
Secure Key Encapsulation Mechanism with
Compact Ciphertext and Public Key from

Generalized Srivastava code

Jayashree Dey and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur-721302, India

deyjayashree@iitkgp.ac.in,ratna@maths.iitkgp.ernet.in

Abstract. Code-based public key cryptosystems have been found to be
an interesting option in the area of Post-Quantum Cryptography. In this
work, we present a key encapsulation mechanism (KEM) using a par-
ity check matrix of the Generalized Srivastava code as the public key
matrix. Generalized Srivastava codes are privileged with the decoding
technique of Alternant codes as they belong to the family of Alternant
codes. We exploit the dyadic structure of the parity check matrix to re-
duce the storage of the public key. Our encapsulation leads to a shorter
ciphertext as compared to DAGS proposed by Banegas et al. in Jour-
nal of Mathematical Cryptology which also uses Generalized Srivastava
code. Our KEM provides IND-CCA security in the random oracle model.
Also, our scheme can be shown to achieve post-quantum security in the
quantum random oracle model.

Keywords: Key encapsulation mechanism ·Generalized Srivastava code
· Quasi-dyadic matrix · Alternant decoding.

1 Introduction

Cryptography and coding theory are at the core of implementation of telecom-
munication systems, computational systems and secure networks. Cryptography
based on error correcting codes is one of the main approaches to guarantee se-
cure communication in post-quantum world. The security of current widely used
classical cryptosystems relies on the difficulty of number theory problems like
factorization and the discrete logarithm problem. P.W. Shor [51] showed in 1994
that most of these cryptosystems can be broken once sufficiently strong quan-
tum computers become available. Thus, it is necessary to devise alternatives that
can survive quantum attacks while offering reasonable performance with solid
security guarantees. At the end of 2016, the National Institute of Standards
and Technology (NIST) announced a call for ideas to develop quantum-resistant
cryptographic primitives. Besides, government organizations like the European
Commission and the Japanese Society promoted research programs to improve
post-quantum cryptography research.

2 Jayashree Dey and Ratna Dutta

Code-based cryptosystems are usually very fast and can be implemented on
several platforms, both software and hardware. They do not require special-
purpose hardware, specifically no cryptographic co-processors. The security of
code-based cryptography mainly relies on the following two computational as-
sumptions:

(i) the hardness of generic decoding [19] which is NP complete and also believed
to be hard on average even against quantum adversaries

(ii) the pseudorandomness of the underlying code C for the construction which
states that it is hard to distinguish a random matrix from a generator (or
parity check) matrix of C used as a part of the public key of the system.

Designing practical alternative cryptosystems based on difficulty of decoding
unstructured or random codes is currently a major research area. The public key
indistinguishability problem strongly depends on the code family. For instance,
the McEliece encryption scheme [39] uses binary Goppa codes for which this
indistinguishability assumption holds. On the other hand, the assumption does
not hold for other families such as Reed Solomon codes, Concatenated codes,
Low Density Parity Check (LDPC) codes etc. In [27], Faugere et al. devise a
distinguisher for high rate Goppa codes. One of the key challenge in code-based
cryptography is to come up with families of codes for which the indistinguisha-
bility assumption holds.

Constructing efficient and secure code-based cryptographic scheme is a chal-
lenging task. The crucial fact in designing code-based cryptosystems is to use a
linear error-correcting code in such a way that the public key is indistinguishable
from a random key. A codeword is used as ciphertext of a carefully chosen linear
error-correcting code to which random errors are added. The decryptor with the
knowledge of a trapdoor can perform fast polynomial time decoding, remove the
errors and recover the plaintext. Attackers are reduced to a generic decoding
problem and the system remains secure against an adversary equipped with a
quantum computer.
Our Contribution. In this paper, we focus on designing an IND-CCA secure ef-
ficient code-based KEM that relies on the difficulty of generic decoding problem.
Our starting point is the key encapsulation mechanism DAGS [12] that uses the
quasi-dyadic structure of Generalized Srivastava (GS) code. Quasi-dyadic struc-
ture reduces the public key size remarkably in DAGS while the encapsulation
procedure increases the size of ciphertext. We aim to design a KEM with rel-
atively short ciphertext. We deploy the Niederreiter framework to develop our
KEM using a syndrome as ciphertext and achieve IND-CCA security in the
random oracle model. More precisely, we use the parity check matrix of the
Generalized Srivastava code as the public key and utilize its block dyadic struc-
ture to reduce the public key size. We consider the syndrome of a vector as
the ciphertext header where the vector is formed by parsing two vectors – the
first vector is an error vector that is generated by a deterministic error vector
generation algorithm and the second vector is constructed from a hash value of
a randomly chosen message by the encapsulator. This significantly reduces the
ciphertext header size that makes the scheme useful in application with limited

Secure KEM with Compact Ciphertext and Public Key from GS code 3

communication bandwidth. Also, the use of the parity check matrix directly in
computing the ciphertext is more fast and efficient. For decapsulation, we form
an equivalent parity check matrix using the secret key to decode the ciphertext
header and then proceed to get the decapsulation key. Note that, Generalized
Srivastava codes belong to the class of Alternant codes which have benefits of
an efficient decoding algorithm. The complexity of decoding is O(n log2 n) [49]
which is the same as that of Goppa codes where n is the length of the code.
Technical Overview. Our KEM = (Setup,KeyGen,Encaps,Decaps) employs the
quasi-dyadic variant of Generalized Srivastava codes.

In Setup part, the global public parameters param = (n, n0, k, k
′, w, q, s, t, r,m,

G,H,H′) are generated and published where λ is a security parameter. Here,
q = 2p1 , s = 2p2 and n = n0s where n0, p1, p2,m are positive integers and
k = n−mst. The three functions G : (GF(q))k

′ −→ (GF(q))k, H : (GF(q))k
′ −→

(GF(q))k
′

and H′ : {0, 1}∗ −→ {0, 1}r are cryptographically secure hash func-
tions where the positive integer r denotes the desired key length.

In key generation, a parity check matrix B (over GF(qm)) of Generalized Sri-
vastava code is constructed and then transformed into a matrix C over base field
GF(q). The matrix C is written in systematic form (M |In−k) where M = (Mi,j)
preserves the dyadic structure. The public key of our KEM is pk = {ψi,j | i =

0, 1, . . . ,mt − 1, j = 0, 1, . . . , ks − 1} where ψi,j ∈ (GF(q))s is the first row of

Mi,j , i = 0, 1, . . . ,mt− 1, j = 0, 1, . . . , ks − 1 and each block matrix Mi,j is s× s
dyadic matrix with dyadic signature ψi,j . The secret key is sk = (v,y) where
v = (v0, v1, . . . , vn−1) ∈ (GF(qm))n and y = (y0, y1, . . . , yn−1) ∈ (GF(qm))n with

yj =
zj

s−1∏
i=0

(ui − vj)t
for j = 0, 1, . . . , n− 1.

For encapsulation, r = G(m), d = H(m) are computed after sampling a
message m randomly. The vector r is parsed as r = (ρ||σ) and µ = (ρ||m).
Using the public key pk = {ψi,j |i = 0, 1, . . . ,mt − 1, j = 0, 1, . . . , ks − 1}, the
matrix H = (M |In−k) is reconstructed. The parity check matrix H is indistin-
guishable from a random matrix over GF(q). The ciphertext header component
c is computed as c = H(e′)T where e′ = (e||µ). The vector e having length
n − k and weight w − wt(µ′) is generated deterministically using σ as a seed.
The encapsulator sets the ciphertext header CT = (c,d) ∈ (GF(q))n−k+k′ and
computes encapsulation key K = H′(m) ∈ {0, 1}r.

In the decapsulation phase, the ciphertext header component c is decoded to
get error e′′ using the technique of alternant decoding for Generalized Srivastava
code where the parity check matrix H ′ over GF(qm) in alternant form is formed
using the secret key (v,y). The error vector e′′ is parsed as e′′ = (e0||µ′) with
µ′=(ρ′||m′). The vector r′ = G(m′) is computed extracting m′ from µ′. Let
r′ = (ρ′′||σ′) and d′ = H(m′). After extracting σ′ from r′, an error vector e′0 of
length n − k and weight w − wt(µ′) is generated in a deterministic way taking
σ′ as seed. The decapsulator checks whether (e0 6= e′0) ∨ (ρ′ 6= ρ′′) ∨ (d 6= d′).
If the condition holds, the symbol ⊥ is returned indicating decapsulation fail-

4 Jayashree Dey and Ratna Dutta

ure. Otherwise, the encapsulation key K = H′(m′) is returned. A parity check
matrix in alternant form over GF(qm) is required for decoding. The parity check
matrix H over GF(q) derived from the public key pk is a parity check matrix
of Generalized Srivastava code and does not provide advantages to decode the
ciphertext header component c as the syndrome decoding problem is hard over
the field GF(q). To apply alternant decoding for Generalized Srivastava code, we
need a parity check matrix H ′ over GF(qm) which is derived from the secret key
(v,y).

Table 1. Summary of IND-CCA secure KEMs using random oracles

Scheme pk size sk size CT size Code used Cyclic/Dyadic Correctness
(in bits) (in bits) (in bits) error

NTS-KEM [2] (n− k)k 2(n− k + r)m (n− k + r) Binary Goppa – No
+nm+ r code

BIKE-1 [4] n n+ w · dlog2ke n MDPC code Quasi-Cyclic Yes
BIKE-2 [4] k n+ w · dlog2ke k MDPC code Quasi-Cyclic Yes
BIKE-3 [4] n n+ w · dlog2ke n MDPC code Quasi-Cyclic Yes

Classic k(n− k) n+mt+mn (n− k) + r Binary Goppa – No
McEliece [20] code

BIG QUAKE [14] k
` (n− k) mt+mn (n− k) + 2r Binary Goppa Quasi-Cyclic No

code

DAGS [12] k
s (n− k) log2 q 2mn log2 q [n+ k′]log2q GS code Quasi-Dyadic No

This work k
s (n− k) log2 q 2mn log2 q [k′ + (n− k)]log2q GS code Quasi-Dyadic No

pk= Public key, sk= Secret key, CT=Ciphertext, k=dimension of the code, n=length of the code, `=
length of each blocks, t=error correcting capacity, k′ < k, s, r, w, p1, p2 are positive integers (` << s),
s = 2p2 , q = 2p1 , m= the degree of field extension, r= the desired key length, GS=Generalized
Srivastava, MDPC=Moderate Density Parity Check

In Table 1, we provide a theoretical comparison of our KEM with other re-
cently proposed code-based KEMs. All the schemes in the table are based on
finite fields having characteristic 2. We summarize the following features of our
KEM.
• The closest related work to ours is DAGS [12]. Similar to DAGS, we also use
quasi-dyadic form of Generalized Srivastava code. However, DAGS uses genera-
tor matrix whereas we use parity check matrix. Consequently, in our construc-
tion, the ciphertext size is reduced by k log2 q bits as compared to DAGS [12]
whereas the public key and the secret key sizes remain the same. Furthermore
our encapsulation is faster than DAGS.
• The public key sizes in our approach are better than NTS-KEM [2], Classic
McEliece [20] and BIG QUAKE [14]. Although the BIKE variants are efficient in
terms of key sizes and achieve IND-CCA security, they still suffer from small de-
coding failure rate. The erlier BIKE variants proposed in [3] have a non-negligible
decoding failure rate and only attain IND-CPA security.

In the comparison table, we mostly highlight the KEMs which rely on the
error correcting codes that belong to the class of Alternant codes except BIKE
variants which uses QC-MDPC codes. We exclude the schemes like LEDAkem
[7], RLCE-KEM [53], LAKE [5], Ouroboros-R [41], LOCKER [6], QC-MDPC
[54], McNie [36] etc. In fact, the schemes LAKE [5], Ouroboros-R [41], LOCKER

Secure KEM with Compact Ciphertext and Public Key from GS code 5

[6] uses rank metric codes (LRPC codes) while RLCE-KEM [53] is based on a
random linear code and McNie [36] relies on any error correcting code, specially
QC-LRPC codes. LEDAkem [7] uses QC-LDPC codes and has a small decoding
failure rate. Moreover, it has risks in case of keypair reuse which may cause a
reaction attack [26] for some particular instances. The schemes proposed in [1]
are also kept out as both HQC and RQC are constructed for any decodable lin-
ear code. Also, HQC has a decryption failure and RQC uses rank metric codes.
The protocol QC-MDPC may have a high decoding failure rate [50] for some
particular parameters which enhances the risk of GJS attack [34]. The KEM
protocol CAKE [18] is another important KEM which is merged with another
independent construction Ouroboros [24] to obtain BIKE [4].

To prove our KEM’s security, we follow the generic transformations in [35].
We construct a public key encryption scheme PKE1 from our KEM and show
that the OW-VA (One-Wayness under Validity Attacks) security of PKE1 im-
plies the IND-CCA security of our KEM considering H′ as a random oracle. Also,
OW-PCVA (One-Wayness under Plaintext and Validity Checking Attacks) secu-
rity always implies OW-VA security with zero queries to the plaintext checking
oracle. We form another public key encryption scheme PKE2 from PKE1 and
show that breaking OW-PCVA security of the PKE1 would lead to breaking the
IND-CPA security of the encryption scheme PKE2 treating G as a random ora-
cle. This means OW-PCVA security and consequently OW-VA security of PKE1

implies IND-CPA security of PKE2. Finally, we show that PKE2 achieves IND-
CPA security under the hardness of syndrome decoding problem and the indis-
tinguishability of the public key matrix. Therefore, we arrive at the following
result.

Theorem 1. (Informal) Assuming the hardness of decisional syndrome decod-
ing problem and indistinguishability of the public key matrix H (derived from the
public key pk by running KEM.KeyGen(param) where param←− KEM.Setup(1λ),
λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
provides IND-CCA security when the hash functions H′ and G are modeled as
random oracles.

We can extend our security proof in the quantum random oracle following
[35] and get the following result.

Theorem 2. (Informal) Assuming the hardness of decisional syndrome decod-
ing problem and indistinguishability of the public key matrix H (derived from the
public key pk by running KEM.KeyGen(param) where param←− KEM.Setup(1λ),
λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
provides IND-CCA security when the hash functions G,H and H′ are modeled as
quantum random oracles.

Related work. The first modern idea to construct a cryptosystem based on
coding theory was a public key encryption scheme designed by R. J. McEliece in
1978 [39] which has resisted all cryptanalytic attempts so far. McEliece’s original
idea was to use a codeword of a binary Goppa code as a ciphertext. An arbi-
trary basis of the code (i.e. a generator matrix) is the public key that allows an

6 Jayashree Dey and Ratna Dutta

encryptor to encrypt a message. However, it suffers from a rather large public
key size. A dual variant of the system, proposed by Niederreiter [45], provides
slightly improved efficiency with equivalent security [37] using a parity check
matrix as the public key.

Many proposals were already attempted to solve the issue of large key size
by replacing binary Goppa codes with codes that permit more compact designs
([42], [23]). Sevaral attempts could not last due to the attacks in ([30], [28], [29]).
LDPC codes have been recommended to instantiate McEliece framework ([44],
[10], [11], [8]) which does not seem as a secure option due to the cryptanalysis in
[9] and [47]. Attempting alternative codes that allow more compact key repre-
sentations and also preserve security has recently received considerable attention
to the current cryptographic community.

In 2013, Misoczki et al. [43] proposed to use Moderate-Density Parity Check
(MDPC) codes with their quasi-cyclic (QC) variant as an alternative featuring
compact keys. However, it is necessary to attend as MDPC decoding is proba-
bilistic in nature like LDPC codes. Guo, Johansson and Stankovski [34] presented
an attack (GJS attack) against the QC-MDPC variant of the McEliece scheme.
In [25], Eaton et al. investigated the underlying causes of this attack and how
to fix it. One of the earlier key encapsulation mechanism (KEM) constructions
is McBits [21] which is framed on the McEliece setup with binary Goppa codes
and produces large public keys.

However, following proposals for KEM are submitted to NIST call for stan-
darization of quantum safe cryptography. In 2017, Gaborit et al. suggested BIG
QUAKE [14], a Niederreiter type KEM construction where the quasi-cyclic struc-
ture of binary Goppa codes is exploited. The protocol chooses very large param-
eters to provide security against the attack in [29]. In [54], Yamada et al. present
QC-MDPC KEM based on McEliece encryption framework with QC-MDPC
codes where the quasi-cyclic property leads short keys. The scheme McNie [36]
combines the McEliece and Niederreiter public key encryption schemes and
uses any error-correcting code having an efficient decoding technique. Employ-
ing rank-metric codes, specifically quasi-cyclic Low Rank Parity Check (LRPC)
codes can provide compact key sizes. In [1], Aguilar et al. proposed the first
efficient code-based cryptosystem whose security depends on decoding vectors
having small weights of random quasi-cyclic codes. They provided a reduction
of the cryptosystem to this problem together with a thorough analysis of the
probability of decryption failure. The authors suggested two new approaches
within the structure – the Hamming Quasi-Cyclic (HQC) cryptosystem and the
Rank Quasi-Cyclic (RQC) cryptosystem where HQC uses hamming metric and
RQC uses rank metric. Besides, the schemes are privileged with a very fast de-
cryption procedure together with short keys. In [20], a KEM, named Classic
McEliece, is developed using binary Goppa codes that provides IND-CCA secu-
rity. In the second round of submission to NIST call, the list of parameter sets
has been extended. The scheme NTS-KEM [2] is a variant of the McEliece and
Niederreiter encryption schemes. Although neither McEliece nor Niederreiter
provides security under either IND-CPA or IND-CCA game individually, NTS-

Secure KEM with Compact Ciphertext and Public Key from GS code 7

KEM accomplishes IND-CCA security in the random oracle model by integrating
a transform related to the Fujisaki-Okamoto [32] transforms. NTS-KEM utilizes
binary Goppa codes and features comparatively compact ciphertexts. Barreto et
al. proposed BIKE [3], a suite of algorithms for key encapsulation based on QC-
MDPC codes that can be decoded using bit flipping decoding technique with
IND-CPA security. The protocol is derived by merging two independent con-
structions CAKE [18] and Ouroboros [24]. Later, in [4], backflip decoder is used
to achieve negligible decoding failure rates and IND-CCA secure BIKE variants.
In 2017, Banegas et al. [13] proposed DAGS which is an IND-CCA secure KEM
based on Quasi-Dyadic Generalized Srivastava codes. However, an attack had
been put in light by the work of [15]. Later, in 2018, Banegas et al. [12] came up
with a new construction to reduce key sizes and suggested new sets of parameters
to avoid the attack. Recently, another modification of DAGS was proposed with
a new framework and a new parameter set in [22]. Though it provides better
security, the key sizes (specially the secret key size) are very large.

Other code-based KEM in NIST list are LEDAkem [7] based on QC-LDPC
codes, RLCE-KEM [53] based on random linear code, LAKE [5] based on LRPC
codes, Ouroboros-R [41] based on quasi-cyclic LRPC codes, LOCKER [6] based
on LRPC codes. Very recently, LAKE [5], Ouroboros-R [41] and LOCKER [6]
are merged to yield the scheme ROLLO [40].
Organization of the Paper. This rest of the paper is organized as follows. In
Section 2, we describe necessary background related to our work. We illustrate
our approach to design a KEM in Section 3 and discuss its security in Section
4. Finally, we conclude in Section 5.

2 Preliminaries

In this section, we provide mathematical background and preliminaries that are
necessary to follow the discussion in the paper.

Notation. We use the notation x
U←− X for choosing a random element from

a set or distribution, wt(x) to denote the weight of a vector x, (x||y) for the
concatenation of the two vectors x and y. The matrix In is the n × n identity
matrix. We let Z+ to represent the set {a ∈ Z|a ≥ 0} where Z is the set of
integers. We denote the transpose of a matrix A by AT and concatenation of the
two matrices A and B by [A|B].

2.1 Public Key Encryption

Definition 1. (Public Key Encryption) A public key encryption (PKE) scheme
is a tuple PKE=(Setup, KeyGen, Enc, Dec) of four probabilistic polynomial time
algorithms (PPT) with the following specifications.

• PKE.Setup(1λ) −→ param : A trusted authority runs the Setup algorithm
which takes a security parameter λ as input and publishes the global public
parameters param.

8 Jayashree Dey and Ratna Dutta

• PKE.KeyGen(param) −→ (pk, sk) : The key generation algorithm, run by a
user, takes param as input and returns a public-secret key pair (pk, sk). The
public key pk is published while the secret key sk is kept secret to the user.

• PKE.Enc(param, pk,m; r) −→ CT : The encryption algorithm, run by an en-
cryptor, outputs a ciphertext CT ∈ C using a randomness r ∈ R on input
the public key pk, a plaintext m ∈ M and the public parameters param.
Here M is the message space, C is the ciphertext space and R is the space
of randomness.

• PKE.Dec(param, sk,CT) −→ m ∨ ⊥ : A decryptor runs the decryption algo-
rithm that takes the secret key sk, a ciphertext CT ∈ C and public parameters
param as input and gets either a plaintext m ∈ M or ⊥ where the symbol
⊥ indicates the decryption failure.

Correctness. A PKE scheme is δ-correct if for any security parameter λ, param←−
PKE.Setup(1λ), (pk, sk)←− PKE.KeyGen(param) and CT←− PKE.Enc(param, pk,
m; r), it holds that Pr[PKE.Dec(param, sk,CT) 6= m] ≤ δ. The PKE scheme is
said to be correct if δ = 0.

Definition 2. (γ-uniformity of PKE [31]). For m ∈M, param←− PKE.Setup(1λ)
and (pk, sk) ←− PKE.KeyGen(param), a PKE scheme is said to be γ-uniform if
for every possible ciphertext CT ∈ C,

Pr
r←−R

[CT←− PKE.Enc(param, pk,m; r)] ≤ γ

for a real number γ.

A PKE scheme is said to be γ-spread if it is 2−γ-uniform.

Definition 3. (Indistinguishability under Chosen Plaintext Attack (IND-CPA) [33]).
The IND-CPA game between a challenger S and a PPT adversary A for a public
key encryption scheme PKE=(Setup, KeyGen, Enc, Dec) is described below.

1. The challenger S generates param←− PKE.Setup(1λ), (pk, sk)←− PKE.KeyGen
(param) where λ is a security parameter and sends param, pk to A.

2. The adversary A sends a pair of messages m0,m1 ∈ M of the same length
to S.

3. The challenger S picks a random bit b ∈ {0, 1}, computes a challenge cipher-
text CT←− PKE.Enc(param, pk,mb; rb) and sends it to A.

4. The adversary outputs a bit b′.

The adversary A wins the game if b′ = b. We define the advantage of A against
the above IND-CPA security game for the PKE scheme as

AdvIND-CPA
PKE (A) = |Pr[b′ = b]− 1/2|.

A PKE scheme is IND-CPA secure if AdvIND-CPA
PKE (A) < ε where ε > 0 is arbitrarily

small.
We also define the following four security notions for PKE scheme that are

Secure KEM with Compact Ciphertext and Public Key from GS code 9

(i) One-Wayness under Chosen Plaintext Attacks (OW-CPA), (ii) One-Wayness
under Plaintext Checking Attacks (OW-PCA), (iii) One-Wayness under Validity
Checking Attacks (OW-VA) and (iv) One-Wayness under Plaintext and Validity
Checking Attacks (OW-PCVA).

Definition 4. (OW-ATK [35]). For ATK ∈ {CPA,PCA,VA,PCVA}, the OW-ATK
game between a challenger S and a PPT adversary A for a public key encryption
scheme PKE = (Setup, KeyGen, Enc, Dec) is outlined below where A can make
polynomially many queries to the oracle OATK given by

OATK =


− ATK = CPA

PCO(·, ·) ATK = PCA

CVO(·) ATK = VA

PCO(·, ·),CVO(·) ATK = PCVA

with the Plaintext Checking Oracle PCO(·, ·) and Ciphertext Validity Oracle
CVO(·) as described in Figure 1.

1. The challenger S generates param←− PKE.Setup(1λ), (pk, sk)←− PKE.KeyGen
(param) where λ is a security parameter and sends param, pk to A.

2. The challenger S chooses a message m∗ ∈ M, computes the challenge ci-
phertext CT∗ ←− PKE.Enc(param, pk,m∗; r∗) and sends it to A.

3. The adversary A having access to the oracle OATK, outputs m′.

The adversary A wins the game if m′ = m∗. We define the advantage of A
against the above OW-ATK security game for PKE scheme as AdvOW-ATK

PKE (A) =
Pr[m′ = m∗]. The PKE scheme is said to be OW-ATK secure if AdvOW-ATK

PKE (A) <
ε for arbitrarily small non zero ε.

PCO(m ∈ M,CT)

1. if PKE.Dec(param, sk,CT) −→ m
2. return 1;
3. else
4. return 0;
5. end if

CVO(CT 6= CT∗)

1. m←− PKE.Dec(param, sk,CT);
2. if m ∈ M
3. return 1;
4. else
5. return 0;
6. end if

Fig. 1. Plaintext Checking Oracle PCO(·, ·) and Ciphertext Validity Oracle CVO(·) for
OW-ATK security game, ATK ∈ {CPA,PCA,VA,PCVA}

Remark 1. [35] For any adversary B there exists an adversary A with the same
running time as that of B such that AdvOW-CPA

PKE (B) ≤ AdvIND-CPA
PKE (A) + 1/|M|

where M is the message space.

Remark 2. An OW-PCVA security is also an OW-VA security with zero queries
to the PCO(·, ·) oracle.

10 Jayashree Dey and Ratna Dutta

2.2 Key Encapsulation Mechanism

Definition 5. (Key Encapsulation Mechanism). A key encapsulation mechanism
(KEM) is a tuple of four PPT algorithms KEM = (Setup,KeyGen,Encaps,Decaps)
with the following requirements.

• KEM.Setup(1λ) −→ param : A trusted authority runs the Setup algorithm
which takes a security parameter λ as input and publishes the global public
parameters param.

• KEM.KeyGen(param) −→ (pk, sk) : The key generation algorithm, run by a
user, takes public parameters param as input and outputs a public-secret
key pair (pk, sk). The public key pk is published while the secret key sk is
kept secret to the user.

• KEM.Encaps(param, pk) −→ (CT,K) : An encapsulator runs the encapsulation
algorithm that takes the public key pk and public parameters param as input
and outputs a ciphertext header CT ∈ C together with a key K ∈ K. The
ciphertext header CT is broadcasted publicly and the encapsulation key K
is kept secret to the encapsulator. Here C is the ciphertext space and K is
the key space.

• KEM.Decaps(param, sk,CT) −→ K∨⊥ : A decapsulator runs the decapsulation
algorithm on inputs the secret key sk, a ciphertext header CT and public
parameters param. It returns the key K or ⊥ where ⊥ is a designated symbol
indicating failure.

Correctness. A KEM is δ-correct if for any security parameter λ, param ←−
KEM.Setup(1λ), (pk, sk)←− KEM.KeyGen(param) and (CT,K)←− KEM.Encaps
(param, pk), it holds that Pr[KEM.Decaps(param, sk,CT) 6= K] ≤ δ. The KEM is
correct if δ = 0.

Definition 6. (Indistinguishability under Chosen Ciphertext Attack (IND-CCA)
[48]). The IND-CCA game between a challenger S and a PPT adversary A for
a key encapsulation mechanism KEM=(Setup, KeyGen, Encaps, Decaps) is de-
scribed below.

1. The challenger S generates param ←− KEM.Setup(1λ) and (pk, sk) ←−
KEM.KeyGen(param) where λ is a security parameter and sends param, pk
to A.

2. The PPT adversary A has access to the decapsulation oracle KEM.Decaps
to which A can make polynomially many ciphertext queries CTi and gets
the corresponding key Ki ∈ K from S.

3. The challenger S picks a random bit b from {0, 1}, runs KEM.Encaps(param, pk)
to generate a ciphertext-key pair (CT∗,K∗0) with CT∗ 6= CTi, selects ran-
domly K∗1 ∈ K and sends the pair (CT∗,K∗b) to A.

4. The adversary A having the pair (CT∗,K∗b) keeps performing polynomially
many decapsulation queries on CTi 6= CT∗ and outputs b′.

The adversary succeeds the game if b′ = b. We define the advantage of A against
the above IND-CCA security game for the KEM as

AdvIND-CCA
KEM (A) = |Pr[b′ = b]− 1/2|.

Secure KEM with Compact Ciphertext and Public Key from GS code 11

A KEM is IND-CCA secure if AdvIND-CCA
KEM (A) < ε where ε > 0 is arbitrarily small.

2.3 Hardness Assumptions

Definition 7. ((search) (q-ary) Syndrome Decoding (SD) Problem [16]). Given
a full-rank matrix H(n−k)×n over GF(q), a vector c ∈ (GF(q))n−k and a non-
negative integer w, find a vector e ∈ (GF(q))n of weight w such that HeT = c.

More formally, suppose D is a probabilistic polynomial time algorithm and
U(n−k)×n be the uniform distribution over (n − k) × n random q-ary matri-
ces. For every positive integer λ, we define the advantage of D in solving the SD
problem by

AdvOW
D,SD(λ) = Pr[D(H,HeT) = e|H U←− U(n−k)×n, e ∈ (GF(q))n].

Also, we define AdvOW
SD (λ) = max

D
[AdvOW

D,SD(λ)] where the maximum is taken over

all D. The SD problem is said to be hard if AdvOW
SD (λ) < δ where δ > 0 is

arbitrarily small.
The corresponding decision problem is proven to be NP-complete [19] in case
of binary codes. Later, A. Barg proved that this result holds for codes over all
finite fields [16].

Definition 8. ((Decision) (q-ary) Syndrome Decoding (SD) Problem [16]). Given
a full-rank matrix H(n−k)×n over GF(q), a vector e ∈ (GF(q))n and a non-
negative integer w, is it possible to distinguish between a random syndrome s
and the syndrome HeT associated to a w-weight vector e?

Suppose D is a probabilistic polynomial time algorithm and U(n−k)×n be the
uniform distribution over (n− k)× n random q-ary matrices. For every positive
integer λ, we define the advantage of D in solving the decisional SD problem by

AdvDEC
D,SD(λ) = |Pr[D(H,HeT) = 1 | e ∈ (GF(q))n, H

U←− U(n−k)×n]

− Pr[D(H, s) = 1 | s U←− U(n−k)×1, H
U←− U(n−k)×n]|

Also, we define AdvDEC
SD (λ) = max

D
[AdvDEC

D,SD(λ)] where the maximum is taken over

all D. The decisional SD problem is said to be hard if AdvDEC
SD (λ) < δ where

δ > 0 is arbitrarily small.
In addition, some code based schemes require the following computational as-
sumption. Most of the schemes output a public key that is either a generator
matrix or a parity check matrix by running key generation algorithm.

Definition 9. (Indistinguishability of public key matrix H [46]). Let D be a prob-
abilistic polynomial time algorithm and PKE = (Setup,KeyGen,Enc,Dec) be a
public key encryption scheme that uses an (n − k) × n matrix H as a public
key over GF(q). For every positive integer λ, we define the advantage of D in
distinguishing the public key matrix H from a random matrix R as

12 Jayashree Dey and Ratna Dutta

AdvINDD,H(λ) = Pr[D(H) = 1|(pk = H, sk) ←− PKE.KeyGen(param), param ←−
PKE.Setup(1λ)]− Pr[D(R) = 1|R U←− U(n−k)×n]
where U(n−k)×n is the uniform distribution over (n− k)× n random q-ary ma-

trices. We define AdvINDH (λ) = max
D

[AdvINDD,H(λ)] where the maximum is over all

D. The matrix H is said to be indistinguishable if AdvINDH (λ) < δ where δ > 0 is
arbitrarily small.

2.4 Basic Definitions from Coding Theory

Definition 10. (Generalized Reed-Solomon Code [38]). Let q be the prime power
and m,n be two positive integers. Consider a vector α = (α1, α2, . . . , αn) where
αi’s are distinct elements of GF(qm). Let v = (v1, v2, . . . , vn) be another vector
where vi’s are nonzero but not necessarily distinct elements of GF(qm). The
generalized Reed-Solomon code GRSk(α,v) of dimension k associated to (α,v)
is a linear code and consists of all vectors

{v1P (α1), v2P (α2), . . . , vnP (αn)}

where P (z) is any polynomial of degree less than k with coefficients from GF(qm).
The vectors α and v are called respectively the support and the multiplier of
the code. A parity check matrix of the code is an r × n matrix of the form

H =


y1 y2 · · · yn
α1y1 α2y2 · · · αnyn
α2

1y1 α2
2y2 · · · α2

nyn
. . . · · · · · · · · ·

αr−1
1 y1 α

r−1
2 y2 · · · αr−1

n yn

 =


1 1 · · · 1
α1 α2 · · · αn
α2

1 α2
2 · · · α2

n

· · · · · · · · · · · ·
αr−1

1 αr−1
2 · · · αr−1

n



y1 0 0 · · · 0
0 y2 0 · · · 0
0 0 y3 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · yn


where r = n − k and y = (y1, y2, . . . , yn) is a vector with yi ∈ GF(qm), yi 6= 0
such that GRSk(α,v)⊥ = GRSr(α,y). Here GRSk(α,v)⊥ denotes the dual of
GRSk(α,v), n is the length of the code and k is the dimension of the code.

Definition 11. (Alternant code [38]). The Alternant code A(α,y) is the restric-
tion of GRSk(α,v) to GF(q) and consists of all codewords of GRSk(α,v) having
components in GF(q).
An alternant code is a linear code defined by the r × n parity check matrix

H =


y1 y2 · · · yn
α1y1 α2y2 · · · αnyn
α2

1y1 α2
2y2 · · · α2

nyn
. . . · · · · · · · · ·

αr−1
1 y1 α

r−1
2 y2 · · · αr−1

n yn


where α1, α2, . . . , αn are distinct elements of GF(qm) and y1, y2, . . . , yn are non
zero elements of GF(qm). We refer this particular form of H to be a parity
check matrix in alternant form. This code has length n, dimension k ≥ n−mr,

Secure KEM with Compact Ciphertext and Public Key from GS code 13

minimum distance d ≥ r + 1, r even and can correct t =

⌊
d− 1

2

⌋
≤ r

2
errors.

Let C = (cij), cij ∈ GF(qm) be any invertible matrix. Then an equivalent parity
check matrix for A(α,y) is

H ′ = CXY =


c11 c12 · · · c1r
c21 c22 · · · c2r
c31 c32 · · · c3r
· · · · · · · · · · · ·
cr1 cr2 · · · crr




1 1 · · · 1
α1 α2 · · · αn
α2

1 α2
2 · · · α2

n

· · · · · · · · · · · ·
αr−1

1 αr−1
2 · · · αr−1

n



y1 0 0 · · · 0
0 y2 0 · · · 0
0 0 y3 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · yn



=


y1g1(α1) y2g1(α2) · · · yng1(αn)
y1g2(α1) y2g2(α2) · · · yng2(αn)
y1g3(α1) y2g3(α2) · · · yng3(αn)
. . . · · · · · · · · ·

y1gr(α1) y2gr(α2) · · · yngr(αn)


where gi(x) = ci1 + ci2x+ · · ·+ cirx

r−1, i = 1, 2, . . . , r is a polynomial of degree
< r over GF(qm).

Definition 12. (Dyadic Matrix and Quasi-dyadic Matrix [17]). Given a ring R
and a vector h = (h0, h1, . . . , hn−1) ∈ Rn, the dyadic matrix ∆(h) ∈ Rn×n is
a symmetric matrix with components ∆ij = hi⊕j where ⊕ stands for bitwise
exclusive-or. The vector h is called a signature of the dyadic matrix. The sig-
nature of a dyadic matrix forms its first row. A matrix is called quasi-dyadic if
it is a block matrix whose component blocks are s × s dyadic submatrices. An
s× s dyadic matrix block can be generated from its first row.

Example : if n is power of 2, then M =

[
A B
B A

]
is a 2k×2k dyadic matrix where

each block A,B is 2k−1 × 2k−1 dyadic matrix. Note that, any 1 × 1 matrix is
dyadic.
Generating the dyadic signature [17] : A valid dyadic signature h = (h0, h1,
. . . , hn−1) over R = GF(qm) is derived using Algorithm 1 that executes the
following two steps.

– Assign nonzero distinct values randomly from GF(qm) to h0 and to every hi
for i a power of 2 and form h using 1

hi⊕j
= 1

hi
+ 1

hj
+ 1

h0
for appropriate

choices of i and j. The resulting signature will have length qm.
– Return blocks of size s upto length n, making sure to exclude any block

containing an undefined entry.

Definition 13. (The Generalized Srivastava (GS) Code [38]). Let m,n, s, t ∈ N
and q be a prime power. Let α1, α2, . . . , αn, w1, w2, . . . , ws be n + s distinct
elements of GF(qm) and z1, z2, . . . , zn be nonzero elements of GF(qm). The Gen-
eralized Srivastava (GS) code of length n is a linear code with st×n parity-check
matrix of the form

H =
[
H1 H2 · · · Hs

]T

14 Jayashree Dey and Ratna Dutta

Algorithm 1 Constructing a dyadic signature
Input: q, m, s, n.
Output: A dyadic signature h = (h0, h1, . . . , hn−1) over GF(qm).

1: repeat
2: X = GF(qm) \ {0};
3: ĥ0

U← X; X = X \ {ĥ0};
4: for (l = 0 to blog qmc) do

5: i = 2l;

6: ĥi
U← X; X = X \ {ĥi};

7: for (j = 1 to i− 1) do

8: if (ĥi 6= 0 ∧ĥj 6= 0 ∧
1

ĥi
+

1

ĥj
+

1

ĥ0

6= 0) then

9: ĥi+j =
1

1

ĥi
+ 1

ĥj
+ 1

ĥ0

;

10: else
11: ĥi+j = 0; // undefined entry

12: end if
13: X = X \ {ĥi+j};
14: end for
15: end for
16: c = 0;

17: if (0 /∈ {ĥ0, ĥ1, . . . , ĥs−1}) then

18: b0 = 0; c = 1; B0 = {ĥ0, ĥ1, . . . , ĥs−1};
19: for (j = 1 to bqm/sc − 1) do

20: if (0 /∈ {ĥjs, ĥjs+1, . . . , ĥ(j+1)s−1}) then

21: bc = j; c = c+ 1; Bc = {ĥjs, ĥjs+1, . . . , ĥ(j+1)s−1};
22: end if
23: end for
24: end if
25: until (cs ≥ n)
26: return h = (h0, h1, . . . , hn−1) = (B0, B1, . . . , Bc−1)

where

Hi =


z1

α1−wi
z2

α2−wi · · ·
zn

αn−wi
z1

(α1−wi)2
z2

(α2−wi)2 · · ·
zn

(αn−wi)2

· · · · · · · · · · · ·
z1

(α1−wi)t
z2

(α2−wi)t · · ·
zn

(αn−wi)t



is a t×n matrix block. The code is of length n ≤ qm−s, dimension k ≥ n−mst

and minimum distance d ≥ st + 1. It can correct at most w =

⌊
d− 1

2

⌋
=
st

2
errors and is an Alternant code. In the parity check matrix

H =


y1g1(α1) y2g1(α2) · · · yng1(αn)
y1g2(α1) y2g2(α2) · · · yng2(αn)
y1g3(α1) y2g3(α2) · · · yng3(αn)
. . . · · · · · · · · ·

y1gr(α1) y2gr(α2) · · · yngr(αn)



Secure KEM with Compact Ciphertext and Public Key from GS code 15

where gi(x) = ci1 + ci2x+ · · ·+ cirx
r−1, i = 1, 2, . . . , r is a polynomial of degree

< r over GF(qm) for the Alternant code A(α,y), suppose r = st. Also set

g(l−1)t+k(x) =

s∏
j=1

(x− wj)t

(x− wl)k
, l = 1, 2, . . . , s and k = 1, 2, . . . , t

and

yi =
zi

s∏
j=1

(αi − wj)t
, i = 1, 2, . . . , n

so that

yig(l−1)t+k(αi) =
zi

(αi − wl)k

where α1, α2, . . . , αn, w1, w2, . . . , ws be n + s distinct elements of GF(qm) and
z1, z2, . . . , zn be nonzero elements of GF(qm). The resulting code is a Generalized
Srivastava code.

2.5 Decoding of Alternant Code [38]

Suppose H =


y1 y2 · · · yn
α1y1 α2y2 · · · αnyn
α2

1y1 α2
2y2 · · · α2

nyn
. . . · · · · · · · · ·

αr−1
1 y1 α

r−1
2 y2 · · · αr−1

n yn

 be a parity check matrix of an Al-

ternant code A(α,y). Suppose t ≤ r/2 errors have occurred in locations X1 =
αi1 , X2 = αi2 , . . . , Xt = αit with error values Y1 = ai1 , Y2 = ai2 , . . . , Yt = ait .
Then the error vector is e = (e1, e2, . . . , en) with ej = 0 for j 6= X1, X2, . . . , Xt

and eX1 = ai1 = Y1, eX2 = ai2 = Y2, . . . , eXt = ait = Yt. The decoding proce-
dure completes in the following three steps- 1. Find the syndrome, 2. Find the
error locator and error evaluator polynomials and 3. Find the locations, values
of the errors and correct them, which are briefed below.

1. Find the syndrome : The Syndrome S is computed as S = HeT ; i.e.

S =


S0

S1

S2

...
Sr−1

 =


y1 y2 · · · yn
α1y1 α2y2 · · · αnyn
α2

1y1 α2
2y2 · · · α2

nyn
· · · · · · · · · · · ·

αr−1
1 y1 α

r−1
2 y2 · · · αr−1

n yn



e1

e2

e3

...
en


where Sµ =

n∑
i=1

αµi yiei =
t∑

ν=1
αµiνyiνeXν =

t∑
ν=1

αµiνaiνyiν =
t∑

ν=1
Xµ
ν Yνyiν for

µ = 0, 1, . . . , r − 1.

16 Jayashree Dey and Ratna Dutta

2. Find the error locator and error evaluator polynomials : The error
locator polynomial

σ(z) =

t∏
i=1

(1−Xiz) =

t∑
i=0

σiz
i with σ0 = 1 = σ(0)

has reciprocal of error locations Xi at its zeros and the error evaluator poly-
nomial is

ω(z) =

t∑
ν=1

Yνyiν

t∏
µ=1,µ6=ν

(1−Xµz).

Note that the polynomials ω(z) and σ(z) are related by

ω(z)

σ(z)
= S(z) mod zr

where S(z) =
r−1∑
µ=0

Sµz
µ as

ω(z)

σ(z)
=

Y1yi1
1−X1z

+
Y2yi2

1−X2z
+ · · ·+ Ytyit

1−Xtz

=

(
Y1yi1

r−1∑
µ=0

Xµ
1 z

µ + Y2yi2

r−1∑
µ=0

Xµ
2 z

µ + · · ·+ Ytyit

r−1∑
µ=0

Xµ
t z

µ

)
mod zr

=

r−1∑
µ=0

zµ
t∑

ν=1

Xµ
ν Yνyiν mod zr

=

r−1∑
µ=0

zµSµ mod zr

= S(z) mod zr

Employ the extended Euclidean algorithm to find ω(z), σ(z) as follows :
(i) Set r−1(z) = zr, r0(z) = S(z). Define the polynomials Ui(z), Vi(z)

recursively as

U−1(z) = 0, U0(z) = 1, V−1(z) = 1, V0(z) = 0

Ui(z) = qi(z)Ui−1(z) + Ui−2(Z)

Vi(z) = qi(z)Vi−1(z) + Vi−2(Z)

Then [
Ui(z) Ui−1(z)
Vi(z) Vi−1(z)

]
=

[
Ui−1(z) Ui−2(z)
Vi−1(z) Vi−2(z)

] [
qi(z) 1

1 0

]
=

[
Ui−2(z) Ui−3(z)
Vi−2(z) Vi−3(z)

] [
qi−1(z) 1

1 0

] [
qi(z) 1

1 0

]
=

[
1 0
0 1

] [
q1(z) 1

1 0

]
· · ·
[
qi(z) 1

1 0

]

Secure KEM with Compact Ciphertext and Public Key from GS code 17

Also define the polynomials ri(z) recursively as[
ri−2(z)
ri−1(z)

]
=

[
qi(z) 1

1 0

] [
ri−1(z)
ri(z)

]
[
ri−3(z)
ri−2(z)

]
=

[
qi−1(z) 1

1 0

] [
qi(z) 1

1 0

] [
ri−1(z)
ri(z)

]
...[

r−1(z)
r0(z)

]
=

[
q1(z) 1

1 0

]
· · ·
[
qi−1(z) 1

1 0

] [
qi(z) 1

1 0

] [
ri−1(z)
ri(z)

]
=

[
Ui(z) Ui−1(z)
Vi(z) Vi−1(z)

] [
ri−1(z)
ri(z)

]
Note that ∣∣∣∣Ui(z) Ui−1(z)

Vi(z) Vi−1(z)

∣∣∣∣ =

∣∣∣∣1 0
0 1

∣∣∣∣ ∣∣∣∣q1(z) 1
1 0

∣∣∣∣ · · · ∣∣∣∣qi(z) 1
1 0

∣∣∣∣ = (−1)i

which implies[
ri−1(z)
ri(z)

]
= (−1)i

[
Vi−1(z) −Ui−1(z)
−Vi(z) Ui(z)

] [
r−1(z)
r0(z)

]
In particular,

ri(z) = (−1)i[−Vi(z)r−1(z) + Ui(Z)r0(z)]

= (−1)iUi(Z)r0(z) mod (r−1(z))

Let deg f denotes the degree of a polynomial f . Here, we have

deg Ui =

i∑
k=1

deg qk = deg Vi

deg ri−1 = deg r−1 −
i∑

k=1

deg qk

deg Ui = deg Vi = deg r−1 − deg ri−1 < deg r−1

(ii) Continue until reaching an rk(z) such that deg rk−1(z) ≥ r/2 and
deg rk(z) ≤ r/2− 1. Note that

rk(z) = (−1)kUk(z)r0(z) mod r−1(z)

= (−1)kUk(z)S(z) mod zr

which implies that

(−1)krk(z)

Uk(z)
= S(z) mod zr

18 Jayashree Dey and Ratna Dutta

(iii) Set
ω(z) = (−1)kδrk(z)

σ(z) = δUk(z)

where δ is constant chosen to make σ(0) = 1. Observe that

ω(z) = σ(z)S(z) mod zr

with deg σ(z) ≤ r/2 and deg ω(z) ≤ r/2− 1.
3. Find the locations, values of the errors and correct them : The error

locators Xi are found as the reciprocals of the roots of σ(z) and the error
values are given by

Yν =
ω(X−1

ν)

yiν
∏
µ6=ν

(1−XµX
−1
ν)

as

ω(X−1
ν) =

t∑
ν=1

Yνyiν

t∏
µ6=ν, µ=1

(1−XµX
−1
ν)

= Yνyiν

t∏
µ 6=ν, µ=1

(1−XµX
−1
ν)

3 Our KEM Protocol

We construct a key encapsulation mechanism KEM = (Setup,KeyGen,Encaps,Decaps)
following the specifications of Definition 5.

• KEM.Setup(1λ)−→ param: Taking security parameter λ as input, a trusted
authority proceeds as follows to generate the global public parameters param.

(i) Sample n0, p1, p2,m ∈ Z+, set q = 2p1 , s = 2p2 and n = n0s < qm.
(ii) Select t ∈ Z+ such that mst < n. Set w ≤ st/2 and k = n−mst.
(iii) Sample k′ ∈ Z+ with k′ < k.

(iv) Select three cryptographically secure hash functions G : (GF(q))k
′

−→
(GF(q))k, H : (GF(q))k

′

−→ (GF(q))k
′

and H′ : {0, 1}∗ −→ {0, 1}r where
r ∈ Z+ denotes the desired key length.

(v) Publish the global parameters param = (n, n0, k, k
′, w, q, s, t, r,m,G,H,H′).

• KEM.KeyGen(param)−→ (pk, sk): A user on input param, performs the follow-
ing steps to generate the public key pk and secret key sk.

(i) Generate dyadic signature h = (h0, h1, . . . , hn−1) using Algorithm 1 where
hi ∈ GF(qm) for i = 0, 1, . . . , n− 1.

(ii) Select ω
U←− GF(qm) with ω 6= 1

hj
+ 1

h0
, j = 0, 1, . . . , n− 1 and compute

ui =
1

hi
+ ω, i = 0, 1, . . . , s− 1

Secure KEM with Compact Ciphertext and Public Key from GS code 19

vj =
1

hj
+

1

h0
+ ω, j = 0, 1, . . . , n− 1.

Set u = (u0, u1, . . . , us−1) and v = (v0, v1, . . . , vn−1).

(iii) Construct st× n quasi-dyadic matrix A =
[
A1 A2 · · · At

]T
where

Ai =


1

(u0−v0)i
1

(u0−v1)i · · ·
1

(u0−vn−1)i
1

(u1−v0)i
1

(u1−v1)i · · ·
1

(u1−vn−1)i

· · · · · · · · · · · ·
1

(us−1−v0)i
1

(us−1−v1)i · · ·
1

(us−1−vn−1)i



=


1

(v0−u0)i
1

(v1−u0)i · · ·
1

(vn−1−u0)i
1

(v0−u1)i
1

(v1−u1)i · · ·
1

(vn−1−u1)i

· · · · · · · · · · · ·
1

(v0−us−1)i
1

(v1−us−1)i · · ·
1

(vn−1−us−1)i


is the s× n matrix block that can be written as

Ai = [Âi1 |Âi2 | · · · |Âin0
].

Each block Âik is an s × s dyadic matrix for k = 1, 2, . . . , n0. For instance,
take the first block

Âi1 =


1

(u0−v0)i
1

(u0−v1)i · · ·
1

(u0−vs−1)i
1

(u1−v0)i
1

(u1−v1)i · · ·
1

(u1−vs−1)i

· · · · · · · · · · · ·
1

(us−1−v0)i
1

(us−1−v1)i · · ·
1

(us−1−vs−1)i


which is symmetric as

ui − vj =
1

hi
+

1

hj
+

1

h0
= uj − vi

and dyadic of order s as the s× s matrix
1

(u0−v0)
1

(u0−v1)
1

(u0−v2) · · · 1
(u0−vs−1)

1
(u1−v0)

1
(u1−v1)

1
(u1−v2) · · · 1

(u1−vs−1)

· · · · · · · · · · · · · · ·
1

(us−1−v0)
1

(us−1−v1)i
1

(us−1−v2)i · · ·
1

(us−1−vs−1)



=


h0 h1 h2 · · · hs−1

h1 h0 h3 · · · hs−2

· · · · · · · · · · · · · · ·
hs−1 hs−2 hs−3 · · · h0



=


h0⊕0 h0⊕1 h0⊕2 · · · h0⊕(s−1)

h1⊕0 h1⊕1 h1⊕2 · · · h1⊕(s−1)

· · · · · · · · · · · · · · ·
h(s−1)⊕0 h(s−1)⊕1 h(s−1)⊕2 · · · h(s−1)⊕(s−1)



20 Jayashree Dey and Ratna Dutta

can be derived from the first row of the block using the relation 1
hi⊕j

=
1
hi

+ 1
hj

+ 1
h0

. Since the powering process acts on every single element, Âi1
preserves its dyadic structure.

(iv) Choose zis
U←− GF(qm), i = 0, 1, . . . , n0 − 1 and set zis+p = zis, p =

0, 1, . . . , s− 1. Also set

z = (z0s, z0s+1, . . . , z0s+s−1; z1s, z1s+1, . . . , z1s+s−1; . . . ; z(n0−1)s, z(n0−1)s+1,

. . . , z(n0−1)s+s−1)

= (z0, z1, . . . , zn−1) ∈ (GF(qm))n

where n = n0s.
(v) Compute

yj =
zj

s−1∏
i=0

(ui − vj)t
for j = 0, 1, . . . , n− 1

and set y = (y0, y1, . . . , yn−1) ∈ (GF(qm))n.

(vi) Construct st× n matrix B=
[
B1 B2 · · · Bt

]T
where

Bi =


z0

(v0−u0)i
z1

(v1−u0)i · · ·
zn−1

(vn−1−u0)i
z0

(v0−u1)i
z1

(v1−u1)i · · ·
zn−1

(vn−1−u1)i

· · · · · · · · · · · ·
z0

(v0−us−1)i
z1

(v1−us−1)i · · ·
zn−1

(vn−1−us−1)i


is s×nmatrix block. Sample a permutation matrix P of order st and compute
st×n matrix B = PB. The matrix B is a parity-check matrix of the GS code
equivalent to its parity check matrix given in Definition 13 in Subsection 2.4.

(vii) Project B onto GF(q) using the co-trace function to form a mst×n matrix
C where co-trace function converts an element of GF(qm) to an element
of GF(q) with respect to a basis of GF(qm) over GF(q). For a ∈ GF(qm),
co-trace(a) = (a0, a1, . . . , am−1) ∈ (GF(q))m satisfying < g,a >= a0 + a1q+
a2q

2 + · · · + am−1q
m−1 where ai ∈ GF(q) and g = (1, q, q2, . . . , qm−1) is a

basis of GF(qm) over GF(q). Thus if B = (bij) where bij ∈ GF(qm), then
C = (cij) is obtained from B by replacing bij by co-trace(bij). Write the
matrix C in the systematic form (M |In−k) where M is (n − k) × k matrix
with k = n − mst. Note that the powering process acts on every single
element, the zi are chosen to be equal s-wise and all the operations occurring
during the row reducing are performed block by block in the ring of dyadic
matrices over GF(q). Consequently, the dyadic structure is prevented in C
and in particular in M . Let

M =


M0,0 M0,1 · · · M0, ks−1

M1,0 M1,1 · · · M1, ks−1

· · · · · · · · · · · ·
Mmt−1,0 Mmt−1,1 · · · Mmt−1, ks−1



Secure KEM with Compact Ciphertext and Public Key from GS code 21

where each block matrix Mi,j is s × s dyadic matrix with dyadic signature
ψi,j ∈ (GF(q))s which is the first row of Mi,j , i = 0, 1, . . . ,mt − 1, j =

0, 1, . . . , ks − 1.

(viii) Publish the public key pk = {ψi,j | i = 0, 1, . . . ,mt−1, j = 0, 1, . . . , ks−1}
and keep the secret key sk = (v,y) to itself.

• KEM.Encaps(param, pk)−→ (CT,K) : Given system parameters param and
public key pk, an encapsulator proceeds as follows to generate a ciphertext
header CT ∈ (GF(q))n−k+k′ and an encapsulation key K ∈ {0, 1}r.

(i) Sample m
U←− (GF(q))k

′
and compute r = G(m) ∈ (GF(q))k, d = H(m) ∈

(GF(q))k
′

where G and H are the hash functions given in param.

(ii) Parse r as r = (ρ||σ) where ρ ∈ (GF(q))k−k
′
, σ ∈ (GF(q))k

′
. Set µ =

(ρ||m) ∈ (GF(q))k.

(iii) Run Algorithm 2 to generate a unique error vector e of length n − k and
weight w−wt(µ) using σ as a seed. Note that Algorithm 2 uses an expansion
function 1. Set e′ = (e||µ) ∈ (GF(q))n.

(iv) Using the public key pk={ψi,j | i = 0, 1, . . . ,mt − 1, j = 0, 1, . . . , ks −
1}, compute s × s dyadic matrix Mi,j with signature ψi,j ∈ (GF(q))s and
reconstruct the parity check matrix H = (M |In−k) for the the GS code
where

M =


M0,0 M0,1 · · · M0, ks−1

M1,0 M1,1 · · · M1, ks−1

· · · · · · · · · · · ·
Mmt−1,0 Mmt−1,1 · · · Mmt−1, ks−1



and n− k = mst.

(v) Compute the syndrome c = H(e′)T and the encapsulation key K = H′(m)
where H′ is the hash function given in param.

(vi) Publish the ciphertext header CT = (c,d) and keep K as secret.

• KEM.Decaps(param, sk,CT)−→ K : On receiving a ciphertext header CT =
(c,d), a decapsulator executes the following steps using public parameters
param and its secret key sk = (v,y) where v = (v0, v1, . . . , vn−1) and y =
(y0, y1, . . . , yn−1).

(i) First proceed as follows to decode c and find error vector e′′ of length n and
weight w :

1 For example, kangaroo twelve function [52] can be used as an expansion function.

22 Jayashree Dey and Ratna Dutta

Algorithm 2 Error vector derivation

Input: q, n, a seed s̄ = (s̄0, s̄1, . . . , s̄k−1) ∈ (GF(q))k of length k, a weight w,

a function F : GF(q) −→ Z+.
Output: An error vector e of length n and weight w.

1: s = (s0, s1, . . . , sn−1)=Expand(s̄); // Expand is an expansion function
2: j = 0; temp = 0; d = 0;
3: e = 0; v = 0;
4: for (i = 0 to n− 1) do
5: if (si mod q 6= 0) then
6: if (j = w) then
7: break;

8: end if
9: temp = F(sd) mod n;
10: d = d+ 1;
11: for (ν = 0 to j) do
12: if (temp = vν) then
13: goto step 9;

14: end if
15: end for
16: vj = temp;
17: etemp = si mod q;
18: temp = 0;
19: j = j + 1;

20: end if
21: end for
22: return e = (e0, e1, . . . , en−1)

(a) Use sk = (v,y) to form st× n matrix

H ′ =


y0 y1 · · · yn−1

v0y0 v1y1 · · · vn−1yn−1

v2
0y0 v2

1y1 · · · v2
n−1yn−1

· · · · · · · · · · · ·
vst−1

0 y0 v
st−1
1 y1 · · · vst−1

n−1 yn−1



=


1 1 · · · 1
v0 v1 · · · vn−1

v2
0 v2

1 · · · v2
n−1

· · · · · · · · · · · ·
vst−1

0 vst−1
1 · · · vst−1

n−1



y0 0 · · · 0
0 y1 · · · 0
0 0 y2 0
· · · · · · · · · · · ·
0 0 · · · yn−1

 .
Note that the st × n matrix H ′ is a parity check matrix in alternant
form of the GS code over GF(qm) whereas the matrix H = [M |I(n−k)]
constructed during KEM.KeyGen or KEM.Encaps is a parity check matrix
in the systematic form of the GS code over GF(q).

(b) As the GS code is an Alternant code, the parity check matrix H ′ is
used to decode c by first computing the syndrome S = H ′(c||0)T where
0 represents the vector (0, 0, . . . , 0) of length k and then by running
algorithm described in Subsection 2.5 for the Alternant code to find the
error locator polynomial

ω(z) =

w∑
ν=1

Yνyiν

w∏
µ=1,µ6=ν

(1−Xµz)

Secure KEM with Compact Ciphertext and Public Key from GS code 23

and error evaluator polynomial

σ(z) =

w∏
i=1

(1−Xiz).

Let X1 = vi1 , X2 = vi2 , . . . , Xw = viw be the error locations and Y1 =
eX1

, Y2 = eX2
, . . . , Yw = eXw be the error values.

(c) Set e′′ = (e1, e2, . . . , en) with ej =

{
0 if j 6= Xi, 1 ≤ i ≤ w
Yi if j = Xi, 1 ≤ i ≤ w

.

(ii) Let e′′ = (e0||µ′) ∈ (GF(q))n and µ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈
(GF(q))n−k, ρ′ ∈ (GF(q))k−k

′
, m′ ∈ (GF(q))k

′
.

(iii) Compute r′ = G(m′) ∈ (GF(q))k and d′ = H(m′) ∈ (GF(q))k
′

where G and
H are the hash functions given in param.

(iv) Parse r′ as r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(q))k−k
′
, σ′ ∈ (GF(q))k

′
.

(v) Run Algorithm 2 to generate deterministically an error vector e′0 of length
n− k and weight w − wt(µ′) using σ′ as seed.

(vi) If (e0 6= e′0) ∨ (ρ′ 6= ρ′′) ∨ (d 6= d′), output ⊥ indicating decapsulation
failure. Otherwise, compute the encapsulation key K = H′(m′) where H′ is
the hash function given in param.

Correctness: While decoding c, we form a parity check st× n matrix H ′ over
GF(qm) using the secret key sk = (v,y) and find the syndrome H ′(c||0)T to
estimate the error vector e′′ ∈ (GF(q))n with wt(e′′) = w. Note that, the ci-
phertext component c = H(e′)T is the syndrome of e′ where the matrix H is a
parity check matrix in the systemetic form over GF(q) which is indistinguishable
from a random matrix over GF(q). At the time of decoding c, we need a par-
ity check matrix in alternant form over GF(qm). The parity check matrix H, a
parity check matrix of GS code in the systemetic form derived from the public
key pk, does not help to decode c as the SD problem is hard over GF(q). The
decoding algorithm in our decapsulation procedure uses the parity check matrix
H ′ (derived from the secret key sk) which is in alternant form over GF(qm).
This procedure can correct upto st/2 errors. In our scheme, the error vector e′

used in the procedure KEM.Encaps satisfies wt(e′) = w ≤ st/2. Consequently,
the decoding procedure will recover the correct e′. We regenerate e′0 and ρ′′

and compare it with e0 and ρ′ obtained after decoding. Since the error vector
generation uses a deterministic function to get a fixed low weight error vector,
e0 = e′0 and ρ′ = ρ′′ occurs.

4 Security

Theorem 3. If the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,
Dec) described in Figure 2 is OW-VA secure (Definition 4 in Subsection 2.1)
and there exist cryptographically secure hash functions, then the key encapsula-
tion mechanism KEM = (Setup,KeyGen,Encaps,Decaps) as described in Section
3 achieves IND-CCA security (Definition 6 in Subsection 2.2) when the hash
function H′ is modeled as a random oracle.

24 Jayashree Dey and Ratna Dutta

• PKE1.Setup(1λ) −→ param : A trusted authority runs KEM.Setup(1λ) to get global parameters
param = (n, n0, k, k

′, w, q, s, t, r,m,G,H,H′) taking security parameter λ as input.

• PKE1.KeyGen(param) −→ (pk, sk) : A user generates public-secret key pair (pk, sk) by running
KEM.KeyGen(param) where pk = {ψi,j | i = 0, 1, . . . ,mt−1, j = 0, 1, . . . , ks −1}, ψi,j ∈ (GF(q))s

and sk = (v,y).

• PKE1.Enc(param, pk,m; r) −→ CT : An encryptor encrypts a message m ∈ M = (GF(q))k
′

and
produces a ciphertext CT as follows.

1. Compute r = G(m) ∈ (GF(q))k, d = H(m) ∈ (GF(q))k
′
.

2. Parse r = (ρ||σ) where ρ ∈ (GF(q))k−k
′
, σ ∈ (GF(q))k

′
.

3. Set µ = (ρ||m) ∈ (GF(q))k.
4. Run Algorithm 2 using σ as a seed to obtain an error vector e of length n − k and weight

w − wt(µ) and set e′ = (e||µ) ∈ (GF(q))n.
5. Use the public key pk = {ψi,j |i = 0, 1, . . . ,mt − 1, j = 0, 1, . . . , ks − 1} as in

KEM.Encaps(param,pk) and construct the matrix H(n−k)×n = (M |In−k) where M = (Mi,j),

Mi,j is a s× s dyadic matrix with signature ψi,j , i = 0, 1, . . . ,mt− 1, j = 0, 1, . . . , ks − 1.

6. Compute c = H(e′)T .

7. Return the ciphertext CT = (c, d) ∈ C = (GF(q))n−k+k
′
.

• PKE1.Dec(param, sk,CT) −→ m′ : On receiving the ciphertext CT, the decryptor executes the
following steps using public parameters param and its secret key sk = (v,y).

1. Use the secret key sk = (v,y) to form a parity check matrix H′ as in the procedure
KEM.Decaps(param,sk,CT).

2. To decode c (extracted from CT), find error e′′ of weight w and length n by running the

decoding algorithm for Alternant codes in Subsection 2.5 with syndrome H′(c||0)T .

3. Parse e′′ = (e0||µ′) ∈ (GF(q))n and µ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈ (GF(q))n−k, ρ′ ∈
(GF(q))k−k

′
, m′ ∈ (GF(q))k

′
.

4. Compute r′ = G(m′) ∈ (GF(q))k and d′ = H(m′) ∈ (GF(q))k
′
.

5. Parse r′ = (ρ′′||σ′) where ρ′′ ∈ (GF(q))k−k
′
, σ′ ∈ (GF(q))k

′
.

6. Generate error vector e′0 of length n− k and weight w− wt(µ′) by running Algorithm 2 with
σ′ as seed.

7. If (e0 6= e′0)∨ (ρ′ 6= ρ′′)∨ (d 6= d′), output ⊥ indicating decryption failure. Otherwise, return
m′.

Fig. 2. Scheme PKE1 = (Setup,KeyGen,Enc,Dec)

Proof. Let B be a PPT adversary against the IND-CCA security of KEM pro-
viding at most nD queries to KEM.Decaps oracle and at most nH′ queries to
the hash oracle H′. We show that ∃ a PPT adversary A against the OW-VA
security of the scheme PKE1. We start with a sequence of games and the view
of the adversary B is shown to be computationally indistinguishable in any of
the consecutive games. Finally, we end up in a game that statistically hides the
challenge bit as required. All the games are defined in Figure 3 and Figure 4.
Let Ej be the event that b = b′ in game Gj , j = 0, 1, 2, 3.
Game G0: As usual, game G0 (Figure 3) is the standard IND-CCA security
game (Definition 6 in Subsection 2.2) for the KEM and we have

|Pr[E0]− 1/2| = AdvIND-CCA
KEM (B).

Game G1: In game G1, a message m∗ is chosen randomly and the cipher-
text CT∗ is computed by running PKE1.Enc(param, pk,m

∗; r∗). The challenger

Secure KEM with Compact Ciphertext and Public Key from GS code 25

• The challenger S generates param ←− KEM.Setup(1λ) and (pk, sk) ←− KEM.KeyGen(param) for a
security parameter λ and sends param, pk to B.

• The PPT adversary B has access to the decapsulation oracle KEM.Decaps to which B can make
polynomially many ciphertext queries CTi and gets the corresponding key Ki ∈ K = {0, 1}r
from S.

• The challenger S picks a random bit b from {0, 1}, runs KEM.Encaps(param, pk) to generate a
ciphertext-key pair (CT∗, K∗0) with CT∗ 6= CTi, selects randomly K∗1 ∈ K and sends the pair

(CT∗, K∗b) to B.
• The adversary B having the pair (CT∗, K∗b) keeps performing polynomially many decapsulation

queries on CTi 6= CT∗ and outputs b′.

Fig. 3. Game G0 in the proof of Theorem 3

• The challenger S generates param ←− PKE1.Setup(1λ), (pk, sk) ←− PKE1.KeyGen(param) for a
security parameter λ and sends param, pk to B.

• The PPT adversary B has access to the decapsulation oracle Decaps (see Figure 5) to which B
can make polynomially many ciphertext queries CTi and gets the corresponding key Ki ∈ K
from S.

• The challenger S picks a random bit b from {0, 1}, chooses a message m∗
U←− M, runs

PKE1.Enc(param, pk,m
∗; r∗) to generate a ciphertext CT∗, computes K∗0 = H′(m∗), selects

randomly K∗1 ∈ K and sends the pair (CT∗, K∗b) to B.
• The adversary B having the pair (CT∗, K∗b) keeps performing polynomially many decapsulation

queries on CTi 6= CT∗ to Decaps oracle and hash queries on mi to hash oracle H′and outputs b′

(see Figure 5 for hash oracle H′ and decapsulation oracle Decaps).

Fig. 4. Sequence of games Gj , j = 1, 2, 3 in the proof of Theorem 3

S maintains a hash list QH′ (initially empty) and records all entries of the form
(m,K) where hash oracle H′ is queried on some message m ∈ M. Note that
both games G0 and G1 proceed identically and we get

Pr[E0] = Pr[E1].

Game G2: In game G2, the hash oracle H′ and the decapsulation oracle De-
caps are answered in such a way that they no longer make use of the secret key
sk except for testing whether PKE1.Dec(param, sk,CT) ∈ M for a given cipher-
text CT (line 12 of Decaps oracle in Figure 5). The hash list QH′ records all
entries of the form (m,K) where hash oracle H′ is queried on some message
m ∈ M. Another list QD stores entries of the form (CT,K) where either De-
caps oracle is queried on some ciphertext CT or the hash oracle H′ is queried
on some message m ∈ M satisfying CT ←− PKE1.Enc(param, pk,m; r) with
PKE1.Dec(param, sk,CT) −→m.
Let X denotes the event that a correctness error has occurred in the underlying
PKE1 scheme. More specifically, X is the event that either the list QH′ contains
an entry (m,K) with the condition PKE1.Dec(param, sk,PKE1.Enc(param, pk,m;
r)) 6= m or the list QD contains an entry (CT,K) with the condition PKE1.Enc
(param, pk,PKE1.Dec(param, sk,CT); r) 6= CT or both.
Claim : The view of B is identical in games G1 and G2 unless the event X
occurs.
Proof of claim. To prove this, consider a fixed PKE1 ciphertext CT (placed as a
Decaps query) with m ←− PKE1.Dec(param, sk,CT). Note that when m /∈ M,
the decapsulation oracle Decaps(CT) returns ⊥ in both games G1 and G2. Sup-

26 Jayashree Dey and Ratna Dutta

H′(m)

1. for the game G1,G2,G3 do
2. if ∃K such that (m, K) ∈ QH′
3. return K;
4. end if
5. CT = (c,d)←− PKE1.Enc(param, pk,m; r);

6. K
U←− K;

7. end for
8. for the game G3 do
9. if m = m∗ and CT∗ defined
10. Y = true;
11. abort;
12. end if
13. end for
14. for the game G2,G3 do
15. if ∃K′ such that (CT, K′) ∈ QD
16. K = K′;
17. else
18. QD = QD ∪ {(CT, K)};
19. end if
20. end for
21. for the game G1,G2,G3 do
22. QH′ = QH′ ∪ {(m, K)};
23. return K;
24. end for

Decaps(CT 6= CT∗)

1. for game G1 do
2. m′ ←− PKE1.Dec(param, sk,CT);
3. if m′ = ⊥
4. return ⊥;
5. end if
6. return K = H′(m′);
7. end for
8. for games G2,G3 do
9. if ∃K such that (CT, K) ∈ QD
10. return K;
11. end if
12. if PKE1.Dec(param, sk,CT) /∈ M
13. return ⊥;
14. end if

15. K
U←− K ;

16. QD = QD ∪ {(CT, K)};
17. return K;
18. end for

Fig. 5. The hash oracles H′ and the decapsulation oracle Decaps for games Gj , j =
1, 2, 3 in the proof of Theorem 3

pose m ∈ M. We now show that in game G2, Decaps(CT) −→ H′(m) for the
PKE1 ciphertext CT of a message m ∈ M with PKE1.Enc(param, pk,m; r) −→
CT. We distinguish two cases – B queries hash oracle H′ on m before making
Decaps oracle on CT, or the other way round.
Case 1: Let the oracle H′ be queried on m first by B before decapsulation query
on PKE1 ciphertext CT. Since Decaps oracle was not yet queried on CT, no entry
of the form (CT,K) exist in the current list QD yet. Therefore, besides adding

(m,K
U←− K) to the list QH′(line 22 of H′ oracle in Figure 5), the challenger

S also adds (CT,K) to the list QD (line 18 of H′ oracle in Figure 5), thereby
defining Decaps(CT) −→ K = H′(m).
Case 2: Let the oracle Decaps be queried on PKE1 ciphertext CT before the
hash oracle H′ is queried on m. Then no entry of the form (CT,K) exists
in QD yet. Otherwise, H′ already was queried on a message m′′ 6= m (be-
cause Decaps oracle is assumed to be queried first on CT and the oracle H′
was not yet queried on m) satisfying PKE1.Enc(param, pk,m

′′; r′′) −→ CT with
PKE1.Dec(param, sk,CT) −→ m′′. This is a contradiction to the fact that the
same PKE1 ciphertext CT is generated for two different messages m′′,m using
randomness r, r

′′
respectively where r = G(m) 6= G(m′′) = r′′ for a cryptograph-

ically secure hash function G. The randomness r = G(m) used in the encryption
algorithm of the PKE1 is generated determinitically using the message m and the
hash function G. Consequently, two different messages (m′ 6= m) can not yield

the same ciphertext (CT). Therefore, Decaps oracle adds (CT,K
U←− K) to the

Secure KEM with Compact Ciphertext and Public Key from GS code 27

list QD, thereby defining Decaps(CT) −→ K. When queried on m afterwards for
hash oracle H′, an entry of the form (CT,K) already exists in the list QD (line
15 of H′ oracle in Figure 5). By adding (m,K) to the list QH′ and returning K,
the hash oracle H′ defines H′(m) = K ←− Decaps(CT).
Hence, B’s view is identical in games G1 and G2 unless a correctness error X
occurs. � (of Claim)

As Pr[X] = 0 for our KEM, we have

Pr[E1] = Pr[E2].

Game G3: In game G3, the challenger S sets a flag Y = true and aborts (with
uniformly random output) immediately on the event when B queries the hash
oracle H′ on m∗. Hence,

|Pr[E2]− Pr[E3]| ≤ Pr[Y = true].

In game G3, H′(m∗) will never be given to B neither through a query on hash
oracle H′ nor through a query on decapsulation oracle Decaps, meaning bit b
is independent from B’s view. Thus, Pr[E3] = 1/2. Now it remains to bound
Pr[Y = true]. To this end, we construct an adversary A against the OW-VA
security of PKE1 simulating game G3 for B as in Figure 6. Here B uses Decaps

ACVO(·)(param, pk,CT∗)

1. K∗
U←− K;

2. b′ ←− BDecaps(·),H′(·)(param, pk,CT∗, K∗);
3. if ∃(m′, K′) ∈ QH′ such that

PKE1.Enc(param, pk,m
′; r) −→ CT∗

4. return m′;
5. else
6. abort;
7. end if

Decaps(CT 6= CT∗)

1. if ∃K such that (CT, K) ∈ QD
2. return K;
3. end if
4. if CVO(CT) = 0
5. return ⊥;
6. end if

7. K
U←− K;

8. QD = QD ∪ {(CT, K)};
9. return K;

Fig. 6. Adversary A against OW-VA security of PKE1

oracle given in Figure 6 with the same hash oracle H′ for game G2 in Figure
5. The Ciphertext Validity Oracle CVO(·) used in Figure 6 is given in Figure
1 which does the same work as in the Decaps oracle in Figure 4 for game G3.
Consequently, the simulation is perfect until Y = true occurs. Furthermore,
Y = true ensures that B has queried H′(m∗), which implies that (m∗,K ′) ∈ QH′
for some K ′ ∈ K where the list QH′ is maintained by the adversary A simulating
G3 for B. In this case, we have PKE1.Enc(param, pk,m

∗; r∗) −→ CT∗ and hence
A returns m∗. Thus,

Pr[Y = true] = AdvOW-VA
PKE1

(A)

28 Jayashree Dey and Ratna Dutta

Combining all the probabilities, we get

AdvIND-CCA
KEM (B) = |Pr[E0]− 1/2|

= |Pr[E1]− 1/2|
= |Pr[E2]− 1/2|
= |Pr[E2]− Pr[E3]|
≤ Pr[Y = true]

= AdvOW-VA
PKE1

(A)

which completes our proof. �

Theorem 4. If the public key encryption scheme PKE2 =(Setup, KeyGen, Enc,
Dec) described in Figure 7 is IND-CPA secure (Definition 3 in Subsection 2.1),
then the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as de-
scribed in Figure 2 provides OW-PCVA security (Definition 4 in Subsection 2.1)
when the hash function G is modeled as a random oracle.

Proof. Let A be a PPT adversary against the OW-PCVA security of the scheme
PKE1 with at most nG queries to the hash oracle G, nP queries to the oracle
PCO (Figure 1) and nV queries to oracle CVO (Figure 1). We show that we
can construct a PPT adversary against the IND-CPA security of the scheme
PKE2. We first define the sequence of games Gj , j = 0, 1, 2, 3, 4 in Figure 8 and
Figure 9. The view of the PPT adversary A is shown to be computationally
indistinguishable in any of the consecutive games. Let Ej be the event that
m′ = m∗ in game Gj , j = 0, 1, 2, 3, 4.

Game G0: As game G0 (Figure 8) is the standard OW-PCVA game (Definition
4), we have

Pr[E0] = AdvOW-PCVA
PKE1

(A).

Game G1: In this game, c∗ is computed by running PKE2.Enc(param, pk,m
∗; r∗)

for the message m∗ and the oracles queries to PCO and CVO are answered as in
Figure 10. When a query (m, c) is made to the oracle PCO, the challenger S de-
crypts c to recover m′ ←− PKE2.Dec(param, sk, c) and returns 1 if m′ = m with
PKE2.Enc(param, pk,m

′;G(m′)) −→ c. The condition PKE2.Enc(param, pk,m
′;

G(m′)) −→ c actually addresses the checking steps 3-5 in Figure 2 in PKE1.Dec
(param, sk,CT = (c,d)). On query c 6= c∗ to the oracle CVO, the challenger com-
putes m′ ←− PKE2.Dec(param, sk, c) and returns 1 if PKE2.Enc(param, pk,m

′;
G(m′)) −→ c with m′ ∈ M. The challenger S maintains hash list QG (initially
empty) to store random oracle queries made to the hash oracle G with the con-
vention that r = G(m) if and only if (m, r) ∈ QG . Note that both the games G0

and G1 proceed identically. Hence, we have

Pr[E0] = Pr[E1].

Secure KEM with Compact Ciphertext and Public Key from GS code 29

• PKE2.Setup(1λ) −→ param : A trusted authority takes security parameter λ as input and runs

PKE1.Setup(1λ) to get public parameters param = (n, n0, k, k
′, w, q, s, t, r,m,G,H,H′).

• PKE2.KeyGen(param) −→ (pk, sk) : A user generates the key pair (pk, sk) by running
PKE1.KeyGen(param) where the public key pk = {ψi,j | i = 0, 1, . . . ,mt− 1, j = 0, 1, . . . , ks − 1},
ψi,j ∈ (GF(q))s and the secret key sk = (v,y).

• PKE2.Enc(param, pk,m; r) −→ c : An encryptor encrypts a message m ∈ M = (GF(q))k
′

and
produces a ciphertext CT as follows.

1. Compute r = G(m) ∈ (GF(q))k, d = H(m) ∈ (GF(q))k
′
.

2. Parse r = (ρ||σ) where ρ ∈ (GF(q))k−k
′
, σ ∈ (GF(q))k

′
.

3. Set µ = (ρ||m) ∈ (GF(q))k.
4. Run Algorithm 2 using σ as a seed to obtain an error vector e of length n − k and weight

w − wt(µ) and set e′ = (e||µ) ∈ (GF(q))n.
5. Use the public key pk = {ψi,j |i = 0, 1, . . . ,mt − 1, j = 0, 1, . . . , ks − 1} as in

PKE1.Enc(param, pk,m; r) and construct the matrix H(n−k)×n = (M |In−k) where M =
(Mi,j), Mi,j is a s × s dyadic matrix with signature ψi,j , i = 0, 1, . . . ,mt − 1, j =

0, 1, . . . , ks − 1.

6. Compute c = H(e′)T .

• PKE2.Dec(param, sk, c) −→ m′ : On receiving the ciphertext c, the decryptor performs the
following steps using public parameters param and its secret key sk = (v,y).

1. Use the secret key sk = (v,y) to form a parity check matrix H′ as in the procedure
PKE1.Dec(param, sk,CT)

2. To decode c, find error e′′ of weight w and length n by running the decoding algorithm for
Alternant codes in Subsection 2.5 with syndrome H′(c||0)T .

3. Parse e′′ = (e0||µ′) ∈ (GF(q))n and µ′=(ρ′||m′) ∈ (GF(q))k where e0 ∈ (GF(q))n−k, ρ′ ∈
(GF(q))k−k

′
, m′ ∈ (GF(q))k

′
.

4. Return m′.

Fig. 7. Scheme PKE2 = (Setup,KeyGen,Enc,Dec)

Game G2: In game G2, a query c 6= c∗ to the CVO oracle is responded by first
decrypting c as with one which computes m′ ←− PKE2.Dec(param, sk, c) and re-
turning 1 if there exists a previous record (m, r) ∈ QG such that PKE2.Enc(param,
pk,m; r) −→ c and m = m′.
Next we show that the scheme PKE2 is γ-uniform.

Lemma 1. The scheme PKE2 is γ-uniform (Definition 2) with γ =
q−(k−k′)(
n−k

w−wt(µ)

) .

Proof of Lemma 1. Let c be a generic vector of the PKE2 ciphertext space
(GF(q))n−k. Then either c is a word at distance w from the code, or it is
not. If it is not, the probability of c being a valid ciphertext is exactly 0. On
the other hand, suppose c is at distance w from the code. Then there is only
one choice of ρ with probability 1/qk−k

′
and one choice of e with probability

1/
(

n−k
w−wt(µ)

)
that satisfy the equation (line 2 and line 4 in procedure PKE2.Enc

in Figure 7), i.e. the probability of c being a valid PKE2 ciphertext is exactly
γ = (1/qk−k

′
) · (1/

(
n−k

w−wt(µ)

)
). Therefore, Prr←−R[c = Enc(param, pk,m; r)] ≤ γ

for any c ∈ (GF(q))n−k which completes the proof. � (of Lemma 1)
Now consider a query CVO(c). Let m′ ←− PKE2.Dec(param, sk, c). If CVO(c) −→

30 Jayashree Dey and Ratna Dutta

• The challenger S generates param←− PKE1.Setup(1λ) and (pk, sk)←− PKE1.KeyGen(param) for a
security parameter λ and sends param, pk to A.

• The challenger S chooses a message m∗ ∈ M, computes the challenge ciphertext CT∗ =
(c∗,d∗)←− PKE1.Enc(param, pk,m

∗; r∗) and sends it to A.
• The adversary A having access to the oracle OPCVA i.e. the oracle PCO(·, ·) and the oracle CVO(·)

(described in Figure 1), outputs m′. Note that the oracle PCO takes a message m and a cipher-
text CT as input and checks if the message recovered from CT is m or not while the oracle CVO
takes a ciphertext CT as input distinct from the challenge ciphertext CT∗ and checks whether
the message recovered from CT belongs to the message space or not.

Fig. 8. Game G0 in the proof of the Theorem 4

• The challenger S generates param←− PKE2.Setup(1λ) and (pk, sk)←− PKE2.KeyGen(param) for a
security parameter λ and sends param, pk to A.

• The challenger S chooses a message m∗ ∈ M, computes c∗ ←− PKE2.Enc(param, pk,m
∗; r∗) and

sends it to A.
• The adversary A having access to the oracle OPCVA (the oracle PCO(·, ·) and the oracle CVO(·))

along with the hash oracle G(·) (described in Figure 10), outputs m′.

Fig. 9. Sequence of games Gj , j = 1, 2, 3, 4 in the proof of the Theorem 4

1 in game G2, then ∃ (m, r) ∈ QG with m′ = m and PKE2.Enc(param, pk,m; r)
−→ c (line 11 in oracle CVO in Figure 10). This means that G(m′) = G(m) = r
and hence PKE2.Enc(param, pk,m

′;G(m′)) −→ c. This implies CVO(c) −→ 1 in
game G1. If CVO(c) −→ 1 in game G1 then we can have CVO(c) −→ 0 in game
G2 if G(m′) was not queried before in game G2. Let L be the event that G(m′)
was not queried before the CVO oracle query. Games G1 and G2 are exactly the
same unless L occurs. Suppose that c is a valid ciphertext with respect to param,
pk i.e., there exists m and r such that PKE2.Enc(param, pk,m; r) −→ c. Then
the probability of the event L for a single query is 2−γ where γ is the parameter
defined in Lemma 1. On the contrary, if c is an invalid ciphertext with respect
to param and pk, the event L does not occur. As the adversary A can make at
most nV queries to the oracle CVO, we obtain

|Pr[E1]− Pr[E2]| ≤ nV · 2−γ .

Game G3: In game G3, the oracles PCO(m, c) and CVO(c) are simulated by
the challenger S without checking m = m′ where m′ ←− PKE2.Dec(param, sk, c)
(line 10 of PCO oracle and line 18 of CVO oracle in 10). Note that, in games G2

and G3, the adversary makes at most nG distinct queries G(m1), G(m2), . . . ,
G(mnG) to the hash oracle G. We say such a query G(mi) is problematic if
and only if it exhibits a correctness error in the scheme PKE2. As there is no
correctness error in PKE2, no query G(mi) is problematic. Consequently, games
G2 and G3 behave identically. Indeed, games G2 and G3 differ if the adversaryA
submits a PCO query on (m, c) or a CVO query on c together with a G query on
m such that G(m) is problematic and PKE2.Enc(param, pk,m;G(m)) −→ c. In
this case, the challenger S will answer the query with 0 in game G2 as m′ 6= m,
whereas S will answer the query with 1 in game G3. Hence, we have

Pr[E3] = Pr[E2].

Secure KEM with Compact Ciphertext and Public Key from GS code 31

PCO(m, c)

1. for games G1,G2 do
2. m′ ←− PKE2.Dec(sk, c, param);
3. if m′ = m and

PKE2.Enc(param, pk,m
′;G(m′)) −→ c

4. return 1;
5. else
6. return 0;
7. end if
8. end for
9. for games G3,G4 do
10. if PKE2.Enc(param, pk,m;G(m)) −→ c
11. return 1;
12. else
13. return 0;
14. end if
15. end for

G(m)

1. for game Gj , j = 1, 2, 3, 4 do
2. if ∃ r such that (m, r) ∈ QG
3. return r;
4. end if
5. end for
6. for game G4 do
7. if m = m∗;
8. QUERY = true;
9. abort;
10. end if
11. end for
12. for game Gj , j = 1, 2, 3, 4 do

13. r
U←− R;

14. QG = QG ∪ {(m, r)};
15. return r;
16. end for

CVO(c 6= c∗)

1. for game G1 do
2. m′ ←− PKE2.Dec(sk, c, param);
3. if m′ ∈ M and

PKE2.Enc(param, pk,m
′;G(m′)) −→ c

4. return 1;
5. else
6. return 0;
7. end if
8. end for
9. for games G2 do
10. m′ ←− PKE2.Dec(sk, c, param);
11. if ∃(m, r) ∈ QG and m′ = m and

PKE2.Enc(param, pk,m; r) −→ c
12. return 1;
13. else
14. return 0;
15. end if
16. end for
17. for games G3,G4 do
18. if ∃(m, r) ∈ QG and

PKE2.Enc(param, pk,m; r) −→ c
19. return 1;
20. else
21. return 0;
22. end if
23. end for

Fig. 10. The Plaintext Checking Oracle PCO(·, ·), Ciphertext Validity Oracle CVO(·, ·)
and hash oracle G(·) for games Gj , j = 1, 2, 3, 4

Game G4: In game G4, the challenger S sets a flag QUERY=true and abort
(with uniform random output), when the adversary A queries the hash oracle
G on m∗. Hence, games G3 and G4 differ if the flag QUERY=true is raised,
meaning that A made a query G on m∗, or, equivalently, (m∗, ·) ∈ QG . Thus,
the games G3 and G4 are identical unless QUERY = true occurs. Therefore,

|Pr[E3]− Pr[E4]| ≤ Pr[QUERY = true].

To bound Pr[E4] we construct an adversary A′ against the OW-CPA secu-
rity of PKE2 simulating game G4 for A in Figure 11. The adversary A′ takes
param, pk, c∗ as input, perfectly simulates game G4 for A and finally outputs
m′ = m∗ if A wins in game G4. Here, A uses the same PCO,CVO oracles for
game G4 in Figure 10 with the same hash oracle G for game G3 in Figure 10.
Hence,

Pr[E4] = AdvOW-CPA
PKE2

(A′).

32 Jayashree Dey and Ratna Dutta

A′(param, pk, c∗)

1. m′ ←− AG(·),PCO(·,·),CVO(·)(param, pk, c∗);
2. return m′;

Fig. 11. Adversary A′ against OW-CPA security of PKE2

Combining all the probabilities, we have

AdvOW-PCVA
PKE1

(A) = |Pr[E0]| = |Pr[E1]|
= |Pr[E1]− Pr[E2] + Pr[E2]|
≤ |Pr[E1]− Pr[E2]|+ |Pr[E2]|
≤ nV · 2−γ + |Pr[E3]|
= nV · 2−γ + |Pr[E3]− Pr[E4] + Pr[E4]|
≤ nV · 2−γ + |Pr[E3]− Pr[E4]|+ |Pr[E4]|
≤ nV · 2−γ + Pr[QUERY = true] + AdvOW-CPA

PKE2
(A′)

We consider the following relation between OW-CPA security and IND-CPA se-
curity of a public key encryption scheme (Remark 1)

Lemma 2. [35] Let PKE be a public key encryption scheme. Then, for any OW-
CPA adversary B, there exists an IND-CPA adversary A with the same running
time as that of B such that

AdvOW-CPA
PKE (B) ≤ AdvIND-CPA

PKE (A) + 1/|M|

where M is the message space.

As M = (GF(q))k
′

in PKE2, we have by Lemma 2, we have

AdvOW-PCVA
PKE1

(A) ≤ nV · 2−γ + Pr[QUERY = true] + AdvIND-CPA
PKE2

(A′′) +
1

qk′

for an IND-CPA adversary A′′. We now construct another adversary D (Fig-
ure 12) against the IND-CPA security of the PKE2 which wins when the flag
QUERY=true is set in game G4. The adversary D selects two random messages
m∗0,m

∗
1 and runsA on (param, pk, c∗) where c∗ ←− PKE2.Enc(param, pk,m

∗
b ; r
∗
b),

b
U←− {0, 1}, is generated and sent by the IND-CPA challenger Ch in the IND-CPA

security game between Ch and D. Now consider the IND-CPA security game for
the adversary D with random challenge bit b. Let Z be the event that A queries
random oracle G on m∗1−b. Since the message m∗1−b is taken uniformly from M
and independent from A’s view, we have Pr[Z] ≤ nG

qk′
. Let us now assume the

Secure KEM with Compact Ciphertext and Public Key from GS code 33

D(param, pk)

1. (m∗0 ,m
∗
1)

U←−M×M;

2. m′ ←− AG(·),PCO(·,·),CVO(·)(param, pk, c∗ ←− PKE2.Enc(param, pk,m
∗
b ; r∗b));

3. b
′

=


0 for |QG(m∗0)| = 1, |QG(m∗1)| = 0;

1 for |QG(m∗0)| = 0, |QG(m∗1)| = 1;
U←− {0, 1} for |QG(m∗0)| = |QG(m∗1)|;

4. return b
′
;

Fig. 12. Adversary D against IND-CPA security of PKE2

event that Z did not happen which leads |QG(m∗1−b)| = 0. Here |QG(m)| denotes
the number of all (m, r) ∈ QG for a fixed m ∈ M. Note that, |QG(m)| is either
1 or 0 for a message m. When QUERY=true occurs, the adversary A queried the
random oracle G on m∗b . Hence, |QG(m∗b)| = 1, |QG(m∗1−b)| = 0 (as Z did not
happen) and therefore b = b′. When QUERY=true does not happen, A did not
query the oracle G on m∗b . So, |QG(m∗b)| = QG(m∗1−b)| = 0 and Pr[b = b′] = 1/2
as D selects a random bit b′. From all of these relations we can write

|Pr[b = b′|Z]− 1/2|+ |Pr[b = b′|Z]| ≥ |Pr[b = b′|Z] + Pr[b = b′|Z]− 1/2|
≥ |Pr[b = b′|Z]− 1/2|

which yields

AdvIND-CPA
PKE2

(D) +
nG
qk′
≥ |Pr[b = b′|Z]− 1/2|

= |Pr[b = b′|QUERY = true] · Pr[QUERY = true]

+ Pr[b = b′|QUERY = true] · Pr[QUERY = true]− 1/2|
= |Pr[QUERY = true] + 1/2 Pr[QUERY = true]− 1/2|
= |Pr[QUERY = true] + 1/2(1− Pr[QUERY = true])− 1/2|
= 1/2 Pr[QUERY = true].

Using the above relation and combining two IND-CPA adversaries A′′ and D to
a new IND-CPA adversary B we get

AdvOW-PCVA
PKE1

(A) ≤ nV · 2−γ + (2nG + 1)/qk
′
+ 3 · AdvIND-CPA

PKE2
(B)

which completes the proof. �

The OW-PCVA security for a PKE scheme (Definition 4 described in Subsec-
tion 2.1) trivially implies the OW-VA security of a PKE scheme considering zero
queries to the PCO(·, ·) oracle (see Remark 2). Therefore, the following corollary
is an immediate consequence of Theorem 4.

Corollary 1. If the scheme PKE2 =(Setup, KeyGen, Enc, Dec) described in Fig-
ure 7 is IND-CPA secure (Definition 3 in Subsection 2.1), then the public key
encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as described in Figure 2

34 Jayashree Dey and Ratna Dutta

provides OW-VA security (Definition 4 in Subsection 2.1) when the hash function
G is modeled as a random oracle.

Theorem 5. If the decisional SD problem (Definition 8 in Subsection 2.3) is
hard, the public key matrix H (derived from the public key pk which is gen-
erated by running PKE2.KeyGen(param) where param ←− PKE2.Setup(1λ)) is
indistinguishable (Definition 9 in Subsection 2.3) and the hash function G is
modeled as a random oracle, then the public key encryption scheme PKE2 =
(Setup,KeyGen,Enc,Dec) presented in Figure 7 is IND-CPA secure (Definition 3
in Subsection 2.1).

Proof. In the scheme PKE2, a ciphertext c is computed using the (n−k)×n public
key matrix H = [M |In−k] which is generated from the public key pk={ψi,j | i =

0, 1, . . . ,mt− 1, j = 0, 1, . . . , ks − 1} by setting (n− k)× n matrix

M =


M0,0 M0,1 · · · M0, ks−1

M1,0 M1,1 · · · M1, ks−1

· · · · · · · · · · · ·
Mmt−1,0 Mmt−1,1 · · · Mmt−1, ks−1


where Mi,j is a dyadic matrix of order s with signature ψi,j ∈ (GF(q))s and
n− k = mst (see the procedure PKE2.Enc in Figure 7).
We compute the ciphertext as c = H(e′)T where e′ = (e||µ) = (e||ρ||m) =
(r1||m), where r1 = (e||ρ) ∈ (GF(q))n−k

′
,ρ ∈ (GF(q))k−k

′
satisfying r =

G(m) = (ρ||σ) with σ ∈ (GF(q))k
′
. Note that σ is used as a seed to gener-

ate the error vector e ∈ (GF(q))n−k with wt(e) = w − wt(µ) (see Figure 7). Let
H = [H1|H2] where H1 and H2 are respectively (n−k)×(n−k′) and (n−k)×k′
sub-matrices of H. Therefore,

c = H[r1||m]T = H1r
T
1 +H2m

T .

Let us assume that there exists a PPT algorithm D such that

|Pr[D(H,H1r
T
1) = 1 | r1

U←− (GF(q))n−k
′
, H = [H1|H2]]

− Pr[D(H, s) = 1 | s U←− U(n−k)×1, H = [H1|H2]]| ≥ δ

for a positive small δ where Uc×d is the uniform distribution over c × d ran-

dom q-ary matrices. Let succ be the event that D(H,H1r
T
1) = 1 where r1

U←−
(GF(q))n−k

′
and H is the public key matrix. We construct an adversary D′ (as in

Figure 13) which distinguishes a random matrix from H. Let Erand be the event
that the matrix R was chosen randomly from uniform distribution U(n−k)×n and
Ereal be the event that R be the public key matrix H constructed as stated above

Secure KEM with Compact Ciphertext and Public Key from GS code 35

D′(R)

1. R(n−k)×n = [(R1)(n−k)×(n−k′)||(R2)(n−k)×k′];

2. p
U←− {0, 1};

3. if p = 1
4. s1 = R1r

T
1 ;

5. p′ ←− D(R, s1);
6. else

7. s0
U←− Un−k×1;

8. p′ ←− D(R, s0);
9. end if
10. if p = p′

11. return 1;
12. else
13. return 0;
14. end if

Fig. 13. Adversary D′ in the proof of Theorem 5

using the public key pk generated PKE2.KeyGen(param). Then

|Pr[p = p′|Ereal]− Pr[p = p′|Erand|
= Pr[D′(H) = 1|public key matrix H = [M |In−k] ∈ (GF(q))(n−k)×n]

− Pr[D′(R) = 1|R U←− U(n−k)×n]

=AdvINDD′,H(λ) ≤ AdvINDH (λ)

When Ereal occurs, we have R = H which is distributed exactly as in the real
execution. Since D′ outputs 1 if and only if D succeeds, we have Pr[p = p′|Ereal] =
Pr[succ]. When Erand occurs, the matrix R was chosen randomly from uniform
distribution U(n−k)×n. Therefore,

|Pr[p = p′|Erand]− 1/2|

=|Pr[D′(R) = 1|R U←− U(n−k)×n]− 1/2|

=|Pr[D(R, s1) = 1|R U←− U(n−k)×n]− Pr[D(R, s0) = 1|R U←− U(n−k)×n|
=AdvDEC

D,SD ≤ AdvDEC
SD (λ)

where Pr[D(R, s0) = 1|R U←− U(n−k)×n] = 1/2. Combining all the probabilities
together, we get

δ ≤ |Pr[D(H,H1r
T
1) = 1 | r1

U←− (GF(q))n−k
′
, H = [H1|H2]]

− Pr[D(H, s) = 1 | s U←− U(n−k)×1, H = [H1|H2]]|
= |Pr[succ]− 1/2|
= |Pr[p = p′|Ereal]− 1/2|
= |Pr[p = p′|Ereal]− Pr[p = p′|Erand + Pr[p = p′|Erand − 1/2|
≤ AdvINDH (λ) + |Pr[p = p′|Erand]− 1/2|
≤ AdvDEC

SD (λ) + AdvINDH (λ).

36 Jayashree Dey and Ratna Dutta

Note that, when the algorithm D takes uniformly distributed inputs, it outputs 1

with probability 1/2, i.e. Pr[D(H, s) = 1 | s U←− U(n−k)×1, H = [H1|H2]] = 1/2.

Therefore, we get the relation δ ≤ AdvOW
SD (λ)+AdvINDH (λ). This is a contradiction

since decisional SD problem is hard and H is indistinguishable. Hence,

|Pr[D(H,H1r
T
1) = 1 | r1

U←− (GF(q))n−k
′
, H = [H1|H2]]

− Pr[D(H, s) = 1 | s U←− U(n−k)×1, H = [H1|H2]]| ≤ δ
(1)

Now, we construct a distinguisher B from an IND-CPA adversary A against the
scheme PKE2 as in Figure 14 where B distinguishes s̃1 = H1r

T
1 from the same

length random value s̃0 where r1
U←− (GF(q))n−k

′
. In Figure 14, H2 is extracted

B(param, pk, s̃)

1. (m0,m1) ←− A(param, pk);

2. b
U←− {0, 1};

3. c = s̃ +H2m
T
b ;

4. b′ ←− A(c);
5. if b = b′

6. return 1;
7. else
8. return 0;
9. end if

Fig. 14. A distinguisher B from the IND-CPA adversary A in the proof of Theorem 5

by B from H = [H1|H2] which is derived from pk. Let rand be the event that
s̃(= s̃0) was chosen from the uniform distribution U(n−k)×1 while real be the
event that s̃(= s̃1) is H1r

T
1 . We will say that A succeeds if b = b′ under the

event real occurs. We denote this event win. Note that

|Pr[B(param, pk, s̃) = 1|real]− Pr[B(param, pk, s̃) = 1|rand]| ≤ AdvINDH1rT1
(λ). (2)

Note that when event real occurs we have s̃ = s̃1 = H1r
T
1 which is distributed

exactly as in the real execution as c = s̃+H2m
T
b = H1r

T
1 +H2m

T
b = H[r1||mb]

T .
Since B outputs 1 if and only ifA succeeds, we have Pr[B(param, pk, s̃) = 1|real] =
Pr[win]. On the other hand, when event rand occurs, s̃ is distributed uniformly.
Therefore, s̃ + H2m

T
b given to A is uniformly distributed as well. This means

that A obtains no information related to b. Since B outputs 1 if and only if A
succeeds, we can conclude that Pr[B(param, pk, s̃) = 1|rand] = 1/2. By combining
these results, we get

|Pr[B(param, pk, s̃) = 1|real]− Pr[B(param, pk, s̃) = 1|rand]| = |Pr[win]− 1/2|
= AdvIND-CPA

PKE2
(A).

(3)

Secure KEM with Compact Ciphertext and Public Key from GS code 37

From equation (2) and (3), we can say that if A breaks the IND-CPA security
with non-negligible probability, the distinguisher B distinguishes s̃1 = H1r

T
1 from

the same length random value s̃0 with non-negligible probability. More precisely,
if AdvINDH1rT1

(λ) ≤ δ, then AdvIND-CPA
PKE2

(A) ≤ δ. From Equation (1), we can conclude

that PKE2 is IND-CPA secure provided decisional SD problem is hard and H is
indistinguishable. �

Theorem 6. Assuming the hardness of decisional SD problem (Definition 8 in
Subsection 2.3) and indistinguishability of the public key matrix H (derived from
the public key pk by running KEM.KeyGen(param) where param←− KEM.Setup
(1λ), λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
described in Section 3 provides IND-CCA security (Definition 6 in Subsection 2.2)
when the hash functions H′ and G are modeled as random oracles.

Proof. The proof of the above theorem is the immediate consequence of Theorem
3, Corollary 1 and Theorem 5.

Remark 3. For proving security in the quantum-accessible random oracle model,
it is required to show post-quantum security of a construction where the adver-
sary is able to query the random oracle with quantum access. We consider the
security games in the quantum random oracle model (QROM) along with the
classical random oracle model. In fact, the adversaries equipped with a quantum
computer are provided quantum access to the random oracles and classical ac-
cess to some other oracles like plaintext checking oracles, decapsulation oracles
etc. The KEM protocol also provides security in quantum random oracle model
by the Theorem 7 which follows the work in [35]. We can construct a public key
encryption scheme PKE1 and then prove that OW-PCA (One-Wayness under
Plaintext Checking Attacks) security of the public key encryption scheme PKE1

indicates the IND-CCA security of the KEM considering H,H′ as quantum ran-
dom oracles (see Theorem 9). Then, we can form another public key encryption
scheme PKE2 and show that OW-CPA (One-Wayness under Chosen Plaintext
Attacks) security of the encryption scheme PKE2 implies OW-PCA security of
the PKE1 modeling G as a quantum random oracle (see Theorem 8). The scheme
PKE2 is IND-CPA secure as the syndrome decoding problem is hard and the pub-
lic key matrix is indistinguishable (see Theorem 5). Combining IND-CPA security
of the scheme PKE2 and the fact that IND-CPA security always implies OW-CPA
security, we can get Theorem 7.

Theorem 7. Assuming the hardness of decisional SD problem (Definition 8 in
Subsection 2.3) and indistinguishability of the public key matrix H (derived from
the public key pk by running KEM.KeyGen(param) where param←− KEM.Setup
(1λ), λ being the security parameter), our KEM = (Setup,KeyGen,Encaps,Decaps)
described in Section 3 provides IND-CCA security (Definition 6 in Subsection 2.2)
when the hash functions G,H and H′ are modeled as quantum random oracles.

Note that, proof of Theorem 7 follows from Theorem 5, Remark 1, Theorem 8
and Theorem 9.

38 Jayashree Dey and Ratna Dutta

Theorem 8. If the public key encryption scheme PKE2 =(Setup, KeyGen, Enc,
Dec) described in Figure 7 is OW-CPA secure (Definition 4 in Subsection 2.1),
then the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,Dec) as de-
scribed in Figure 2 provides OW-PCA security (Definition 4 in Subsection 2.1)
when the hash function G is modeled as a quantum random oracle.

Theorem 9. If the public key encryption scheme PKE1 = (Setup,KeyGen,Enc,
Dec) described in Figure 2 is OW-PCA secure (Definition 4 in Subsection 2.1)
and there exist cryptographically secure hash functions, then the key encapsula-
tion mechanism KEM = (Setup,KeyGen,Encaps,Decaps) as described in Section
3 achieves IND-CCA security (Definition 6 in Subsection 2.2) when the hash
function H and H′ are modeled as quantum random oracles.

5 Conclusion

In this work, we give a proposal to design an IND-CCA secure key encapsu-
lation mechanism based on Generalized Srivastava codes. In terms of storage,
our work seems well as compared to some other code-based KEM protocols as
shown in Table 1. The scheme instantiated with Generalized Srivastava code
does not involve any correctness error like some lattice-based schemes which al-
lows achieving a simpler and tighter security bound for the IND-CCA security.
In the upcoming days, it would be desirable to devise more efficient and secure
constructions using suitable error-correcting codes.

Secure KEM with Compact Ciphertext and Public Key from GS code 39

References

1. Aguilar-Melchor, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient
encryption from random quasi-cyclic codes. IEEE Transactions on Information
Theory 64(5), 3927–3943 (2018)

2. Albrecht, M., Cid, C., Paterson, K.G., Tjhai, C.J., Tomlinson, M.: Nts-kem. NIST
submissions (2019)

3. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Ga-
borit, P., Gueron, S., Guneysu, T., Melchor, C.A., et al.: Bike: Bit flipping key
encapsulation. NIST submissions (2017)

4. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Ga-
borit, P., Gueron, S., Guneysu, T., Melchor, C.A., et al.: Bike: Bit flipping key
encapsulation. NIST submissions (2019)

5. Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Ruatta, O.,
Tillich, J.P., Zémor, G.: Lake-low rank parity check codes key exchange (2017)

6. Aragon, N., Blazy, O., Deneuville, J.C., Gaborit, P., Hauteville, A., Ruatta, O.,
Tillich, J.P., Zémor, G.: Locker-low rank parity check codes encryption (2017)

7. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: Ledakem: a post-
quantum key encapsulation mechanism based on qc-ldpc codes. In: International
Conference on Post-Quantum Cryptography. pp. 3–24. Springer (2018)

8. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the mceliece cryptosys-
tem based on qc-ldpc codes. In: International Conference on Security and Cryp-
tography for Networks. pp. 246–262. Springer (2008)

9. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of mceliece cryptosystem
based on qc-ldpc codes. In: 2007 IEEE International Symposium on Information
Theory. pp. 2591–2595. IEEE (2007)

10. Baldi, M., Chiaraluce, F., Garello, R.: On the usage of quasi-cyclic low-density
parity-check codes in the mceliece cryptosystem. In: 2006 First International Con-
ference on Communications and Electronics. pp. 305–310. IEEE (2006)

11. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-cyclic low-density parity-
check codes in the mceliece cryptosystem. In: 2007 IEEE International Conference
on Communications. pp. 951–956. IEEE (2007)

12. Banegas, G., Barreto, P.S., Boidje, B.O., Cayrel, P.L., Dione, G.N., Gaj, K., Gueye,
C.T., Haeussler, R., Klamti, J.B., N’diaye, O., et al.: Dags: Key encapsulation using
dyadic gs codes. Journal of Mathematical Cryptology 12(4), 221–239 (2018)

13. Banegas, G., Barreto, P., Boidje, B.O., Cayrel, P.L., Dione, G.N., Gaj, K., Gueye,
C.T., Haeussler, R., Klamti, J.B., N’diaye, O., et al.: Dags: Key encapsulation
using dyadic gs codes. IACR Cryptology ePrint Archive 2017(1037) (2017)

14. Bardet, M., Barelli, E., Blazy, O., Canto-Torres, R., Couvreur, A., Gaborit, P.,
Otmani, A., Sendrier, N., Tillich, J.P.: Big quake. NIST submissions (2017)

15. Barelli, E., Couvreur, A.: An efficient structural attack on nist submission dags.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 93–118. Springer (2018)

16. Barg, A.: Complexity issues in coding theory. Electronic Colloquium on Compu-
tational Complexity (ECCC) 4(46) (1997)

17. Barreto, P.S., Cayrel, P.L., Misoczki, R., Niebuhr, R.: Quasi-dyadic cfs signatures.
In: International Conference on Information Security and Cryptology. pp. 336–349.
Springer (2010)

18. Barreto, P.S., Gueron, S., Gueneysu, T., Misoczki, R., Persichetti, E., Sendrier, N.,
Tillich, J.P.: Cake: Code-based algorithm for key encapsulation. In: IMA Interna-
tional Conference on Cryptography and Coding. pp. 207–226. Springer (2017)

40 Jayashree Dey and Ratna Dutta

19. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of cer-
tain coding problems (corresp.). IEEE Transactions on Information Theory 24(3),
384–386 (1978)

20. Bernstein, D.J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederhagen,
R., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., et al.: Classic mceliece:
conservative code-based cryptography. NIST submissions (2017)

21. Bernstein, D.J., Chou, T., Schwabe, P.: Mcbits: fast constant-time code-based cryp-
tography. In: International Workshop on Cryptographic Hardware and Embedded
Systems. pp. 250–272. Springer (2013)

22. Cayrel, G.N.D., Gaj, K., Gueye, C.T., Haeussler, R., Klamti, J.B., N’diaye, O.,
Nguyen, D.T., Persichetti, E., Ricardini, J.E.: Dags: Reloaded revisiting dyadic
key encapsulation

23. Cayrel, P.L., Hoffmann, G., Persichetti, E.: Efficient implementation of a cca2-
secure variant of mceliece using generalized srivastava codes. In: International
Workshop on Public Key Cryptography. pp. 138–155. Springer (2012)

24. Deneuville, J.C., Gaborit, P., Zémor, G.: Ouroboros: A simple, secure and efficient
key exchange protocol based on coding theory. In: International Workshop on Post-
Quantum Cryptography. pp. 18–34. Springer (2017)

25. Eaton, E., Lequesne, M., Parent, A., Sendrier, N.: Qc-mdpc: a timing attack and a
cca2 kem. In: International Conference on Post-Quantum Cryptography. pp. 47–76.
Springer (2018)

26. Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A
reaction attack on the qc-ldpc mceliece cryptosystem. In: International Workshop
on Post-Quantum Cryptography. pp. 51–68. Springer (2017)

27. Faugere, J.C., Gauthier-Umana, V., Otmani, A., Perret, L., Tillich, J.P.: A distin-
guisher for high-rate mceliece cryptosystems. IEEE Transactions on Information
Theory 59(10), 6830–6844 (2013)

28. Faugere, J.C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.P.: Folding
alternant and goppa codes with non-trivial automorphism groups. IEEE Transac-
tions on Information Theory 62(1), 184–198 (2015)

29. Faugere, J.C., Otmani, A., Perret, L., De Portzamparc, F., Tillich, J.P.: Struc-
tural cryptanalysis of mceliece schemes with compact keys. Designs, Codes and
Cryptography 79(1), 87–112 (2016)

30. Faugere, J.C., Otmani, A., Perret, L., Tillich, J.P.: Algebraic cryptanalysis of
mceliece variants with compact keys. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 279–298. Springer
(2010)

31. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual International Cryptology Conference. pp. 537–554.
Springer (1999)

32. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of cryptology 26(1), 80–101 (2013)

33. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of computer and sys-
tem sciences 28(2), 270–299 (1984)

34. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on mdpc with cca
security using decoding errors. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 789–815. Springer (2016)

35. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Theory of Cryptography Conference. pp. 341–371. Springer
(2017)

Secure KEM with Compact Ciphertext and Public Key from GS code 41

36. Kim, J.L., Kim, Y.S., Galvez, L., Kim, M.J., Lee, N.: Mcnie: A code-based public-
key cryptosystem. arXiv preprint arXiv:1812.05008 (2018)

37. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of mceliece’s and niederre-
iter’s public-key cryptosystems. IEEE Transactions on Information Theory 40(1),
271–273 (1994)

38. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16.
Elsevier (1977)

39. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Cod-
ing Thv 4244, 114–116 (1978)

40. Melchor, C.A., Aragon, N., Bardet, M., Bettaieb, S., Bidoux, L., Blazy, O.,
Deneuville, J.C.: Rollo-rank-ouroboros, lake & locker (2019)

41. Melchor, C.A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Hauteville, A., Zémor, G., Bourges, I.C.: Ouroboros-r (2017)

42. Misoczki, R., Barreto, P.S.: Compact mceliece keys from goppa codes. In: Interna-
tional Workshop on Selected Areas in Cryptography. pp. 376–392. Springer (2009)

43. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: Mdpc-mceliece: New mceliece
variants from moderate density parity-check codes. In: 2013 IEEE international
symposium on information theory. pp. 2069–2073. IEEE (2013)

44. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in
the mceliece cryptosystem. In: 2000 IEEE International Symposium on Information
Theory (Cat. No. 00CH37060). p. 215. IEEE (2000)

45. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Control and Inf. Theory 15(2), 159–166 (1986)

46. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the mceliece
cryptosystem without random oracles. Designs, Codes and Cryptography 49(1-3),
289–305 (2008)

47. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two mceliece cryptosys-
tems based on quasi-cyclic codes. Mathematics in Computer Science 3(2), 129–140
(2010)

48. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Annual International Cryptology Conference. pp. 433–
444. Springer (1991)

49. Sarwate, D.V.: On the complexity of decoding goppa codes (corresp.). IEEE Trans-
actions on Information Theory 23(4), 515–516 (1977)

50. Sendrier, N., Vasseur, V.: On the decoding failure rate of qc-mdpc bit-flipping
decoders. In: International Conference on Post-Quantum Cryptography. pp. 404–
416. Springer (2019)

51. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. Ieee (1994)

52. Van Keer, R., Viguier, B.: Kangarootwelve: Fast hashing based on keccak-p. In: Ap-
plied Cryptography and Network Security: 16th International Conference, ACNS
2018, Leuven, Belgium, July 2-4, 2018, Proceedings. vol. 10892, p. 400. Springer
(2018)

53. Wang, Y.: Rlcekey encapsulation mechanism (rlce-kem) specifcation. NIST Sub-
mission (2017)

54. Yamada, A., Eaton, E., Kalach, K., Lafrance, P., Parent, A.: Qc-mdpc kem: A
key encapsulation mechanism based on the qc-mdpc mceliece encryption scheme.
NIST Submission (2017)

	Secure Key Encapsulation Mechanism with Compact Ciphertext and Public Key from Generalized Srivastava code

