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Abstract. This paper introduces a constant-time implementation for a
quasi-cyclic moderate-density-parity-check (QC-MDPC) code based en-
cryption scheme. At a 280 security level, the software takes 14 679 937
Cortex-M4 and 1 560 072 Haswell cycles to decrypt a short message, while
the previous records were 18 416 012 and 3 104 624 (non-constant-time)
cycles. Such speed is achieved by combining two techniques: 1) perform-
ing each polynomial multiplication in F2rxs{px

r
´ 1q and Zrxs{pxr

´ 1q
using a sequence of “constant-time rotations” and 2) bitslicing.

Keywords: McEliece ¨ Niederreiter ¨ QC-MDPC codes ¨ bitslicing ¨ soft-
ware implementation

1 Introduction

In 2012, Misoczki, Tillich, Sendrier, and Barreto proposed to use QC-MDPC
codes for code-based cryptography [3]. The main benefit of using QC-MDPC
codes is that they allow small key sizes, as opposed to using binary Goppa
codes as proposed in the original McEliece paper [1]. Since then, implementation
papers for various platforms have been published; see [4, 5] (for FPGA and
AVR), [7, 9] (for Cortex-M4), and [11] (for Haswell, includes results from [4, 5,
7]).

One problem of QC-MDPC codes is that the most widely used decoding
algorithm, when implemented naively, leaks information about secrets through
timing. Even though decoding is only used for decryption, the same problem can
also arise if the key-generation and encryption are not constant-time. Unfortu-
nately, the only software implementation paper that addresses the timing-attack
issue is [7]. [7] offers constant-time encryption and decryption on a platform
without caches (for writable-memory).
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Table 1. Performance results for QcBits, [9], [7], and the vectorized implementation
in [11]. The “key-pair” column shows cycle counts for generating a key pair. The
“encrypt” column shows cycle counts for encryption. The “decrypt” column shows
cycle counts for decryption. For performance numbers of Qcbits, 59-byte plaintexts
are used to follow the eBACS [16] convention. For [9] 32-byte plaintexts are used.
Cycle counts labeled with * mean that the implementation for the operation is not
constant-time on the platform, which means that the worst-case performance can be
much worse (especially for decryption). Note that all the results are for 280 security
(r “ 4801, w “ 90, t “ 84; see Section 2.1).

platform key-pair encrypt decrypt reference implementation scheme

Haswell 784 192 82 732 1 560 072 (new) QcBits clmul KEM/DEM
20 339 160 225 948 2 425 516 (new) QcBits ref KEM/DEM

*14 234 347 *34 123 *3 104 624 [11] McEliece

Sandy Bridge 2 497 276 151 204 2 479 616 (new) QcBits clmul KEM/DEM
44 180 028 307 064 3 137 088 (new) QcBits ref KEM/DEM

Cortex-A8 61 544 763 1 696 011 16 169 673 (new) QcBits ref KEM/DEM

Cortex-M4 140 372 822 2 244 489 14 679 937 (new) QcBits no-cache KEM/DEM
*63 185 108 *2 623 432 *18 416 012 [9] KEM/DEM

*148 576 008 7 018 493 42 129 589 [7] McEliece

This paper presents QcBits (pronounced “quick-bits”), a fully constant-time
implementation of a QC-MDPC-code-based encryption scheme. QcBits provides
constant-time key-pair generation, encryption, and decryption for a wide vari-
ety of platforms, including platforms with caches. QcBits follows the McBits

paper [17] to use a variant of the hybrid (KEM/DEM) Niederreiter encryp-
tion scheme proposed in [13, 14]. (The variant does not exactly follow the
KEM/DEM construction since there is an extra “KEM failed” bit passed from
the KEM to the DEM; see [17]) As a property of the KEM/DEM encryption
scheme, the software is protected against adaptive chosen ciphertext attacks, as
opposed to the plain McEliece or Niederreiter [2] encryption scheme. The code
is written in C, which makes it easy to understand and verify. Moreover, QcBits
outperforms the performance results achieved by all previous implementation
papers; see below.

The reader should be aware that QcBits, in the current version, uses a 280-
security parameter set from [3]. Note that with some small modifications QcBits
can be used for a 2128 security parameter. However, I have not found good
“thresholds” for the decoder for 2128 security that achieves a low failure rate and
therefore decide not to include the code for 2128 security in the current version.
Also, the key space used is smaller than the one described in [3]. However, this
is also true for all previous implementation papers [4, 5, 7, 9, 11]. These design
choices are made to reach a low decoding failure rate; see Section 2.1 and 7 for
more discussions.

Performance Results. The performance results of QcBits are summarized in
Table 1, along with the results for [9], [7], and the vectorized implementation
in [11]. In particular, the table shows performance results of the implementations
contained in Qcbits for different settings. The implementation “ref” serves as



the reference implementation, which can be run on all reasonable 64/32-bit plat-
forms. The implementation “clmul” is a specialized implementation that relies
on the PCLMULQDQ instruction, i.e., the 64 ˆ 64 Ñ 128-bit carry-less multiplica-
tion instruction. The implementation “no-cache” is similar to ref except that
it does not provide full protection against cache-timing attacks. Both “ref”
and ”clmul” are constant-time, even on platforms with caches. “no-cache” is
constant-time only on platforms that do not have cache for writable memory.
Regarding previous works, both the implementations in [11] for Haswell and [9]
for Cortex-M4 are not constant-time. [7] seems to provide constant-time en-
cryption and decryption, even though the paper argues about resistance against
simple-power analysis instead of being constant-time.

On the Haswell microarchitecture, QcBits is about twice as fast as [11] for
decryption and an order of magnitude faster for key-pair generation, even though
the implementation of [11] is not constant-time. QcBits takes much more cycles
on encryption. This is mainly because QcBits uses a slow source of randomness;
see Section 3.1 for more discussions. A minor reason is that KEM/DEM encryp-
tion requires intrinsically some more operations than McEliece encryption, e.g.,
hashing.

For tests on Cortex-M4, STM32F407 is used for QcBits and [7], while [9]
uses STM32F417. Note that there is no cache for writable memory (SRAM)
on these devices. QcBits is faster than [9] for encryption and decryption. The
difference is even bigger when compared to [7]. The STM32F407/417 product
lines provide from 512 kilobytes to 1 megabyte of flash. [9] reports a flash usage
of 16 kilobytes, while the implementation no-cache uses 62 kilobytes of flash
when the symmetric primitives are included and 38 kilobytes without symmetric
primitives. See Section 2.3 for more discussions on the symmetric primitives.

It is important to note that, since the decoding algorithm is probabilistic,
each implementation of decryption comes with a failure rate. For QcBits no
decryption failure occurred in 108 trials. I have not found “thresholds” for the
decoding algorithm that achieves the same level of failure rate at a 2128 secu-
rity level, which is why QcBits uses a 280-security parameter set. For [11], no
decryption failure occurred in 107 trials. For [9] the failure rate is not indicated,
but the decoder seems to be the same as [11]. It is unclear what level of failure
rate [7] achieves. See Section 7 for more discussions about failure rates.

Table 2 shows performance results for 128-bit security. Using thresholds de-
rived from the formulas in [3, Section A] leads to a failure rate of 6.9 ¨10´3 using
12 decoding iterations. Experiments show that there are some sets of thresholds
that achieve a failure rate around 10´5 using 19 decoding iterations, but this is
still far from 10´8; see Section 6 for the thresholds. Note that [11] and [9] did
not specify the failure rates they achieved for 128-bit security, and [7] does not
have implementation for 128-bit security. It is reported in [3] that no decryption
failure occurred in 107 trials for all the parameter sets presented in the paper
(including the ones used for Table 1 and Table 2), but they did not provide
details such as how many decoding iterations are required to achieve this.



Table 2. Performance results for QcBits, [9], and the vectorized implementation
in [11] for 128-bit security (r “ 9857, w “ 142, t “ 134; see Section 2.1). The cycle
counts for QcBits decryption are underlined to indicate that these are cycle counts
for one decoding iteration. Experiments show that QcBits can achieve a failure rate
around 10´5 using 19 decoding iterations (see Section 6).

platform key-pair encrypt decrypt reference implementation scheme

Haswell 5 824 028 196 836 1 363 948 (new) QcBits clmul KEM/DEM
*54 379 733 *106 871 *18 825 103 [11] McEliece

Cortex-M4 750 584 383 6 353 732 7 436 655 (new) QcBits no-cache KEM/DEM
*251 288 544 *13 725 688 *80 260 696 [9] KEM/DEM

Comparison with Other Post-Quantum Public-Key Systems. In 2013,
together with Bernstein and Schwabe, I introduced McBits (cf. [17]), a constant-
time implementation for the KEM/DEM encryption scheme using binary Goppa
code. At a 2128 security level, the software takes only 60493 Ivy Bridge cycles
to decrypt. It might seem that QcBits is far slower than McBits. However, the
reader should keep in mind that McBits relies on external parallelism to achieve
such speed: the cycle count is the result of dividing the time for running 256
decryption instances in parallel by 256. The speed of QcBits relies only on
internal parallelism: the timings presented in Table 1 are all results of running
only one instance.

Lattice-based systems are known to be pretty efficient, and unfortunately
QcBits is not able to compete with the best of them. For example, the eBACS
website reports that ntruees439ep1, at a 2128 security level, takes 54940 Haswell
cycles (non-constant-time) for encryption and 57008 for Haswell cycles (non-
constant-time) for decryption. Also, the recently published “Newhope” paper [32]
for post-quantum key exchange, which targets a 2128 quantum security level,
reports 115414 Haswell cycles (constant-time) for server-side key generation,
23988 Haswell cycles (constant-time) for server-side shared-secret computation,
and 144788 Haswell cycles (constant-time) for client-side key generation plus
shared-secret computation.

It is worth noticing that using QC-MDPC codes instead of binary Goppa
codes allows smaller key sizes. [3] reports a public-key size of 601 bytes for a
280-security parameter set (the one used for Table 1), 1233 bytes for a 2128-
security parameter set (the one used for Table 2), 4097 bytes for a 2256-security
parameter set. [17] reports 74624 bytes for a 280-security parameter set and
221646 bytes for a 2128-security parameter set, and 1046739 bytes for a 2256-
security parameter set. The public-key size is 609 bytes for ntruees439ep1. The
“message sizes” for Newhope are 1824 bytes (server to client) and 2048 bytes
(client to server).

The usage of binary Goppa code was proposed by McEliece in [1] in 1978,
along with the McEliece cryptosystem. After almost 40 years, nothing has really
changed the practical security of the system. The NTRU cryptosystem is almost
20 years old now. QC-MPDC-code-based cryptosystems, however, are still quite
young and thus require some time to gain confidence from the public.



2 Preliminaries

This section presents preliminaries for the following sections. Section 2.1 gives
a brief review on the definition of QC-MDPC codes. Section 2.2 describes the
“bit-flipping” algorithm for decoding QC-MDPC codes. Section 2.3 gives a spec-
ification of the KEM/DEM encryption scheme implemented by QcBits.

2.1 QC-MDPC Codes

“MDPC” stands for “moderate-density-parity-check”. As the name implies, an
MDPC code is a linear code with a “moderate” number of non-zero entries in a
parity-check matrix H. For ease of discussion, in this paper it is assumed H P

Frˆn
2 where n “ 2r, even though some parameter sets in [3] use n “ 3r or n “ 4r.
H is viewed as the concatenation of two square matrices, i.e., H “ Hp0q|Hp1q,
where Hpiq P Frˆr

2 .
“QC” stands for “quasi-cyclic”. Being quasi-cyclic means that each Hpiq is

“cyclic”. For ease of discussion, one can think this means

H
pkq
pi`1q mod r,pj`1q mod r “ H

pkq
i,j ,

even though the original paper allows a row permutation on H. Note that being
quasi-cyclic implies that H has a fixed row weight w. The following is a small
parity-check matrix with r “ 5, w “ 4:

¨

˚

˚

˚

˚

˝

1 0 1 0 0 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 1 0

˛

‹

‹

‹

‹

‚

.

The number of errors a code is able to correct is often specified as t. Since
there is no good way to figure out the minimum distance for a given QC-MDPC
code, t is usually merely an estimated value.

Qcbits uses r “ 4801, w “ 90, and t “ 84 matching a 280-security parameter
set proposed in [3]. However, Qcbits further requires that Hp0q and Hp1q have
the same row weight, namely w{2. This is not new, however, as all the previous
implementation papers [4, 5, 7, 9, 11] also restrict H in this way. For QcBits

this is a decision for achieving low failure rate; see Section 7 for more discussions
on this issue. Previous implementation papers did not explain why they restrict
H in this way.

2.2 Decoding (QC-)MDPC Codes

As opposed to many other linear codes that allow efficient deterministic decod-
ing, the most popular decoder for (QC-)MDPC code, the “bit-flipping” algo-
rithm, is a probabilistic one. The bit-flipping algorithm shares the same idea



with so-called “statistical decoding” [21, 19]. (The term “statistical decoding”
historically come later than “bit-flipping”, but “statistical decoding” captures
way better the idea behind the algorithm.)

Given a vector that is at most t errors away from a codeword, the algorithm
aims to output the codeword (or equivalently, the error vector) in a sequence
of iterations. Each iteration decides statistically which of the n positions of the
input vector v might have a higher chance to be in error and flips the bits at those
positions. The flipped vector then becomes the input to the next iteration. In
the simplest form of the algorithm, the algorithm terminates when Hv becomes
zero.

The presumed chance of each position being in error is indicated by the count
of unsatisfied parity checks. The higher the count is, the higher the presumed
chance a position is in error. In other words, the chance of position i being in
error is indicated by

ui “ |ti | Hi,j “ pHvqi “ 1u|.

In this paper the syndrome Hv will be called the private syndrome.

Now the remaining problem is, which bits should be flipped given the vector
u? In [3] two possibilities are given:

‚ Flip all positions that violate at least maxptuiuq ´ δ parity checks, where δ
is a small integer, say 5.

‚ Flip all positions that violate at least Ti parity checks, where Ti is a precom-
puted threshold for iteration i.

In previous works several variants have been invented. For example, one variant
based on the first approach simply restarts decoding with a new δ if decoding
fails in 10 iterations.

QcBits uses precomputed thresholds. The number of decoding iterations is
set to be 6, and the thresholds are

29, 27, 25, 24, 23, 23.

These thresholds are obtained by interactive experiments. I do not claim that
these are the best thresholds. With this list of thresholds, no iteration failure
occurs in 108 decoding trials. See Section 6 for more details about the trials.

The best results in previous implementation papers [4, 5, 7, 9, 11] are
achieved by a variant of the precomputed-threshold approach. In each itera-
tion of the variant, the ui’s are computed in order. If the current ui is greater
than or equal to the precomputed threshold, vi is flipped and the syndrome is
directly updated by adding the i-th column of H to the syndrome. With this
variant, [11] reports that the average number of iterations is only 2.4.

QcBits always takes 6 decoding iterations, which is much more than 2.4.
However, the algorithms presented in the following sections allow QcBits to run
each iteration very quickly, albeit being constant-time. As the result, Qubits
still achieves much better performance results in decryption.



2.3 The Hybrid Niederreiter Encryption System for QC-MDPC
Codes

The KEM/DEM encryption uses the Niederreiter encryption scheme for KEM.
Niederreiter encryption is used to encrypt a random vector e of weight t, which
is then fed into a key-derivation function to obtain the symmetric encryption
and authentication key. The ciphertext is then the concatenation of the Nieder-
reiter ciphertext, the symmetric ciphertext, and the authentication tag for the
symmetric ciphertext. The decryption works in a similar way as encryption; see
for example [17] for a more detailed description. By default QcBits uses the
following symmetric primitives: Keccak [23], Salsa20 [25], and Poly1305 [24].
To be more precise, QcBits uses Keccak with 512-bit outputs to hash e, and
the symmetric encryption and authentication key are defined to be the first and
second half of the hash value. For symmetric encryption and authentication,
QcBits uses Salsa20 with nonce 0 and Poly1305. Note that QcBits does not
implement Keccak, Salsa20, and Poly1305; it only provides an interface to call
these primitives. For the experiments results in table 1, the implementations of
the symmetric primitives are from the SUPERCOP benchmarking toolkit. The
user can use their own implementations for the primitives, or even use some
other symmetric primitives (in this case the user has to change the hard-coded
parameters, such as key size of the MAC).

The secret key is a representation of a random parity-check matrix H. Since
the first row H gives enough information to form the whole matrix, it suffices to

represent H using an array of indices in tj | H
p0q
0,j “ 1u and an array of indices

in tj | H
p1q
0,j “ 1u. In each array the indices should not repeat, but they are not

required to be sorted. QcBits represents each array as a byte stream of length
w, where the i-th double byte is the little-endian representation of the i-th index
in the array. The secret key is then defined as the concatenation of the two byte
streams.

The public key is a representation of the row reduced echelon form of H.
The row reduced matrix is denoted as P . Niederreiter requires P p0q to be the
identity matrix Ir, or the key pair must be rejected. (Previous papers such as [7]
use P p1q “ Ir, but using P p0q “ Ir is equivalent in terms of security.) In other
words, P p1q contains all information of P (if P is valid). Note that P is also quasi-
cyclic; QcBits thus defines the public key as a byte stream of length tpr` 7q{8u,
where the byte values are

pP
p1q
7,0P

p1q
6,0 . . . P

p1q
0,0 q2, pP

p1q
15,0P

p1q
14,0 . . . P

p1q
8,0 q2, . . .

The encryption process begins with generating a random vector e of weight
t. The ciphertext for e is then the public syndrome s “ Pe, which is represented
as a byte stream of length tpr ` 7q{8u, where the byte values are

ps7s6 . . . s0q2, ps15s14 . . . s8q2, . . . .

For hashing, e is represented as a byte stream of length tpn`7q{8u in a similar way
as the public syndrome. The 32-byte symmetric encryption key and the 32-byte



authentication key are then generated as the first and second half of the 64-byte
hash value of the byte stream. The plaintext m is encrypted and authenticated
using the symmetric keys. The ciphertext for the whole KEM/DEM scheme is
then the concatenation of the public syndrome, the ciphertext under symmetric
encryption, and the tag. In total the ciphertext takes tpr`7q{8u`|m|`16 bytes.

When receiving an input stream, the decryption process parses it as the
concatenation of a public syndrome, a ciphertext under symmetric encryption,
and a tag. Then an error vector e1 is computed by feeding the public syndrome
into the decoding algorithm. If Pe1 “ s, decoding is successful. Otherwise, a
decoding failure occurs. The symmetric keys are then generated by hashing e1

to perform symmetric decryption and verification. QcBits reports a decryption
failure if and only if the verification fails or the decoding fails.

3 Key-Pair Generation

This section shows how QcBits performs key-pair generation using multiplica-
tions in F2rxs{px

r ´ 1q. Section 3.1 shows how the private key is generated. Sec-
tion 3.2 shows how key-pair generation is viewed as multiplications in F2rxs{px

r´

1q. Section 3.3 shows how multiplications in F2rxs{px
r´1q are implemented. Sec-

tion 3.4 shows how squarings in F2rxs{px
r ´ 1q are implemented.

3.1 Private-Key Generation

The private-key is defined to be an array of w random 16-bit indices. QcBits
obtains random bytes by first reading 32 bytes from a source of randomness
and then expands the 32 bytes into the required length using salsa20. QcBits
allows the user to choose any source of randomness. To generate the performance
numbers on Ivy Bridge, Sandy Bridge, and Cortex-A8 in Table 1, /dev/urandom
is used as the source of randomness. To generate the performance numbers on
Cortex-M4 in Table 1, the TRNG on the board is used as in [9]. The RDRAND

instruction used by [11] is not considered for there are security concerns about
the instruction; see the Wikipedia page of RDRAND [26]. One can argue that there
is no evidence of a backdoor in RDRAND, but I decide not to take the risk.

3.2 Polynomial View: Public-Key Generation

For any matrix M , let Mi,: denote the vector pMi,0,Mi,1, . . . q and similarly for
M:,i. In Section 2, the public key is defined as a sequence of bytes representing

P
p1q
:,0 , where P is the row reduced echelon form of the parity-check matrix H. A

simple way to implement constant-time public-key generation is thus to generate
H from the private key and then perform a Gaussian elimination. It is not hard
to make Gausssian elimination constant-time; see for example, [17]. However,
public-key generation can be made much more time- and memory-efficient when
considering it as polynomial operations, making use of the quasi-cyclic structure.



For any vector v of length r, let vpxq “ v0` v1x`¨ ¨ ¨` vr´1x
r´1. As a result

of Hp0q being cyclic, we have

H
piq
j,: pxq “ xjH

piq
0,: pxq P F2rxs{px

r ´ 1q.

The Gaussian elimination induces a linear combination of the rows of Hp0q that
results in P

p0q
0,: . In other words, there exists a set I of indices such that

1 “
ÿ

iPI

xiH
p0q
0,: pxq “ p

ÿ

iPI

xiqH
p0q
0,: pxq,

P
p1q
0,: pxq “

ÿ

iPI

xiH
p1q
0,: pxq “ p

ÿ

iPI

xiqH
p1q
0,: pxq.

In other words, the public key can be generated by finding the inverse of H
p0q
0,: pxq

in F2rxs{px
r ´ 1q and then multiplying the inverse by H

p1q
0,: pxq. The previous

implementation papers [4, 5, 7, 9, 11] compute the inverse using the extended
Euclidean algorithm. The algorithm in its original form is highly non-constant-
time. [30] provides a way to make extended Euclidean algorithm constant-time;
so far it is unclear to me whether their algorithm is faster than simply using
exponentiation (see below).

In order to be constant-time, QcBits computes the inverse by carrying out
a fixed sequence of polynomial multiplications. To see this, first consider the
factorization of xr ´ 1 P F2rxs as

ś

i

`

f piqpxq
˘pi

, where each f piq is irreducible.
F2rxs{px

r ´ 1q is then equivalent to

ź

i

F2rxs
M´

f piqpxq
¯pi

Since
ˇ

ˇ

ˇ

ˇ

´

F2rxs{
´

f piqpxq
¯pi

¯˚
ˇ

ˇ

ˇ

ˇ

“ 2degpf
piq
q¨pi ¨ p2degpf

piq
q ´ 1q{2degpf

piq
q

“ 2degpf
piq
q¨pi ´ 2degpf

piq
q¨ppi´1q,

one may compute the inverse of an element in F2rxs{px
r ´ 1q by raising it to

power

lcm
´

2degpf
p1q
q¨p1 ´ 2degpf

p1q
q¨pp1´1q, 2degpf

p2q
q¨pp2´1q ´ 2degpf

p2q
q¨pp2´1q, . . .

¯

´ 1.

QcBits uses r “ 4801. The polynomial x4801 ´ 1 can be factored into

px` 1qf p1qf p2qf p3qf p4q P F2rxs,

where each f piq is an irreducible polynomial of degree 1200. Therefore, QcBits
computes the inverse of a polynomial modulo x4801´1 by raising it to the power
lcmp2´ 1, 21200 ´ 1q ´ 1 “ 21200 ´ 2.



Raising an element in F2rxs{px
4801´ 1q to the power 21200´ 2 can be carried

out by a sequence of squarings and multiplications. The most naive way is to
use the square-and-multiply algorithm, which leads to 1199 squarings and 1198
multiplications. QcBits does better by finding a good addition chain for 21200´2.
First note that there is a systematic way to find a good addition chain for integers
of the form 2k ´ 1. Take 211 ´ 1 for example, the chain would be

1 Ñ 102 Ñ 112 Ñ 11002 Ñ 11112 Ñ 111100002 Ñ 111111112 Ñ 11111111002

Ñ 11111111112 Ñ 111111111102 Ñ 111111111112.

This takes 10 doublings and 5 additions. Using the same approach, it is easy to
find an addition chain for 2109 ´ 1 that takes 108 doublings and 10 additions.
QcBits then combines the addition chains for 211 ´ 1 and 2109 ´ 1 to form an
addition chain for 211¨109´1 “ 21199´1, which takes 10¨109`108 “ 1198 doubling
and 5`10 “ 15 additions. Once the p21199´1q-th power is computed, the p21200´
2q-th power can be computed using one squaring. In total, computation of the
p21200´2q-th power takes 1199 squarings and 15 multiplications in F2rxs{px

4801´

1q.

Finally, with the inverse, P
p1q
0,: pxq can be computed using one multiplication.

The public key is defined to be a representation of P
p1q
:,0 instead of P

p1q
0,: . Qcbits

thus derives P
p1q
0,: from P

p1q
:,0 by noticing

P
p1q
0,j “

#

P
p1q
0,r´j if j ą 0

P
p1q
0,0 if j “ 0.

Note that the conversion from P
p1q
:,0 to P

p1q
0,: does not need to be constant-time

because it can be easily reversed from public data.

3.3 Generic Multiplication in F2rxs{px
r ´ 1q

The task here is to compute h “ fg, where f, g P F2rxs{px
r ´ 1q. In QcBits, the

polynomials are represented using an array of rr{bs b-bit words in the natural
way. Take f for example (the same applies to g and h), the b-bit values are:

pfb´1fb´2 . . . f0q2, pf2b´1f2b´2 . . . fbq2, . . . .

The user can choose b to be 32 or 64, but for the best performance b should
be chosen according to the machine architecture. Let y “ xb. One can view
this representation as storing each coefficient of the radix-y representation of
f using one b-bit integer. In this paper this representation is called the “dense
representation”.

Using the representation, we can compute the coefficients (each being a 2b-
bit value) of the radix-y representation of h, using carry-less multiplications
on the b-bit words of f and g. Once the 2b-bit values are obtained, the dense
representation of h can be computed with a bit of post-processing. To be precise,



given two b-bit numbers pαb´1αb´2 ¨ ¨ ¨α0q2 and pβb´1βb´2 ¨ ¨ ¨β0q2, a carry-less
multiplication computes the 2b-bit value (having actually only 2b´ 1 bits)

˜

à

i`j“2b´2

αiβj
à

i`j“2b´3

αiβj . . .
à

i`j“0

αiβj

¸

2

.

In other words, the input values are considered as elements in F2rxs, and the
output is the product in F2rxs.

The implementations clmul uses the PCLMULQDQ instruction to perform carry-
less multiplications between two 64-bit values. For the implementation ref and
no-cache, the following C code is used to compute the higher and lower b bits
of the 2b-bit value:

low = x * ((y >> 0) & 1);

v1 = x * ((y >> 1) & 1);

low ^= v1 << 1;

high = v1 >> (b-1);

for (i = 2; i < b; i+=2)

{

v0 = x * ((y >> i) & 1);

v1 = x * ((y >> (i+1)) & 1);

low ^= v0 << i;

low ^= v1 << (i+1);

high ^= v0 >> (b-i);

high ^= v1 >> (b-(i+1));

}

3.4 Generic Squaring in F2rxs{px
r ´ 1q

Squarings in F2rxs{px
r ´ 1q can be carried out as multiplications. However, ob-

viously squaring is a much cheaper operation as only rr{bs carry-less multiplica-
tions (actually squarings) are required.

The implementation clmul again uses the PCLMULQDQ instruction to perform
carry-less squarings of 64-bit polynomials. Following the section for interleaving
bits presented in the “Bit Twiddling Hacks” by Sean Eron Anderson [12], the
implementations ref and no-cache use the following C code twice to compute
the square of a 32-bit polynomial represented as 32-bit word:

x = (x | (x << 16)) & 0x0000FFFF0000FFFF;

x = (x | (x << 8)) & 0x00FF00FF00FF00FF;

x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;

x = (x | (x << 2)) & 0x3333333333333333;

x = (x | (x << 1)) & 0x5555555555555555;

By using the code twice we can also compute the square of a 64-bit polynomial.



4 KEM Encryption

This section shows how QcBits performs the KEM encryption using multipli-
cations in F2rxs{px

r ´ 1q. Section 4.1 shows how the error vector is generated.
Section 4.2 shows how public-syndrome computation is viewed as multiplications
in F2rxs{px

r ´ 1q. Section 4.3 shows how these multiplications are implemented.

4.1 Generating the Error Vector

The error vector e is generated in essentially the same way as the private key.
The only difference is that for e we need t indices ranging from 0 to n´ 1, and
there is only one list of indices instead of two. Note that for hashing it is still
required to generate the dense representation of e.

4.2 Polynomial View: Public-Syndrome Computation

The task here is to compute the public syndrome Pe. Let ep0q and ep1q be the
first and second half of e. The public syndrome is then

s “ P p0qep0q ` P p1qep1q

“
ÿ

i

P
p0q
:,i e

p0q
i `

ÿ

i

P
p1q
:,i e

p1q
i .

Since P is quasi-cyclic, we have

spxq “
ÿ

i

xiP
p0q
:,0 pxqe

p0q
i `

ÿ

i

xiP
p1q
:,0 pxqe

p1q
i

“ P
p0q
:,0 pxqe

p0qpxq ` P
p1q
:,0 pxqe

p1qpxq

“ ep0qpxq ` P
p1q
:,0 pxqe

p1qpxq.

In other words, the private syndrome can be computed using one multiplication
in F2rxs{px

r ´ 1q. The multiplication is not generic in the sense that ep1qpxq is
sparse. See below for how the multiplication is implemented in QcBits.

4.3 Sparse-Times-Dense Multiplications in F2rxs{px
r ´ 1q

The task here can be formalized as computing f p0q ` f p1qgp1q P F2rxs{px
r ´ 1q,

where gp1q is represented in the dense representation. f p0q and f p1q are repre-

sented together using an array of indices in I “ ti | f
p0q
i “ 1uYti`r | f

p1q
i “ 1u,

where |I| “ t.
One can of course perform this multiplication between f p1q and gp1q in a

generic way, as shown in Section 3.3. The implementation clmul indeed generates
the dense representation of f p1q and then computes f p1qgp1q using the PCLMULQDQ
instruction. [11] uses essentially the same technique. The implementations ref



and no-cache however, make use of the sparsity in f p0q and f p1q; see below for
details.

Now consider the slightly simpler problem of computing h “ fg P F2rxs{px
r´

1q, where f is represented as an array of indices in I “ ti | fi “ 1u, and g is in
the dense representation. Then we have

fg “
ÿ

iPI

xig.

Therefore, the implementations ref and no-cache first set h “ 0. Then, for each
i P I, xig is computed and then added to h. Note that xig is represented as an
array of rr{bs b-bit words, so adding xig to h can be implemented using rr{bs
bitwise-XOR instructions on b-bit words.

Now the remaining problem is how to compute xig. It is obvious that xig can
be obtained by rotating g by i bits. In order to perform a constant-time rotation,
the implementation ref makes use of the idea of the Barrel shifter [27]. The idea
is to first represent i in binary representation

pik´1ik´2 ¨ ¨ ¨ i0q2.

Since i ď r´1, it suffices to use k “ tlgpr´1qu`1. Then, for j from k´1 to lg b,
a rotation by 2j bits is performed. One of the unshifted vector and the shifted
vector is chosen (in a constant-time way) and serves as the input for the next j.
After dealing with all ik´1, ik´2, . . . , ilg b, a rotation of pilg b´1ilg b´2 ¨ ¨ ¨ i0q2 bits
is performed using a sequence of logical instructions.

To clarify the idea, here is a toy example for the case n “ 40, b “ 8. The
polynomial g is

px8 ` x10 ` x12 ` x14q ` px16 ` x17 ` x20 ` x21q ` px24 ` x25 ` x26 ` x27q

` px36 ` x37 ` x38 ` x39q,

which is represented in an array of 5 bytes as

000000002, 010101012, 001100112, 000011112, 111100002.

The goal is to compute xig where i “ 0100112. Since tlgp40 ´ 1qu ` 1 “ 6, the
algorithm begins with computing a rotation of 1000002 “ 32 bits, which can be
carried out by moving around the bytes. The result is

010101012, 001100112, 000011112, 111100002, 000000002.

Since the most significant bit is not set, the unshifted polynomial is chosen. Next
we proceed to perform a rotation of 0100002 “ 16 bits. The result is

000011112, 111100002, 000000002, 010101012, 001100112.

Since the second most significant bit is set, we choose the rotated polynomial.
The polynomial is then shifted by 0010002 “ 8 bits. However, since the third



most significant bit is not set, the unshifted polynomial is chosen. To handle the
least significant lg b “ 3 bits of i, a sequence of logical instructions are used to
combine the most significant 0112 and the least significant 1012 bits of the bytes,
resulting in

011000012, 111111102, 000000002, 000010102, 101001102.

Note that in [3] r is required to be a prime (which means r is not divis-
ible by b), so the example is showing an easier case. Roughly speaking, the
implementation ref performs a rotation as if the vector length is r ´ pr mod bq
and then uses more instructions to compensate for the effect of the r mod b
extra bits. The implementation no-cache essentially performs a rotation of
pik´1ik´2 ¨ ¨ ¨ ilg b0 ¨ ¨ ¨ 0q2 bits and then performs a rotation of pilg b´1ilg b´2 ¨ ¨ ¨ i0q2
bits.

With the constant-time rotation, we can now deal with the original problem
of computing f p0q ` f p1qgp1q P F2rxs{px

r ´ 1q. QcBits first sets h “ 0. Then for
each i P I, one of either 1 or gp1q is chosen according to whether i ă r or not,
which has to be performed in a constant-time way to hide all information about
i. The chosen polynomial is then rotated by i mod r bits, and the result is added
to h. Note that this means the implementations ref and no-cache perform a
dummy polynomial multiplication to hide information about f p0q and f p1q.

5 KEM Decryption

This section shows how QcBits performs the KEM decryption using multiplica-
tions in F2rxs{px

r ´ 1q and Zrxs{pxr ´ 1q. The KEM decryption is essentially a
decoding algorithm. Each decoding iteration computes

‚ the private syndrome Hv and
‚ the counts of unsatisfied parity checks, i.e., the vector u, using the private

syndrome.

Positions in v are then flipped according the counts. Section 5.1 shows how
private-syndrome computation is implemented as multiplications in F2rxs{px

r´

1q. Section 5.2 shows how counting unsatisfied parity checks is viewed as mul-
tiplications in Zrxs{pxr ´ 1q. Section 5.3 shows how these multiplications in
Zrxs{pxr ´ 1q are implemented. Section 5.4 shows how bit flipping is imple-
mented.

5.1 Polynomial View: Private-Syndrome Computation

The public syndrome and the private syndrome are similar in the sense that
they are both computed by matrix-vector products where the matrices are quasi-
cyclic. For the public syndrome the matrix is P and the vector is e. For the private
syndrome the matrix is H and the vector is v. Therefore, the computation of the



private syndrome can be viewed as polynomial multiplication in the same way
as the public syndrome. That is, the private syndrome can be viewed as

H
p0q
:,0 pxqv

p0qpxq `H
p1q
:,0 pxqv

p1qpxq P F2rxs{px
r ´ 1q.

The computations of the public syndrome and the private syndrome are still
a bit different. For encryption the matrix P is dense, whereas the vector e is
sparse. For decryption the matrix H is sparse, whereas the vector v is dense.

However, the multiplications H
piq
:,0 pxqv

piqpxq are still sparse-times-dense multi-
plications. QcBits thus computes the private syndrome using the techniques
described in Section 4.3.

Since the secret key is a sparse representation of H
piq
0,: , we do not immediately

have H
piq
:,0 . This is similar to the situation in public-key generation, where P

p1q
:,0

is derived from P
p1q
0,: . QcBits thus computes H

piq
:,0 from H

piq
0,: by adjusting each

index in the sparse representation in constant time.

5.2 Polynomial View: Counting Unsatisfied Parity Checks

Let s “ Hv. The vector u of counts of unsatisfied parity checks can be viewed
as

uj “
ÿ

i

Hi,j ¨ si P Zn,

where Hi,j and sj are treated as integers. In other words,

u “
ÿ

i

Hi,: ¨ si P Zn.

Let up0q and up1q be the first and second half of u, respectively. Now we have:

´

up0qpxq, up1qpxq
¯

“

˜

ÿ

i

xiH
p0q
0,: pxq ¨ si,

ÿ

i

xiH
p1q
0,: pxq ¨ si

¸

“

´

H
p0q
0,: pxq ¨ spxq, H

p1q
0,: pxq ¨ spxq

¯

P pZrxs{pxr ´ 1qq
2
.

In other words, the vector u can be computed using 2 multiplications in Zrxs{pxr´
1q. Note that the multiplications are not generic: H

piq
0,: pxq is always sparse, and

the coefficients of H
piq
0,: pxq and spxq can only be 0 or 1. See below for how such

multiplications are implemented in QcBits.

5.3 Sparse-Times-Dense Multiplications in Zrxs{pxr ´ 1q

The task can be formalized as computing fg P Zrxs{pxr´1q, where fi, gi P t0, 1u
for all i, and f is of weight only w. f is represented as an array of indices in
If “ ti | fi “ 1u. g is naturally represented as an array of rr{bs b-bit values as
usual. Then we have

fg “
ÿ

iPIf

xig.
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Fig. 1. Storage of b numbers of unsatisfied parity checks in non-bitsliced form and
bitsliced format.

Even though all the operations are now in Zrxs{pxr´1q instead of F2rxs{px
r´1q,

each xig can still be computed using a constant-time rotation as in Section 4.3.
Therefore, QcBits first sets h “ 0, and then for each i P I, xig is computed
using the constant-time rotation and then added to h. After all the elements in
I are processed, we have h “ fg. Note that xig is represented as an array of
rr{bs b-bit words.

Now the remaining problem is how to add xig to h. A direct way to represent
h is to use an array of r bytes (it suffices to use 1 byte for each coefficient when
w{2 ă 256, which is true for all parameter sets in [3] with n “ 2r), each storing
one of the r coefficients. To add xig to h, the naive way is for each coefficient
of h to extract from the corresponding b-bit word the bit required using one
bitwise-AND instruction and at most one shift instruction, and then to add the
bit to the byte using one addition instruction. In other words, it takes around 3
instructions on average to update each coefficient of h.

QcBits does better by bitslicing the coefficients of h: Instead of using b bytes,
QcBits uses several b-bit words to store a group of b coefficients, where the i-
th b-bit word stores the i-th least significant bits of the b coefficients. Since the
column weight of H is w{2, it suffices to use tlgw{2u`1 b-bit words. To update b
coefficients of h, a sequence of logical operations is performed on the tlgw{2u`1
b-bit words and the corresponding b-bit word in xig. These logical instructions
simulate b copies of a circuit for adding a 1-bit number into a ptlgw{2u` 1q-bit
number. Such a circuit requires roughly tlgw{2u ` 1 half adders, so updating b
coefficients takes roughly 2ptlgw{2u` 1q logical instructions on b-bit words.

Figure 1 illustrates how the b coefficients are stored when w “ 90. In the non-
bitsliced approach b bytes are used. In the bitsliced approach tlgp90{2qu ` 1 “
6 b-bit words are used, which account for 6b{8 bytes. Note that this means



bitslicing saves memory. Regarding the number of instructions, it takes p6 ¨ 2q{b
logical instructions on average to update each coefficient. For either b “ 32 or
b “ 64, p6¨2q{b is much smaller than 3. Therefore, bitslicing also helps to enhance
performance.

The speed that McBits [17] achieves relies on bitslicing as well. However, the
reader should keep in mind that QcBits, as opposed to McBits, makes use of
parallelism that lies intrinsically in one single decryption instance.

5.4 Flipping Bits

The last step in each decoding iteration is to flip the bits according to the
counts. Since QcBits stores the counts in a bitsliced format, bit flipping is also
accomplished in a bitsliced fashion. At the beginning of each decoding iteration,
the bitsliced form of b copies of ´t is generated and stored in tlgw{2u` 1 b-bit
words. Once the counts are computed, ´t is added to the counts in parallel using
logical instructions on b-bit words. These logical instructions simulate copies of
a circuit for adding ptlgw{2u`1q-bit numbers. Such a circuit takes ptlgw{2u`1q
full adders. Therefore, each ui ` p´tq takes roughly 5ptlgw{2u ` 1q{b logical
instructions.

The additions are used to generate sign bits for all ui ´ t, which are stored
in two arrays of rr{bs b-bit words. To flip the bits, QcBits simply XORs the
complement of b-bit words in the two arrays into vp0q and vp1q. It then takes
roughly 1{b logical instructions to update each vi.

For w “ 90, we have 5ptlgw{2u ` 1q{b ` 1b “ 31{b, which is smaller than
1 for either b “ 32 or b “ 64. In contrast, when the non-bitsliced format is
used, the naive approach is to use at least one subtraction instruction for each
ui ´ t and one XOR instruction to flip the bit. One can argue that for the non-
bitsliced format there are probably better ways to compute u and perform bit
flipping. For example, one can probably perform several additions/subtractions
of bytes in parallel in one instruction. However, such an approach seems much
more expensive than one might expect as changes of formats between a sequence
of bits and bytes are required.

6 Experimental Results for Decoding

This section shows experimental results for QC-MDPC decoding under differ-
ent parameter sets. The decoding algorithm used is the precomputed-threshold
approach introduced in Section 2.2. The codes are restricted: Hp0q and Hp1q

are required to have the same row weight. r, w, t have same meaning as in Sec-
tion 2.1. sec indicates the security level. T is the list of thresholds. If not specified
otherwise, the thresholds are obtained using the formulas in [3, Appendix A].
S is a list that denotes how many iterations the tests take. The summation of
the numbers in S is the total number of tests, which is set to either 108 first
the first three cases and 106 for the last case. The 108 (106) tests consist of 104

(103) decoding attempts for each of 104 (103) key pairs. The first number in



the list indicates the number of tests that fail to decode in #T iterations (i.e.,
in the total number of iterations). The second number indicates the number of
tests that succeed after 1 iteration. The third number indicates the number of
tests that succeed after 2 iterations; etc. avg indicates the average number of
iterations for the successful tests.

r = 4801

w = 90

t = 84

sec = 80

T = [29, 27, 25, 24, 23, 23]

S = [0, 0, 752, 69732674, 30232110, 34417, 47]

avg = 3.30

The thresholds are obtained by interactive experiments. QcBits uses this setting.

r = 4801

w = 90

t = 84

sec = 80

T = [28, 26, 24, 23, 23, 23, 23, 23, 23, 23]

S = [40060, 0, 9794, 87815060, 12079266, 51387, 3833, 519, 70, 10,

1]

avg = 3.12

r = 9857

w = 142

t = 134

sec = 128

T = [44, 42, 40, 37, 36, 36, 36, 36, 36, 36, 36, 36]

S = [689298, 0, 0, 86592, 53307303, 42797368, 2856446, 235479,

24501, 2651, 333, 26, 3]

avg = 4.46

r = 9857

w = 142

t = 134

sec = 128

T = [48, 47, 46, 45, 44, 43, 42, 42, 41, 41, 40, 40, 39, 39, 38,

38, 37, 37, 36]

S = [12, 0, 0, 0, 0, 0, 142, 78876, 578963, 290615, 43180, 6363,

1309, 336, 108, 54, 27, 7, 4, 4]

avg = 8.33

The thresholds are obtained by interactive experiments.



7 The Future of QC-MDPC-Based Cryptosystems

QcBits provides a way to perform constant-time QC-MDPC decoding, even on
platforms with caches. Moreover, decoding in QcBits is much faster than that in
previous works. However, the fact that the bit-flipping algorithm is probabilistic
can be a security issue. The security proofs in [13, 14] do assume that the KEM
is able to decrypt a KEM ciphertext with “overwhelming probability”. As there
is no good way to estimate the failure rate for a given QC-MDPC code, the best
thing people can do is to run a large number of experiments. QcBits manages to
achieve no decoding failures in 108 trials. Indeed, 108 is not a trivial number, but
whether such level of failure rate is enough to keep the system secure remains
unclear, not to mention that this is for 80-bit security only. See Section 6 for
more detailed experimental results on failure rates.

One can probably mitigate the problem by reducing the failure rate. This may
be achieved by improving decoding algorithms or designing better parameter
sets. However, a more fundamental problem that has not been answered is how
low the failure rate should be in order to be secure.

Another probably less serious problem is that QcBits and all previous im-
plementation papers [4, 5, 7, 9, 11] force the parity check matrix H to have
equal weights in Hp0q and Hp1q, which is not the same as what was described
in [3]. QcBits restricts the key space in this way to reduce the failure rate. Of
course, one can argue that even if the key space is not restricted, for a very
high probability Hp0q and Hp1q would still have the same weight. However, such
an argument is valid only if the adversary can only target one system. For an
adversary who aims to break one out of many systems, it is still unclear whether
such restriction affects the security. Hopefully researchers will spend time on this
problem also.
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