tion, then the adversary trivially knows the message key
ﬂg.k(s) of stage s = (z,y) anterior to s4, if she found
herself in either of the following conditions:

e x =0, ie, she is on the first level'l,

o she called oReveal with var bk on a stage
(z,y < y), or with var = k on s, for P, or for
Q if 7% rchpk[s] = g -rchpk[s],

o she called oReveal with var =rchsk and with
var = rk on a stage (x —1,y’) for the sender of that
stage, under the condition, if that sender is @, that
g .rchpk[(z — 1,y")] = 5.rchpk[(z — 1,3/)],

« she injected the ratchet key of level x — 1, i.e.,

if P is the current sender (resp. receiver),

she called oSend (resp. oReceive) with her

own AD for a stage (z — 1,0) (resp. (z —

1, 7% rec[s])), so either SHU(x 2, (x —1,0)) or

RHU(W?, (x — 1,7rg.rec[s])) is 0,

and knew the root key of that level, meaning she

either

— called oReveal with var =rk on a stage (z —
2,4y"), for P — or for (), under the condition that
7w .rchpk[(z — 2,3")] = 75.rchpk[(z — 2,y")] -
or

— actually also injected the ratchet key of level x —2,
while knowing the root key of that level, etc.,

as illustrated in Figure 3.

Moreover, if the adversary continuously injects ratchet
keys, starting at level x; < x4, then until two honest
ratchet keys in a row are generated, say, at levels xp
and xg + 1, all message keys from level x; up to, and
including, level xy are known to the adversary'?. This
is a straightforward extension to the attack presented in
Figure 3.

Now if neither oCorrupt nor oAccessHSM were called,
or if the adversary called oAccessHSM on stage s 4, such
that s4 < s, and

RHU(7 %, (257, 7% rec[s])) = 1 or SHU(n ¥, s) =1,

then the only way for the adversary to trivially know the
message key wg.k(s) for a stage s = (x,y) (posterior to

11. All keys of stages (0,y) can be derived from the master secret.
12. In the weak compromise case, she still has to call oAccessHSM.
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sm, if relevant) is if she called oReveal with var = k on
the stage s for P, or @ if wg.rchpk[s] = wg.rchpk[s].

Note that because the adversary no longer uses
oAccessHSM, and did not call oCorrupt, an oReveal query
can only compromise a single stage, even with var = bk,
because the master secret is not known to her, yet it is
always needed for the key derivations.

Finally, in both the AKE and the ACCE experiment,

if:
. Wg exists, and
o s* € 771@, and

« none of the conditions mentioned in this paragraph
hold,

then if b* = ﬂ'g.b[s], the challenger returns 1, else it
returns 0. Otherwise, the challenger picks a random bit

b & {0,1} and returns it.

Definition 3 (AKE/ACCE-security). Let 11 be an iMAM.
IT is said to be AKE/ACCE secure if for any poly-
nomial time adversary &, the probability that &/ wins
the AKE/ACCE experiment is negligibly close to 1/2.

7.3. Security Proofs

In this section, we show that SAID is secure in both
the AKE and the ACCE model.

Theorem 1. If IBS is EUFCMA-secure, then SAID is
AKE-secure under the BCDH and the CDH assump-
tions in the random oracle model.

Theorem 2. If SAID is AKE-secure and AEAD is LH-
AEAD-secure then SAID is ACCE secure.

We give the proof sketches of these two theorems. Our
proofs use the sequences of games approach introduced by
Shoup in [22]. The complete proofs are given in appendix.

Proof (sketch) of Theorem 1:
We partition the analysis for two individual cases:

e Case 1: (i) The adversary calls the oAccessHSM
oracle for the conversation wg after the stage s, is
generated or (i7) the adversary calls the oCorrupt
oracle on the user P or () (in this case, the idea is
that the key mspq is corrupted, hence the security
of SAID is equivalent to the one of Signal).

o Case 2: (i) The adversary does not call the
oAccessHSM oracle for the conversation ’/Tg after the
stage s, is generated and (i¢) the adversary does not
call the oCorrupt oracle on users P and () (in this
case, the idea is that the key mspg is not corrupted,
hence the adversary must guess mspg to win).

Case 1: We observe that if the stage s, = (., y«) satisfies
the winning conditions, then there exists x,. < x, such
that:

o RHU(7 Y, (24, 7% rec[s.])) or SHU(T ¥, (24, 0)) is

1,

o RHU(7 %, (24s — 1, 7% rec[s.])) or SHU(7 ¥, (24r —
1,0)) is 1,

o the adversary never queries (wg.sid,var, (z,y)) to
the oReveal oracle such that var € {bk,rk} (resp.
{k,rchsk}), and 2., < 2 < z, and 0 < y < y,
(resp. (z,y) = (¢4, y«)) during the experiment.



We first show that the probability that the adversary
sends a query (ms}Q, A* rk™) to the random oracle that
simulates KDF; such that A* = A®++ is negligible. We
prove this claim by reduction. Assume that there exists a
polynomial time algorithm &/ for whom this probability
is non negligible. We show how to build an algorithm &
that breaks the CDH experiment. The idea is that if the
adversary has a non-negligible advantage to win the AKE
experiment, then she sends A*+* to the random oracle
that simulates Let gy be the number of queries sent to the
random oracles, which is the result of a CDH instance.

We then show that the probability that the
adversary sends a query (mspo,A*,rk") or
(msphg, bk™, tag*) to the random oracles that simulates
KDF; and the function HKDF used in KDF,, such
that rk* € {rk™* rk® 1 .. rk®}, or such that
bk* € {bk@=0 pk@D)  pk(@¥I1 s negligible.
The idea is that if the adversary does not know AZ%++,
then she is not able to guess all values that are generated
from the hash of A=,

Finally, if &/ never sends bk®*¥*) to the random
oracle that simulates the KDF function, then the key
k% is indistinguishable from random. In this case, the
probability that of wins the game is exactly 1/2.

Case 2: We observe that if the stage s. = (x4, Y. ) satisfies
the winning condition, then there exists s,, < s, such that
the oracle oAccessHSM is not called after the stage s.. is
generated and SHU(wg,s) =1or RHU(Wg,s) =1 We
want to remove the cases where the adversary guesses
the random tag tag®+ before it is generated, and sends
it to the oracle oAccessHSM. In this case the adversary
should guess the key k°+ without breaking the winning
conditions. More formally, we show that the probability
that the adversary has sent the query ¢ = (bk®*, tag®) to
the oracle oAccessHSM such that tag™ = tag®~ before the
stage s, is generated (hence before tag”* is generated) is
at most the probability that it guesses tag” at random
in gusm tries, where gnsm is the numer of queries sent
to oAccessHSM, which is negligible. The idea is that the
adversary must guess the value at random since it does
not exists when she calls the oAccessHSM oracle.

Next, we show that the probability that
the  adversary chooses the  additional data
AD = (P, Q, rchpk!? 79 rec[(0,0))), , sgn)
by herself when she calls the oSend oracle
on the stage (O,Wg.rec[s])) and 7er such that
IBS.Vrfy(IBS.param, I, (I, R, rchpkgo), h),sgn) = 1

is negligible. We prove this claim by reduction. Assume
that there exists a polynomial time algorithm &/ such
this probability is non-negligible. We show how to
build a polynomial time algorithm 9 that breaks the
unforgeability of the identity based signature.

Finally, we show that the probability that the adversary
sends a query that contains msp¢ to the random oracles is
negligible. We prove this claim by reduction. Assume that
there exists a polynomial time algorithm & such that this
probability is non negligible. We show how to build an
algorithm 98 that breaks the BCDH assumption. The idea
is that to guess mspg, the adversary must compute the bi-
linear computational Diffie-Hellman from H(Q), ID.mpk,
and h. We recall that since the adversary does not generate
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the signature of h, this value was honestly chosen by the
challenger.

On the other hand, if & never sends mspg to the ran-
dom oracle that simulates the KDF functions and &/ never
sends bk(™*¥*) to the oAccessHSM oracle on routine
R.KDF,(mspq,-), then the key k* is indistinguishable
from a random value. In this case, the probability that &f
wins the game is exactly 1/2.

Finally, in any case, the probability that the adversary
wins the game is negligibly close to 1/2. (I
proof (sketch) Theorem 2:

We prove this theorem by reduction. Assume that AEAD
is LH-AEAD-secure, and assume that there exists an
algorithm &/ that breaks the ACCE security of SAID. We
show how to build an algorithm 9 that breaks the AKE
security of SAID. The algorithm 9 simulates the ACCE
experiment to &/ using the keys produced by the test
oracle. If Wg.b[s} = 0, then the message key is randomly
chosen. In this case, encryptions and decryptions are
independent from the keys exchanged in SAID, hence,
winning the ACCE experiment is equivalent to breaking
the security of the AEAD scheme, so the advantage of
o is negligible. On the other hand, if 7.b[s] = 1 then
3B encrypts and decrypts using the real message key.
In this case, &/ wins with a non-negligible advantage
by hypothesis. Finally, depending on the response of
o, the adversary guesses the bit b with non-negligible
probability. (]

ACCE Security of Signal. We note that the security of
Signal in our model can be proven in a similar way as for
SAID. We recall that our model is stronger than the one
proposed in [1] since it allows the adversary to inject her
own ratchet keys in the additional data, and considers the
un-truncated version of the Signal protocol.

8. Conclusion

In this paper, we studied the Signal messaging protocol
from a new angle and proposed a variant, SAID, that
we proved secure in the authenticated and confidential
channel establishment (ACCE) model.

We focused on fixing several weaknesses in Signal
to build SAID, which inherently led us to a more secure
protocol. Our construction stays very close to Signal, with
some additional or differently computed keys here and
there.

Cohn-Gordon et al. [1] proved the security of Signal
in the authenticated key exchange (AKE) model, which
required them to consider the protocol with several mod-
ifications. We give in this paper a proof of SAID in the
ACCE model, in order to be able to fully consider the
protocol.

We generalized SAID by defining Identity-Based
Multi-Stage Asynchronous Messaging Protocols, for
which we gave the security model that we used in our
proof.

In the future, we would like to implement our solution
to prove its practical efficiency. Moreover, several works
recently focused on group messaging, and the Messaging
Layer Security IETF Working Group was created in early
2018. Following this, we would like to see how to extend
SAID to a multi-user setting.
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Appendix
1. Security Proofs

notation: For any computational game GG and any security
parameter k, we define the advantage of an adversary &/
on G as follows:

Adv§(1*) = P[o/ wins G].

For any decisional game G and any security parameter
k, we define the advantage of an adversary &/ on G as
follows:

1. Ple/ wins G]|.

AdvE (1Y) = 5

In any case, we define the advantage on GG as follows:
Advi; (1Y) = max{Adv(1*)}.
proof Theorem 1:

Game Gy: This game is the same as the AKE experiment
for SAID.

Game G;: This game is defined as GO except that
the challenger chooses a conversation wg, at random. If

71'5: # w5 then the challenger chooses a bit at random and
returns it. Let ¢, be the maximal number of conversations
that are started by the adversary during the experiment. We
have:

AdvEo(1*) < g - AdvE1 (1),

Game G2: This game is defined as (G; except that the
challenger chooses a stage s at random. If s # s, then
the challenger chooses a bit at random and returns it. Let
qs be the maximal number of sessions generated during
the experiment. We have:

AdvEr(11) < g, - AdvE2 (1Y),

Game G3: This game is defined as G2 except that the

challenger picks I < {P,Q} and R <& {P,Q}\{I}. If I
is not the initiator of the instance 77 then the challenger
chooses a bit at random and returns it. We have:

Adv©2(1) < 2. Adv@3 (1),

At this step, we partition the analysis for two individ-
ual cases:

e Case 1: (i) The adversary call the oracle
oAccessHSM for the conversation wg after the stage
s« 1s generated or (4i) the adversary calls the oracle
oCorrupt on the user P or (). (in this case, the idea
is that the key mspq is corrupted, hence the security
of SAID is equivalent to the one of Signal.)

e Case 2: (i) The adversary do not call the oracle
0AccessHSM for the conversation wg after the stage
sy is generated and (i7) the adversary does not call
the oracle oCorrupt on the users P and (. (in this
case, the idea is that the key msp( is not corrupted,
hence the adversary must guess mspg to win.)



Games for Case 1:

We observe that if the stages s. = (x.,y.) satisfies
the winning condition, then there exists z.. < z, such
that:

. SHU(TFIC:Q7 (*T**7 )) = 1 or
RHU(7 ¥, (x**,wp recfs,])) =1
. SHU(w,‘i’,(:c** ) = L or

RHU(’]T s (Taw — 1,7rp.rec[s*])) =1

o The adversary never queries (ﬂg.sid,var, (x,y)) to
the oracle oReveal such that var € {bk,rk}, .. <
z <z, and 0 < y < y, during the experiment.

Game G,4: This game is defined as G3 except that if the
adversary sends a qwery (ms*PQ, A* rk™) to the random
oracle that simulates KDF; such that A* = A%++, then at
the end of the experiment, the challenger sets abort = 1,
picks a random bit b and returns it. We have, for any
adversary &f:

|P[of wins G3] — P[of wins G4]| < Plabort = 1].

We recall that the KDF; is simulated by a random oracle.
Let gy be the number of queries sent to the random
oracles. We claim that:

Plabort = 1] < g - ecpn (k).

We prove this claim by reduction. Assume that there
exists a polynomial time algorithm & that sends a qwery
(mspg, A%, rk™) to the random oracle that simulates the
KDF; such that A* = A%+ with non negligible proba-
bility. We show how to build an algorithm 9 such that:

Plabort = 1]
T

B receives A = ¢g® and B = ¢° as input. B simulates
honestly the game G5 to & except that:

« When o calls oSend (% sid, (.. — 1,0), AD) then

B sets rchpk(x* b= = A (where X =1 if z, — 1 is
even, X = R otherwise) in the additional data AD.
o When & calls oSend (7% .sid, (74, 0), AD) then &

sets rchpk()?*) = B (where X =1 if x, — 1 is even,
X = R otherwise) in the additional data AD.

o The encryption key k;gfé*’o) for the instances Wg
is chosen at random in the uniform distribution on
the key set # of the encryption scheme. If the key
kg 1*;.*’0) for the instances WS is computed from the

same rachet keys and the same root key, % sets
k(z**,o) _ k(r**’o)
PQ  ~Fop -

At the end of the simulation of G3, 9 picks i in the
uniform distribution of {1,..., gu}. Let ¢; be the i qwery
send by & to the random oracle that simulates KDF;. If
g € Gy x G x G, B parses ¢; as (ms*PQ,A*,rk*) and
returns A*. Otherwise, &% returns L. Note that while &/
does not send A*+* = g»? to the oracle, then & perfectly
simulates the game G3.
We deduce that:

Ple/ sends A®**] > Plabort = 1].

AGEPH(1Y) 2

Moreover, If of asks A%** to the random oracle, then the
probability that & returns A®=* is at most the probability
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that 9% guesses the qwery that contains A*++, which is
1/gn. Hence:

Pl sends A%+]

AdvEPH(1*) > P& wins] >
qH
Plabort = 1]
Z - @ -
aH

which concludes the proof the claim.

Game G5: This game is defined as G4 except that
if the adversary sends a qwery (mspq, A", rk”) to the
random oracle that simulates KDF; such that rk* €
{rk™= k™=t rk®}, then at the end of the experi-
ment, the challenger sets abort = 1, picks a random bit b
and returns it. We have, for any adversary &:

|P[«/ wins G4] — P[&/ wins G5]| < Plabort = 1].

We recall that KDF; is simulated by a random oracle. Let
gy be the number of queries sent to the random oracles.
We claim that:

aH

Plabort = 1] < Zpax - R
We use an hybrid argument. We set G4 _1 = G4, then
for all i € {0,...,2. — T.}, we set the game Gy as
the same as G4,;_; except that if the adversary sends a
qwery (mspq, A%, rk™) to the random oracle that simu-
lates KDF; such that rk* = rk®**%, then at the end of
the experiment, the challenger sets abort; = 1, picks a
random bit b and returns it. We have, for any adversary
o and i € {0,..., 2Ty — Tus }:

|P[o wins G4 ;—1] — P[o/ wins G4 ;]| < Plabort; = 1].

We distinguish the two following cases:

o If i = 0: If the adversary does not send A”* to
the random oracle, then rk®* is indistinguishable
from an elements picked in the uniform distribution
on {0,1}*. The probability that the adversary has
sent the qwery that contains rk”* is at most the
probability that it guesses rk™** at random in gkpg
tries.

o If % > 0: If the adversary does not send r to
the random oracle, then rk”* " is indistinguishable
from an elements picked in the uniform distribution
on {0,1}*. The probability that the adversary has
sent the qwery that contains rkxl**“ is at most the
probability that it guesses rk®** ™ at random in gkpr
tries.

We deduce that:

kmx*+i71

aH
Plabort; = 1] < .
We note that G4 5, .., = G5. Finally, we have:
Plabort = 1] < Z Plabort; = 1]
i=0
aH
< Tmax * 3y
- 2% —qu

which concludes the proof the claim.

Game Gg: We recall that KDFy(mspg, bk™, tag*) re-
turns (HKDF(ms}, bk™), HKDF(msp g, bk™, tag*)), where



HKDF is simulated by a random oracle. This game is
defined as G except that if the adversary sends a qwery
(ms}h, bk*, tag”) to the random oracle that simulates the
HKDF such that bk* € {bk(®®) pk(@b pk@=v-)},
then at the end of the experiment, the challenger sets
abort = 1, picks a random bit b and returns it. We have,
for any adversary &:

|P[&/ wins Gg] — P[¢/ wins Gg|| < Plabort = 1].

We recall that the HKDF is simulated by a random oracle.
Let gy be the number of queries sent to the random
oracles. We claim that:
aH
22 —qn
We prove this claim in a similar way that for Game Gg.
On the other hand, we observe that if &/ never sends
bk(®*¥<) to the random oracle that simulates the HKDF
function, then the key k°+ is indistinguishable from a
random value picked in the uniform distribution on F#
for the adversary /. In this case, the probability that &/
wins the game is exactly 1/2:

Plabort = 1] < Ymax -

1
Pl wins Gg] = 7
Games for Case 2:

We observe that if the stages s, = (x.,y.) satisfies
the winning condition, then there exists s,, < s, such that
the oracle oAccessHSM is not called after the stage s
is generated and SHU(wg,s) =1or RHU(wg,s) = 1.
Game G,: In this games, we want to remove the cases
where the adversary guesses the random tag tag®+ before
it is generated, and sends it to the oracle oAccessHSM. In
this case the adversary should guess the key k°+ without
breaking the winning conditions. This game is defined
as G3 except that at the end of the experiment, if the
adversary has sent the qwery ¢ = (bk™,tag*) such that
tag* = tag®* to the oracle oAccessHSM (before the stage
s. 18 generated by oSend for the instance wg), then the
challenger sets abort = 1, picks a random bit b and returns
it. We have:

|P[&/ wins G4] — P[¢/ wins G3|| < Plabort = 1].

Let gysm be the number of queries that are sent to the or-
acle oAccessHSM during the experiment. The probability
that the adversary has sent the qwery ¢ = (bk®*,tag®*) to
the oracle oAccessHSM such thattag* = tag®~ before the
stage s, is generated (hence before tag” is generated) is
at most the probability that it guesses tag®= at random in
qusm tries. We deduce that:

Plabort = 1] < _dHsm

D — GHsm
Game Gj5: This game is defined as G4 except
that if the adversary chooses the additional data

AD (P, Q, rchpkgg),wg.rec[(o, 0)]), h,sgn)
by himself when it calls the oracle oSend on
the stage (O,Wg.rec[(O,O)])) and 7r5 such that
IBS.Vrfy(IBS.param, I, (I, R, rchpkgo), h),sgn) 1,
then at the end of the experiment, the challenger
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sets abort 1, picks a random bit b and returns
it. We recall that I € {P,Q} (resp. R) denotes the
initiator (resp. responder) in the instance wg for the
stage (O,wg.rec[(0,0)]). Moreover, we recall that if
IBS.Vrfy(IBS.param, I, (I, R, rchpk(]O),h),sgn) = 0,
then the conversation between P and Q) aborts at the
first stage, and the probability that the adversary wins the
experiment is 1/2. On the other hand, if the adversary
does not choose the additional data, then P and @) shares
the same key mspg.
We have, for any adversary &f:

|P[«/ wins G4] — P[&/ wins G5]| < Plabort = 1].
We claim that
Plabort = 1] < AdvEF“MA(1Y),

We prove this claim by reduction. Assume that there exists
a polynomial time algorithm o/ such that P[abort = 1] is
non-negligible. We show how to build a polynomial time
algorithm 3 such that:

AdvE'EEMA(1%) > Plabort = 1].

% receives (IBS.mpk,,IBS.param,) as input. It then
simulates the game G5 as in the real experiment, except
that:

o It sets (IBS.mpk, IBS.param)
(IBS.mpk,, IBS.param,).

e % simulates oUReg(h, X) as in G5 except that:
if X I, # computes ltkeys; = (L,idsk;),
else % runs the extraction oracle IBS.skx <
IBS.Extr(IBS.param, IBS.msk, X) and computes
ltkeysy = (IBS.skx,idskx).

elet X be a user identity such that
X # R. % simulates the first call to
oSend(X .sid, (0,0), Mg, M;,AD,C) as in Gy

except that it computes sgn + IBS.Sign(IBS.param,
IBS.sky, (I, X, rchpk(IO), 0,h,)) using the signing

oracle.

o At the first call to
oSend(ﬂg.sid,(O,O),MO,Ml,AD,C), B parses
AD = (I,R7rchpk(10),07h,sgn) and sets
My = (I,R,rchpk(lo),o,h), sgn, = sgn and
Id, = P.

At the end of the simulation, & returns (sgn,, Id,, M)

We recall that the corruption oracle is never called on
1, hence the adversary cannot asks the secret keys of 1.
We deduce that

Plabort = 1]
= P[IBS.Vrfy(IBS.param,ld,, M,,sgn,) = 1]

> Advy s (1%)

which concludes the proof the claim.

Game Gg: This game is defined as G5 except that if
the adversary sends a qwery ¢ to the random oracles that
simulates the hash functions such that:

o ¢ = (mspg,g7) such that mspg = mspg

o or ¢ = (mspg, A%, rk*) such that mspg = msho

o or ¢ = (mspq,bk™, tag*) such that mspg = msp



then at the end of the experiment, the challenger sets
abort = 1, picks a random bit b and returns it.
We have, for any adversary </:

|P[o/ wins G5] — P[of wins Gg]| < P[abort = 1].

Let gu be the number of queries sent to the random
oracles. We claim that:

Plabort = 1] < gn - egcpu(k).

We prove this claim by reduction. Assume that there exists
a polynomial time algorithm & such that P[abort = 1] is
non negligible. We show how to build an algorithm %
such that:
AdV%CDH(l)\) 2 P[abort - 1] )
qH

B receives A = g¢, B = g5 and C = g as input. B
simultates the game G4 to &. First, it sets H(R) = A (we
recall that & simulates H as a random oracle, moreover
we recall that R denotes the responderof the instance wg
for the stage (0,0)) and ID.mpk = B, then & simulates
honestly the game G4 to &/ except that:

o For all identities X # R, & simulates the random
oracle H(R) as follows. If Sx does not exists, it picks

ax & Z, and sets Bx = g7~ It returns SBx.

o When & calls oStart(X), % calls H(X), then:

— If I = X, then it sets idskx =_L.

— Else, let ¢ : G — G; be a polynomial time iso-
morphism such that ¢(g2) = g1; & sets idskx =
@(ID.mpk)*x . We recall that since e is a paring of
type 2 then such an isomorphism exists. We note
that idsky = ¢(ID.mpk)®x = @(gP-msk)ex =
(¢(92)|D.msk)ax — gllD.mSk'le — H(X)ID.msk.

e When o calls oStart(P,role,Q), % runs
aStart(P,role, Q) as in the real protocol except
that it sets h = C. We note that mspg = e(A, B)S,
which is the solution of the BCDH problem istance
(A, B,C).

o Each key of the conversation 771%) is chosen at random
in the uniform distribution on the key set % of the
encryption scheme.

At the end of the simulation of G5, & picks i in the
uniform distribution of {1,...,gn}. Le g; be the i qwery
send by & to the random oracle that simulates the KDF
function:

o If ¢; € Gy X Gy, B parses ¢; as (gf,ms*PQ) and
returns msp,.

o If i € Gy x {0,1}*, B parses ¢; as (msp), bk™)
and returns msp,.

o If gi € Gy x G x G, & parses g; as (mspg, A*, rk*)
and returns msp,.

o Otherwise, &% returns L.

We observe that while & does not send mspg to
the oracle, then & perfectly simulates the game G4. We
deduce that:

Ple/ sends mspg] > AdvSH (171).

Moreover, If & asks mspq to the random oracle, then the
probability that 9 returns mspq is at most the probability
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that & guesses the qwery that contains mspg, which is
1/gn. Hence:

Ple/ sends mspg]
qH

AdvESPH (1% > P[% wins] >

Plabort = 1]
Z - -
GH
which concludes the proof the claim.

On the other hand, if & never sends mspg to the
random oracle that simulates the KDF function and &/
never sends tag®s to the oracle oAccessHSM (c.f. Game
G4), then the key £°+ is indistinguishable from a random
value picked in the uniform distribution on % for the
adversary /. In this case, the probability that &/ wins the
game is exactly 1/2:

1

Pl wins Gg] = 3

Conclusion From the previous results, we have:
AV (1%) < gr - g5 - 2
<QH : <EBCDH(7€) +econ(k) +

xmax + ymax
2% — qu

)

)

1 Tmax + Ymax
D — qHSM 22 — gHsm
n Advfg’sFCMA(ﬂ)) .

+ GHsm - <

proof Theorem 2:
Game Gg: This game is the ACCE experiment for SAID.

Game G;: This game is defined as G except that
the challenger chooses a conversation 7T5/ at random. If

715: # ¢, then the challenger chooses a bit at random and
returns it. Let ¢, be the maximal number of conversations
that are started by the adversary during the experiment. We
have:

Adv9(11) < g, - AdvE (171).

Game G: This game is defined as (G; except that the
challenger chooses a session s at random. If s = s, then
the challenger chooses a bit at random and returns it. Let
qs be the maximal number of sessions generated during
the experiment. We have:

AdvE(11) < g, - AdvE92 (1Y),

Game G3: This game is defined as G2 except that the
encrypt and decrypt oracles use a key k°+< chosen at
random instead of the real key for the stage s.. We claim
that, for any polynomial time algorithm </:

|P[e/ wins G3] — P/ wins Gs]| < Advens(17).

Let & be a polynomial time algorithm. To prove this
claim, we show how to build an algorithm 9 such that:

IP[of wins G2] — P[o/ wins Gs]| < Advéaip o (1%).

P simulates the game G to & as in the real ACCE exper-
iment, except for the stage s.. For this stage, 9% simulates
the oracles oLoR.AEnc and oLoR.ADec as follows:



. oLoR.AEnc(wg.sid,s, Mo, M1, AD): @ receives the
key k°+ from the oracle oTest for the stage s,, then
it simulates the encryption oracle using it as in the
real experiment.

. oRoR.ADec(ﬂg.sid,s,C,AD): A receives the key
k®+ from the oracle oTest for the stage s., then it
simulates the decryption oracle using it as in the real
experiment.

Finally, o returns the bit b,, then if b* = 7.b[s*] then
9 returns 1, else it returns 0.

Note that if b = 0, then 9B perfectly simulates the
game (o because it uses the real key k£°+ to encrypt
and decrypt the queries, else is perfectly simulates the
game (3 because it uses a key k®+ that was randomelly
generated to encrypt and decrypt the queries. We deduce
that:

|P[o/ wins Ga] — P[of wins G3]| = AdvéAKFD’g](l)‘)

which conclude the claim.

Finally, we claim that:
Adv (11) < AdvERRE (11).

We prove this claim by reduction. Assume that there exists
a polynomial time algorithm &/ such that AdvgB(lA) is
non negligible. We show how to build an algorithm
such that:

AdVAERD, 5 (1) = Advg? (1%).

3B simulates the game G5 to & as in the real experiment,
expcept that at the state s,, 9 simulates the oracles
oLoR.AEnc and oLoR.ADec as follows:

« To simulate oLoR.AEnc(r ¥ sid, 5., Mg, My, AD), %
sends (Mg, M7, AD) to the oracle oLoR.AEncagap,
and returns the ciphertext C outputted by
OLOR.AEnCAEAD.

o To simulate oRoR.ADec(wg.sid7 s«, C,AD), % sends
(C,AD) to the oracle oLoR.ADecagap, and returns
the message M outputted by oLoR.ADecagap.

At the end of the simulation, & returns b,, then A
returns b,. We observe that the experiment is perfectly
simulated for </, hence 9% wins the LHAE experiment
iff o/ wins the game (3, which concludes the proof the
claim.

Conclusion We deduce:
AV (1) < gy - g, - (AdVER (1Y) + AdVRERB (1))

0
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