
CCA Security and Trapdoor Functions

via Key-Dependent-Message Security∗.

Fuyuki Kitagawa1, Takahiro Matsuda2, and Keisuke Tanaka3

1 NTT Secure Platform Laboratories, Tokyo, Japan, fuyuki.kitagawa.yh@hco.ntt.co.jp
2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan,

t-matsuda@aist.go.jp
3 Tokyo Institute of Technology, Tokyo, Japan, keisuke@is.titech.ac.jp

Abstract

We study the relationship among public-key encryption (PKE) satisfying indistinguisha-
bility against chosen plaintext attacks (IND-CPA security), that against chosen ciphertext
attacks (IND-CCA security), and trapdoor functions (TDF). Specifically, we aim at finding
a unified approach and some additional requirement to realize IND-CCA secure PKE and
TDF based on IND-CPA secure PKE, and show the following two main results.

As the first main result, we show how to achieve IND-CCA security via a weak form of
key-dependent-message (KDM) security. More specifically, we construct an IND-CCA secure
PKE scheme based on an IND-CPA secure PKE scheme and a secret-key encryption (SKE)
scheme satisfying one-time KDM security with respect to projection functions (projection-
KDM security). Projection functions are elementary functions with respect to which KDM
security has been widely studied. Since the existence of projection-KDM secure PKE implies
that of the above two building blocks, as a corollary of this result, we see that the existence
of IND-CCA secure PKE is implied by that of projection-KDM secure PKE.

As the second main result, we extend the above construction of IND-CCA secure PKE
into that of TDF by additionally requiring a mild requirement for each building block.
Our TDF satisfies adaptive one-wayness. We can instantiate our TDF based on a wide
variety of computational assumptions. Especially, we obtain the first TDF (with adaptive
one-wayness) based on the sub-exponential hardness of the constant-noise learning-parity-
with-noise (LPN) problem.

In addition, we show that by extending the above constructions, we can obtain PKE
schemes satisfying advanced security notions under CCA, that is, optimal rate leakage-
resilience under CCA and selective-opening security under CCA. As a result, we obtain
the first PKE schemes satisfying these security notions based on the computational Diffie-
Hellman (CDH) assumption or the low-noise LPN assumption.

Keywords: chosen ciphertext security, trapdoor functions, key-dependent-message security

∗The proceedings version of this paper appeared in CRYPTO 2019 [KMT19].

1

Contents

1 Introduction 2
1.1 Background . 2
1.2 Our Results . 2
1.3 Concurrent and Subsequent Works . 5
1.4 Paper Organization . 5

2 Technical Overview 6
2.1 Achieving IND-CCA Security via Randomness-Recovering 6
2.2 Partial Randomness-Recovering Using the Signaling Technique 7
2.3 Outline of the Proof: Necessity of KDM Secure SKE 7
2.4 Extension to TDF . 9
2.5 Optimizations and Simplifications . 9
2.6 Additional Results . 10

3 Preliminaries 11
3.1 Target Collision Resistant Hash Function . 11
3.2 Key Encapsulation Mechanism . 12
3.3 Secret-Key Encryption . 13
3.4 Trapdoor Function . 15

4 Chosen Ciphertext Security via KDM Security 15
4.1 Our Construction . 15
4.2 Proof of Correctness (Proof of Theorem 1) . 18
4.3 Proof of IND-CCA Security (Proof of Theorem 2) 19

5 Impossibility of Shielding Black-Box Constructions 28

6 TDF via KDM Security 33
6.1 Our Construction . 33
6.2 Proof of Correctness (Proof of Theorem 7) . 35
6.3 Proof of Adaptive One-wayness (Proof of Theorem 8) 36
6.4 CCA Secure KEM with Pseudorandom Ciphertexts 44

7 Extensions to Advanced Security Notions under CCA 45
7.1 Leakage-Resilience under CCA . 45
7.2 Selective-Opening Security under CCA . 47

A Other Definitions 54
A.1 Public-Key Encryption . 54
A.2 Hinting PRG . 55
A.3 Garbled Circuits . 56
A.4 Standard PRG . 56

B One-time KDM Secure SKE Based on Hinting PRG 57

C (Ordinary) One-Way TDF 59

D Proof of Theorem 9 61

1 Introduction

1.1 Background

Public-key encryption (PKE) is one of the most fundamental cryptographic primitives. The
most basic security requirement for PKE is indistinguishability against chosen plaintext attacks
(IND-CPA security) [GM82]. However, in many practical applications, PKE schemes should
satisfy the stronger notion of indistinguishability against chosen ciphertext attacks (IND-CCA
security) [RS92, DDN91] in order to take active adversaries into consideration [Ble98].

Since IND-CCA security is stronger than IND-CPA security, the existence of IND-CCA
secure PKE implies that of IND-CPA secure one. However, the implication of the opposite
direction is not known. While a partial negative result was shown by Gertner, Malkin, and
Myers [GMM07], the question whether an IND-CCA secure PKE scheme can be constructed
from an IND-CPA secure one has still been standing as a major open question in cryptography.

In addition to IND-CCA secure PKE, a family of trapdoor functions (TDF) is also a funda-
mental primitive whose relationship with IND-CPA secure PKE has been widely studied. It was
shown that an IND-CPA secure PKE can be constructed from TDF [Yao82, BHSV98]. For the
opposite direction, Gertner, Malkin, and Reingold [GMR01] showed a negative result stating
that TDF cannot be built from PKE in a black-box way.

In fact, in the random oracle model [BR93], we can construct both IND-CCA secure PKE
and TDF based solely on IND-CPA secure PKE using a simple and unified derandomization
technique [BHSV98, FO99]. However, in the standard model, we cannot use such a simple
derandomization technique successfully. Especially, in order to construct IND-CCA secure PKE
and TDF in the standard model by circumventing the impossibility results [GMM07, GMR01],
we need non-black-box techniques or some additional requirements for the building block PKE
scheme.

Hajiabadi and Kapron [HK15] tackled the above question, and as a main result, they built a
TDF based on a PKE scheme satisfying circular security [CL01] and a randomness re-usability
property called reproducibility [BBS03]. Since their TDF satisfies one-wayness under correlated
products, based on the same assumption, they also obtained a construction of IND-CCA secure
PKE by relying on the result by Rosen and Segev [RS09]. Their TDF construction is elegant
and can also be extended to deterministic encryption [BBO07]. However, due to the somewhat
strong additional requirement of randomness re-usability, its instantiations are limited to specific
number theoretic assumptions.

In this work, we further study the above question. Especially, we aim at finding a unified
approach and some additional requirement to realize IND-CCA secure PKE and TDF based on
IND-CPA secure PKE.

1.2 Our Results

We show a unified approach to build IND-CCA secure PKE1 and TDF based on IND-CPA
secure PKE by additionally using secret-key encryption (SKE) satisfying a weak form of key-
dependent-message (KDM) security [BRS03]. Roughly speaking, an encryption scheme is said
to be KDM secure if it can securely encrypt a message of the form f(sk), where sk is the secret
key and f is a function. The details of our results are as follows.

1All of our results on PKE explained here (except for the selective-opening CCA result explained at the end
of this subsection) are in fact obtained for a key encapsulation mechanism (KEM), but they can be translated to
the results for PKE by employing hybrid encryption. Thus, we mostly explain our results using PKE.

2

IND-CCA Security via Key-Dependent-Message Security. As the first main result, we
construct an IND-CCA secure PKE scheme based on an IND-CPA secure PKE scheme and an
SKE scheme satisfying KDM security. The building block SKE scheme is required to be one-time
KDM secure with respect to projection functions (projection-KDM secure). Projection functions
are elementary functions such that each output bit depends on at most a single bit of an input.
An SKE scheme satisfying one-time projection-KDM security can be built from a wide variety
of computational assumptions [BHHO08, ACPS09, BG10, BLSV18, DGHM18]. We obtain this
result based on a construction technique used by Koppula and Waters [KW18, KW19] who
showed how to construct IND-CCA secure PKE (and attribute-based encryption) from IND-
CPA secure one using a pseudorandom generator (PRG) with a special security property called a
hinting PRG. We extend the techniques of Koppula and Waters in several aspects. See Section 2
for the details.

The existence of PKE satisfying projection-KDM security against chosen plaintext attacks
implies that of the above two building blocks. Therefore, as a corollary of this result, we see
that the existence of IND-CCA secure PKE is implied by that of PKE with projection-KDM
security (against CPA!).

Given our result and the result by Koppula and Waters, it is natural to ask what is the
relationship between hinting PRG and one-time KDM secure SKE. To clarify this, we show
that a one-time projection-KDM secure SKE scheme can be built from a hinting PRG. This
means that one-time projection-KDM secure SKE is not a stronger assumption than hinting
PRG.

Previously, Matsuda and Hanaoka [MH15] constructed an IND-CCA secure PKE scheme
from a PKE scheme satisfying the sender non-committing property and an SKE scheme sat-
isfying one-time KDM security with respect to circuits of a-priori bounded size. We improve
their result in the sense that our construction requires weaker security properties for both of
the underlying PKE and SKE schemes compared to theirs.

On Black-Box Usage of Building Blocks. Our construction of an IND-CCA secure PKE
scheme is fully-black-box [RTV04] and non-shielding [GMM07]. A construction of a PKE scheme
is said to be shielding if the decryption algorithm of the scheme does not call the encryption
algorithm of the building block schemes, and otherwise it is called non-shielding. We show that
our construction being a non-shielding construction is essential by showing that a fully-black-
box and shielding construction of an IND-CCA secure PKE scheme based on our assumptions
is impossible by extending the impossibility result shown by Gertner et al. [GMM07]. More
specifically, we show that there is no fully-black-box and shielding construction of an IND-CCA
secure PKE scheme based on a projection-KDM secure PKE scheme that trivially implies both
of our building blocks.

Extension to TDF. As the second main result, we extend the above construction of an
IND-CCA secure PKE scheme into that of a TDF by additionally requiring a mild requirement
for each building block. Our construction of a TDF satisfies adaptive one-wayness [KMO10].
Adaptive one-wayness ensures that an adversary cannot invert a function in the family even
under the existence of the inversion oracle, and thus it is a much stronger security property
compared to ordinary one-wayness.

The additional requirements for the building blocks are as follows.

• First, we require that the underlying IND-CPA secure PKE scheme have the pseudoran-
dom ciphertext property. Namely, a ciphertext of the underlying IND-CPA secure PKE
scheme needs to be indistinguishable from a uniformly random element sampled from the
ciphertext space of the scheme.

3

• Second, we require that the underlying projection-KDM secure SKE scheme be randomness-
recoverable. Namely, random coins used to encrypt a message needs to be recovered to-
gether with the message in the decryption process.

Both of the above two requirements are mild in the following sense.
For the first requirement, a number of IND-CPA secure PKE schemes based on concrete

computational assumptions naturally have this property. In fact, as far as we know, an IND-
CPA secure PKE scheme satisfying the pseudorandom ciphertext property can be constructed
from any concrete computational assumption implying IND-CPA secure PKE.

For the second requirement, the randomness-recovering property is easy to achieve in the
secret-key setting while this property is so hard to achieve in the public-key setting that it
immediately yields a TDF. Projection-KDM secure PKE schemes based on projective hash
functions [BHHO08, BG10, Wee16] can easily be transformed into SKE variants satisfying
the randomness-recovering property. Also, projection-KDM secure SKE schemes based on
the learning-parity-with-noise (LPN) and learning-with-errors (LWE) assumptions proposed
by Applebaum, Cash, Peikert, and Sahai [ACPS09] already satisfy this property. Moreover,
even the recent constructions of KDM secure PKE schemes based on the computational Diffie-
Hellman (CDH) and factoring assumptions [BLSV18, DGHM18] can be transformed into one-
time projection-KDM secure SKE with the randomness-recovering property.

As noted above, the additional requirements needed to realize a TDF are mild. As a result,
we can instantiate our TDF based on a wide variety of computational assumptions. Especially,
by combining the previous results [YZ16, ACPS09], we obtain the first TDF (with adaptive one-
wayness) based on the sub-exponential hardness of the constant-noise LPN problem. Moreover,
we also obtain the first TDF satisfying adaptive one-wayness based on the low-noise LPN
assumption. Previously to our work, a TDF satisfying ordinary one-wayness based on the
low-noise LPN assumption was shown by Kiltz, Masny, and Pietrzak [KMP14].

Further Results. Based on our constructions of IND-CCA secure PKE and adaptively one-
way TDF, we further show the following results:

• We show that in our construction of IND-CCA secure PKE, if we replace the underlying
IND-CPA secure PKE scheme with one satisfying leakage-resilience under CPA (LR-CPA
security) [NS09], then the resulting PKE scheme achieves leakage-resilience under CCA
(LR-CCA security). This construction preserves the leakage rate (the ratio of the leakage
bound and the length of the secret key) of the underlying PKE scheme. Since there exist
LR-CPA secure PKE schemes with optimal leakage rate (i.e. 1− o(1)) based on a variety
of concrete assumptions, from each such LR-CPA secure PKE scheme we obtain an LR-
CCA secure scheme based on the corresponding assumption. In particular, we achieve the
first LR-CCA secure PKE schemes with optimal leakage rate 1− o(1) based on either of
the CDH assumption or the low-noise LPN assumption.

• We show how our adaptively one-way TDF almost immediately yields a PKE scheme and
a KEM whose ciphertexts are pseudorandom under CCA. For achieving this result, we
additionally assume that the underlying SKE scheme satisfies the pseudorandom cipher-
text property when encrypting a key-dependent message, which is achieved by a number
of existing KDM secure encryption schemes from concrete number-theoretic assumptions.
PKE schemes and KEMs satisfying this security notion are known to have applications in
selective-opening security [BHY09, FHKW10, LP15], steganography [Hop05, BL18], and
cryptographic watermarking [QWZ18]. Among these applications, we focus on selective-
opening security, and show that our KEM with the pseudorandom ciphertext property

4

under CCA indeed can be used to obtain a PKE scheme that achieves (simulation-based)
selective-opening security under CCA (SO-CCA security). From this result, we achieve
the first SO-CCA secure PKE scheme based on the CDH assumption, and the first one
based on the low-noise LPN assumption.

As mentioned above, our construction of an IND-CCA secure PKE scheme is based on that
proposed by Koppula and Waters [KW18, KW19]. We emphasize that for these two additional
results, our extensions are essential. For the details, see Section 2.6.

1.3 Concurrent and Subsequent Works

Concurrently to our work (at the time of the submission of [KMT19]), Lombardi, Quach, Roth-
blum, Wichs, and Wu [LQR+19a] showed how to construct a reusable designated-verifier non-
interactive zero-knowledge (DV-NIZK) argument system based on the combination of an IND-
CPA secure PKE scheme and a hinting PRG. In one of the steps in their construction, they
employed the construction methodology of Koppula and Waters [KW19], and a hinting PRG is
used in the step.

Based on our technique in this paper, Lombardi et al. (in their latest update [LQR+19b]
as well as the proceedings version [LQR+19c]) and Kitagawa and Matsuda [KM19a, KM19b]
independently and concurrently observed that a hinting PRG used in Lombardi et al.’s reusable
DV-NIZK argument system can also be replaced with a one-time projection-KDM secure SKE
scheme in exactly the same way as we do in our work. That is, these works show that a
reusable DV-NIZK argument system can be constructed from an IND-CPA secure PKE scheme
and a one-time projection-KDM secure SKE scheme. This leads to the first reusable DV-NIZK
argument system based on the low-noise LPN assumption.

Furthermore, Kitagawa and Matsuda [KM19b] showed that using the reusable DV-NIZK
argument system above and our result on IND-CCA secure PKE, we can transform a projection-
KDM-CPA secure PKE scheme (or the combination of an IND-CPA secure PKE scheme and
a projection-KDM secure SKE scheme) into a KDM-CCA secure one with respect to arbitrary
circuits of polynomial size, without requiring any other additional assumption. This leads to
the first KDM-CCA secure PKE scheme based on the CDH assumption or the low-noise LPN
assumption.

Recently, the assumption of projection-KDM security in our work [KMT19] and that in
[KM19b] were further weakened by Kitagawa and Matsuda [KM20]. Specifically, [KM20] showed
how to construct KDM-CCA secure PKE (and thus in particular IND-CCA secure PKE) and a
reusable DV-NIZK argument system based on a circular-secure bit-PKE (under CPA) scheme
(or the combination of IND-CPA secure PKE and a circular secure bit-SKE scheme).2 Further-
more, the construction of IND-CCA secure PKE in [KM20] is also a fully black-box construction
from the building blocks, which improves upon our result that relies on projection-KDM secu-
rity.

In another recent work, Hohenberger, Koppula, and Waters [HKW20] showed how to con-
struct an IND-CCA secure PKE scheme based on a trapdoor function satisfying only ordinary
one-wayness in a fully black-box manner. Their construction is also based on the technique of
Koppula and Waters [KW19].

1.4 Paper Organization

The rest of the paper is organized as follows:

2Projection-KDM security ensures security when encrypting both a copy and a negation of secret key bits,
while circular security ensures security when encrypting only a copy of secret key bits.

5

• In Section 2, we give an overview of our techniques.

• In Section 3 and Appendix A, we review definitions of cryptographic primitives.

• In Section 4, we show our proposed IND-CCA secure KEM.

• In Section 5, we prove the impossibility of fully-black-box shielding constructions.

• In Section 6, we present our proposed TDF.

• In Section 7, we present our results on advanced security notions (leakage-resilience and
selective-opening security) under CCA.

Difference from the Proceedings Version [KMT19]. The proceedings version of this
paper appeared as [KMT19]. In this paper, we provide several additional results as well as all
the details that were omitted in the proceedings version.

The additional results that are new in this paper are those explained in the “Further Results”
paragraph in Section 1.2, and correspond to the contents in Sections 6.4 and 7. More specifically,
the KEM satisfying the pseudorandom ciphertext property under CCA is given in Section 6.4,
the result on LR-CCA security is given in Section 7.1, and the result on SO-CCA security is
given in Section 7.2.

The details that were omitted in the proceedings version and are now contained in this
paper include: The formal proof of the impossibility result in Section 5, the formal proof of
the adaptive one-wayness of our proposed TDF in Section 6, the formal proof that a hinting-
PRG implies one-time KDM secure SKE (which is given in Appendix B), and finally the formal
description of the TDF that achieves only ordinary one-wayness but is simpler than the one
presented in Section 6 (which is given in Appendix C).

2 Technical Overview

We give an overview of our techniques.

2.1 Achieving IND-CCA Security via Randomness-Recovering

One of classical mechanisms for achieving IND-CCA security is adopting a validity checking
by re-encryption in the decryption process. In this technique, we make an encryption scheme
randomness-recoverable, that is, a randomness used to generate a ciphertext is recovered during
the decryption process. Then, when decrypting the ciphertext, we can check that the ciphertext
was well-formed by re-encrypting the decrypted message using the recovered randomness.

Such a mechanism can be easily implemented in the random oracle model. Fujisaki and
Okamoto [FO99] showed that by designing the encryption algorithm as Enc(pk, r∥m;H(r∥m)), we
can construct an IND-CCA secure PKE scheme based on the above strategy, where Enc(pk, ·; ·)
is the encryption algorithm of an IND-CPA secure PKE scheme and H is a hash function
modeled as a random oracle. On the other hand, in the standard model, realizing a randomness-
recoverable encryption scheme is difficult. Almost all existing such schemes are based on a TDF
with advanced security properties [PW08, RS09, KMO10]. The main theme of this work is how
we implement the mechanism in the standard model when starting from an IND-CPA secure
PKE scheme.

A naive idea for our goal would be to design the encryption algorithm as Enc(pk, r∥m; r),
where Enc(pk, ·; ·) again denotes the encryption algorithm of an IND-CPA secure PKE scheme.
Unfortunately, it seems difficult to prove the security of this construction based on its IND-CPA

6

security, since in order to rely on IND-CPA security, we need to ensure that a message to be
encrypted is completely independent of the encryption randomness r.

A natural idea to remove the dependency is to use a variant of the hybrid encryption
paradigm. Namely, we design the encryption algorithm as (Enc(pk, s; r),E(s, r∥m)), where E(s, ·)
is the encryption algorithm of an SKE scheme. At first glance, the dependency is removed, but
the construction is in fact at a “dead-lock” and it also seems difficult to prove its security. We
can solve the dead-lock by using the signaling technique3 recently introduced by Koppula and
Waters [KW19] who showed how to construct IND-CCA secure ABE from IND-CPA secure one
using a PRG with a special security property called hinting PRG.

2.2 Partial Randomness-Recovering Using the Signaling Technique

We now use 2n public keys (pkvi)i∈[n],v∈{0,1} of the IND-CPA secure PKE scheme to encapsulate
a secret key s = (s1, . . . , sn) ∈ {0, 1}n of the SKE scheme, where [n] := {1, . . . , n}. Below, let
(skvi)i∈[n],v∈{0,1} be secret keys corresponding to (pkvi)i∈[n],v∈{0,1}. Roughly, we “encode” each
bit si of s as (ct

0
i , ct

1
i), where

ctsii = Enc(pksii , 1; r
si
i) and ct1−sii = Enc(pk1−sii , 0; r1−sii).

Namely, we encapsulate s by using 2n ciphertexts (ct0i , ct
1
i)i∈[n]. During the decapsulation, we

decrypt ct0i by using sk0i and set si := 0 if the decryption result is 1 and si := 1 otherwise.
Of course, if we encrypt all of the random coins (rvi)i∈[n],v∈{0,1} used to encapsulate s by the

SKE scheme to make the resulting scheme randomness-recoverable, it leads to a dead-lock as
before. However, by using the signaling technique used by Koppula and Waters, we can perform
the validity check by re-encrypting n out of 2n ciphertexts of the IND-CPA secure PKE scheme
in the decryption process, and solve the dead-lock as follows.

We say that “an encoding (ct0i , ct
1
i) signals α” when ctαi encrypts 1. By using an (ordinary)

PRG and adding a “tag” Ti to each encoding (ct0i , ct
1
i) as (ct

0
i , ct

1
i ,Ti), we can build a mechanism

ensuring that it is statistically impossible to generate an encoding (ct0i , ct
1
i ,Ti) that signals both

0 and 1 at the same time. In order to implement this mechanism, we also add some random
strings to the public key that are used to generate tags, but we ignore them for simplicity
in this overview. In this case, we can perform the validity check of the key encapsulation
part (ct0i , ct

1
i ,Ti)i∈[n] by checking whether (ctsii)i∈[n] are well-formed encryptions of 1 by re-

encryption. This is intuitively because if we confirm that these n ciphertexts are encryptions of
1, we can also be sure that the remaining n ciphertexts (ct1−sii)i∈[n] are not encrypting 1 due to
the added mechanism based on the PRG and tags (Ti)i∈[n], and thus we can finish the pseudo-
validity-check of all 2n ciphertexts of the key encapsulation part. Thus, in this construction, in
addition to a message to be encrypted, the SKE scheme needs to encrypt only n random coins
(rsii)i∈[n] used to generate (ctsii)i∈[n].

2.3 Outline of the Proof: Necessity of KDM Secure SKE

We explain how to prove the IND-CCA security of the above construction. A ciphertext of the
scheme is of the form (

(ct0i , ct
1
i ,Ti)i∈[n], E(s, (rsii)i∈[n]∥m)

)
.

The general picture of the security proof is the same as that for the ordinary hybrid encryp-
tion scheme, and thus we first eliminate the information of s from the key encapsulation part
(ct0i , ct

1
i ,Ti)i∈[n] and then complete the entire proof by using the security of SKE.

3Garg, Gay, and Hajiabadi [GGH19] also used a similar technique called mirroring.

7

We first explain how to eliminate the information of s from the key encapsulation part. In
the security proof, thanks to the validity check by re-encryption in the decryption process, we
can simulate the decryption oracle correctly by using (sksii)i∈[n] instead of (sk0i)i∈[n]. In this

case, we can change the distribution of (ct1−sii)i∈[n] in the challenge ciphertext by using the

IND-CPA security of the PKE scheme since (r1−sii)i∈[n] used to generate (ct1−sii)i∈[n] are not

encrypted by the SKE scheme and the decryption oracle can be simulated without (sk1−sii)i∈[n].
We can eliminate the information of s from the key encapsulation part (ct0i , ct

1
i ,Ti)i∈[n] by

changing (ct1−sii)i∈[n] encrypting 0 into ciphertexts encrypting 1. This means that after this
change, every encoding (ct0i , ct

1
i ,Ti) contained in the challenge ciphertext signals 0 and 1 at the

same time. While an adversary cannot generate such an encoding that signals 0 and 1 at the
same time as noted above, the reduction algorithm can do it by programming random strings
contained in the public key that are used to generate tags (Ti)i∈[n].

Since we eliminate the information of s from the key encapsulation part above, it seems that
we can complete the entire security proof by using the security of the SKE scheme. However,
in order to do so, we need an SKE scheme that satisfies KDM security. This is because the
underlying SKE scheme needs to encrypt (rsii)i∈[n], which is a message depending on the key
s. Concretely, (rsii)i∈[n] can be seen as f(s) for the function f that has (rvi)i∈[n],v∈{0,1} hard-
wired, and given s ∈ {0, 1}n outputs (rsii)i∈[n]. Such a function is described as a very simple
form of functions called projection functions, for which KDM security has been widely stud-
ied [BHHO08, ACPS09, BG10, App11, BLSV18, DGHM18]. In our construction, we need an
SKE scheme satisfying only one-time KDM security with respect to projection functions, since
our construction is basically a hybrid encryption scheme. This is the reason KDM secure SKE
is needed for our construction of IND-CCA secure PKE.

The Construction by Koppula and Waters [KW19]. The construction we explained so
far is in fact almost the same as the PKE variant of the construction proposed by Koppula and
Waters, except that a one-time KDM secure SKE scheme is used instead of a hinting PRG.
Here, we briefly explain the notion of hinting PRG and how it is used in their construction.

A hinting PRG is a PRG that, given an n-bit string x, outputs an (n + 1) · ℓ-bit string
y0∥y1∥ · · · ∥yn, where yi is an ℓ-bit string for every i ∈ [n]. Then, its security property requires
that Y := y0∥(yi,0∥yi,1)i∈[n] ∈ {0, 1}(2n+1)·ℓ be indistinguishable from a uniformly random string

in {0, 1}(2n+1)·ℓ, where yi,xi = yi and yi,1−xi is a uniformly random string in {0, 1}ℓ for every
i ∈ [n]. We see that the locations where y1, · · · yn are placed in Y depend on the seed x, and
thus Y itself can be seen as a “hint” of the seed x. Therefore, we can say that the security
property of a hinting PRG requires that its output be pseudorandom even if such a hint of the
seed is revealed.

Koppula and Waters used a hinting PRG HPRG in their construction as follows. When
encrypting a message m, their scheme first generates a seed x = (x1, · · · , xn) ∈ {0, 1}n of
HPRG and computes y0∥y1∥ · · · ∥yn ← HPRG(x). Then, it generates an encapsulation of x by
generating an encoding (ct0i , ct

1
i ,Ti) of xi in which yi is used as the encryption randomness for

ctxi
i for every i ∈ [n]. Note that ct1−xi

i is generated by using truly random coins. Moreover, it
generates the data encapsulation part as m⊕ y0. The resulting ciphertext is of the form(

(ct0i , ct
1
i ,Ti)i∈[n], m⊕ y0

)
.

When decrypting the ciphertext, we can first recover x and thus y0∥y1∥ · · · ∥yn ← HPRG(x) from
the encapsulation part. Since (y1, · · · , yn) are random coins used to generate (ctxi

i)i∈[n], we can
also perform the pseudo-validity-check of all 2n ciphertexts of the key encapsulation part as we
explained above. The security proof of their construction also goes through in a similar fashion

8

to the proof of our construction, except that the security property of HPRG is utilized instead
of KDM security.

2.4 Extension to TDF

We explain how we extend the above construction of IND-CCA secure PKE based on IND-CPA
secure PKE and one-time KDM secure SKE, into a TDF. More concretely, we explain how we
make the above construction completely randomness-recoverable.

In the above construction, there are two types of encryption randomness that are not recov-
ered in the decryption process. The first one is (r1−sii)i∈[n] for the underlying IND-CPA secure
PKE scheme. The other one is the encryption randomness for the underlying SKE scheme. We
require an additional requirement for each building block to make it possible to recover these
two types of encryption randomness.

First, to deal with (r1−sii)i∈[n] for the IND-CPA secure PKE scheme, we require the under-
lying IND-CPA secure PKE scheme have the pseudorandom ciphertext property. Namely, we
require that a ciphertext of the underlying IND-CPA secure PKE scheme be indistinguishable
from a uniformly random element sampled from the ciphertext space of the scheme. In the above
construction, recall that we encode each bit si of s as (ct

0
i , ct

1
i ,Ti), where ctsii = Enc(pksii , 1; r

si
i)

and ct1−sii = Enc(pk1−sii , 0; r1−sii). We now modify the way si is encoded so that ct1−sii is an ele-
ment sampled from the ciphertext space uniformly at random. We can still decode si correctly
with overwhelming probability thanks to the signaling technique even if we add this modifica-
tion.4 Then, we see that the issue of recovering (r1−sii)i∈[n] is solved by designing the TDF such

that (ct1−sii)i∈[n] are directly sampled from the ciphertext space as part of an input to the TDF.
Second, to deal with the random coins for the SKE scheme, we simply require that the SKE

scheme be randomness-recoverable. Namely, we require that random coins used to encrypt a
message be recovered with the message in the decryption process. The randomness-recovering
property is easy to achieve in the secret-key setting, and it is also the case even if we require
the SKE scheme to be KDM secure. In fact, we can easily construct a one-time projection-
KDM secure SKE scheme that is randomness-recoverable by modifying existing projection-KDM
secure PKE schemes [BHHO08, BG10, Wee16, BLSV18, DGHM18]. Moreover, the projection-
KDM secure SKE schemes based on the LPN and LWE assumptions proposed by Applebaum
et al. [ACPS09] already satisfy this property.

With the help of these two additional requirements, we can modify our IND-CCA secure
PKE scheme into a TDF. Since our TDF is an extension of IND-CCA secure PKE, it naturally
satisfies adaptive one-wayness [KMO10].

2.5 Optimizations and Simplifications

In the actual constructions, we apply several optimizations and simplifications as stated below.
The first optimization is on the number of key pairs of the underlying IND-CPA secure PKE

scheme. In the above overview, 2n key pairs of the underlying IND-CPA secure PKE scheme
are used to construct the key encapsulation part (ct0i , ct

1
i ,Ti)i∈[n]. In our actual constructions,

we use only two key pairs of the underlying IND-CPA secure PKE scheme. More concretely,
in our actual constructions, every encoding (ct0i , ct

1
i ,Ti) is generated by using the same pair

of public keys (pk0, pk1). In fact, if we allow a public parameter shared by all users of the
resulting schemes, even one of these public keys, pk1, can be put into the public parameter, and
a public key of the resulting IND-CCA secure scheme and an evaluation key of the resulting

4While we cannot achieve perfect correctness by this modification, we can still achieve almost-all-keys cor-
rectness [DNR04]. For its formal definition, see Section 3.

9

TDF consist only of a single public key pk0 of the underlying IND-CPA secure scheme. This
optimization is possible by devising at which step of the hybrid games we switch the secret keys
of the underlying IND-CPA secure PKE scheme used to simulate the decryption oracle.

The second optimization is on how to make each tag Ti contained in each encoding (ct0i , ct
1
i ,Ti).

In the original signaling technique, a one-time signature scheme is additionally used in order to
generate tags. We show that we can replace a one-time signature scheme with a target collision
resistant hash function. Such a technique was previously used by Matsuda and Hanaoka [MH15].
Although both of these primitives can be realized using only a one-way function as an assump-
tion [Rom90], this improvement is critical when constructing a TDF since if we attempt to use
a one-time signature scheme for constructing a TDF, we would need to recover the random
coins used to generate a key pair of the one-time signature scheme during the inversion process.
We can avoid this issue by the use of a target collision resistant hash function instead. This
modification is made possible due to the use of a deferred analysis technique in the security
proof.

Third, we make a simplification by using key encapsulation mechanism (KEM) instead of
PKE. In this overview, we have explained how to construct an IND-CCA secure PKE scheme
and a TDF based on IND-CPA secure PKE by additionally using KDM secure SKE. In our
actual proposals, we construct an IND-CCA secure KEM (and a TDF) based on IND-CPA
secure KEM and KDM secure SKE. As explained above, in the original signaling technique, we
use an (ordinary) PRG. More precisely, in the original signaling technique, ctsii in each encoding
is generated as ctsii = Enc(pksii , 1∥ui; r

si
i), where ui is a seed of PRG. In our actual construction,

in order to hide the use of a PRG from the description and simplify the construction, we
use a KEM whose session-key space is sufficiently larger than its randomness space. We can
generically transform an IND-CPA secure PKE scheme into a KEM with such a property. We
show that the signaling technique can be implemented by using such a KEM.

For the construction of TDF, we also add an optimization that is made possible by the
pseudorandom ciphertext property of the underlying IND-CPA secure PKE scheme. By this
optimization, an image of a function consists of n ciphertexts of the IND-CPA secure PKE
scheme corresponding to (ctsii)i∈[n], n tags (Ti)i∈[n], and a ciphertext of the SKE scheme.

We finally remark that all of the above optimizations and simplifications can be brought
back to the construction of an IND-CCA secure ABE scheme based on an IND-CPA secure one
and a hinting PRG by Koppula and Waters [KW19].

2.6 Additional Results

Finally, we explain how we obtain the additional results, that is, LR-CCA secure PKE and
SO-CCA secure PKE.

• We obtain the result on an LR-CCA secure PKE scheme by using our construction of an
IND-CCA secure PKE scheme. We show that in our construction of IND-CCA secure
PKE, if we replace the underlying IND-CPA secure PKE scheme with one satisfying LR-
CPA security, then the resulting PKE scheme achieves LR-CCA security. Importantly
and interestingly, this construction has a nice property that it preserves the leakage rate
(the ratio of the leakage bound and the length of the secret key) of the underlying PKE
scheme. The rate-preserving property is attained by our first optimization on the number
of keys explained above. As far as we know, before our work, the rate-preserving property
is achieved only by the transformation using a NIZK argument system as an additional
assumption [NS09]. By using our construction, we can obtain optimal rate LR-CCA secure
PKE scheme based on assumptions that are not known to imply a NIZK argument system
as long as those assumptions imply an optimal rate LR-CPA secure PKE scheme and a

10

one-time projection-KDM secure SKE scheme. In particular, we achieve the first LR-CCA
secure PKE schemes and KEMs with optimal leakage rate 1− o(1) based on either of the
CDH assumption or the low-noise LPN assumption.

• The result on SO-CCA secure PKE is obtained by using our TDF. We show that our
(adaptively one-way) TDF yields a PKE scheme and a KEM whose ciphertexts are pseu-
dorandom under CCA if we additionally assume that the underlying SKE scheme satisfies
the pseudorandom ciphertext property when encrypting a key-dependent message. Such
a property is achieved by a number of existing KDM secure encryption schemes from
concrete number-theoretic assumptions. In order to make a ciphertext of the resulting
scheme pseudorandom under CCA, our second optimization on the tag generation process
explained above is vital. (If a ciphertext of a PKE scheme/KEM contains a verification
key and a signature of a one-time signature scheme, the scheme cannot have the pseudo-
random ciphertext property since one can verify the signature.) To obtain an SO-CCA
secure PKE scheme, we rely on the result of Liu and Paterson [LP15] who showed how to
transform a KEM satisfying some requirements related to the pseudorandom ciphertext
property under CCA into an SO-CCA secure PKE scheme. We show that our KEM with
the pseudorandom ciphertext property under CCA can be shown to satisfy the require-
ments for the transformation of [LP15]. From this result, we achieve the first SO-CCA
secure PKE scheme based on the CDH assumption, and the first one based on the low-noise
LPN assumption.

3 Preliminaries

In this section, we review the basic notation and the definitions of main cryptographic primitives.
The definitions of primitives that are not reviewed here are given in Appendix A.

Basic Notation. N denotes the set of natural numbers, and for n ∈ N, we define [n] :=
{1, . . . , n}. For a discrete finite set S, |S| denotes its size, and x

r←− S denotes choosing an
element x uniformly at random from S. For strings x and y, x∥y denotes their concatenation.
For a (probabilistic) algorithm or a function A, y ← A(x) denotes assigning to y the output of
A on an input x, and if we need to specify a randomness r used in A, we denote y ← A(x; r)
(in which case the computation of A is understood as deterministic on input x and r). Sup(A)
denotes the support of A (i.e. the set of elements that could be output by A with non-zero

probability). For any values x, y, (x
?
= y) is defined to be 1 if x = y and 0 otherwise. λ

denotes a security parameter. (P)PT stands for (probabilistic) polynomial time. A function
f(λ) is said to be negligible if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We
write f(λ) = negl(λ) to denote that f(λ) is a negligible function. poly(·) denotes an unspecified
positive polynomial.

3.1 Target Collision Resistant Hash Function

Definition 1 (Target Collision Resistant Hash Function) A keyed hash function Hash
consists of the two algorithms (HKG,H): HKG is the key generation algorithm that takes 1λ

as input, and outputs a hash key hk; H is the hash evaluation algorithm that takes hk and an
element x ∈ {0, 1}∗ as input, and outputs a hash value y ∈ {0, 1}λ.

11

Hash is said to be target collision resistant if for all PPT algorithms A = (A1,A2), we have

AdvtcrHash,A(λ) := Pr

[
(x, st)← A1(1

λ); hk← HKG(1λ); x′ ← A2(hk, st) :
H(hk, x′) = H(hk, x) ∧ x′ ̸= x

]
= negl(λ).

We can realize a target collision resistant hash function based on a one-way function [Rom90].

3.2 Key Encapsulation Mechanism

Here, we review the definitions for a KEM. For the definition of correctness, we formalize
“almost-all-keys” correctness, which is naturally adapted from the definition for PKE formalized
by Dwork, Naor, and Reingold [DNR04].

Definition 2 (Key Encapsulation Mechanism) A key encapsulation mechanism (KEM)
KEM consists of the three PPT algorithms (KKG,Encap,Decap):

• KKG is the key generation algorithm that takes 1λ as input, and outputs a public/secret
key pair (pk, sk). We assume that the security parameter λ determines the ciphertext space
C, the session-key space K, and the randomness space R of Encap.

• Encap is the encapsulation algorithm that takes a public key pk as input, and outputs a
ciphertext/session-key pair (ct, k).

• Decap is the (deterministic) decapsulation algorithm that takes a secret key sk and a
ciphertext ct as input, and outputs a session-key k or the invalid symbol ⊥ /∈ K.

Let ϵ : N→ [0, 1]. We say that a KEM KEM = (KKG,Encap,Decap) is ϵ-almost-all-keys correct
if we have

ErrKEM(λ) := Pr
(pk,sk)←KKG(1λ)

[
∃r ∈ R s.t.

Encap(pk; r) = (ct, k)
∧ Decap(sk, ct) ̸= k

]
= ϵ(λ).

(A public key pk under which incorrect decapsulation could occur is called erroneous.) Further-
more, we just say that KEM is correct (resp. almost-all-keys correct) if ErrKEM(λ) is zero (resp.
negl(λ)).

Now we review the security definitions for a KEM used in this paper, which are IND-CCA
security, IND-CPA security, and the pseudorandom ciphertext property (both under the CCA
and CPA). For convenience, we will define the multi-challenge versions for the security notions
in the CPA setting, which are polynomially equivalent to the single-challenge versions via a
standard hybrid argument.

Definition 3 (Security Notions for a KEM) Let KEM = (KKG,Encap,Decap) be a KEM
whose ciphertext and session-key spaces are C and K, respectively. We say that KEM satisfies

• IND-CCA security if for all PPT adversaries A, we have AdvccaKEM,A(λ) := 2·|Pr[ExptccaKEM,A(λ)
= 1]− 1/2| = negl(λ), where ExptccaKEM,A(λ) is defined as in Figure 1 (top-left), and in the
experiment, A is not allowed to submit ct∗ to the decapsulation oracle Decap(sk, ·).

• IND-CPA security if for all PPT adversaries A and all polynomials ℓ = ℓ(λ), we have
Advmcpa

KEM,ℓ,A(λ) := 2 · |Pr[Exptmcpa
KEM,ℓ,A(λ) = 1] − 1/2| = negl(λ), where Exptmcpa

KEM,ℓ,A(λ) is
defined as in Figure 1 (top-right).

12

ExptccaKEM,A(λ) :
(pk, sk)← KKG(1λ)
(ct∗, k∗1)← Encap(pk)
k∗0 ← K
b

r←− {0, 1}
b′ ← ADecap(sk,·)(pk, ct∗, k∗b)

Return (b′
?
= b).

Exptmcpa
KEM,ℓ,A(λ) :

(pk, sk)← KKG(1λ)
∀i ∈ [ℓ] :
(ct∗i , k

∗
i,1)← Encap(pk)

k∗i,0
r←− K

b
r←− {0, 1}

b′ ← A(pk, (ct∗i , k∗i,b)i∈[ℓ])

Return (b′
?
= b).

ExptprctccaKEM,A(λ) :

(pk, sk)← KKG(1λ)
(ct∗1, k

∗
1)← Encap(pk)

(k∗0, k
∗
0)← C ×K

b
r←− {0, 1}

b′ ← ADecap(sk,·)(pk, ct∗b , k
∗
b)

Return (b′
?
= b).

Exptmprct
KEM,ℓ,A(λ) :

(pk, sk)← KKG(1λ)
∀i ∈ [ℓ] :
(ct∗i,1, k

∗
i,1)← Encap(pk)

(ct∗i,0, k
∗
i,0)

r←− C ×K
b

r←− {0, 1}
b′ ← A(pk, (ct∗i,b, k∗i,b)i∈[ℓ])

Return (b′
?
= b).

Figure 1: Security experiments for a KEM: IND-CCA experiment (top-left), (Multi-challenge) IND-
CPA experiment (top-right), the experiment for the pseudorandom ciphertext property under CCA
(bottom-left), and the experiment for (multi-challenge) pseudorandom ciphertext property under CPA
(bottom-right).

• the pseudorandom ciphertext property under CCA if for all PPT adversaries A, we have
AdvprctccaKEM,A(λ) := 2 · |Pr[ExptprctccaKEM,A(λ) = 1]−1/2| = negl(λ), where ExptprctccaKEM,A(λ) is defined
as in Figure 1 (bottom-left), and in the experiment, A is not allowed to submit ct∗ to the
decapsulation oracle Decap(sk, ·).

• the pseudorandom ciphertext property under CPA5 if for all PPT adversaries A and all
polynomials ℓ = ℓ(λ), we have Advmprct

KEM,ℓ,A(λ) := 2 · |Pr[Exptmprct
KEM,ℓ,A(λ) = 1] − 1/2| =

negl(λ), where Exptmprct
KEM,ℓ,A(λ) is defined as in Figure 1 (bottom-right).

3.3 Secret-Key Encryption

Definition 4 (Secret-Key Encryption) A secret-key encryption (SKE) scheme SKE con-
sists of the three PPT algorithms (K,E,D):

• K is the key generation algorithm that takes 1λ as input, and outputs a secret key sk. We
assume that the security parameter λ determines the secret key space K and the message
spaceM.

• E is the encryption algorithm that takes a secret key sk and a plaintext m as input, and
outputs a ciphertext ct.

• D is the (deterministic) decryption algorithm that takes a secret key sk and a ciphertext
ct as input, and outputs a plaintext m or the invalid symbol ⊥ /∈M.

An SKE scheme SKE = (K,E,D) is said to be correct if for all sk ∈ K and all m ∈M, it holds
that D(sk,E(sk,m)) = m.

In our proposed constructions of a TDF, we will use an SKE scheme that satisfies the
“randomness-recovering decryption” property, which requires that for an honestly generate

5When the context is clear, we will usually omit “under CPA” for this security notion.

13

ExptkdmSKE,F,A(λ) :
sk← K(1λ)

b
r←− {0, 1}

b′ ← AOkdm(·,·)(1λ)

Return (b′
?
= b).

Okdm((f0, f1) ∈ F2) :
ct← E(sk, fb(sk))
Return ct.

ExptaowTDF,A(λ) :
(ek, td)← Setup(1λ)
x∗ ← Samp(1λ)
y∗ ← Eval(ek, x∗)
x′ ← AInv(td,·)(ek, y∗)

Return (x′
?
= x).

Figure 2: The KDM security experiment for an SKE (left) scheme, the KDM-encryption oracle used in
the KDM security experiment (center), and the adaptive one-wayness experiment for a TDF (right).

ciphertext, the randomness used to generate it can be recovered in the decryption process. We
formally define the property as follows.

Definition 5 (Randomness-Recovering Decryption) Let SKE = (K,E,D) be an SKE scheme
whose secret key space is K, whose plaintext space is M, and the randomness space of whose
encryption algorithm E is R. We say that SKE satisfies the randomness-recovering decryption
property, if there exists a deterministic PT algorithm RD (called the randomness-recovering de-
cryption algorithm) such that for all sk ∈ K, all m ∈M, and all r ∈ R, we have RD(sk,E(sk,m; r))
= (m, r).

Here, we recall KDM security of an SKE scheme. For simplicity, we only give the definition
for the single key setting, which is sufficient for our purpose.

Definition 6 (KDM Security) Let SKE = (K,E,D) be an SKE scheme with a secret key
space K and a plaintext space M. For a family of functions F with domain K and range M
and an adversary A, consider the experiment ExptkdmSKE,F,A(λ) defined as in Figure 2 (left), where
the KDM-encryption oracle Okdm is described in Figure 2 (center).

We say that SKE is F-KDM secure if for all PPT adversaries A, we have AdvkdmSKE,F,A(λ) :=

2 · |Pr[ExptkdmSKE,F,A(λ) = 1]− 1/2| = negl(λ).

Furthermore, we say that SKE is one-time F-KDM secure if we have AdvkdmSKE,F,A(λ) =
negl(λ) for all PPT adversaries A that make a single KDM-encryption query.

Note that in our definition, the KDM-encryption oracle Okdm is slightly different from the
standard definition where an adversary is required to distinguish encryptions of f(sk) from
encryptions of some fixed message. However, the two definitions are equivalent if the function
class F contains constant functions, and this is the case for the function families used in this
paper (see below).

Function Families for KDM Security. We will deal with the following function families
for KDM security of an SKE scheme with key space K and plaintext spaceM:

• P (Projection functions): A function is said to be a projection function if each of its
output bits depends on at most a single bit of its input. We denote by P the family of
projection functions with domain K and rangeM.

• Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size = size(λ) is a
polynomial, the function family with domain K and rangeM such that each member in
Bsize can be described by a circuit of size size.

14

3.4 Trapdoor Function

Here, we review the definitions for a TDF. As in the KEM case, for correctness, we will define
almost-all-keys correctness.

Definition 7 (Trapdoor Function) A trapdoor function (TDF) TDF consists of the four
PPT algorithms (Setup, Samp,Eval, Inv):

• Setup is the setup algorithm that takes 1λ as input, and outputs an evaluation key/trapdoor
pair (ek, td). We assume that the security parameter λ determines the domain X .

• Samp is the domain sampling algorithm that takes 1λ as input, and outputs a domain
element x ∈ X .

• Eval is the evaluation algorithm that takes an evaluation key ek and a domain element x
as input, and outputs some element y.

• Inv is the (deterministic) inversion algorithm that takes a trapdoor td and an element y
as input, and outputs some element x which could be the invalid symbol ⊥ /∈ X .

Let ϵ : N → [0, 1]. We say that a TDF TDF = (Setup, Samp,Eval, Inv) is ϵ-almost-all-keys
correct if we have

ErrTDF(λ) := Pr
(ek,td)←Setup(1λ)

[
∃x ∈ X s.t. Inv(td,Eval(ek, x)) ̸= x

]
= ϵ(λ).

Furthermore, we just say that TDF is correct (resp. almost-all-keys correct) if ErrTDF(λ) is zero
(resp. negl(λ)).

Definition 8 (Adaptive One-wayness/(Ordinary) One-wayness) Let TDF = (Setup, Samp,
Eval, Inv) be a TDF with domain X . We say that TDF is adaptively one-way if for all PPT
adversaries A, we have AdvaowTDF,A(λ) := Pr[ExptaowTDF,A(λ) = 1] = negl(λ), where ExptaowTDF,A(λ)
is defined as in Figure 2 (right), and in the experiment, A is not allowed to submit y∗ to the
inversion oracle Inv(td, ·).

Furthermore, we say that TDF is one-way if AdvaowTDF,A(λ) = negl(λ) for all adversaries that
never use the inversion oracle Inv(td, ·).

4 Chosen Ciphertext Security via KDM Security

In this section, we show our proposed construction of an IND-CCA secure KEM.
Specifically, in Section 4.1, we present the formal description of our proposed KEM, state

theorems regarding its correctness/security, and discuss its consequences and extensions. Then,
in Sections 4.2 and 4.3, we prove the correctness and IND-CCA security of our proposed con-
struction, respectively.

4.1 Our Construction

Let ℓ = ℓ(λ) be a polynomial, which will denote the session-key length of the constructed KEM.
Our construction uses the building blocks KEM, SKE, and Hash with the following properties:

15

KKGcca(1
λ) :

∀v ∈ {0, 1} : (pkv, skv)← KKG(1λ)

A1, . . . ,An,B
r←− {0, 1}4λ

hk← HKG(1λ)
PK← (pk0, pk1, (Ai)i∈[n],B, hk)

SK← (sk0,PK)
Return (PK, SK).

Encapcca(PK) :
(pk0, pk1, (Ai)i∈[n],B, hk)← PK
s = (s1, . . . , sn)← K(1λ)

r01, . . . , r
0
n, r

1
1, . . . , r

1
n

r←− {0, 1}λ

k
r←− {0, 1}ℓ

ctSKE ← E(s, (rsii)i∈[n]∥k)
∀(i, v) ∈ [n]× {0, 1} :

(ctvi , k
v
i)← Encap(pkv; rvi)

h← H(hk, (ct0i , ct
1
i)i∈[n]∥ctSKE)

∀i ∈ [n] :

Ti ← ksii + si · (Ai + B · h) (†)

=

{
k0i if si = 0

k1i + Ai + B · h if si = 1

CT← ((ct0i , ct
1
i ,Ti)i∈[n], ctSKE)

Return (CT, k).

Decapcca(SK,CT) :
(sk0,PK)← SK
(pk0, pk1, (Ai)i∈[n],B, hk)← PK
((ct0i , ct

1
i ,Ti)i∈[n], ctSKE)← CT

h← H(hk, (ct0i , ct
1
i)i∈[n]∥ctSKE)

∀i ∈ [n] :

si ← 1− (Decap(sk0, ct0i)
?
= Ti)

(⋆)

=

{
0 if Decap(sk0, ct0i) = Ti

1 otherwise

s← (s1, . . . , sn) ∈ {0, 1}n
m← D(s, ctSKE)
Parse m as ((rsii)i∈[n], k) ∈ ({0, 1}λ)n × {0, 1}ℓ.
If ∀i ∈ [n] :

Encap(pksi ; rsii) = (ctsii ,Ti − si · (Ai + B · h))
then return k else return ⊥. (†)

Figure 3: The proposed KEM KEMcca.
(†) h ∈ {0, 1}λ is treated as an element of {0, 1}4λ by

some canonical injective encoding (say, putting the prefix 03λ), and the arithmetic is done over
GF(24λ) where we identify {0, 1}4λ with GF(24λ). (⋆) We call this step the find step.

• KEM = (KKG,Encap,Decap) is a KEM such that (1) its session-key space is {0, 1}4λ, (2)
the randomness space of Encap is {0, 1}λ, and (3) the image size of Decap(sk, ·) for any sk
output by KKG(1λ) (other than ⊥) is at most 2λ.6

• SKE = (K,E,D) is an SKE scheme whose secret key space is {0, 1}n for some polynomial
n = n(λ) and whose plaintext space is {0, 1}n·λ+ℓ, and we denote the randomness space
of E by RSKE.

• Hash = (HKG,H) is a keyed hash function such that the range of H is {0, 1}λ, which we
are going to assume to be target collision resistant.

Using these building blocks, the proposed KEM KEMcca = (KKGcca,Encapcca,Decapcca) is con-
structed as in Figure 3. Its session-key space is {0, 1}ℓ, and the randomness space R of Encapcca
is R = {0, 1}n × ({0, 1}λ)2n × {0, 1}ℓ ×RSKE.

For the correctness and security of KEMcca, the following theorems hold.

Theorem 1 Let ϵ = ϵ(λ) ∈ [0, 1]. If KEM is ϵ-almost-all-keys correct and SKE is correct, then
KEMcca is (ϵ+ n · 2−λ)-almost-all-keys correct.

6These three requirements are without loss of generality for an IND-CPA secure KEM: The properties (1)
and (3) can be achieved by stretching a session-key of a KEM with session-key space {0, 1}λ by using a PRG
G : {0, 1}λ → {0, 1}4λ, and the randomness space of Encap can also be freely adjusted by using a PRG whose
range is the randomness space of Encap.

16

Theorem 2 Assume that KEM is almost-all-keys correct and IND-CPA secure, SKE is one-
time P-KDM secure, and Hash is target collision resistant. Then, KEMcca is IND-CCA secure.

The proofs of Theorems 1 and 2 are given in Sections 4.2 and 4.3, respectively.

Implications to Black-Box Constructions/Reductions. It is straightforward to see that
our construction uses the underlying primitives in a black-box manner. As will be clear from our
security proof, our reduction algorithms also treat the underlying primitives and an adversary
in a black-box manner. In fact, our construction/reduction is fully black-box in the sense
of [RTV04]. Since there exists a black-box construction of a target collision resistant hash
function from a one-way function, which can be trivially constructed from an IND-CPA secure
PKE scheme/KEM in a black-box manner, and since an IND-CCA/CPA PKE scheme and
KEM imply each other (in a black-box manner), we obtain the following result as a corollary
of our theorems.

Corollary 1 There exists a fully black-box construction of an IND-CCA secure PKE scheme/KEM
from an IND-CPA secure PKE scheme/KEM and a one-time P-KDM secure SKE scheme that
can encrypt plaintexts of length Ω(n · λ), where n = n(λ) is the secret key length of the SKE
scheme.

Furthermore, since a P-KDM secure PKE scheme trivially implies both an IND-CPA secure
PKE scheme/KEM and a one-time P-KDM secure SKE scheme, we obtain another corollary.

Corollary 2 There exists a fully black-box construction of an IND-CCA secure PKE scheme/KEM
from a P-KDM secure PKE scheme.

In contrast to Corollary 2, in Section 5, we will show that there exists no shielding black-
box construction [GMM07] of an IND-CCA1 secure PKE scheme from a P-KDM secure PKE
scheme.

In [MH15], Matsuda and Hanaoka showed a construction of an IND-CCA secure PKE
scheme/KEM from a PKE scheme satisfying the security notion called the sender non-committing
property and a one-time Bsize-KDM secure SKE scheme (where size is related to the running
time of the sender non-committing encryption scheme). Although their construction uses the
underlying primitives as black-boxes, their security reduction (to the Bsize-KDM security of
the underlying SKE scheme) is non-black-box in the sense that the reduction needs to use
the description of one of the algorithms in the sender non-committing encryption scheme as
a KDM-encryption query. Compared to the result by Matsuda and Hanaoka, our results are
superior in terms of both the strength of the assumptions on the building blocks (IND-CPA
security is weaker than the sender non-committing property, and P-KDM security is weaker
than Bsize-KDM security), and the “black-boxness” of the reductions.

Hinting PRG vs. KDM Secure SKE. As mentioned earlier, the result of Koppula and
Waters [KW19], when specialized to PKE, implies that if there exists an IND-CPA secure
PKE scheme and a hinting PRG, one can realize an IND-CCA secure PKE scheme. Given
our result in this section and the result of [KW19], it is natural to ask whether there exists an
implication/separation between a (one-time) KDM secure SKE scheme and a hinting PRG. We
give a partial affirmative answer to this question. Specifically, we show the following theorem.

Theorem 3 If there exists a hinting PRG, then for any polynomials m = m(λ) and size =
size(λ) ≥ m, there exists a one-time Bsize-KDM secure SKE scheme whose plaintext space is

17

{0, 1}m. Furthermore, for any polynomial m = m(λ), there exists a fully black-box construction
of a one-time P-KDM secure SKE scheme with plaintext space {0, 1}m from a hinting PRG.

The formal proof of this theorem is given in Appendix B. This result shows that the existence
of a KDM-secure SKE scheme is not stronger (as an assumption) than that of a hinting PRG.
At this moment, it is not clear if the implication of the opposite direction can be established.

Additional Remarks.

• If we adopt the syntax of a KEM in which there is a public parameter shared by all users,
then we can push pk1, (Ai)i∈[n], B, and hk in PK to a public parameter, so that a key pair

of each user consists only of a single key pair (pk0, sk0) of the underlying IND-CPA secure
KEM.

• Although our proposed construction satisfies only almost-all-keys correctness, a minor
variant of our construction can achieve perfect correctness, by using a PKE scheme and
a PRG, instead of a KEM, as done in the Koppula-Waters construction [KW19].

4.2 Proof of Correctness (Proof of Theorem 1)

Let PK = (pk0, pk1, (Ai)i∈[n],B, hk) be a public key. Using pk0, pk1, and B in PK, we define the

function f : {0, 1}3λ → {0, 1}4λ by

f(r, r′, h) :
[
(ct, k)← Encap(pk0; r); (ct′, k′)← Encap(pk1; r′); Return k− k′ − B · h

]
.

We say that a public key PK is bad if (1) pk0 is erroneous, or (2) some of (Ai)i∈[n] belongs to

the image of f . Note that the image size of f is at most 23λ. Since each Ai is chosen uniformly
at random from {0, 1}4λ, when KKGcca(1

λ) is executed, the probability that a bad PK is output

is at most ϵ+ n · 23λ
24λ

= ϵ+ n · 2−λ.
Now, consider the case that (PK, SK) is output by KKGcca and PK is not bad. Let R =

(s = (s1, . . . , sn), (r
0
i , r

1
i)i∈[n], k, rSKE) ∈ {0, 1}n × ({0, 1}λ)2n × {0, 1}ℓ × RSKE be a randomness

for Encapcca, and let (CT = ((ct0i , ct
1
i ,Ti)i∈[n], ctSKE), k) = Encapcca(PK;R). Moreover, for each

i ∈ [n], let s′i := 1− (Decap(sk0, ct0i)
?
= Ti).

Note that if s′i = si holds for all i ∈ [n], then the decryption result of ctSKE using s′ =
(s′1, . . . , s

′
n) as a secret key is exactly (rsii)i∈[n]∥k due to the correctness of SKE. Thus, the

validity check done in the last step of Decapcca never fails, and Decapcca(SK,CT) will output k.
Hence, it remains to show that s′i = si holds for all i ∈ [n].

• For the positions i with si = 0, we have (ct0i , k
0
i = Ti) = Encap(pk0; r0i). Thus, the property

that pk0 is not erroneous implies Decap(sk0, ct0i) = Ti, and we have s′i = 0.

• For the positions i with si = 1, we have (ct0i , k
0
i) = Encap(pk0; r0i) and (ct1i , k

1
i = Ti −Ai −

B · h) = Encap(pk1; r1i), where h = H(hk, (ct0i , ct
1
i)i∈[n]∥ctSKE). Since Ai is not in the image

of f , we have

Ai ̸= f(r0i , r
1
i , h) = k0i − k1i − B · h = k0i − (Ti − Ai − B · h)− B · h ⇐⇒ k0i ̸= Ti.

Furthermore, since pk0 is not erroneous, we have Decap(sk0, ct0i) = k0i . These together
imply that we must have s′i = 1.

The above shows that s′i = si holds for all i ∈ [n].
Putting everything together, except for a probability at most ϵ + n · 2−λ over (PK,SK) ←

KKGcca(1
λ), there exists no randomness R satisfying Encapcca(PK;R) = (CT, k) and Decapcca(SK,

CT) ̸= k simultaneously. □ (Theorem 1)

18

4.3 Proof of IND-CCA Security (Proof of Theorem 2)

Let ϵ : N → [0, 1] be such that KEM is ϵ-almost-all-keys correct. Let A be any PPT adversary
that attacks the IND-CCA security of KEMcca and makes qdec = qdec(λ) > 0 decapsulation
queries. We will show that for this A, there exist PPT adversaries Btcr, {Bjcpa}j∈[4], B′cpa, and
Bkdm (which makes a single KDM-encryption query) satisfying

AdvccaKEMcca,A(λ) ≤ 2 · AdvtcrHash,Btcr(λ) + 2 ·
∑
j∈[4]

Advmcpa

KEM,n,Bjcpa
(λ) + 2qdec · Advmcpa

KEM,n,B′cpa
(λ)

+ 2 · AdvkdmSKE,P,Bkdm(λ) + 8ϵ+ n · 2−λ+3 + n(qdec + 1) · 2−4λ+1. (1)

This is negligible by our assumption, and thus will prove the theorem.
Our proof is via a sequence of games argument using the following six games.

Game 1: This is the IND-CCA experiment ExptccaKEMcca,A(λ). However, for making it easier
to describe the subsequent games, we change the ordering of the operations for how the
key pair (PK,SK) and the challenge ciphertext/session-key pair (CT∗, k∗b) are generated
so that the distribution of (PK, SK,CT∗, k∗b) is identical to that in the original IND-CCA
experiment.

Specifically, the description of the game is as follows:

• Generate PK = (pk0, pk1, (Ai)i∈[n],B, hk), SK = (sk0,PK), and CT∗ = ((ct∗0i , ct∗1i ,T∗i)i∈[n],
ct∗SKE) as follows:

1. Compute (pkv, skv)← KKG(1λ) for v ∈ {0, 1}, and pick B
r←− {0, 1}4λ.

2. Compute s∗ = (s∗1, . . . , s
∗
n) ← K(1λ), and pick r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n

r←− {0, 1}λ

and k∗1
r←− {0, 1}ℓ.

3. Compute ct∗SKE ← E(s∗, (r
∗(s∗i)
i)i∈[n]∥k∗1).

4. Compute (ct∗vi , k∗vi)← Encap(pkv; r∗vi) for every (i, v) ∈ [n]× {0, 1}.
5. Compute hk← HKG(1λ) and h∗ ← H(hk, (ct∗0i , ct∗1i)i∈[n]∥ct∗SKE).
6. Pick A1, . . . ,An

r←− {0, 1}4λ.
7. Compute T∗i ← k

∗(s∗i)
i + s∗i · (Ai + B · h∗) for every i ∈ [n].

8. Set PK← (pk0, pk1, (Ai)i∈[n],B, hk), SK← (sk0,PK), and CT∗ ← ((ct∗0i , ct∗1i ,T∗i)i∈[n],
ct∗SKE).

• Then, pick the random session-key k∗0
r←− {0, 1}ℓ and the challenge bit b

r←− {0, 1},
and run A(PK,CT∗, k∗b). From here on, A may start making decapsulation queries.

• Decapsulation queries CT = ((ct0i , ct
1
i ,Ti)i∈[n], ctSKE) are answered as follows: First,

compute h← H(hk, (ct0i , ct
1
i)i∈[n]∥ctSKE). Next, compute si ← 1− (Decap(sk0, ct0i)

?
=

Ti) for every i ∈ [n], and set s ← (s1, . . . , sn). Then, compute m ← D(s, ctSKE)
and parse m as ((rsii)i∈[n], k) ∈ ({0, 1}λ)n × {0, 1}ℓ. Finally, if Encap(pksi ; rsii) =
(ctsii ,Ti − si · (Ai +B · h)) holds for all i ∈ [n], then return k to A. Otherwise, return
⊥ to A.
• At some point, A terminates with output b′ ∈ {0, 1}.

For convenience, in the following we will use the following sets:

Szero :=
{
j ∈ [n]

∣∣∣ s∗j = 0
}

and Sone :=
{
j ∈ [n]

∣∣∣ s∗j = 1
}
= [n] \ Szero.

19

Game 2: Same as Game 1, except for an additional rejection rule in the decapsulation ora-
cle. Specifically, in this game, if A’s decapsulation query CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE)

satisfies h = H(hk, (ct0i , ct
1
i)i∈[n]∥ctSKE) = h∗, then the decapsulation oracle immediately

returns ⊥ to A.

Game 3: Same as Game 2, except for how Ai’s for the positions i ∈ Szero are generated.
Specifically, in this game, Ai for every position i ∈ Szero is generated by

Ai ← k∗0i − k∗1i − B · h∗. (2)

(At this point, Ai’s for the remaining positions i ∈ Sone are unchanged.)

Game 4: Same as Game 3, except for the behavior of the decapsulation oracle. Specifically,
for answering A’s decapsulation queries CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE), the oracle in this

game first computes h = H(hk, (ct0i , ct
1
i)i∈[n]∥ctSKE), and returns ⊥ to A if h = h∗. (This

rejection rule is the same as in Game 3.) Otherwise, the oracle uses the “alternative
decapsulation algorithm” AltDecap and the “alternative secret key” SK′ defined below for
computing the decapsulation result k returned to A.
AltDecap takes SK′ := (sk1,PK) and CT as input, and proceeds identically to Decapcca(SK,
CT), except that the “find step” (i.e. the step for computing si’s) is replaced with the
following procedure:

∀i ∈ [n] : si ←
(
Decap(sk1, ct1i)

?
= Ti − Ai − B · h

)
=

{
1 if Decap(sk1, ct1i) = Ti − Ai − B · h
0 otherwise

.

Note that due to this change, the decapsulation oracle answers A’s queries without using
sk0.

Game 5: Same as Game 4, except for how Ai’s for the positions i ∈ Sone are generated.
Specifically, in this game, Ai for i ∈ Sone is also generated as in Equation 2.

Note that due to this change, all of (Ai)i∈[n] are generated as in Equation 2. Furthermore,
T∗i = k∗0i holds for every i ∈ [n], no matter whether s∗i = 0 or s∗i = 1. Indeed, this is the
case for the positions i ∈ Szero by design. For the positions i ∈ Sone, we have

T∗i = k∗1i + Ai + B · h∗ = k∗1i + (k∗0i − k∗1i − B · h∗) + B · h∗ = k∗0i .

Hence, in this game, values dependent on s∗ appear only in the plaintext of ct∗SKE (i.e.

(r
∗(s∗i)
i)i∈[n]∥k∗1).

Game 6: Same as Game 5, except that the information of the challenge bit b is erased from
the SKE ciphertext ct∗SKE. Specifically, in this game, ct∗SKE in the challenge ciphertext CT∗

is generated by ct∗SKE ← E(s∗, 0n·λ+ℓ), instead of ct∗SKE ← E(s∗, (r
∗(s∗i)
i)i∈[n]∥k∗1).

For j ∈ [6], let SUCj be the event that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game j. By definition, we have AdvccaKEMcca,A(λ) = 2 · |Pr[SUC1] − 1/2|. Thus, the
triangle inequality implies

AdvccaKEMcca,A(λ) ≤ 2 ·

∑
j∈[5]

|Pr[SUCj]− Pr[SUCj+1]|+
∣∣∣∣Pr[SUC6]− 1

2

∣∣∣∣
 . (3)

In the following, we show how the terms appearing in Equation 3 are bounded.

20

Lemma 1 There exist PPT adversaries Btcr, {Bjcpa}j∈[2], and B′cpa satisfying

|Pr[SUC1]− Pr[SUC2]| ≤ AdvtcrHash,Btcr(λ) +
∑
j∈[2]

Advmcpa

KEM,n,Bjcpa
(λ)

+ qdec · Advmcpa
KEM,n,B′cpa

(λ) + 3ϵ+ n · 2−λ+1 + n(qdec + 1) · 2−4λ. (4)

The proof of this lemma needs to use a deferred analysis (up to Game 4). We postpone the
proof of this lemma to the end of the proof of this theorem.

Lemma 2 There exists a PPT adversary B3cpa such that |Pr[SUC2]− Pr[SUC3]| = Advmcpa
KEM,n,B3cpa

(λ).

Proof of Lemma 2. Using A as a building block, we show how to construct a PPT adversary
B3cpa that attacks the n-challenge IND-CPA security of KEM with the claimed advantage. The
description is as follows.

B3cpa(pk′, (ct′∗i , k′∗i,β)i∈[n]): (where β ∈ {0, 1} denotes B3cpa’s challenge bit) First, B3cpa runs s∗ =

(s∗1, . . . , s
∗
n) ← K(1λ), and sets pk1 ← pk′ and (ct∗1i , k∗1i) ← (ct′∗i , k

′∗
i,β) for the positions

i ∈ Szero. Then, B3cpa generates the remaining values in PK = (pk0, pk1, (Ai)i∈[n],B, hk),

SK = (sk0,PK), CT∗ = ((ct∗0i , ct∗1i ,T∗i)i∈[n], ct
∗
SKE), and k∗b in exactly the same way as

Game 3 does, and runs b′ ← ADecapcca(SK,·)(PK,CT∗, k∗b). (Note that sk0 is generated by

B3cpa ltself.) Finally, B3cpa terminates with output β′ ← (b′
?
= b).

If B3cpa’s challenge bit β is 0 (resp. 1), B3cpa perfectly simulates Game 2 (resp. Game 3) for
A. In particular, if β = 0, then k∗1i = k′∗i,0 for every i ∈ Szero is chosen uniformly at random from

{0, 1}4λ, and thus regardless of what values k∗0i , B, and h∗ take, Ai = k∗0i −k∗1i −B·h∗ is distributed
uniformly at random in {0, 1}4λ. Under this situation, the probability that b′ = b holds (and
thus B3cpa outputs β′ = 1) is exactly Pr[SUC2], i.e. we have Pr[β′ = 1|β = 0] = Pr[SUC2].
Similarly, we have Pr[β′ = 1|β = 1] = Pr[SUC3]. Hence, we have

Advmcpa
KEM,n,B3cpa

(λ) =
∣∣Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]

∣∣ = |Pr[SUC2]− Pr[SUC3]| ,

as desired. □ (Lemma 2)

Lemma 3 |Pr[SUC3]− Pr[SUC4]| ≤ 2ϵ+ n · 2−λ+1 holds.

Proof of Lemma 3. Note that Game 3 and Game 4 proceed identically unless A makes a
decapsulation query CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) such that h = H(hk, (ct0i , ct

1
i)i∈[n]∥ctSKE) ̸=

h∗ and Decapcca(SK,CT) ̸= AltDecap(SK′,CT) hold simultaneously. We call such a decapsulation
query bad. In the following, we will show that if PK is not “bad” in the sense specified below,
a bad decapsulation query does not exist in Game 3 and Game 4, and the probability that PK
becomes bad is bounded by 2ϵ+ n · 2−λ+1. This will prove the lemma.

Fix the following values in Game 3:

• (pk0, sk0), (pk1, sk1) ∈ Sup(KKG(1λ)) such that pk0 and pk1 are not erroneous, and hk ∈
Sup(HKG(1λ)).

• s∗ = (s∗1, . . . , s
∗
n) ∈ Sup(K(1λ)), r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n ∈ {0, 1}λ, k∗1 ∈ {0, 1}ℓ, and r∗SKE ∈

RSKE.

21

• (ct∗vi , k∗vi) = Encap(pkv; r∗vi) for all (i, v) ∈ [n]× {0, 1}.

• ct∗SKE = E(s∗, (r
∗(s∗i)
i)i∈[n]∥k∗1; r∗SKE) and h∗ = H(hk, (ct∗0i , ct∗1i)i∈[n]∥ct∗SKE).

Let C be the ciphertext space of KEM. To define the notion of “badness” for a public key,
we introduce two types of functions based on the above fixed values.

• For each i ∈ Szero and v ∈ {0, 1}, we define the function ĝi,v : {0, 1}λ×C×({0, 1}λ\{h∗})→
{0, 1}4λ ∪ {⊥} by

ĝi,v(r, ct
′, h) :

[
(ct, k)← Encap(pkv; r); k′ ← Decap(sk1−v, ct′);

If k′ = ⊥ then return ⊥ else return
(k−k′)·(−1)v−k∗0i +k∗1i

h−h∗

]
.

We say that a string B ∈ {0, 1}4λ is bad if B belongs to the image of ĝi,v for some
(i, v) ∈ Szero × {0, 1}. Due to the property that the image size of Decap(sk1−v, ·) is
bounded by 2λ, the image size of ĝi,v (excluding ⊥) is at most 23λ for every i ∈ Szero and

v ∈ {0, 1}. Hence, when choosing B
r←− {0, 1}4λ, the probability that B is bad is at most

|Szero| · 2 · 2
3λ

24λ
= |Szero| · 2−λ+1.

• For each B′ ∈ {0, 1}4λ and v ∈ {0, 1}, we define the function gB′,v : {0, 1}λ×C×{0, 1}λ →
{0, 1}4λ ∪ {⊥} by

gB′,v(r, ct
′, h) :

[
(ct, k)← Encap(pkv; r); k′ ← Decap(sk1−v, ct′);
If k′ = ⊥ then return ⊥ else return (k− k′) · (−1)v − B′ · h

]
.

For each B′ ∈ {0, 1}4λ, we say that a string A′ ∈ {0, 1}4λ is bad with respect to B′ if A′

belongs to the image of gB′,0 or that of gB′,1. Again, due to the property that the image
size of Decap(sk1−v, ·) is bounded by 2λ, the image size of gB,v (excluding ⊥) is at most 23λ

for every B′ ∈ {0, 1}4λ and v ∈ {0, 1}. Hence, for any fixed B′ ∈ {0, 1}4λ, when choosing
Ai

r←− {0, 1}4λ for all i ∈ Sone, the probability that some of {Ai}i∈Sone is bad with respect

to B′ is at most |Sone| · 2 · 2
3λ

24λ
= |Sone| · 2−λ+1.

We say that a public key PK generated in Game 3 is bad if (1) either pk0 or pk1 is erroneous,
or (2) either B is bad or Ai for some i ∈ Sone is bad with respect to B. By the union bound,
the probability that PK is bad in Game 3 is bounded by 2ϵ + |Szero| · 2−λ+1 + |Sone| · 2−λ+1 =
2ϵ+ n · 2−λ+1.

To complete the proof, in the following we show that if PK = (pk0, pk1, (Ai)i∈[n],B, hk) is not
bad, then for any ciphertext CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) such that h = H(hk, (ct0i , ct

1
i)i∈[n]∥

ctSKE) ̸= h∗, we always have Decapcca(SK,CT) = AltDecap(SK′,CT).
Let CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) be an arbitrary ciphertext satisfying h = H(hk, (ct0i , ct

1
i)i∈[n]∥

ctSKE) ̸= h∗. For each i ∈ [n], define

si := 1−
(
Decap(sk0, ct0i)

?
= Ti

)
, and

s′i :=
(
Decap(sk1, ct1i)

?
= Ti − Ai − B · h

)
.

We consider two cases and show that Decapcca(SK,CT) = AltDecap(SK′,CT) holds in either
case.

22

• Case 1: For all positions i ∈ [n], there exists a pair (r, v) ∈ {0, 1}λ × {0, 1}
satisfying Encap(pkv; r) = (ctvi ,Ti − v · (Ai + B · h)).
In this case, we show that si = s′i holds for all i ∈ [n]. This in turn implies that the output
of Decapcca and that of AltDecap agree since these algorithms proceed identically after
they respectively compute s.

Fix i ∈ [n]. The condition of this case directly implies Decap(skv, ctvi) = Ti−v ·(Ai+B ·h).
This in turn implies that if v = 0 then we have si = 0, while if v = 1 then we have s′i = 1.
In the following, we will show that

k′ := Decap(sk1−v, ct1−vi) ̸= Ti − (1− v) · (Ai + B · h) (5)

holds, which implies that if v = 0 then we have s′i = 0, while if v = 1 then we have si = 1.
Hence, combined together, we will obtain the desired conclusion si = s′i (regardless of
the value of v). Also, if k′ = ⊥, then Equation 5 is obviously satisfied. Thus, below we
consider the case k′ ̸= ⊥.
The argument for showing Equation 5 differs depending on whether i ∈ Szero or i ∈ Sone.
If i ∈ Szero, then since B is not bad, it is not in the image of ĝi,v. Hence, we have

B ̸= ĝi,v(r, ct
1−v
i , h) =

(
Ti − v · (Ai + B · h)− k′

)
· (−1)v − k∗0i + k∗1i

h− h∗

⇐⇒ k′ ̸= Ti − v · (Ai + B · h)− (−1)v ·
(
(k∗0i − k∗1i − B · h∗) + B · h

)
(∗)
= Ti −

(
v + (−1)v

)
· (Ai + B · h) (∗∗)

= Ti − (1− v) · (Ai + B · h),

where the equality (*) uses Ai = k∗0i − k∗1i − B · h∗, which is how Ai is generated for the
positions i ∈ Szero in Game 3; The equality (**) is due to v+(−1)v = 1− v for v ∈ {0, 1}.
Similarly, if i ∈ Sone, then since Ai is not bad with respect to B, it is not in the image of
gB,v. Hence, we have

Ai ̸= gB,v(r, ct
1−v
i , h) =

(
Ti − v · (Ai + B · h)− k′

)
· (−1)v − B · h

⇐⇒ k′ ̸= Ti − v · (Ai + B · h)− (−1)v · (Ai + B · h)

= Ti −
(
v + (−1)v

)
· (Ai + B · h) = Ti − (1− v) · (Ai + B · h),

where the last equality is again due to v + (−1)v = 1− v for v ∈ {0, 1}.
We have seen that Decap(sk1−v, ct1−vi) ̸= Ti − (1 − v) · (Ai + B · h) holds regardless of
whether i ∈ Szero or i ∈ Sone, as required. Hence, as mentioned earlier, si = s′i holds for
all i ∈ [n], and consequently we have Decapcca(SK,CT) = AltDecap(SK′,CT).

• Case 2: There exists a position i ∈ [n] for which there exists no pair (r, v) ∈
{0, 1}λ × {0, 1} satisfying Encap(pkv; r) = (ctvi ,Ti − v · (Ai + B · h)).
In this case, both Decapcca and AltDecap return ⊥. Indeed, the condition of this case
implies that there exists a position i ∈ [n] for which there exists no r ∈ {0, 1}λ satisfying
Encap(pksi ; r) = (ctsii ,Ti − si · (Ai +B · h)). Hence, the validity check done in the last step
of Decapcca cannot be satisfied at the position i, and thus Decapcca outputs ⊥. Exactly
the same argument applies to AltDecap, and thus it also outputs ⊥. Hence, in this case
we have Decapcca(SK,CT) = AltDecap(SK′,CT) = ⊥.

23

As seen above, if PK is not bad, then for any CT with h ̸= h∗, we have Decapcca(SK,CT) =
AltDecap(SK′,CT), as desired. □ (Lemma 3)

Lemma 4 There exists a PPT adversary B4cpa such that |Pr[SUC4]− Pr[SUC5]| = Advmcpa
KEM,n,B4cpa

(λ).

Proof of Lemma 4. The lemma can be shown similarly to Lemma 2. The difference is that
the reduction algorithm B4cpa in the proof for this lemma embeds its given public key pk′ to pk0,
and uses the given challenge ciphertext/session-key pairs {(ct′∗i , k′∗i,β)}i∈[n] as (ct∗0i , k∗0i) in the

positions i ∈ Sone. The remaining values of PK, SK′, CT∗, and kb are generated by B4cpa itself in

exactly the same way as in Game 5. (Note that SK′ = (sk1,PK), and thus sk0 is not needed.)

Then B4cpa runs b′ ← AAltDecap(SK′,·)(PK,CT∗, kb), and terminates with output β′ ← (b′
?
= b).

B4cpa perfectly simulates Game 4 (resp. Game 5) if its challenge bit β is 0 (resp. 1), and thus
we can derive Advmcpa

KEM,n,B4cpa
(λ) = |Pr[SUC4]− Pr[SUC5]|. □ (Lemma 4)

Lemma 5 There exists a PPT adversary Bkdm that makes a single KDM-encryption query and
satisfies |Pr[SUC5]− Pr[SUC6]| = AdvkdmSKE,P,Bkdm(λ).

Proof of Lemma 5. Using A as a building block, we show how to construct a PPT adversary
Bkdm that attacks the one-time P-KDM security of SKE with the claimed advantage. The
description of Bkdm is as follows:

BOkdm(·,·)
kdm (1λ): Firstly, Bkdm picks r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n

r←− {0, 1}λ and k∗1
r←− {0, 1}ℓ. Then,

Bkdm defines f1 to be the function that takes z = (z1, . . . , zn) ∈ {0, 1}n as input and

outputs (r
∗(zi)
i)i∈[n]∥k∗1 ∈ {0, 1}n·λ+ℓ, and f0 to be the constant zero-function with output

length n · λ+ ℓ. Note that f0 and f1 can be expressed by a projection function (each bit
of r∗(zi) is dependent only on zi, and k∗1 is independent of z), and thus f0, f1 ∈ P. Bkdm
submits (f0, f1) as a KDM-encryption query, and receives the challenge ciphertext ct∗SKE.
Next, Bkdm generates the remaining values of PK, SK′, CT∗, and k∗b by itself as in Game 5,
where the secret key sk used to generate Bkdm’s challenge ciphertext ct∗SKE is regarded as
s∗ in Game 5. (Recall that in Game 5, values dependent on s∗ appear only in the plaintext
of ct∗SKE.) Then, Bkdm runs b′ ← AAltDecap(SK′,·)(PK,CT∗, kb), and terminates with output

β′ ← (b′
?
= b).

Let β ∈ {0, 1} be Bkdm’s challenge bit, and we view the secret key sk in Bkdm’s KDM
experiment as s∗ in the experiment simulated for A by Bkdm. Then, it is not hard to see that
if β = 1 (resp. β = 0), then Bkdm perfectly simulates Game 5 (resp. Game 6) for A. In

particular, if β = 1, then ct∗SKE is an encryption of f1(s
∗) = (r

∗(s∗i)
i)i∈[n]∥k∗1, which is exactly

how it is generated in Game 5. On the other hand, if β = 0, then ct∗SKE is an encryption
of f0(s

∗) = 0n·λ+ℓ, which is exactly how it is generated in Game 6. Under this situation, the
probability that b′ = b holds (and thus Bkdm outputs β′ = 1) is exactly Pr[SUC5] (resp. Pr[SUC6]).
Hence, we have

AdvkdmSKE,P,Bkdm(λ) =
∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]

∣∣ = |Pr[SUC5]− Pr[SUC6]| ,

as desired. □ (Lemma 5)

Lemma 6 Pr[SUC6] = 1/2 holds.

24

Proof of Lemma 6. This lemma is true because in Game 6, the information of the challenge
bit b is completely erased from A’s view. □ (Lemma 6)

Due to Lemmas 1 to 6 and Equation 3, we can conclude that there exist PPT adversaries Btcr,
{Bjcpa}j∈[4], B′cpa, and Bkdm (that makes a single KDM-encryption query) satisfying Equation 1,
as desired.

Finally, we give the proof of Lemma 1.

Proof of Lemma 1. We say that a decapsulation query CT = ((ct0i , ct
1
i ,Ti)i∈[n], ctSKE) made

by A in Game j ∈ [4] is hash-bad if h = H(hk, (ct0i , ct
1
i)i∈[n]∥ctSKE) = h∗ and Decapcca(SK,CT) ̸=

⊥ hold simultaneously. We categorize a hash-bad decapsulation query into the following two
mutually exclusive types:

• Type-1: (ct0i , ct
1
i)i∈[n]∥ctSKE ̸= (ct∗0i , ct∗1i)i∈[n]∥ct∗SKE

• Type-2: (ct0i , ct
1
i)i∈[n]∥ctSKE = (ct∗0i , ct∗1i)i∈[n]∥ct∗SKE

For j ∈ [4] and k ∈ [2], let HBki be the event that A makes at least one Type-k hash-bad
decapsulation query in Game j. Observe that if pk0 is not erroneous and A does not make a
hash-bad query, then Game 1 and Game 2 proceed identically. Thus, we have

|Pr[SUC1]− Pr[SUC2]| ≤ ϵ+ Pr[HB12] + Pr[HB22].

Furthermore, note that by definition, a Type-1 hash-bad query can be directly used to break the
target collision resistance of Hash. That is, we can construct a PPT adversary Btcr satisfying
Pr[HB12] = AdvtcrHash,Btcr(λ). Since the construction of Btcr is straightforward, we omit the detail.

It remains to show how Pr[HB22] is bounded. Note that A’s decapsulation queries CT must
satisfy CT ̸= CT∗, and thus if CT is a Type-2 hash-bad query, then there must exist a position
j ∈ [n] for which Tj ̸= T∗j holds. For a ciphertext CT = ((ct∗0i , ct∗1i ,Ti)i∈[n], ct

∗
SKE) satisfying

the conditions of a Type-2 hash-bad query, define DiffCT := {j ∈ [n]|Tj ̸= T∗j}, and for each

i ∈ [n], let si = 1 − (Decap(sk0, ct∗0i)
?
= Ti). We observe that for the positions i ∈ DiffCT, the

following holds. (For now, let us forget about the possibility of pk0 being erroneous.)

• If s∗i = 0, then Encap(pk0; r∗0i) = (ct∗0i ,T∗i). This and Ti ̸= T∗i imply Decap(sk0, ct∗0i) ̸= Ti,
which in turn implies si = 1. Then, Decapcca(SK,CT) ̸= ⊥ implies that there must exist
r ∈ {0, 1}λ such that Encap(pk1; r) = (ct∗1i ,Ti − Ai − B · h∗) = (ct∗1i , k∗1i) holds (and this r
is recovered during the computation of Decapcca). Hence, if A makes a Type-2 hash-bad
decapsulation query CT and there exists a position i ∈ DiffCT ∩ Szero, then the query
implies the recovery of the session-key k∗1i corresponding to ct∗1i .

• On the other hand, if s∗i = 1, then Encap(pk1; r∗1i) = (ct∗1i , k∗1i) = (ct∗1i ,T∗i − Ai − B · h∗).
We argue that Decap(sk0, ct∗0i) = Ti holds, and thus we have si = 0. Assume towards
a contradiction that Decap(sk0, ct∗0i) ̸= Ti holds. Then, it implies si = 1. In order for
Decapcca(SK,CT) ̸= ⊥ to hold, there must exist r ∈ {0, 1}λ such that Encap(pk1; r) =
(ct∗1i ,Ti −Ai −B · h∗) holds (and this r is recovered during the computation of Decapcca).
However, ct∗1i is by definition an encapsulation of k∗1i = T∗i − Ai − B · h∗. Thus, we have
Ti − Ai − B · h∗ = T∗i − Ai − B · h∗, which implies Ti = T∗i , but it contradicts Ti ̸= T∗i .
Hence, if s∗i = 1, then we must have Decap(sk0, ct∗0i) = k∗0i = Ti. Therefore, if A makes
a Type-2 hash-bad decapsulation query CT and there exists a position i ∈ DiffCT ∩ Sone,
then the query implies the recovery of the session-key k∗0i corresponding to ct∗0i .

25

Based on the above observation, we classify a Type-2 hash-bad decapsulation query CT into
the following two sub-types:

• Type-2a: There exists a position i ∈ DiffCT ∩ Szero.

• Type-2b: There exists a position i ∈ DiffCT ∩ Sone.

For j ∈ {2, 3, 4}, let HB2aj (resp. HB2bj) be the event that A makes at least one Type-2a (resp.
Type-2b) hash-bad decapsulation query. By the definition of the events, we have

Pr[HB22] ≤ Pr[HB2a2] + Pr[HB2b2].

Hence, it remains to show how Pr[HB2a2] and Pr[HB2b2] are bounded. We first show that there
exists a PPT adversary B1cpa that attacks the n-challenge IND-CPA security of KEM and satisfies

Pr[HB2a2] ≤ Advmcpa
KEM,n,B1cpa

(λ) + n · 2−4λ. (6)

The description of B1cpa is as follows.

B1cpa(pk, (ct′∗i , k′∗i,β)): (where β ∈ {0, 1} is B1cpa’s challenge bit) B1cpa first runs s∗ = (s∗1, . . . , s
∗
n)←

K(1λ), and sets pk1 ← pk′ and ct∗1i ← ct′∗i for the positions i ∈ Szero. B1cpa then generates
the remaining values of PK, SK, CT∗, and k∗b by itself exactly as in Game 2, and runs
ADecapcca(SK,·)(PK,CT∗, k∗b). (Note that the randomness r∗1i behind ct∗1i = ct′∗i for the
positions i ∈ Szero is not needed for generating CT∗.) When A terminates, B1cpa checks
whether A has made a Type-2a hash-bad decapsulation query CT.

• If a Type-2a hash-bad query has been made, then let CT = ((ct∗0i , ct∗1i ,Ti)i∈[n],
ct∗SKE) be the found query. (If A has made multiple Type-2a hash-bad queries, then
B1cpa uses the first one.) If there exists a position i ∈ DiffCT ∩ Szero for which
Ti − Ai − B · h∗ = k′∗i,β holds, then B1cpa sets β′ ← 1, and otherwise B′cpa sets β′ ← 0.

• If no Type-2a hash-bad query has been made, then B1cpa sets β′ ← 0.

Finally, B1cpa terminates with output β′.

It is straightforward to see that B1cpa simulates Game 2 perfectly for A (regardless of its
challenge bit β). Hence, the probability that A makes a Type-2a hash-bad query in the experi-
ment simulated by B1cpa is exactly Pr[HB2a2]. Next, recall our observation above that if A makes
a Type-2a hash-bad query CT = ((ct∗0i , ct∗1i ,Ti)i∈[n], ct

∗
SKE), then Ti−Ai−B ·h∗ = k∗1i holds for

some position i ∈ DiffCT ∩ Szero. Since B1cpa embeds each of its given challenge ciphertexts ct′∗i
as ct∗1i for the positions i ∈ Szero, if β = 1, then we have the correspondence k∗1i = k′∗i,1 for the
positions i ∈ Szero. Thus, if β = 1, then there exists at least one position i ∈ DiffCT ∩ Szero for
which Ti−Ai−B · h∗ = k∗1i = k′∗i,1 holds, and B1cpa outputs β′ = 1. Hence, we can conclude that

Pr[β′ = 1|β = 1] = Pr[HB2aB] holds. On the other hand, k′∗i,0 for every i ∈ [n] is chosen uniformly

at random from {0, 1}4λ, and is independent of A’s view. Thus, the probability that there exists
i ∈ DiffCT∩Szero for which Ti−Ai−B ·h∗ = k′∗i,0 holds (and B1cpa outputs β′ = 1 in case β = 0),

is at most n · 2−4λ by the union bound. That is, we have Pr[β′ = 1|β = 0] ≤ n · 2−4λ. Hence,
we have

Advmcpa
KEM,n,B1cpa

(λ) =
∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]

∣∣ ≥ Pr[HB2a2]− n · 2−4λ,

which is equivalent to Equation 6.

26

It remains to bound Pr[HB2b2]. By the triangle inequality, we have

Pr[HB2b2] ≤
∑

j∈{2,3}

∣∣∣Pr[HB2bj]− Pr[HB2bj]
∣∣∣+ Pr[HB2b4].

Here, with essentially the same argument as in the proof of Lemma 2, we have
∣∣Pr[HB2b2]− Pr[HB2b3]

∣∣
= Advmcpa

KEM,n,B2cpa
(λ) for an appropriate PPT adversary B2cpa. More specifically, the reduction al-

gorithm B2cpa here runs in exactly the same way as B3cpa in the proof of Lemma 2, with the
difference that B2cpa outputs 1 if and only if A has made a Type-2b hash-bad decapsulation

query, which can be detected by using sk0 that B2cpa possesses.

Furthermore, with the same argument as in the proof of Lemma 3, we have
∣∣Pr[HB2b3]− Pr[HB2b4]

∣∣
≤ 2ϵ+ n · 2−λ+1.

Finally, we show that there exists a PPT adversary B′cpa that attacks the n-challenge IND-
CPA security of KEM and satisfies

Pr[HB2b4] ≤ qdec ·
(
Advmcpa

KEM,n,B′cpa
(λ) + n · 2−4λ

)
. (7)

The description of B′cpa is somewhat symmetric to B1cpa that we showed above, and is as follows.

B′cpa(pk′, (ct′∗i , k′∗i,β)i∈[n]): (where β ∈ {0, 1} is B′cpa’s challenge bit) B′cpa first runs s∗ = (s∗1, . . . , s
∗
n)

← K(1λ), and sets pk0 ← pk′ and ct∗0i ← ct′∗i for the positions i ∈ Sone. B′cpa then generates
the remaining values of PK, SK′, CT∗, and k∗b by itself exactly as in Game 4, and runs

AAltDecap(SK′,·)(PK,CT∗, k∗b). (Note that the randomness r∗0i behind ct∗0i = ct′∗i for the
positions i ∈ Sone is not needed for generating CT∗.) When A terminates, B′cpa picks
one of A’s decapsulation queries uniformly, and let CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) be the

chosen query.7 Then, B′cpa checks if there exists a position i ∈ DiffCT ∩ Sone for which
Ti = k′∗i,β holds. If this is the case, B′cpa sets β′ ← 1, otherwise B′cpa sets β′ ← 0. Finally,
B′cpa terminates with output β′.

As in the analysis of B1cpa, it is straightforward to see that B′cpa simulates Game 4 perfectly for
A (regardless of its challenge bit β). Hence, the probability that A makes a Type-2b hash-bad
query in the experiment simulated by B′cpa is exactly Pr[HB2b4]. Furthermore, since B′cpa picks one
of A’s decapsulation queries uniformly, conditioned on the event that A makes a Type-2b hash
bad query, the probability that B′cpa chooses such a query is at least 1/qdec. Moreover, recall our
observation above that if A makes a Type-2b hash-bad query CT = ((ct∗0i , ct∗1i ,Ti)i∈[n], ct

∗
SKE),

then Ti = k∗0i holds for some position i ∈ DiffCT ∩ Sone. Since B′cpa uses each of its given
challenge ciphertexts ct′∗i as ct∗0i for the positions i ∈ Sone, if β = 1, then we have the corre-
spondence k∗0i = k′∗i,1 for all i ∈ Sone. Thus, if β = 1 and B′cpa chooses a Type-2b hash-bad query

CT, then there exists at least one position i ∈ DiffCT ∩ Sone for which Ti = k∗0i = k′∗i,1 holds,

and B′cpa outputs β′ = 1. Hence, we can conclude that Pr[β′ = 1|β = 1] ≥ (1/qdec) · Pr[HB2b4]

holds. On the other hand, k′∗i,0 for every i ∈ [n] is chosen uniformly at random from {0, 1}4λ,
and is independent of A’s view. Thus, the probability that there exists i ∈ DiffCT ∩ Sone for
which Ti = k′∗i,0 holds (and B′cpa outputs β′ = 1 in case β = 0), is at most n · 2−4λ by the union

bound. That is, we have Pr[β′ = 1|β = 0] ≤ n · 2−4λ. Hence, we have

Advmcpa
KEM,n,B′cpa

(λ) =
∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]

∣∣
≥ 1

qdec
· Pr[HB2b4]− n · 2−4λ,

7Note that B′
cpa embeds its given public key pk′ to pk0, and thus it does not have the corresponding secret

key sk0. Hence, it cannot check if A’s decapsulation query satisfies the condition of a Type-2b hash-bad query
(checking which requires sk0). This is the reason why we make B′

cpa pick A’s query randomly.

27

which is equivalent to Equation 7.

Putting everything together, we obtain PPT adversaries Btcr, {Bjcpa}j∈[2], and B′cpa satisfying
Equation 4, as required. □ (Lemma 1)

□ (Theorem 2)

5 Impossibility of Shielding Black-Box Constructions

Gertner et al. [GMM07] showed that there exists no shielding black-box construction of an
IND-CCA1 secure PKE scheme from an IND-CPA secure one. (We recall the formal definitions
of PKE and its security notions in Appendix A.) Recall that a shielding black-box construction
of a PKE scheme PKE = (KG,Enc,Dec) from another PKE scheme pke = (kg, enc, dec) is such
that the decryption algorithm Dec in PKE does not use the encryption algorithm enc of pke.
Put differently, we have PKEpke = (KGkg,enc,dec,Enckg,enc,dec,Deckg,dec).

In this section, we extend Gertner et al.’s result and show the following result.

Theorem 4 There exists no shielding black-box construction of an IND-CCA1 secure PKE
scheme from a P-KDM secure PKE scheme.

This theorem is proved as a corollary of Theorems 5 and 6 stated below.
We emphasize that this result does not contradict our result in Section 4.1 (in particular,

Corollary 2), because our construction KEMcca is a non-shielding black-box construction in which
the decapsulation algorithm Decapcca uses the encapsulation algorithm Encap of the underlying
IND-CPA secure KEM.

We also note that our result seems incomparable to a similar result by Hajiabadi and Kapron
[HK15], who showed that a PKE scheme satisfying a form of randomness-dependent-message
(RDM) security is a primitive from which a non-shielding black-box construction of an IND-
CCA secure PKE scheme is possible while shielding black-box constructions of an IND-CCA1
secure PKE scheme are impossible. (We note that their definition of RDM security is different
from the original definition proposed by Birrell, Chung, Pass, and Telang [BCPT13], and tailored
to their setting.8)

Our impossibility of shielding black-box constructions is shown based largely on the frame-
work and technique of [GMM07] and the technique of [HK15]. Informally, [GMM07] defined a
distribution Φ of an oracle O = (O1,O2) such that O1 syntactically constitutes a PKE scheme,
O2 is an attacker’s “breaking” oracle, and they showed that the following two items hold with
high probability over the choice of O = (O1,O2)← Φ:

1. O1 constitutes an IND-CPA secure PKE scheme against any computationally unbounded
adversary AO1,O2 that makes polynomially many queries.

2. The IND-CCA1 security of any candidate shielding black-box construction PKEO1 is bro-
ken (with more than a constant advantage) by some computationally unbounded adversary
A′O1,O2 with polynomially many queries.

8Roughly speaking, RDM security used by Hajiabadi and Kapron requires that n ciphertexts encrypting the
bit-decomposition of r = (r1, . . . , rn) are indistinguishable from n ciphertexts that all encrypt 0 even if they are
all encrypted under the same random coin r itself. In the actual definition, an adversary is given multiple sets of
the above n ciphertexts. This setting is somewhat unnatural in the usage of PKE, and a PKE scheme satisfying
this security notion immediately implies a TDF with one-wayness under correlated products.

28

These two items imply (via a standard argument used in black-box separation results) the
impossibility of shielding black-box constructions of an IND-CCA1 secure PKE scheme from an
IND-CPA secure one.

Since we use exactly the same distribution Φ of oracles O used by Gertner et al., and the
second item was already shown by them, for our result, we only need to prove an extension of
the first item, namely, O1 constitutes a P-KDM secure PKE scheme with high probability over
the choice of O = (O1,O2)← Φ.

In the following, we first recall the definition of the distribution Φ of oracles O used by
Gertner et al., then state their result corresponding to the item 2 above. Finally, we state our
result corresponding to the item 1 above.

Definition 9 (Oracle Distribution for Separation [GMM07]) Consider an oracle O con-
sisting of the suboracles (g, e,d,w,u) that are defined for each length parameter n ∈ N and
satisfy the following syntax9:

g : {0, 1}n → {0, 1}3n: This is an injective function. This oracle can be thought of as the key
generation process that takes a secret key sk ∈ {0, 1}n as input and outputs a public key
pk ∈ {0, 1}3n.

e : {0, 1}3n × {0, 1} × {0, 1}n → {0, 1}3n: For each pk ∈ {0, 1}3n, e(pk, ·, ·) : {0, 1} × {0, 1}n →
{0, 1}3n is an injective function. This oracle can be thought of as the encryption process
that takes a public key pk ∈ {0, 1}3n, a plaintext m ∈ {0, 1}, and a randomness r ∈ {0, 1}n
as input, and outputs a ciphertext ct ∈ {0, 1}3n.

d : {0, 1}n × {0, 1}3n → {0, 1,⊥}: This oracle takes sk ∈ {0, 1}n and ct ∈ {0, 1}3n as input,
and if there exists (pk,m, r) ∈ {0, 1}3n × {0, 1} × {0, 1}n such that pk = g(sk) and ct =
e(pk,m, r), then it outputs m. Otherwise, this oracle outputs ⊥. This oracle can be thought
of as the decryption process.

w : {0, 1}3n × {0, 1}n → {0, 1}3n×n ∪ {⊥}: This oracle is associated with a “randomness-deriving”
function Fw : {0, 1}3n × {0, 1}n → {0, 1}n×n.10 This oracle takes pk ∈ {0, 1}3n and an in-
dex z ∈ {0, 1}n as input, and if there exists no sk ∈ {0, 1}n such that pk = g(sk), then the
oracle outputs ⊥. Otherwise, let sk = (s1, . . . , sn) ∈ {0, 1}n be such that pk = g(sk). The
oracle computes (r1, . . . , rn)← Fw(pk, z), and then cti ← e(pk, si, ri) for every i ∈ [n]. Fi-
nally, the oracle outputs (cti)i∈[n]. This oracle is a “weakening” oracle that helps breaking
the IND-CCA1 security of any shielding construction.

u : {0, 1}3n × {0, 1}3n → {⊤,⊥}: This oracle takes pk ∈ {0, 1}3n and ct ∈ {0, 1}3n as input, and
if there exists (sk,m, r) ∈ {0, 1}n×{0, 1}×{0, 1}n such that pk = g(sk) and ct = e(pk,m, r),
then the oracle outputs ⊤. Otherwise, the oracle outputs ⊥. This oracle can be thought of
as the validity checking process of a ciphertext ct with respect to a public key pk.

We define the distribution Φ of an oracle O = (g, e,d,w,u) as follows: For each n ∈ N,
pick g, e, and Fw uniformly at random, and then define d, w, and u satisfying the above
syntax.11

Note that (g, e,d) in O naturally constitutes a 1-bit PKE scheme. Gertner et al. [GMM07]
showed the following result, which states that with high probability overO← Φ, the IND-CCA1

9Among O = (g, e,d,w,u), (g, e,d) (resp. (w,u)) corresponds to O1 (resp. O2) in the above explanation.
10The purpose of Fw is to make w deterministic (after chosen according to the distribution Φ). When an oracle

O is chosen from Φ, Fw will work as a truly random function. This treatment is done implicitly in [GMM07].
11Note that the behavior of O is completely determined by g, e, and Fw used in w.

29

security of any candidate shielding black-box construction from the PKE (g, e,d) (defined in
O) is broken with more than a constant advantage by some adversary making polynomially
many queries.

Theorem 5 (Corollary of Theorem 2 in [GMM07]) Let PKE = (KG,Enc,Dec) be a shield-
ing construction of a 1-bit PKE scheme based on another 1-bit PKE scheme. For each O =
(g, e,d,w,u) ∈ Sup(Φ), let PKEg,e,d := (KGg,e,d,Encg,e,d,Decg,d). Then, there exists a compu-
tationally unbounded adversary A that makes at most polynomially many queries and satisfies
the following for all sufficiently large λ ∈ N:

Pr
O=(g,e,d,w,u)←Φ

[
Advcca1

PKEg,e,d,AO(λ) ≥
1

2

]
≥ 1− 4

λ
.

We now show our theorem, which states that with overwhelming probability over the choice
of O ← Φ, (g, e,d) constitutes a 1-bit P-KDM secure PKE scheme (secure in the presence of
multiple KDM-encryption queries). Since the bit-by-bit encryption preserves P-KDM security,
the existence of a 1-bit (many-time) P-KDM secure PKE scheme implies a P-KDM secure PKE
scheme that can encrypt plaintexts of arbitrary length in the black-box sense.

Theorem 6 For any computationally unbounded adversary A that makes at most polynomially
many queries, there exist negligible functions µ(·) and µ′(·) such that for all sufficiently large
λ ∈ N, we have

Pr
O=(g,e,d,w,u)←Φ

[
Advkdm(g,e,d),P,AO(λ) ≤ µ(λ)

]
≥ 1− µ′(λ).

We remark that Theorems 5 and 6 imply Theorem 4 via a standard technique in black-box
separation results (using the Borel-Cantelli lemma) (see, e.g. [HR04]).

Proof of Theorem 6. Let A be any computationally unbounded adversary that makes q =
q(λ) queries (that is the total of queries to O and to the KDM-encryption oracle Okdm). We
will show that ∣∣∣∣Pr [AO,Okdm(pk∗ = g(sk∗)) = b

]
− 1

2

∣∣∣∣ ≤ poly(q)

2λ
, (8)

where the probability is over O = (g, e,d,w,u) ← Φ, sk∗
r←− {0, 1}λ, b

r←− {0, 1}, and the
randomness used by A and the KDM-encryption oracle Okdm. (Recall that Okdm takes two
projection functions f0, f1 : {0, 1}λ → {0, 1} as input, picks r

r←− {0, 1}λ, and returns ct =
e(pk∗, fb(sk

∗), r).) Note that Equation 8 implies the theorem by a simple averaging argument.
We call the KDM experiment including the choice of the oracle O ← Φ the extended KDM
experiment.

First, we make some assumptions for simplifying the proof.

• Without loss of generality, we can assume that A never makes the same query twice to
O, since each suboracle in O is deterministic.

• Before making a d-query (sk, ∗), A first makes a g-query sk.

• By definition, O for each length parameter n ∈ N is independent of one another, and only
n = λ is relevant to Equation 8. Hence, for simplicity, we can assume that A queries
to O = (g, e,d,w,u) only for the length parameter n = λ. (Queries with other length
parameters n ̸= λ can be simulated by A itself.)

30

In the extended KDM experiment, let SUCA be the event that A succeeds in guessing the
challenge bit b, and let QA be the event that A submits sk∗ as a g-query. By definition, the left
hand side of Equation 8 is |Pr[SUCA]− 1/2|.

For showing Equation 8, we first show that queries to d, w, and u do not help A much.
More specifically, we show that for AO,Okdm , there exists another adversary Bg,e,Okdm that does
not have access to (d,w,u), makes at most q′ = poly(q) queries in total, and satisfies∣∣∣∣Pr[SUCA]− 1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[SUCB]− 1

2

∣∣∣∣+ 1

2
Pr[QB] +

poly(q)

2λ
, (9)

where SUCB (resp. QB) is the event that B succeeds in guessing the challenge bit b (resp. makes
a g-query sk∗) in its extended KDM experiment.

To this end, we need some preparations. We introduce the following notation in the extended
KDM experiment: Let LPK be the set consisting of pk∗ and public keys pk that A has obtained
by making a g-query sk ∈ {0, 1}λ. Similarly, let LPK&CT be the set of all public key/ciphertext
pairs (pk, ct) that A has obtained by making an e-query (pk,m, r), a w-query (pk, z), or a
KDM-encryption query. Furthermore, we introduce the notion of surprising queries that could
be made by A during the extended KDM experiment.

• A d-query (sk, ct) is said to be surprising if (g(sk), ct) /∈ LPK&CT and ct belongs to the
image of e(pk, ·, ·).

• A w-query (pk, ∗) is said to be surprising if pk /∈ LPK and pk belongs to the image of g(·).

• A u-query (pk, ct) is said to be surprising if either (1) pk /∈ LPK and pk belongs to the
image of g(·), or (2) (pk, ct) /∈ LPK&CT and ct belongs to the image of e(pk, ·, ·).

Now, we show the description of Bg,e,Okdm as follows.

Given pk∗ as input, B runs A(pk∗). Then, B answers A’s queries as follows.

• For a g-query sk, an e-query (pk,m, r), and a KDM-encryption query (f0, f1), B uses its
own corresponding oracles for answering them, except that if B’s g-query results in pk∗,
then B stops the simulation, and terminates with a fair coin b′.

• For a d-query (sk, ct), B proceeds as follows. (Note that it is guaranteed that pk = g(sk) ∈
LPK\{pk∗} holds, because we are assuming that sk must be previously asked as a g-query
and B must have stopped the simulation when it detects g(sk) = pk∗.)

– If (pk∗, ct) ∈ LPK&CT, then B returns ⊥ to A.
– If (pk, ct) /∈ LPK&CT, then B again returns ⊥ to A.
– If (pk, ct) ∈ LPK&CT and pk ̸= pk∗, then due to how B answers A’sw-queries (described

below), it is guaranteed that ct is an answer to one of A’s previous e-queries (pk,m, r)
for some (m, r) ∈ {0, 1} × {0, 1}λ.12 Thus, B returns this m to A.

B’s answer could be incorrect only when the query falls into the second case and A’s query
is surprising.

• For a w-query (pk, z), B proceeds as follows:

12We note that ct in this case is also not a ciphertext returned as an answer to A’s KDM-encryption query,
because by definition Okdm could return ciphertexts only under pk∗.

31

– If pk = pk∗, then for each i ∈ [λ], B defines the function f (i) : {0, 1}λ → {0, 1}
that always outputs the i-th bit of its input, and submits a KDM-encryption query
(f0, f1) with f0 = f1 = f (i) to obtain a ciphertext cti. (Note that by the definition
of Okdm, each cti is cti = e(pk∗, s∗i , ri) for a fresh ri

r←− {0, 1}λ.) Then, B returns
(cti)i∈[λ] to A.13

– If pk ∈ LPK\{pk∗}, then let sk = (s1, . . . , sλ) be the secret key corresponding to pk that
A has previously asked as a g-query. For each i ∈ [λ], B picks a fresh ri

r←− {0, 1}λ,
makes an e-query (pk, si, r), and receives cti. Then, B returns (cti)i∈[λ] to A.

– If pk /∈ LPK, then B returns ⊥ to A.

The distributions of the answers that B returns to A for the first two cases are perfect,
and only the last case could cause a simulation error (in case the query is surprising).

• For a u-query (pk, ct), if pk ∈ LPK and (pk, ct) ∈ LPK&CT, then B returns ⊤ to A. Otherwise
(i.e. pk /∈ LPK or (pk, ct) /∈ LPK&CT), B returns ⊥ to A.
B’s response could be incorrect only when the query falls into the second case and A’s
query is surprising.

When A terminates with output b′, B also outputs b′ and terminates.

Note that the number of queries made by B is at most q′ = poly(q). As explained above,
B simulates the extended KDM experiment perfectly for A unless A makes a surprising query
and unless A submits sk∗ as a g-query. Recall that in the extended KDM experiment, g :
{0, 1}λ → {0, 1}3λ and e(pk, ·, ·) : {0, 1} × {0, 1}λ → {0, 1}3λ for each pk ∈ {0, 1}3λ are random
(almost) length-tripling injective functions. Hence, the probability that A makes a surprising
query during the experiment is bounded by poly(q) · 2−λ. Also, if A does not submit sk∗ as a
g-query, then B uses A’s output as it is, while if A does so, then B outputs a random bit. These
imply that we have

∣∣Pr[SUCA ∧ QA]− Pr[SUCB ∧ QB]
∣∣ ≤ poly(q)

2λ
, (10)

|Pr[QA]− Pr[QB]| ≤
poly(q)

2λ
, (11)

Pr[SUCB] = Pr[SUCB ∧ QB] +
1

2
Pr[QB]. (12)

Finally, notice that∣∣∣∣Pr[SUCA]− 1

2

∣∣∣∣ ≤ ∣∣∣∣Pr[SUCA ∧ QA] + 1

2
Pr[QA]−

1

2

∣∣∣∣+ 1

2
Pr[QA]. (13)

Combining Equations 10 to 13, we obtain Equation 9, as desired.
It remains to show how |Pr[SUCB]− 1/2| and Pr[QB] are bounded. To show this, consider

a modified experiment where Okdm never uses the same randomness r twice. The statistical
distance between the distributions of B’s view in the original and modified experiments is
bounded by q′2 · 2−λ = poly(q) · 2−λ. Furthermore, in the modified experiment, unless B
submits an e-query (pk∗, ∗, r) that contains one of the randomnesses r used in Okdm, Okdm is
perfectly indistinguishable from an oracle that always returns a random value ct ∈ {0, 1}3λ

13In the extended KDM experiment, Fw is a random function and A is assumed to never repeat a query. Thus,
we can identify the computation (r1, . . . , rλ)← Fw(pk, z) done in w with picking r1, . . . , rλ

r←− {0, 1}λ. Hence, B’s
simulation of the response to a w-query (pk, z) with pk = pk∗ is perfect.

32

(without reusing the same element twice), which is independent of the challenge bit b or sk∗,
in which case B will have zero advantage and it can make a g-query sk∗ only with probability
q′ ·2−λ = poly(q)·2−λ. Finally, since e(pk∗, ·, ·) is a random injective function and thus its output
does not reveal any information on preimages, the probability that B can submit an e-query that
contains one of the randomnesses used inOkdm is bounded by poly(q′)·2−λ = poly(q)·2−λ. Hence,
we can conclude that |Pr[SUCB]− 1/2| ≤ poly(q) · 2−λ and Pr[QB] ≤ poly(q) · 2−λ. Combining
these inequalities with Equation 9, we obtain Equation 8, as desired. This completes the proof.

□ (Theorem 6)

6 TDF via KDM Security

In this section, we show our proposed TDF with adaptive one-wayness, which is an extension
of our IND-CCA secure KEM presented in Section 4. We will also show that it can be used to
construct a KEM satisfying the pseudorandom ciphertext property under CCA.

Specifically, in Section 6.1, we present the formal description of our proposed TDF, state
theorems regarding correctness and security, and give several remarks on the properties of our
construction. Then, in Sections 6.2 and 6.3, we prove the correctness and adaptive one-wayness
of our proposed construction, respectively. Finally, in Section 6.4, we show how the TDF
can be used to achieve the pseudorandom ciphertext property under CCA by some additional
assumption on the building block SKE scheme.

6.1 Our Construction

Let ℓ = ℓ(λ) be a polynomial. Our TDF uses the building blocks KEM, SKE, and Hash with
the following properties:

• KEM = (KKG,Encap,Decap) is a KEM such that (1) its session key space is {0, 1}3λ, (2)
the randomness space of Encap is {0, 1}λ, and (3) the ciphertext space C forms an abelian
group (where we use the additive notation) and satisfies |C| ≥ 22λ.

• SKE = (K,E,D) is an SKE scheme such that (1) it has the randomness-recovering decryp-
tion property (with the randomness-recovering decryption algorithm RD), (2) its secret key
space is {0, 1}n for some polynomial n = n(λ), and (3) the plaintext space is {0, 1}n·λ+ℓ.

We denote the randomness space of E by RSKE.

• Hash = (HKG,H) is a keyed hash function such that the range of H is {0, 1}λ, which we
are going to assume to be target collision resistant.

Using these building blocks, the proposed TDF TDF = (Setup,Samp,Eval, Inv) is constructed
as described in Figure 4. The domain X of TDF is X = {0, 1}n × {0, 1}n·λ × {0, 1}ℓ ×RSKE.

For the correctness and security of TDF, the following theorems hold.

Theorem 7 Let ϵ = ϵ(λ) ∈ [0, 1]. If KEM is ϵ-almost-all-keys correct and SKE has the
randomness-recovering decryption property, then TDF is (ϵ+ n · 2−λ)-almost-all-keys correct.

Theorem 8 Assume that KEM satisfies the pseudorandom ciphertext property and almost-all-
keys correctness, SKE is one-time P-KDM secure, and Hash is target collision resistant. Then,
TDF is adaptively one-way.

The proofs of Theorems 7 and 8 are given in Sections 6.2 and 6.3, respectively. Other than
using additional functionality/security properties of the building blocks, the proofs for the above
theorems go similarly to those for our IND-CCA secure KEM in Section 4.

33

Setup(1λ) :
∀v ∈ {0, 1} : (pkv, skv)← KKG(1λ)

A1, . . . ,An,B
r←− {0, 1}3λ

C1, . . . ,Cn
r←− C

hk← HKG(1λ)
ek← (pk0, pk1, (Ai,Ci)i∈[n],B, hk)

td← (sk0, ek)
Return (ek, td).

Samp(1λ) :
s = (s1, . . . , sn)← K(1λ)

rs11 , . . . , rsnn
r←− {0, 1}λ

k
r←− {0, 1}ℓ

Sample rSKE ∈ RSKE

in the same way as in E.
Return x← (s, (rsii)i∈[n], k, rSKE).

Eval(ek, x) :
(pk0, pk1, (Ai,Ci)i∈[n],B, hk)← ek
(s = (s1, . . . , sn), (r

si
i)i∈[n], k, rSKE)← x

ctSKE ← E(s, (rsii)i∈[n]∥k; rSKE)
∀i ∈ [n] :
(ctsii , k

si
i)← Encap(pksi ; rsii)

cti ← ctsii + si · Ci
(‡)

=

{
ct0i if si = 0

ct1i + Ci if si = 1

h← H(hk, (cti)i∈[n]∥ctSKE)
∀i ∈ [n] :

Ti ← ksii + si · (Ai + B · h) (†)

=

{
k0i if si = 0

k1i + Ai + B · h if si = 1

Return y← ((cti,Ti)i∈[n], ctSKE).

Inv(td, y) :
(sk0, ek)← td
(pk0, pk1, (Ai,Ci)i∈[n],B, hk)← ek
((cti,Ti)i∈[n], ctSKE)← y
h← H(hk, (cti)i∈[n]∥ctSKE)
∀i ∈ [n] :

si ← 1− (Decap(sk0, cti)
?
= Ti)

(⋆)

=

{
0 if Decap(sk0, cti) = Ti

1 otherwise

s← (s1, . . . , sn) ∈ {0, 1}n
(m, rSKE)← RD(s, ctSKE)
Parse m as (rsii)i∈[n] ∈ {0, 1}n·λ

and k ∈ {0, 1}ℓ.
x← (s, (rsii)i∈[n], k, rSKE)
If Eval(ek, x) = y

then return x else return ⊥.

Figure 4: The proposed TDF TDF. (†) h ∈ {0, 1}λ is treated as an element of {0, 1}3λ by
some canonical injective encoding (say, putting the prefix 02λ), and the arithmetic is done over
GF(23λ) where we identify {0, 1}3λ with GF(23λ). (‡) The addition is done over C. (⋆) We call
this step the find step.

Adaptively One-Way TDFs Based on the LPN Assumptions. By instantiating the
building blocks in our construction TDF properly, we obtain the first adaptively one-way TDF
based on the sub-exponential hardness of the constant-noise LPN problem. We note that
previously, even a TDF with ordinary one-wayness was not known based on the constant-noise
LPN assumption. Specifically, the following LPN-based building blocks can be used.

• For KEM, we use the KEM-analogue of the IND-CPA secure PKE scheme based on
the sub-exponential hardness of the constant-noise LPN problem proposed by Yu and
Zhang [YZ16]. Their security analysis in fact shows that it satisfies the pseudorandom
ciphertext property. However, the scheme does not satisfy almost-all-keys correctness as
it is. Thus, we apply the transformation by Dwork, Naor, and Reingold [DNR04] that
transforms any PKE scheme whose correctness is imperfect into one with almost-all-keys
correctness. (This transformation preserves the pseudorandom ciphertext property of the
underlying scheme.)

• For SKE, we can use the P-KDM secure SKE scheme proposed by Applebaum et al.
[ACPS09] based on the (polynomial) hardness of the constant-noise LPN problem. Their
scheme clearly admits the randomness-recovering decryption property. In particular,
whenever a plaintext is recovered in the decryption, the decryptor can also compute the

34

“noise” used in the encryption process, which is the only encryption randomness of this
scheme. In addition, their scheme can be easily made perfectly correct.

Moreover, we can also obtain the first adaptively one-way TDF based on the (polyno-
mial) hardness of the low-noise LPN problem, by replacing the Yu-Zhang scheme in the
above instantiation with the existing PKE schemes based on the low-noise LPN assumption
[Ale03, DMN12, KMP14] (which all satisfy the pseudorandom ciphertext property). Previ-
ously, a TDF satisfying ordinary one-wayness based on the low-noise LPN assumption was
proposed by Kiltz, Masny, and Pietrzak [KMP14].

Flexible Hard-core Bits k and an Extension to a KEM with Pseudorandom Ci-
phertexts. We note that k ∈ {0, 1}ℓ can be directly used as hard-core bits of an input
x = (s = (s1, . . . , sn), (r

si
i)i∈[n], k, rSKE), even in the presence of the inversion oracle. Its proof is

a straightforward extension of the proof of Theorem 8, and thus omitted.
Since an adaptively one-way TDF with ℓ-bit hard-core bits can be seen as an IND-CCA

secure KEM with session-key space {0, 1}ℓ, TDF can be viewed as an IND-CCA secure KEM in
which the randomness used to generate a ciphertext is fully recovered during the decapsulation.
Furthermore, if we additionally assume that a ciphertext of the underlying SKE scheme SKE
is pseudorandom (even if it encrypts a key-dependent message), then we can show that this
TDF-based KEM satisfies the pseudorandom ciphertext property under CCA. We will expand
the explanation on this TDF-based KEM in Section 6.4.

Additional Remarks. We remark that due to the structural similarity of our construction
TDF to KEMcca, several properties satisfied by KEMcca are inherited to TDF. Specifically, as in
the case of our IND-CCA secure KEM KEMcca, if we adopt the syntax that allows a system-wide
public parameter shared by all users, pk1, (Ai)i∈[n], (Ci)i∈[n], B, and hk in ek can be put in it, so

that an evaluation key/trapdoor pair of each user consists only of (pk0, sk0) of the underlying
KEM KEM. Moreover, we can consider another variant of TDF in which the underlying P-
KDM secure SKE scheme is replaced with a hinting PRG, in a similar manner it is used in the
Koppula-Waters construction [KW19].

Unlike KEMcca, however, we cannot make TDF perfectly correct even if we replace the
underlying KEM KEM with the combination of a PKE scheme and a PRG. This is because
the standard correctness of PKE does not guarantee anything about the decryption result of
an element chosen randomly from the ciphertext space, which naturally occurs in the inversion
process of TDF.

Simpler Construction with (Ordinary) One-wayness. If we only need to achieve (or-
dinary) one-wayness, then we can make some simplification to TDF. We give the simplified
construction in Appendix C.

6.2 Proof of Correctness (Proof of Theorem 7)

Let ek = (pk0, pk1, (Ai,Ci)i∈[n],B, hk) be an evaluation key. Using pk0, pk1, B, and (Ci)i∈[n] in

ek, for each i ∈ [n], we define the function fi : {0, 1}2λ → {0, 1}3λ by

fi(r, h) :

[
(ct, k)← Encap(pk1; r); k′ ← Decap(sk0, ct+ Ci);
If k′ = ⊥ then return ⊥ else return k′ − k− B · h

]
.

We say that an evaluation key ek is bad if (1) pk0 is erroneous, or (2) some of (Ai)i∈[n] belongs

to the image of fi. Note that the image size of fi (excluding ⊥) is at most 22λ for every i ∈ [n].

35

Since each Ai is chosen uniformly at random from {0, 1}3λ, when Setup(1λ) is executed, the

probability that bad ek is output is at most ϵ+ n · 22λ
23λ

= ϵ+ n · 2−λ.
Now, consider the case that (ek, td) is output by Setup and ek is not bad. Let x = (s =

(s1, . . . , sn), (r
si
i)i∈[n], k, rSKE) ∈ {0, 1}n × ({0, 1}λ)n × {0, 1}ℓ × RSKE be a domain element of

TDF, and let y = ((cti,Ti)i∈[n], ctSKE) = Eval(ek, x). Then, for each i ∈ [n], let s′i := 1 −
(Decap(sk0, cti)

?
= Ti).

Note that if s′i = si holds for all i ∈ [n], then the result of the randomness-recovering
decryption of ctSKE using s′ = (s′1, . . . , s

′
n) as a secret key is exactly (m = ((rsii)i∈[n], k), rSKE) due

to the property of RD. Thus, the validity check done in the last step of Inv never fails, and
Inv(td, y) will output x.

Hence, it remains to show that s′i = si holds for all i ∈ [n].

• For the positions i with si = 0, we have Encap(pk0; r0i) = (ct0i , k
0
i) = (cti,Ti). Thus, the

property that pk0 is not erroneous implies Decap(sk0, cti) = Ti, and we have s′i = 0.

• For the positions i with si = 1, we have Encap(pk1; r1i) = (ct1i , k
1
i) = (cti−Ci,Ti−Ai−B·h),

where h = H(hk, (cti)i∈[n]∥ctSKE). If Decap(sk0, cti) = ⊥, then we clearly have s′i = 1.

Otherwise (i.e. Decap(sk0, cti) ̸= ⊥), since Ai is not in the image of fi, we have

Ai ̸= fi(r
1
i , h)

= Decap(sk0, ct1i + Ci)− k1i − B · h
= Decap(sk0, cti)− (Ti − Ai − B · h)− B · h

⇐⇒ Decap(sk0, cti) ̸= Ti.

This again implies s′i = 1. Hence, regardless of Decap(sk0, cti) = ⊥ or not, we have s′i = 1.

The above shows that s′i = si holds for all i ∈ [n].
Putting everything together, except for a probability at most ϵ + n · 2−λ over (ek, td) ←

Setup(1λ), Inv(td,Eval(ek, x)) = x holds for all x ∈ X . □ (Theorem 7)

6.3 Proof of Adaptive One-wayness (Proof of Theorem 8)

For simplicity, we first show the formal proof for the case ℓ = ω(log λ), and later explain how
the proof can be carried out for the case ℓ = O(log λ) as well. (The only difference is in the
very last step of the proof.)

Let ϵ : N→ [0, 1] be such that KEM is ϵ-almost-all-keys correct. Let A be any PPT adversary
that attacks the adaptive one-wayness of TDF. We will show that for this A, there exist PPT
adversaries Btcr, {Bjprct}j∈[2], and Bkdm (which makes a single KDM-encryption query) satisfying

AdvaowTDF,A(λ) ≤ AdvtcrHash,Btcr(λ) +
∑
j∈[2]

Advmprct

KEM,n,Bjprct
(λ) + AdvkdmSKE,P,Bkdm(λ)

+ 3ϵ+ 3n · 2−λ + 2−ℓ, (14)

which will prove the theorem for the case ℓ = ω(log λ).
Our proof is via a sequence of games argument using the following five games.

Game 1: This is the adaptive one-wayness experiment ExptaowTDF,A(λ). However, for mak-
ing it easier to describe the subsequent games, we change the ordering of the opera-
tions for how the evaluation key/trapdoor pair (ek, td) and the challenge instance y∗ =

36

((ct∗i ,T
∗
i)i∈[n], ct

∗
SKE) = Eval(ek, x∗) are generated, so that the distribution of (ek, td, y∗) is

identical to that in the original adaptive one-wayness experiment.

Specifically, the description of the game is as follows:

• Generate ek = (pk0, pk1, (Ai,Ci)i∈[n],B, hk), td = (sk0, ek), and y∗ = ((ct∗i ,Ti)i∈[n],
ct∗SKE) as follows:

1. Compute (pkv, skv)← KKG(1λ) for both v ∈ {0, 1}, and pick B
r←− {0, 1}3λ.

2. Compute s∗i = (s∗1, . . . , s
∗
n)← K(1λ), pick r

∗(s∗1)
1 , . . . , r

∗(s∗n)
n

r←− {0, 1}λ, k∗ r←− {0, 1}ℓ,
and r∗SKE

r←− RSKE, and set x∗ ← (s∗, (r
∗(s∗i)
i)i∈[n], k

∗, r∗SKE).

3. Compute ct∗SKE ← E(s∗, (r
∗(s∗i)
i)i∈[n]∥k∗; r∗SKE).

4. Compute (ct
∗(s∗i)
i , k

∗(s∗i)
i)← Encap(pks

∗
i ; r
∗(s∗i)
i) for every i ∈ [n].

5. Pick C1, . . . ,Cn
r←− C.

6. Compute ct∗i ← ct
∗(s∗i)
i + s∗i · Ci for every i ∈ [n].

7. Compute hk← HKG(1λ) and h∗ ← H(hk, (ct∗i)i∈[n]∥ct∗SKE).
8. Pick A1, . . . ,An

r←− {0, 1}3λ.
9. Compute T∗i ← k

∗(s∗i)
i + s∗i · (Ai + B · h∗) for every i ∈ [n].

10. Set ek← (pk0, pk1, (Ai,Ci)i∈[n],B, hk), td← (sk0, sk1, ek), and y∗ ← ((ct∗i ,T
∗
i)i∈[n],

ct∗SKE).

• Run A(ek, y∗). From here on, A may start making inversion queries.

• Inversion queries y = ((cti,Ti)i∈[n], ctSKE) are answered as follows: First, compute

h ← H(hk, (cti)i∈[n]∥ctSKE). Next, compute si ← 1− (Decap(sk0, cti)
?
= Ti) for every

i ∈ [n], and set s ← (s1, . . . , sn). Then, compute (m, rSKE) ← RD(s, ctSKE) and parse
m as (rsii)i∈[n] ∈ ({0, 1}λ)n and k ∈ {0, 1}ℓ. Set x ← (s, (rsii)i∈[n], k, rSKE). Finally, if
Eval(ek, x) = y holds, then return x to A. Otherwise, return ⊥ to A.
• At some point, A terminates with output a candidate inversion result x′ ∈ X .

For convenience, in the following we will use the following sets:

Szero :=
{
j ∈ [n]

∣∣∣ s∗j = 0
}

and Sone :=
{
j ∈ [n]

∣∣∣ s∗j = 1
}
= [n] \ Szero.

Game 2: Same as Game 1, except for an additional rejection rule in the inversion oracle.
Specifically, in this game, if A’s inversion query y = ((cti,Ti)i∈[n], ctSKE) satisfies h =
H(hk, (cti)i∈[n]∥ctSKE) = h∗, then the inversion oracle immediately returns ⊥ to A.

Game 3: Same as Game 2, except for how (Ci)i∈[n] and (Ai)i∈[n] are generated.

Specifically, in this game, we additionally pick r
∗(1−s∗1)
1 , . . . , r

∗(1−s∗n)
n

r←− {0, 1}λ, and compute

(ct
∗(1−s∗i)
i , k

∗(1−s∗i)
i) ← Encap(pk1−s

∗
i ; r
∗(1−s∗i)
i) for every i ∈ [n]. Then, for the positions

i ∈ Szero, Ci’s and Ai’s are generated by

Ci ← ct∗0i − ct∗1i and Ai ← k∗0i − k∗1i − B · h∗. (15)

(At this point, Ci’s and Ai’s for the remaining positions i ∈ Sone are unchanged.)

Game 4: Same as Game 3, except for the behavior of the inversion oracle. Specifically, in
this game, for answering A’s inversion queries y = ((cti,Ti)i∈[n], ctSKE), the oracle first

37

computes h = H(hk, (cti)i∈[n]∥ctSKE), and returns ⊥ to A if h = h∗. (This rejection rule is
the same as in Game 3.) Otherwise, the oracle uses the “alternative inversion algorithm”
AltInv and the “alternative trapdoor” td′ defined below for computing the inversion result
x returned to A.
AltInv takes td′ := (sk1, ek) and y as input, and proceeds identically to Inv(td, y), except
that the “find step” (i.e. the step for computing si’s) is replaced with the following
procedure:

∀i ∈ [n] : si ←
(
Decap(sk1, cti − Ci)

?
= Ti − Ai − B · h

)
=

{
1 if Decap(sk1, cti − Ci) = Ti − Ai − B · h
0 otherwise

.

Note that due to this change, the inversion oracle answers A’s queries without using sk0.

Game 5: Same as Game 4, except for how Ci’s and Ai’s for the positions i ∈ Sone are generated.
Specifically, in this game, Ci’s and Ai’s for i ∈ Sone are also generated as in Equation 15.

Note that due to this change, all of (Ci)i∈[n] and (Ai)i∈[n] are generated as in Equation 15.
Furthermore, ct∗i = ct∗0i and T∗i = k∗0i hold for every i ∈ [n], no matter whether s∗i = 0
or s∗i = 1. Indeed, this is the case for the positions i ∈ Szero by design. For the positions
i ∈ Sone, we have

ct∗i = ct∗1i + Ci = ct∗1i + (ct∗0i − ct∗1i) = ct∗0i ,

T∗i = k∗1i + Ai + B · h∗ = k∗1i + (k∗0i − k∗1i − B · h∗) + B · h∗ = k∗0i .

Hence, in this game, values dependent on s∗ appear only in the plaintext of ct∗SKE (i.e.

(r
∗(s∗i)
i)i∈[n]∥k∗).

For j ∈ [5], let SUCj be the event that A succeeds in inverting the challenge instance (i.e.
x′ = x∗ occurs) in Game j. Then, by the definition of the events and the triangle inequality, we
have

AdvaowTDF,A(λ) = Pr[SUC1] ≤
∑
j∈[4]

|Pr[SUCj]− Pr[SUCj+1]|+ Pr[SUC5]. (16)

In the following, we show how the terms appearing in Equation 16 are bounded.

Lemma 7 There exists a PPT adversary Btcr satisfying |Pr[SUC1]− Pr[SUC2]| ≤ AdvtcrHash,Btcr(λ)+

ϵ+ n · 2−λ.

Proof of Lemma 7. Unlike the proof of Lemma 1 in the proof of Theorem 2, the proof of
this lemma need not use a deferred analysis.

We say that an inversion query y = ((cti,Ti)i∈[n], ctSKE) made by A in Game j ∈ [2] is hash-
bad if h = H(hk, (cti)i∈[n]∥ctSKE) = h∗ and Inv(td, y) ̸= ⊥ hold simultaneously. We categorize a
hash-bad inversion query into the following two mutually exclusive types:

• Type-1: (cti)i∈[n]∥ctSKE ̸= (cti)i∈[n]∥ct∗SKE

• Type-2: (cti)i∈[n]∥ctSKE = (ct∗i)i∈[n]∥ct∗SKE

38

For j, k ∈ [2], let HBkj be the event that A makes at least one Type-k hash-bad inversion

query in Game j, and let PKBj be the event that pk0 is erroneous in Game j. Observe that if
pk0 is not erroneous and A does not make a hash-bad query, then Game 1 and Game 2 proceed
identically. Thus, we have

|Pr[SUC1]− Pr[SUC2]| ≤ Pr[PKB1 ∨ HB11 ∨ HB21] ≤ Pr[PKB1] + Pr[HB11] + Pr[HB21|PKB1].

Here, by definition, we have Pr[PKB1] = ϵ. Furthermore, note that a Type-1 hash-bad query can
be directly used to break the target collision resistance of Hash. That is, we can construct a PPT
adversary Btcr with Pr[HB11] = AdvtcrHash,Btcr(λ). Since the construction of Btcr is straightforward,
we omit the detail.

It remains to show how Pr[HB21|PKB1] is bounded. In the following, we show that if pk0 is

not erroneous, then except for a probability at most n · 2−λ over the choice of C1, . . . ,Cn
r←− C,

a Type-2 hash-bad query does not exist in Game 1.
Recall that A’s inversion query y must satisfy y ̸= y∗, and thus if y is a Type-2 hash-bad

query, then there must exist a position j ∈ [n] for which Tj ̸= T∗j holds. For a “candidate”
Type-2 hash-bad query of the form y = ((ct∗i ,Ti)i∈[n], ct

∗
SKE), define Diffy := {j ∈ [n]|Tj ̸= T∗j},

and for each i ∈ [n], let si := 1− (Decap(sk0, ct∗i)
?
= Ti).

We observe that for the positions i ∈ Diffy, the following holds.

• If s∗i = 0, then we have Encap(pk0; r∗0i) = (ct∗0i , k∗0i) = (ct∗i ,T
∗
i). This, Ti ̸= T∗i , and pk0

being non-erroneous imply Decap(sk0, cti) ̸= Ti, which in turn implies si = 1. Then, in
order for y of the above form to satisfy Inv(td, y) ̸= ⊥, ct∗i − Ci must be in the image
of Encap(pk1; ·) due to the validity check by re-evaluation done in the last step of Inv.
However, since the image size of Encap(pk1; ·) is at most 2λ, when choosing Ci

r←− C, the
probability that ct∗i −Ci belongs to the image of Encap(pk1; ·) is at most 2λ

|C| ≤ 2−λ, where

we use |C| ≥ 22λ. Hence, in case s∗i = 0, except for a probability at most 2−λ over the

choice of Ci
r←− C, a Type-2 hash-bad inversion query y with Ti ̸= T∗i does not exist.

• On the other hand, if s∗i = 1, then the argument here is symmetric to the case of s∗i = 0.
Specifically, we have Encap(pk1; r∗1i) = (ct∗1i , k∗1i) = (ct∗i − Ci,T

∗
i − Ai − B · h∗). This and

Ti ̸= T∗i imply that if si = 1, then Inv(td, y) ̸= ⊥ cannot hold due to the validity check by
re-evaluation done in the last step of Inv. In case si = 0, in order for a candidate Type-2
hash-bad inversion query y = ((ct∗i ,Ti)i∈[n], ct

∗
SKE) with si = 0 to satisfy Inv(td, y) ̸= ⊥,

ct∗i = ct∗1i + Ci must be in the image of Encap(pk0; ·) due to the validity check by re-
evaluation done in the last step of Inv. However, since the image size of Encap(pk0; ·) is
at most 2λ, when choosing Ci

r←− C, the probability that ct∗1i + Ci belongs to the image of

Encap(pk0; ·) is at most 2λ

|C| ≤ 2−λ, where we use |C| ≥ 22λ. Hence, in case s∗i = 1, except

for a probability at most 2−λ over the choice of Ci
r←− C, a Type-2 hash-bad inversion

query y with Ti ̸= T∗i does not exist.

By the union bound, conditioned on pk0 being non-erroneous, except for a probability at
most n · 2−λ over the choice of C1, . . . ,Cn

r←− C, a Type-2 hash-bad inversion query does not
exist in Game 1. Hence, we have Pr[HB21|PKB1] ≤ n · 2−λ.

Putting everything together, there exists a PPT adversary Btcr with the claimed advantage,
as required. □ (Lemma 7)

Lemma 8 There exists a PPT adversary B1prct satisfying |Pr[SUC2]− Pr[SUC3]| = Advmprct
KEM,n,B1prct

(λ).

39

Proof of Lemma 8. Using A as a building block, we show how to construct a PPT adversary
B1prct that attacks the n-challenge pseudorandom ciphertext property of KEM with the claimed
advantage. The description of B1prct is as follows.

B1prct(pk′, (ct′∗i,β, k′∗i,β)i∈[n]): (where β ∈ {0, 1} denotes B1prct’s challenge bit) First, B1prct runs s∗ =
(s∗1, . . . , s

∗
n)

r←− K(1λ), and sets pk1 ← pk′ and (ct∗1i , k∗1i) ← (ct′∗i,β, k
′∗
i,β) for the positions

i ∈ Szero. Then, B1prct generates the remaining values in ek = (pk0, pk1, (Ai,Ci)i∈[n],B, hk),

td = (sk0, ek), x∗ = (s∗, (r
∗(s∗i)
i)i∈[n], k

∗, r∗SKE), and y∗ = ((ct∗i ,T
∗
i)i∈[n], ct

∗
SKE) in exactly the

same way as in Game 3, and runs x′ ← AInv(td,·)(ek, y∗). (Note that sk0 is generated by

B1prct itself.) Finally, B1prct terminates with output β′ ← (x′
?
= x∗).

It is not hard to see that if B1prct’s challenge bit β is 0 (resp. 1), B1prct perfectly simulates
Game 2 (resp. Game 3) for A. In particular, if β = 0, then (ct∗1i , k∗1i) = (ct′∗i,0, k

′∗
i,0) for every

i ∈ Szero is chosen uniformly at random from C × {0, 1}3λ, and thus regardless of what values
ct∗0i , k∗0i , B, and h∗ take, Ci = ct∗0i −ct∗1i and Ai = k∗0i −k∗1i −B·h∗ are distributed uniformly over
C and {0, 1}3λ, respectively. Under this situation, the probability that x′ = x∗ holds (and thus
B1prct outputs β′ = 1) is exactly Pr[SUC2], i.e. we have Pr[β′ = 1|β = 0] = Pr[SUC2]. Similarly,
we have Pr[β′ = 1|β = 1] = Pr[SUC3]. Hence, we have

Advmprct
KEM,n,B1prct

(λ) =
∣∣Pr[β′ = 1|β = 0]− Pr[β′ = 1|β = 1]

∣∣ = |Pr[SUC2]− Pr[SUC3]| ,

as desired. □ (Lemma 8)

Lemma 9 |Pr[SUC3]− Pr[SUC4]| ≤ 2ϵ+ n · 2−λ+1 holds.

Proof of Lemma 9. Note that Game 3 and Game 4 proceed identically unless A makes an
inversion query y = ((cti,Ti)i∈[n], ctSKE) such that H(hk, (cti)i∈[n]∥ctSKE) ̸= h∗ and Inv(td, y) ̸=
AltInv(td′, y) hold simultaneously. We call such an inversion query bad. In the following, we will
show that if ek is not “bad” in the sense specified below, a bad inversion query does not exist
in Game 3 and Game 4, and the probability that ek becomes bad is bounded by 2ϵ+ n · 2−λ+1.
This will prove the lemma.

Fix the following values in Game 3:

• (pk0, sk0), (pk1, sk1) ∈ Sup(KKG(1λ)) such that pk0 and pk1 are not erroneous, and hk ∈
Sup(HKG(1λ)).

• s∗ = (s∗1, . . . , s
∗
n) ∈ Sup(K(1λ)), r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n ∈ {0, 1}λ, k∗ ∈ {0, 1}ℓ, and r∗SKE ∈

RSKE.

• x∗ = (s∗, (r
∗(s∗i)
i)i∈[n], r

∗
SKE).

• (ct∗vi , k∗vi) = Encap(pkv; r∗vi) for all (i, v) ∈ [n]× {0, 1}.

• Ci = ct∗0i − ct∗1i for all i ∈ Szero and Ci ∈ C for all i ∈ Sone.

• ct∗i = ct
∗(s∗i)
i + s∗i · Ci for all i ∈ [n].

• ct∗SKE = E(s∗, (r
∗(s∗i)
i)i∈[n]∥k∗; r∗SKE) and h∗ = H(hk, (ct∗i)i∈[n]∥ct∗SKE).

To define the notion of “badness” for an evaluation key, we introduce two types of functions
based on the above fixed values.

40

• For each i ∈ Szero and v ∈ {0, 1}, we define the function ĝi,v : {0, 1}λ × ({0, 1}λ \ {h∗})→
{0, 1}3λ ∪ {⊥} by

ĝi,v(r, h) :

[
(ct, k)← Encap(pkv; r); k′ ← Decap(sk1−v, ct− (1− v) · Ci);

If k′ = ⊥ then return ⊥ else return
(k−k′)·(−1)v−k∗0i +k∗1i

h−h∗

]

We say that a string B ∈ {0, 1}3λ is bad if B belongs to the image of ĝi,v for some
(i, v) ∈ [n]×{0, 1}. Note that the image size of ĝi,v (excluding ⊥) is at most 22λ for every

i ∈ Szero and v ∈ {0, 1}. Hence, when choosing B
r←− {0, 1}3λ, the probability that B is

bad is at most |Szero| · 2 · 2
2λ

23λ
= |Szero| · 2−λ+1.

• For each B′ ∈ {0, 1}3λ, i ∈ [n], and v ∈ {0, 1}, we define the function gB′,i,v : {0, 1}λ ×
{0, 1}λ → {0, 1}3λ ∪ {⊥} by

gB′,i,v(r, h) :

[
(ct, k)← Encap(pkv; r); k′ ← Decap(sk1−v, ct− (1− v) · Ci);
If k′ = ⊥ then return ⊥ else return (k− k′) · (−1)v − B′ · h

]
.

For each pair (B′, i) ∈ {0, 1}3λ × [n], we say that a string A′ ∈ {0, 1}3λ is bad with respect
to (B′, i) if A′ belongs to the image of gB′,i,0 or that of g′B′,i,1. The image size of gB′,i,v

(excluding ⊥) is at most 22λ for every (B′, i, v) ∈ {0, 1}3λ × [n] × {0, 1}. Hence, for any
fixed B′ ∈ {0, 1}3λ, when choosing Ai

r←− {0, 1}3λ for all i ∈ Sone, the probability that some

Ai is bad with respect to (B′, i) is at most |Sone| · 2 · 2
2λ

23λ
= |Sone| · 2−λ+1.

We say that an evaluation key ek generated in Game 3 is bad if (1) either pk0 or pk1 is
erroneous, or (2) either B is bad or Ai for some i ∈ Sone is bad with respect to (B, i). By the union
bound, the probability that ek is bad in Game 3 is bounded by 2ϵ+|Szero|·2−λ+1+|Sone|·2−λ+1 =
2ϵ+ n · 2−λ+1.

To complete the proof, in the following we show that if ek = (pk0, pk1, (Ai,Ci)i∈[n],B, hk) is
not bad, then for any element y = ((cti,Ti)i∈[n], ctSKE) (possibly outside the image of Eval(ek, ·))
satisfying h = H(hk, (cti)i∈[n]∥ctSKE) ̸= h∗, we always have Inv(td, y) = AltInv(td′, y).

Let y = ((cti,Ti)i∈[n], ctSKE) be any value satisfying h = H(hk, (cti)i∈[n]∥ctSKE) ̸= h∗. For
each i ∈ [n], define

si := 1−
(
Decap(sk0, cti)

?
= Ti

)
, and

s′i :=
(
Decap(sk1, cti − Ci)

?
= Ti − Ai − B · h

)
.

We consider two cases and show that Inv(td, y) = AltInv(td′, y) holds in either case.

• Case 1: For all positions i ∈ [n], there exists a pair (r, v) ∈ {0, 1}λ × {0, 1}
satisfying Encap(pkv; r) = (ctvi − v · Ci,Ti − v · (Ai + B · h)).
In this case, we show that si = s′i holds for all i ∈ [n]. This in turn implies that the
output of Inv and that of AltInv agree since these algorithms proceed identically after they
respectively compute s.

Fix i ∈ [n]. The condition of this case directly implies Decap(skv, cti − v · Ci) = Ti − v ·
(Ai +B · h). This in turn implies that if v = 0 then we have si = 0, while if v = 1 then we
have s′i = 1. In the following, we show that

k′ := Decap(sk1−v, cti − (1− v) · Ci) ̸= Ti − (1− v) · (Ai + B · h) (17)

41

holds, which implies that if v = 0 then we have s′i = 0, while if v = 1 then we have si = 1.
Hence, combined together, we will obtain the desired conclusion si = s′i (regardless of the
value of v). Also, if k′ = ⊥, then Equation 17 is obviously satisfied. Thus, below we
consider the case k′ ̸= ⊥.
The argument for showing Equation 17 differs depending on whether i ∈ Szero or i ∈ Sone.
If i ∈ Szero, then since B is not bad, it is not in the image of ĝi,v. Hence, we have

B ̸= ĝi,v(r, h) =

(
Ti − v · (Ai + B · h)− k′

)
· (−1)v − k∗0i + k∗1i

h− h∗

⇐⇒ k′ ̸= Ti − v · (Ai + B · h)− (−1)v ·
(
(k∗0i − k∗1i − B · h∗) + B · h

)
(∗)
= Ti −

(
v + (−1)v

)
· (Ai + B · h) (∗∗)

= Ti − (1− v) · (Ai + B · h),

where the equality (*) uses Ai = k∗0i − k∗1i − B · h∗, which is how Ai is generated for the
positions i ∈ Szero in Game 3; The equality (**) is due to v+(−1)v = 1− v for v ∈ {0, 1}.
Similarly, if i ∈ Sone, then since Ai is not bad with respect to (B, i), it is not in the image
of gB,i,v. Hence, we have

Ai ̸= gB,i,v(r, h) =
(
Ti − v · (Ai + B · h)− k′

)
· (−1)v − B · h

⇐⇒ k′ ̸= Ti − v · (Ai + B · h)− (−1)v · (Ai + B · h)

= Ti −
(
v + (−1)v

)
· (Ai + B · h) = Ti − (1− v) · (Ai + B · h),

where the last equality is again due to v + (−1)v = 1− v for v ∈ {0, 1}.
We have seen that Decap(sk1−v, cti−(1−v) ·Ci) ̸= Ti−(1−v) ·(Ai+B ·h) holds regardless
of whether i ∈ Szero or i ∈ Sone, as required. Hence, as mentioned earlier, si = s′i holds for
all i ∈ [n], and consequently we have Inv(td, y) = AltInv(td′, y).

• Case 2: There exists a position i ∈ [n] for which there exists no pair (r, v) ∈
{0, 1}λ × {0, 1} satisfying Encap(pkv; r) = (cti − v · Ci,Ti − v · (Ai + B · h)).
In this case, both Inv and AltInv return ⊥. Indeed, the condition of this case implies
that there exists a position i ∈ [n] for which there exists no r ∈ {0, 1}λ satisfying
Encap(pksi ; r) = (ctsii −si ·Ci,Ti−si ·(Ai+B ·h)). Hence, the validity check by re-evaluation
done in the last step of Inv cannot be satisfied, and thus Inv outputs ⊥. Exactly the same
argument applies to AltInv, and thus it also outputs ⊥. Hence, in this case we have
Inv(td, y) = AltInv(td′, y) = ⊥.

As seen above, if ek is not bad, then for any y with h ̸= h∗, we have Inv(td, y) = AltInv(td′, y),
as desired. □ (Lemma 9)

Lemma 10 There exists a PPT adversary B2prct satisfying |Pr[SUC4]− Pr[SUC5]| = Advmprct
KEM,n,B2prct

(λ).

Proof of Lemma 10. The lemma can be shown very similarly to Lemma 8. The difference
is that the reduction algorithm B2prct in the proof for this lemma embeds its given public key pk′

to pk0, and uses the given challenge ciphertext/session-key pairs {(ct′∗i,β, k′∗i,β)}i∈[n] as (ct∗0i , k∗0i)

in the positions i ∈ Sone. The remaining values of ek, td′, and y∗ are generated by B2prct itself
in exactly the same way as in Game 5. Then B2prct runs AAltInv(td′,·)(ek, y∗), and terminates

42

with output β′ ← (x′
?
= x∗). This B2prct perfectly simulates Game 4 (resp. Game 5) if its

challenge bit β is 0 (resp. 1), and thus we can derive Advmprct
KEM,n,B2prct

(λ) = |Pr[SUC4]− Pr[SUC5]|.
□ (Lemma 10)

Lemma 11 There exists a PPT adversary Bkdm that makes a single KDM-encryption query
and satisfies Pr[SUC5] ≤ AdvkdmSKE,P,Bkdm(λ) + 2−ℓ.

Proof of Lemma 11. UsingA as a building block, we show how to construct a PPT adversary
Bkdm that attacks the one-time P-KDM security of SKE with the claimed advantage. The
description of Bkdm is as follows:

BOkdm(·,·)
kdm (1λ): Firstly, Bkdm picks r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n

r←− {0, 1}λ and k∗
r←− {0, 1}ℓ. Then,

Bkdm defines f1 to be the function that takes z = (z1, . . . , zn) ∈ {0, 1}n as input and

outputs (r
∗(zi)
i)i∈[n]∥k∗ ∈ {0, 1}n·λ+ℓ, and f0 to be the constant zero-function with output

length n · λ + ℓ. Note that f0 and f1 can be expressed by a projection function, and
thus f0, f1 ∈ P. Bkdm submits (f0, f1) as a KDM-encryption query, and receives the
challenge ciphertext ct∗SKE. Next, Bkdm generates the remaining values of ek, td′, and y∗ by
itself as in Game 5, where the secret key sk used to generate Bkdm’s challenge ciphertext
ct∗SKE is regarded as s∗ in Game 5. (Recall that in Game 5, values dependent on s∗

appear only in the plaintext of ct∗SKE.) Then, Bkdm runs x′ ← AAltInv(td′,·)(ek, y∗), where

x′ = (s′, (r′(s
′
i)i)i∈[n], k

′, r′SKE). Finally, Bkdm terminates with output β′ ← (k′
?
= k∗).14

Let β ∈ {0, 1} be Bkdm’s challenge bit. As mentioned above, we view the secret key sk in
Bkdm’s P-KDM experiment as s∗ in the game simulated for A by Bkdm. Then, it is straightfor-
ward to see that if β = 1, then Bkdm simulates Game 5 perfectly for A. In particular, in this case,

ct∗SKE is an encryption of f1(s
∗) = (r

∗(s∗i)
i)i∈[n]∥k∗, which is exactly how it is generated in Game 5.

Hence, the probability that A succeeds in outputting x′ = x∗ = (s∗, (r
∗(s∗i)
i)i∈[n], k

∗, r∗) is exactly
Pr[SUC5]. Since x′ = x∗ in particular implies k′ = k∗, we have Pr[k′ = k∗|β = 1] ≥ Pr[SUC5]. On
the other hand, if β = 0, then ct∗SKE is an encryption of 0n·λ+ℓ, and the information of k∗ never
appears in A’s view. Since k∗ is chosen uniformly from {0, 1}ℓ, we have Pr[k′ = k∗|β = 0] = 2−ℓ.
Hence, we have

AdvkdmSKE,P,Bkdm(λ) =
∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]

∣∣
=

∣∣Pr[k′ = k∗|β = 1]− Pr[k′ = k∗|β = 0]
∣∣

≥ Pr[SUC5]− 2−ℓ,

which proves the lemma. □ (Lemma 11)

Due to Lemmas 7 to 11 and Equation 16, we can conclude that there exist PPT adversaries
Btcr, {B2mprct}j∈[2], and Bkdm (that makes a single KDM-encryption query) satisfying Equa-
tion 14.

Finally, we explain how to prove the theorem without using ℓ = ω(log λ) (including the case
ℓ = 0 and thus k is the empty string). The idea is to rely on the security of KEM a few more

14Note that Bkdm does not have access to a secret key sk (which Bkdm uses as s∗ in the experiment simulated
for A) and the randomness r∗SKE behind the challenge ciphertext ct∗SKE, and thus it cannot directly and exactly

check whether A has succeeded in outputting x′ = x∗ = (s∗, (r
∗(s∗i)
i)i∈[n], k

∗, r∗).

43

times. More specifically, consider an additional game, say Game 6, in which ct∗SKE encrypts a
fixed value, say, 0n·λ+ℓ, instead of (r∗(s

∗
i))i∈[n]∥k∗. (This is essentially the experiment simulated

by Bkdm in the case β = 0 in the proof of Lemma 11.) Then, notice that in Game 6, the

information of each r
∗(s∗i)
i is contained only as a ciphertext/session-key pair (ct

∗(si)
i , k

∗(s∗i)
i) in A’s

view. Thus, if A succeeds in outputting x′ that contains some r
∗(s∗i)
i , it implies that such A is

essentially breaking the pseudorandom ciphertext property (or even the IND-CPA security) of
KEM. One subtle issue here is that in Game 6, we can rely on the security of KEM only for
the positions i ∈ Szero (i.e. the ciphertexts ct∗0i under pk0) because sk1 is needed for simulating
Game 6 for A. This subtlety can be overcome by considering one more game, say Game 7,
in which the inversion oracle is changed back to Inv(td, ·) (in a similar manner to Game 3),
where sk1 is now not needed and thus we can rely on the security of KEM for the positions
i ∈ Sone (i.e. the ciphertexts ct∗1i under pk1). The difference between A’s success probability
between Games 6 and 7 is bounded by 2ϵ+ n · 2−λ+1 as in Lemma 9. From these observations,
we can construct reduction algorithms that attacks the security of KEM from an adversary A
that runs in Game 6 or Game 7. Furthermore, the transition from Game 5 to Game 6 can be
straightforwardly done by the P-KDM security of SKE. The difference from Bkdm in the proof

of Lemma 11 is that the reduction here checks if there exists i ∈ [n] for which r
′s′i
i = r

∗(s∗i)
i holds

(instead of checking k′ = k∗). Hence, we can prove the adaptive one-wayness of TDF regardless
of ℓ. □ (Theorem 8)

6.4 CCA Secure KEM with Pseudorandom Ciphertexts

As mentioned in Section 6.1, our TDF TDF naturally yields a KEM that satisfies the pseudo-
random ciphertext property under CCA, if we additionally assume that the underlying one-time
KDM secure SKE scheme satisfies the pseudorandom ciphertext property in the KDM security
experiment as well. We expand the explanation here.

The pseudorandom ciphertext property (for a key-dependent message) for the SKE scheme
we need is formally defined as follows.

Definition 10 Let SKE = (K,E,D) be an SKE scheme with a secret key space K, a plaintext
space M, and a ciphertext space C. Let F = {f : K → M} be a family of functions. We say
that SKE satisfies one-time F-KDM security with the pseudorandom ciphertext property if for
all PPT adversaries A = (A1,A2), we have

Advkdm−prctSKE,F,A (λ) := |Pr[A2(ct
∗
1, st) = 1]− Pr[A2(ct

∗
0, st) = 1]| = negl(λ),

where (f ∈ F, st)← A1(1
λ), sk← K(1λ), ct∗1 ← E(sk, f(sk)), and ct∗0

r←− C.

We note that many of existing KDM secure PKE/SKE schemes (e.g. [BHHO08, ACPS09,
BG10, MTY11]) can be shown to satisfy (even a many-time variant of) the above security notion
with respect to the same function families as ones with respect to which the original schemes are
KDM secure. In particular, the LPN-based SKE scheme by Applebaum et al. [ACPS09] yields
an SKE scheme with one-time P-KDM security with the pseudorandom ciphertext property
based on the LPN assumption. We also remark that the one-time Bsize-KDM secure SKE scheme
based on a hinting PRG given in Appendix B in fact satisfies the pseudorandom ciphertext
property as well. (This can be easily inferred from the security proof for the scheme given
there.) This shows that we can construct a one-time P-KDM secure SKE scheme with the
pseudorandom ciphertext property based on the CDH assumption.

44

Let KEM = (KKG,Encap,Decap), SKE = (K,E,D), and Hash = (HKG,H) be a KEM, an SKE
scheme, and a keyed hash function, respectively, that satisfy the same properties as those in Sec-
tion 6.1. Let TDF = (Setup,Samp,Eval, Inv) be the TDF constructed using KEM, SKE, and Hash
as described in Figure 4. Then, consider the KEM KEMprct = (KKGprct,Encapprct,Decapprct) that
is naturally constructed from TDF as follows.

• KKGprct(1
λ) runs (ek, td) ← Setup(1λ), and outputs a public key PK := ek = (pk0, pk1,

(Ai,Ci)i∈[n],B, hk) and a secret key SK := td = (sk0, ek).

• Encapprct(PK = ek) samples x = (s, (rsii)i∈[n], k, rSKE)← Samp(1λ), computes y← Eval(ek, x),
and outputs a ciphertext CT := y = ((cti,Ti)i∈[n], ctSKE) and a session-key k.

• Decapprct(SK = td,CT = y) first runs x← Inv(td, y). If x = ⊥ then it returns⊥. Otherwise,
it parses x as (s, (rsii)i∈[n], k, rSKE) and returns k as the decapsulation result.

It is obvious that the almost-all-keys correctness of KEMprct is inherited from that of TDF.
The following theorem guarantees that KEMprct satisfies the pseudorandom ciphertext prop-

erty under CCA.

Theorem 9 Assume that KEM satisfies the pseudorandom ciphertext property and almost-all-
keys correctness, SKE is one-time P-KDM secure with the pseudorandom ciphertext property,
and Hash is target collision resistant. Then, KEMprct satisfies the pseudorandom ciphertext
property under CCA.

The proof is a natural extension of the proof of Theorem 8. We give its proof in Appendix D.

7 Extensions to Advanced Security Notions under CCA

In this section, we present the additional results on two advanced security notions under CCA,
which are obtained by extending our proposed KEMs. The first one is on PKE and KEMs that
satisfy leakage-resilience under CCA (LR-CCA security), which we present in Section 7.1. The
second one is on PKE that satisfies selective-opening security under CCA (SO-CCA security),
which we present in Section 7.2.

7.1 Leakage-Resilience under CCA

Here, we present our results on LR-CCA security. In particular, we will show how our KEM
KEMcca given in Section 4 leads to new constructions of LR-CCA secure PKE schemes/KEMs
with optimal leakage rate 1 − o(1) from various assumptions, among which the schemes based
on the CDH or the low-noise LPN assumptions are the first ones achieving this property.

We start with the formal definition.

Definition of Leakage-Resilience. Here, we recall the formal definition of leakage-resilience
for a KEM in the so-called bounded-leakage model, in which the leakage from a secret key is
bounded by the length.

Definition 11 (Leakage-Resilience for a KEM) Let KEM = (KKG,Encap,Decap) be a KEM,
and let ℓ = ℓ(λ) be a polynomial. We say that KEM is ℓ-leakage-resilient under CCA (LR-CCA
secure) if for all PPT adversaries A = (A1,A2), we have Adv

lrcca
KEM,ℓ,A(λ) := 2·|Pr[ExptlrccaKEM,ℓ,A(λ) =

1]− 1/2| = negl(λ), where the experiment ExptlrccaKEM,ℓ,A(λ) is defined as in Figure 5 (left), and in
the experiment, A2 is not allowed to submit ct∗ to the decapsulation oracle Decap(sk, ·).

45

ExptlrccaKEM,ℓ,A(λ) :
L← 0
(pk, sk)← KKG(1λ)

st← AOleak,Decap(sk,·)
1 (pk)

(ct∗, k∗1)← Encap(pk)

k∗0
r←− K

b
r←− {0, 1}

b′ ← ADecap(sk,·)
2 (ct∗, k∗b , st)

Return (b′
?
= b).

Oleak(f) : // f is described by a circuit
L← L+ |f(sk)|
If L > ℓ then return ⊥.
Return f(sk).

Figure 5: The LR-CCA experiment for a KEM (left) and the leakage oracle Oleak (right).

Furthermore, KEM is said to be ℓ-leakage-resilient under CPA (LR-CPA secure) if we
have AdvlrccaKEM,ℓ,A(λ) = negl(λ) for all PPT adversaries that never use the decapsulation ora-
cle Decap(sk, ·). (This experiment is called the LR-CPA experiment.)

For an ℓ-LR-CCA (resp. ℓ-LR-CPA) secure KEM, its leakage rate is defined by ℓ/|sk|, where
|sk| denotes the secret key length.

Leakage-resilience for a PKE scheme is defined analogously. We remark that the standard
hybrid encryption construction of a PKE scheme from a KEM and an SKE scheme preserves
the leakage-resilience of the underlying KEM as well as the leakage rate, both in the CPA and
CCA settings. Hence, to construct an LR-CCA secure PKE scheme, it is sufficient to construct
an LR-CCA secure KEM.

Achieving LR-CCA Security. Recall that our proposed KEM in Section 4 has the property
that its secret key consists only of a single secret key of the underlying KEM. Hence, it inherits
the leakage-resilience of the underlying KEM as well as its leakage rate. Thus, if we additionally
assume that the underlying KEM is ℓ-LR-CPA secure with leakage rate α, our KEM satisfies
ℓ-LR-CCA security with leakage rate α. This can be formally stated as follows.

Theorem 10 Let KEM, SKE, and Hash be a KEM, an SKE scheme, and a keyed hash function,
respectively, that satisfy the syntactical properties listed in Section 4.1.

Assume that KEM is almost-all-keys correct and ℓ-LR-CPA secure for some polynomial
ℓ = ℓ(λ), SKE is one-time P-KDM secure, and Hash is target collision resistant. Then, the
KEM KEMcca in Figure 3 is ℓ-LR-CCA secure. Furthermore, if KEM has leakage rate α, then
so does KEMcca.

Proof Sketch of Theorem 10. The proof mostly follows that of Theorem 2, and all we
need to do is to make sure that the reduction algorithms used in the proof can answer leakage
queries from an LR-CCA adversary A. The reduction algorithms except for the ones used in
the transition from Game 4 to Game 5, generate sk0 by themselves, and thus have no problem
for answering the leakage queries from A.

In the transition from Game 4 to Game 5 in the proof of Theorem 2, we relied on the
ordinary IND-CPA security of the underlying KEM KEM under the key pk0. (See Lemma 4.)
In the current theorem, we are assuming ℓ-LR-CPA security for KEM, and thus the reduction
algorithm for the transition from Game 4 to Game 5 can answer the leakage queries from A
by using the reduction algorithm’s own leakage oracle (in the ℓ-LR-CPA experiment for the
underlying KEM KEM). The remaining argument goes analogously to that in the proof of
Theorem 2. □ (Theorem 10)

46

We remark that in KEMcca, the underlying IND-CPA secure KEM used for the operations
regarding pk0 and that regarding pk1 can be different schemes. For making this variant LR-
CCA secure, only the KEM used for the operations regarding pk0 needs to be LR-CPA secure,
and the other KEM regarding pk1 can be just IND-CPA secure. This variant is potentially
advantageous in terms of efficiency and simplicity since an LR-CPA secure KEM is typically
less efficient and less simple than a KEM which just satisfies ordinary IND-CPA security.

Although we only consider bounded leakage-resilience in this paper, we observe that analo-
gous results on leakage-resilience in other models can be established, such as the noisy leakage
model [NS09] (where the leakage function is required to satisfy a bound on conditional min-
entropy) and the auxiliary-input model [BS11] (where the leakage function is required to be
only computationally hard-to-invert).

LR-CCA Secure PKE/KEM with Optimal Leakage Rate from Various Assump-
tions. Brakerski et al. [BLSV18] showed that a primitive called batch encryption implies both
a one-time P-KDM secure SKE scheme and an LR-CPA secure PKE scheme with optimal leak-
age rate α = 1 − o(1). Moreover, they also showed that batch encryption can be instantiated
from a number of standard number-theoretic assumptions including the factoring, CDH, LWE,
and low-noise LPN assumptions. Hence, instantiating the underlying LR-CPA secure KEM
with the batch encryption scheme based the LR-CPA secure encryption scheme from [BLSV18],
we obtain the following corollary.

Corollary 3 There exist an LR-CCA secure PKE scheme and a KEM with optimal leakage
rate 1− o(1) based on any of the factoring, CDH, LWE, and low-noise LPN assumption.

In particular, to the best of our knowledge, our CDH-based and low-noise LPN-based
schemes are the first ones achieving LR-CCA security with optimal leakage rate based on these
assumptions.

7.2 Selective-Opening Security under CCA

Here, we present our results on SO-CCA security. In particular, we will show how our KEM
KEMprct given in Section 6.4 leads to the first SO-CCA secure PKE scheme based on the CDH
assumption, and the first one based on the low-noise LPN assumption.

We start with the formal definition.

Definition of SO-CCA Security. Here, we recall the formal definition of (simulation-based)
selective-opening CCA security for a PKE scheme.

Let PKE = (KG,Enc,Dec) be a PKE scheme with the message space M, and let R be the
randomness space of Enc. For PKE, a polynomial n = n(λ), an adversary A = (A1,A2,A3),
and a simulator S = (S1,S2,S3), consider the real experiment Exptsocca−realPKE,n,A (λ) and the ideal

experiment Exptsocca−idealPKE,n,S (λ) defined as in Figure 6. In both of the experiments, M denotes a
circuit that samples n plaintexts (fromMn); In the real experiment, A2 and A3 are not allowed
to submit any of the challenge ciphertexts {ct∗i }i∈[n] to the decryption oracle Dec(sk, ·).

Definition 12 We say that a PKE scheme PKE is secure under selective-opening CCA (SO-
CCA secure) if for any PPT adversary A and polynomial n = n(λ), there exists a PPT simulator
S such that for any PPT distinguisher D, we have

AdvsoccaPKE,n,A,S,D(λ) := |Pr[D(Exptsocca−realPKE,n,A (λ)) = 1]− Pr[D(Exptsocca−idealPKE,n,S (λ)) = 1]| = negl(λ).

47

Exptsocca−real
PKE,n,A (λ) :

(pk, sk)← KG(1λ)

(M, st1)← ADec(sk,·)
1 (pk)

(m1, . . . ,mn)← M

r1, . . . , rn
r←− R

∀i ∈ [n] : ct∗i ← Enc(pk,mi; ri)

(I ⊆ [n], st2)← ADec(sk,·)
2 ((ct∗i)i∈[n], st1)

outA ← ADec(sk,·)
3 ((mi, ri)i∈I , st2)

Return outA.

Exptsocca−ideal
PKE,n,S (λ) :

(M, st1)← S1(1λ)
(m1, . . . ,mn)← M
(I ⊆ [n], st2)← S2(st1)
outS ← S3((mi)i∈I , st2)
Return outS .

Figure 6: The real SO-CCA experiment (left) and the ideal SO-CCA experiment (right).

Achieving SO-CCA Security. Liu and Paterson [LP15] showed that an SO-CCA secure
PKE scheme can be constructed from a special kind of KEM, which they called a tailored KEM
in [LP15]. Roughly speaking, the requirements for a tailored KEM are the following three
conditions:

1. The ciphertext and session-key spaces of the KEM are efficiently samplable and explainable
(ESE) domains.

A set S is said to be an ESE domain if there exists a pair of efficient algorithms (Samp,
Samp−1) such that (1) Samp on input a uniformly random bit-string r outputs a uniformly
random element x ∈ S, and (2) Samp−1 on input any element x ∈ S outputs a bit-string
r that is uniformly distributed over the set {r s.t. Samp(r) = x}.
For example, S is an ESE domain if it is just a set of bit-strings, or any dense subset of
bit-strings that admits an efficient sampling algorithm and an efficient membership testing
[LP15].

2. If we decapsulate an element that is chosen uniformly at random from the ciphertext
space (using an honestly generated secret key), then either the decapsulation result is ⊥
with overwhelming probability, or the decapsulation result is uniformly distributed over
the session-key space.

3. It satisfies a relaxed form of the pseudorandom ciphertext property under CCA (called
IND-tCCCA in [LP15]), which is strictly weaker than one achieved by our KEM KEMprct.

Our KEM KEMprct presented in Section 6.4 satisfies all of the above requirements, if the
ciphertext space of the underlying KEM KEM has the ESE property. This can be seen as
follows.

• The property that the ciphertext and session-key spaces of KEMprct are ESE domains can
be seen as follows: The session-key space of KEMprct is a set of bit-strings, and thus is
trivially an ESE domain; Note that a ciphertext of KEMprct consists only of ciphertexts
and session-keys of the underlying KEM KEM. Recall that we already required that the
session-key space of KEM is {0, 1}λ, and thus is an ESE domain. Hence, combined with
the additional assumption on KEM that its ciphertext space is an ESE domain, we can
conclude that both the ciphertext and session-key spaces of KEMprct are ESE domains.

• The property that a random element of the ciphertext space of KEMprct is rejected with
overwhelming probability, can be shown due to the validity check of a ciphertext in the last
step of the decapsulation algorithm of KEMprct (which is essentially the inversion algorithm
of our TDF TDF). In order for a randomly chosen ciphertext CT = ((cti,Ti)i∈[n], ctSKE) to

48

be decapsulated to non-⊥, it is (at least) necessary that either T1 ∈ {0, 1}3λ or its shifted
value T1−A1−B · h needs to belong to the image of Encap under the public keys of KEM
contained in a public key of KEMprct. However, since the randomness space of Encap is
{0, 1}λ, the probability of this occurring is at most 2 · 2λ/23λ = O(2−2λ).

• Our KEM KEMprct satisfies the pseudorandom ciphertext property under CCA as shown
in Theorem 9, and thus satisfies the third requirement.

Hence, we can conclude that the following statement holds as a corollary of Theorem 9 in
Section 6.4 and the result of [LP15].

Theorem 11 (Corollary of Theorem 9 and Theorem 1 of [LP15]) Assume that a KEM,
an SKE, and a keyed hash function in the assumption of Theorem 9 exist, and assume addition-
ally that the ciphertext space of the KEM is an ESE domain. Then, there exists an SO-CCA
secure PKE scheme.

SO-CCA Secure PKE Based on the CDH and LPN Assumptions. We can easily
construct an CPA secure KEM with an ESE domain based on the CDH assumption (e.g. from
the combination of the ElGamal KEM and the Goldreich-Levin hardcore bit). Also, we can
construct a CPA secure KEM with an ESE domain based on the low-noise LPN assumption since
the ciphertext space of the CPA secure low-noise LPN-based PKE schemes/KEMs explained in
Section 6.1 are just bit-strings. Moreover, as explained in Section 6.4, we can construct one-time
P-KDM secure SKE schemes with the pseudorandom ciphertext property based on either of
the CDH or the low-noise LPN assumption. From these facts and Theorem 11, we obtain the
following corollary.

Corollary 4 There exists an SO-CCA secure PKE scheme based on the CDH or the low-noise
LPN assumption.

To the best of our knowledge, they are the first SO-CCA secure PKE schemes based on these
assumptions.

Acknowledgement A part of this work was supported by JST OPERA JPMJOP1612, JST
CREST JPMJCR19F6 and JPMJCR14D6, and JSPS KAKENHI 19H01109, JP16H01705, and
JP17H01695.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer,
Heidelberg, August 2009.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
FOCS, pages 298–307. IEEE Computer Society Press, October 2003.

[App11] Benny Applebaum. Key-dependent message security: Generic amplification and
completeness. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632
of LNCS, pages 527–546. Springer, Heidelberg, May 2011.

49

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and effi-
ciently searchable encryption. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 535–552. Springer, Heidelberg, August 2007.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in
multi-recipient encryption schemeas. In Yvo Desmedt, editor, PKC 2003, volume
2567 of LNCS, pages 85–99. Springer, Heidelberg, January 2003.

[BCPT13] Eleanor Birrell, Kai-Min Chung, Rafael Pass, and Sidharth Telang. Randomness-
dependent message security. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 700–720. Springer, Heidelberg, March 2013.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key
encryption under subgroup indistinguishability - (or: Quadratic residuosity strikes
back). In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 1–20.
Springer, Heidelberg, August 2010.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision Diffie-Hellman. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 108–125. Springer, Heidelberg, August 2008.

[BHSV98] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan. Many-to-one trapdoor
functions and their relation to public-key cryptosystems. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 283–298. Springer, Heidelberg, August
1998.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility re-
sults for encryption and commitment secure under selective opening. In Antoine
Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer,
Heidelberg, April 2009.

[BL18] Sebastian Berndt and Maciej Liskiewicz. On the gold standard for security of uni-
versal steganography. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 29–60. Springer, Heidelberg,
April / May 2018.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the
RSA encryption standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 1–12. Springer, Heidelberg, August 1998.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anony-
mous IBE, leakage resilience and circular security from new assumptions. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 535–564. Springer, Heidelberg, April / May 2018.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages 62–73.
ACM Press, November 1993.

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme secu-
rity in the presence of key-dependent messages. In Kaisa Nyberg and Howard M.
Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Heidelberg,
August 2003.

50

[BS11] Zvika Brakerski and Gil Segev. Better security for deterministic public-key en-
cryption: The auxiliary-input setting. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 543–560. Springer, Heidelberg, August 2011.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer, Hei-
delberg, May 2001.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (ex-
tended abstract). In 23rd ACM STOC, pages 542–552. ACM Press, May 1991.

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes.
In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769
of LNCS, pages 3–31. Springer, Heidelberg, March 2018.

[DMN12] Nico Döttling, Jörn Müller-Quade, and Anderson C. A. Nascimento. IND-CCA
secure cryptography based on a variant of the LPN problem. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 485–503.
Springer, Heidelberg, December 2012.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes
from decryption errors. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 342–360. Springer, Heidelberg, May
2004.

[FHKW10] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes
secure against chosen-ciphertext selective opening attacks. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 381–402. Springer, Heidelberg,
May / June 2010.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key
encryption at minimum cost. In Hideki Imai and Yuliang Zheng, editors, PKC’99,
volume 1560 of LNCS, pages 53–68. Springer, Heidelberg, March 1999.

[GGH19] Sanjam Garg, Romain Gay, and Mohammad Hajiabadi. New techniques for efficient
trapdoor functions and applications. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 33–63. Springer, Hei-
delberg, May 2019.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th ACM STOC, pages 365–377.
ACM Press, May 1982.

[GMM07] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic
and CCA security for public key encryption. In Salil P. Vadhan, editor, TCC 2007,
volume 4392 of LNCS, pages 434–455. Springer, Heidelberg, February 2007.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing
trapdoor functions on trapdoor predicates. In 42nd FOCS, pages 126–135. IEEE
Computer Society Press, October 2001.

51

[HK15] Mohammad Hajiabadi and Bruce M. Kapron. Reproducible circularly-secure bit
encryption: Applications and realizations. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 224–243.
Springer, Heidelberg, August 2015.

[HKW20] Susan Hohenberger, Venkata Koppula, and Brent Waters. Chosen ciphertext se-
curity from injective trapdoor functions. In Daniele Micciancio and Thomas Ris-
tenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 836–866.
Springer, Heidelberg, August 2020.

[Hop05] Nicholas Hopper. On steganographic chosen covertext security. In Lúıs Caires,
Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP 2005, volume 3580 of LNCS, pages 311–323. Springer, Heidelberg, July
2005.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do se-
cure hash functions need secret coins? In Matthew Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 92–105. Springer, Heidelberg, August 2004.

[KM19a] Fuyuki Kitagawa and Takahiro Matsuda. CPA-to-CCA transformation for KDM
security. Cryptology ePrint Archive, Report 2019/609, 2019. https://eprint.

iacr.org/2019/609.

[KM19b] Fuyuki Kitagawa and Takahiro Matsuda. CPA-to-CCA transformation for KDM
security. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume
11892 of LNCS, pages 118–148. Springer, Heidelberg, December 2019.

[KM20] Fuyuki Kitagawa and Takahiro Matsuda. Circular security is complete for KDM
security. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I,
volume 12491 of LNCS, pages 253–285. Springer, Heidelberg, December 2020.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and
chosen-ciphertext security. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 673–692. Springer, Heidelberg, May / June 2010.

[KMP14] Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Simple chosen-ciphertext secu-
rity from low-noise LPN. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 1–18. Springer, Heidelberg, March 2014.

[KMT19] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. CCA security and
trapdoor functions via key-dependent-message security. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 33–64. Springer, Heidelberg, August 2019.

[KW18] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security gener-
ically in attribute-based encryption and predicate encryption. Cryptology ePrint
Archive, Report 2018/847, 2018. https://eprint.iacr.org/2018/847.

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security gener-
ically in attribute-based encryption and predicate encryption. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 671–700. Springer, Heidelberg, August 2019.

52

https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2019/609
https://eprint.iacr.org/2018/847

[LP15] Shengli Liu and Kenneth G. Paterson. Simulation-based selective opening CCA
security for PKE from key encapsulation mechanisms. In Jonathan Katz, editor,
PKC 2015, volume 9020 of LNCS, pages 3–26. Springer, Heidelberg, March / April
2015.

[LQR+19a] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J.
Wu. New constructions of reusable designated-verifier NIZKs. Cryptology ePrint
Archive, Report 2019/242, 2019. https://eprint.iacr.org/2019/242. This is
the initial version dated on Feb 27, 2019.

[LQR+19b] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J.
Wu. New constructions of reusable designated-verifier NIZKs. Cryptology ePrint
Archive, Report 2019/242, 2019. https://eprint.iacr.org/2019/242. This is
the latest version dated on Jun 5, 2019.

[LQR+19c] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J. Wu.
New constructions of reusable designated-verifier NIZKs. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 670–700. Springer, Heidelberg, August 2019.

[MH15] Takahiro Matsuda and Goichiro Hanaoka. Constructing and understanding chosen
ciphertext security via puncturable key encapsulation mechanisms. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 561–590. Springer, Heidelberg, March 2015.

[MTY11] Tal Malkin, Isamu Teranishi, and Moti Yung. Efficient circuit-size independent
public key encryption with KDM security. In Kenneth G. Paterson, editor, EU-
ROCRYPT 2011, volume 6632 of LNCS, pages 507–526. Springer, Heidelberg, May
2011.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 18–35. Springer,
Heidelberg, August 2009.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196.
ACM Press, May 2008.

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs under stan-
dard assumptions: Public marking and security with extraction queries. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of
LNCS, pages 669–698. Springer, Heidelberg, November 2018.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM STOC, pages 387–394. ACM Press, May 1990.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 433–444. Springer, Heidelberg, August 1992.

[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In
Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 419–436. Springer,
Heidelberg, March 2009.

53

https://eprint.iacr.org/2019/242
https://eprint.iacr.org/2019/242

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS,
pages 1–20. Springer, Heidelberg, February 2004.

[Wee16] Hoeteck Wee. KDM-security via homomorphic smooth projective hashing. In
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part II, volume 9615 of LNCS, pages 159–179. Springer, Heidelberg,
March 2016.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd FOCS, pages 80–91. IEEE Computer Society Press, November
1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[YZ16] Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor
from constant-noise LPN. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 214–243. Springer, Heidel-
berg, August 2016.

A Other Definitions

A.1 Public-Key Encryption

Definition 13 (Public-Key Encryption) A public-key encryption (PKE) scheme PKE con-
sists of the three PPT algorithms (KG,Enc,Dec):

• KG is the key generation algorithm that takes 1λ as input, and outputs a public/secret key
pair (pk, sk). We assume that the security parameter λ determines the secret key space K
and the message spaceM.

• Enc is the encryption algorithm that takes a public key pk and a plaintext m as input, and
outputs a ciphertext ct.

• Dec is the (deterministic) decryption algorithm that takes a secret key sk and a ciphertext
ct as input, and outputs a plaintext m or the invalid symbol ⊥ /∈M.

Let ϵ : N→ [0, 1]. We say that a PKE scheme PKE = (KG,Enc,Dec) is ϵ-almost-all-keys correct
if we have

ErrPKE(λ) := Pr
(pk,sk)←KG(1λ)

[
∃(m, r) ∈
M×R s.t. Dec(sk,Enc(pk,m; r)) ̸= m

]
= ϵ(λ).

Furthermore, we just say that PKE is correct (resp. almost-all-keys correct) if ErrPKE(λ) is zero
(resp. negl(λ)).

Here, we recall IND-CCA, IND-CCA1, and KDM security for a PKE scheme that are treated
in this paper. As in the case of SKE, for simplicity, here we only give the definition for the
single key setting for KDM security.

Definition 14 (Security Notions for PKE) Let PKE = (KG,Enc,Dec) be a PKE scheme
with a secret key space K and a plaintext spaceM, and let F be a function family with domain
K and rangeM.

We say that PKE is

54

ExptccaPKE,A(λ) :
(pk, sk)← KG(1λ)

(m0,m1, st)← ADec(sk,·)
1 (pk)

b
r←− {0, 1}

ct∗ ← Enc(pk,mb)

b′ ← ADec(sk,·)
2 (ct∗, st)

Return (b′
?
= b).

ExptkdmPKE,F,A(λ) :
(pk, sk)← KG(1λ)

b
r←− {0, 1}

b′ ← AOkdm(·,·)(1λ)

Return (b′
?
= b).

Okdm((f0, f1) ∈ F2) :
ct← Enc(pk, fb(sk))
Return ct.

Figure 7: Security experiments for PKE: The IND-CCA experiment (left), the KDM security experiment
(center), and the KDM-encryption oracle used in the KDM security experiment (right).

• IND-CCA secure (a.k.a. IND-CCA2 secure) if for all PPT adversaries A = (A1,A2), we
have AdvccaPKE,A(λ) := 2 · |Pr[ExptccaPKE,A(λ) = 1] − 1/2| = negl(λ), where the experiment
ExptccaPKE,A(λ) is defined as in Figure 7 (left), and in the experiment, it is required that
|m0| = |m1| and A2 is not allowed to submit ct∗ to the decryption oracle Dec(sk, ·).

• IND-CCA1 secure if for all PPT adversaries A = (A1,A2), we have Advcca1PKE,A(λ) :=

2 · |Pr[Exptcca1PKE,A(λ) = 1] − 1/2| = negl(λ), where the experiment Exptcca1PKE,A(λ) is defined
exactly as in ExptccaPKE,A(λ), except that A2 is not given access to the decryption oracle
Dec(sk, ·).

• F-KDM secure if for all PPT adversaries A, we have AdvkdmPKE,F,A(λ) := 2·|Pr[ExptkdmPKE,F,A(λ)

= 1]−1/2| = negl(λ), where the experiment ExptkdmPKE,F,A(λ) is defined as in Figure 7 (cen-
ter), and the KDM-encryption oracle Okdm is described in Figure 7 (right).

As in the case of SKE, we will deal with the function families P and Bℓ as the function
classes for KDM security of PKE. (See Section 3.3 for their definitions.)

A.2 Hinting PRG

Here, we review the definition of a hinting PRG [KW19]. We make a slight simplification to
the syntax from [KW19] in that the “block length” (i.e. the output length of HEval) is fixed to
be λ, instead of allowing it to be decided at the setup.

Definition 15 (Hinting PRG) A hinting PRG HPRG consists of the two PPT algorithms
(HSetup,HEval) with the following syntax.

• HSetup is the setup algorithm that takes 1λ as inputs, and outputs a public parameter pp.
We assume that pp specifies the seed length n = n(λ).

• HEval is the evaluation algorithm (for computing each “block”) that takes a public param-
eter pp, a seed s ∈ {0, 1}n, and an index i ∈ {0} ∪ [n] as input, and outputs a string
y ∈ {0, 1}λ.15

Security We say that HPRG is a secure hinting PRG if for all PPT adversaries A, we have
AdvhprgHPRG,A(λ) := 2 · |Pr[ExpthprgHPRG,A(λ) = 1] − 1/2| = negl(λ), where the experiment

ExpthprgHPRG,A(λ) is defined as in Figure 8 (left).

15One can understand that a hinting PRG stretches a seed s ∈ {0, 1}n to a string y0∥ . . . ∥yn ∈ {0, 1}(n+1)·λ

where yi = HEval(pp, s, i) for each i ∈ {0} ∪ [n].

55

ExpthprgHPRG,A(λ) :

pp← HSetup(1λ)

s = (s1, . . . , sn)
r←− {0, 1}n

y0,0
r←− {0, 1}λ

∀(i, v) ∈ [n]× {0, 1} : yvi,0
r←− {0, 1}λ

y0,1 ← HEval(pp, s, 0)
∀i ∈ [n] :

ysii,1 ← HEval(pp, s, i)

y1−si
i,1

r←− {0, 1}λ

b
r←− {0, 1}

b′ ← A(pp, (y0,b, (yvi,b)i∈[n],v∈{0,1}))

Return (b′
?
= b).

ExptgcGC,A(λ) :

(C, x = (x1, . . . , xn), st)← A1(1
λ)

(C̃0, (lab
v
i,0)i∈[n],v∈{0,1})← Garble(1λ, C)

(C̃1, (lab
xi
i,1)i∈[n])← Sim(1λ, |C| , C(x))

b
r←− {0, 1}

b′ ← A2(C̃b, (lab
xi
i,b)i∈[n], st)

Return (b′
?
= b).

Figure 8: The security experiments for a hinting PRG (left) and that for a circuit garbling scheme
(right).

A.3 Garbled Circuits

Here, we review the definition of a circuit garbling scheme [Yao86].

Definition 16 (Circuit Garbling) Let {Cn}n∈N be a family of circuits where the input length
of each circuit in Cn is n. A circuit garbling scheme GC consists of the three PPT algorithms
(Garble,Eval, Sim):

• Garble is the garbling algorithm that takes 1λ and a circuit C ∈ Cn as input, and outputs
a garbled circuit C̃ together with 2n labels (labvi)i∈[n],v∈{0,1}. For simplicity and without
loss of generality, we assume that the length of each labvi is λ.

• Eval is the (deterministic) evaluation algorithm that takes a garbled circuit C̃ and n labels
(labi)i∈[n] as input, and outputs an evaluation result y.

• Sim is the simulator algorithm that takes 1λ, the size parameter size (of a circuit), and a
string y as input, and outputs a simulated garbled circuit C̃ and n labels (labi)i∈[n].

Correctness A circuit garbling scheme GC = (Garble,Eval,Sim) is said to be correct if for all
λ, n ∈ N, all circuits C ∈ Cn, all strings x = (x1, . . . , xn) ∈ {0, 1}n, and all (C̃, (labvi)i∈[n],v∈{0,1})

← Garble(1λ, C), it holds that Eval(C̃, (labxii)i∈[n]) = C(x).

Security We say that a circuit garbling scheme GC = (Garble,Eval,Sim) is secure if for all
PPT adversaries A, we have AdvgcGC,A(λ) := 2 · |Pr[ExptgcGC,A(λ) = 1] − 1/2|, where the

experiment ExptgcGC,A(λ) is defined as in Figure 8 (right).

We can realize a circuit garbling scheme for all efficiently computable circuits based on a
one-way function [Yao86].

A.4 Standard PRG

Definition 17 (Standard PRG) We say that an efficiently computable function G : {0, 1}λ →
{0, 1}ℓ (for some polynomial ℓ = ℓ(λ) > λ) is a secure pseudorandom generator (PRG) if for
all PPT adversaries A, we have

AdvprgG,A(λ) :=

∣∣∣∣∣ Pr
s

r←−{0,1}λ
[A(G(s)) = 1]− Pr

y
r←−{0,1}ℓ

[A(y) = 1]

∣∣∣∣∣ = negl(λ).

56

K(1λ) :

Return sk = (s1, . . . , sn)
r←− {0, 1}n.

E(sk = (s1, . . . , sn),m) :
pp← HSetup(1λ)(
P̃, (labvi)i∈[n],v∈{0,1}

)
← Garble(1λ,P[m])

y0 ← HEval(pp, sk, 0)

ct0 ← P̃⊕ G(y0)
∀i ∈ [n] :

ysii ← HEval(pp, sk, i)
ctsii ← labsii ⊕ ysii
ct1−sii

r←− {0, 1}λ
Return CT← (pp, ct0, (ct

v
i)i∈[n],v∈{0,1}).

D(sk = (s1, . . . , sn),CT) :
(pp, ct0, (ct

v
i)i∈[n],v∈{0,1})← CT

y0 ← HEval(pp, sk, 0)

P̃← ct0 ⊕ G(y0)
∀i ∈ [n] :

yi ← HEval(pp, sk, i)
labi ← ctsii ⊕ yi

Return m← Eval(P̃, (labi)i∈[n]).

Figure 9: The construction of an SKE scheme SKE. In E, P[m] is padded to size-bit.

B One-time KDM Secure SKE Based on Hinting PRG

In this section, we show how to construct an SKE scheme that is one-time Bsize-KDM secure (i.e.,
one-time KDM secure with respect to circuits whose size is bounded by an a priori determined
polynomial size = size(λ)), using a hinting PRG introduced by Koppula and Waters [KW19].
We first show our construction, then give a security proof (Theorem 12), and finally explain
how Theorem 3 stated in Section 4.1 is proved. Our construction of SKE uses a hinting PRG,
a circuit garbling scheme, and a standard PRG as building blocks, whose formal definitions are
recalled in Appendix A.

Formally, let m = m(λ) be a polynomial that denotes the plaintext length that we wish to
encrypt by our SKE scheme, and let size = size(λ) ≥ m be any polynomial that denotes the size
of circuits for which we aim at achieving Bsize-KDM security. Then,

• Let HPRG = (HSetup,HEval) be a hinting PRG scheme whose seed length is n = n(λ).

• Let GC = (Garble,Eval, Sim) be a circuit garbling scheme, where its label length is λ.
Let ℓ = ℓ(λ) denote a polynomial that denotes the size of a garbled circuit C̃ output by
Garble(1λ, C) in case C is a circuit whose input length is m and |C| = size.

• Let G : {0, 1}λ → {0, 1}ℓ be a standard PRG.

Using these ingredients, we construct an SKE scheme SKE = (K,E,D) with plaintext space
{0, 1}m as described in Figure 9. In the figure, P[m] denotes a “constant” circuit of size size
that has m ∈ {0, 1}m hardwired, and it always outputs m for any n-bit input.

We remark that if we adopt the syntax of an SKE scheme in which there is a setup algo-
rithm that generates a public parameter shared by all users, then the generation of the public
parameter pp done in E can be moved to the setup, and pp can be removed from a ciphertext
CT.

The correctness of SKE follows from that of GC. Moreover, SKE is one-time KDM secure with
respect to functions computable by circuits of a priori bounded size size (Bsize-KDM secure).
More precisely, the following theorem holds.

Theorem 12 Let m = m(λ) and size = size(λ) ≥ m be any polynomials. Assume that HPRG
is a secure hinting PRG, GC is a secure circuit garbling scheme, and G is a secure (standard)
PRG. Then, SKE is a one-time Bsize-KDM secure SKE scheme with m-bit plaintext space.

57

Proof of Theorem 12. Let size = size(λ) be a polynomial. Let A be an arbitrary PPT
adversary that attacks the one-time Bsize-KDM security of SKE. We proceed the proof via a
sequence of games argument with six games. For every j ∈ [6], let SUCj be the event that A
succeeds in guessing the challenge bit (i.e. b′ = b occurs) in Game j.

Game 1: This is the KDM experiment ExptkdmSKE,Bsize,A(λ). The detailed description is as follows.

• Pick a secret-key sk = (s1, . . . , sn)
r←− {0, 1}n and the challenge bit b

r←− {0, 1}, and
run A(1λ).
• Since we consider the one-time Bsize-KDM security of SKE, A is allowed to make at

most a single KDM-encryption query. A’s KDM-encryption query (f0, f1) ∈ (Bsize)2
is answered with CT = (pp, ct0, (ct

v
i)i∈[n],v∈{0,1}) computed as follows:

1. Set m := fb(sk) and generate pp← HPRG(1λ).

2. Compute (P̃, (labvi)i∈[n],v∈{0,1})← Garble(1λ,P[m]).

3. Compute y0 ← HEval(pp, sk, 0) and ct0 ← P̃⊕ G(y0)

4. For every i ∈ [n], compute ysii ← HEval(pp, sk, i) and ctsii ← labsii ⊕ ysii , and pick

ct1−sii
r←− {0, 1}λ.

5. Set CT← (pp, ct0, (ct
v
i)i∈[n],v∈{0,1}).

• A terminates with output b′ ∈ {0, 1}.

Game 2: Same as Game 1, except that (P̃, (labsii)i∈[n]) is computed by (P̃, (labsii)i∈[n]) ←
Sim(1λ, size, fb(sk)).

Note that in Game 1, the information of (lab1−sii)i∈[n] is hidden from A’s view. Hence, by
the security of GC, we can derive |Pr[SUC1]− Pr[SUC2]| = negl(λ).

Game 3: Same as Game 2, except that (P̃, (labsii)i∈[n]) is computed by (P̃, (labvi)i∈[n],v∈{0,1})←
GC(1λ, fb).

By the security of GC again, we obtain |Pr[SUC2]− Pr[SUC3]| = negl(λ).

Note that due to the change made in this game, sk is now used only for computing
y0 = HEval(pp, sk, 0) and (ysii = HEval(pp, sk, i))i∈[n].

Game 4: Same as Game 3, except that each ct1−sii is computed by ct1−sii ← lab1−sii ⊕ y1−sii for

every i ∈ [n], where y1−sii
r←− {0, 1}λ.

(ct1−sii)i∈[n] in Game 3 and those in Game 4 are distributed identically from A’s view.
Thus, we have |Pr[SUC3]− Pr[SUC4]| = 0.

Game 5: Same as Game 4, except that y0 and all of (ysii)i∈[n] are chosen uniformly at random

from {0, 1}λ.
By the security of HPRG, we have |Pr[SUC4]− Pr[SUC5]| = negl(λ).

Game 6: Same as Game 5, except that G(y0) is replaced with y′0
r←− {0, 1}ℓ.

By the security of G, we have |Pr[SUC5]− Pr[SUC6]| = negl(λ).

Notice that in Game 6, ct0 and all of (ctvi)i∈[n],v∈{0,1} are distributed uniformly and in-
dependently of one another. This is because in this game, y′0 and (yi,v)i∈[n],v∈{0,1} are all

chosen uniformly and independently, and ct0 and each of ctvi are generated as ct0 = P̃ ⊕ y′0

58

and ctvi = labvi ⊕ yvi for every (i, v) ∈ [n] × {0, 1}, respectively. Thus, the information of b is
completely hidden from A’s view, and we have Pr[SUC6] = 1/2.

From the above arguments, we have

AdvkdmSKE,Bsize,A(λ) = 2 ·
∣∣∣∣Pr[SUC1]− 1

2

∣∣∣∣
≤ 2 ·

∑
j∈[5]

|Pr[SUCj]− Pr[SUCj+1]|+
∣∣∣∣Pr[SUC6]− 1

2

∣∣∣∣
 = negl(λ).

Since the choice of A was arbitrary, we can conclude that SKE is one-time Bsize-KDM secure.
□ (Theorem 12)

Finally, we give the proof of Theorem 3 (stated in Section 4.1).

Proof of Theorem 3 (in Section 4.1). Firstly, the statement about the existence of Bsize-
KDM secure SKE in Theorem 3 is immediate from our construction SKE and Theorem 12.

To see that the statement about the fully black-box construction of a P-KDM secure SKE
scheme from a hinting PRG is true, we explain that if we focus only on P-KDM security (as
opposed to Bsize-KDM security), then our construction SKE is a fully black-box construction
from a hinting PRG scheme.

Firstly, it is clear that our construction SKE uses the building blocks (a hinting PRG HPRG,
a circuit garbling scheme GC, and a standard PRG G) in a black-box manner. Since a circuit
garbling scheme and a standard PRG can be constructed from a hinting PRG in a black-box
manner, our construction SKE can be seen as being constructed using a hinting PRG in a
black-box way.

It remains to see that the security reductions used for proving the P-KDM security of
SKE treats the underlying primitives (in this case, HPRG, GC, and G), and an adversary in
a black-box manner. The security reductions in the proof of Theorem 12 obviously need not
treat the building block primitives in a non-black-box manner. However, there is a subtle issue:
Recall that in the KDM security game, a fully black-box reduction needs to treat not only
an adversary itself, but also the adversary’s KDM-encryption query as a black-box. However,
as seen in the proof of Theorem 12 above, the reduction algorithms that simulate Game 3
and/or the subsequent games would need to garble the adversary’s KDM-encryption query
fb. This may seem to lead to a non-black-box treatment of the KDM-encryption query fb.
However, recall that a projection function is learnable in the sense that its canonical description
can be completely recovered by making only polynomially many oracle queries (in its input
length and output length) to it and observing the outputs. Thus, we can conduct the security
proofs without treating the adversary and its KDM-encryption query in a non-black-box way.

□ (Theorem 3)

C (Ordinary) One-Way TDF

In this section, we show a TDF achieving (ordinary) one-wayness. The construction is a simpler
variant of our adaptive one-way construction presented in Section 6. In particular, we need not
use a target collision resistant hash function.

Formally, let ℓ = ℓ(λ) be a polynomial. Our one-way TDF uses the building blocks KEM
and SKE with the following properties:

59

Setup′(1λ) :
(pk, sk)← KKG(1λ)

A1, . . . ,An
r←− {0, 1}2λ

C1, . . . ,Cn
r←− C

ek← (pk, (Ai,Ci)i∈[n])

td← (sk, ek)
Return (ek, td).

Samp′(1λ) :
s = (s1, . . . , sn)← K(1λ)

rs11 , . . . , rsnn
r←− {0, 1}λ

k
r←− {0, 1}ℓ

Sample rSKE ∈ RSKE

in the same way as in E.
Return x← (s, (rsii)i∈[n], k, rSKE).

Eval′(ek, x) :
(pk, (Ai,Ci)i∈[n])← ek
(s = (s1, . . . , sn), (r

si
i)i∈[n], k, rSKE)← x

ctSKE ← E(s, (rsii)i∈[n]∥k; rSKE)
∀i ∈ [n] :
(ctsii , k

si
i)← Encap(pk; rsii)

cti ← ctsii + si · Ci
(‡)

=

{
ct0i if si = 0

ct1i + Ci if si = 1

Ti ← ksii + si · Ai
(†)

=

{
k0i if si = 0

k1i + Ai if si = 1

Return y← ((cti,Ti)i∈[n], ctSKE).

Inv′(td, y) :
(sk, ek)← td
(pk, (Ai,Ci)i∈[n])← ek
((cti,Ti)i∈[n], ctSKE)← y
∀i ∈ [n] :

si ← 1− (Decap(sk, cti)
?
= Ti)

=

{
0 if Decap(sk, cti) = Ti

1 otherwise

s← (s1, . . . , sn) ∈ {0, 1}n
(m, rSKE)← RD(s, ctSKE)
Parse m as (rsii)i∈[n] ∈ {0, 1}n·λ

and k ∈ {0, 1}ℓ.
Return x← (s, (rsii)i∈[n], k, rSKE).

Figure 10: The proposed TDF TDF′ with one-wayness. (†) The arithmetic is done over GF(22λ)
where we identify {0, 1}2λ with GF(22λ). (‡) The addition is done over C.

• KEM = (KKG,Encap,Decap) is a KEM such that (1) its session key space is {0, 1}2λ, (2)
the randomness space of Encap is {0, 1}λ, and (3) the ciphertext space C forms an abelian
group (where we use the additive notation) and satisfies |C| ≥ 22λ.

• SKE = (K,E,D) is an SKE scheme such that (1) it has the randomness-recovering decryp-
tion property (with the randomness-recovering decryption algorithm RD), (2) its secret key
space is {0, 1}n for some polynomial n = n(λ), and (3) the plaintext space is {0, 1}n·λ+ℓ.

We denote the randomness space of E by RSKE.

Using these building blocks, our TDF TDF′ = (Setup′, Samp′,Eval′, Inv′) with one-wayness is
constructed as in Figure 10. The domain X of TDF′ is X = {0, 1}n × {0, 1}n·λ ×RSKE.

As in the case of our adaptive one-way construction in Section 6, k ∈ {0, 1}ℓ in a domain
element can be used as hard-core bits.

The correctness and one-wayness of TDF′ are guaranteed by the following theorems. We
omit their proofs since they are very similar to (actually, only simpler than) those of Theorems 7
and 8.

Theorem 13 Let ϵ = ϵ(λ) ∈ [0, 1]. If KEM is ϵ-almost-all-keys correct and SKE has the
randomness-recovering decryption property, then TDF′ is (ϵ+ n · 2−λ)-almost-all-keys correct.

Theorem 14 Assume that KEM satisfies the pseudorandom ciphertext property and almost-all-
keys correctness, and SKE is one-time P-KDM secure. Then, TDF′ is one-way.

60

D Proof of Theorem 9

Let ϵ : N → [0, 1] be such that KEM is ϵ-almost-all-keys correct. Let A be any PPT adversary
that attacks the KEM′ in the sense of the pseudorandom ciphertext property under CCA. We
will show that for thisA, there exist PPT adversaries {Bjtcr}j∈[2], {B

j
prct}j∈[4], and Bkdm satisfying

AdvprctccaKEMprct,A(λ) ≤
∑
j∈[2]

Advtcr
Hash,Bjtcr

(λ) +
∑
j∈[4]

Advmprct

KEM,n,Bjprct
(λ) + Advkdm−prctSKE,P,Bkdm(λ)

+ 6ϵ+ 6n · 2−λ, (18)

This is negligible by our assumption, and thus will prove the theorem.
The proof proceeds using a sequence of games argument with 10 games. In the following,

we let Tj denote the event that A outputs 1 in Game j ∈ [10].

Game 1: This is the experiment for the pseudorandom ciphertext property under CCA, namely
ExptprctccaKEMprct,A(λ), in which the challenge bit b = 1.

We will later show that Game 10 (the final game) corresponds to the experiment ExptprctccaKEMprct,A(λ)

with b = 0, and thus we have AdvprctccaKEMprct,A(λ) = |Pr[T1] − Pr[T10]| ≤
∑

j∈[9] |Pr[Tj] −
Pr[Tj+1]|.
Note that Game 1 is almost like ExptaowTDF,A(λ), except that A is additionally given the
challenge session-key k∗ (used in the generation of ct∗SKE in the challenge ciphertext CT∗).
Furthermore, the subsequent games up to Game 5 are also designed similarly to the
corresponding games in the proof of Theorem 8. We will use the same notation as in the
proof of Theorem 8, such as Szero and Sone.

Game 2: Same as Game 1, except for the additional rejection rule in the decapsulation oracle:
If A’s decapsulation query CT = ((cti,Ti)i∈[n], ctSKE) satisfies h = H(hk, (cti)i∈[n]∥ctSKE)
= h∗, then the decapsulation oracle immediately returns ⊥ to A.
With essentially the same argument as in the proof of Lemma 7, we can construct a
reduction algorithm B1tcr that attacks the target collision resistance of the underlying
keyed hash function Hash and satisfies |Pr[T1]− Pr[T2]| ≤ AdvtcrHash,B1tcr

(λ) + ϵ+ n · 2−λ.

Game 3: Same as Game 2, except that we additionally pick r
∗(1−s∗1)
1 , . . . , r

∗(1−s∗n)
n

r←− {0, 1}λ,
and compute (ct

∗(1−s∗i)
i , k

∗(1−s∗i)
i)← Encap(pk1−s

∗
i ; r
∗(1−s∗i)
i) for every i ∈ [n]. Then, for the

positions i ∈ Szero, Ci’s and Ai’s are generated as in Equation 15 in the proof of Theorem 8,
namely, Ci ← ct∗0i − ct∗1i and Ai ← k∗0i − k∗1i − B · h∗. By the above change, for i ∈ Szero,
we always have ct∗i = ct∗0 and T∗i = k∗0i .

With essentially the same argument as in the proof of Lemma 8, we can construct a
reduction algorithm B1prct that attacks the n-multi-challenge pseudorandom ciphertext

property of the underlying KEM KEM and satisfies |Pr[T2]− Pr[T3]| = Advprct
KEM,n,B1prct

(λ).

Game 4: Same as Game 3, except for the behavior of the decapsulation oracle. Specifically, in
this game, for answeringA’s decapsulation queries y = ((cti,Ti)i∈[n], ctSKE), the oracle first
computes h = H(hk, (cti)i∈[n]∥ctSKE), and returns ⊥ to A if h = h∗. (This rejection rule is
the same as in Game 3.) Otherwise, the oracle uses the “alternative inversion algorithm”
AltInv defined in the proof of Theorem 8 with the alternative trapdoor td′ = (sk1, ek).

With essentially the same argument as in the proof of Lemma 9, we have |Pr[T3]−Pr[T4]| ≤
2ϵ+ n · 2−λ+1.

61

Game 5: Same as Game 4, except that Ci’s and Ai’s for the positions i ∈ Sone are generated
as in Game 3 (i.e. as in Equation 15 in the proof of Theorem 8).

By this change, all of (Ci)i∈[n] and (Ai)i∈[n] are generated as in Equation 15, and ct∗i = ct∗0i
and T∗i = k∗0i hold for every i ∈ [n], no matter whether s∗i = 0 or s∗i = 1. Hence, in this

game, values dependent on s∗ appear only in the plaintext of ct∗SKE (i.e. (r
∗(s∗i)
i)i∈[n]∥k∗).

Similarly to the transition from Game 2 to Game 3, we can construct a reduction algorithm
B2prct that satisfies |Pr[T4]− Pr[T5]| = Advprct

KEM,n,B2prct
(λ).

Game 6: Same as Game 5, except that ct∗SKE in the challenge ciphertext CT∗ is chosen uni-
formly at random from the ciphertext space of the underlying SKE scheme SKE.

Similarly to the proof of Lemma 11, we can construct a reduction algorithm Bkdm that
attacks the underlying SKE scheme SKE in the sense of one-time P-KDM security with
the pseudorandom ciphertext property and satisfies |Pr[T5]− Pr[T6]| = Advkdm−prctSKE,P,Bkdm(λ).

Game 7: Same as Game 6, except that for every i ∈ [n], we pick (ct∗0i , k∗0i) uniformly at random
from C × {0, 1}3λ, instead of generating it by Encap(pk0).

Note that in Game 7, sk0 is not used in the decapsulation oracle. Thus, it is straightforward
to construct a reduction algorithm B3prct that satisfies |Pr[T6]−Pr[T7]| = Advprct

KEM,n,B3prct
(λ).

Game 8 Same as Game 7, except that we switch the decapsulation oracle back to the one
using Inv with the usual secret key SK = td = (sk0, ek), but we still use the rejection rule
regarding h as introduced in Game 2.

Similarly to the transition from Game 3 to Game 4, we have |Pr[T7] − Pr[T8]| ≤ 2ϵ + n ·
2−λ+1.

Game 9 Same as Game 8, except that for every i ∈ [n], we pick (ct∗1i , k∗1i) uniformly at random
from C × {0, 1}3λ, instead of generating it by Encap(pk1).

Analogously to the transition from Game 6 to Game 7, we can construct a reduction
algorithm B4prct that satisfies |Pr[T8]− Pr[T9]| = Advprct

KEM,n,B4prct
(λ).

Game 10 Same as Game 9, except that the decapsulation oracle does not employ the rejection
rule regarding h.

With the same argument as in the transition from Game 1 to Game 2, we can construct
a reduction algorithm B2tcr that satisfies |Pr[T9]− Pr[T10]| ≤ AdvtcrHash,B2tcr

(λ) + ϵ+ n · 2−λ.

Finally, we argue that Game 10 is exactly the experiment for the pseudorandom cipher-
text property under CCA, ExptprctccaKEMprct,A(λ), in which the challenge bit b = 0. To see this,

note that all the labels Ai = k∗0 − k∗1 − B · h∗ and Ci = ct∗0 − ct∗1 in PK as well as all
the components ct∗i = ct∗0, T∗i = k∗0i , and ct∗SKE in the challenge ciphertext CT∗ are dis-
tributed independently and uniformly at random in the corresponding spaces. Hence, PK
is constructed exactly as that of KEMprct, and CT∗ and k∗ are both distributed uniformly
in the ciphertext and session-key spaces, respectively, which is exactly the situation in
the original experiment in which b = 0. The decapsulation oracle is also the same as in
the original experiment. Hence, Game 10 is exactly the same as the original experiment
ExptprctccaKEMprct,A(λ) with b = 0.

Putting everything together, we see that there exist PPT adversaries {Bjtcr}j∈[2], {B
j
prct}j∈[4],

and Bkdm satisfying Equation 18. This completes the proof. □ (Theorem 9)

62

	Introduction
	Background
	Our Results
	Concurrent and Subsequent Works
	Paper Organization

	Technical Overview
	Achieving IND-CCA Security via Randomness-Recovering
	Partial Randomness-Recovering Using the Signaling Technique
	Outline of the Proof: Necessity of KDM Secure SKE
	Extension to TDF
	Optimizations and Simplifications
	Additional Results

	Preliminaries
	Target Collision Resistant Hash Function
	Key Encapsulation Mechanism
	Secret-Key Encryption
	Trapdoor Function

	Chosen Ciphertext Security via KDM Security
	Our Construction
	Proof of Correctness (Proof of Theorem 1)
	Proof of IND-CCA Security (Proof of Theorem 2)

	Impossibility of Shielding Black-Box Constructions
	TDF via KDM Security
	Our Construction
	Proof of Correctness (Proof of Theorem 7)
	Proof of Adaptive One-wayness (Proof of Theorem 8)
	CCA Secure KEM with Pseudorandom Ciphertexts

	Extensions to Advanced Security Notions under CCA
	Leakage-Resilience under CCA
	Selective-Opening Security under CCA

	Other Definitions
	Public-Key Encryption
	Hinting PRG
	Garbled Circuits
	Standard PRG

	One-time KDM Secure SKE Based on Hinting PRG
	(Ordinary) One-Way TDF
	Proof of Theorem 9

