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Abstract—In this paper, we present a high-speed constant-
time hardware implementation of NTRUEncrypt Short Vector
Encryption Scheme (SVES), fully compliant with the IEEE 1363.1
Standard Specification for Public Key Cryptographic Techniques
Based on Hard Problems over Lattices. Our implementation
follows an earlier proposed Post-Quantum Cryptography (PQC)
Hardware Application Programming Interface (API), which
facilitates its fair comparison with implementations of other
PQC schemes. The paper contains the detailed flow and block
diagrams, timing analysis, as well as results in terms of latency (in
clock cycles), maximum clock frequency, and resource utilization
in modern high-performance Field Programmable Gate Arrays
(FPGAs). Our design takes full advantage of the ability to paral-
lelize the major operation of NTRU, polynomial multiplication, in
hardware. As a result, the execution time bottleneck shifts to the
hash function, SHA-256, which is sequential in nature and as a
result cannot be easily sped up in hardware. The obtained FPGA
results for NTRU Encrypt SVES are compared with the equiv-
alent results for Classic McEliece, a competing, well-established
Post-Quantum Cryptography encryption scheme, with a long
history of unsuccessful attempts at breaking. Our code for
NTRUEncrypt SVES is being made open-source to speed-up
further design-space exploration and benchmarking on multiple
hardware platforms.

Index Terms—NTRU, lattice-based, hardware, API, P1363.1

I. INTRODUCTION

NTRUEncrypt is a polynomial ring-based public-key en-
cryption scheme that was first introduced at Crypto'96. The
first formal paper describing this scheme was published at
ANTS III [1]. In 2008, an extended version of this algorithm
was published as the IEEE 1363.1 Standard Specification
for Public Key Cryptographic Techniques Based on Hard
Problems over Lattices [2]. Within the standard, the described
algorithm is called Short Vector Encryption Scheme – SVES.
Since the core of this algorithm is known in the academic
literature as NTRUEncrypt, we will refer to the full cryptosys-
tem as NTRUEncrypt SVES. The recent renewed interest in
NTRU is at least partially driven by its presumed resistance
to any efficient attacks using quantum computers. In De-
cember 2016, National Institute of Standards and Technology
(NIST) published an official Call for Proposals and Request
for Nominations for Public-Key Post-Quantum Cryptographic
Algorithms, followed by the submission and acceptance of
69 candidates to the first Round of the NIST standardization
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process a year later. Among the candidates, there are new,
substantially modified versions of NTRUEncrypt. However, in
an attempt to characterize an already standardized algorithm,
in this paper, we focus on the still unbroken version of the
algorithm published in 2008. We are not aware of any previous
high-speed hardware implementation of the entire NTRUEn-
crypt SVES scheme reported in the scientific literature or
available commercially. Our implementation is also unique in
that it is the first implementation of any PQC scheme following
our newly proposed PQC Hardware API [3]. As such, it
provides a valuable reference for any future implementers of
PQC schemes, which is very important in the context of the
ongoing NIST standard candidate evaluation process.

II. PREVIOUS WORK

Software implementations of NTRUEncrypt are available
in eBACS [4]. The full open source implementation of the
IEEE P1363.1 standard, developed by Security Innovation,
Inc., is available in [5]. The majority of these implementations
support multiple parameter sets with security levels of 112,
128, 192 and 256 bits. Bailey et al. [6] implemented NTRU
on a wide variety of microcontrollers, as well as Xilinx
Virtex-E 1000 family of FPGAs. O’Rourke et al. [7] pre-
sented a scalable architecture to perform NTRU multiplication,
and proposed a unified architecture based on Montgomery
multiplication. Kaps proposed a scalable low-power design
for NTRU polynomial multiplication [8]. In [9], Atici et al.
presented a compact and low power NTRU design that was
suitable for pervasive security applications, such as RFIDs and
sensor nodes. Kamal et al. [10] investigated several hardware
implementation options for NTRUEncrypt, and analyzed its
performance on Virtex-E FPGA devices. The design was
configurable to perform modular reduction using Mersenne
Prime and the look-up table based architecture. The first
attempt at the hardware modeling of the entire functionality
of P1363.1 was reported in [11], [12]. A hybrid behavioral
and structural VHDL model was developed. Unfortunately, no
implementation results (maximum clock frequency, execution
time, resource utilization, etc.) were reported, which most
likely indicates that the developed model was not synthesiz-
able. The most complete and efficient high-speed hardware
implementation of NTRUEncrypt itself (without the remaining
components of SVES), supporting all major parameter sets,
was reported in [13], [14]. Only encryption is fully supported.
No operations specific to decryption are explicitly supported.



A. Background on NTRUEncrypt SVES

The flow diagrams of the NTRUEncrypt SVES encryption
and decryption operations are shown in Fig. 1. The notation
used and the names of basic operations, inputs, outputs, and
intermediate variables are explained in Tables 1 and 2.

(a) Encryption

(b) Decryption

Fig. 1: Flow diagram of NTRUEncrypt SVES.

In Fig. 1, the operations of the core NTRUEncrypt scheme,
known from the early literature on the topic, such as [6],
are shown in dashed boxes. NTRUEncrypt has three major
parameters (N , p, q) such that a) N is prime, b) p and q are

TABLE I: Basic operations of Encryption and Decryption

Name Description
Poly Mult, * Polynomial Multiplication (ring multiplication in Z[X]/(XN − 1))
BPGM Blinding Polynomial Generation Method
MGF Mask Generation Function
Range Conv Range Conversion from [0, q] to [-q/2, q/2]
B2T Conversion of each group of three bits to two ternary coefficients
T2B Conversion of two ternary coefficients to a group of three bits
Poly Add, + Polynomial Addition
Poly Sub, Polynomial Subtraction

Check 1 Checking whether an input polynomial with small coefficients
contains at least dm0 1s, -1s, and 0s. If not, setting fail=1

Check 2 Checking whether all bytes of padding after decryption are 0s.

Check 3 Comparing the values of cR and cR.
If they are different setting fail=1

relatively prime, gcd(p, q) = 1, and c) q is much larger than
p. For the purpose of efficiency p is typically chosen to be 3,
and q as a power of two. The scheme is based on polynomial
additions and multiplications in the ring R = Z[X]/XN − 1.
We use the ∗ to denote a polynomial multiplication in R,
which is the cyclic convolution of the coefficients of two
polynomials. After completion of a polynomial multiplication
or addition, the coefficients of the resulting polynomial need to
be reduced either modulo q or p. The key creation process also
requires two polynomial inversions, which can be computed
using the Extended Euclidean Algorithm. The procedures are
briefly outlined below. During the key generation, the user
chooses two random secret polynomials F ∈ R and g ∈ R,
with so called “small” coefficients, i.e., coefficients reduced
modulo p (typically chosen to be in the integer range from
−1 to +1, and thus limited to -1, 0, and 1. The private key f
is computed as f = 1+pF . The public key h is calculated as

h = f−1 ∗ g · p in (Z/qZ)[X]/(XN − 1) (1)

The message m is assumed to be a polynomial with small
coefficients. The ciphertext is computed as

e = r ∗ h + m (mod q) (2)

where r ∈ R is a randomly chosen polynomial with small
coefficients. The decryption procedure requires the following
three steps:
• calculate f ∗ e (mod q)
• shift coefficients of the obtained polynomial to the range

[−q/2, q/2),
• reduce the obtained coefficients mod p.

h and e are naturally polynomials with so called “big”
coefficients, i.e., coefficients in the range from 0 to q-1. In
the SVES encryption scheme shown in Fig. 1, m is replaced

TABLE II: Inputs, Outputs, and Intermediate Variables

Name Role Description

OID in Object identifier specifying uniquely an
algorithm and parameter set used

b in Random data (binary string)
m in Message (binary string)
octL in Length of message m in bytes (single byte)
p0 var Zero padding (binary string)

hTrunc in First pkLen bits of the public key h
(binary string)

r var Random polynomial with small coefficients
h in Public key (polynomial with big coefficients)
e out/in Ciphertext (polynomial with big coefficients)
Mbin, cMbin
sData, csData var Intermediate variables (binary strings)

Mtrin, mask,
m, cMtrin,
mask, ci

var Intermediate variables (polynomials with
small coefficients)

R, cR, cR var Intermediate variables (polynomials with big
coefficients)

cb var Decrypted random data (binary string)
cm out Decrypted message (binary string)
cOctL out Length of decrypted message (single byte)
cp0 var Decrypted padding (to be verified)

F in/var Polynomial with small coefficients (can be used
as an input representing uniquely private key f)

f=1+pF in/var Private key (can be replaced as an input by F)



by m′, which is an intermediate variable, dependent on the
binary message m, length of m (denoted by octL), random
data b, public key h, and the Object identifier, OID, repre-
senting uniquely a given encryption scheme and parameter
set. Additionally, r is not selected completely at random,
but rather generated by a deterministic function, called the
Blinding Polynomial Generation Method (BPGM), based on a
standardized hash algorithm, with inputs in the form of OID,
message m, random data b, and the first pkLen bits of the
public key h (hTrunc). B2T is a conversion of each group
of three bits to two ternary coefficients, using the look-up
table defined in the IEEE standard. In the SVES decryption
scheme shown in Fig. 1, the decrypted value is denoted by
ci, and must be still unmasked in order to recover the actual
decrypted binary message cm. Three checks are performed on
the decryption side. If any of these checks fails, the result of
decryption is considered invalid. Check 1 is to verify whether
ci, which should be identical with m′ on the encryption side,
has a sufficient number (at least dm0) of 1s, -1s, and 0s
(where dm0 is a part of a given parameter set, and is given
in Table III). Check 2 is to determine whether cMbin on
the decryption side, which should be the same as Mbin on
encryption side, has a proper format, i.e., its padding bytes
(the last maxMsgLenBytes− cOctL bytes) are all equal to
zeros. Finally, Check 3 is the most comprehensive check, used
to verify whether the value of cR′ is equal to cR, where cR′

is calculated using the same formulas as R during decryption,
with the message m replaced by decrypted message cm, and
the random input b replaced by the decrypted random data
cb. The other parts of the input to BPGM, namely OID and
hTrunc, remain the same as during encryption. T2B is an
inverse of the B2T conversion function.

III. HARDWARE DESIGN

A. Assumptions

To ensure compatibility among implementations of the same
algorithm by different designers, our NTRU implementation is
designed based on the hardware API proposed in [3]. Encryp-
tion and decryption share the same circuit. Key generation
is assumed to be performed externally, e.g., in software. The
public key and private key are loaded in advance, before the
first encryption/decryption. They are stored internally and can
be used for processing of multiple messages/ciphertexts.

The primary optimization target is the minimum latency (in
absolute time units) for encryption and decryption. However,
in case any design choices can lead to the same or only
marginally greater latency, with the circuit area decreased
substantially, these design choices are pursued as well in order
to keep the cost and energy consumption of the circuit as low
as possible. Since our implementation is intended primarily
for high-end servers supporting a very large number of TLS,
IPSec, and other secure protocol transactions per second, no
attempt was made to introduce any countermeasures against
side channel attacks other than timing attacks.

The implementation supports two parameter sets, specified
in [2], denoted as ees1087ep1 and ees1499ep1, optimized for

speed, with security levels of 192 and 256 bits, respectively.
SHA-256 is used as a basis for the implementation of the
Blinding Polynomial Generation Method (BPGM) and the
Mask Generation Function (MGF) of SVES. The remaining
major parameters of both sets are summarized in Table III.
Both polynomial r (for encryption) and polynomial F (for de-
cryption) are represented using indices of all their coefficients
equal to 1 and -1.

B. Top-Level Block Diagram

The top-level hardware block diagram is shown in Fig. 2.
The two major functional units, which determine the speed
and area of the circuit are Poly Mult and BPGM MGF.
The latter of these units is used to implement both BPGM
and MGF, because of the similarity between both operations,
their sequential non-overlapping functionality, and because of
the reliance on a single hash function core, implementing
SHA-256. The public key h is stored inside of Poly Mult
(for both encryption and decryption). Indices of non-zero
coefficients of F , uniquely determining the private key f , are
stored in the RAM following the Input Data Conversion Unit
for Decryption (IDCU-D). Range Conversion and modulo p
reduction are naturally combined together. The mod p (mod
3) operation is optimized in such a way to use just 10 LUTs
per 11-bit coefficient. Poly Add (+), Poly Sub (-), Range Conv
& mod p, T2B, Check 1 and Check 3 are all performed on

TABLE III: Parameters of the algorithm, architecture, and
input affecting the execution time, for two parameter sets
ees1499ep1 and ees1087ep1

Parameter Set ees1499
ep1

ees1087
ep1

Name Description
PARAMETERS OF ALGORITHM BASIC

N Dimension (rank) of the polynomial ring 1499 1087
dr No. of 1s and no. of -1s in r 79 63
df No. of 1s and no. of -1s in F 79 63
db No. of random bits of b 256 192

dm0 The minimum number of 0s, 1s and
-1s in m and ci, used in Check 1 79 63

maxMsg
LenBytes Maximum message length in bytes 247 178

pkLen No. of bits of h to include in sData 256 192
q ”Big” modulus 2048 2048
p ”Small” modulus 3 3
c Polynomial index generation constant 13 13
hiLen Hash function input block size in bits 512 512
hoLen Hash function output block size in bits 256 256

PARAMETERS OF ALGORITHM DERIVED
a=log2q No. of bits used to represent ”big” coef. 11 11

b=log2N
No. of bits used to represent an index of a
polynomial coefficient 11 11

cthr Index generation threshold = 2c − (2c modN),
used by BPGM 7495 7609

cval Probability that a randomly generated c-bit
unsigned integer is smaller than cthr 0.9149 0.9288

bthr Threshold = 35, used by MGF 243 243

bval Probability that a randomly generated 8-bit
unsigned integer is smaller than bthr 0.9492 0.9492

PARAMETERS OF ARCHITECTURE
cphi Clock cycles per hash input block 65 65
w Width of the PDI and DO data buses 64 64
sw Width of the SDI data bus 16 16
rw Width of the RDI data bus 32 32

PARAMETERS OF INPUT
l Message length in bytes variable variable
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Fig. 2: Top-level block diagram of the developed hardware architecture of NTRUEncrypt SVES.

only 2w = 64 (rather than N ) coefficients at a time. 64 small
coefficients amount to 128 bits, and 64 big coefficients to
704 bits. Since the aforementioned operations do not limit
the latency of either Encryption or Decryption (as long as
performed at least with the speed of unloading final results),
the narrower datapaths of these units help to minimize the
area and energy consumption of the circuit without affecting
performance.

Before encrypting a message directed to a given user, this
user’s public key must be loaded to the Poly Mult unit, using
the pdi data bus and the Input Data Conversion Unit for
Encryption & Decryption (IDCU-ED). This unit is required
to handle the control signals of the PDI bus and to perform
the bus width conversion (from w to α · bw/αc). Similarly,
before decrypting the first message from a given user, the
receiver’s public key must be loaded to the circuit using the
same approach. Additionally, the receivers private key value,
F , must be loaded to the circuit using the sdi data bus, and
stored in the internal RAM. Since F is a polynomial with
small coefficients 1, -1, and 0, only the locations of 1s and
-1s must be loaded. Each of these locations is a number in the
range, 0..N-1, and thus is represented using β = ceil(log2N)
bits. Each location is loaded in a separate clock cycle.

During encryption, the db bits of random data b are first
loaded to the RAM with the input rdi data. After being fed
with b, BPGM works as a pseudorandom number generator,
producing all locations i of non-zero small coefficients of the
random polynomial r. Each of these locations is consumed by
Poly Mult in one clock cycle. Only after Poly Mult processes
all elements of r, the output R = r ∗ h becomes available.
This output is then reduced mod 4, and the obtained values
provided to the input of MGF. The MGF unit produces
the mask, in the form of a polynomial with small random
coefficients. This polynomial is then added to the polynomial
mTrin obtained by converting the extended message input

Mbin = (b, octL,m, p0), using the binary to ternary conver-
sion unit, B2T (see Fig. 1a). Finally, the obtained new message
representation, m′, is added to the previously generated output
from Poly Mul, R, producing the ciphertext e. The ciphertext
is then released to the output do data, after conversion to
words of the width w, using the Output Data Conversion Unit
for Encryption (ODCU-E).

The decryption starts from the polynomial multiplication of
the private key f = 1+ pF by the ciphertext e. The obtained
value fe then undergoes range conversion and reduction mod
p. The obtained value ci should be the same as the message
representation during encryption, m′. ci undergoes Check 1
for the minimum number of 1s, -1s, and 0s. Additionally, ci
is used in the calculation of cR = ce − ci, which should be
identical to R, calculated on the encryption side. cR is then
reduced mod 4 and used as an input to MGF to produce the
mask. The mask is subtracted from ci to generate cMtrin.
After cMtrin is converted to cMbin, using the ternary to
binary conversion T2B, the Output Data Conversion Unit
for Decryption (ODCU-D & Check 2) checks whether the
decrypted data has a correct format, including p0Len =
maxMsgLenBytes−cOctL bytes of zero padding. If Check
2 passes, the extended decrypted data is decoded to identify
values of cb and cm, which should be the same as b and m
during encryption. These values are then used as inputs to
BPGM MGF. The BPGM unit then produces the locations i
of all non-zero coefficients of the random polynomial cr = r,
which should be the same as those on the encryption side.
These values are then used, together with the public key h,
stored inside of Poly Mult, to calculate cR′ = cr ∗ h. Since
for the correctly decrypted message, cr = r, then cR′ should
be equal to cR obtained earlier during the decryption process.
Comparing these two values constitutes the final check (Check
3) for the correctness of decryption. Only after this test passes,
the decrypted message cm is released through the output



do data, followed by the status block with the Status field
equal to Success. If any of the three decryption checks fails,
all remaining calculations are preempted and only the status
block with the Status field equal to Failure is released to the
output do data.

C. Major Lower-Level Components

Internal block diagrams of the Poly Mult, BPGM MGF,
BWC 1, and BWC 2 units are shown in Figs. 3, 4, 6 and
7, respectively. The algorithm used by Poly Mult is given
as Algorithm 1. A similar Fast Convolution Algorithm was
reported earlier in [6]. The for loop in lines 9-11 corresponds
to adding to the temporary polynomial c = cN−1..c0 the input
polynomial a = aN−1..a0 rotated by bi locations to the left,
namely, a <<< bi = aN−bi−1..a0aN−1..aN−bi . Similarly,
the for loop in lines 13-15 corresponds to the subtraction of
the same value from c. In the block diagram shown in Fig. 3,
the subtraction is accomplished by adding a complemented
value of the rotated input and carry in equal to one. The choice
between addition and subtraction is provided by the controller,
using the signal c0.

Algorithm 1 Polynomial Multiplication, Poly Mult
1: Inputs:
2: Polynomial a(X) with N big coefficients in the range [0, q − 1].
3: Polynomial b(x) with d coefficients 1 at the locations

b0, b1, ..., bd−1 and d coefficients -1 at the locations
bd, bd+1, ..., b2d−1, where 0 ≤ bi ≤ N − 1.

4: Output:
5: c(X) = a(X) ∗ b(X)modXN − 1
6: Pseudocode:
7: for i := 0 to 2d− 1 do
8: if i < d then
9: for j := 0 to N − 1 do

10: cj = cj + aj−bi modN

11: end for
12: else
13: for j := 0 to N − 1 do
14: cj = cj − aj−bi modN

15: end for
16: end if
17: end for

During encryption, only one polynomial multiplication R =
r ∗ h is performed, and thus, the public key h can be stored
directly in the top SIPO w/PI (the Serial Input Parallel Output
unit with Parallel Input). During decryption, two multiplica-
tions are performed, f ∗ e and cR = cr ∗ h. As a result,
during the first multiplication, h is pushed to the neighboring
PISO w/PO (the Parallel Input Serial Output unit with Parallel
Output), and then brought back to SIPO w/PI for the second
polynomial multiplication. In the period between the two
multiplications, PISO w/PO (holding the ciphertext e), feeding
the serial output ce, is used for the calculation of cR (see
Figs. 1 and 2).

The BPGM MGF unit is shown in Fig. 4. It is based on the
slightly modified implementation of SHA-256 [15], extended
with the capability to store and retrieve the chaining value,
which substantially speeds up the repeated computations of
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Fig. 3: Architecture of the polynomial multiplier. REP repre-
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hash(sData||Ci) for multiple values of the counter Ci and sData
composed of multiple input blocks of SHA-256. The speed-up
method is explained in Fig. 5. The composition of sData, used
during encryption, is shown in Fig. 1. The maximum size of
sData, corresponding to the parameter set ees1499ep1 and the
maximum message length listed in Table III, is 2512 bits. After
adding 32 bits of counter Ci, we have up to 2544 bits of input
to SHA-2. This input can be divided into t full 512-bit input
blocks of SHA-2 containing only bits of sData (t=4 for the
maximum message length), and one or two additional blocks
containing the remaining bits of sData (if any) and the 32 bits
of the counter Ci. Since the t first blocks of the input to SHA-2
remain unchanged in the subsequent calculations with different
values of Ci, only the calculations for the blocks shown in bold
in Fig. 5 must be performed. This way a substantial amount
of calculations is saved, by simply storing the contents of
the internal chaining variable of SHA-2 after processing of
t blocks of sData during the calculation of h(sData||C1).

Our implementation of SHA-256 is a basic iterative archi-
tecture with 65 clock cycles per block. During the BPGM
calculations, pdi r and b are used in case of encryption and cm
and cb will be used for decryption process. During the MGF
calculations, the inputs R4 and cR4 are used, for encryption
and decryption, respectively.

The BPGM data processing is performed by the Bus Width
Converter 1 (BWC 1), shown in Fig. 6. For the BPGM
calculations, the output of the Modified SHA-2 is divided
into c-bit blocks (with c=13 for both implemented parameter
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sets). Each block is treated as an unsigned integer. If the
value of this integer is greater than or equal to the index
generation threshold cthr = 2c−(2cmodN), then the block is
discarded. Otherwise, the corresponding output i is calculated
by taking the unsigned integer value of the block mod N . In
our implementation, the mod N operation is performed using
a 2c x β look-up table.

In order to achieve a constant-time implementation, the
indices i are released in batches, after processing each sub-
sequent output of the Modified SHA-2. In order to make
it possible, we estimate the probability of the minimum
number of indices generated up to each release point (and
thus available in the output FIFO), and set the size of each
batch to the value for which the probability of success exceeds

Fig. 5: Computations performed by the ModifiedSHA-2, as-
suming two different cases regarding the size of the last block
of sData (sData t).
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0.995. Our estimations are summarized in Table IV. We make
an exception for the last batch, for which the probability of
success is 0.9929, in order to avoid generating the entire ad-
ditional SHA-2 output. Similarly, we estimate the probability
that the number of indices in the output FIFO was sufficient
after processing each subsequent SHA-2 output, from the first
to tenth. The overall probability of success is estimated to be
equal to 0.9794, which means that only in 2.06% of cases, the
entire encryption operation will need to be repeated with the
different value of seed b.

The MGF task is handled by the Bus Width Converter 2
(BWC 2), shown in Fig. 7. During the MGF calculations,
the output of the Modified SHA-2 is shifted out using 8-
bit blocks. The value of each block is first compared to the
threshold, bthr = 35 = 243. If the value is greater than or
equal to 243, the block is discarded. Otherwise, the block is
converted to the 5-digit ternary representation, with each digit
encoded separately using two bits, for the total of 10 bits.
The stream of 10-bit blocks is then converted into a stream of
128-bit blocks to form the output mask.

Similarly as for BWC 1, we achieve a constant time
implementation, by making certain assumptions about the
number of 10-bit outputs from O2T ROM available in the
following output FIFO after processing 3, 5, 7, 9, and 11
SHA-2 outputs, respectively. As shown in Table V, except
for the last case of processing the 11th SHA-2 output, all
previous assumptions are true with the probability of success
indistinguishable from 1. The probability of meeting the last
assumption is 0.9994, leading to the probability of having to
repeat the encryption with a different value of seed b less
than 0.06%. The overall execution time penalty for making the
implementation constant-time has been estimated to be below



4% for both supported parameter sets. This penalty applies
only to encryption.

TABLE IV: The assumed minimum number of indices i in the
FIFO of BWC 1 after processing each subsequent SHA-256
output block for the ees1499ep1 parameter set.

#SHA-256
outputs

#13-bit output
chunks

Assumed minimum #
of indices i generated

Probability of
success

1 19 14 0.9952
2 39 30 0.9974
3 59 47 0.9955
4 78 62 0.9976
5 98 79 0.9958
6 118 94 0.9984
7 137 110 0.9971
8 157 126 0.9969
9 177 142 0.9964
10 196 158 0.9929

BPGM successful for ees1499ep1 (N=1499, 2df=158) 0.9794

TABLE V: The assumed minimum number of 10-bit partial re-
sults in the FIFO of BWC 2 after processing each subsequent
SHA-256 output block.

#SHA-256
outputs

#8-bit output
chunks

Assumed minimum # of
10-bit chunks

Probability
of success

3 96 64 1
5 160 128 1
7 224 192 1
9 288 256=1280 coefficients 1

MGF successful for ees1087ep1 with N=1087 1
11 352 320=1600 coefficients 0.9994

MGF successful for ees1499ep1 with N=1499 0.9994
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Fig. 7: Hardware architecture of BWC 2.

IV. RESULTS

Our design has been described in VHDL at the Register
Transfer Level (RTL). The target device has been selected
as Xilinx Virtex UltraScale XCVU440-FLGA2892-3-e. All
presented results are generated using Minerva hardware op-
timization tool [16]. In Table VI, we summarize the resource
utilization (in LUTs and Slices), maximum clock frequency,

and latencies of several major building blocks. PolyMult was
optimized for the minimum latency in absolute time units by
introducing five pipeline stages. This unit is shown to be the
most restrictive in terms of clock frequency (297 MHz) and
taking a vast majority of the circuit resources (167,469 LUTs),
which is over 90% of the total area. It should be stressed
that for operations such as Poly Add and Poly Sub, latency
represents the number of clock cycles necessary to obtain an
output coefficient corresponding to the input coefficients with
the same index, and not the time necessary to process all
coefficients of the polynomial.

Timing analysis of our hardware implementation is shown
in Table VII. Latencies in clock cycles correspond to the
maximum sizes of messages allowed by a given parameter
set. The hardware implementation is seriously limited by the
sequential nature of the SHA-256 calculations. As a result, the
operation of Poly Mult can be almost completely overlapped
with the computations of BPGM through the use of pipelining.
On the other hand, in the reference software implementation,
Poly Mult amounts to about 91% of the total execution time.
The operations that are most critical in hardware are hash
based operations of BPGM and MGF, amounting to over 99%
of the encryption time and over 84% of the decryption time.
For the ees1499ep1 parameter set, the total execution time of
encryption is 12.60 µs and decryption 14.09 µs.

For the Intel Xeon CPU E5-2667 v3 @ 3.20GHz, 128 GB
RAM, with the source code from [5] running on a single
core, the encryption time was measured to be 674 µs for the
reference software implementation and 64 µs for the optimized
software implementations. On the same platform, the decryp-
tion time was 1264 µs for the reference and 83 µs for the
optimized implementation, respectively. The optimization was
based on the use of Advanced Vector Extensions 2 (AVX2) to
the amd64 instruction set architecture. Both versions used the
same compiler options. With 12.60 µs used for encryption by
our hardware implementation, we observe the speed-up by a
factor of 53.5 vs. the reference software implementation and a
factor of 5.1 vs. the optimized implementation. If the number
of encryptions per second, rather than latency is a primary
performance metric, modern microprocessor can compensate
for this speed-up with multiple cores running in parallel. Still,
FPGA running at much lower frequency (297.0 MHz vs.
Xeon's 3.2 GHz) will significantly outperform Xeon cores in
terms of lower power consumption and lower energy usage.

In Table VIII, we compare the results of our hardware
implementation of NTRUEncrypt SVES with the results of
the high-speed implementation of a leading PQC candidate,
Classic McEliece [17], at the same claimed security level, gen-
erated using open-source code available at [18]. Both imple-
mentations target the same FPGA device, representing Xilinx
Virtex-UltraScale family. NTRUEncrypt SVES outperforms
Classic McEliece in terms of the decryption speed by a factor
of 2.9, while achieving approximately the same encryption
speed. At the same time the high-speed implementation of
NTRU requires 4.3 times more Slices, giving about 48%
higher product of the Decryption Time · #Slices.



TABLE VI: Resource utilization and performance metrics
of major component units generated by Minerva. Latencies
correspond to the ees1499ep1 parameter set.

Operation LUTs : Slices Freq.
[MHz]

Latency
[Cycles]

Latency.
LUTs

Poly Mult 167,469 : 32,310 297.0 162 27,297,447
BPGM 2,848 : 622 338.0 1,729 4,924,192
MGF 1,999 5,693,152
B2T 64 : 34 904.0 1 64
T2B 64 : 35 984.3 1 64
Poly Adds 1338 : 272 316.3 1 1338
Poly Sub 74 : 64 540.2 1 74
Poly Subc 1221 : 258 331.2 1 1221

TABLE VII: Timing analysis of our hardware implementation.
Latencies in clock cycles correspond to the maximum sizes of
messages allowed by a given parameter set. Notation: Calc.:
Calculating, Perf.: Performing, Unload.: Unloading.

Operation
Latency
[Cycles]

% of
Total Time

Latency
[Cycles]

% of
Total Time

ees1499ep1 ees1087ep1
ENCRYPTION

Perf. BPGM & calc. R 1,732 46.3% 861 44.5%
Calc. R4 and perf. MGF 1,999 53.4% 1,063 54.9%
Calc. m' & Check 1 1 0.0% 1 0.1%
Unload. ciphertext e 11 0.3% 11 0.6%
Total 3,743 100% 1,936 100%

DECRYPTION
Loading ciphertext e 258 6.2% 187 8.2%
Calculating f*e 164 3.9% 132 5.8%
Check 1 & calc. cR4 1 0.1% 1 0.0%
Perf. MGF 1,999 47.8% 1,063 46.9%
Calc. cMbin & Check 2 1 0.1% 1 0.0%
Perf. BPGM & calc. cR' 1,732 41.4% 861 38.0%
Check 3 & Unload. cm 31 0.7% 23 1.0%
Total 4,186 100% 2,268 100%

TABLE VIII: Comparison of the NTRUEncrypt results for the
ees1499ep1 parameter set with the results for Classic McEliece
(m=13, t=119, N=6960, optimization for speed), supporting
PQC public-key encryption at the same security level of 256-
bits, targeting Xilinx Virtex-UltraScale.

PQC
Scheme #Slices #BRAMs Freq

[MHz]
Enc

[Cycles]
Dec

[Cycles]
Enc
[us]

Dec
[us]

McEliece 8,236 35 426 5,413 17,055 12.70 40.04
NTRU 35,435 2 297 3,743 4,186 12.60 14.09
Ratio 4.30 0.06 0.70 0.69 0.25 0.99 0.35

V. CONCLUSIONS

We report the first high-speed constant-time hardware im-
plementation of the full encryption scheme of the IEEE
P1363.1 standard, NTRUEncrypt SVES. Our implementation
is fully compliant with the proposed universal PQC Hardware
API [3], and is made open-source to speed-up further design-
space exploration and benchmarking on multiple hardware
platforms [19]. Our results demonstrate the need to revisit the
algorithmic construction of the NTRUEncrypt SVES in order
to make this algorithm more parallelizable and more suitable
for high-speed hardware implementations.

Our future work will involve taking advantage of any addi-
tional optimizations at the algorithmic and hardware architec-
ture levels, as well as targeting minimum energy use. We will
also develop a full constant-time hardware implementation of

the NIST PQC Candidate NTRUEncrypt, which specification,
published in Nov. 2017, contains substantial changes compared
to the IEEE standard.
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