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Abstract. XOR-metrics measure the efficiency of certain arithmetic op-
erations in binary finite fields. We prove some new results about two
different XOR-metrics that have been used in the past. In particular, we
disprove a conjecture from [10]. We consider implementations of multi-
plication with one fixed element in a binary finite field. Here we achieve
a complete characterization of all elements whose multiplication matrix
can be implemented using exactly 2 XOR-operations, confirming a con-
jecture from [2]. Further, we provide new results and examples in more
general cases, showing that significant improvements in implementations
are possible.
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1 Introduction

In the past years, with the advent of the so called Internet of Things, new
challenges for cryptography have emerged. Many new devices usually do not
have a lot of computational power and memory, but are still required to offer
some security by encrypting sensitive data. Consequentially, lightweight cryptog-
raphy has become a major field of research in the past years, mostly focusing on
symmetric-key encryption (e.g. [1, 5, 8]). In particular, linear layers (e.g. [15, 16])
and Sboxes (e.g. [3, 18]) have been thoroughly investigated as they constitute
key components in classical symmetric-key ciphers like AES. The objective here
is to try to minimize the cost of storage and the number of operations needed to
apply a cryptographic function. Usually, the security properties of cryptographic
schemes using finite fields do not depend on a specific field representation (as
bit strings) in the actual implementation [4], so the choice of field implementa-
tion makes an impact on the performance of the scheme without influencing its
security. It is therefore an interesting question which representation minimizes
the number of operations needed.
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In practice, linear layers are usually F2m-linear mappings on Fn2m . Recall that
linear mappings are implemented as matrix multiplications. Note that we can
write every n × n matrix over F2m as an (mn) × (mn) matrix over F2. As ele-
ments in F2m are usually represented as bit strings in computers, it is natural
to consider only matrices over F2. Measurements of implementation costs will
then only involve the number of bit-operations (XORs) needed. It is an interest-
ing question to evaluate the efficiency of a given matrix. For that purpose two
different metrics have been introduced, the direct XOR-count (e.g. in [12, 15,
20, 21]) and the sequential XOR-count (e.g. [2, 10, 23]). Roughly speaking, the
direct XOR-count counts the number of non-zeros in the matrix, whereas the
sequential XOR-count counts the number of elementary row operations needed
to transform the matrix into the identity matrix (see Section 2 for more pre-
cise definitions). Although the sequential XOR-count of a matrix is harder to
compute, it often yields a better estimation of the actual optimal number of
XOR-operations needed [10], for a simple example see Example 1 in this work.
When implementing a linear layer, a field representation can be chosen such
that the respective matrix is optimal according to these metrics. In this way, the
performance of a given linear layer can be improved (for example by choosing a
field representation that results in a sparse diffusion matrix).

Our Contributions. Our goal in this work is to explore some connections
and properties of the direct and sequential XOR-count metrics and then to apply
these to get some theoretical results regarding optimal implementations of ma-
trices that represent multiplication with a fixed field element α ∈ F2k . Optimal
choices of these matrices (called multiplication matrices) can then be used for
local optimizations of matrices over F2k (this approach was taken for example in
[2, 10, 15, 16, 20]). Recently, the focus has shifted to global optimization, as it has
become clear that local optimizations are not necessarily also globally optimal
[6, 13]. However, global optimization techniques currently rely either on tools
that improve the XOR-counts of matrices already known to be efficient [13] or
exhaustive searches [6, 19]. In particular, theoretical results on globally optimal
matrices seem to be very hard to obtain. Numerical data suggest that there is
a correlation between good local optimizations and good global optimizations
(see [13, Figures 2-6]). Because of this correlation, theoretical insights into local
optimization are valuable for the search of globally optimal matrices.

In the second section, we compare the direct XOR-count and sequential XOR-
count evaluation metrics. We prove some theoretical properties of the sequential
XOR-count that can be used to improve algorithms (e.g. an algorithm presented
in [2]). We also find an infinite family of matrices that have a lower direct XOR-
count than sequential XOR-count, disproving a conjecture in [10]. We want to
emphasize that the results presented in this section apply to all invertible ma-
trices, not just multiplication matrices.

In the third section we provide a complete characterisation of finite field
elements α where the mapping x 7→ αx can be implemented with exactly 2
XOR-operations (Theorem 5), which proves a conjecture in [2]. This case is of
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special interest, since for many finite fields (including the fields F2n with 8|n
that are particularly interesting for many applications) there are no elements for
which the mapping x 7→ αx can be implemented with only 1 XOR-operation [2].
For these fields, our classification gives a complete list of elements α such that
multiplication with α can be implemented in the cheapest way possible.

In the fourth section we present some more general results for multiplication
matrices with higher XOR-counts. We prove that the number of XOR-operations
needed to implement the mapping x 7→ αx depends on the number of non-zero
coefficients of the minimal polynomial of α. In particular, Theorem 6 shows that
the gap between the number of XORs used in an optimal implementation and the
number of XORs used in the “naive” implementation of a multiplication matrix
using the rational canonical form of the mapping x 7→ αx grows exponentially
with the weight of the minimal polynomial of the element. This result shows that
there is a large potential for improvement in the implementation of multiplication
matrices. Propositions 2 and 3 imply that the bound found in Theorem 6 is
optimal.

We conclude our paper with several open problems.

2 XOR-Counts

An XOR-count metric for diffusion matrices was introduced in [12] and then
generalized for arbitrary matrices in [21]. It has then subsequently been studied
in several works, e.g. [20, 15].

Definition 1. The direct XOR-count (d-XOR-count) of an invertible n×n ma-
trix M over F2, denoted by wtd(M) is

wtd(M) = ω(M)− n,

where ω(M) denotes the number of ones in the matrix M .

Note that the d-XOR-count of an invertible matrix is never negative as every
row of an invertible matrix needs to have at least one non-zero entry. Moreover,
wtd(M) = 0 if and only if M has exactly one ’1’ in every row and column, i.e.
M is a permutation matrix. The d-XOR-metric only gives an upper bound to
the actual minimal implementation cost as the following example shows.

Example 1. 
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ·

a1
a2
a3
a4

 =


a1

a1 + a2
(a1 + a2) + a3

((a1 + a2) + a3) + a4


The d-XOR-count of the matrix is 6 but it is easy to see that multiplication
with this matrix can actually be implemented with only 3 XOR operations since
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the results of previous steps can be reused. A metric that allows this was sub-
sequently introduced in [10] and used in further work (e.g. [2, 6, 23]). Let us
introduce some notation at first: We denote by I the identity matrix and by
Ei,j the matrix that has exactly one ’1’ in the i-th row and j-th column. Then
Ai,j := I + Ei,j for i 6= j is called an addition matrix. Left-multiplication with
Ai,j adds the j-th row to the i-th row of a matrix, right-multiplication adds the
i-th column to the j-th column. Observe that the matrices Ai,j are self-inverse
over F2. Let further P(n) be the set of n × n permutation matrices and A(n)
the set of all n× n addition matrices Ai,j . We will omit the dimension n unless
necessary.

Definition 2. An invertible matrix M over F2 has a sequential XOR-count (s-
XOR-count) of t if t is the minimal number such that M can be written as

M = P

t∏
k=1

Aik,jk

where P ∈ P and Aik,jk ∈ A. We write wts(M) = t.

Note that every invertible matrix can be decomposed as a product of a permu-
tation matrix and addition matrices in the way Definition 2 describes. Indeed,
Gauss-Jordan-elimination gives a simple algorithm to do so.

In [23] a similar definition for the s-XOR-count was given that uses a repre-
sentation of the form M =

∏t
k=1 PkAik,jk with permutation matrices Pk. Since

products of permutation matrices remain permutation matrices and

PAi,j = Aσ−1(i),σ−1(j)P (1)

where σ ∈ Sn is the permutation belonging to the permutation matrix P , this
definition is equivalent to our definition.

A representation of a matrix M as a product M = P
∏t
k=1Aik,jk is called an

s-XOR-representation of M and an s-XOR-representation with wts(M) addition
matrices is called an optimal s-XOR-representation. Note that optimal s-XOR-
representations are generally not unique. Observe that M = PAi1,j1 . . . Ait,jt is
equivalent to MAit,jt . . . Ai1,j1 = P , so the s-XOR-count measures the number
of column addition steps that are needed to transform a matrix into a permuta-
tion matrix. Because of equation (1) the number of column additions needed is
equal to the number of row additions needed, so we may also speak about row
additions.

Going back to Example 1, it is easy to find an s-XOR-representation with 3
XORs.

M =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 = IA4,3A3,2A2,1.

It is clear that we need at least 3 addition matrices since all rows but the first
one need at least one update. Hence, the s-XOR-representation above is optimal
and wts(M) = 3.
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Determining the s-XOR-count of a given matrix is generally not easy. Graph-
based algorithms to find an optimal s-XOR-count have been proposed in [23] and
(in a slightly different form) in [10]. The algorithms are based on the following
observation. Let G = (V,E) be a graph where G = GL(n,F2) and (M1,M2) ∈ E
if AM1 = M2 for an A ∈ A. Then wts(M) = minP∈P d(M,P ), where d(M1,M2)
denotes the distance between M1 and M2 in the graph G. Thus, the evaluation
of the s-XOR-count can be reduced to a shortest-path-problem. Note that be-
cause the elementary matrices in A are all involutory, G is undirected. As the
authors of [23] observe, it is possible to reduce the number of vertices by a factor
1/n! because matrices with permuted rows can be considered equivalent. Still
(1/n!)|GL(n,F2)| = (1/n!)(2n − 1)(2n − 2) . . . (2n − 2n−1) and every vertex has
|A(n)| = n2 − n neighbors, so both the number of vertices and the number of
edges grow exponentially. Hence, this approach is impractical unless n is small.

The problem of determining the s-XOR-count is linked with the problem of
optimal pivoting in Gauss-Jordan elimination since the number of additions in
an optimal elimination process is clearly an upper bound of the s-XOR-count.
Pivoting strategies for Gaussian elimination are a classical problem in numerical
linear algebra (among lots of examples, see [14]) and the number of steps needed
in a Gauss-Jordan elimination process can be used as a heuristic for the s-XOR-
count.

Example 1 gives an example of a matrix with lower s-XOR-count than d-
XOR-count. Considering this and the fact that the s-XOR-count of a given
matrix is generally much harder to determine than the d-XOR-count, it should
be clarified whether the s-XOR-count always gives a better estimation of the
actual number of XOR operations needed to implement the matrix. In [10] this
has been conjectured, i.e. wts(M) ≤ wtd(M) for all M ∈ GL(n,F2). However,
the following theorem gives a counterexample.

Theorem 1. Let M be as follows:

M =



1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 1 0 0 1


∈ GL(7,F2).

Then wts(M) > wtd(M).

Proof. M is invertible with wtd(M) = 8. Let wts(M) = t, i.e. there are matrices
Aik,jk ∈ A and P ∈ P such that

∏t
k=1Aik,jk ·M = P . By construction, no two

rows and no three rows of M add up to a row with only one non-zero entry. Every
row has to be updated at least once to transform M into a permutation matrix.
Since no two row vectors add up to a vector with only one non-zero entry, the
first row that gets updated (row it) needs to get updated at least once more.
But as there is also no combination of three vectors adding up to a vector with
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only one non-zero entry, the second row that is updated (row it−1) also needs to
be updated a second time. So two rows need to get updated at least twice, and
all other 5 rows need to get updated at least once, resulting in wts(M) ≥ 9. ut

Remark 1. Note that the structure of the counterexample can be extended to
all dimensions n ≥ 7, the middle ’1’ in the last row can be in any j-th column
with 4 ≤ j ≤ n− 3. We conclude that there exists a matrix M ∈ GL(n,F2) with
wts(M) > wtd(M) for all n ≥ 7.

Studying the s-XOR-count is an interesting mathematical problem because
it has some properties that can be used to get upper bounds of the actual im-
plementation cost of potentially a lot of matrices. The actual number of XOR-
operations needed is clearly invariant under permutation of rows and columns.
It is therefore desirable that this property is reflected in our XOR-metrics. Ob-
viously, this is the case for the d-XOR-count, i.e. wtd(M) = wtd(PMQ) for all
matrices M and permutation matrices P,Q ∈ P. The following lemma shows
that this also holds for the s-XOR-count. The lemma is a slight modification
of a result in [2]. However the proof in [2] has a small gap, so we provide a
complete proof here. We denote permutation-similarity with ∼, i.e. M1 ∼M2 if
there exists a P ∈ P so that M1 = PM2P

−1.

Lemma 1. Let M ∈ GL(n,F2). Then wts(M) = wts(PMQ) for P,Q ∈ P. In
particular, if M1 ∼M2 then wts(M1) = wts(M2).

Proof. Let wts(M) = t and σ ∈ Sn be the permutation belonging to Q. Then,
by shifting Q to the left

PMQ = PP2

t∏
k=1

Aik,jkQ = PP2Q

t∏
k=1

Aσ(ik),σ(jk) = P ′
t∏

k=1

Aσ(ik),σ(jk)

where P2, P
′ ∈ P, so wts(PMQ) ≤ wts(M). Since M = P−1(PMQ)Q−1 the

same argument yields wts(M) ≤ wts(PMQ). ut

Based on this result, the following normal form for permutation matrices
is proposed in [2]. We introduce a notation for block diagonal matrices. Let
M1, . . . ,Md be square matrices, then we denote the block matrix consisting of
these matrices by

d⊕
k=1

Mk :=


M1 0

M2

. . .

0 Md

 .

We denote by Cp the companion matrix of a polynomial p = xn + an−1x
n−1 +

· · ·+ a1x+ a0 ∈ F2[x], i.e.

Cp =


0 . . . 0 a0
1 0 0 a1

0
. . .

. . .
...

0 . . . 1 an−1

 .
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Lemma 2 ([2, Lemma 2]). Let P ∈ P(n). Then

P ∼
d⊕
k=1

Cxmk+1

for some mk with
∑d
k=1mk = n and m1 ≥ · · · ≥ md ≥ 1.

A permutation matrix of this structure is said to be the cycle normal form of P .
We can then (up to permutation-similarity) always assume that the permutation
matrix of the s-XOR-decomposition is in cycle normal form.

Corollary 1 ([2, Corollary 2]).

P

t∏
k=1

Aik,jk ∼ P ′
t∏

k=1

Aσ(ik),σ(jk)

for some permutation σ ∈ Sn, where P ′ is the cycle normal form of P .

We say an s-XOR-representation is in cycle normal form if its permuta-
tion polynomial is in cycle normal form. Corollary 1 states that every s-XOR-
representation is pemutation-similar to exactly one s-XOR-representation in cy-
cle normal form.

The following theorem gives a connection between the s-XOR-count and op-
timal s-XOR-representations of a given matrix and that of its inverse.

Theorem 2. Let M be an invertible matrix with wts(M) = t and

M = P

t∏
k=1

Aik,jk with P =

d⊕
k=1

Cxmk+1.

Then wts(M
−1) = t. Moreover,

M−1 = PAσ(it),σ(jt)Aσ(it−1),σ(jt−1) . . . Aσ(i1),σ(j1)

for some permutation σ ∈ Sn that depends only on P .

Proof. For the inverse matrix we have

M−1 = Ait,jt . . . Ai1,j1P
−1 ∼ P−1Ait,jt . . . Ai1,j1 ,

so wts(M
−1) ≤ wts(M). By symmetry, we get wts(M

−1) = wts(M). Observe

that P−1 = PT =
⊕d

k=1 C
T
xmk+1 where PT denotes the transpose of P . Let Jr

be the r× r matrix with ones on the counterdiagonal, i.e. Ji,j = 1 if and only if

j = n−i+1. Let Q =
⊕d

k=1 Jmk ∈ P. A direct calculation yields QP−1Q−1 = P
and thus

M−1 ∼ QP−1
1∏
k=t

Aik,jkQ
−1 = P

1∏
k=t

Aσ(ik),σ(jk),

where σ ∈ Sn denotes the permutation that belongs to Q. ut
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In particular, Theorem 2 implies that given an optimal s-XOR-representation for
a matrix M , an optimal s-XOR-representation of M−1 can be determined with
very little effort by calculation the permutation σ in the proof. Note that the
statement of Theorem 2 does not exist for the d-XOR-count. Indeed, sparse ma-
trices (i.e. matrices with low d-XOR-count) usually have dense inverse matrices
(i.e. high d-XOR-count).

The next result also holds for the s-XOR-count only.

Proposition 1. Let M,N be invertible matrices with wts(M) = t1 and
wts(N) = t2. Then wts(MN) ≤ t1 + t2. In particular, wts(M

k) ≤ |k|t1 for
all k ∈ Z.

Proof. Let M = P
∏t1
k=1Aik,jk and N = Q

∏t2
k=1Bik,jk . Then

MN = PQ

t1∏
k=1

Aσ(ik),σ(jk)

t2∏
k=1

Bik,jk ,

where σ ∈ Sn is the permutation belonging toQ. This implies wts(MN) ≤ t1+t2.
The statement wts(M

k) ≤ |k|t1 for k < 0 follows from Theorem 2. ut

3 Efficient Multiplication Matrices in Finite Fields

We can consider F2n as the n-dimensional vector space (F2)n over F2. By dis-
tributivity, the function x 7→ αx for α ∈ F2n is linear, so it can be represented
as a (left-)multiplication with a matrix in GL(n,F2). This matrix obviously de-
pends on α, but also on the choice of the basis of (F2)n over F2. We denote
the multiplication matrix that represents the function x 7→ αx with respect to
the basis B by Mα,B . The XOR-count of Mα,B generally differs from the XOR-
count of Mα,B′ for different bases B,B′. Our objective here is to find the optimal
basis B for a given α, in the sense that the XOR-count of Mα,B is minimized.
For this, we define the XOR-count metrics from the previous section also for
elements from F2n .

Definition 3. Let α ∈ F2n . We define the s-XOR-count and d-XOR-count of α
as follows:

wts(α) = min
B

wts(Mα,B), wtd(α) = min
B

wtd(Mα,B),

where the minimum is taken over all bases of Fn2 over F2. A basis B and matrix
Mα,B that satisfy the minimum are called s-XOR-optimal and d-XOR-optimal
for α, respectively.

In order to find the matrices that optimize the s-XOR-count-metric, an ex-
haustive search on all matrices with low s-XOR-count is performed in [2]. In this
way the s-XOR-count and an optimal s-XOR-matrix of every element α ∈ F2n

for n ≤ 8 was found. Using the results presented in the previous section, the
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search was restricted to matrices where the permutation matrix is in cycle nor-
mal form. The following result was used to determine whether a given matrix is
a multiplication matrix for some α ∈ F2n with respect to some basis B. From
here on, we denote by χ(M) = det(xI + M) the characteristic polynomial of a
matrix M and by mα the minimal polynomial of the finite field element α ∈ F2n .
Recall that mα is always irreducible.

Theorem 3 ([2, Theorem 1]). Let M ∈ GL(n,F2) and α ∈ F2n . Then M is
a multiplication matrix for α, i.e. M = Mα,B with respect to some basis B, if
and only if mα is the minimal polynomial of M .

Theorem 3 shows in particular that a matrix M is a multiplication for some
α ∈ F2n with respect to some basis B if and only if the minimal polynomial of
M is irreducible. Additionally, it is clear that two field elements with the same
minimal polynomial necessarily have the same XOR-counts.

Remark 2. A direct calculation of the minimal polynomial of the matrix M in
Theorem 1 yields mM = x7 +x6 +x5 +x4 +1 which is an irreducible polynomial.
According to Theorem 3 the matrix M is a multiplication matrix for an element
α ∈ F27 with respect to some basis. Hence, there are elements α ∈ F2n such
that wtd(α) < wts(α). Note that this case does not have to occur for every
value of n because the matrices provided in Theorem 1 might have a reducible
minimal polynomial. Indeed, an exhaustive search for the cases n = 4 and n = 8
was conducted in [10], resulting in wts(α) ≤ wtd(α) for all α in F24 and F28 ,
respectively. We tested the examples given in Theorem 1 for n = 16 without
finding any matrices with irreducible minimal polynomial. Hence, we conjecture
that wts(α) ≤ wtd(α) for all α ∈ F216 . It is an interesting question for which n
elements with lower d-XOR-count than s-XOR-count exist.

Corollary 2. Let M = P
∏t
k=1Aik,jk be in cycle normal form. Then M is a

multiplication matrix for α ∈ F2n if and only if M−1 is a multiplication matrix
for α−1 ∈ F2n . Moreover, M is an optimal s-XOR-matrix for α if and only if
M−1 is an optimal s-XOR-matrix for α−1.

Proof. Let p and q be the minimal polynomial of M and M−1, respectively. It is
well known that q is then the reciprocal polynomial of p, that is q(x) = xnp(1/x).
Moreover, p is the minimal polynomial of α if and only if q is the minimal
polynomial of α−1. The rest follows from Theorem 2. ut

Corollary 2 allows us to determine an s-XOR-optimal matrix for α−1 given an
s-XOR-optimal matrix M of α. Recall that the cycle normal form of M−1 was
directly computed in Theorem 2. This allows us to cut the search space (approx-
imately) in half for all algorithms that determine the s-XOR-count by traversing
all matrices in GL(n,F2).

It is now an interesting question which elements α ∈ F2n have multiplica-
tion matrices with low XOR-count. Obviously, the only element that can be
implemented with XOR-count 0 is α = 1. A simple upper bound on the s-XOR-
count and d-XOR-count for elements can be found by considering the rational
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canonical form of a matrix. Recall that a matrix M ∈ GL(n,F2) is similar to its
(unique) rational canonical form. If M has an irreducible minimal polynomial
m with degm = k then there exists a d ≥ 1 so that kd = n and the rational
canonical form is

⊕d
i=1 Cm. For a polynomial p we denote by wt(p) the weight

of p, that is the number of non-zero coefficients. Note that if 2|wt(p) then 1 is a
root of p so the only irreducible polynomial over F2 with even weight is x+ 1.

Example 2. Let α be an element of F2n with minimal polynomial mα and
degmα = k with kd = n and d ≥ 1. Then we can find a basis B so that
Mα,B is in rational canonical form, i.e. Mα,B =

⊕d
i=1 Cmα . It is easy to check

that wts(Mα,B) = wtd(Mα,B) = d · (wt(mα)− 2).

This example shows in particular that all α ∈ F2n with degmα = n and
wt(mα) = 3 can be implemented with only one XOR operation. A possible
basis for this case is the polynomial basis {1, α, α2, . . . , αn−1}.

As one row-addition on I only produces one extra ’1’ in the matrix, wtd(M) =
1 if and only if wts(M) = 1, and equivalently, wtd(α) = 1 if and only if wts(α) =
1. In [2] all elements that can be implemented with exactly one XOR-operation
are characterized. It turns out, that these cases are exactly those covered by
Example 2.

Theorem 4 ([2, Theorem 2]). Let α ∈ F2n . Then wts(α) = 1 or wtd(α) = 1
if and only if mα is a trinomial of degree n.

It is an open problem for which n irreducible trinomials of degree n exist. Among
other sporadic examples, it is known that there are no irreducible trinomials of
degree n if n ≡ 0 (mod 8) [22], so there are no elements α with d/s-XOR-
count 1 in these cases. As the case 8|n is especially important in practice, it is
natural to consider elements that can be implemented with 2 XOR operations.
In this case, s-XOR-count and d-XOR count do differ: By simply expanding the
product PAi1,j1Ai2,j2 = P (I + Ei1,j1)(I + Ei2,j2), it follows that every matrix
with wts(M) = 2 is of the following form:

M =

{
P + Eσ−1(i1),j1 + Eσ−1(i2),j2 , i2 6= j1

P + Eσ−1(i1),j1 + Eσ−1(i2),j2 + Eσ−1(i1),j2 , i2 = j1,
(2)

where σ is the permutation that belongs to P and i1 6= j1, i2 6= j2. In particular
equation (2) shows that wtd(M) = 2 implies wts(M) = 2, but there are some
matrices with wts(M) = 2 and wtd(M) = 3. In other words, the s-XOR-metric is
a better metric for these matrices. In [2] the authors conjecture that wts(α) = 2
implies wt(mα) ≤ 5, i.e. the minimal polynomial is a trinomial or a pentanomial.
We confirm this conjecture by giving an exact characterization of all elements
with wts(α) = 2 and their optimal s-XOR-representation in cycle normal form
in Theorem 5.

In the proof the following concept from linear algebra is used. We refer the
reader to [9] for proofs and more background. Let V be a vector space over a field
F with dimension n, u ∈ V a vector and M an n× n-matrix over F. The monic
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polynomial g(x) ∈ F[x] with the smallest degree such that g(M)u = 0 is called
the M -annihilator of u. This polynomial divides any polynomial h annihilating u
(i.e. h(M)u = 0), in particular the minimal polynomial of M . In the case that the
minimal polynomial of M is irreducible the M -annihilator of every vector u 6= 0
is the minimal polynomial of M . So if we find a polynomial h that annihilates a
vector u 6= 0 we know that the minimal polynomial divides h. In particular, if h
is monic and the degree of h and the minimal polynomial coincide we can infer
that h is the minimal polynomial of M .

Theorem 5. Let α ∈ F2n . Then wts(α) = 2 if and only if mα can be written in
the form of a pentanomial or the trinomial appearing in Table 1.

Table 1. Elements with minimal polynomials listed in the left column have s-XOR-
count 2. The second column gives an optimal multiplication matrix and the third
column points to the corresponding case in the proof.

mα optimal matrix representation Case

xn + xk1+k2 + xk1 + xk2 + 1, Cxn+1 + Ei1,j1 + Ei2,j2 (1.3.)
k1 + k2 ≤ n− 2

xn + xn−k1 + xk2 + xk2−k1 + 1, Cxn+1 + Ei1,j1 + Ei2,j2 (1.4.)
k2 > k1

xn + xk1+k2 + xk1 + xk2 + 1 Cxn+1 + Ei1,j1 + Ej1+1,j2 + Ei1,j2 (2.1.)

xn + xn1 + xn2 + xk + 1, (Cxn1+1 ⊕ Cxn2+1) + Ei1,j1 + Ei2,j2 (3.2.)
k ≤ n− 2

xn + xn1+k + xn2 + xn1 + 1, (Cxn1+1 ⊕ Cxn2+1) + Ei1,j1 (4.)
0 < k < n2 +Ej1+1 (mod n1),j2 + Ei1,j2

xn/2 + xk + 1 (Cxn/2+1 ⊕ Cxn/2+1) + Ei1,j1 + Ei2,j2 (3.1.)

Proof. Let Mα,B be a multiplication matrix for some α ∈ F2n and some basis
B = {b1, . . . , bn}. We can assume that Mα,B is in cycle normal form, M =

PAi1,j1Ai2,j2 with P =
⊕l

k=1 Cxmk+1. As a first step, we show that l ≤ 2.
Assume l > 2. As shown in equation (2) at most two rows of M have more
than one ’1’ in them. So, by possibly permuting the blocks, P is a triangular
block matrix, consisting of two blocks where one block is of the form Cxt+1. So
χ(Cxt+1) = xt + 1 divides χ(M). But as minimal polynomial and characteristic
polynomial share the same irreducible factors, this implies (x + 1)|mα which
contradicts the irreducibility of mα. So l ≤ 2. We now deal with all possible
matrices on a case by case basis, where we differentiate the cases l ∈ {1, 2} and
the two cases in equation (2).
Case 1. M = Cxn+1 + Ei1,j1 + Ei2,j2 , j1 6= i2 − 1.
We investigate how the matrix operates on the basis B = {b1, . . . , bn}:
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αb1 = b2

...

αbj1−1 = bj1

αbj1 = bj1+1 + bi1 (3)

αbj1+1 = bj1+2

...

αbj2−1 = bj2

αbj2 = bj2+1 + bi2 (4)

αbj2+1 = bj2+2

...

αbn = b1.

Define γ1 := bj1+1 and γ2 := bj2+1. Then

bj1 = αn+j1−j2−1γ2, bj2 = αj2−j1−1γ1. (5)

At first, we show that the minimal polynomial has degree n. Assume mα =
xm +

∑m−1
i=1 cix

i + 1 with ci ∈ F2 and md = n with d > 1. In particular,
m ≤ n/2. At least one of n+j1−j2 and j2−j1 are greater or equal n/2. Assume
j2−j1 ≥ n/2. Then αiγ1 = bj1+1+i for i < n/2. Furthermore, αn/2γ1 = bj1+1+n/2

if j2 − j1 > n/2 and αn/2γ1 = bj1+1+n/2 + bi2 if j2 − j1 = n/2. Consequently,

mα(α)γ1 = αmγ1 +
∑m−1
i=1 ciα

iγ1 + γ1 is a linear combination of at least one
basis element and thus cannot vanish. If n + j1 − j2 ≥ n/2 the same argument
holds with γ2 instead of γ1. So degmα = n. Observe that with the equations
(3), (4) and (5)

αn+j1−j2γ2 = γ1 + bi1 (6)

αj2−j1γ1 = γ2 + bi2 . (7)

By plugging γ2 into the first equation and γ1 into the second equation, we obtain

αnγ1 + αn+j1−j2bi2 + bi1 + γ1 = 0 (8)

αnγ2 + αj2−j1bi1 + bi2 + γ2 = 0. (9)

Case 1.1. i1 ∈ [j1 + 1, j2] and i2 ∈ [j1 + 1, j2].
Then bi1 = αt1γ1 and bi2 = αt2γ1 with t1 = i1 − j1 − 1 and t2 = i2 − j1 − 1

with t1 + t2 < n− 1. With equation (8), we have

αnγ1 + αn+j1−j2+t2γ1 + αt1γ1 + γ1 = 0

So the polynomial p = xn + xn+j1−j2+t2 + xt1 + 1 annihilates γ1. Hence, p is
the minimal polynomial of M . But 2|wt(p), so p is not irreducible. We conclude



XOR-counts and lightweight multiplication in binary finite fields 13

that no matrix of this type can be a multiplication matrix.
Case 1.2. i1 /∈ [j1 + 1, j2] and i2 /∈ [j1 + 1, j2].

Then bi1 = αt1γ2 and bi2 = αt2γ2 with t1 = i1 − j2 − 1 (mod n) and t2 =
i2 − j2 − 1 (mod n) with t1 + t2 < n− 1. With equation (9), we have

αnγ2 + αj2−j1+t1γ2 + αt2γ2 + γ2 = 0

As before, the polynomial p = xn + xj2−j1+t1 + xt2 + 1 annihilates γ2, so there
is no multiplication matrix of this type.
Case 1.3. i1 ∈ [j1 + 1, j2] and i2 /∈ [j1 + 1, j2].

Then bi1 = αt1γ1 and bi2 = αt2γ2 with t1 = i1 − j1 − 1 and t2 = i2 − j2 − 1
(mod n) with t1 + t2 < n− 1. Then by equation (6)

γ2 = αj2−j1−nγ1 + αj2−j1−n+t1γ1

and
bi2 = αj2−j1−n+t2γ1 + αj2−j1−n+t1+t2γ1.

Using equation (8), we obtain

αnγ1 + αt1+t2γ1 + αt1γ1 + αt2γ1 + γ1 = 0,

so p = xn +xt1+t2 +xt1 +xt2 + 1 is the minimal polynomial of M . Note that we
can choose i1, i2, j1, j2 in a way that t1 and t2 take any value from {1, . . . , n−3}
as long as t1 + t2 < n − 1, so every matrix with a minimal polynomial of the
form xn + xa+b + xa + xb + 1 with a+ b ≤ n− 2 has a multiplication matrix of
this type for suitable values of i1, j1, i2, j2.
Case 1.4. i1 /∈ [j1 + 1, j2] and i2 ∈ [j1 + 1, j2].

Then bi1 = αt1γ2 and bi2 = αt2γ1 with t1 = i1 − j2 − 1 (mod n) and t2 =
i2 − j1 − 1 with t1 + t2 < n− 1. Similarly to Case 1.3, equation (6) yields

γ1 = αn+j1−j2γ2 + αt1γ2

and with equation (9)

αnγ2 + αj2−j1+t1γ2 + αn+j1−j2+t2γ2 + αt1+t2γ2 + γ2 = 0,

so p = xn+xj2−j1+t1 +xn+j1−j2+t2 +xt1+t2 + 1 = xn+xn−k1 +xk2 +xk2−k1 + 1
with k1 = j2−j1−t2 = j2−i2−1 > 0 and k2 = j2−j1+t1. Note that k2 > k1 for
any choice of i1, i2, j1, j2. Moreover, k1 can take on every value in {1, . . . , n− 3}
and k2 any value greater than k1.
Case 2. M = Cxn+1 + Ei1,j1 + Ej1+1,j2 + Ei1,j2 .
If j1 = j2 then wts(M) = 1, so we can assume j1 6= j2. Note that the matrix
operates on the basis B just as in Case 1, the only difference being that in
equation (4) we have bi1 + bj1+1 = bi1 + γ1 instead of bi2 on the right hand side.
With the same argument as in Case 1 we conclude that the minimal polynomial
of M has degree n.
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Case 2.1. i1 ∈ [j1 + 1, j2].
Then bi1 = αtγ1 with t = i1 − j1 − 1. Similarly to equation (8), we obtain

αnγ1 + αn+j1−j2γ1 + αn+j1−j2bi1 + bi1 + γ1 = 0

and thus

αnγ1 + αn+j1−j2γ1 + αn+j1−j2+i1−j1−1γ1 + αi1−j1−1γ1 + γ1 = 0.

So the minimal polynomial of M is p = xn+xn+j1−j2 +xn−j2+i1−1+xi1−j1−1+1.
Set k1 = i1 − j1 − 1 and k2 = n+ j1 − j2 then p = xn + xk1+k2 + xk1 + xk2 + 1
with k1, k2 ∈ {1, . . . , n− 1} and k1 + k2 < n.
Case 2.2. i1 /∈ [j1 + 1, j2].
Then bi1 = αtγ2 with t = i1− j2−1 (mod n). Similarly to equation (7), we have

αj2−j1γ1 = γ2 + γ1 + αtγ2.

Using equation (6) we obtain

αnγ2 + αj2−j1+tγ2 + αn+j1−j2γ2 + γ2 = 0,

so the minimal polynomial of M , p = xn + xj2−j1+t + xn+j1−j2 + 1, is reducible.
Case 3. M = (Cxn1+1 ⊕ Cxn2+1) + Ei1,j1 + Ei2,j2 , j1 6= i2 − 1.
If both i1, i2 ≤ n1 or i1, i2 > n1 then M is a triangular block matrix with one
block being just a companion matrix. Then (x + 1)|χ(M) = mα, so this case
cannot occur. Similarly one of j1 and j2 must be less or equal n1 and the another
one greater than n1. We again investigate how M operates on the basis B:

αb1 = b2

...

αbj1−1 = bj1

αbj1 = bj1+1 + bi1

αbj1+1 = bj1+2

...

αbn1
= b1

αbn1+1 = bn1+2

...

αbj2−1 = bj2

αbj2 = bj2+1 + bi2

αbj2+1 = bj2+2

...

αbn = bn1+1.

We set again γ1 = bj1+1 and γ2 = bj2+1. Then

αn1γ1 = γ1 + bi1 and αn2γ2 = γ2 + bi2 . (10)

Case 3.1. i1 ∈ [1, n1] and i2 ∈ [n1 + 1, n].
Then bi1 = αt1γ1 with t1 = i1 − j1 − 1 (mod n1) and bi2 = αt2γ2 with t2 =
i2 − j2 − 1 (mod n2). M is a block diagonal matrix: M = (Cxn1+1 + Ei1,j1) ⊕
(Cxn2+1 + Ei2,j2) = B1 ⊕ B2. Let mM ,mB1

,mB2
be the minimal polynomial

of M , B1 and B2. Then mM = lcm(mB1 ,mB2) and if mM is irreducible then
mM = mB1 = mB2 . This implies that B1 and B2 are multiplication matrices



XOR-counts and lightweight multiplication in binary finite fields 15

with wts(B1) = wts(B2) = 1. From Theorem 4 we obtain that mB1
and mB2

are trinomials of degree n1 and n2, respectively. So n1 = n2 = n/2 and mM =
xn/2 + xt + 1. Using equation (10) we can determine the choice for i1, i2, j1, j2

αn/2γ1 = γ1 + αt1γ1 and αn/2γ2 = γ2 + αt2γ2.

Hence i1, i2, j1, j2 have to be chosen in a way that t1 = t2 = t. This is possible
for every t ∈ {1, . . . , n/2− 1}.
Case 3.2. i1 ∈ [n1 + 1, n] and i2 ∈ [1, n1].
Then bi1 = αt1γ2 with t1 = i1 − j2 − 1 (mod n2) and bi2 = αt2γ1 with t2 = i2 −
j1 − 1 (mod n1). Similarly to Case 1 we can show that the minimal polynomial
of M has degree n. Applying equation (10) yields

γ1 = αn2−t2γ2 + α−t2γ2

and
αn−t2γ2 + αn1−t2γ2 + αn2−t2γ2 + αt1γ2 + α−t2γ2 = 0.

Multiplying this equation by αt2 we conclude that p = xn+xn1 +xn2 +xt1+t2 +1
annihilates γ2, so mα = p. Note that t1 ∈ {0, . . . , n2−1} and t1 ∈ {0, . . . , n1−1}
so t1 + t2 ∈ {0, . . . , n− 2}.
Case 4. M = (Cxn1+1 ⊕ Cxn2+1) + Ei1,j1 + Ej1+1 (mod n1),j2 + Ei1,j2 .
Again, we can assume j1 6= j2. Note that the matrix operates on the basis B just
as in Case 3, the only difference being that bi2 is substituted by bi1 + bj1+1 =
bi1 + γ1. This leads to

αn2γ2 = γ2 + γ1 + αtγ2. (11)

With the same argument as before we conclude that the minimal polynomial of
M has degree n. If i1 ∈ [1, n1] then M is again a block triangular matrix with
one block being a companion matrix, so this case cannot occur. So i1 ∈ [n1+1, n]
and bi1 = αtγ2 for t1 = i1 − j2 − 1 (mod n2). Similarly to Case 3.2 we get

γ2 = αn1−tγ1 + α−tγ1.

Combining this equation with equation (11) we have

αn−tγ1 + αn2−tγ1 + αn1γ1 + αn1−tγ1 + α−tγ1 = 0

and after multiplying with αt we conclude that mα = xn+xn1+t+xn2 +xn1 +1,
where t ∈ {1, . . . , n2 − 1}. ut

Cases 1 and 3 of Theorem 5 also provide all elements α with wtd(α) = 2.
Moreover, Theorem 4 in [2] is a slightly weaker version of Case 1.3. in Theorem 5.

Remark 3. A suitable choice for the values i1, j1, i2, j2 in the second column of
Table 1 can be found in the proof of the corresponding case.

The following example shows that the cycle normal forms of optimal s-XOR-
representations are generally not unique.
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Example 3. Let α ∈ F24 with the irreducible minimal polynomial mα = x4 +
x3 + x2 + x+ 1. Then, by Theorem 5, wts(α) = wtd(α) = 2 and M = Cx4+1 +
E2,2 + E3,4 and M ′ = (Cx3+1 ⊕ Cx+1) + E3,4 + E4,3 belong to two different
optimal representations, corresponding to Case 1.4. and Case 3.2 of Theorem 5,
respectively.

The following corollary is a direct result from Theorem 5 and Example 2.

Corollary 3. Let α ∈ F2n with wt(mα) = 5 and deg(mα) = n. Then wts(α) = 2
if f appears in Table 1 and wts(α) = 3 otherwise.

Corollary 3 shows that an implementation via the rational canonical form (as
in Example 2) is generally not the best way to implement multiplication in binary
finite fields. However, irreducible pentanomials that do not appear in the table in
Theorem 5 exist, the examples with the lowest degree are f = x8+x6+x5+x4+1
and its reciprocal polynomial (for a table of all s-XOR-counts of finite field
elements in F2n for n ≤ 8 see [2]). It is an interesting question for which field
elements the “naive” representation using the rational canonical form is optimal.

4 Quantifying the Gap between the Optimal
Implementation and the Naive Implementation

It is now interesting to investigate the gap between the optimal implementation
and the “naive” implementation using the rational canonical form. We will give
a partial answer to this question in Theorem 6. First, we need some notation
and lemmas.

For a square matrix M = (mr,s) over F2 and two index sequences (ordered
sets) I = (i1, . . . , il1), J = (j1, . . . , jl2), l := min(l1, l2) we denote by M I,J =
(ar,s) the matrix that is constructed as follows: All rows in I and all columns
in J are filled with zeroes, except the entries ai1,j1 , . . . , ail,jl which are set to 1.
More precisely:

ar,s =


0, r = ik, s 6= jk for a k ∈ {1, . . . , l1}
0, r 6= ik, s = jk for a k ∈ {1, . . . , l2}
1, r = ik, s = jk for a k ∈ {1, . . . , l}
mr,s, otherwise.

The following example illustrates our notation. Let I = {2, 4} and J = {1, 3}.

M =


1 1 0 1
0 1 1 1
1 1 1 0
0 1 0 1

 , M I,J =


0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

In the case that l1 6= l2 the matrix M I,J has a zero row/column and is thus
not invertible. If l1 = l2, it is easy to see that det(M I,J) does not depend on the
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ordering of the index sets I, J and is the same as the determinant of the matrix
that is created by deleting all rows of M in I and all columns of M in J . In
the case that we are only concerned with the determinant, we will thus just use
(unordered) index sets I, J and also talk about determinants of submatrices. If
I = {i} and J = {j} we will also write M (i,j). Moreover, we denote by AM the
characteristic matrix AM := xI +M of M .

Lemma 3. Let M = Cxn+1 ∈ GL(n,F2). Then we have wt(det(AI,JM )) ≤ 1 for

all possible proper square submatrices AI,JM .

Proof. The proof is by induction on the size of the submatrix. Clearly,
det(AI,JM ) ∈ {0, 1, x} if |I| = |J | = n − 1. Let now |I| < n − 1. We denote
by cij the entry in the i-th row and j-th column of AM . Then

cij =


x, i = j,

1, i = j + 1 (mod n),

0, else.

Let i ∈ I. If i /∈ J , then AI,JM has at most one non-zero entry in the i-th column.
Then, by Laplace expansion along the i-th column and use of the induction
hypothesis, we get wt(det(AI,JM )) ≤ 1. If i ∈ J and i + 1 (mod n) /∈ I then the
i + 1 (mod n)-th row has at most one non-zero entry and Laplace expansion

along the i + 1 (mod n)-th row yields wt(det(AI,JM )) ≤ 1. We conclude that

wt(det(AI,JM )) ≤ 1 for all I with |I| < n. ut

Lemma 4. Let M = Cxn+1+
∑t
k=1Eik,jk where ik, jk can be chosen arbitrarily.

Then we have wt(det(AI,JM )) ≤ 2t for all possible proper square submatrices AI,JM .

Proof. The proof is by induction on t. The case t = 0 is covered by Lemma 3.
Let now t ≥ 1. Let M ′ = Cxn+1 +

∑t−1
k=1Eik,jk , so that M = M ′ + Ei,j with

i = ik, j = jk. If i ∈ I or j ∈ J we have AI,JM = AI,JM ′ and thus wt(det(AI,JM )) =

wt(det(AI,JM ′ )) ≤ 2t−1. If i /∈ I and j /∈ J then AI,JM = AI,JM ′+Ei,j and thus Laplace

expansion along the i-th row yields det(AI,JM ) ≤ det(AI,JM ′ ) + det(A
I∪{i},J∪{j}
M ′ )

and thus

wt(det(AI,JM )) ≤ wt(det(AI,JM ′ )) + wt(det(A
I∪{i},J∪{j}
M ′ )) ≤ 2t−1 + 2t−1 = 2t

by induction hypothesis. ut

Corollary 4. Let M = Cxn+1 +
∑t
k=1Eik,jk where ik, jk can be chosen arbi-

trarily. Then wt(χ(M)) ≤ 2t + 1.

Proof. The proof is by induction on t. The case t = 0 holds because χ(Cxn+1) =
xn + 1 by definition of the companion matrix. Let now t ≥ 1 and M ′ = Cxn+1 +∑t−1
k=1Eik,jk . Laplace expansion along the it-th row yields χ(M) = det(AM ) =

χ(M ′) + det(A
(it,jt)
M ′ ). We conclude with Lemma 4 and the induction hypothesis

that wt(χ(M)) ≤ 2t−1 + 1 + 2t−1 = 2t + 1. ut
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Theorem 6. Let α ∈ F2n be not contained in a proper subfield of F2n and
let Mα,B be a multiplication matrix of α with respect to some basis B. Then
wtd(Mα,B) = t implies wt(mα) ≤ 2t + 1.

Proof. Let B be an optimal (regarding the d-XOR-count) basis and M :=

Mα,B =
⊕l

k=1 Cxmk+1 +
∑t
r=1Eir,jr be an optimal multiplication matrix. The

case l = 1 is covered in Corollary 4, so we only consider l > 1 for the rest of
the proof. Since α is not contained in a proper subfield of F2n , the minimal
polynomial of M coincides with its characteristic polynomial. We call the sets

{1, . . . ,m1}, {m1 + 1, . . . ,m2}, . . . , {
l−1∑
k=1

mk + 1, . . . ,

l∑
k=1

mk}

the l blocks of M . We can decompose M = M1 +M ′ with M1 =
⊕l

k=1 Cxmk+1 +∑t1
r=1Eir,jr and M ′ =

∑t2
r=1Eir,jr in a way that all pairs (ir, jr) in M1 are in

the same block and all pairs (ir, jr) in M ′ are in different blocks. M1 is a block
diagonal matrix and with Corollary 4 we get

wt(χ(M1)) ≤
l∏

k=1

(2sk + 1) with

l∑
k=1

sk = t1 (12)

where sk denotes the number of pairs (ir, jr) that are in the k-th block. We call
B1, . . . , Bl the l blocks of M1 and m1, . . . ,ml the size of these blocks. Note that
χ(M) is irreducible which implies that M is not a block triangular matrix and
thus t2 ≥ l. So we can write M ′ = M2 + M3 in a way that (after a suitable
permutation of blocks) M1 +M2 looks like this:

M1 +M2 =


B1 0 . . . Eil,jl
Ei1,j1 B2 . . . 0

...
. . .

. . .
...

0 . . . Eil−1,jl−1
Bl

 . (13)

From this, we infer by Laplace expansion along the il-th row

χ(M1 +M2) = χ(M1) + det(A
(il,v)
M1+M2

), (14)

where v =
∑l−1
k=1mk + jl. We now determine wt(det(A

(il,v)
M1+M2

)). We get

det(A
(il,v)
M1+M2

) = det



B
(il,∅)
1 0 . . . 0 Eil,jl
Ei1,j1 B2 . . . 0 0

...
. . .

. . .
...

...

0
. . . Eil−2,jl−2

Bl−1 0

0 . . . 0 Eil−1,jl−1
B

(∅,jl)
l


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= det



B
(il,∅)
1 0 . . . Eil−1,jl−1

∗
Ei1,j1 B2 . . . 0 0

...
. . .

. . .
...

...

0
. . . Eil−2,jl−2

Bl−1 0

0 . . . 0 0 B
(il−1,jl)
l


by swapping the il−th row with the

∑l−1
k=1mk + il−1-th row. This operation can

now be repeated for the upper-left l− 1 blocks, the result is the following block
diagonal matrix

det(A
(il,v)
M1+M2

) = det



B
(il,j1)
1 ∗ . . . 0 0

0 B
(i1,j2)
2 . . . 0 0

...
. . .

. . .
...

...

0
. . . 0 B

(il−2,jl−1)
l−1 ∗

0 . . . 0 0 B
(il−1,jl)
l


.

Lemma 4 then implies wt(det(A
(il,v)
M1+M2

)) ≤
∏l
k=1 2sk = 2t1 . Equations (12) and

(14) yield

wt(χ(M1 +M2)) ≤
l∏

k=1

(2sk + 1) + 2t1 . (15)

We now investigate the determinant of the square submatrices of M1 +M2. Let
I, J be index sets and set I =

⋃̇
rIr and J =

⋃̇
rJr where Ir and Jr contain the

indices that belong to the r-th block. Observe that |I| = |J |. Let us first look at
the case I = Ir and J = Jr for some r. Using Lemma 4

wt(det(AI,JM1+M2
)) ≤ 2sr

∏
k∈{1,...,l}

k 6=r

(2sk + 1) + 2t1 .

Similarly, if |Ir| = |Jr| for all 1 ≤ r ≤ l then

wt(det(AI,JM1+M2
)) ≤

∏
r:Ir 6=∅

2sr
∏

r:Ir=∅

(2sk + 1) + 2t1 . (16)

Let us now assume that there is a block r with |Ir| 6= |Jr|. We can assume w.l.o.g.
that r = 1 and p := |I1| < |J1|. If i1 + m1, il ∈ I or v, j1 ∈ J then equation

(13) implies det(AI,JM1+M2
) = 0. We order I = (a1, . . . , at) and J = (b1, . . . , bt) in

ascending order. Then

det(AI,JM1+M2
) = det

(
BI1,J11 A
C D

)
,
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with A = (ar,s) ∈ Fm1×(n−m1)
2 , C = (cr,s) ∈ F(n−m1)×m1

2 with

ar,s =

{
1, for (r, s) = (il, v),

0, else,
cr,s =


1, for (r, s) = (ak, bk), k > p,

1, for (r, s) = (i1, j1),

0, else.

Swapping the il-th row with the ap+1-th row, we obtain

det(AI,JM1+M2
) = det

(
B
I1∪{il},J1
1 0
∗ D′

)
and thus det(AI,JM1+M2

) = det(B
I1∪{il},J1
1 ) det(D′). Observe that det(AI,JM1+M2

) =

0 if |I1| 6= |J1| + 1. Moreover, det(D′) = det(CI
′,J′

M1+M2
) where {1, . . . ,m1} is a

subset of I ′ and J ′. In particular, the number of indices in I ′ and J ′ belonging
to the first block is the same. By induction, equation (16) and Lemma 4, we get

wt(det(AI,JM1+M2
)) = wt(det(B

I1∪{il},J1
1 ) det(D′)) ≤ 2s1

l∏
k=2

(2sk + 1)+2t1 . (17)

Equations (16) and (17) imply that for arbitrary index sets I, J , there exists an
r ∈ {1, . . . , l} such that

wt(det(AI,JM1+M2
)) ≤ 2sr

∏
k∈{1,...,l}

k 6=r

(2sk + 1) + 2t1 . (18)

As in the proof of Lemma 4, for arbitrary index sets I, J and i, j ∈ {1, . . . , n}
there is an r ∈ {1, . . . , l} such that

wt(det(AI,JM1+M2+Ei,j
)) ≤ wt(det(AI,JM1+M2

)) + wt(det(A
I∪{i},J∪{j}
M1+M2

))

≤ 2 ·

2sr
∏

k∈{1,...,l}
k 6=r

(2sk + 1) + 2t1


and, inductively, for an arbitrary matrix M3 =

∑z
k=1Eik,jk with z non-zero

entries

wt(det(AI,JM1+M2+M3
)) ≤ 2z

2sr
∏

k∈{1,...,l}
k 6=r

(2sk + 1) + 2t1


< 2z

(
l∏

k=1

(2sk + 1) + 2t1

)
. (19)



XOR-counts and lightweight multiplication in binary finite fields 21

We now show by induction that we have for z ≥ 1

wt(χ(M1 +M2 +M3)) < 2z

(
l∏

k=1

(2sk + 1) + 2t1

)
. (20)

The case z = 1 is dealt with using equations (15) and (18):

wt(χ(M1 +M2 +M3)) ≤ wt(χ(M1 +M2)) + wt(det(Ai1,j1M1+M2
))

< 2

(
l∏

k=1

(2sk + 1) + 2t1

)
.

Let now z > 1 and M ′3 =
∑z−1
k=1Eik,jk . With the induction hypothesis and

equation (19) we conclude

wt(χ(M1 +M2 +M3)) ≤ wt(χ(M1 +M2 +M ′3)) + wt(det(Ai1,j1M1+M2+M ′3
))

< 2z

(
l∏

k=1

(2sk + 1) + 2t1

)
,

proving equation (20). Note that the bound in equation (20) depends only on the

parameters l, t2 and sk, k = 1, . . . , l where
∑l
k=1 sk = t1 and t1+t2 = t = wt(M).

For t2 > l we have

wt(χ(M1 +M2 +M3)) < 2t2−l

(
l∏

k=1

(2sk + 1) + 2t1

)
.

Using equation (15), a matrix N with values lN = t2 and sk = 0 for k > l yields

wt(χ(N)) ≤
lN∏
k=1

(2sk + 1) + 2t1

= 2t2−l
l∏

k=1

(2sk + 1) + 2t1 .

In particular, the upper bound given in equation (20) is always worse than the
one given in equation (15) and we can focus on the case M3 = 0 (or, equivalently,
t2 = l) for the rest of this proof. In other words, we just have to find the
parameters that give the maximum weight estimation in equation (15). A direct
calculation yields

l∏
k=1

(2sk + 1) ≤ (2t1 + 1) · 2l−1,

i.e. the choice s1 = t1, si = 0 for i > 1 is optimal. Plugging these parameters
into equation (15), we get

wt(χ(M)) ≤ 2t1+l−1 + 2l−1 + 2t1 = 2t−1 + 2l−1 + 2t−l. (21)

Obviously, the maximum of 2l−1 + 2t−l for 2 ≤ l ≤ t is attained at l = t. The
result follows from equation (21). ut
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We now show that the bound given in Theorem 6 is optimal by giving two
examples where the upper bound is attained. Note that the proof of Theorem 6
implies that this can only occur if the number of blocks of the optimal multipli-
cation matrix is 1 or t. We will give examples for both cases in Propositions 2
and 3.

Theorem 7 ([11, Theorem 3.5], [7, Theorem 4.3.9]). Let R be a (com-
mutative) Euclidean domain and A ∈ Rn×n. Then A can be transformed into
an upper triangular matrix using elementary row operations (i.e. a sequence of
left-multiplications with matrices I + rEi,j with r ∈ R and i 6= j).

Proposition 2. Let α ∈ F2n with an irreducible minimal polynomial f with
wt(f) = 2t + 1 of the form

f = xn +

t∏
j=1

(
xij + 1

)
for arbitrary values of ij ∈ N with

∑t
j=1 ij ≤ n− t. Then there exists a basis B

such that the matrix M := Mα,B satisfies wts(M) = wtd(M) = t.

Proof. We show that the matrix M = Cxn+1 +
∑t−1
k=1Ejk+ik+1,jk + Eit+n−jt,jt

where the jk are chosen arbitrarily under the conditions that jk+1 ≥ ik + jk + 1
for all k = 1, . . . , t − 1 and it < j1 has the desired property. It is clear that
wts(M) = wtd(M) = t. Let B = {b1, . . . , bn} be some basis of (F2)n over F2. We
investigate how M (viewed as a transformation matrix) operates on this basis:

Mb1 = b2

...

Mbj1−1 = bj1

Mbj1 = bj1+1 +M i1bj1+1 (22)

Mbj1+1 = bj1+2

...

Mbj2−1 = bj2

Mbj2 = bj2+1 +M i2bj2+1 (23)

Mbj2+1 = bj2+2

...

Mbn = b1.

Set ni = ji − ji−1 for 2 ≤ i ≤ t and n1 = n + j1 − jt. Note that
∑t
i=1 ni = n

and Mbjk = Mnibjk−1+1. With this and the equations of type (22) and (23) we
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obtain the following set of equations:
Mn2 M i1 + 1 0 . . . 0

0 Mn3 M i2 + 1 . . . 0
. . .

. . .

0 . . . 0 Mnt M it−1 + 1
M it + 1 0 . . . 0 Mn1





bj1+1

bj2+1

...

...
bjt+1

 = 0. (24)

We denote by A the matrix in equation (24). A is a matrix over F2[M ]. It is clear
that F2[M ] is isomorphic to the usual polynomial ring F2[x] and thus a Euclidean
domain. Using the Leibniz formula for determinants, we obtain det(A) = f(M).
By Theorem 7, we can transform A into an upper triangular matrix A′ using only
elementary row operations. In particular det(A′) =

∏n
i=1 a

′
i,i = det(A) = f(M)

where the a′i,i denote the entries on the diagonal of A′. Since f is irreducible, we
obtain ak,k = f(M) for one 1 ≤ k ≤ n and ai,i = 1 for all i 6= k, i.e.

1 ∗
. . .

f(M) ∗ ∗
. . .

0 1





bj1+1

...
bjk+1

...
bjt+1

 = 0.

It is clear that all entries a′k,k+1, . . . , a
′
k,n can be eliminated by further row ad-

ditions. Hence, we obtain f(M)bjk+1 = 0, i.e. f is the M -annihilator of bjk+1.
As f is irreducible this implies that the minimal polynomial of M is f and thus
M is a multiplication matrix of α.

ut

Proposition 3. Let α ∈ F2n with an irreducible minimal polynomial f with
wt(f) = 2t + 1 of the form

f =

t∏
j=1

(xnj + 1) + xk

for arbitrary values of nj and k ≤ n− t with
∑t
j=1 nj = n. Then there exists a

basis B such that the matrix M := Mα,B satisfies wts(M) = wtd(M) = t.

Proof. The proof is similar to the proof of the previous lemma. Define n̂l =∑l−1
u=1 nu for 1 ≤ l ≤ t. Let rl be chosen arbitrarily such that 1 ≤ rl ≤ nl for

1 ≤ l ≤ t and
∑t
l=1 rl = k. Further let jl := n̂l + rl for all 1 ≤ l ≤ t and

sl := il + rl+1 + 1 (mod nl+1) for l < t and st := it + r1 + 1 (mod n1).
Define now M =

⊕t
i=1 Cxni+1 +

∑t
k=1En̂k+sk,jk . Obviously, wts(M) =

wtd(M) = t. Let B = {b1, . . . , bn} be some basis of (F2)n over F2. We investigate



24 L. Kölsch

how M (viewed as a transformation matrix) operates on this basis:

Mb1 = b2

...

Mbj1−1 = bj1

Mbj1 = bj1+1 +M i1bj2+1

Mbj1+1 = bj1+2

...

Mbn1
= b1

Mbn1+1 = bn1+2

...

Mbj2−1 = bj2

Mbj2 = bj2+1 +M i2bj3+1

Mbj2+1 = bj2+2

...

Mbn2
= bn1+1

. . .

. . .

Mbnt−1+1 = bnt+2

...

Mbjt−1 = bjt

Mbjt = bjt+1 +M itbj1+1

Mbjt+1 = bjt+2

...

Mbn = bnt−1+1.

Clearly, Mbjk = Mnkbjk+1, so we get the following set of equations:
Mn1 + 1 M i1 0 . . . 0

0 Mn2 + 1 M i2 . . . 0
. . .

. . .

0 . . . 0 Mnt−1 + 1 M it−1

M it 0 . . . 0 Mnt + 1





bj1+1

bj2+1

...

...
bjt+1

 = 0.

The determinant of the matrix is exactly f(M). We can now repeat the argu-
ments from the proof of Proposition 2 and obtain that M is a multiplication
matrix for α. ut

Observe that the polynomials in Propositions 2 and 3 are generalizations of
Case 1.3. and Case 3.2. in Theorem 5.

Note that irreducible polynomials of the types mentioned in Propositions 2
and 3 do exist, examples up to t = 8, corresponding to polynomials of weight
2t + 1, are compiled in Table 2. The table lists in the second column values for
il and n that belong to an irreducible polynomial of the type of Proposition 2
and in the third column the values for nl and k that belong to an irreducible
polynomial of the type of Proposition 3. The values listed were found with a sim-
ple randomized algorithm. They generally do not correspond to the irreducible
polynomial of that type with the least degree. Propositions 2 and 3 together with
Theorem 6 show that the gap between the number of XORs used in the optimal
implementation and the number of XORs used in the naive implementation of
a multiplication matrix using the rational canonical form grows exponentially
with the weight of the minimal polynomial of the element.

Propositions 2 and 3 show that there are elements α ∈ F2n with wt(mα) =
2t + 1 and wts(α) = t. We believe that this upper bound is strict, i.e. the bound
is the same for s-XOR-count and d-XOR-count.

Conjecture 1. Let α ∈ F2n be not contained in a proper subfield of F2n and Mα,B

a multiplication matrix of α with respect to some basis B. Then wts(Mα,B) = t
implies wt(χ(M)) ≤ 2t + 1.
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Table 2. Irreducible polynomials of the form described in Propositions 2 and 3.

t values for i1, . . . , it;n values for n1, . . . , nt;k

2 1,2;5 2,4;1

3 1,2,4;10 4,5,6;1

4 3,5,6,12;30 2,3,6,10;1

5 1,2,4,9,17;39 12,13,15,19,23;9

6 1,12,16,24,31; 123 13,22,26,27,28,30;23

7 2,30,47,56,60,64,91; 357 25,114,174,231,279,281,331;196

8 23,28,41,59,62,106,141,153; 628 44,148,195,357,363,368,386,480;240

5 Open Problems

Our investigations open up many possibilities for future research. While Theorem
1 shows that there is an infinite family of matrices with higher s-XOR-count
than d-XOR-count, a more precise classification of these cases as well as finding
upper/lower bounds is desirable. Because of the nature of the s-XOR-count,
answers to these problems would also give insight into optimal Gauss elimination
strategies over F2.

Problem 1. Classify the matrices M ∈ GL(n,F2) with wtd(M) < wts(M).

Problem 2. Find bounds c, C so that cwtd(M) ≤ wts(M) ≤ C wtd(M) for all
matrices M ∈ GL(n,F2).

Finding out if/how the bounds c, C depend on n and wts(M) would greatly
improve the understanding of the two XOR-metrics.

As observed in Section 3, there are elements α ∈ F2 where the optimal im-
plementation of the mapping x 7→ αx is the rational canonical form in both of
the investigated metrics. These elements are (compared to elements with mini-
mal polynomials of the same weight) the most expensive to implement. A more
thorough understanding of these elements would be helpful.

Problem 3. Classify the minimal polynomials mα ∈ F2[x] for which the optimal
multiplication matrix is in rational canonical form.

We also want to repeat a problem about elements in subfields mentioned
in [2].

Problem 4. Let α ∈ F2n be contained in a subfield F2l with ld = n. Let Ml

be an optimal multiplication matrix of α regarding d- or s-XOR-count. Is M =⊕d
k=1Ml then an optimal multiplication matrix of α ∈ F2n regarding d- or

s-XOR-count?

In Sections 3 and 4 we limited ourselves to optimal XOR-implementations
of matrices that are multiplication matrices for a fixed field element (which are
exactly those with irreducible minimal polynomial). Investigating a more general
case is also an interesting problem.
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Problem 5. Let f : Fn2 → Fn2 be a bijective linear mapping and Mf,B ∈ GL(n,F2)
the matrix that belongs to f with respect to the basis B. Find a basis B such
that the matrix Mf,B is the optimal d/s-XOR-count matrix.

In particular, finding optimal matrices Mf,B where f denotes the mapping
induced by a linear layer of a cryptographic scheme is a very interesting problem.

Note. In December 2018, after the submission of this paper, Mesnager, Kim,
Jo, Choe, Han and Lee [17] have independently proven the conjecture of Beierle,
Kranz and Leander in [2], i.e. they prove that wts(Mα,B) = 2 implies wt(mα) ≤ 5.
This result is implied by Theorem 5 in this work. The proof techniques used in
[17] are similar to the ones used in this paper.
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