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Abstract. Encryption is an indispensable tool for securing digital infra-
structures as it reduces the problem of protecting the data to just pro-
tecting decryption keys. Unfortunately, this also makes it easier for users
to share protected data by simply sharing decryption keys.

Kiayias and Tang (ACM CCS 2013) were the first to address this
important issue pre-emptively rather than a posteriori like traitor tracing
schemes do. They proposed leakage-deterring encryption schemes that
work as follows. For each user, a piece of secret information valuable to
her is embedded into her public key. As long as she does not share her
ability to decrypt with someone else, her secret is safe. As soon as she
does, her secret is revealed to her beneficiaries. However, their solution
suffers from serious drawbacks: (1) their model requires a fully-trusted
registration authority that is privy to user secrets; (2) it only captures
a CPA-type of privacy for user secrets, which is a very weak guarantee;
(3) in their construction which turns any public-key encryption scheme
into a leakage-deterring one, the new public keys consist of linearly (in
the bit-size of the secrets) many public keys of the original scheme, and
the ciphertexts are large.

In this paper, we redefine leakage-deterring schemes. We remove the
trust in the authority and guarantee full protection of user secrets under
CCA attacks. Furthermore, in our construction, all keys and ciphertexts
are short and constant in the size of the secrets. We achieve this by taking
a different approach: we require users to periodically refresh their secret
keys by running a protocol with a third party. Users do so anonymously,
which ensures that they cannot be linked, and that the third party cannot
perform selective failure attacks. We then leverage this refresh protocol
to allow for the retrieval of user secrets in case they share their decryption
capabilities. This refresh protocol also allows for the revocation of user
keys and for the protection of user secrets in case of loss or theft of a
decryption device. We provide security definitions for our new model as
well as efficient instantiations that we prove secure.

Keywords: Accountability · Leakage-Deterring Encryption · Public-
Key Encryption
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1 Introduction

Encryption is a powerful instrument to ensure data confidentiality and to ease
data protection: only decryption keys need to be protected. However, it makes
sharing protected data much easier as well, just by sharing secret keys only.
Users might share decryption keys for different reasons: out of convenience or
malice, or accidentally due to poor key management. For example, malicious
users might share access to paid services or sell access to company confidential
information. Therefore, preventing users from sharing their secret keys, either in
the clear or by providing a possibly obfuscated decryption algorithm, is an im-
portant problem in deploying cryptographic systems, in particular in corporate
environments.

To address this issue, one could use pieces of tamper-proof hardware. How-
ever, these are expensive and strenuous to build, deploy and manage. A better
approach is a software only solution as proposed by Kiayias and Tang: Leakage-
Deterring Encryption (LDE) schemes [18]. The main idea behind LDE schemes
is to have an authority embed into each user’s public key some valuable secret
information that she would rather keep private, and which is revealed as soon as
she shares her decryption capabilities. Such secret information could for instance
be bitcoin-account secret key [19]. In addition to the secrecy of messages against
chosen-ciphertext attacks, an LDE scheme should at least satisfy the following
properties:

Privacy of user secrets: provided that a user does not share her decryption
capabilities, her secret must not be recoverable from her public key, even
if all other parties (including the registration authority which embeds the
secrets) are malicious. Ideally, privacy should hold even under CCA attacks.

Recoverability: anyone with a device capable of decrypting, with non-negligible
probability, a non-negligible amount of ciphertexts of a user should be able
to retrieve her secret.

There precisely lies the complexity of designing LDE schemes: two seemingly
antagonistic properties must be bridged, in a context in which users are adver-
sarial and have knowledge of secret information. In cryptography, to overcome
apparent paradoxes, one usually assumes the adversary not to be privy to cru-
cial secret information. In the present case, an adversarial user does not only
know her secret information but also the device meant to be used against her.
She could implement a decryption device that rejects any decryption query that
results in the secret, and this rejection would not contradict the fact that her
device decrypts a non-negligible amount of ciphertext computed with her pub-
lic key. Given this observation, to hope to recover user secrets, recovery queries
made to decryption devices must be indistinguishable from decryption queries
accepted by rogue devices; hence the difficulty to design LDE schemes.

Kiayias and Tang provide schemes [18, 19] that partially satisfy those re-
quirements. Namely, they provide two constructions of LDE schemes which turn
any public-key encryption scheme into an LDE scheme. The first construction
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requires the original encryption scheme to be additively homomorphic and is ef-
ficient, and the second one applies to any encryption scheme (i.e., is generic) but
is prohibitively inefficient. Indeed, the public keys of their generic construction
of LDE schemes grow linearly (even with the use of error-correcting codes) in the
bit-size of the secrets, and the ciphertexts grow with a factor (log of the inverse)
that depends on the assumed minimal correctness rate of pirate decryption de-
vices. It already means that if a user designs a pirate decryption device with a
decryption success probability that is non-negligibly smaller than the assumed
minimal correctness rate though non-negligible, recoverability is not assured. In
addition to that, for secrets of sensible length (e.g., 128 bits) and a decryption
device with a conceivable correctness rate (e.g., 50%), the scheme is impractical.
Moreover, their model only captures a CPA-type of privacy of user secrets: an
attacker that can launch a chosen-ciphertext attacks on a user can also recover
her secret. Lastly, in their model of LDE schemes, the registration authority is
privy to user secrets, which weakens even further user privacy.

1.1 Contributions

We redefine LDE schemes and design a new model that encompasses all the
security properties that an LDE scheme should satisfy. The new model captures
a CCA-type of privacy of user secrets (even with respect to the registration
authority), recoverability and secrecy of messages under CCA attacks:

– We first show that a CCA-type of privacy of user secrets and recoverability
can simultaneously be achieved. As noted by Kiayias and Tang, the fact that
recovery queries made must be indistinguishable from standard decryption
queries implies that a CCA-type of privacy of user secrets and recoverability
cannot a priori coexist: any decryption oracle in a privacy security game
could be used to perform recovery queries and surely win the game. It comes
as a disappointment as it means that an honest user would put her secret
at risk under CCA attacks for the sake of protecting the data of a company
or of a service provider; data which would withstand those same attacks.
A sensible user would clearly not want to use such a system as it does not
guarantee the same protection for user secrets as for the encrypted data.
Except that this observation is not entirely true: we point out that a CCA-
type of privacy and recoverability can coexist if recovery queries involve a
step that cannot be performed with a definition oracle. We point that since
adversaries do not control the randomness of oracles in security definitions,
CCA privacy and recoverability4can actually be bridged: if recovery queries
require to control the randomness of rogue decryption devices, the previous
impossibility result does not apply.

4 Of course, if adversaries were to know the randomness used by security-game oracles,
the outputs of those would be deterministic in the view of the adversaries, and even
simple properties like IND-CPA would not be satisfiable.
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In our construction, the idea is to leverage rewinding to extract secrets from
decryption devices. Note that rewinding an algorithm, which solely con-
sists in controlling randomness and not reverse-engineering it, is a black-box
technique [2, 4]. Rewinding is used in the context of zero-knowledge proofs
to extract witnesses, hence our idea of introducing a third party (which may
as well be the embedding authority) that assists users with decryption. To
decrypt ciphertexts, users are required to perform a zero-knowledge proof
involving their secrets. We prove that any partially functional decryption
device needs to do so as well with non-negligible probability, and can there-
fore be employed to extract secrets.
To reduce communication, we introduce leakage-deterring systems that op-
erate in time periods. We call them time-based leakage-deterring encryption
(TB-LDE) schemes. The first time (and only the first time) a user wishes to
decrypt a ciphertext in a given time period, she needs to request from the
third party a key for the time period by executing a key-derivation protocol.
The frequency at which the key-derivation protocol is to be executed (i.e.,
the length of a time period, e.g., a week) can be adjusted by the system
manager. A rogue decryption device that can decrypt ciphertexts in a time
period must then also hold the key for it.
Note that a minimal requirement to ensure recoverability via interaction
while guaranteeing CCA privacy is that the device must be able to decrypt
a ciphertext for a future time period, i.e., for which the user does not have the
key yet 5. Indeed, if a user already has the key for a time period, she can hard-
code it in the device and avoid any interaction for this period; making the
recovery of her secret with ciphertexts encrypted for the period impossible.
To ensure recoverability via interaction, users must not always possess all
the information required to decrypt. It is an aspect inherent to any LDE
scheme that leverages interaction to bridge CCA privacy and recoverability.
In Section 4, we construct a TB-LDE scheme that satisfies both properties
under this minimal requirement.
Despite the introduction of a third party that assists users with decryption, in
our model, users remain anonymous and untraceable when they request keys
to the third party. The presence of a third party also allows for the revocation
of user keys in case of misconduct, or loss or theft of a decryption device.
These untraceability and revocation properties are also properly modelled
and formally defined in Sections 3 and 8 respectively.

– Secondly, in comparison to Kiayias and Tang’s model [18], we do not assume
the authority to be privy to the secrets (it only receive commitments), and
thus guarantee more privacy. The authority is only used to ensure that the
secrets are correctly integrated into the public keys and to vouch for the
latter. One may however think that only seeing a commitment prevents the
authority from making sure that the secret is indeed valuable to the user and
not just garbage. In fact, the same issue already arises when the authority
sees the secrets in the clear. If the secret is a bitcoin-account secret key, the

5 If time periods are short, then any useful device should be able to do so.
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authority can check that it is the valid secret key for a given account, but
cannot know whether the money is later moved from the account without
resorting to a form of tracing scheme (e.g., by regularly checking a public
ledger). However, deterring schemes exactly aim to avoid tracing. Moreover,
even if the authority were to see secrets in clear, value lies in the eyes of
the beholder: the authority cannot tell if the user is concerned about the
money in that account, if she has for instance other sources of income. We
therefore assume that there is higher-level mechanism that ascertains the
value of the secret. In the case of a bitcoin account, it could for example
be a mechanism that verifies that the commitment the authority receives
is indeed a commitment to the secret key of an account on which the user
will receive her future salary, assuming that the user cares about it. (Using
future salary frees the authority from the need to regularly check a public
ledger since the money is yet to come.)

– Lastly, we provide efficient constructions that fulfill all these security require-
ments. The first time-based construction (in Section 4) is proved secure in
the plain model, and the second one (in Section 6), which is even more effi-
cient, is proved secure in the Random Oracle Model (ROM). In Section 7, we
give a definition of LDE schemes which satisfy CCA privacy of user secrets
and recoverability thanks to interaction, but which require users to inter-
act every time a ciphertext is to be decrypted. Such schemes are relevant
when only few ciphertexts are to be decrypted compared to the provided
bandwidth, as the burden of interaction would not be prohibitive.
Furthermore, we show in Section 9 how, in combination with revocation,
interaction with the key-derivation party in the recovery process can be
enforced and leveraged to protect a user’s secret and prevent misuse of her
legitimate decryption device in case she was simply lost it or was stolen.
Those are critical functionalities for deploying such a system.

1.2 Related Work.

Kiayias and Tang were the first to consider typical public-key-infrastructure
functionalities such as encryption, signatures and identification [18] in the con-
text of leakage-deterrence. Nevertheless, deterring users from sharing their keys
has been prominently considered in the context of broadcast encryption, in which
malicious accredited users might implement pirate decoders. In such a scenario,
traitor-tracing schemes [13] were introduced. They aim at identifying at least
one of possibly many users that colluded to produce a pirate decryption device.
Several efficiency improvements have been proposed thereupon [7–9,20,21], and
variants such as public traitor tracing or anonymous traitor tracing [24] have also
been considered. Contrary to traitor-tracing schemes, leakage-deterring schemes
follow a proactive approach rather than rely on the identification of malicious
users to enforce penalties.

A concept closer to the leakage-deterrence paradigm is that of self enforce-
ment [15], which also involves private user pieces of information. In a multi-user
encryption system, the adversary controls a set of malicious-user keys, and wishes
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to redistribute a plaintext. A self-enforcing schemes ensures that the adversary
has to either send a message as long as the plaintext or leak some information
about the private information of the traitors. However, recovery in those sys-
tems assumes direct access to user keys, i.e., white-box access, and the proposed
construction relies on an unfalsifiable assumption.

2 Preliminaries

This section introduces the notation and some building blocks used in the paper.

2.1 Notation

Unless stated otherwise, p is a prime number, and Zp denotes the p-order field.
For an integer n ≥ 1,GLn(Zp) denotes the set of invertible n×n Zp-matrices, and
In its neutral element. Given an n-dimensional Zp vector space V ∼= Znp , (ei)i
denotes its canonical basis. For a family Vk of Nk-dimensional vector spaces,
the canonical basis of Vk is denoted by (ek,i)i. For g ∈ G, diag(g) represents
the matrix with g on the diagonal and 1G elsewhere. Besides, for x ∈ Zp and
g ∈ Gn, define xg := gx. For an integer k ≥ 1, a matrix A ∈ Gn×k and a
vector x ∈ Zkp, (Ax)i =

(∏
j xjAij

)
i
=
(∏

jA
xj
ij

)
i
. Likewise, for y ∈ Znp ,

(yA)j = (
∏
i yiAij)j =

(∏
iA

yi
ij

)
j
. To indicate that a random variable X has a

distribution D, the notation X ←$D is used. When D is the uniform distribu-
tion over a finite set X , the notation X ∈R X is used instead. The predictive
probability p(D) of a distribution D is defined as maxx∈X px, with px being the
probability that a D-distributed random variable takes value x ∈ X . Given a
relation R, the notation PoK{w : (x,w) ∈ R} is used for a Proof of Knowledge
(PoK) for the corresponding language; and its extractor is denoted K .

2.2 Pairing Groups and Hardness Assumptions

This section introduces pairing groups and classical hardness assumptions.

Pairing Groups. A pairing group consists of a tuple (p,G1 = 〈P1〉,G2 =
〈P2〉,GT , e) such that p is a prime number, G1,G2 and GT are (cyclic) p-order
groups, and e : G1×G2 → GT is an efficiently-computable non-degenerate bilin-
ear map (also called pairing), i.e., e(P1, P2) 6= 1GT , and ∀a, b ∈ Zp, e(P a1 , P b2 ) =
e(P1, P2)

ab. Let Gbpg(1
λ) denote an algorithm that takes as an input a security

parameter 1λ, and outputs the description PPG of a pairing group.

q-Strong Diffie–Hellman Assumption. Let (p,G1 = 〈P1〉,G2 = 〈P2〉,GT , e)
be a pairing group. The q-Strong Diffie–Hellman (qSDH) problem [5] in (p,G1 =

〈P1〉,G2 = 〈P2〉,GT , e) consists in computing a pair
(
y, P

1/(u+y)
1

)
∈ Zp\{−u}×

G1 given a (p+3)-tuple (P1, P
u
1 , P

u2

1 , . . . , Pu
q

1 , P2, P
u
2 ) ∈ Gp+1

1 ×G2
2. The qSDH

assumption over Gbpg is that no efficient algorithm has a non-negligible probabil-
ity to solve the qSDH problem in (p,G1 = 〈P1〉,G2 = 〈P2〉,GT , e)← Gbpg(1

λ).
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Decisional Linear Assumption. The (2-)Decisional Linear (DLIN) assump-
tion [6] over a group generator G is that for all p-order group G = 〈P 〉 ←
G , for a, b, x, y, z ∈R Zp, the distributions of (P, P a, P b, P ax, P by, P x+y) and
(P, P a, P b, P ax, P by, P z) are computationally indistinguishable.

In a pairing group, the symmetrix DLIN assumption is that DLIN holds in
G1 and G2.

2.3 BBS+ Signatures

The BBS+ signature scheme (as described by Au et al. [1] and inspired by
a group signature [6] introduced by Boneh et al.) is a tuple of algorithms
(SignSetup,SignKeyGen,Sign,Verify) with

SignSetup(1λ)→ PP : output PP = PPG the description of a pairing group (p,G1 =
〈P1〉,G2 = 〈P2〉,GT , e) calling on Gbpg(1

λ)
SignKeyGen(PP , n)→ (sk , vk) : generate H0, . . . ,Hn ∈R G1, u ∈R Zp, computes

U = Pu2 , and output sk = u, vk = (U,H0, . . . ,Hn)
Sign(sk ,m ∈ Znp )→ σ : generate y, z ∈R Zp, compute V = P1H

z
0

∏
i≥1H

mi
i and

W = V 1/(u+y), and outputs σ = (W, y, z)
Verify(vk ,m, σ)→ b ∈ {0, 1} : output 1 if m ∈ Znp , σ can be parsed as (W, y, z)

and e(W,UP y2 ) = e
(
P1H

z
0

∏
i≥1H

mi
i , P2

)
, and otherwise 0.

Camenisch et al. [10, Lemma 1] proved that the BBS+ signature scheme is ex-
istentially unforgeable against chosen-message attacks under the qSDH assump-
tion.

Proving Knowledge of BBS+ Signatures. Knowledge of a BBS+ Signature
on a message tuple, i.e., of a witness for the language

(m1, . . . ,mn, σ = (W, y, z)) : e(W,UP y2 ) = e

P1H
z
0

∏
i≥1

Hmi
i , P2


can be proved in ZK (without disclosure of any mi) as follows [10, Section 4.5].

The prover, in possession of a signature σ = (W, y, z) on a message m ∈ Znp ,
generates r1 ∈R Z∗p, r2 ∈R Zp, computes W ′ = W r1 , W = W ′−yV r1(= W ′u),
V ′ = V r1H−r20 , sends those values to the verifier, sets z′ = z − r2/r1, and
thereafter performs a standard ZK Σ-protocol for the language

(m1, . . . ,mn, y, r1, r2, z
′) : W ′yWH−r20 = V ′, V ′−1/r1Hz′

0 H
m1
1 · · ·Hmn

n = P−11 .

The verifier accepts the proof of knowledge of a signature if and only if the prior
proof succeeds and e(W ′, U) = e(W,P2). The signer is required to publish a pair
(Q1, Q

u
1 ) for some Q1 6= 1G1

. This pair is useful to ensure the ZK property of
the proof.
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2.4 Ciphertext-Policy Attribute-Based Encryption Schemes

Attribute-Based Encryption (ABE), introduced by Goyal et al. [16], enables to
specify an access policy for encrypted data. In Ciphertext-Policy ABE (CP-
ABE) schemes, the access policy is defined by an access structure embedded in
the ciphertexts. One can decrypt a ciphertext generated by such a scheme only
if one possesses a set of attributes that is accepted by the said access structure;
in which case a secret key corresponding to those attributes can be requested to
an authority in possession of a master secret key. Formally, a CP-ABE scheme
is a tuple of algorithms (Setup,KeyDer,Enc,Dec) such that

Setup(1λ, aux )→ (PP , pk ,msk) : takes as an input a security parameter 1λ and
an auxiliary input aux (used to define attribute sets), and outputs public
parameters, a public key and a master secret key;

KeyDer(msk ,A)→ skA : takes as an input a master secret key and a set of
attributes, and outputs a corresponding secret key;

Enc(pk ,m,S)→ ct : takes as an input a public key pk , a plaintext m and an
access structure S, and outputs a ciphertext ct ; and

Dec(skA, ct)→ m : takes as an input a secret key corresponding to a set of a
attributes A and a ciphertext, and outputs a plaintext m or ⊥.

The CP-ABE schemes considered herein are required to be correct and adap-
tively Payload Hiding against Chosen-Plaintext Attacks [26, Definition 9] (or
adaptively PH-CPA secure).

3 Definitions and Security Model

Leakage-deterring encryption (LDE) schemes are encryption schemes that deter
users from sharing their decryption capabilities. To do so, user secrets are em-
bedded into their public keys by an authority. As long as a user is honest, her
secret remains private, but as soon as she produces a decryption device, anyone
with access to it can recover her secret.

More precisely, we introduce Time-Based Leakage-Deterring Encryption (TB-
LDE) schemes in which a third party T (which may as well be the embedding
authority) assists users with decryption. The first time a user U wishes to de-
crypt a ciphertext in a given time period, she needs to request from T a key for
the time period by executing a key-derivation protocol KeyDer. From then on
until the end of the time period, the decryption process is non-interactive. The
frequency at which the key-derivation protocol KeyDer is to be executed (i.e.,
the length of a time period, e.g., a week) can be adjusted at will by the system
manager.

Yet, this does not affect in any way the ability to recover U’s secret from a
rogue decryption device B at any time: recovering a secret from an algorithm
B will only be considered if it can decrypt ciphertexts for at least one time
period subsequent to the current one, i.e., one for which U does not yet have
a key. To recover a secret from a rogue algorithm B, one need not wait until
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that future time period, it suffices to locally submit (i.e., without involving T )
to B ciphertexts encrypted for that future time period. This will prompt B to
interact, and perform, with non-negligible probability, a valid zero-knowledge
proof on secret of the user who owns B, allowing for the extraction of her secret.

3.1 Time-Based Leakage-Deterring Encryption Schemes

We now formally define TB-LDE schemes. Let T ⊆ N denote a non-empty time-
period set. Assume that all parties are roughly synchronized, i.e., that there is
always a consensus among them on the current time period tc ∈ T (to make sure
that users cannot obtain keys for future time periods from the third-party). A
TB-LDE scheme E consists of the following algorithms:

Setup(1λ, aux )→ (PP , ck) : an algorithm that generates public parameters and
a commitment key on the input of a security parameter 1λ and of an auxiliary
input aux (used to define a time-period set T and other parameters)

KeyGen.U(PP )→ (pkU , skU) : a user key-generation algorithm
KeyGen.T(PP )→ (pk T , sk T ) : a user third-party key-generation algorithm
KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU))→ ((epk , esk), epk) :

a key-enhancement protocol between a user key-enhancement algorithm KeyEn.U
and an authority key-enhancement algorithm KeyEn.A. In addition to cryp-
tographic keys, these algorithms take as an input a commitment c to a secret
s, the secret s itself and an opening o. At the end of the protocol, KeyEn.U
outputs a pair of “enhanced” keys (epk , esk), and KeyEn.A outputs epk

Enc(epk , pk T ,m ∈M, t ∈ T )→ ct : a probabilistic encryption algorithm
KeyDer = (KeyDer.U(esk , t),KeyDer.T(sk T , ck , tc))→ (sk t,UT ,⊥) : an interactive

protocol between a user key-derivation algorithm KeyDer.U and a third-
party key-derivation algorithm KeyDer.T. For every current time period tc,
if t > tc, then sk t,UT ← ⊥ (i.e., users cannot obtain keys for future time peri-
ods). Otherwise, at the end of the protocol, KeyDer.U outputs a third-party
decryption key sk t,UT

Dec(esk , sk t,UT , ct)→ m : a deterministic decryption algorithm
Rec(B, epk , pk T ,D, t)→ s : a recovery algorithm that takes as input an algo-

rithm B (a “decryption box”), two keys epk and pk T , the description of a
distribution D and a time period t, and outputs a secret s or ⊥.

Commitment c may at first seem superfluous to the syntax, but the authority
needs to receive some information bound to s (so that it can later be recovered
given a decryption device) and that hides it (to ensure the privacy of s). Such
information is nothing but a commitment.

3.2 Security Definitions

In this section, we define the security properties that an LDE scheme should
satisfy. The security definitions are first given in a single-user case for simplicity,
and are straightforwardly extended to the multi-user case in Appendix B.1. In
every security experiment, the adversary is assumed to be stateful.
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Correctness. Correctness states that the decryption of a plaintext encrypted
for a certain time period, on the input of secret key for that time period, results
in the plaintext with probability one. See Appendix B for a formal definition.

To model algorithms which can decrypt only certain ciphertexts, a “partial”-
correctness definition must be given. In the following, for any two functions f
and g of λ, the notation f & g means that there exists a negligible function negl
such that f ≥ g − negl.

Definition 1 (δ-Correctness). For δ ∈ [0, 1], given public keys epk and pk T ,
an algorithm B is said to be δ-correct in time period t with respect to a distribution
D if for m←$D,

Pr
[
BKeyDer.T(sk T ,ck ,t)(Enc(epk , pk T ,m, t)) = m

]
& δ.

Note that the clock of algorithm KeyDer.T is here set to time period t (so that it
does not systematically reject every key request for future time periods).

To define privacy and untraceability, consider the experiments in Figure 1.

Exppriv−β
E,λ (A) : Exptrace−β

E,λ (A) :

1. (PP , ck)← Setup(1λ) (pkU , skU)← KeyGen.U(PP) 1. (PP , ck)← Setup(1λ)
2. (s0, s1)← A(ck , pkU) 2. (esk0, esk1, t)← A(PP , ck)
3. (c, o)← Com(ck , sβ) 3. b← AOU(eskβ ,t)

4. (·, (epk , esk))← (A(c),KeyEn.U(ck , c, sβ , o, pkU , skU))

5. b← AOU(esk)

Fig. 1. Privacy and traceability experiments for a TB-LDE scheme E . In the privacy
experiment, oracle OU(esk) can be requested to execute either KeyDer.U(esk , ·) on ar-
bitrary time periods or Dec(esk , ·, ·) on arbitrary third-party derived keys and cipher-
texts, and return the outputs to A. In the traceability experiment, oracle OU(eskβ , t)
runs KeyDer.U(eskβ , t).

Privacy. Privacy guarantees that not even the authority that the user interacts
with in the key-enhancement protocol can infer any information about her secret.

Definition 2 (Privacy (of the User Secret)). E satisfies privacy of user
secrets if for every efficient adversary A(1λ), there exists a negligible function
negl such that

Advpriv
E,λ (A) =

∣∣∣Pr [Exppriv−0
E,λ (A) = 1

]
− Pr

[
Exppriv−1

E,λ (A) = 1
]∣∣∣ ≤ negl (λ) .

LD-IND-CCA Security. As for classical cryptosystems, the secrecy of the
user’s messages should be retained even when the key-enhancement protocol is
taken into account. This requirement is captured by the LD-IND-CCA property.
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Definition 3 (LD-IND-CCA Security). E satisfies Leakage-Deterring In-
distinguishability under Chosen-Ciphertext Attacks (LD-IND-CCA) if for every
efficient adversary A(1λ), there exists a negligible function negl such that

Advld−cca
E,λ (A) =

∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

(PP , ck)← Setup(1λ), (pkU , skU)← KeyGen.U(PP ),
(c, s, o)← A(ck , pkU),

(·, (epk , esk))← (A(c), KeyEn.U(ck , c, s, o, pkU , skU)),
(m0,m1, t, pk T )← AOU1

(esk)(epk), b ∈R {0, 1},
ct∗ ← Enc(epk , pk T ,mb, t), b

′ ← AOU2
(esk ,ct∗)(ct∗)


−1

2

∣∣∣∣ ≤ negl (λ) ,

with OU1
(esk) an oracle that can be requested by A to execute either KeyDer.U(esk , ·)

or Dec(esk , ·, ·) and return the outputs to A, and OU2
(esk , ct∗) an oracle that can

be requested by A to execute either KeyDer.U(esk , ·) or Dec(esk , ·, ·) on arbitrary
ciphertexts ct such that ct0 6= ct∗0 (only the first part of the ciphertext, the one
that the user can decrypt on her own, must be different) and return the outputs.

Untraceability. Untraceability ensures that the protocol in which the third
party helps the user decrypt ciphertexts should preserve her anonymity.

Definition 4 (Untraceability). E satisfies untraceability if for every efficient
adversary A(1λ), there exists a negligible function negl such that

Advtrace
E,λ (A) =

∣∣∣Pr [Exptrace−0
E,λ (A) = 1

]
− Pr

[
Exptrace−1

E,λ (A) = 1
]∣∣∣ ≤ negl (λ) .

Recoverability. Given that the authority correctly executes its key-enhancement
algorithm and that the third party keys are correctly generated, a TB-LDE
scheme should ensure that the secret output by the recovery algorithm is the
one the user committed to during the key-enhancement protocol. Note that the
truthful generation of third party keys is necessary to enforce that the user, to
decrypt ciphertexts, must to interact at least once per time period.

Definition 5 (Recoverability (of the User Secret)). E satisfies (rewinding
black-box) recoverability of the user secret (with respect to a distribution class
D) if for every efficient adversary A(1λ), for every current time period tc, there
exists a negligible function negl such that

Pr [s 6= s′,D ∈ D , t > tc,B is δ-correct in time period t w.r.t. D :

(PP , ck)← Setup(1λ), (pk T , sk T )← KeyGen.T(PP ),
(s, pkU)← A(PP , ck , pk T ), (c, o)← Com(ck , s),

(·, epk)← (A(c, o), KeyEn.A(ck , c, pkU)),
(B,D, t)← AKeyDer.T(sk T ,ck ,tc), s′ ← Rec(B, epk , pk T ,D, t)

 ≤ negl (λ) .

Remark 1. The maximal class D for which it is possible to successfully deter
users from delegating their decryption capabilities is the class of distributions

11



D such that δ > p(D) and δ − p(D) is non-negligible. Indeed, for a distribution
D such that p(D) > δ or δ − p(D) is negligible, any decryption algorithm B
can merely output a message with probability mass p(D), and readily satisfy δ-
correctness as pointed out by Kiayias and Tang [18]; in which case recoverability
cannot be achieved since the user secret is not involved in the decryption process.

Remark 2. The restriction t > tc is crucial. Would it not be the case, an adver-
sary could request a decryption key for a time period t ≤ tc from third-party T ,
hard-code it in B, and thereby achieve 1-correctness for time period t without
ever having to interact.

4 Generic Construction of a TB-LDE Scheme

In this section, we give a generic construction which turns any PKE scheme into a
TB-LDE scheme. The main ideas are as follows. We use the original PKE scheme
to encrypt a one-time-pad encryption of the plaintext, and encrypt the one-
time-pad key with a CP-ABE scheme for which third party T holds the master
secret key. The CP-ABE allows to specify a recipient user and a time-period
in which the whole ciphertext can be decrypted. Users are thereby compelled
to interact with the third party at least once per time-period to obtain the
secret key corresponding to the time period indicated by the ciphertext policy.
This interaction requires users to perform a proof on the secrets to which they
committed during the key-enhancement protocol, and it allows, via rewinding,
for the recoverability of those secrets by anyone with a decryption device.

In more detail, during the key-enhancement protocol, a user U commits to
a secret, sends a commitment to the authority, and after proving knowledge of
the secret to the latter, she receives a random identity and a signature on it and
the commitment. Ciphertexts consist of two parts: a first that U can decrypt
on her own and another (the CP-ABE part) that she can only decrypt with
a key derived from T ’s master secret key. To obtain such a key, U encrypts
her identity and must prove, to T , knowledge of a signature on the encrypted
identity and on a commitment to which she knows an opening. As the signature
scheme is assumed unforgeable, U has to use the commitment that she sent
to the authority during the key-enhancement protocol. Any pirate decryption
algorithm B that can decrypt a non-negligible amount of ciphertexts generated
with U’s key must perform the same proof with non-negligible probability. The
extractor of the proof system can then recover U’s secret.

Formal Description. Let T be a set of natural integers, the time-period set,
and ID a non-empty identity set. Our construction uses as building blocks

– C a commitment scheme with which users commit to their secrets,
– S a signature scheme used to sign user commitments and identities
– E0 a public-key encryption scheme to compute ciphertext parts that the user

can decrypt on her own,
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– E1 a CP-ABE scheme with attribute space T × ID and equality as access
policy used to compute the ciphertext parts for which U needs assistance
from T ,

– E2 a PKE scheme with message space ID is used to encrypt U’s identity
when she interacts with T .

Suppose that E0 and E1 share the same message space M, on which there
exists an internal composition law ⊕ such that for all m ∈M, the map · ⊕m is
a permutation ofM. Let · 	m stand for its inverse. To turn the key-derivation
algorithm of CP-ABE E1 into an interactive protocol between U and T , assume
that there exists probabilistic algorithms Der0 and Der2 (Der2 will be used for
simulation in the proof of recoverability – see Theorem 5), and a deterministic
algorithm Der1 such that

1. for all sk T , t, (ek , dk) ← E2.KeyGen(PP ), id , ct id ← E2.Enc(ek , id ; rU), vari-
ables (ek , dk , rU ,Der0(sk T , t, ek , ct

id)) and (ek , dk , rU ,Der2(sk
t,id
T , ek)) have

the same distribution; and
2. for all sk T , t, (ek , dk)← E2.KeyGen(PP ), id , ct id ← E2.Enc(ek , id), sk ′t,idT ←

Der0(sk T , t, ek , ct
id), Der1(dk , sk

′t,id
T ) = E1.KeyDer(sk T , {t, id}).

We then construct a TB-LDE scheme E , parametrized by the time-period set
T and the identity set ID, such that

Setup(1λ, (T , ID))→ (PP , ck) : generates public parameters, by running algo-
rithms E0.Setup(1λ), E1.Setup(1λ, (T , ID)), C.Setup(1λ), S.Setup(1λ), and
computes a commitment key ck ← ComKeyGen(PP )

KeyGen.U(PP )→ (pkU , skU) : runs E0.KeyGen(PP )
KeyGen.T(PP )→ (pk T , sk T ) : runs (pk T , sk T )← (pk ,msk)← E1.KeyGen(PP )
KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU))→ ((epk , esk), epk) :

is the following protocol between KeyEn.U and KeyEn.A:
1. KeyEn.U and KeyEn.A run protocol PoK{(s, o) : Open(ck , c, s, o) = 1} as

prover and verifier respectively. If it fails, the overall key-enhancement
protocol is aborted, i.e., epk ← esk ← ⊥, otherwise

2. KeyEn.A generates (sk , vk) ← S.KeyGen(PP ), id ∈R ID, computes σ =
Sign(sk , (c, id)), sets epk ← (pkU , c, id , σ), and sends id and σ to KeyEn.U

3. KeyEn.U sets epk as KeyEn.A, and sets esk ← (skU , c, s, o, id , σ).
Enc(epk , pk T ,m ∈M, t ∈ T )→ ct : generates m1 ∈R M, sets m0 ← m ⊕ m1,

and outputs ct ← (E0.Enc(pkU ,m0), E1.Enc(pk T ,m1,S = {t, id}))

KeyDer = (KeyDer.U(esk , t),KeyDer.T(sk T , ck , vk , tc))→ (sk t,idT ,⊥) : is a two-party
interactive equivalent of algorithm E1.KeyDer(sk T , {t, id}). More precisely, it
is a protocol in which KeyDer.U and KeyDer.T proceed as follows.
1. KeyDer.U generates and stores a pair of keys (ek , dk)← E2.KeyGen(PP ) if

none was priorly stored (otherwise reuses such a pair), computes ct id ←
E2.Enc(ek , id ; rU), and sends (ek , t, ct id) to KeyDer.T
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2. if t > tc, then KeyDer.T returns ⊥, and KeyDer.U outputs ⊥; otherwise
algorithms KeyDer.U and KeyDer.T run protocol

PoK{(c, s, o, id ,σ, rU) : Open(ck , c, s, o) = 1,

Verify(vk , (c, id), σ) = 1, ct id = E2.Enc(ek , id ; rU)} (1)

as prover and verifier respectively. If protocol PoK fails, the overall pro-
tocol is aborted, i.e., sk t,idT ← ⊥; otherwise

3. KeyDer.T computes sk ′t,idT ← Der0(sk T , t, ek , ct
id) and sends it to KeyDer.U

4. KeyDer.U outputs sk t,idT = Der1(dk , sk
′t,id
T ).

Dec(esk , sk t,idT , ct)→ m : returns m = E0.Dec(sk , ct0)	E1.Dec(sk t,idT , ct1) (out-
puts ⊥ instead if either E0.Dec(sk , ct0) = ⊥ or E1.Dec(sk t,idT , ct1) = ⊥)

Rec(B, epk , pk T ,D, t)→ s : generates messagesm←$D, computes Enc(epk , pk T ,
m, t) and runs B on it until the latter engages in protocol PoK as prover,
and succeeds in it. Once this event occurs (it is yet to be proved that it
does indeed occur), algorithm Rec runs extractor K , which can rewind B, to
extract a witness that contains a secret s to which c is a commitment. Note
that algorithm Rec runs B locally, i.e., B does not interact with KeyDer.T,
but rather Rec which plays the role of the verifier. Importantly, Rec does not
reject the key-request from B if it is for a time period t > tc. This allows for
recoverability without having to wait until a future time period in which B
is claimed to be δ-correct.

Correctness & Security. We now state the security properties achieved by
our construction.

Theorem 1 (Correctness). E is correct if E0 and E1 are correct and if PoK is
complete.

Proof. If PoK is complete, then, for any ciphertext, KeyDer.U successfully obtains
a secret key corresponding to the time period indicated in the access structure
of the ciphertext. The correctness of E0 and E1 then implies that of E . ut

Complete proofs for Theorems 2, 3 and 4 are given in Appendix. C

Theorem 2 (Privacy). E satisfies privacy if C is hiding, protocol PoK is zero
knowledge, and E2 is IND-CPA secure.

Proof (Sketch). If the commitment scheme is hiding, the authority cannot infer
any information about user secrets. If PoK is zero-knowledge and E2 is IND-
CPA, the third-party cannot infer any information about the user identities
related which are related to commitments to user secrets. ut

Theorem 3 (LD-IND-CCA Security). E is LD-IND-CCA secure if E0 is
IND-CCA secure.
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Proof (Sketch). Reducing the the LD-IND-CCA security of E to the IND-CCA
security of E0 is straightforward since without the user public key, even the third
party can tell apart an encryption of m ⊕ m0 from an encryption of m ⊕ m1,
where m is a uniformly random bit-string, only with non-negligible probability.

Theorem 4 (Untraceability). E satisfies untraceability if proof system PoK
is zero knowledge and E2 is IND-CPA secure.

Proof (Sketch). As users encrypt their identities to request keys, if E2 is IND-
CPA secure and PoK is ZK, then the third-party cannot infer any information
about the user identities during protocol KeyDer. ut

Theorem 5 (Recoverability). E satisfies recoverability with respect to the
class of distributions D such that δ > p(D) and δ − p(D) is non-negligible as-
suming C to be binding, S to be existentially unforgeable and E1 to be adaptively
PH-CPA secure.

Proof (Sketch). It suffices to prove that with a probability close to δ, when given
ciphertexts generated for the time period and the identity for which Rec is δ-
correct, and encrypting messages with distribution D, algorithm B requests the
third-party secret key corresponding to the time period and the identity. This is
the crucial part of the proof.

As soon as this event occurs, algorithm Rec runs extractor K to extract a
secret. Since the commitment and the identity used in the witness for the proof
are signed by the key-enhancement authority, algorithm Rec must send, with
overwhelming probability, the commitment and an encryption of the identity
that are in the user enhanced public key. As the commitment scheme is binding,
the extracted secret is the one that was used in the key-enhancement protocol.

ut

5 Instantiation

We now instantiate each of the building blocks of the construction in Section-4.
Let (p,G1 = 〈P1〉,G2 = 〈P2〉,GT , e) be a pairing group such that the DLOG

assumption holds in G1, the Decisional Diffie–Hellman (DDH) assumption holds
in G2 and GT , the DLIN assumption holds in G1 and G2, and the qSDH problem
in intractable in (G1,G2) (see Appendix 2.2). Set

– C as the standard Pedersen commitment scheme over G1

– E0 as the Cramer–Shoup encryption scheme (Appendix A.1) with message
space GT

– E1 as the Okamoto–Takashima CP-ABE scheme (Appendix A.3)
– E2 as the Elgamal encryption scheme with message space Zp and S as the

BBS+ signature scheme (Section 2.3) in the case n = 3 (to sign a secret s,
an opening o and an identity id).
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Note that the Okamoto–Takashima scheme remains PH-CPA secure under
the same assumptions if generator Gob outputs matrices Vk instead of matri-
ces B∗k, and its setup algorithm includes matrices V̂k (defined similarly to B̂∗k)
instead of matrices B̂∗k in the master secret key. In this section, the Okam-
ato–Takashima scheme is considered with this modification.

It remains to provide algorithms Der0, Der1, Der2 for protocol KeyDer and a
proof system (P,V) for the language of Equation-1. Consider then the following
algorithms:

Der0(sk T , t, ek = (P2, Q2), ct
id = (Cid

0 , C
id
1 ))→ sk ′t,idT : generate λ1, . . . , λ7, α, y0 ∈

Zp, y1,y2 ∈R Z2
p, compute k∗0 =

[
α 1 y0

]
B̂∗0, k∗1 =

[
αx1 y1

]
B̂∗1,

k′∗2 =

[(
P
λj
2

(
Cid

0

)αV̂2,2,j
, Q

λj
2 P

αV̂2,1,j

2

(
Cid

1

)αV̂2,2,j
P

y2,1V̂2,3,j

2 P
y2,2V̂2,4,j

2

)]
j

,

and return sk ′t,idT = (k∗0,k
∗
1,k
′∗
2 )

Der1(dk = q = dlogP2
(Q2), sk

′t,id
T )→ sk t,idT : parse k′∗2 as

[(
k′∗2,j,0,k

′∗
2,j,1

)]
j
, com-

pute k∗2 =
[
k′∗2,j,1/

(
k′∗2,j,0

)q]
j
, and return sk t,idT = (k∗0,k

∗
1,k
∗
2)

Der2(sk
t,id
T , ek)→ sk ′t,idT : generate λ1, . . . , λ7 ∈R Zp, compute a vector k′∗2 =[(
P
λj
2 , Q

λj
2 k∗2,j

)]
j
, and return sk ′t,idT = (k∗0,k

∗
1,k
′∗
2 ).

Notice that requirements in Section 4 for Der0, Der1 and Der2 are met.

Moreover, in the key-derivation protocol KeyDer, protocol PoK should be a
ZKPoK protocol for the language

(s, o,

id︷︸︸︷
x2,2 ,

σ︷ ︸︸ ︷
W, y, z,

rU︷︸︸︷
γ ) : e(W,UP y2 ) = e(P1H

z
0H

r
1H

s
2H

x2,2

3 , P2),

Cid
0 = P γ2 , C

id
1 = Qγ2P

x2,2

2 .

A standard ZK protocol for proving knowledge of a preimage of a group homo-
morphism is then a suitable ZKPoK protocol.

Theorems 1, 2, 3, 4, 5 imply that this instantiation satisfies correctness,
privacy, LD-IND-CCA security, untraceability and recoverability.
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Z Zp G1 G2 GT
Keys and Ciphertexts
pkU 1 8 2 0 5

skU 1 10 1 0 0

pk T 3 0 57 0 1

sk T 3 71 0 0 0

sk t,idT 0 0 0 19 0

ct 0 2 19 0 5

Protocols
KeyEn 0 6 1 0 0

KeyDer 0 12 2 32 0

(Multi-)Exp. Pairing
Der0 26 in G2 0

Der1 7 in G2 0

Enc 27 (26 in G1, 1 in GT ) 0

Dec 1 (in GT ) 19

Fig. 2. Efficiency of our instantiation. On the left, for keys and ciphertexts, the figures
represent the number of elements they comprise. As for the protocols, it is their band-
width that is represented, i.e., the number of elements exchanged between the parties.
The table on the right indicates the number of operations (multi-exponentiation and
pairing) performed by each of the algorithms.

Comparison with Kiayias and Tang’s Generic Construction. The only
existing leakage-deterring scheme in the literature is Kiayias and Tang’s. They
did not provide an instantiation of their generic construction of an LD-IND-CPA
scheme [18, Section 4]. Yet, it can naturally be instantiated with the Elgamal
encryption scheme. In that case, for secrets of 128 bits, a partial correctness
δ = 4/23 = 50% and the error correcting code that they propose [17, Figure 1,
No 1], their enhanced public keys consist of 162 = 2∗81 Elgamal public keys and
ciphertexts consist of 30 = 2 ∗ 15 Elgamal ciphertexts (i.e., 60 group elements).
To make their scheme LD-IND-CCA secure, they compose it with a standard
CCA-secure scheme which must then encrypt a vector of group elements, and
the keys of which must be accounted for in the overall enhanced public key.

Section 6 gives construction a more efficient construction of our scheme in
the ROM. The message space of E0 is G1 and the ciphertexts consist of 2 Zp
elements, 23 G1 and 1 GT elements. Our enhanced public keys and ciphertexts
in the ROM are therefore much shorter than those of Kiayias and Tang. How-
ever, computing our ciphertexts is more expensive because of the pairings of the
Okamoto–Takashima CP-ABE scheme.

6 Construction in the Random Oracle Model

The main drawback, in terms of computation time and ciphertext size, of the
Section-4 construction is that the message spaces of E0 and E1 must match.
As a result, the Section-5 instantiation requires the Cramer–Shoup encryption
scheme (with ciphertexts consisting of 4 plaintext-group elements) to have GT as
message space since the message space of the Okamoto–Takashima CP-ABE is
GT . However, target group elements are typically large (around 10 times larger
than G1 elements) and operations in GT are much slower than in G1. It would
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thus be preferable to have G1 as a message space for E0. Consider then the
following construction which is proved secure in the ROM. The RO is further
denoted by Hash). It is identical to that of Section 4 except for its message space
that is now {0, 1}n(λ), the message space M0 of E0, the message space M1 of
E1, and for algorithms Enc and Dec. Those latter algorithms are now6

Enc(epk , pk T ,m ∈ {0, 1}n, t ∈ T )→ ct : that generatesKU ∈RM0,KT ∈RM1,
and outputs a ciphertext ct = (E0.Enc(pkU ,KU), E1.Enc(pk T ,KT , {t, id}),m⊕
Hash(KU ,KT ));

Dec(esk , ct)→ m : an algorithm that parses ct as (ct0, ct1, ct2), and computes
and outputs ct2 ⊕ Hash(E0.Dec(skU , ct0), E1.Dec(sk t,idT , ct1)).

With this alteration, the proofs of correctness, privacy and untraceability are
straightforwardly adapted from those of the scheme in Section 4. As for LD-IND-
CCA security and recoverability, their proofs require a more elaborate (although
simple) argumentation, and are given below. Note that still no proof of knowledge
on the ciphertexts is required (only on an encrypted identity at the beginning of
each time period). Therefore, no proof of circuit satisfiability for the RO must
be computed.

Theorem 6. E is LD-IND-CCA secure in the PROM if E0 is IND-CCA secure.

Proof. The IND-CCA security of E can be reduced to the LD-IND-CCA security
of E0. Indeed, if A is an adversary for the LD-IND-CCA security game, consider
S an algorithm which interacts with A and the challenger C of the IND-CCA
security game. Algorithm S proceeds like the simulator of theorem 3 during
the key-generation phase and the key-enhancement protocol. In the first query
phase, whenever A asks for the decryption of a ciphertext ct = (ct0, ct1, ct2),
algorithm S requests the decryption of ct0 to C , and can answer the query of A.
Upon receiving a challenge tuple (m0,m1, t, pk T ) from A, algorithm S generates
generates KU,0,KU,1 ∈R M0, KT ∈R M1, and if Hash(KU,b,KT ) for b ∈ {0, 1}
has been queried in the first query phase, it generates new random values. This
does not blow up the running time of S since A is efficient and cannot have made
an amount of RO queries that is non-negligible compared to |M0||M1|. Algo-
rithm S also generates R ∈R {0, 1}n, sends (KU,0,KU,1) to C as a challenge pair,
receives a challenge ciphertext ct∗0, computes ct∗1 = E1.Enc(pk T ,KT , {t, id}), and
returns (ct∗0, ct∗1, R) to A. In the second query phase, S proceeds as in the first,
except that if A queries Hash(KU,b,KT ) to the RO for b ∈ {0, 1}, algorithm S
programs Hash(KU,b,KT ) = mb ⊕ R. Besides, as A cannot request the decryp-
tion of a ciphertext ct such that ct0 = ct∗0 by definition, algorithm S can always
answer decryption queries in this second phase. Algorithm S ultimately forwards
the guess of A to C . As S perfectly simulates the LD-IND-CCA-game challenger
to A, its advantage in the IND-CCA game is at least that of A in the LD-IND-
CCA game. If the latter were non-negligible, then so would be former, and the
IND-CCA security of E0 would be contradicted. ut
6 ⊕ here denotes the traditional XOR operation.
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Theorem 7. E satisfies recoverability in the PROM with respect to the class of
distributions D such that δ > p(D) and δ − p(D) is non-negligible assuming C
to be binding, S to be existentially unforgeable and E1 to be adaptively PH-CPA
secure.

Proof. The proof is conducted in the very same fashion as in the proof of Theo-
rem 5, except for the hybrids: H0 submits regular ciphertexts to B and H1 submits
(E0.Enc(pkU ,KU), E1.Enc(pk T ,K

′
T , {t, id}),m ⊕ Hash(KU ,KT )) for a uniformly

random K ′T . The inequality∣∣Pr [B(H0) = m|F
]
− Pr

[
B(H1) = m|F

]∣∣ ≤ Advph−cpa
E1,λ (S)

is proved in the same manner, and Pr
[
B(H1) = m|F

]
≤ p(D)+1/|MT | as B can

only either guess m with probability at most p(D) or guess KT with probability
at most 1/|MT |. As 1/|MT | is negligible in λ, the rest of the proof remains the
same. ut

7 Non–Time-Based LDE Schemes

In case only few ciphertexts are expected to be decrypted, communication during
decryption might not be a major hindrance. LDE schemes in which users need to
interact whenever they wish to decrypt a ciphertext are conceivable, and could
spare the need for a CP-ABE scheme which incurs larger keys and ciphertexts
than regular encryption schemes. Time periods and synchronization would then
be unnecessary. In such a system, compared to the Section-3 definition of a TB-
LDE scheme, T does not send a key to U (i.e., protocol KeyDer is obsolete), and
Dec = (Dec.U(esk , ct),Dec.T(sk T , ck)) is an interactive protocol between a user
decryption algorithm Dec.U and a third-party decryption algorithm Dec.T, at
the end of which Dec.U outputs a plaintext m or ⊥, and Dec.T outputs ⊥.

7.1 Security Definitions

The privacy definition remains the same, the traceability experiments and the
LD-IND-CCA security game are only modified not to incorporate a time period
t in the challenge tuples, and the oracles are redefined to execute Dec.U.

In the traceability experiment, the adversary now outputs a tuple ((epk0,
esk0), (epk1, esk0),m), the challenger computes Enc(epkβ , pk T ,m), and the ad-
versary can request the challenger to run Dec.U.

δ-correctness is not defined with respect to a time period anymore, and con-
cerning recoverability, A need then not specify a time period t > tc in which B
is δ-correct (equivalently, A could specify any dummy time period so long as tc
is set to −∞), and algorithm B does not receive a time period t as an input.

The multi-user-case definitions are derived accordingly.
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7.2 Generic Construction

Let Rand be a commitment re-randomization algorithm. Following the notation
of Section 4, except that E1 is now an encryption scheme supporting labels (from
every ciphertext of which the corresponding label can be efficiently computed),
let E be an LDE scheme such that

KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU))→ ((epk , esk), epk) :
is a protocol between KeyEn.U and KeyEn.A, which proceed as follows.
1. KeyEn.U(ck , c, s, o, pkU , skU) and KeyEn.A(ck , c, pkU) run the interac-

tive protocol PoK{(s, o) : Open(ck , c, s, o) = 1} as prover and verifier
respectively. If the protocol fails, the overall protocol is aborted, i.e.,
epk = esk ← ⊥; otherwise

2. both algorithms set epk = (pkU , c), and KeyEn.U sets esk = (skU , c, o)
Enc(epk , pk T ,m ∈M)→ ct : generates m1 ∈R M, sets m0 = m ⊕ m1, and

outputs ct = (E0.Enc(pkU ,m0), E1.Enc(pk T ,m1, l = Rand(ck , c; r)), r)
Dec = (Dec.U(esk , ct),Dec.T(sk T , ck)) : is an interactive protocol between Dec.U

and Dec.T which proceed as follows.
1. Algorithm Dec.U sends (ct1, l) to Dec.T
2. algorithms Dec.U and Dec.T run protocol

PoK{(c, s, o, r) : Open(ck , c, s, o) = 1, l = Rand(ck , c; r)}

as prover and verifier respectively. If the protocol fails, Dec.U outputs ⊥;
otherwise

3. Dec.T sends m1 = E1.Dec(sk T , ct1, l) to Dec.U; and
4. Dec.U outputs E0.Enc(sk , ct0)	m1 if m1 6= ⊥ (outputs ⊥ otherwise).

The other algorithms remain the same up to the omission of time periods. Ob-
serve that E2 and S are not used since the user need not encrypt her identity
and prove that she knows a signature on it.

Similar proofs to those of Section 4 entail that E is correct if E0 and E1
are correct and if PoK is complete; that it satisfies privacy if C is hiding, and
protocol PoK is ZK; that E is LD-IND-CCA secure if E0 is IND-CCA secure;
and that untraceability is also satisfied if PoK is ZK. Scheme E also satisfies
recoverability with respect to the class of distributions D such that δ > p(D) and
δ − p(D) is non-negligible assuming C to be binding and E1 to be secure against
chosen-ciphertext attacks [12, Section 2.4]. To prove it, it suffices to prove, as in
Theorem 5 that with non-negligible probability, a δ-correct algorithm B sends
the (third-party part of the) ciphertext and the label that it was given, and
succeeds in the subsequent proof of knowledge. The knowledge extractor can
then be used to retrieve the user secret.

7.3 Instantiation

Set C as the standard Pedersen commitment scheme and Rand as the algo-
rithm that generates r ∈r Zp, and maps c = gs1g

o
2 to cgr3 for pairwise dis-

tinct g1, g2 and g3. Let E0 be the Cramer–Shoup encryption scheme, and E1 be
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the Cramer–Shoup encryption scheme supporting labels (Appendix A.1). Both
schemes may have any group (in which the DDH assumption holds) with short
representation as a common message space. The resulting ciphertexts are then
composed of 9 group elements (one of which is a re-randomized commitment as
a label), and decryption only requires exponentiations and two hash computa-
tions.

8 Revocation

Besides the scenario in which a decryption box was intentionally distributed by
a user, the scenario in which a decryption device was stolen from an honest user
or in which a user simply lost it is also relevant. In this case, the user should be
able to prevent misuse of her device, i.e., unauthorized decryption. This can be
achieve by adding a revocation functionality to LDE schemes. The interaction
with the third party allows to easily add such a functionality: the third party
need only also verify that the user’s public key was not revoked without putting
her anonymity at risk. Camenisch et al. [11] proposed a generic key-revocation
component, which can be added to any system to enable a privacy-preserving re-
vocation functionality. It is referred to as an Anonymous Revocation Component
(ARC).

An ARC requires an entity called Revocation Authority (RA). In the present
case, the RA can be the key-enhancement authority itself, the decryption third
party or any other party in the system. The RA partakes in the key-enhancement
protocol, maintains some revocation information, and changes the revocation
status of the enhanced public keys.

Camenisch et al. [11, Section 4.4] provided definitions and a description of
interfaces of an ARC, and instantiated it with the revocation scheme of Nakanishi
et al. [23]. Baldimtsi et al. [3] gave an instance with accumulators. Both those
instances are suitable for LDE schemes.

We first recall the definition of an ARC as proposed by Camenisch et al. [11],
then we show how to add an ARC to our constructions without compromising
the privacy of users’ secrets or their anonymity.

8.1 Anonymous Revocation Components

In an ARC, revocation is achieved via a revocation handle rh ∈ RH that is
embedded into the key to be revoked. An ARC ARC is a tuple of algorithms
(SPGen,RKGen,Revoke,RevTokenGen,RevTokenVer) such that

SPGen(1λ)→ PP r : is an algorithm that generates revocation parameters PP r

RKGen(PP r )→ (rpk , rsk ,RI ) : is an algorithm that generates the RA’s secret
and public keys, and an initial revocation information RI

Revoke(rsk ,RI , rh)→ RI ′ : is an algorithm that revokes rh, and outputs an
update RI ′ of the revocation information RI
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RevTokenGen(rpk ,RI , c, rh, o)→ rt : is an algorithm which generates a publicly-
verifiable revocation token proving that handle rh has not been revoked and
that c is a commitment to rh

RevTokenVer(rpk ,RI , c, rt)→ {0, 1} : is a revocation token verification algorithm.

The security requirements of an ARC can be informally stated as follows. Cor-
rectness states that any revocation token rt generated with a non-revoked han-
dle rh and an honestly computed information RI is accepted by RevTokenVer.
Soundness ensures that RevTokenVer accepts rt and c on input RI and rpk only
if rt was computed with rh and a valid opening o to c. Moreover, no party other
than the RA can publish a valid revocation information RI , i.e., it is always
authentic. Revocation privacy guarantees that given a revocation token rt , no
information about the underlying revocation handle rh can be inferred.

8.2 Revocable (TB-)LDE Schemes

To add an ARC to the generic constructions of Sections 4, 6 and 7, it suffices to
have the RA – recall that it partakes in the key-enhancement protocol – assign
to each user, in addition to her secret, a revocation handle. In the case of TB-
LDE schemes, this handle is signed by the key-enhancement authority together
with the user’s identity and commitment to her secret. To revoke a key, the cor-
responding handle is added to the publicly available revocation information. In
(non–time-based) LDE schemes, the handle is also included in the computation
of the label. During the key-derivation protocol for TB-LDE schemes or the de-
cryption protocol for LDE schemes, the user computes a fresh (to be untraceable)
commitment to the handle of her enhanced public key, and a revocation token,
both sent to the third party. In addition to the proofs of those constructions,
the user also proves that the handle of which she just sent a fresh commitment
is not revoked, and that it was signed with the encrypted identity (for TB-LDE
schemes) or used for the computation of the label (for LDE schemes).

Generic Construction of a Revocable TB-LDE Scheme. Let E be either
of the Section-4 or the Section-6 TB-LDE scheme. Consider ER, a revocable TB-
LDE scheme that has the same algorithms as E , except for ER.Setup(1λ) which
also runsARC.SPGen(1λ), for an additional algorithm ER.Revoke = ARC.Revoke,
and for its KeyEn and KeyDer protocols. Assuming, without loss of generality,
the key-enhancement authority to also be the RA, those protocols are now

KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU))→ ((epk , esk), epk) :
a protocol between KeyEn.U and KeyEn.T, which proceed as follows.
1. KeyEn.U and KeyEn.T run protocol PoK{(s, o) : Open(ck , c, s, o) = 1} as

prover and verifier respectively. If it fails, the overall key-enhancement
protocol is aborted, i.e., epk = esk ← ⊥; otherwise

2. KeyEn.A generates (sk , vk) ← S.KeyGen(PP ), id ∈R ID, rh ∈R RH,
computes σ = Sign(sk , (c, id , rh)), sets epk = (pkU , c, id , rh, σ), and
sends id and σ to KeyEn.U, which sets epk as KeyEn.A and esk =
(skU , c, s, o, id , rh, σ)
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KeyDer = (KeyDer.U(esk , t),KeyDer.T(sk T , ck , vk , rpk ,RI ))→ (sk t,idT ,⊥) : a pro-
tocol between KeyDer.U and KeyDer.T, which proceed as follows.
1. Algorithm KeyDer.U generates and stores a pair of encryption keys (ek , dk)←
E2.KeyGen(PP ) if none was priorly stored, and otherwise reuses such
a pair, computes a ciphertext ct id = E2.Enc(ek , id ; rU), a commitment
and an opening (crh , orh) = Com(ck , rh), and a revocation token rt =
ARC.RevTokenGen(rpk ,RI , crh , rt), and sends (ek , t, ct id , crh , rt) to al-
gorithm KeyDer.T

2. if t > tc, then KeyDer.T returns ⊥, and KeyDer.U outputs ⊥; otherwise,
algorithms KeyDer.U and KeyDer.T run protocol

PoK{(c,s, o, id , rh, orh , σ, rU) : Open(ck , c, s, o) = 1,

Open(ck , crh , rh, orh) = 1, Verify(vk , (c, id , rh), σ) = 1,

ct id = E2.Enc(ek , id ; rU), RevTokenGen(rpk ,RI , crh , rh, orh) = 1}

as prover and verifier respectively. If protocol PoK fails, the overall pro-
tocol is aborted, i.e., sk t,idT ← ⊥; otherwise

3. KeyDer.T computes sk ′t,idT ← Der0(sk T , t, ek , ct
id), and sends it to KeyDer.U.

Finally, KeyDer.U outputs sk t,idT = Der1(dk , sk
′t,id
T ).

Generic Construction of a Revocable LDE Scheme. Assume C to be
homomorphic, and Rand to be a commitment re-randomization algorithm. For
(c, o) = Com(ck ,m), algorithm Rand(ck , c,m′; r) computes a commitment to m
and m′ from c using the homomorphic property of C, and re-randomizes the re-
sulting commitment with randomness r. Let E be the Section-7 LDE scheme. Let
ER be a revocable LDE scheme, based on E , with ER.Setup(1λ) which also runs
ARC.SPGen(1λ), and with an additional algorithm ER.Revoke = ARC.Revoke,
such that

KeyEn = (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU))→ ((epk , esk), epk) :
is a protocol between KeyEn.U and KeyEn.T, which proceed as follows.
1. KeyEn.U(ck , c, s, o, pkU , skU) and KeyEn.A(ck , c, pkU) run the interactive

protocol PoK{(s, o) : Open(ck , c, s, o) = 1} as prover and verifier re-
spectively. If the proof fails, then the overall protocol is aborted, i.e.,
epk = esk ← ⊥; otherwise

2. KeyEn.A generates rh ∈R RH, and both algorithms set epk = (pkU , c, rh),
and KeyEn.U sets esk = (skU , c, o).

Enc(epk , pk T ,m ∈M)→ ct : generates m1 ∈R M, sets m0 = m ⊕ m1, and
outputs ct = (E0.Enc(pkU ,m0), E1.Enc(pk T ,m1, l = Rand(ck , c, rh; r)), r)

Dec = (Dec.U(esk , ct),Dec.T(sk T , ck))→ (m,⊥) : is an interactive protocol be-
tween Dec.U and Dec.T which proceed as follows.
1. Algorithm Dec.U computes (crh , orh) = Com(ck , rh), a revocation to-

ken rt = ARC.RevTokenGen(rpk ,RI , crh , rt), and sends (ct1, l, crh , rt)
to Dec.T
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2. algorithms Dec.U and Dec.T run protocol

PoK{(c,s, o, crh , rh, orh , r) : Open(ck , c, s, o) = 1, Open(ck , crh , rh, orh) = 1,

l = Rand(ck , c, rh; r), RevTokenGen(rpk ,RI , crh , rh, orh)}

as prover and verifier respectively. If it fails, Dec.U outputs ⊥; otherwise
3. Dec.T sends m1 = E1.Dec(sk T , ct1, l) to Dec.U

4. Dec.U outputs E0.Enc(sk , ct0)	m1 if m1 6= ⊥ (outputs ⊥ otherwise).

8.3 Security of Revocable (TB-)LDE-Schemes

The correctness of a revocable (TB-)LDE scheme should now take the ARC into
account, i.e., state that the decryption of the encryption of a message should
result in the message itself if the public key is not revoked. The other secu-
rity requirements remain the same. Yet, to ensure that ciphertexts cannot be
decrypted after the public keys used to compute them have been revoked, an
additional property must be introduced: revocation soundness.

Definition 6 (Revocation Soundness of a TB-LDE Scheme). A revo-
cable TB-LDE scheme ER satisfies revocation soundness if there exists a neg-
ligible function such that for (PP , ck) ← Setup(1λ, aux ), for all (sk , vk) ←
S.KeyGen(PP ), (rpk , rsk ,RI ) ← ARC.RKGen(PP r ), for every pair of truthfully
enhanced keys (epk = (pkU , c, id , rh, σ), esk), for every truthfully generated third-
party secret key sk T ∈ RT , for every message m ∈M and every time period t,

Pr[ARC.Revoke(rsk ,RI , rh) = RI ′, (KeyDer.U(esk , t),

KeyDer.T(sk T , ck , vk , rpk ,RI
′)) 6= (⊥,⊥)] ≤ negl (λ) .

The revocation soundness of an LDE Scheme is defined analogously with Dec
and plaintexts.

Regarding the Section-8.2 construction, the incorporation of an ARC clearly
does not affect the privacy, the LD-IND-CCA security or the recoverability of E ,
be it a TB-LDE or a LDE scheme. In the case of an (TB-)LDE scheme, since the
handle included in the computation of the label (signature), the argument for
recoverability remains the same as that of Section 7 (4). However, untraceability
may now be at risk due to the commitment to the revocation handle and the
revocation token sent to the third party. Still, similar arguments to those of The-
orem 4 imply that ER, based on a (TB-)LDE scheme E , satisfies untraceability
if protocol PoK is ZK (, E2 is IND-CPA secure) and ARC satisfies revocation
privacy. Furthermore, ER, satisfies revocation soundness if ARC is sound (, S is
existentially unforgeable) and protocol PoK is sound. Indeed, the unforgeability
of S and the soundness of PoK imply that the handle used in the KeyDer is the
one of the user enhanced public key. The soundness of ARC then implies that
the handle was not revoked.
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9 Interactive Recoverability

A key-revocation component only allows a user to prevent further use of her
device in case of loss or theft7. Nevertheless, as the Section-4 Rec algorithm is
not interactive, a user’s secret can still be recovered by anyone in possession of her
device even if she has requested to have her public key revoked. To also protect
user secrets in case she lost her device, local recoverability must be prevented,
i.e., recoverability without interaction with the decryption third party T which
checks that user public keys are not revoked.

To enforce interaction with T , it suffices to require that any decryption algo-
rithm, interacting with any other algorithm that does not possess the third-party
master secret key, has only a negligible probability to correctly decrypt cipher-
texts in future time periods.

Definition 7 (Interaction Soundness). A TB-LDE scheme E satisfies in-
teraction soundness if for every efficient algorithm B, for all (epk , esk) ∈ ER,
(pk T , sk T ) ∈ RT , for every efficient algorithm A(1λ), there exists a negligible
function negl such that for every time period t > tc, for all m ∈M,

Pr
[
BA(epk ,esk ,pk T ,ck)(Enc(epk , pk T ,m, t)) = m

]
≤ negl (λ) .

In particular, no user decryption device, even one which runs KeyDer.U and Dec
as subroutines, can correctly decrypt ciphertexts if it does not interact with the
third party which holds sk T . That is to say, protocol PoK always fails, and its
knowledge extractor K cannot be used to recover user secrets.

Interaction Soundness in the (TB-)LDE constructions. To add interac-
tion soundness to the Section-7(4) (TB-)LDE scheme, it suffices to make the
Dec.T (KeyDer.T) algorithm sign the first messages sent by Dec.U (KeyDer.U)
and its challenges with an existentially unforgeable scheme S ′. Before answering
the challenge, algorithm Dec.U (KeyDer.U) verifies the signature with the public
verification key. It follows that unless an adversary, which does not possess the
third-party signing key, can forge a signature, protocol PoK will never terminate,
and algorithm Rec will never produce any output, and the user secret cannot
be recovered. The existential unforgeability of S ′ then implies the interaction
soundness of the (TB-)LDE scheme.

10 Conclusion

We first argued that in leakage-deterring schemes, a CCA type of privacy of user
secrets is compatible with their recoverability. We therefore redefined leakage-
deterring schemes with security guarantees stronger than existing ones. We then
7 Notice that the loss of a decryption device does not mean the loss of the secret secret
since the latter is simply embedded into the device. It might also be kept elsewhere,
allowing the user to identify herself to the authority when she asks for her public
key to be revoked.
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gave a construction that turns any CCA-secure encryption scheme into a leak-
age deterring one that achieves those stronger guarantees and has constant-size
ciphertexts in the size of user secrets.

The main drawback of our construction is the need to interact once per
epoch (e.g., a week) with a party that helps users decrypt. However, this very
same interaction is needed to guarantee a CCA type of privacy of user secrets
together with their recoverability, and can even be leveraged to revoke user keys
and protect their secrets in case or loss or theft.
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A.1 Cramer–Shoup Encryption Scheme

The Cramer–Shoup encryption scheme [14] consists of the following algorithms:

Setup(1λ)→ PP = (p,G,H ) : output a prime number 2λ−1 ≤ p < 2λ, the de-
scription of a p-order group G, and the description of family of universal
one-way hash functions

KeyGen(PP )→ (pk , sk) : generate x1, x2, y1, y2, z ∈R Zp, G1, G2 ∈R G, sets A =
Gx1

1 G
x2
2 , B = Gy11 G

y2
2 and H = Gz1, choose Hash ∈R H , and output pk =

(G1, G2, A,B,H,Hash) and sk = (x1, x2, y1, y2, z,Hash)
Enc(pk ,M ∈ G)→ ct : generate r ∈R Zp, compute U1 = Gr1, U2 = Gr2, E =

HrM,α = Hash(U1, U2, E), V = (ABα)r, and output a ciphertext ct =
(U1, U2, E, V )

Dec(sk , ct)→M : parse ct as (U1, U2, E, V ) (outputs M = ⊥ if not possible),
compute α = Hash(U1, U2, E), and outputsM = E/Uz1 if V = Ux1+αy1

1 Ux2+αy2
2 ,

and otherwise output ⊥.

It is secure against chosen-ciphertext attacks under the DDH assumption. The
Cramer–Shoup encryption scheme can also support labels. A label need only be
included in the hash and appended to the ciphertext. The security proof [14,
Theorem 1, Lemma 2, Claim 2] of the scheme remains unchanged so long as H
is a family of collision-resistant hash functions.

A.2 Dual Pairing Vector Spaces

Dual Pairing Vector Spaces (DPVSs) were introduced by Okamoto and Takashima
[25]. They provide a mechanism for parameter hiding [22] in prime-order pair-
ing groups. The latter feature allows to proves the full security of functional
encryption schemes in prime-order settings.
Definition 8 (Dual Pairing Vector Space). Let N ≥ 1 be an integer. A dual
pairing vector space by direct product of a pairing group (p,G1 = 〈P1〉,G2 =
〈P2〉,GT , e) is a tuple (p,V,V∗,GT ,A,A∗, e) such that V = GN1 and V∗ = GN2
are two N -dimensional Zp vector spaces, A = (a1, . . . ,aN ) is the canonical basis
of V (i.e., ai = (1Gi−1

1
, P1,1GN−i1

)), A∗ = (a∗1, . . . ,a
∗
N ) is the canonical basis of

V∗ (i.e., a∗i = (1Gi−1
2
, P2,1GN−i2

)) and

e : V× V∗ → GT
(x = (X1, . . . , XN ),y = (Y1, . . . , YN )) 7→

∏
i

e(Xi, Yi)

(note the abuse of notation) is a pairing, i.e., x = 1GN1 if e(x, ·) is the 1GT map,
and ∀a, b ∈ Zp,x ∈ V,y ∈ V∗, e(xa,yb) = e(x,y)ab.
Note that for all 1 ≤ i, j ≤ N, e(ai,a

∗
j ) = e(P1, P2)

δij , with δij being the Kro-
necker delta, i.e., δij = 1 if i = j, and otherwise 0.

Let Gdpvs(1
λ, PPG, N) denote an algorithm that takes as an input a secu-

rity parameter 1λ, the description PPG of a pairing group (p,G1 = 〈P1〉,G2 =
〈P2〉,GT , e) and an integer N , and outputs the description PPV of a DPVS
(p,V,V∗,GT ,A,A∗, e).
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A.3 Okamoto–Takashima Adaptively-Secure CP-ABE Scheme

Let Gob(1
λ,n = (d;n1, . . . , nd)) be a dual-orthonormal-basis generator which

proceeds as follows:

1. it generates a pairing group PPG = (p,G1 = 〈P1〉,G2 = 〈P2〉,GT , e) ←
Gbpg(1

λ), a value ψ ∈R Z∗p, and sets N0 = 5 and Nk = 3nk+1 for 1 ≤ k ≤ d
2. for 0 ≤ k ≤ d, it generates a Dual Pairing Vector Space (DPVS) (see Ap-

pendix A.2) PPVk = (p,Vk,V∗k,GT ,Ak,A∗k, e) ← Gdpvs(1
λ, PPG, Nk), gener-

ates a matrix Xk ∈R GLNk(Zp), and computes Vk = ψ
(
XT
k

)−1. Let MAk
and MA∗k respectively denote the diagonal matrices diag(P1) ∈ GNk×Nk1 and

diag(P2) ∈ GNk×Nk2 . Generator Gob computes Bk =

bk,1...
bk,n

 = XkMAk ∈

GNk×Nk1 andB∗k =

b
∗
k,1
...

b∗k,n

 = VkMA∗k ∈ GNk×Nk2 with bk,i = (ei ·Xk)MAk =

[
P

Xk,i,1

1 · · · PXk,i,Nk
1

]
and b∗k,i = (ei ·Vk)MA∗k =

[
P

Vk,i,1

2 · · · PVk,i,Nk
2

]
3. it computes GT = e(P1, P2)

ψ, sets PPn = {PPVk}0≤k≤d, and eventually
outputs (GT , PPn, {Bk,B

∗
k}0≤k≤d).

Notice that for all i, k,GT = e(bk,i,b
∗
k,i). Indeed,

e(bk,i,b
∗
k,i) = e

∏
j

a
Xij

j ,
∏
l

a∗Vil

l

 =
∏
j,l

e(aj ,a
∗
l )

XijVil

=
∏
j,l

e(P1, P2)
δjlXijVil = e(P1, P2)

ψ = GT .

Consider now the (monotone-span-program) Okamato–Takashima CP-ABE
scheme [26, Section 7.1] in the case d = 2. The access structure associated
to a ciphertext is determined by two 2-dimensional vectors v1 and v2. A pair
of attributes (a pair of Zp-lines) represented by a pair of vectors (x1,x2) is
“accepted” by the structure if and only if xk · vT

k = 0: that is, the structure
specifies two accepted Zp-lines. Their CP-ABE scheme is defined as follows:

Setup(1λ,n = (2;n1 = 2, n2 = 2))→ (pk ,msk) : generate an orthonormal basis

(GT , PPn, {Bk,B
∗
k}0≤k≤2) ← Gob(1

λ,n), set B̂0 =

b0,1

b0,3

b0,5

 , B̂∗0 =

b∗0,1b∗0,3
b∗0,4

,
B̂k =

bk,1bk,2
bk,7

 , B̂∗k =


b∗k,1
b∗k,2
b∗k,5
b∗k,6

 for k = 1, 2, and then output pk = (GT , PPn,

{B̂k}k=0,...,2),msk = (pk , {B̂∗k}k=0,...,2)
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KeyDer(msk ,A = {xk=1,2 ∈ Z2
p : xk,1 = 1})→ skA : generate α, y0 ∈R Zp, yk ∈R

Z2
p for k = 1, 2, compute vectors k∗0 =

[
α 0 1 y0 0

]
B∗0 =

[
α 1 y0

]
B̂∗0, k∗k =[

αxk 0Z2
p
yk 0

]
B∗k =

[
αxk yk

]
B̂∗k, and output secret key skA = (pk ,A,

{k∗k}k=0,...,2)
Enc(pk ,M ∈ GT ,S = (v1,v2))→ ct : generate uniformly random values a1, a2, ζ,

η0, ηk, θk for k = 1, 2 from Zp, computes a = a1 + a2,

c0 =
[
−a 0 ζ 0 η0

]
B0 =

[
−a ζ η0

]
B̂0,

ck =
[
akek,1 + θkvk 0Z4

p
η1
]
Bk =

[
akek,1 + θkvk η1

]
B̂k for k = 1, 2,

c3 = GζTM,

and output ct = (S, c0, c1, c2, c3) ∈ Z4
p ×G19

1 ×GT and
Dec(skA, ct)→M : output M = c3/e(c0,k

∗
0)e(c1,k

∗
1)e(c2,k

∗
2) if the key and

the ciphertext can be properly parsed and xk · vT
k = 0 mod p for k = 1, 2,

and otherwise output ⊥.

Since attribute vectors have their first coordinates set to 1, (the second coor-
dinates specify the slopes of the Zp-lines accepted by the access structure), the
attribute set may be identified with Z2

p. Okamoto and Takashima proved that
this CP-ABE scheme is correct and adaptively payload-hiding against chosen-
message attacks under the DLIN assumption over G1 and G2 [26, Theorem 2].

B Definitions and Security Model

This section gives the correctness definition omitted in the body of the paper as
well as definitions in the multi-user case.

Definition 9 (Correctness). E is correct if ∀λ ∈ N, ∀aux ,

1. (PP , ck)← Setup(1λ, aux ),
2. (pkU , skU)← KeyGen.U(PP ), (pk T , sk T )← KeyGen.T(PP ),
3. ∀(c, s, o) such that Open(ck , c, s, o) = 1,

((epk , esk), epk)← (KeyEn.U(ck , c, s, o, pkU , skU),KeyEn.A(ck , c, pkU)) ,

4. ∀t, (sk t,UT ,⊥)← (KeyDer.U(esk , t),KeyDer.T(sk T , ck)), ∀m ∈M,

Pr
[
Dec(esk , sk t,UT ,Enc(epk , pk T ,m, t)) = m

]
= 1.

B.1 Security Definitions in the Multi-User Case

As for traitor-deterring schemes [19], the previous definitions can be naturally
extended to a multi-user case. The secrecy of a user’s secrets and messages, and
her untraceability are now also jeopardized by the other users. As for recover-
ability, several users may collude to produce a pirate decryption device.
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In the presence of n users, the key-enhancement protocol of the single-user
case is executed once for each of them. The encryption and decryption algorithms
remain the same as those of the single-user case. The recovery algorithm takes as
an input an algorithm B, a set J ⊆ {1, . . . , n} of colluding users, |J | enhanced
public keys, the description of |J | distributions, |J | time periods and a third-
party public key pk T .

Correctness is defined, for each user, as in the single user case. Concerning
δ-correctness, an algorithm B is said to be δ-correct in time periods ti1 , . . . , ti|J |
with respect to distributions Di1 , . . . ,Di|J | if for all 1 ≤ j ≤ |J |, mij ←$Dij ,
Pr
[
BKeyDer.T(sk T ,ck ,tij )(Enc(epk ij , pk T ,mij , tij )) = mij

]
& δ.

The privacy, LD-IND-CCA and untraceability definitions remain the same
as they ought to guarantee the secrecy of any user secret, messages and identity,
even if the other users, the third party and the authority are malicious and
collude.

As to recoverability, a multi-user TB-LDE scheme satisfies recoverability with
respect to distribution classes Di1 , . . . ,Di|J | if for every efficient adversary A(1λ),
there exists a negligible function negl such that

Pr [ s′ /∈ {sij}j∈|J |,Dij ∈ Dij , tij > tc,B δ-correct in tij w.r.t. Dij :
(PP , ck)← Setup(1λ), (pk T , sk T )← KeyGen.T(PP ),

(s1, . . . , sn, pkU1
, . . . , pkUn)← A(PP , ck , pk T ), (ci, oi)← Com(ck , si)1≤i≤n,

(·, epk i)1≤i≤n ← (A(c1, o1, . . . , cn, on), KeyEn.A(ck , c, pkUi))1≤i≤n,

(B, (Dij , tij )j∈J )← AKeyDer.T(sk T ,ck ,tij ), s′ ← Rec(B,J , (epk ij ,Dij , tij )j∈J , pk T )


≤ negl (λ) .

Note that this definition allows each of the colluding users to specify a distribu-
tion of messages of which the ciphertexts are accepted by B. Indeed, colluding
users may for instance want the implementation to decipher emails coming from
different senders. In this sense, this definition is broader than Kiayias and Tang’s
for traitor-deterring schemes [19].

C Generic Construction of a TB-LDE Scheme

This sections gives the proofs of security of the construction in Section 4.

Proof (of Theorem 2 – Privacy). Let A be an adversary for the privacy dis-
tinction experiment. Consider an algorithm S , which interacts with A and a
commitment-scheme hiding-experiment challenger Cβ that always commits to
sβ for β ∈ {0, 1}. After receiving a commitment key ck from Cβ , algorithm S
runs E .Setup(1λ), and generates a pair of keys (pkU , skU). Algorithm S then
sends (ck , pkU) to A. Upon receiving a pair (s0, s1) from A, algorithm S for-
wards it to Cβ , and gets back c, a commitment to sβ . Algorithm S sends c to
A, and simulates, in protocol KeyEn, a proof of knowledge of a secret and of an
opening to c by calling on the simulator of proof system PoK. Thereafter, when-
ever A issues a key-derivation query, algorithm S , in protocol KeyDer, generates
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a pair of keys (ek , dk) ← E2.KeyGen(PP ) and an identity id ′ ∈R ID, computes
ct id

′
= E2.Enc(ek , id ′), and sends ek , t and ct id

′
to A. It then simulates a proof

of knowledge using the simulator of proof system PoK. Algorithm S ultimately
forwards the decision bit of A to Cβ . Note that∣∣∣Pr [Exppriv−0

E,λ (A) = 1
]
− Pr

[
Exppriv−1

E,λ (A) = 1
]∣∣∣ ≤∣∣∣Pr [Exppriv−0

E,λ (A) = 1
]
− Pr

[
Expcommit−0

C,λ (S(A)) = 1
]∣∣∣

+
∣∣∣Pr [Expcommit−0

C,λ (S(A)) = 1
]
− Pr

[
Expcommit−1

C,λ (S(A)) = 1
]∣∣∣

+
∣∣∣Pr [Expcommit−1

C,λ (S(A)) = 1
]
− Pr

[
Exppriv−1

E,λ (A) = 1
]∣∣∣ .

The first and third terms are negligible if proof system PoK is ZK and E2 is
IND-CPA secure. The second term is negligible (or rather nil) if C is (perfectly)
hiding. ut

Proof (of Theorem 3 – LD-IND-CCA Security). We prove that the LD-IND-
CCA security of E can be reduced to the IND-CCA security of E0. Indeed, if A
is an adversary for the LD-IND-CCA security game, consider S , an algorithm
which interacts with A and the challenger C of the IND-CCA security game.
Upon receiving a public key pkU from C , algorithm S generates a commitment
key ck , and forwards pkU and ck to A. When A sends a commitment c, a secret s
and an opening o to S , the latter runs KeyEn.U(ck , c, s, o, pkU ,⊥). If the protocol
terminates, the enhanced public key of S is set to (pkU , c, id , σ) for an identity id
and a signature σ generated by A. Afterwards, whenever A requests the decryp-
tion of a ciphertext, S forwards its first part to C , and can subsequently answer
the request. Key-derivation queries can be directly answered by S as skU is not
needed in the protocol. Upon receiving a challenge tuple (m0,m1, t, pk T ) from A,
algorithm S generates m ∈RM, sends (m⊕m0,m⊕m1) to C , gets back a chal-
lenge ciphertext ct∗, computes ct1 = E1.Enc(pk T ,m, {t, id}), and sends (ct∗, ct1)
to A. Whenever A requests the decryption of a ciphertext ct = (ct0, ct1) such
that ct0 6= ct∗, algorithm S forwards ct0 to C , and then follows the rest of the
decryption procedure to answer the query. Algorithm S ultimately forwards the
guess of A to C . As S perfectly simulates the LD-IND-CCA-game challenger to
A, its advantage in the IND-CCA game is at least that of A in the LD-IND-CCA
game. If the latter were non-negligible, then so would be former, and the IND-
CCA security of E0 would be contradicted. ut

Proof (of Theorem 4 – Untraceability). As users encrypt their identities to re-
quest keysm if E2 is IND-CPA secure and PoK is ZK, the third-party cannot infer
any information about the user identities during protocol KeyDer. Let H (1λ) be
an algorithm which interacts with an adversary A(1λ) of the traceability exper-
iment. It runs E .Setup(1λ), and sends the resulting public parameters PP to A.
When A sends a challenge tuple (esk0, esk1, t), algorithm H simply generates
id ∈R ID and a pair of keys (ek , dk) ← E2.Setup(1λ). Whenever A requests a
key for a time period t, algorithm H computes ct id = E2.Enc(ek , id), and sends
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(ek , t, ct id) to A, simulates a proof for Relation 1 by running the simulator of
PoK, and proceeds like KeyDer.U in the remaining of the protocol; and otherwise
does not perform any computation. Since∣∣∣Pr [Exptrace−0

E,λ (A) = 1
]
− Pr

[
Exptrace−1

E,λ (A) = 1
]∣∣∣ ≤∣∣∣Pr [Exptrace−0

E,λ (A) = 1
]
− Pr [A(H ) = 1]

∣∣∣
+
∣∣∣Pr [A(H ) = 1]− Pr

[
Exptrace−1

E,λ (A) = 1
]∣∣∣ ,

if PoK is ZK and E2 is IND-CPA secure, then the upper bound is negligible, and
the advantage of A is thus negligible. ut

Proof (of Theorem 5 – Recoverability). It suffices to prove that with a proba-
bility close to δ, when given ciphertexts generated for the time period and the
identity for which Rec is δ-correct, and encrypting messages with distribution
D, algorithm B requests the third-party secret key corresponding to the time
period and the identity.

As soon as this event occurs, algorithm Rec runs extractor K to extract a
secret. Since the commitment and the identity used in the witness for the proof
are signed by the key-enhancement authority, algorithm Rec must send, with
overwhelming probability, the commitment and an encryption of the identity
that are in the user enhanced public key. As the commitment scheme is binding,
the extracted secret is therefore the one that was used in the key-enhancement
protocol.

To this end, consider the following hybrid algorithms that interact with
a recoverability-game adversary A, and each of which first proceeds like the
recoverability-game challenger, ends up with a user enhanced public key that
contains an identity id , and then receives from A an algorithm B claimed to be
δ-correct in a time period t with respect to a distribution D.

H0 that generates m←$D, m1 ∈R M, submits ciphertext (E0.Enc(pkU ,m ⊕
m1), E1.Enc(pk T ,m1, {t, id})) to B. Whenever B sends a tuple (ek ′, t′, ct id

′
),

and then succeeds in protocol PoK, algorithm H0 computes a derived secret-
key sk t

′,id′

T ← Der0(sk T , t
′, ek ′, ct id

′
), and sends it to B; and

H1 which generatesm←$D,m1,m
′
1 ∈RM, submits ciphertext (E0.Enc(pkU ,m⊕

m1), E1.Enc(pk T ,m
′
1, {t, id})) to B, and then proceeds like H0.

Let E denote the event in which id ′ = id , and F the event in which B succeeds
in protocol PoK. Assume Pr

[
F
]
not to be nil, and observe that

Pr
[
E ∪ F

]
≤ Pr

[
B(H0) = m

]
+ Pr

[(
E ∪ F

)
∩ {B(H0) = m}

]
≤ Pr

[
B(H0) = m

]
+ Pr

[
E ∩ F

]
+ Pr

[
F ∩ {B(H0) = m}

]
≤ Pr

[
B(H0) = m

]
+ Pr

[
E ∩ F

]
+ Pr

[
B(H0) = m|F

]
. (2)
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Lemma 1. There exists an algorithm S such that∣∣Pr [B(H0) = m|F
]
− Pr

[
B(H1) = m|F

]∣∣ ≤ Advph−cpa
E1,λ (S) .

Proof. If algorithm B fails in protocol PoK, then it does not get a derived secret
key from KeyDer.T, and can only distinguish the two hybrids by distinguishing
the plaintexts encrypted with E1. A complete proof is given below. ut

Lemma 2. There exists an algorithm S such that

Pr
[
E ∩ F

]
≤ Adveuf−cma

S,λ (S) + negl(λ).

Proof. If algorithm B succeeds in protocol PoK without having sent an encryp-
tion of the identity that it was given, then by the soundness of the proof system,
it must have forged a signature. A full proof is given below. ut

In addition to that, Pr
[
B(H1) = m|F

]
≤ p(D) as the ciphertext that B re-

ceives bears no information about m1. Algorithm B can therefore only guess
m, and it can be done with probability at most p(D), the predictive probablity
of distribution D. Therefore, combining the previous two lemmas, Equation 2
implies that

Pr
[
E ∪ F

]
. Pr

[
B(H0) = m

]
+Advph−cpa

E1,λ (S) +Adveuf−cma
S,λ (S) + p(D)

. 1− δ +Adveuf−cma
S,λ (S) +Advph−cpa

E1,λ (S) + p(D).

Thus, setting

δ̃ = δ −Adveuf−cma
S,λ (S)−Advph−cpa

E1,λ (S)− negl(λ)− p(D) = δ − p(D) + negl(λ),

it follows that Pr [E ∩ F ] ≥ δ̃.
If Pr

[
F
]
is nil, the conditional probability on F is not defined, but the lower-

bound still holds.
Algorithm Rec then does the following. It repeatedly submits ciphertexts

encrypting messages generated with distribution D. If B engages in protocol
PoK, algorithm Rec plays the role of the verifier. Until the end of the protocol,
B cannot tell Rec and KeyDer.T apart by definition of the latter. For N such

queries, B requests, with probability at least 1 −
(
1− δ̃

)N
, the secret key for

the time period in which it is claimed to be δ-correct and the identity in the
user enhanced public key. Performing N such queries for N large enough (e.g.,
ω(log λ)) makes it overwhelming. Once this event occurs, calling on K , which
can rewind B, a witness which contains a triple (c, s, o), with c the same as in
the enhanced public key, can be recovered with overwhelming probability. Since
C is binding, with overwhelming probability, s is the secret that was given by A
during the key-enhancement protocol. ut

Proof (of Lemma 1). Let S be an algorithm which interacts with A, and attempts
to distinguish two PH-CPA-game challengers: a challenger C0 that encrypts the
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first message and a challenger C1 that encrypts the second. After receiving a
public key pk T , algorithm S generates a commitment key ck , and sends (ck , pk T )
to A. When A sends a pair (s, pkU), algorithm S computes (c, o)← Com(ck , s),
sends (c, o) to A, and executes the key-enhancement protocol with A, running
KeyEn.A(ck , c, pkU) as a subroutine. S obtains an enhanced public key which
contains an identity id . Whenever A requests the execution of KeyDer.T(sk T , ck)
and sends a tuple (ek ′, t′, ct id

′
), if t′ > tc, then S returnrs ⊥, otherwise A and

S engage in protocol PoK as prover and verifier respectively. If A succeeds in
protocol PoK, algorithm S runs K , gets a witness that contains an identity id ′

with overwhelming probablility, and queries the secret key sk t
′,id′

T for attribute
set {t′, id ′} to the challenger with which it interacts. Algorithm S then returns
Der2(sk

t′,id′

T , ek ′) to A. If A does not succeed in protocol PoK, algorithm S sends
⊥ to A. When A sends an algorithm B, a distribution D and a time period
t > tc, algorithm S generates m←$D, m1,m

′
1 ∈RM, sends (m1,m

′
1, {t, id}) to

the challenger with which it interacts, and gets back a challenge ciphertext ct∗. It
then submits (E0.Enc(pkU ,m⊕m1), ct

∗) to B. When B sends a tuple (ek ′, t′, ct id
′
)

(if it does at all), conditioned on event F (i.e., B does not succeed in protocol
PoK), algorithm S returns ⊥. Algorithm S eventually outputs 1 if B outputs m,
and otherwise (B outputs m′ 6= m or ⊥) outputs 0. Conditioned on F , in case
the challenger is C0, algorithm S perfectly simulates H0 to A. Analogously, if the
challenger is C1, algorithm S perfectly simulates H1 to B, hence the claim. ut

Proof (of Lemma 2). Let S be an algorithm which interacts with A and the
existential-forgeability-game challenger C . Upon receiving a verification key vk ,
algorithm S generates a commitment key ck and third-party pair of keys (pk T , sk T ),
and sends (ck , pk T ) to A. Algorithm S then proceeds like the recoverablity-game
challenger until the key-enhancement protocol, in which, instead of generating a
signature pair of keys, asks C to sign the commitment and the identity (denote
it id) involved in the protocol. It carries on as the simulator of Lemma-1 until B
sends a tuple (ek ′, t′, ct id

′
) for id ′ 6= id , and succeeds in protocol PoK as prover,

which occurs in event E ∩F . Algorithm S runs K to extract, with overwhelming
probability, a witness which contains a commitment c, identity id ′ and a signa-
ture σ such that Verify(vk , (c, id ′), σ) = 1. Algorithm S then sends ((c, id ′), σ),
as a forgery, to C . As S perfectly simulates the recoverability-game challenger to
A conditioned on E ∩ F , the claim follows. ut

Multi-User Case. Should there be several users, the key-enhancement protocol
is executed once for each of the users with the restriction that a user’s identity
is chosen uniformly at random from the set of non-yet attributed identities. The
correctness, privacy, LD-CCA security and untraceability are proved in the very
same manner as in the single-user case. To recover the secret of at least one of a
set of colluding users, the recovery algorithm chooses uniformly at random the
enhanced public key of one of
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