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Abstract. In a highly influential paper from fifteen years ago [10],
Canetti, Goldreich, and Halevi showed a fundamental separation between
the Random Oracle Model (ROM) and the standard model. They con-
structed a signature scheme which can be proven secure in the ROM, but
is insecure when instantiated with any hash function (and thus insecure
in the standard model). In 2011, Boneh et al. defined the notion of the
Quantum Random Oracle Model (QROM), where queries to the ran-
dom oracle may be made in quantum superposition. Because the QROM
generalizes the ROM, a proof of security in the QROM is stronger than
one in the ROM. This leaves open the possibility that security in the
QROM could imply security in the standard model. In this work, we
show that this is not the case, and that security in the QROM cannot
imply standard-model security. We do this by showing that the original
schemes that show a separation between the standard model and the
ROM are also secure in the QROM. We consider two schemes that es-
tablish such a separation, one with length-restricted messages, and one
without, and show both to be secure in the QROM. Our results give
further understanding to the landscape of proofs in the ROM versus the
QROM or standard model, and point towards the QROM and ROM be-
ing much closer to each other than either is to standard model security.

1 Introduction

In this note, we show that there exist digital signature schemes that can be
proven secure against any poly-time quantum adversaries in the quantum random-
oracle model [7], but they can be broken by a classical poly-time adversary when
the random oracle is instantiated by any poly-time computable hash function
family. This extends to the quantum setting the impossibility of instantiating a
classical random oracle [3, 9, 10,18,26,28].

Given the classical result (e.g., [10]) that there exists a secure signature
scheme in the random oracle model but insecure under any efficient instanti-
ation, the first doubt to clear up is probably why it does not immediately follow
that a quantum random oracle cannot be instantiated as well. The reason is
that the signature scheme in the classical result may as well get broken in the



quantum random oracle model. In other words, all one needs to do is to prove
quantum security of these classical constructions in the quantum random oracle
model. This is exactly what this work does: we show that three examples in the
classical setting [9, 10, 26] can be proven secure in the quantum random oracle
model, and hence they demonstrate that the quantum random oracle model is
unsound in general.

We dive into an overview of the proofs right away, so that those who are
familiar with this subject can quickly digest the gist and walk away satisfied (or
disappointed). If you are a more patient reader, you can come back here after
enjoying the (more conventional) introduction.

Let us first review the classical examples [9, 10, 26] to be analyzed in the
quantum random oracle model, and we present them under a unified framework
which we hope will be easy to grasp. They all start with a secure signature
scheme Σ and a function F , and Σ is “punctured” so that the signing algorithm
would simply reveal the signing key when the function F is “non-random” (e.g.,
instantiated by a concrete hash function). To break it, an adversary just needs to
convince the signing algorithm that F is indeed non-random. Therefore, it boils
down to designing a proof system where a prover (adversary in the signature
setting) proves “non-randomness” of a given function to a verifier (signing algo-
rithm); whereas if the function is indeed random, no prover can fool the verifier
to accept. The natural approach to such a proof system is based off the intuition
that it is difficult to predict the output of a random oracle on an unknown input.
The three classical examples nurture this intuition in two variations: predicting
on a single input or multiple inputs.

1. The basic idea in [10] is to have the prover provide an input where the output
is predictable and can be efficiently verified by the verifier. For starters,
suppose we want to rule out a specific hash function H, then the prover
can pick an arbitrary x and the verifier just checks if F (x) = H(x). The
verifier always accepts when F is instantiated by H, but accepts only with
negligible probability if F is random. This immediately implies that for any
function family, in particular the family of poly-time computable functions
H = {Hλ = {Hs}s∈{0,1}λ}3, we can construct a signature scheme following
the idea above, where a (random) member in H is chosen as implementation
of F , and the signing algorithm reveals the signing key whenever the “non-
randomness” verification passes. Note that, nonetheless, the construction
depends on the function family, which is weaker than the goal of establishing
a signature scheme that is secure in the random oracle model, but insecure
however when implement it from function family H.

Diagonalization comes in handy to reverse the quantifiers. The prover will
provide a description s of a function Hs, which purportedly describes the
function F . Then the verifier runs Hs on s and checks if it matches F (s).
Clearly, when F is implemented by a member Hs ∈ H, the description s

3 We assume a canonical encoding of functions into binary strings, under which s is
the description of a function. Complexity is measured under security parameter λ.
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is public (i.e., part of the verification key), and it is trivial for the prover
to convince the verifier. Nonetheless, if F is a random oracle O, the event
O(s) = Hs(s) occurs only with negligible probability for any s that a prover
might provide.
A technicality arises though due to the time complexity for computing Hs(s)
for all H. Loosely speaking, we need a universal machine for the family H
that on a description s computes Hs(·). Such a machine exists, but would
require slightly super-polynomial time, which makes the verifier (i.e., sign-
ing algorithm) inefficient. This final piece of the puzzle is filled by CS-proofs
introduced by Micali [27]. A CS-proof allows verifying the computation of a
machine M , where the verifier spends significantly less time that the time
to run M directly. This naturally applies to the problem here. Instead of
running the universal machine to check Hs(s) = F (s) by the verifier, the
prover generates a CS-proof on the input 〈M, s〉F (relative to F ) certifying
the statement M(s) := Hs(s) = F (s), which the verifier can check in poly-
time. When F = O is a random oracle, 〈M, s〉O (relative to O) is almost
always a false statement, and the soundness of the CS-proof ensures that ver-
ifier will reject with high probability. Micali proved in general the soundness
of CS-proofs in the random oracle model (to avoid confusion, in CS-proofs
think of an random oracle independent of F ).

2. Another strategy for proving “non-randomness”, as employed in Maurer et
al. [26] and Canneti et al. [9], is to predict on multiple inputs. This offers a
direct information-theoretical analysis without relying on CS-proofs.
In essence, a prover provides a machine π that allegedly predicts the output
of F on sufficiently many inputs, and the verifier can run π and compare
with the answers from F . This is easy for the prover when F is instantiated
by F where the description s is given. On the other hand, by tuning the
parameters, a counting argument would show that the randomness in a ran-
dom oracle is overwhelming for any single machine (even inefficient ones!)
to predict. Specifically, the “predicting” machine π needs to match with F
on q = 2|π|+ λ inputs (i.e., the number of correct predictions has to be sig-
nificantly more than the length of the description of the machine). Suppose
that F is a random oracle O ← {f : {0, 1}∗ → {0, 1}} that outputs one
bit (for the sake of simplicity), then for any π the probability that it will
match O on q inputs is at most 2−(2|π|+λ). A union bound on all machines
of length n shows that pn, the probability that some length-n machine is
a good predictor, is at most 2n · 2−(2n+λ) = 2−n−k. Another union bound
shows that regardless of their length, no machine can be a good predictor,
since p :=

∑∞
n=1 pn = 2−λ

∑
n 2−n ≤ 2−λ−1 is negligible.

3. Both examples above suffer from an artifact. Namely the signature schemes
need to be able to sign long messages or otherwise maintain states of prior
signatures. This is rectified in [9], where a stateless scheme that signs only
messages of polylogarithmic length is proven secure in the random oracle
model but insecure under any instantiation.
At the core of this construction is an interactive counterpart of the non-
interactive proof system in part 2 above. It can be viewed as a memory
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delegation protocol, where a verifier with limited (e.g., poly-logarithmic)
memory wants to check if the machine provided by the prover is a good pre-
dictor. Roughly speaking, it will execute the machine step by step and use
the prover to bookkeep intermediate configurations of the machine. However,
the configurations may be too long for the verifier to store and transit to the
prover. Instead, the verifier employs a Merkle tree and only communicates
an authentication path of the configuration with the prover. In particular,
the verifier will memorize only a secret authentication key in between sub-
sequent rounds. The security of the “punctured” signature scheme reduces
to essentially a stronger unforgeability of a valid authentication path in a
Merkle tree with respect to a random oracle, which is proven classically.

Proving security of separation examples in QRO. Once the constructions and
classical analysis are clearly laid out, proving their security in the quantum ran-
dom oracle model becomes more or less mechanic, given the techniques developed
for QRO so far [1, 2, 16,33,34].

1Q. (Example in [10] with CS-proofs.) Following the classical proof, we first show
that the quantum security reduces to one of three cases: 1) hardness of a
Grover-type search problem, which ensures that an adversary cannot feed the
CS-proof a true statement in the case of a random oracle; 2) security of the
original signature scheme; and 3) soundness of CS-proofs against quantum
adversaries. A precise query lower bound for the search problem follows by
standard techniques. And thanks to a recent work [11], CS-proofs are proven
sound against quantum adversaries.

2Q. (Example in [9, 26] based on information-theoretical analysis.) It is easy to
verify that the information-theoretical argument sketched above holds re-
gardless of the kind of adversaries, and as a result the “punctured” signature
scheme remains secure in the quantum random oracle model (and against
quantum adversaries).

3Q. (Example in [9] that only needs to sign short messages.) Our proof follows
the classical one, where we first carefully verify and lift the reduction to the
(stronger) unforgeability of Merkle tree against quantum adversaries, and
then prove this property in the quantum random oracle model.

Specifically, we can model the unforgeability game as follows. Think of two
correlated random oracles O : {0, 1}∗ → {0, 1}`(λ) and O′ := O(ak, ·) where
ak is a random authentication key kept secret. Given quantum access to
O and classical access to O′, the adversary needs to come up with an
authentication path (〈σ1, . . . , σd〉, 〈(v1,0, v1,1), . . . , (vd,0, vd,1)〉, t) where σi ∈
{0, 1}, t = O′(d,O(0, v1,0, v1,1)) and vi,σi = O(i, vi+1,0, vi+1,1) for every
i = 1, . . . , d − 1. We prove that this is infeasible by reductions from a ran-
domized decisional search problem and collision finding in random func-
tions [8, 21,35].

4



Background and motivation. The random oracle model, since its introduction [4],
has proven a popular methodology for designing cryptographic schemes4. Basi-
cally a construction is first described and analyzed in an idealized setting where
a random function is available as a black-box. To implement it in the real-
world, one substitutes a cryptographic hash function for the random oracle.
This methodology often leads to much more efficient schemes than alternatives.
Examples include digital signatures by the Fiat-Shamir transform [17], hybrid
public-key encryption following Fujisaki-Okamoto-type transforms [5], as well
as succinct non-interactive zero-knowledge arguments that rise with the trend-
ing technology of blockchain and cryptocurrencies [31]. Its popularity is also
attributed to the fact that one can often prove security in the random oracle
model which is otherwise much more challenging or simply unknown.

It is, however, exactly the latter advantage that stirred considerable debate.
What does a security proof in the random oracle model mean? To be pragmatic,
a random-oracle proof at least serves as a sanity check that rules out inherent
design flaws. Indeed, in practice most constructions that are instantiated from
ones proven secure in the random oracle model have stood up extensive crypt-
analysis. More formal pursuit, however, arrives at an irritating message. There
are separation examples which show secure constructions in the random oracle
model, but will be trivially broken whatever “nice” functions we use to instan-
tiate the random oracle. Namely, the methodology is unsound in general. This
does not mean all schemes following this approach are insecure. In fact, some
random-oracle scheme can be instantiated under strong but reasonable assump-
tions and achieve desirable security in the real-world [24]. To say the least, a
question mark lingers on schemes developed under this methodology.

Quantum computing adds another layer of complication to the issue here
(and the overall landscape of cryptography). Because of the threats to widely
deployed cryptosystems [32], a growing effort is undertaken to design and tran-
sition to so called post-quantum cryptography – a new set of cryptosystems that
hopefully resist quantum attacks. In particular, the random oracle model has
been re-examined in the presence of quantum adversaries. Since eventually a
scheme (designed in RO) will be realized via a cryptographic function, whose
specification is known in public, a quantum adversary can in principle construct
a coherent quantum circuit that evaluates the hash function in quantum su-
perposition. Consequently, when analyzing the scheme in the idealized setting,
it seems necessary to grant quantum superposition queries to the random or-
acle by a quantum adversary. This brings about the quantum random oracle
model [7]. The rationale is, very informally, good cryptographic functions are
lacking structures for a quantum computer to exploit (aside from generic speedup
due to quantum search), and hence realizing a scheme proven secure relative to
a quantum random oracle this way is a fine practice.

Formally analyzing security in the quantum random oracle model turns out
to be challenging. Many classical proof techniques, such as simulating and pro-

4 According to Google Scholar, [4] has a citation count at 5089 (November 2019), which
would be ranked top 20 at a (dated) list of most cited computer science papers [12].
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gramming a random oracle on-the-fly or recording the queries, seem to fail due
to unique features of quantum information. Thanks to a lot of continued effort,
in recent years, researchers managed to develop various techniques for reasoning
about the quantum random oracle model, and restored the security of many
important constructions against quantum adversaries [2, 13, 14, 16, 20–22, 30, 33,
35, 36]. In fact, quantum random oracle model is becoming a booming research
topic. To get an idea, as of writing, there are 166 citations in total of [7] and
about 90 since 2018, of which about 60 came out since 2019. Also out of the 9
signature scheme submissions that made the second round of the post-quantum
cryptography standardization at NIST [29], 5 of them involve the quantum ran-
dom oracle. This just adds more at stake regarding “what does it mean that a
scheme is proven secure in the quantum random oracle model?”

How to interpret this result? Our work show that in general, security in the
quantum random oracle model could be vacuous in a real-world implementa-
tion. What is the real implication though? There seems a dilemma, probably
more puzzling than the classical situation. On the one hand, since a quantum
adversary is given more power (e.g., quantum computation and superposition
access), security in the quantum random oracle provides more justification that
the construction is solid. And this indeed explains the difficulty in establishing
security in the quantum random oracle. Putting it in the converse way, it might
occur that the classical separation examples will be broken in this model that is
more “generous” to potentially more powerful quantum adversaries. Our work
nonetheless shows otherwise, and it in fact reveals the other side of the dilemma.
Any bit of success in restoring proof techniques in the quantum random oracle
model just casts another bit of shadow on this methodology, since the seeming
stronger quantum security does not promise the security of real-world imple-
mentations, not even their security against classical adversaries only.

On the other hand, researchers have pointed out that the security of well-
designed schemes proven to be secure in the random oracle model have fared well
in retrospect [25]. The use of the random oracle model to get a proof can allow
for schemes that are simpler and more efficient than those in the standard model.
While proofs in the quantum random oracle model are naturally more difficult,
every year new techniques, more general and user-friendly, are developed to
establish quantum random oracle model security [14, 19, 21, 36]. This has lead
researchers to question what guarantees security in the quantum random oracle
provides versus the classical random oracle model. In this line, our results can
be taken as further justification that the difference between these models does
not appear to be a large one, as their relation to the standard model is the same.

2 Background

2.1 The (Quantum Random) Oracle Model

The random oracle model, originally devised in [4], replaces any a cryptographic
hash function with an entirely random oracle. The reduction algorithm is often
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allowed to manage this oracle, and can perform operations like looking up the
queries that the adversary makes to it, or programming the oracle on inputs of
interest. Using the random oracle model can often greatly simplify a proof or
even enable a proof where otherwise not known or possible.

The intuitive idea behind the soundness of the random oracle methodology
is that an adversary interacting with a scheme is unlikely to take advantage of
the structure of the hash function. For most cryptographic schemes, even the
adversary is likely to treat the hash function as a ‘black box’, and so by treating
it as such, we can derive proofs for schemes that otherwise may not exist.

However, as pointed out in an influential paper by Boneh et al. [7], the ran-
dom oracle model makes a fundamentally classical assumption about how an
adversary interacts with the hash function (or random oracle). If we are con-
cerned about an adversary who has access to a quantum computer, than we can
assume that such an adversary is capable of instantiating the hash function on a
quantum computer and making queries to it in superposition. Such behaviour is
excluded by the random oracle model, and so when considering a quantum ad-
versary, a more cautious approach for proofs is to consider the quantum random
oracle model.

In the quantum random oracle model, the reduction algorithm still manages
the oracle, but now the adversary must be allowed to make a superposition
query to this oracle. For an oracle O : D → R, the reduction provides access to
a unitary UO which performs the action

UO :
∑

x∈D,y∈R
αx,y|x〉|y〉 7→

∑
x∈D,y∈R

αx,y|x〉|y ⊕O(x)〉,

where the input must be a valid quantum state, i.e., the sum of the square
amplitudes of the αx,y’s must be 1.

2.2 Notation

For clarity, we will denote a random oracle as O, while actual instantiations of
random oracles (e.g., typically hash functions) are denoted H. When describing
a scheme where a function may replaced with a random oracle in the proof, or
with a hash function in the real world, we will denote this function with F . The
security parameter of a scheme is denoted by λ, while the output length of a
hash function is denoted n. While we separate these two values for generality
and expressiveness, throughout this work it is the case that λ = n.

2.3 Computationally Sound Proofs

Computationally sound proofs [27] are a construction introduced by Micali in
2000. They are a proof system, allowing a prover to prove knowledge of a witness
for a language L in poly-logarithmic time. In our context, CS-proofs are useful
for showing the validity of a computation without having to run the computa-
tion. Imagine a description of an arbitrary function f , which may take super-
polynomial time to run on an input x, but will result in f(x) = y. A CS-proof
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system allows us to generate a proof π that f(x) = y. Even though f may
take a super-polynomial amount of time to run, the CS-Proof verification sys-
tem allows a verifier, on input of f , x, y, and π to verify that f(x) = y in only
poly-logarithmic time.

The soundness of CS-proofs was originally shown in the random oracle model.
Until recently, the soundness of the construction in the quantum random oracle
model was an open question. In a breakthrough result by Chiesa et al. [11], the
soundness of CS-proofs in the quantum random oracle model was shown. The au-
thors did this by showing some innovations that extend ideas from Zhandry [36].

For our purposes, a CS-proof system consists of two algorithms: CSProve and
CSVerify. Both algorithms implicitly take a security parameter λ. CSProve also
takes in a function f and an input x, and returns a value y and a proof π. The
CSVerify function takes in a function f , an input x, an output y, and a proof π.
It returns either accept or reject, based on the validity of the proof. Crucially,
the CSVerify function runs in time poly-log in the security parameter λ, and not
in relation to the time it takes f to run.

The correctness property states that for an honestly generated proof π, the
CSVerify function will always accept. The soundness property ensures that if
f(x) 6= y, then it is computationally infeasible to find a proof π that will cause
CSVerify(f, x, y, π) to return accept.

3 Instantiating Quantum Random Oracles

In this section we define three signature schemes, Σ1, Σ2, and Σ3, such that:

– Σ1 is secure in the quantum random oracle model, but insecure if that ran-
dom oracle is instantiated with some specific hash function H.

– Σ2 is secure in the QROM, but insecure when the random oracle is instan-
tiated with any of a pre-defined set of hash functions {H1, . . . ,Hm}.

– Σ3 is secure in the QROM, but insecure if the random oracle is ever instan-
tiated with any polynomial-time function.

These signature schemes lift the results in [10] to the quantum random oracle
model. In all cases, the only assumption we require is that we have a signature
scheme Σ0 = (KeyGen0,Sign0,Vrfy0) which is existentially unforgeable in the
quantum random oracle model. Examples of schemes proven secure in the quan-
tum random oracle model with no additional assumptions include the stateful
LMS signatures [15] and the stateless SPHINCS+ framework [6] (both hash-
based signatures). If one is willing to accept a computational assumption such
as ring-LWE, many other signature schemes, including several of those under
consideration in the NIST standardization process serve as examples [23].

3.1 Warm up — schemes Σ1 and Σ2

The first step in considering the instantiation of a random oracle is to consider
instantiation with a single hash function, H. Then we can define the scheme Σ1

as follows. Clearly this scheme satisfies the correctness property, as Σ0 does.
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Signature scheme Σ1

– KeyGen1(1λ): Generate (pk, sk)← KeyGen0(1λ), and return.
– Sign1(sk,msg):
• Compute σ0 = Sign0(sk,msg).
• Check to see if F (msg) = H(msg). If so, return σ1 = σ0||sk.
• Otherwise, return σ1 = σ0||0.

– Vrfy1(pk,msg, σ1):
• Parse σ1 as σ0||x.
• Run Vrfy0(pk,msg, σ0).

This scheme is eu-acma secure in the (quantum) random oracle model, where
F is replaced with an oracle O. This is intuitively because in this case, the
security reduces to that of Σ0 unless an adversary is able to find a msg such
that O(msg) = H(msg) (which occurs for every possible input with uniform and
independent probability 1/2n).

Furthermore, this scheme is insecure if it is instantiated with H replacing
the random oracle. Then the adversary is able to trivially break security, as the
condition H(msg) = H(msg) is always satisfied and σ1 = σ0||sk will be returned
for any message.

The next step is considering a finite collection of m hash functions, say H =
{H1, H2 . . . , Hm}.

Then we can define Σ2 similarly to Σ1, but change the condition to first
check if msg ∈ {1, . . . ,m} (in some encoding of the integers 1 through m) and if
so, further check if F (msg) = Hmsg(msg).

The analysis in the (quantum) random oracle model is again fairly straight-
forward. For any random oracle O, the probability that O(i) matches Hi(i) for
any of i = 1 to m is at most m · 1

2n . When m is small (e.g., polynomially sized
in λ), this is small enough that it is likely to not be possible that an adver-
sary can make a query that provides them with sk. Even for a large m, each
i ∈ {1, . . . ,m} will have the property that O and Hi match with probability
1/2n, and so an adversary must perform an unstructured search to find such
an i. Hence an adversary’s ability to break Σ2 in the (quantum) random oracle
model reduces to their ability to break Σ0.

However, as before, if F is actually replaced by any one of the Hi’s, an
adversary can easily break the scheme by querying i to the signing oracle.

3.2 Signature scheme Σ3

Schemes Σ1 and Σ2 are only to gain an intuition for the full result, Σ3, which is
a signature scheme that is secure in the quantum random oracle model, but in-
secure when the oracle is instantiated with any polynomial-time function as the
hash function. Following the strategy for Σ2, we would like to fix some enumera-
tion of all algorithms that one may use as a hash function, sayH = {H1, H2, . . . },
with Hi : {0, 1}∗ → {0, 1}n. Then as before, we would modify an eu-acma secure
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scheme Σ0 to introduce a check in the signing algorithm to interpret msg as
a non-negative integer, and check if F (msg) = Hmsg(msg). However, there are
several issues that must be resolved to make this fully rigorous. Such a set of
functions cannot simply be defined and used in the signature scheme, as the
signature scheme requires that on input i, hash function Hi is actually run.

To fix this, we start with an enumeration of all algorithms,A = {A1, A2, A3, . . . }.
We make no assumptions about this enumeration except that we can efficiently
swap between the index i and some standard description ofAi. Changing between
Ai and i should not be seen as a computational task to carry out, but rather a
reinterpretation of the same data. Algorithms are encoded, using some standard
encoding depending on the computational model, into bit strings, which can
then easily be interpreted as an integer. To think of a construction that achieves
this, it is helpful to think of quantum circuits. If we are working with l registers,
then we can interpret the index i as a value in {0, 1}∗ which specifies which gates
are applied to which registers in what order. From a description of a quantum
circuit, it is easy to convert this into a binary string, and then an index, and
vice versa. To be reversible and match the format of a hash function, we can
then consider all circuits that perform the mapping |x〉|y〉 7→ |x〉|y ⊕Ai(x)〉.

Note that not all of these algorithms necessarily run in polynomial-time in the
security parameter. It is of course impossible to tell which algorithms will even
terminate. We would like to assume that when a random oracle is instantiated,
the function it is instantiated with will run in polynomial time in the security
parameter. As well, these algorithms do not necessarily have the correct output
length of n bits.

To fix this, we modify each algorithm in the following way: For each algo-
rithm, stop after taking nlogn steps, and pad or truncate the output (in an
arbitrary way) so that each algorithm always outputs n bits. The value nlogn

is chosen so it bounds all polynomial-time algorithms. We enumerate our modi-
fied algorithms H = {H1, H2, . . . }. Notice that any algorithm that is polynomial
time, and outputs n bit binary strings is unmodified. So, any function that would
be used as a hash function is not affected by this.

We can then make a first attempt at defining Σ3. Given an eu-acma (in
the quantum random oracle model) signature scheme Σ0 and an enumeration of
hash functions H as described above, we define Σ3 as follows.

There is a very noticeable problem in this scheme. We bounded the run time
of the Hi’s by nlogn, in order to make sure that we could leave every polynomial-
time algorithm unaffected. However, any algorithm Ai that runs in ≥ nlogn

steps will be modified to run in nlogn steps. If a message msg is signed which
corresponds to such an algorithm, the signer will have to evaluate Hmsg(msg).
This means that the signing algorithm does not run in polynomial time in the
security parameter, and so it does not fit a valid definition of a signing algorithm.

To resolve this issue, CS-proofs are employed.

Rather than directly checking to see if F (msg) = Hmsg(msg), we can in-
stead accept a CS-proof π that F (msg) = Hmsg(msg). This scheme is still trivial
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Signature Scheme Σ3, first attempt

– KeyGen3: The key generation algorithm remains the same as in the original
scheme Σ. Run KeyGen0(1λ) and return (pk, sk).

– Sign3: On input of a message msg, and the secret key sk, do the following:
• Compute σ0 ← Sign0(sk,msg).
• Interpret msg as a non-negative integer. Compute Hmsg(msg).
• Check to see if F (msg) = Hmsg(msg).
• If so, return signature σ3 = σ0||sk. Otherwise, return σ3 = σ0||0lsk .

– Vrfy3: On input of a message msg, a signature σ3 and a public key pk, we parse
σ3 as σ0||x, where x is a (possibly all zero) string of length lsk. Then compute
and return Vrfy0(pk,msg, σ0).

to break when F is instantiated, but we are now guaranteed that the signing
algorithm always runs in polynomial time, no matter what is queried.

Signature Scheme Σ3, correct with CS-proofs

– KeyGen3: The key generation algorithm remains the same as in the original
scheme Σ0. Run KeyGen0(1λ) and return (pk, sk).

– Sign3: On input of a message msg, and the secret key sk, do the following:
• Compute σ0 ← Sign0(sk,msg).
• Using some standard parsing rule, parse msg as i||π, an index i and a string
π.

• Run CSVerify to check if π is a CS-proof that Hi(i) = F (i).
• If so, return signature σ3 = σ0||sk. Otherwise, return σ3 = σ0||0lsk .

– Vrfy3: On input of a message msg, a signature σ3 and a public key pk, we parse
σ3 as σ0||x, where x is a (possibly trivial) string of length lsk. Then compute
and return Vrfy0(pk,msg, σ0).

This allows us to state the main theorem of our paper.

Theorem 1 (Security of Σ3). Let g : {0, 1}∗ → {0, 1} be a random function
such that for each x, Pr[g(x) = 1] = 1

2n and all outputs of the function are
independent.

Let Q be a quantum adversary capable of breaking the existential-unforgeability
of Σ3 with probability p in the quantum random oracle model. Then there exists
a reduction algorithm R that, in slightly super-polynomial time, is capable of ei-
ther breaking Σ0, breaking the computational soundness of the CS-proof system,
or finding an x ∈ {0, 1}∗ such that g(x) = 1.

3.3 Proof of Theorem 1

To prove that Σ3 is secure in the quantum random oracle model, we reduce its
security to the adversary’s ability to do one of three things:
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– Break signature scheme Σ0 in the quantum random oracle model in slightly
super-polynomial time.

– Find a marked item with respect to a random oracle g.
– Break the computational soundness of a CS-proof in the quantum random

oracle model.

The reduction algorithm has two main components: How it answers random
oracle queries and how it answers signature queries.

For handling a random oracle, we will need to construct a pseudo-random
function f that takes in two parameters: x and y. This function must satisfy
that f(x, y) is a uniform random element from the set {0, 1}n \ {y}. Such a
function can be quickly constructed on a quantum accessible circuit by using
2q-wise independent hash functions.

Then consider the following oracle:

O(i) =

{
Hi(i) if g(i) = 1

f(i,Hi(i)) otherwise
(1)

By creating the proper quantum-accessible circuits, we can create such a
circuit that implements such an oracle in super-polynomial time. We will give
the adversary Q access to this oracle.

We also need to show that the adversary cannot distinguish between this
oracle and a truly random oracle. In fact, we can show something stronger than
this, that this is in fact a truly random oracle. To see this, take any y ∈ {0, 1}n,
and any i ∈ {0, 1}∗ and consider Pr[O(i) = y].

Pr[O(i) = y]

= Pr[g(i) = 1] Pr[O(i) = y|g(i) = 1] + Pr[g(i) = 0] Pr[O(i) = y|g(i) = 0]

=
1

2n
Pr[O(i) = y|g(i) = 1] +

2n − 1

2n
Pr[O(i) = y|g(i) = 0].

Then note that

Pr[O(i) = y|g(i) = 1] =

{
1 if y = Hi(i)
0 otherwise

Pr[O(i) = y|g(i) = 0] =

{
0 if y = Hi(i)
1

2n−1 otherwise

In either case, putting these values into the equation gives that Pr[O(i) =
y] = 1

2n . Furthermore, we can see that as long as g and Hi are each 2q-wise
independent, the overall hash function is 2q-wise independent, and so we have
that this gives us an oracle that is indistinguishable from a truly random one,
even by a quantum adversary.

We next describe how the reduction algorithm R handles the signature
queries. On input of a query msg, our reduction does the following:
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– Parse msg as i||π, an index i and a string π.
– Run the CS-verification procedure, with π as the potential proof that Hi(i) =
O(i). If it accepts, check if Hi(i) = O(i)
• If it is, then by construction, g(i) = 1 and we have successfully found

such an i, and may stop.
• If it isn’t, then we have a CS-proof of a false fact, and may stop.

– If it did not accept, then query the challenger for a signature on msg under
the scheme Sign0 and return the signature σ0||0lsk to Q.

If we never stop on any signature query, then eventually the adversary would
submit a forgery (msg∗, σ∗3), where msg∗ was never submitted to the signing ora-
cle. We may then parse σ∗3 as σ∗0 ||x. If this forgery is accepted by the verification
procedure Vrfy3, then msg∗, σ∗0 will form a forgery with respect to Σ0.

4 Signing short messages

In this section we describe the scheme that appears in [9] and argue that the
proof of security that appears in that work translates to the quantum random
oracle model. This scheme has the same restrictions as the one that appears in
the previous section — we want a scheme that is secure in the quantum random
oracle model, but insecure when the scheme is instantiated with any polynomial-
time function. At a high level, this is accomplished in the same way as before. The
signing algorithm will interpret all submitted messages as a potential description
of a hash function, and check to see if this hash function matches the random
oracle in such a way that proves that the random oracle is in fact, the hash
function. The main distinction is that the signing algorithm will only accept
messages of length poly-logarithmic in the security parameter. This means that
the usage of CS-proofs is no longer a possibility. To overcome this, the authors
of [9] devised a proof system for an NP-language in which the verifier need only
accept multiple, short messages.

This proof system can then be turned into a signature scheme, and the adver-
sary (who acts as the prover) will submit a proof that the random oracle is not
random by making multiple signing queries. At first glance, it may seem that it
is not hard to construct a proof system that can take multiple short messages —
all we need to do is to take a proof system that requires one, large message and
send that message in multiple rounds. However, such a strategy would require
the verifier to be stateful. The verifier would need to “save” the messages that
the prover sends them to be verified against future messages. When translated to
the context of a signature scheme, this makes the signer stateful as well. To rule
out stateless signature schemes as well, the verifier in the proof system devised
in [9] needed to both accept only short messages and be stateless.

In this section we show that this proof system remains secure in the quan-
tum random oracle model. To do this, we first restate the proof system as it
appears in [9], and then discuss how it is used in a signature scheme similar to
section 3. Finally, we show how the security of the system remains unchanged
in the quantum random oracle model.
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4.1 A stateless interactive proof system with short messages

As mentioned, the proof system introduced in [9] is an interactive proof system
with the following goals:

– It must only require short messages, so that the signing algorithm only needs
to accept short messages.

– It must be stateless so that the signing algorithm also is.

– It must be unconditionally secure in the (quantum) random oracle model,
again so that the signature scheme may be as well.

At a high level, these goals are accomplished with the following strategy: the
proof that the verifier needs to process is modelled as a Turing machine. The
initial state to this Turing machine is “fed” to the verifier, one block at a time.
Each time a block of the initial state is fed to the verifier, they authenticate the
current configuration, and send an updated tag to the prover. This authentica-
tion tag is submitted to the verifier as part of each subsequent update.

Remember however, that the verifier is completely stateless. While we may
describe this process as the verifier learning the configuration of the Turing ma-
chine, what is really happening is that the verifier is incrementally authenticating
each part of the configuration, without ever knowing the whole state.

Once the initial state is “loaded” the prover then proceeds by having the
verifier execute the Turing machine, one step at a time. The prover needs to
tell the verifier the parts of the machine that they need to know, as well as
the authentication tags for those parts. The verifier can then execute one step,
update the authentication tags, and send these back to the prover so that they
may repeat the process. Since the authentication tags are small (more on this
later) and the prover only needs to communicate the parts of the Turing machine
that are necessary to execute one step, the communication in each round is small.
Because the authentication tags cannot be forged, the only way for the prover
to get the Turing machine to be in an accepting state (authenticated by the
verifier) is to have to walk the verifier through each step of the computation,
having them authenticate the process along the way.

We now expand on this sketch, starting by describing the machine that the
verifier will be executing to establish that the oracle is non-random.

Non-randomness machine MO(1k, π)

– Input π is interpreted as a description of a Turing machine. Let n = |π|.
– For i ∈ {1, . . . , 2n+ k} :
• yi = O(i).
• zi = π(i).
• If the first bit of yi and zi disagree, return reject.

– Return accept.
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The configuration is described in four tapes — the security parameter tape
sp, the oracle query tape q, the oracle reply tape r, and the worktape w initially
containing π. The security of M when O is a random oracle is shown in [9].

Lemma 1 ( [9], Proposition 2). If the oracle O is chosen uniformly, the prob-
ability that there exists a description of a Turing machine π such that MO(1k, π)
returns accept is less than 2−k.

Note that this lemma refers to the existence of a Turing machine π. This property
holds just as well when O is quantum-accessible.

To iteratively load and run the machine M , we need a mechanism for the
verifier to authenticate the current state of the machine, which is described by
the four work tapes (sp, q, r, w), the heads of the tapes h1, . . . , h4, and the finite
control F . These eight values describe entirely the state of the machine M . Using
some standard encoding method, they may be encoded as a binary string. It is
this string, denoted c that the verifier will be authenticating.

Say the oracle O returns values in {0, 1}n. Then we will pad the string c to
one of length n ·2d, where d is the smallest positive integer such that n ·2d ≥ |c|.
This allows us to construct a Merkle tree out of the string c, with the leaf nodes
consisting of bit strings of length n, and the tree having height d. The Merkle
tree is constructed out of the oracle O by setting, for level i of the tree, the value
of each node to be O(i, left, right), where left and right are the values (in {0, 1}n)
of the two nodes in the tree directly below.

Note, in particular, that domain separation is used to separate the different
levels, but not for the calculations within a level. This is done to speed up the
process of creating a Merkle tree when the configuration c is homogeneous. For
the parts of the work tapes that entirely blank (as they will be in the initial
configuration), when converted into a binary string, and then a Merkle tree,
their will be many repeated leaf values, which means that the entire tree can be
constructed in time polynomial in the security parameter, k.

The verifier will possess an authentication key ak, which is used to authen-
ticate the root of the Merkle tree as in a MAC scheme. The authentication tag
for the tree is computed as O(d, ak, root). The loading and execution machine
then proceeds as follows (Full details of this process are described in [9]).

1. The prover sends a message indicating that they wish to initialize the pro-
cess. In response, the verifier loads up a blank configuration c in which the
tapes are all empty, the heads are at a starting position, and the finite con-
trol is empty. They compute the root of the Merkle tree where this blank
configuration forms the leaf nodes, and authenticate the root of the tree,
sending the authentication tag back to the prover.

2. The prover loads the initial state of the machine M leaf-node-by-leaf-node.
For any leaf node i they wish to update, they send a message to the verifier
with the position they want to update, the Merkle tree verification path for
that leaf node, the new value they want that position to take on, and the
authentication tag for the most recent root node. The verifier uses the Merkle
tree verification path to reconstruct the root node, which it verifies with the
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authentication tag and its key ak. Once checked, the verifier produces an
authentication tag for the tree with the desired update, by swapping out the
leaf node value, computing the new resulting root node (again, by using the
Merkle tree verification path) and constructing a tag for the root node.

3. When the initial state of M has been loaded, the prover can then get the
verifier to begin executing M . To execute a step of M , the prover must send
any leaf nodes involved in one step of the computation (e.g., the leaf node
the header is pointed to, the values of the headers) and the Merkle tree
verification paths for those leaves, as well as the authentication tag. The
verifier computes one step of the Turing machine, recomputes the root node
for the new state, and sends the authentication tag for the new state to the
prover. If the machine reaches the accepting state, then the verifier accepts
the state as valid.

We now proceed to prove a lifting of Proposition 4 in [9] to the quantum
random oracle model.

Lemma 2. Let ak be chosen uniformly at random in {0, 1}n, then for any prover
P it holds that

Pr
O,ak

[
V O(1k, ak)→ accept

]
≤ O(q3/2n) (2)

Where q is the number of (quantum) oracle queries made by P.

Proof. As noted in Lemma 1, the probability over the randomness in O that
there exists an accepting machine π is less than 2−k. Assuming there does not
exist such a machine, a dishonest prover must somehow manage to trick the
verifier into reaching an accepting state. Because an accepting machine cannot
be loaded into the configuration, it must be the case that some machine which
should not accept was instead loaded, and the execution of this machine is then
tampered with by the prover. To tamper with the execution of the machine, the
adversary must, at some point, provide the verifier with a leaf node that was not
in the configuration that was just authenticated.

In order to load in a falsified leaf node, the adversary must still submit a cor-
rect authentication tag. There are two cases: either the associated authentication
tag was provided by the verifier, or it was not.

First we consider the case where the authentication tag was provided by the
verifier. We consider the first time the adversary submits a leaf node that cor-
responds to an invalid machine configuration. We know that the authentication
tag matches a previously issued one, but the corresponding leaf node was not
part of how the previous authentication tag was generated. There are two pos-
sibilities for how this may happen. It may be the case that (i) at some point
along the verification path we have values left, left′, right, right′ and i such that
O(i, left, right) = O(i, left′, right′). Of course, at most one of the left and right
values can be equal. The other possibility is that (ii) the root values of the re-
sulting Merkle trees are different, but we have a collision in the authentication
tag: O(d, ak, root) = O(d, ak, root′).
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Because an adversary who is able to break the soundness of the proof system
must provide enough classical information to be able to construct a collision in
the quantum random oracle O, we can bound the success probability simply by
the probability of being able to find such a collision. This can be asymptotically
bounded by a O(q3/2n) term.

The second case happens when the authentication tag for the invalid machine
configuration was never previously issued. This means that the adversary was
able to submit a tag t, a value d, and a Merkle tree path that leads to a value
root such that t = O(d, ak, root) when the value t was never before returned by
the verifier.

Intuitively, this is a structureless search problem on the part of the adversary:
in order to provide a valid authentication tag, they must perform an unstructured
search to find the ak value that causes authentication tags to accept. To formally
show this, we provide a reduction from an adversary who can create a new
authentication tag to one that can distinguish between to functions, g0 and g1,
both mapping {0, 1}n to {0, 1}. The function g0 simply returns 0 for all inputs
x, whereas for g1 there is precisely one random input on which g1 will return 1.

We are given quantum access to one of the two functions, gb, and asked to
determine b. To do this, we first construct two independent quantum-accessible
random oracles O0 and O1. We then construct the oracle O as follows:

O(d, x, y) =

{
O0(d, x, y) if gb(x) = 0
O1(d, y) if gb(x) = 1.

(3)

Note that since there is at most one x for which gb(x) = 1, O is itself a random
oracle, for anyone who does not have direct access to O0 and O1.

When the verifier needs to produce an authentication tag on an input (d, root),
this can simply be done by computing t = O1(d, root). Then note that these tags
will be valid authentication tags with respect to some authentication key only
when b = 1, in which case the valid authentication tag will be the value x such
that g(x) = 1.

When b = 1, the authentication tags that are issued by the verifier will be
correctly correlated with the oracle O, but when b = 0, the tags will be entirely
uncorrelated with O. In this case, the adversary’s ability to produce a forgery is
bounded by a simple random guess, which corresponds to a probability of 1/2n.
This is because in this case the oracle O can tell the adversary no information
about correct authentication tags. To try and guess an authentication tag for
a configuration (d, root∗) would mean trying to guess the value of O1(d, root∗)
without ever having queried it (and having made no quantum queries to it).
Any non-negligible difference in the success probability of the adversary P can
be used in order to determine which function we are dealing with, and thus leads
to a determination of the unknown bit b.

The probability of determining such a bit in q queries to g is bounded above
by O(q2/2n) from known result [21]. Note that each quantum query P makes
to O corresponds to exactly one quantum query to gb. Because the other case is
bounded by a O(q3/2n) term, we can drop this term entirely.

17



Signature Scheme Σ4

– KeyGen4: Because the verifier in the interactive proof system requires an authen-

tication key, we sample one as ak
$←− {0, 1}n. Obtain (pk0, sk0)← KeyGen0(1λ)

and return (pk4, sk4) = (pk0, (sk0, ak)).
– Sign4: On input of a message msg, and the secret key sk4 = (sk0, ak), do the

following:
• Compute σ0 ← Sign0(sk,msg).
• Using some standard parsing rule, parse msg as an input to the verifier V.
• Run V(ak;msg), obtaining output t, and whether the machine M reached

the authenticating state.
• If so, return signature σ4 = σ0||sk0. Otherwise, return σ3 = σ0||t.

– Vrfy4: On input of a message msg, a signature σ4 and a public key pk4 = pk0,
we parse σ4 as σ0||x, where x is some string. Then compute and return
Vrfy0(pk0,msg, σ0).

4.2 Signature scheme Σ4

With the interactive, stateless, short messaged proof system fleshed out, we can
now discuss the signature scheme Σ4, built out of this proof system.

Theorem 2 (Security of Σ4). Let Q be a quantum adversary capable of break-
ing the existential-unforgeability of Σ4 with probability p in the quantum ran-
dom oracle model, with q queries to the quantum random oracle O. Then there
exists a reduction algorithm R that, with probability (over R and O) at least
p − O(q3/2n) is capable of either breaking Σ0 or finding an x, x′ ∈ {0, 1}∗ such
that O(x) = O(x′).

Proof. It is easy to see that

Pr[Q wins eu-acma ∧ @π : MO(1λ, π)→ accept] ≥ p− 2−λ,

where the probability is taken over the randomness in the oracle O and the
randomness of the adversary, as well as whatever randomness is needed in the
signature scheme Σ0.

There are then two cases: either the adversary submits a signing query that
causes the proof system to move into an accepting state, or they do not. If they
do, then since we know there is not a π such that MO(1λ, π), the only way for
an adversary to do this is to have found a collision in O, which can be found by
looking at the (classical) signing queries made by the adversary. We can bound
the probability this happens by a O(q/2λ) term. Assuming that the adversary
does not submit such a message, then whatever forgery is submitted by the
adversary will work as a valid forgery to the signature scheme Σ0.
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