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Abstract. The existing power trace extractors consider the case that the number
of power traces owned by the attacker is sufficient to guarantee his successful at-
tacks, and the goal of power trace extraction is to lower the complexity rather than
increase the success rates. Although having strict theoretical proofs, they are too
simple and leakage characteristics of POIs have not been thoroughly analyzed. They
only maximize the variance of data-dependent power consumption component and
ignore the noise component, which results in very limited SNR to improve and se-
riously affects the performance of extractors. In this paper, we provide a rigorous
theoretical analysis of SNR of power traces, and propose a novel SNR-centric extrac-
tor, named Shortest Distance First (SDF), to extract power traces with smallest the
estimated noise by taking advantage of known plaintexts. In addition, to maximize
the variance of the exploitable component while minimizing the noise, we refer to the
SNR estimation model and propose another novel extractor named Maximizing Esti-
mated SNR First (MESF). Finally, we further propose an advanced extractor called
Mean optimized MESF (MMESF) that exploits the mean power consumption of each
plaintext byte value to more accurately and reasonably estimate the data-dependent
power consumption of the corresponding samples. Experiments on both simulated
power traces and measurements from an ATmega328p micro-controller demonstrate
the superiority of our new extractors.

Keywords: shortest distance first · SDF · MESF · signal-to-noise ratio · SNR · power
trace extractor · side-channel attack.

1 Introduction

Secret information may leak from devices through side-channels such as electromagnetic ra-
diation [2], cache patterns [22], acoustic [11,12], timing [3,18] and power consumption [19]
during the implementation of cryptographic algorithms. These leakages are usually uncon-
scious and difficult to be discovered. By applying statistical analysis on assumed power
consumption of intermediate values and side-channel leakages, an attacker can recover
sensitive information (e.g. encryption key) in the targeted devices. Side-channel attacks
on power consumption channel, such as Differential Power Analysis (DPA) [19], Corre-
lation Power Analysis (CPA) [4], Template Attacks (TA) [7] and Mutual Information
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Analysis [13], pose serious threats to the security of cryptographic implementations. To
improve the attack efficiency, an attacker always tries his best to construct optimal distin-
guishers and profile more accurate leakage models to better exploit leaky informations.

The Signal-to-Noise Ratio (SNR) becomes one of the key factors that affect the at-
tack performance. They varies with algorithm implementation, hardware devices, sam-
pling equipment, etc. For example, the probe is not placed on a reasonable position
in electromagnetic attacks, and the implementation is in highly parallel. In this case,
classic pre-processing schemes such as power traces alignment [35], averaging [23, 25, 32],
higher-order cumulant [21], dimensionality reduction [6,31] and Points-Of-Interest (POIs)
extraction [8], are usually performed before side-channel attacks to “de-noise” [14]. The
attacker can obtain power traces with a higher SNR after pre-processing, thus obtaining
higher attack performance. This paper considers the attack scenario that the attacker has
enough power traces to guarantee his successful attacks. We focus on another powerful pre-
processing scheme that recognizes and extracts a part of power traces with high SNR from
the original set to lower the computing complexity and make the attacks more efficient.
The related works will be given in the next section before introducing our contributions.

1.1 Related Works

Extracting power traces with high SNR to enhance attacks was firstly exploited by Kris
et al. in [34]. The SNR of a time sample on power traces is the ratio of the variance of
the exploitable power consumption component to the variance of noise (see Section 2.1).
The power consumption of a POI of the outputs of an S-box could be approximated
by a normal distribution. Parts of samples were extracted from both two tails of the
distribution to enlarge the variance of the exploitable power consumption component [17].
Therefore, this scheme does not change the variance of noise. For simplicity, we name a
power trace extraction scheme as an extractor.

Noura et al. exploited a new leakage model to extract power traces to improve CPA
in [27]. Hu et al. proposed an Adaptive Chosen Plaintext Correlation Power Analysis
(ACPCPA) in [15]. They tried to solve the problem of discarding too many power traces
in the extractor proposed by Yongade et al. in [17]. Specifically, they analyzed the
correlation between the Hamming weights of S-box outputs and power consumption of
POIs, and got a conclusion that Hamming weights 0, 1, 7 and 8 corresponded to power
traces with high SNR. They selected the best two candidates of a sub-key with the largest
correlation coefficients in CPA, and encrypted plaintexts having Hamming weights 0, 1,
7 and 8 under them, respectively. Then, the newly acquired power traces were combined
together with the original power trace set independently to perform CPA. This extractor
was similar to the one given by Haruki et al. in [30] and the improved one given by us
in [28], since they also aimed to enlarge the variance of the exploitable power consumption
component rather than smaller the noise to improve SNR. The SNR improved by these
extractors was very limited.

It is worth mentioning that it is difficult for the existing extractors to obtain a higher
success rate [33] than the attack directly performed on the original power trace set. There-
fore, we only consider the case that the number of power traces owned by the attacker
is sufficient to guarantee his successful attacks, and the goal of his extraction is to lower
the complexity rather than increase the success rate. For example, the attacker has very
enough power traces to obtain a success rate of 1.00, but the samples are with too large
noise and too many samples on power traces, so that he can extract a very small part
from them to significantly reduce the computational complexity while achieve the same
success rate. This is practical and meaningful.

Recently, other schemes such as Principal Component Analysis (PCA) [24], were also
exploited to extract power traces [16]. The above-mentioned extractors can be able to
accurately extract power traces with high SNR if the noise level is low. However, if the
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noise level is high, the distribution of power consumption is seriously affected. In this
case, accuracy of recognition of power traces with high SNR greatly reduces. Moreover,
the variance of exploitable power consumption component could be improved is also very
small compared to variance of noise in many cases. This also indicates that it is far
from enough to increase SNR by enlarging the variance of exploitable power consumption
component only. How to accurately recognize power traces with high SNR to improve the
attack efficiency is still a very important but challenging issue.

1.2 Our Contributions

We aim to build more advanced extractors to recognize power traces with higher SNR,
thus enhancing their practical significance and enabling the launch of more efficient attacks.
The main contributions of this paper are as follows:

(i) We provide rigorous theoretical analysis of SNR in power traces, and propose a
novel extractor named Shortest Distance First (SDF) to extract the power traces
with smallest estimated noise rather than enlarging variance of exploitable power
consumption. Samples with small noise occupy the majority of the whole signal
population, thus providing ample opportunities to improve the SNR. We will show
that SDF achieves significantly better performance than the existing extractors. The
proposed method paves the way for new directions in power trace extraction.

(ii) To maximize the exploitable component while minimize the estimated noise, we
analyze the SNR model of the extracted samples. We further introduce the data-
dependent power consumption component exploited in the existing extractors into
SDF, and propose a more reasonable extractor called Maximizing Estimated SNR
First (MESF) according to this model.

(iii) It is not very good to directly use samples with noise to estimate their exploitable
component. Supported by theoretical analysis, it is estimated by utilizing the mean
power consumption of each plaintext byte value. Based on this scheme, we further
build an extractor called Mean optimized MESF (MMESF), which takes advantage
of known plaintexts in the side-channel community.

Experiments show that our new extractors only need a very small part of the original
power trace set (e.g., one-tenth) to achieve a similar success rate, which demonstrates
their superiority in blind recognition of power traces with high SNR.

1.3 Organization

The rest of this paper is organized as follows: leakage characteristics of POIs, CPA and
the existing power trace extractors, which we collectively name TAILS, are introduced in
Section 2. Our extractor SDF to minimize the estimated noise on power traces is given in
Section 3. To further maximize the variance of the data-dependent component, another
two extractors MESF and MMESF are introduced in detail in Section 4. Experiments
on both simulated power traces and an ATmega328p micro-controller are presented in
Section 5 to illustrate the superiority of our new extractors. Finally, we conclude this
paper in Section 6.

2 Preliminaries

2.1 Leakage Characteristics of POIs

Let x = xj
0||x

j
1|| · · · ||x

j
15 denote the j-th encrypted plain-text in AES-128 algorithm, κ =

κ0||κ1|| · · · ||κ15 denote the 16-byte key used in cryptographic device, zj
i = Sbox

(

xj
i ⊕ κi

)
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denote the look-up table operation and l (τ) denote the corresponding sample leaked at
time τ . The attacker encrypts n plaintexts X =

(

x1, x2, . . . , xn
)

and acquires n power

traces L =
(

l1, l2, . . . , ln
)

. According to [23], the power consumption of a single sample
l (τ) can be modeled as the sum of an operation-dependent component lo (τ), a data-
dependent component ld (τ), electronic noise lel.n (τ), switching noise lsw.n (τ), and the
constant component lc (τ):

l (τ) = lo (τ) + ld (τ) + lel.n (τ) + lsw.n (τ) + lc (τ) . (1)

These 5 components are independent of each other, and the exploitable component le (τ)
consists of the operation-dependent component lo (τ) and data-dependent component
ld (τ):

le (τ) = lo (τ) + ld (τ) . (2)

For a time sample L (τ), the variance of the constant component σ2 (Lc (τ)) = 0. For
classic DPA, the attacker only considers one of the 8-bit intermediate values (i.e. the
outputs of an Sbox), the power consumption of the other 7 bits is switching noise (i.e.
algorithm noise). The variance of switching noise here is larger than 0. For classic CPA
considering all bits of intermediate values, the variance of switching noise σ2 (Lsw.n (τ)) =
0.

Let Ln (τ) denote the noise component including Lel.n (τ) and Lsw.n (τ). The electron-
ic noise is normal distributed. The SNR of the time sample L (τ) is the ratio of variance
of exploitable power consumption component Le (τ) and the variance of noise component.
Thus, SNR can be simplified as:

ˆSNR (τ) =
σ2 (Le (τ))

σ2 (Ln(τ))
. (3)

The same conclusion were drawn in Eq. 4.10 in [23]. For simplicity, the variance of 4
components σ2 (Lo (τ)), σ2 (Ld (τ)), σ2 (Lc (τ)) and σ2 (Ln (τ)) are expressed as σ2

o (τ),
σ2

d (τ), σ2
c (τ) and σ2

n (τ).

2.2 Correlation Power Analysis

For all components of power consumption, σ2
d (τ) is the only component correlating to

the leakage model (e.g. Hamming weight model). LetM (τ) denote the assumed leakage
model of the intermediate values, the correlation coefficient between it and the total power
consumption L (τ) is:

ρ̂ (M (τ) ,L (τ)) =
cov (M (τ) ,L (τ))

σ (M (τ)) · σ (L (τ))
. (4)

“cov” here is the covariance matrix operator. Mangard et al. further analyzed the corre-
lation between power consumption and M (τ) in [23]. The important Formula 6.5 given
in their paper can be expressed as:

ρ̂ (M (τ) ,L (τ)) =
ρ̂ (M (τ) ,Ld (τ))

√

1 + 1
ˆSNR(τ)

. (5)

Here ρ̂ (·, ·) is Pearson correlation coefficient operator. For a classic CPA attack, ρ̂ (M (τ) ,Ld (τ))
is a constant for a time sample, SNR determines the correlation coefficient ρ̂ (M (τ) ,L (τ)).
Therefore, ρ̂ approaches a constant when the number of power traces exploited in an attack
is large enough. It can also be seen from Eqs. 3 and 5 that SNR plays a very important
role in attacks, and its improvement will bring a higher success rate to the attacker.
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2.3 Existing Power Trace Extractors

Let R denote the Gaussian distributed noise component Ln with mean 0 and variance
σ2

n, C denote the sum of constant component Lc and operation-dependent component Lo.
The leakage of the look-up table operation can be modeled as:

L = HW(Z) + C + R. (6)

Here HW (·) is the Hamming weight function, and Z =
(

z1, z2, . . . , zn
)

are intermediate
values. We simulate 25, 600 power traces and exploit the existing extractors to extract
12, 800 from them. Here C in Eq. 6 is set to 100, noise level σ2

n is set to 0.09, thus
the samples of each Hamming weight in HW(Z) approximately follow normal distribution
N (HW(z), 0.09). This small noise is convenient for readers to observe the power consump-
tion distribution of each Hamming weight. The principles of classic power trace extractors
are the same. They improve SNR by enlarging the variance of component Ld. Here we
define an evaluation function:

Di (τ) =
∣

∣li (τ) − M̄ (τ)
∣

∣ (7)

to quantify this, li (τ) denotes the i-th trace in L and M̄ (τ) denotes the mean power
consumption of all traces, which satisfies:

M̄ (τ) =
1

n

n
∑

i=1

li (τ) . (8)

Here “|·|” denotes the absolute value operator. The extracted power traces from both two
tails of the overall normal distribution are shown in Fig. 1. Due to the small noise, the
leakage distribution of intermediate values can be well distinguished. For simplicity, we
collectively name these power trace extractors as “TAILS”. The extracted values occupy
four-fifths of the power consumption region in Fig. 1. They have the largest distances from
the mean value M̄ (τ) when extracting half of the samples. According to the variance of
the estimated data-dependent component:

σ2
d (τ) =

1

n− 1

n
∑

i=1

(

li (τ) − M̄ (τ)
)2

, (9)

they are also with the largest σ2
d (τ). It is worth noting that the effect of the noise

component is ignored in the estimation, thus it is biased. In other words, TAILS improves
SNR through enlarging σ2

d (τ).
TAILS is a blind recognition algorithm based on distribution of power consumption,

while the extractor given by Hu et al. in [15] was based on the distribution of Hamming
weights. They selected two candidates of a sub-key with the largest correlation coefficients
in CPA, and exploited them to encrypt the plaintexts having intermediate values 0, 1, 7
and 8. They then launched attacks on the newly captured power traces together with the
original power trace set independently and achieved a higher success rate that TAILS. In
fact, their extractor is to extract the Hamming weights with largest variance from both
two tails of Hamming weight distribution. We can simply draw a conclusion that σ2

d

linearly depends on σ2 (HW (Z)) (i.e., σ2
d ∝ σ2 (HW (Z)) under very small noise. If these

traces can be well recognized, the variance of data-dependent component σ2 (HW (Z))
improves from 2.0078 to 10.3529 in leakage model provided by Eq. 6.

Noisy samples corresponding to Hamming weights close to 4 also appear at both two
tails of the distribution if SNR is low. Similarly, samples corresponding to smaller or larger
Hamming weights may also appear in the middle of the distribution. This will seriously
affect the power trace extraction of TAILS. Obviously, Hamming weight based extractor is
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Figure 1: Exploiting the scheme of Kim et al. to extract 12, 800 from 25, 600 power
traces.

more accurate in this case. It is worth noting that the purposes of maximizing the variance
of Hamming weights and maximizing the variance of power consumption σ2 (L (τ)) are
both to maximize the variance of data-dependent power consumption σ2

d (τ). In other
words, the principles of the existing extractors are the same, and we will not strictly
distinguish them in this paper. However, the Hamming weight based extractor given by
Hu et al. in [15] introduces additional power traces with high SNR to improve the SNR
of the combined power trace set, and is orthogonal to our original goal. Thus, we do not
consider it in our paper.

3 Blind Recognition of Noise

3.1 More accurate SNR Description

This paper considers extracting the power traces with high SNR for more general dif-
ferential power attacks [20] (e.g. CPA introduced in Section 2.2), each time sample is
considered separately when extracting power traces. Therefore, they have a mark τ . Here
we push the Eq. 3 provided in [23] a step further. Since the data-dependent component
Ld (τ) and operation-dependent component Lo (τ) are independent, Eq. 3 can be further
expressed as:

ˆSNR (τ) =
σ2 (Lo (τ)) + σ2 (Ld (τ))

σ2 (Ln(τ))
. (10)

For a time sample L (τ), its operation on all power traces is usually the same. In this
case, the variance of operation-dependent power consumption σ2 (Lo (τ)) = 0. SNR can
be further simplified as:

ˆSNR (τ) =
σ2 (Ld (τ))

σ2 (Ln(τ))
(11)

(i.e., σ2
d (τ) /σ2

n (τ)). The Eq. 11 indicates that there are two ways to improve SNR, one
is noise reduction, and the other is to enlarge σ2

d (τ) as we introduced in Section 2.3. The
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existing works adopt the second approach. In this section, we adopt the first approach to
improve SNR, and show that the new extractor is more superior.

101 101.5 102 102.5 103 103.5 104 104.5 105 105.5 106 106.5 107

power consumption

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
D

F

N(104,1)

N(104,0.1)

Figure 2: Probability density function of N (104, 1) and N (104, 0.10).

Taking two normal distributions with mean µ = 104 and variance σ2
n = 1 and σ2

n = 0.1
shown in Fig. 2 for an example, most of samples in distribution N (104, 0.1) lie closer to µ
compared with N (104, 1). Since the samples with the largest variance are at both tails, if
the same number of samples are extracted from the middle of distributions, the samples
corresponding toN (104, 0.1) have a smaller variance. Let’s give an intuitive example using
the 25, 600 samples in our simulation with σ2

n = 0.09. We rank the samples according
to their noise component, and select 12, 800 samples with minimum noise from them (as
shown in Fig. 3). These time samples are very close to the mean power consumption of
their corresponding Hamming weights. There are many more samples with low noise in
the middle than two tails. Therefore, noise can be reduced by extracting samples close
to their mean values. Moreover, reducing σ2

n has more potential to improve SNR than
enlarging σ2

d. The SNR of the power traces extracted by this is increased by more than
7 times, compared with less than 2 times in TAILS. The noise of the extracted power
traces can be infinitely small in theory if there are enough samples to extract. This will
be further introduced in Section 4.3.

Figure 3: Power traces extracted from the middle of each Hamming weight distribution.
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3.2 Optimal Extractor

The optimal extractor if only the noise components Ln(τ) is taken into consideration is
that, the power traces are ranked according to their noise from small to large. This requires
the knowledge of key and is only exploitable as an important reference for power trace
extraction. Mean power consumption T̄ hw

xi of the corresponding Hamming weight of a
plaintext byte value xi (1 ≤ i ≤ n) is also required in this case, extracting n

′

power traces
can ensure that their noise variance is minimum. In this case, the extractor is a profiled
attack and we name it IDEAL. We randomly generate 100 samples from the leakage model
provided in Eq. 6 with σ2

n = 30, and extract parts of samples with the smallest noise from
them. Most papers only exploited the result of a single CPA attack to compare the
correlation coefficients of different sub-key candidates, which was not accurate enough.
Since the correlation coefficient of each candidate under different experiments may be
very different, we exploit the average correlation coefficients to measure their variations
with the increasing number of power traces (as shown in Fig. 4(a)). The corresponding
results of CPA are also given, all samples are randomly extracted except for the optimal
extractor.

0 10 20 30 40 50 60 70 80 90 100

Number of extracted power traces

0

0.2

0.4

0.6

0.8
(a) Known key extraction

0 10 20 30 40 50 60 70 80 90 100

Number of extracted power traces

0

0.2

0.4

0.6

0.8

1
(b) Unknown key extraction

Figure 4: Correlation coefficients under random and optimal extractors.

The mean power consumption T̄ hw
xi linearly correlates to the power consumption.

The correlation coefficient will be very high if we perform CPA on these traces and the
variance of noise approaches 0. The one corresponding to the correct sub-key in CPA
with random power trace extraction is significantly higher than others, but still much
lower than the one corresponding to samples with the smallest noise (the upper two
curves in Fig. 4(a)). The correlation coefficient of IDEAL (red curve) decreases gradually
with the increasing number of power traces extracted. Finally, it is consistent with the
one corresponding to classic CPA when exploiting all traces. In this case, the SNR of the
extracted samples monotonically decreases (as shown in Fig. 5(a)).

With the knowledge of key, the noise of power traces can be accurately estimated
according to the means T̄ hw

xi , and the ones with the highest SNR can be extracted. In
this case, the optimal extractor IDEAL can be a profiled attack and these means can be
exploited from the templates to achieve higher accuracy. However, this is impossible in
the case of unknown key. In other words, it is impossible to exploit the above optimal
power trace extractor IDEAL in attacks as we have explained before. The power traces
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Figure 5: SNR and success rate under random and optimal extractors.

close to these “templates” may still have large noise under the known key. However, as
long as a sample has power consumption close enough to a “template” under the case
of unknown key, it will be extracted to launch attacks even if it is wrongly matched. In
other words, each guessing sub-key will “frantically” extract the samples that are most
beneficial to itself. This will result in very high linear correlation between the means (or
templates) and the power traces they extract, and obtaining correlation coefficients even
significantly higher than the one corresponding to the correct sub-key under the known
key case (as shown in Fig. 4(b)). Thus, it is impossible to distinguish the correct key.

The success rate may be even worse than that of random extraction if IDEAL is
exploited to extract power traces for each candidate in the case of unknown key (as shown
in Fig. 5(b)). However, we only achieve a success rate about 0.31 under 100 power traces,
the optimal extractor IDEAL achieves the same success rate by only extracting 10 power
traces. Although it is impossible to build such a good extractor in reality, IDEAL tells
us that with more accurate SNR estimation, success rate can be significantly improved.
In other words, it provides a reference for us to build a highly accurate extractor. In the
next sections, we will explore how to build such an efficient extractor without knowing
the key and make its performance close to IDEAL in the known-key case.

3.3 Shortest Distance First Extractor

For evaluators, leakage detection [26] and assessment [29] are to determine whether a cryp-
tographic device leaks information and evaluate the corresponding security level, respec-
tively. Compared with the attackers, they have more advantages such as the knowledge
of the key, and the ability to capture a very large number of power traces. In this case,
the power traces with small noise are easy to accurately estimate and extract. However,
the correct key is unknown in the actual attacks, how to improve the accuracy of power
trace extraction to approach the success rate limit of optimal extractor IDEAL shown in
Fig. 5(b) has become an important problem to be solved.

The existing power trace extractors only consider the case that the number of power
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traces owned by the attacker is sufficient to guarantee his successful attacks, and the goal
of his extraction is to lower the complexity rather than increase the success rate. Since it is
difficult for them to achieve a success rate higher than the attack directly performed on the
original power trace set. We have also explained in Section 3.2 that if we exploit profiled
Hamming-weight templates to estimate the noise component of samples and extract a part
that best match templates from them, the correlation coefficients of all the candidates are
very high, so that profiled attacks cannot be exploited. Here we focus on the most common
implicit assumption of the known plaintexts in side-channel society, and take the second-
best to compute the mean power consumption of each plaintext byte value for power trace
extraction. In this case, although these means may not be so accurately estimated when
the power traces are limited, they are a good reference.

Our Shortest Distance First (SDF) extractor is very simple (see Algorithm 1). Suppose
that we employ it to extract n

′

power traces with minimum estimated noise from the n
traces L (τ) =

(

l1 (τ) , l2 (τ) , . . . , ln (τ)
)

leaked at time τ . SDF keeps a counter C to
record the current number of power traces of 256 plain-text byte values (Step 2). The

corresponding power consumption li (τ) is added to Mxi

(Step 3). Here Mxi

denotes
the mean power consumption of plaintext byte value xi. We then averageM and get the
mean power consumption vector of all 256 plain-text byte values after traversing all power
traces (Step 5).

Here, we need to clarify the difference between profiled and non-profiled attacks. The
former means that the attacker has the same device as the targeted one. He can collect as
many power traces as he wishes to profile accurate enough templates and exploits them to
launch attacks on the targeted device. The classic profiled attack is TA as we introduced
in Section ??. Non-profiled attacks such as classic CPA and DPA, do not have such a
profiling stage. The power traces are employed to not only estimate the mean power
consumption but also launch attacks in SDF. We can also see the same power traces from
L (τ) employed in Steps 3 and 7 of Algorithm 1. They are all from the targeted device,
and no additional power traces are introduced when estimating the means. In this case,
SDF is still a non-profiled attack.

Algorithm 1: Shortest Distance First (SDF) extractor.

Input: Power traces L (τ), plain-texts X and the number of traces to be extracted
n

′

.
Output: The new power trace set L

′

(τ) and their plain-texts X
′

.
1 for i from 1 to n do

2 Cxi

← Cxi

+ 1;

3 Mxi

←Mxi

+ li (τ);

4 end

5 M←M/C;
6 for i from 1 to n do

7 Di ←
∣

∣

∣
li (τ) −Mxi

∣

∣

∣
;

8 end

9 (T ,P)← AscendSort (L,X ,D);

10 L
′

(τ) = T 1...n
′

(τ) ;X
′

= P1...n
′

;

The noise component of a sample li (τ) (1 ≤ i ≤ n) in power trace set L can be blindly
estimated as:

Di =
∣

∣

∣
li (τ) −Mxi

∣

∣

∣
(12)

rather than the mean M̄ (τ) of all samples in Eq. 7 (see Steps 6 ∼ 8). Here vector D
is employed to save the distances. We sort the estimated noise components in ascending
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order and get the corresponding re-ranked power trace set T and plaintext byte values
P (Step 9). Finally, n

′

traces with smallest distances (i.e. smallest estimated noise
component) and their corresponding plaintexts are extracted from the first n

′

elements of
T and P (Step 10). In this case, the estimated SNR of the extracted power traces in L

′

can be expressed as:

ˆSNR (τ) =

∑n
′

i=1

(

T̄ hw
xi − M̄ (τ)

)2

∑n
′

i=1

(

li (τ) − T̄ hw
xi

)2
, (13)

since SNR estimation can exploit the knowledge of key and the well profiled templates.
Taking the Hamming weight model given in Eq. 6 for an example, the values of templates
can use 0, 1, . . ., 7 and 8 directly. Since infinite power traces can be exploited to profile
sufficiently accurate templates in theory. However, the leakage model is unknown in the
real leakage, so we can only employ a large number of power traces in profiling to make
the templates as accurate as possible. More advanced profiling technology like leakage
certification [5, 9], can also be exploited in this case.

It is worth mentioning that the extraction is performed on all rather than only one
time sample on power traces, and its target is to launch more efficient attacks. In other
words, Algorithm 1 implements on each time sample. The same extractor may extract
very different power traces on different time samples. However, this does not go against
the purpose of the extractors. Since they aim to maximize the SNR of the power traces
extracted from each time sample to achieve the optimal attack from them. The overall
optimal attack performance is achieved by combining these single attacks. Therefore, we
use time stamp τ to indicate the location of leakage in almost all expressions.

4 Bind Estimation of SNR

There have two ways to improve SNR according to Eq. 11: one is noise reduction as we
introduced in Section 3, and the other is to enlarge the variance of data-dependent power
consumption σ2 (Ld (τ)). Here we further attempt to enlarge σ2 (Ld (τ)) of the extracted
power traces on the basis of the noise reduction introduced in Section 3. Compared to
only consider the noise component, blindly estimating the SNR requires the estimation of
data-dependent component (see Eq. 11). Therefore, SNR estimation will be more accurate
than only considering noise estimation.

4.1 Maximizing Estimated SNR

The data-dependent power consumption of a sample li (τ) can be roughly quantified using
Eq. 7. Maximizing the variance of data-dependent power consumption, is equivalent to
maximizing Di (τ). In other words, the larger it is, the greater the data-dependent power
consumption of the sample. This corresponds to TAILS that extracts samples from two
tails of the total distribution introduced in Section 2.3.

We aim to maximize the SNR, that is, to minimize the noise while maximizing the
variance of the data-dependent component. In this case, the evaluation function given in
Step 7 of Algorithm 1 can be expressed as:

Di (τ) =

∣

∣li (τ)− M̄ (τ)
∣

∣

∣

∣li (τ)−Mxi
∣

∣

. (14)

We can see that Eq. 14 is an important model for us to estimate SNR. Since the variance of

data-dependent power consumption can be estimated as σ2 (Ld (τ)) = 1
n−1

∑n

i=1

(

li (τ)− M̄ (τ)
)2

as explained in TAILS, and variance of noise can be estimated as σ2 (Ln (τ)) = 1
n−1

∑n

i=1

(

li (τ)−Mxi

)2

,
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maximizing σ2
d while minimizing σ2

n can be achieved by maximizing D (τ). We name this
new power trace extractor as Maximizing Estimated SNR First (MESF).

4.2 Mean Optimized MESF

This paper considers the case that the number of power traces is enough to guarantee the
successful attack. On one hand, it is not very good to directly exploit li (τ) containing
noise to estimate data-dependent power consumption, which will introduce significant but
unnecessary estimation error caused by noise. On the other hand, the attacker may do
not have enough power traces to accurately measure mean power consumption for each
plain-text byte value. In this case, the accuracy of estimation of the data-dependent
component and noise component will also be significantly affected. This estimation error
aggravates in the case of very large noise. However, compared with li (τ), the mean power
consumption of each plaintext byte value is still more accurate and theoretically more
reasonable in measuring data-dependent power consumption.

Overall, a better strategy is to exploit the mean power consumption of each plaintext
byte value when measuring their data-dependent component. In this case, Eq. 14 can be
further optimized as:

Di (τ) =

∣

∣

∣
Mxi

− M̄ (τ)
∣

∣

∣

∣

∣li (τ)−Mxi
∣

∣

. (15)

We name this new power trace extractor as Mean optimized MESF (MMESF). In fact, all
estimates of noise and data-dependent power consumption in Eqs. 7, 14 and 15 are in a
blind way. Since these extractors rely on different mathematical principles, their accuracy
may vary with a different number of power traces extracted and different noise levels,
which will be illustrated in our experiments.

4.3 Comparison

Our three extractors SDF, MESF and MMESF, have great differences in the extracted
power traces. Their results of extracting 12, 800 from 25, 600 power traces in Fig. 1 are
shown in Fig. 6. The SNR of the 25, 600 samples generated by the leakage model in Eq. 6
is estimated to be 22.0781 when the noise level σ2

n = 0.09, approaching the theoretical
value 22.3049. SDF is designed to minimize the estimated noise component, and its SNR
is about 146.9011, approaching the upper limit 155.8411 of the optimal extractor IDEAL
under known key. It can also be seen from Figs. 3 and 6 that the traces extracted by them
are similar to the optimally extracted ones, which fully illustrates their advantages under
small noise.

The power traces extracted by MESF and MMSEF are quite different from those
extracted by SDF. The distribution of samples extracted by MESF appears to be small in
the middle and large at both two ends. These samples are not concentrated at both two
tails like TAILS, since MESF benefits from the advantages of both SDF and TAILS. The
SNR of the extracted samples corresponding to MESF is 40.8126. Compared with MESF,
MMESF exploits the mean power consumption of the corresponding intermediate value
of each plaintext byte value to measure the data-dependent component, which is more
accurate and more reasonable in theory. Both MESF and MMESF benefit from the data-
dependent power consumption component, but MMESF benefits more, and the samples
it extracts mainly distribute at both two tails. Moreover, these samples first concentrate
on the mean power consumption of Hamming weights, and then spread to both ends. The
SNR of the samples extracted by it is 88.5545, which is more than double that of MESF.

The SNR of the samples extracted by the above three extractors is significantly higher
than that of TAILS, which is only about 38.6273 in this experiment. This fully illus-
trates that they have effectively recognized the power traces with high SNR in different
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Figure 6: The samples extracted by different extractors.

degrees, thus improving the success rates. MESF and MMESF achive SNR lower than
SDF, but this does not mean that they are worse than SDF. These extractors will be
further discussed in Section 5.

5 Experimental Results

5.1 Simulations

To compare the performance of extractors under different noise levels, our first experiment
is performed on simulated power traces. They are randomly generated from the leakage
model provided in Eq. 6. We firstly compare the performance of extractors under a dif-
ferent number of power traces under the noise level σ2

n = 400. Due to the large noise, too
many traces are required for attacks, which makes the evaluation time-consuming. There-
fore, we only repeat the above experiments 200 times, and the corresponding experimental
results are shown in Fig. 7. To guarantee a stable success rate (SR) about 1.00 for classic
CPA, nearly 6 000 traces are required in the original sets. All extractors TAILS, SDF,
MESF and MMESF achieve higher success rates than random extraction and even close to
the ideal extraction in Figs. 7(b) and 7(c), which correspond to the case that the attacker
has sufficient traces. SDF and MMESF achieve success rates 1.00 even under the poor
condition that only 300 traces are extracted, which fully demonstrates their superiority.

The SNR corresponding to MESF and TAILS is the lowest in Fig. 7, and only a tiny
change occurs when extracting more power traces. They are designed to maximize the
variance of the data-dependent power consumption component rather than reducing the
noise on the samples. The SNR of power traces extracted by SDF and MMESF decreases
monotonically, both success rate and it are higher when the original sets have more power
traces (see Figs. 7(a), 7(b) and 7(c)). This indicates: 1) they can still recognize the power
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Figure 7: Success rates and SNR (of the extracted traces) under different number of power
traces.

traces with high SNR even in the case of very large noise, and 2) SNR has become an
important factor determining the success rate. The performance of our extractors SDF
and MMESF is also more stable, and the areas with high success rates are significantly
wider than that of TAILS. This makes it much easier for attackers to set a reasonable
parameter of the number of power traces to extract.
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Figure 8: Success rates and SNR (of the extracted traces) under different noise levels.

Noise has a great influence on the estimation of mean power consumption of each
plaintext byte value, and reduces the accuracy of power trace extraction. Therefore, it is
necessary to further discuss its impact on the success rate. In this case, we also consider
the success rate and the SNR of the extracted power traces under different noise levels
σ2

n = 350, σ2
n = 300 and σ2

n = 250, the corresponding experimental results are shown
in Fig. 8. Here, 6000 power traces are randomly generated for extraction, and each
experiment is repeated 200 times. With the decrease of noise level, both success rates
and the accuracy of all extractors increase. SDF and MMESF still achieve the highest
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success rates. Although the success rates of TAILS and MESF do not reach such a height
when they extract a small number of samples, they increase rapidly when more power
traces are extracted. MESF and TAILS not only change the SNR, but also increase the
ρ̂ (M (τ) ,Ld (τ)) in Eq. 5. Their success rates benefit from at least these two factors. It is
worth mentioning that the relationship between success rate and the noise is much more
complex than this, more details can be seen in [10, 36].

The success rate of classic CPA without extraction is about 1.00 under σ2
n = 250 when

randomly generating 4000 power traces to perform attacks. SDF and MMESF achieve
success rates even about 1.00 when only extracting 400 traces. If we launch the attacks on
more traces, the success rates will be stable thus guaranteeing the key recovery. However,
the extractors significantly reduce the number of traces used for attacks thus significantly
lowering the computational complexity and highlighting their significance.
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Figure 9: SNR of the traces extracted by IDEAL under different number of power traces
and different noise levels.

SNR of the traces extracted by IDEAL under different number of power traces and
different noise levels is also shown in Fig. 9. With the increase in the total number of
power traces, we can obtain higher SNR if extracting the same proportion from them. On
one hand, more traces make the estimation of mean power consumption more accurate.
On the other hand, the number of traces with small noise also increases. The decrease
of noise level from σ2

n = 400 to σ2
n = 350, σ2

n = 300 and σ2
n = 250 also makes the mean

power consumption more accurate under fewer power traces. Unlike the results given in
Section 4.3, IDEAL achieves significantly higher SNR than all other extractors. However,
SDF and MMESF achieve success rates close to it. They are more accurate compared
with other extractors.

5.2 Experiments on ATmega328p Micro-controller

Our second experiment is performed on an ATMega328p micro-controller implementing
the unprotected AES-128 algorithm provided by [1]. The clock operating frequency of this
micro-controller is 16 MHz. We encrypt 300, 000 plaintexts and exploit a WaveRunner
8104 oscilloscope to acquire the power traces. The sampling rate is set to 1 GS/s. We
perform classic CPA on 10, 000 power traces to extract a time sample with SNR about
0.0016 and correlation coefficient 0.09399 rather than the best POIs of the first S-box in
the first round to simulate the very low SNR scenario. Actually, we will achieve better
performance if extractions are directly performed on better POIs. Although the compo-
nents of power consumption are more complex than those simulated in actual attacks, we
can still draw conclusions similar to these in Section 5.1 (as shown in Fig. 10). However,
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all extractors still have monotonically increasing or decreasing SNR as shown in Fig. 7
and 8.
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Figure 10: Success rates and SNR (of the extracted traces) under different number of
traces.

We exploit 1 000 power traces acquired to profile the mean power consumption of each
Hamming weight to estimate the SNR more accurately. We then randomly select 4, 000,
6, 000 and 8, 000 power traces from them for extraction. This operation is repeated 200
times, and the corresponding success rates are about 0.990, 1.00 and 1.00. In this case,
Fig. 10(a) corresponds to the case of insufficient power traces, and Figs. 10(b) and 10(c)
correspond to the case of sufficient power traces. Extracting a small number of power
traces can significantly improve the SNR. Almost all extractors achieve a success rate of
1.00 when extracting 400 power traces. Therefore, they significantly lower the complexity
compared with the attacks directly performed on the original set.

The experimental results vividly show us that all extractors achieve success rates
significantly higher than random extraction. Our SDF almost achieves the same success
rates compared with TAILS, while MMESF achieves success rate even higher than IDEAL.
This fully illustrates the accuracy of MMESF to exploit the mean power consumption
of each plaintext byte value when estimating the data-dependent component. MMESF
outperforms SDF because of this component. These means Mxi (

xi = 0, 1, . . . , 255
)

are
more accurately estimated with the increasing number of power traces, which makes the
extraction performance better. They can extract better power traces than other extractors
and achieve the highest success rates in most cases. Similar conclusions can also be drawn
from Section 5.1.

From the aspect of SNR, SDF is superior to MMESF. This indicates that it still
accurately extracts the power traces with high SNR even under very large noise. How-
ever, SDF ignores the data-dependent power consumption component, thus making its
ρ̂ (M (τ) ,Ld (τ)) smaller than MMESF’s. Therefore, it achieves a success rate lower than
MMESF’s. The SNR of MESF and TAILS is always much lower than that of MMESF.
It is worth noting that the SNR of MMESF and SDF decreases when more traces are
extracted, just contrary to the SNR of MESF and TAILS. Although this growth is not
obvious and even difficult to observe. Similar conclusions can also be drawn from Figs. 7
and 8. On one hand, compared with the extraction enlarging the data-dependent power
consumption component, reducing the noise can improve the SNR of the extracted power
traces to a greater extent. On the other hand, this illustrates that SNR is only one of the
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important factors to determine the success rate. For example, the SNR improves with the
increasing number of power traces in the original set. This is also an important factor.
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Figure 11: SNR of the traces extracted by IDEAL under different number of power traces
and different noise levels.

SNR of traces extracted from the original set with 4, 000, 6, 000 and 8, 000 traces using
IDEAL is shown in Fig. 11. Compared with the simulated power traces, the composition
of real leakage is much more complicated. The extractors achieve SNR about 10 ∼ 15
times lower than the ideal extraction (as shown in Figs. 10 and 11). This gap decreases
rapidly with a larger proportion of power traces extracted. In terms of success rate,
these extractors have achieved outstanding results, but there is still a lot of room for
improvement.

6 Conclusions

The power trace extractors are suitable to reduce the computational complexity when the
power traces are sufficient, and the existing ones simply extract samples with the largest
estimated variance of exploitable power consumption to improve the SNR. Although hav-
ing strict theoretical proof, they are too simple and leakage characteristics of POIs have
not been thoroughly analyzed. These limits their accuracy on power trace extraction. In
this paper, we deeply analyze the SNR of power traces in theory, and propose a novel
extractor named SDF to extract the power traces with the smallest estimated noise. SDF
can achieve SNR and success rate significantly higher than the existing extractors when
the same number of power traces are extracted. Thus, it has wider application sceneries,
and opens up a new way for power trace extraction.

To maximize the exploitable component while minimizing the noise, we further pro-
pose a novel extractor named MESF. TAILS directly exploits the distance between single
sample and population mean as a reference of its data-dependent component. This mea-
surement is with noise and not very good. Therefore, we further exploit the mean power
consumption of each plaintext byte value to estimate the exploitable power consumption
of the corresponding samples, and propose a more advanced extractor named MMESF,
which is also more reasonable in theory. The above three extractors show their higher
accuracy in extraction. They significantly reduce the computing complexity compared
with the existing extractors, which fully illustrates their superiority.

All estimates in this paper are based on the estimated mean power consumption of
plaintext byte values. This limits our extractors to the scenarios where the attacker has a
large number of power traces to estimate the means. We leave the introduction of profiled
attacks into extractors as an open problem, and believe this will significantly improve
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their performance. We will also theoretically analyze relationship between success rate
and the noise given in [10,36], and introduce it into the extractors to enhance power trace
extraction in our future work.
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