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Abstract. Three-party key exchange, where two clients aim to agree on
a session key with the help of a trusted server, is prevalent in present-
day systems. In this paper, we present a practical and secure three-party
password-based authenticated key exchange protocol over ideal lattices.
Aside from hash functions, our protocol does not rely on external prim-
itives in the construction and the security of our protocol directly relied
on the Ring Learning with Errors (RLWE) assumption. Our protocol
attains provable security. A proof-of-concept implementation shows our
protocol is indeed practical.
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1 Introduction

Key Exchange (KE), which is a fundamental cryptographic primitive, allows two
or more parties to securely share a common secret key over insecure networks.
KE is one of the most important cryptographic tools and is widely used in build-
ing secure communication protocols. Authenticated Key Exchange (AKE), which
enables each party to authenticate the other party, can prevent the adversary
from impersonating the honest party in the conversation. Password-based Au-
thenticated Key Exchange (PAKE), which allows parties to share a low-entropy
password that is easy for human memory, has become an important cryptograph-
ic primitive because it is easy to use and does not rely on special hardware to
store high-entropy secrets.

The early solution to this problem was to achieve a two-party password-based
authenticated key exchange (2PAKE), in which both parties identified their com-
munication partners with shared passwords. Many 2PAKE protocols have been
proposed [2,6,22]. However, in a communication environment where only 2PAKE
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protocols are available, each party must remember many passwords, for each en-
tity with which he may wish to establish a session key corresponds to a password.
In detail, assuming that a communication network has n users, in which any two
users exchange a key, there will be n(n − 1)/2 passwords to be shared, and all
these passwords must be stored securely. This is unrealistic when the network
is relatively large. To solve this problem, three-party PAKE (3PAKE) was pro-
posed. In 3PAKE, each client shares a password with the trusted server, and
then two clients will establish a common session key with the help of the server.
This solution is very realistic in practical setup, because it provides each client
user with the ability to exchange secure keys with all other client users, and each
user only needs to remember one password. The 3PAKE protocol can be applied
to various electronic applications, such as in the JobSearch International, trusted
third parties can help employers and employees to hire on Jobsearch.

In 1995, Steiner et al. proposed the first 3PAKE protocol [26]. Then many
works about 3PAKE protocols have been proposed [16,27,1,11,7]. For a security
3PAKE protocol, there are two types of attacks it should resist: undetectable on-
line password guessing attacks [10] and off-line password guessing attacks [16]. In
1995, Ding and Horster [10] and Sun et al. [27] pointed out that Steiner et al.’s
protocol [26] was vulnerable to undetectable on-line password guessing attacks.
That is, an adversary can stay un-detected and log into the server during an
on-line transaction. In 2000, Lin et al. [16] further pointed out Steiner et al.’s
protocols [26] also suffer from off-line password guessing attacks. In this attack,
an attacker can guess passwords off-line until getting the correct one. There is
another attack: detectable on-line password guessing attacks, which requires the
participation of the authentication server. In this attack, the server will detect
a failed guess and record it, and since after a few unsuccessful guesses, the
server can stop any further attempts, this attack is less harmful. In practice,
password-based authenticated key exchanges are required to have a property,
forward secrecy, that when the password is compromised, it does not reveal the
earlier established session keys and the updating password.

The existed 3PAKEs are based on classic hard problems, such as factoring
or Discrete-log problem. It is well known that those problems are vulnerable to
quantum computers using Shor algorithm[25]. Since the vigorous development of
quantum computers, searching for other counterparts based on problems that are
believed to be resistant to quantum attacks is more and more urgent. Hence the
motivation of this paper is to propose a proven security 3PAKE that can resist
quantum attacks. Note that lattice-based cryptography has many advantages
such as quantum attack resistance, asymptotic efficiency, conceptual simplicity,
and worst-case hardness assumption, and it is a perfect choice to build lattice-
based 3PAKE.

Our contributions. In this paper, we propose a 3PAKE protocol based on the
Ring Learning with Errors (RLWE), which in turn is as hard as some lattice
problems (SIVP) in the worst case on ideal lattices [20]. Our protocol is designed
without extra primitives such as public-key encryption, signature or message
authentication code, which usually lead to a high cost for certain applications. By
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having the 3PAKE as a self-contained system, we show that our protocol directly
relies on the hardness of RLWE and Pairing with Errors problem (PWE), which
can reduce to the RLWE problem, in the random oracle model. Our protocol
RLWE-3PAK resists undetectable on-line passwords guessing attacks and off-
line passwords guessing attacks, and enjoys forward secrecy and quantum attacks
resistance. Furthermore, our protocol enjoys mutual authentication, which means
that the users and the server can authenticate one another.

In terms of protocol design, benefitting from the growth of lattice-based
key exchange protocols [8,23], we can utilize the key agreement technique to
construct our protocol. We use Peikert’s [23] reconciliation mechanism to achieve
the key agreement in our protocol. At the same time, to make our protocol
resist undetectable passwords guessing attacks and off-line passwords guessing
attacks, we also use an additional key reconciliation mechanism between server
and clients to realize the mutual authentication. Our security model is modified
from Bellare et al.’s model [2,3]. Since the interactions in a three-party setting
are more complex than that of a two-party setting, proving the security of our
3PAKE protocol is more difficult. To simplify the proof, we use a variant of the
Pairing with errors problem [9] and follow a strategy given by MacKenzie [21].
Finally, we manage to establish a full proof of security for our protocol and show
that our protocol enjoys forward security.

We select concrete choices of parameters and construct a proof-of-concept
implementation4. The performance results show that our protocol is efficient
and practical.

Related works. In the existed literatures, 3PAKE protocols are based on pub-
lic/private key cryptography [16,26,10], which usually incur additional compu-
tation and communication overheads. Asymmetric key cryptography based pro-
tocols [15,17,11] usually require “the ideal cipher model”, which is a strong
assumption, to prove the security of the protocols. There are some other types
of protocols [13,18] which are with no formal security proof.
Lattice-based AKE or PAKE. Zhang et al. [32] proposed an authenticated RLWE-
based key exchange which is similar to HMQV [14]. In 2009, Katz and Vaikun-
tanathan [12] proposed a CCA-secure lattice-based PAKE, which is proven se-
cure in standard model security. In 2017, Ding et al. [9] proposed RLWE-based
PAKE, whose proof is based on random oracle model (ROM), and its implemen-
tation is very efficient. Then in 2017, Zhang and Yu [31] proposed a two-round
CCA-secure PAKE based on the LWE assumption.

Roadmap. In Sect. 2, we introduce our security model, notations and the Ring
Learning with Errors background. Our protocol RLWE-3PAK is in Sect. 3. And
in Sect. 4, we give proof of the protocol’s security. The parameter choices and
proof-of-concept implementation of our protocol is presented in Sect. 5. Finally,
we conclude in Sect. 6.

4 https://github.com/LiuChaoCrypto/RLWE3PAK
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2 Preliminaries

2.1 Security Models

The security model is modified from [2] and [3]. The 3PAKE protocol involves
three parties, two clients A and B who wish to establish a shared secret session
key and a trusted server S who try to help distribute a key to A and B. Let P
be a 3PAKE protocol.
Security game. Given a security parameter κ, an algorithmic game initialized
is played between CH - a challenger, and a probability polynomial time adversary
A. For simulating network traffic for the adversary, CH will essentially run P .
Users and passwords. There is a fixed set of users, which is partitioned into
two non-empty sets of clients and servers. We also assume D is some fixed, non-
empty dictionary with a size of L. Then before the game starts, a password pwU
is drawn uniformly at random from D and assigned to each clients outside of
the adversary’s view. And for each server S, we set pwS := (f(pwU ))U , where
U runs through all of clients. Usually, f is some efficiently computable one-way
function (in our protocol we let f be a hash function).
User instances. We denote some instance i of a user U as Πi

U . The adversary A
controls all the communications that exchange between a fixed number of parties
by interacting with a set of Πi

U oracles. At any point of in time, an client user
instance Πi

U may accept. When Πi
U accepts, it holds a partner-id (PID) pidiU ,

a session-id (SID) sidiU , and a session key (SK) skiU . The PID is the identity
of the user that the instance believes talking to, and SK is what the instance
aims to compute after the protocol is completed. The SID is an identifier and
is used to uniquely name the ensuing session. Note that the SID and PID are
open to the adversary, and the SK certainly is secret for A.
Oracle queries. The adversary A has an endless supply of oracles and it models
various queries to them with each query models a capability of A. The oracle
queries by the adversary A are described as follows:

– The Send(U, i,M) query allows the adversary to send some message M to
oracle Πi

U of her choice at will. The Πi
U oracle, upon receiving such a query,

will compute what the protocol P says, updates its state, and then returns
to A the response message. If Πi

U has accepted or terminated, this will be
made known to the adversary A. This query is for dealing with controlling
the communications by the adversary.

– The Execute(A, i,B, j, S, t) query causes P to be executed to completion
between two clients instances Πi

A, Πj
B and a server instance Πt

S , and hands
all the execution’s transcripts to A. This query is for dealing with off-line
password guessing attacks.

– The Reveal(U, i) query allows A to expose session key SK that has been
previously accepted. If Πi

U has accepted and holds some SK, then Πi
U , upon

receiving such a query, will send SK back to A. This query is for dealing
with known-key security, which means that when the session key is lost, it
does not reveal the other session keys.
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– The Corrupt(U) query allows A to corrupt the user U at will. If U is a
server, returns (f(pwC))C to A, else returns pwU to A. This query is for
dealing with forward secrecy.

– The Test(U, i) is a query that does not correspond to A’s abilities. The
oracle chooses a bit b ∈ {0, 1} randomly. If Πi

U has accepted with some SK
and is being asked by such a query, then A is given the actual session key
when b = 1; A is given a key chosen uniformly at random when b = 0. A
is allowed to query this oracle once and only on a fresh Πi

U (defined in the
following). This query model the semantic security of the session key SK.

Ending the game. Eventually, the adversary ends the game and then outputs
a single bit b′.
And next, we define what constitutes the breaking of the 3PAKE protocol. First-
ly we introduce the notions of instance partnering and instance freshness with
forward secrecy.

Definition 1. (Partnering) Let Πi
A and Πj

B be two instances. We shall say that

Πi
A and Πj

B are partnered if both instances accept, holding (skiA, sid
i
A, pid

i
A) and

(skjB , sid
j
B , pid

j
B) respectively, and the followings hold:

– sidiA = sidjB = sid is not null and skiA = skjB and pidiA = B and pidjB = A;

– No instance besides Πi
A and Πj

B accepts with a SID of sid.

Definition 2. (Freshness) Instance Πi
A is fs-fresh or it holds a fresh session key

at the end of the execution if none of the following events occur:

– Reveal(A, i) was queried;
– a Reveal(B, j) was queried where Πj

B is parted with Πi
A, if it has one;

– before the Test query, a Corrupt(U) was queried for some user U and a
Send(A,i,M) query occurs for some string M.

Password Security. We say the adversary breaks the password security of
3PAKE if he learns the password of a user by either on-line or off-line password
guessing attacks.
AKE security. We now define the advantage of the adversary A against pro-
tocol P for the authenticated key exchange (ake). Let SuccakeP (A) be the event
that the adversary makes a single Test(A, i) query directed to some terminated
fresh instances Πi

A, and outputs a bit b′ eventually, and b′ = b where b is the bit
selected in the Test(A, i) query. Then A’s advantage is defined as:

AdvakeP (A)
def
= 2Pr

[
SuccakeP (A)

]
− 1

It is easy to verify that

Pr(SuccakeP (A)) = Pr(SuccakeP ′ (A)) + ε⇐⇒ AdvakeP (A) = AdvakeP ′ (A) + 2ε.

The protocol 3PAKE is AKE-secured if AdvakeP (A) is negligible for all prob-
abilistic polynomial time adversaries.
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2.2 Notations

Let n be an integer, which is a power of 2. We define the ring of integer polyno-
mials R := Z[x]/(xn+1). For any positive integer q, we set Rq := Zq[x]/(xn+1)
as the ring of integer polynomials modulo xn + 1, where every coefficient is re-
duced modulo q. For a polynomial y in R, identify y with its coefficient vector
in Z. Let the norm of a polynomial be the norm of its coefficient vector. Assume

χ is a probability distribution over R, then x
$←− χ means the coefficients of x

are sampled from χ.

For any positive real β ∈ R, we set ρβ(x) = exp(−π ||x||
2

β2 ) as the Gaussian

function, which is scaled by a parameter β. Let ρβ(Zn) =
∑

x∈Zn ρβ(x). Then

for a vector x ∈ Zn, let DZn,β(x) =
ρβ(x)
ρβ(Zn) to indicate the n-dimensional discrete

Gaussian distribution. Usually we denote this distribution as χβ .

2.3 Ring Learning with Errors

The Learning with Errors (LWE) problem was first introduced by Oded Regev in
[24]. He showed that under a quantum reduction, solving the LWE problem in the
average cases was as hard as solving the worst cases of certain lattice problems.
However, since with large key sizes of O(n2), LWE based cryptosystems are not
efficient for practical applications. In 2010, Lyubashevsky, Peikert, and Regev
[20] introduced the version of LWE in the ring setting: the Ring Learning with
Errors problem, which could drastically improve the efficiency.

For uniform random elements a, s
$←− Rq and an error distribution χ, let As,χ

denote the distribution of the RLWE pair (a, as+e) with the error e
$←− χ. Then

given polynomial number of such samples, the search version of RLWE is to find
the secret s, and the decision version of the RLWE problem (DRLWEq,χ) is to
distinguish As,χ from an uniform distribution pair on Rq ×Rq. RLWE enjoys a
worst case hardness guarantee, which we state here.

Theorem 1. ([20], Theorem 3.6) Let R = Z[x]/(xn + 1) where n is a power of
2, α = α(n) <

√
logn/n, and q ≡ 1 mod 2n which is a ploy(n)-bounded prime

such that αq ≥ ω(
√
logn). Then there exists a ploy(n)-time quantum reduction

from Õ(
√
n/α)-SIVP (Short Independent Vectors Problem) on ideal lattices in

the ring R to solving DRLWEq,χ with l − 1 samples, where χ = DZn,β is the
discrete Gaussian distribution with parameter β = αq · (nl/log(nl))1/4.

We have the following useful fact.

Lemma 1. ([19], Lemma 4.4) For any k > 0, Prx←χβ (|x| > kβ) ≤ 2e−πk
2

.

Note that taking k = 6 gives tail probability approximating 2−162.
Reconciliation mechanism. We now recall the reconciliation mechanism de-
fined in [23]. This technique is one of the foundations of our protocol.

For an integer p (e.g. p = 2) which divides q, define the modular rounding
function b·ep : Zq → Zp as bxep := bpq · xe and b·cp : Zq → Zp as bxcp :=



Provably Secure Three-party PAKE from RLWE 7

bpq · xc. Let the modulus q ≥ 2 and be an even, define disjoint intervals I0 :=

{0, 1, . . . , b q4e − 1}, I1 := {−b q4e, . . . ,−1} mod q. Note that when v ∈ I0 ∪ I1,
bve2 = 0, and when v ∈ (I0 + q

2 ) ∪ (I1 + q
2 ), bve2 = 1. Define the cross-rounding

function 〈·〉2 : Zq → Z2 as 〈v〉2 := b 4q · vc mod 2. Note that 〈v〉2 = b ∈ {0, 1}
such that v ∈ Ib ∪ ( q2 + Ib);.

Define the set E := [− q8 ,
q
8 ) ∩ Z. Then suppose v, w are sufficiently close,

and given w and 〈v〉2, we can recover bve2 using the reconciliation function rec:
Zq × Z2 → Z2:

rec(w, b) =

{
0 if w ∈ Ib + E(modq),

1 otherwise.

When q is odd, to avoid the bias produced by the rounding function, Peikert
introduced a randomized function dbl(): Zq → Z2q. For v ∈ Zq, dbl(v):= 2v−ē ∈
Z2q for some random ē ∈ Z which is independent of v and uniformly random
moduloes two. Usually we denote v with an overline to means that v̄ ← dbl(v).

For ease of presentation, we define function HelpRec(X): (1). X ← dbl(X);
(2). W ← 〈X〉2; K ← bXe2; (3). return (K,W ).

Note that for w, v ∈ Zq, we need apply the appropriated rounding func-
tion from Z2q to Z2, which means that bxep = b p2q · xe, 〈x〉2 = b 4

2q · xc,
and similar with rec function. Obviously, if (K,W ) ← HelpRec(X) and Y =
X + e with ||e||∞ < q

8 , we have rec(2 · Y,W ) = K. These definitions also
can be extended to Rq by applying coefficient-wise to the coefficients in Zq
of a ring elements. In other words, for a ring element v = (v0, . . . , vn−1) ∈
Rq, set bve2 = (bv0e2, . . . , bvn−1e2); 〈v〉2 = (〈v0〉2, . . . , 〈vn−1〉2); HelpRec(v) =
(HelpRec(v0), . . . ,HelpRec(vn−1)). And for a binary-vector b = (b0, . . . , bn−1) ∈
{0, 1}n, set rec(v, b)=(rec(v0, b0),. . . , rec(vn−1, bn−1)).

Lemma 2. ([23]) For q ≥ 2 is even, if v is uniformly random chosen from Zq,
then bve2 is uniformly random when given 〈v〉2; if w = v + e mod q for some
v ∈ Zq and e ∈ E, then rec(w, 〈v〉2)= bve2. For q > 2 is odd, if v is uniformly
random chosen from Zq and v̄ ← dbl(v) ∈ Z2q, then bv̄e2 is uniformly random
given 〈v̄〉2.

The PWE assumption. To prove the security of our protocol, we introduce
the Pairing with Errors (PWE) assumption. This assumption is following the
work in [9], and we replace the reconciliation mechanism of them by Peikert’s
version. For any (a, s) ∈ R2

q , we set τ(a, s) := base2 and if there is (c,W ) ←
HelpRec(as), then τ(a, s) = c = rec(as,W ). Assume that a PPT adversary A
takes inputs of the form (a1, a2, b,W ), where (a1, a2, b) ∈ R3

q and W ∈ {0, 1}n,
and outputs a list of values in {0, 1}n. A’s objective is to obtain the string
τ(a2, s) in its output, where s is randomly chosen from Rq, b is a “small additive
perturbation” of a1s, W is 〈a2s〉2. Define

AdvPWE
Rq (A)

def
= Pr

[
a1

$←− Rq;a2
$←− Rq; s, e

$←− χβ ; b← a1s+ e;

W ← 〈a2s〉2 : τ(a2, s) ∈ A(a1, a2, b,W )
]
.
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Let AdvPWE
Rq (t,N) = maxA

{
AdvPWE

Rq (A)
}

, where the maximum is taken over

all adversaries times complexity which at most t that output a list containing
at most N elements of {0, 1}n. Then for t and N polynomial in κ, the PWE
assumption states that AdvPWE

Rq (t,N) is negligible.
To states the hardness of PWE assumption, We define the decision version

of PWE problem as follows. If DPWE is hard, so is PWE.

Definition 3. (DPWE) Given (a1, a2, b,W, σ) ∈ Rq×Rq×Rq×{0, 1}n×{0, 1}n
where W = 〈K〉2 for some K ∈ Rq, where K ← dbl(K) and σ = rec(2 ·K,W ).
The Decision Pairing with Errors problem (DPWE) is to decide whether K =
a2s+ e1, b = a1s+ e2 for some s, e1, e2 is drawn from χβ, or (K, b) is uniformly
random in Rq ×Rq.
In order to show the reduction of the DPWE problem to the RLWE problem, we
would like to introduce a definition to what we called the RLWE-DH problem
[9] which can reduce to RLWE problem.

Definition 4. (RLWE-DH) Let Rq and χβ be defined as above. Given an in-
put ring element (a1, a2, b,K), where (a,X) is uniformly random in R2

q, The
DRLWE-DH problem is to tell if K is a2s + e1 and b = a1s + e2 for some

s, e1, e2
$←− χβ or (K, b) is uniformly random in Rq ×Rq.

Theorem 2. ([9], Theorem 1) Let Rq and χβ be defined as above, then the
RLWE-DH problem is hard to solve if RLWE problem is hard.

Theorem 3. Let Rq and χβ be defined as above. The DPWE problem is hard
if the RLWE-DH problem is hard.

Proof. Suppose there exists an algorithm D which can solve the DPWE problem
on input (a1, a2, b,W, σ) where for some K ∈ Rq, W = 〈K〉2 and σ = rec(2 ·
K,W ) with non-negligible probability ε. By using D as a subroutine, we can
build a distinguisher D′ on input (a′1, a

′
2, b
′,K ′), solve the RLWE-DH problem :

– Compute W = 〈K ′〉 and σ = rec(2 ·K ′,W ).
– Run D using the input (a′1, a

′
2, b
′,W, σ).

• If D outputs 1 then K ′ is a′2s+ e1 for some e1
$←− χβ and b′ = a1s+ e2

for some s, e1
$←− χβ .

• Else (K ′, b′) is uniformly random element from Rq ×Rq.
Note that if (a′1, b

′), (a′2,K
′) is two RLWE pairs, with input (a′1, a

′
2, b
′,W, σ)

defined above, D outputs 1 with probability ε, hence RLWE-DH can be solved
with probability ε using distinguisher D′. This means that RLWE-DH can be
solved with non-negligible advantage, which contradicts RLWE-DH’s hardness.

ut

3 New Three-party Password Authenticated Key
Exchange

In this section, we introduce a new 3PAKE based on RLWE: RLWE-3PAK. The
protocol RLWE-3PAK is given in Fig.1.
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3.1 Description of RLWE-3PAK

Let q = 2ω(logn) + 1 be an odd prime such that q ≡ 1 mod 2n. Let a ∈ Rq be
a fixed element chosen uniformly at random and given to all users. Let χβ be
a discrete Gaussian distribution with parameter β. Let H1 : {0, 1}∗ 7→ Rq be
hash function, Hl : {0, 1}∗ → {0, 1}κ for l ∈ {2, 3, 4} be hash functions which
is used for verification of communications, and H5 : {0, 1}∗ → {0, 1}κ be a Key
Derivation Function (KDF), where κ is the bit-length of the final shared key.
We model the hash functions Hl for l ∈ {1, 2, 3, 4, 5} as random oracles. We will
make use of 〈·〉2, b·e2, HelpRec() and rec() defined in Sect.2.3.

The function f used to compute client passwords’ verifiers for the server is
instantiated as : f(·) = −H1(·). Our protocol which is illustrated in Fig.1 con-
sists of the following steps:
Client B initiation. Client B sends the identity of A, the one who he wants to
communicate with, and his own to S as an initial request. (Note that, this step
also can be executed by A.)
Server S first response. Server S receivers B’s message, then S chooses

sf , ef , sg, eg
$←− χβ to compute bA = asf + ef and bB = asg + eg, and com-

putes public elements mA = bA + γ′ and mB = bB + η′ where γ′ := −H1(pw1),
η′ := −H1(pw2). Then S sends 〈mA,mB〉 to B.
Client B first response. After receiving S’s message, clientB checks ifmA,mB ∈
Rq. If not, aborts; otherwise retrieves b′B = mB + η where η = H1(pw2) and

chooses sB , eB , e
′
B

$←− χβ to compute pB = asB + eB and v1 = b′BsB + e′B .
Then B uses v1 to compute (σB , wB) ← HelpRec(v1), and computes kBS ←
H2(〈A,B, S, b′B , σB〉). B sends 〈mA,mB , pB , kBS , wB〉 to A.
Client A first response. After receiving B’s message, A checks if mA, pB ∈
Rq. If not, aborts; otherwise similarly with B, retrieves b′A = mA + γ where

γ = H1(pw1) and chooses sA, eA, e
′
A

$←− χβ to compute pA = asA + eA and
v2 = b′AsA+ e′A. Then A uses v2 to compute (σA, wA)← HelpRec(v2), and com-
putes kAS ← H2(〈A,B, S, b′A, σA〉). Finally A sends 〈pA, pB , kAS , kBS , wA, wB〉
to S.
Server S second response. After receiving A’s message, S checks if pA, pB ∈
Rq. If not, aborts; otherwise computes σ′A ← rec(2pAsf , wA) and checks if kAS =
H2(〈A,B, S, bA, σ′A〉). If not, aborts; otherwise computes σ′B ← rec(2pBsg, wB)
and checks if kBS = H2(〈A,B, S, bB , σ′A〉). If not, aborts; otherwise continues.

Then, S samples sS , e1, e2
$←− χβ , and computes cB = pAsS + e1 and cA =

pBsS + e2 which will be used to retrieve the final messages by A and B. To give
the authentication of S to B and A, S computes kSA ← H2(〈A,B, S, pB , σ′A〉)
and kSB ← H2(〈A,B, S, pA, σ′B〉). Finally S sends 〈pA, cA, cB , kSA, kSB〉 to B.
Client B second response. After receiving S’s message,B checks if pA, cA, cB ∈
Rq. If not, aborts; otherwise checks if kSB = H2(〈A,B, S, pA, σB〉). If not,

aborts; otherwise samples e′′B
$←− χβ and computes vB = cBsB + e′′B , (σ,w) ←

HelpRec(vB), k = H3(〈A,B, S,mA,mB , pA, pB , σ〉), k′′ = H4(〈A,B, S,mA,mB ,
pA, pB , σ〉) and skB = H5(〈A,B, S,mA,mB , pA, pB , σ〉). FinallyB sends 〈cA, w, k,
kSA〉 to A.
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Client A Client B Server S
Input pw1,B Input pw2, A γ′ = −γ, η′ = −η

(A,B)−−−−→
bA = asf + ef
bB = asg + eg
mA = bA + γ′

mB = bB + η′

η = H1(pw2)
mA,mB←−−−−−

b′B = mB + η
pB = asB + eB
v1 = b′BsB + e′B
(σB , wB)←HelpRec(v1)

γ = H1(pw1) kBS ← H2(〈A,B, S,
b′A = mA + γ b′B , σB〉)
pA = asA + eA

CB1←−−− CB1 ← 〈mA,mB , pB ,
v2 = b′AsA + e′A kBS , wB〉
(σA, wA)← HelpRec(v2)
kAS ← H2(〈A,B, S, σ′A ← rec(2pAsf , wA)

b′A, σA〉)
〈pA,pB ,kAS ,kBS ,wA,wB〉−−−−−−−−−−−−−−→ Abort if kAS 6= H2(〈A,

B, S, bA, σ
′
A〉)

σ′B ← rec(2pBsg, wB)
Abort if kBS 6= H2(〈A,
B, S, bB , σ

′
B〉)

cB = pAsS + e1
cA = pBsS + e2

Abort if kSB 6= H2(〈A, kSA = H2(〈A,B, S, pB , σ′A〉)
B,S, pA, σB〉)

CS←−− kSB = H2(〈A,B, S, pA, σ′B〉)
CS = 〈pA, cA, cB , kSA, kSB〉

vB = cBsB + e′′B
(σ,w)← HelpRec(vB)
k = H3(〈A,B, S,mA,
mB , pA, pB , σ〉)

Abort if kSA 6= H2(〈A, CB2←−−− k′′ = H4(〈A,B, S,mA,
B, S, pB , σA〉) mB , pA, pB , σ〉)

CB2 = 〈cA, w, k, kSA〉
σ ← rec(2cAsA, w)
Abort if k 6= H3(〈A,B,
S,mA,mB , pA, pB , σ〉)
else
k′ = H4(〈A,B, S,mA,

mB , pA, pB , σ〉)
k′−→ Abort if k′ 6= k′′

Fig. 1. Three-party password authenticated protocol: RLWE-3PAK, where
sS , eS , sf , ef , sg, eg, sB , eB , e

′
B , e

′′
B , eA, e

′
A, e1, e2 is sampled from χβ . Shared session key

is sk = H5(〈A,B, S,mA,mB , pA, pB , σ〉).
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Client A second response. After receiving B’s message, A checks if cA ∈ Rq. If
not, aborts; otherwise checks if kSA = H2(〈A,B, S, pB , σA〉). If not, aborts; oth-
erwise computes σ′ ← rec(2cAsA, w). Then checks if k = H3(〈A,B, S,mA,mB , pA,
pB , σ

′〉). If not, aborts; otherwise computes k′ = H4(〈A,B, S,mA,mB , pA, pB , σ
′〉)

and skA = H5(〈A,B, S,mA,mB , pA, pB , σ
′〉). Finally A sends k′ to B.

Client B finish. After receiving k′ from A, B checks if k′ = k′′. If not, aborts;
otherwise terminates.

3.2 Design Rationale

In our protocol, the check for ring elements ensures that all ring operations are
valid. The participants are split into clients and servers and servers are allowed
to store a password file. By having the server store not pw1, pw2, but 〈γ′, η′〉
allows us to improve the efficiency of the server.

Client A Client B Server S

pA = asA + eA
pA−−→

pB = asB + eB
pA,pB−−−−→

cB = pAsS + e1
cA = pBsS + e2

cA,cB←−−−−
vB = cBsB + e′′B

cA,w←−−− (σ,w)← HelpRec(vB)
σ ← rec(2cAsA, w)

Fig. 2. A brief description of the data transmission to realize key exchange.

It looks complicated for our 3PAE, but this is because of the need to provide
authentication in the exchange sessions. For the sake of understanding, the data
transmission to realize the function of key exchange is given in Fig.2. In the ab-
sence of authentication, party A and party B send pA and pB to S, respectively.
S computes cA and cB by using pA, pB and a random value sS , and sends cA
(resp. cB) to A (resp. B). Finally, A and B can calculate the same secret σ by
using the reconciliation mechanism with cA, cB and their secret keys.

In the 3PAKE model, A and B can not authenticate each other, so they need
the help of server S to provide the authentication. In our protocol, kAS (kBS)
can be viewed as an authentication of A (resp. B) to S. Note that S and A share
a password, so in Fig.1 only A can calculate the corresponding bA which is set
by S, and only B can calculate bB . Meanwhile, only A (resp. B) can calculate
the same key value σA (resp. σB) with S through the reconciliation mechanism.

The adversary can not guess the password a limited number of times, so kAS
(or kBS) can not be computed by the adversary in a few tries, which makes our
protocol resist undetectable on-line password guessing attacks [10]. Finally to re-
sist off-line password guessing attacks [16], session values delivered by the server
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also need to provide authentication of S to A and B, that is why we add kSA and
kSB in server’s outputs. In the security proof, two types of password guessing
attacks are discussed in detail. The final Client B finish step is indispensable
for the property of forward security [2].

3.3 Correctness

Note that in protocol RLWE-3PAK, if rec(2pAsf , wA)=bv2e2, the verification
for kAS would be correct. By the definition of the reconciliation mechanism and
Lemma 2, we have ||v2 − pAsf ||∞ < q

8 should be satisfied with overwhelming
probability. We have

v2 = bAsA + e′A = (asf + ef )sA + e′A

= asfsA + efsA + e′A

and

pAsf = asAsf + eAsf .

Hence we need ||v2 − pAsf ||∞ = ||efsA + e′A − eAsf ||∞ < q
8 . Similarly for

the verification of kBS , we need ||v1 − pBsg||∞ = ||egsB + e′B − eBsg||∞ <
q
8 with overwhelming probability. And to compute the correct key, it needs
rec(2cAsA, w)=bvBe2, which means that ||vB − cAsA||∞ < q

8 . We have

vB = cBsB + e′′B = (pAsS + e1)sB + e′′B

= asAsSsB + eAsSsB + e1sB + e′′B

and

cAsA = (pBsS + e2)sA

= asAsBsS + eBsAsS + e2sA.

Therefore, it also needs ||vB − cAsA||∞ = ||eAsBsS + e1sB + e′′B − eBsAsS −
e2sA||∞ < q

8 with overwhelming probability.

4 Security for RLWE-3PAK

Here we prove that the RLWE-3PAK protocol is secure, which means that an
adversary A who attacks the system cannot determine the SK of fresh instances
with greater advantage than that of a detectable on-line dictionary attack.

Theorem 4. Let P:=RLWE-3PAK, described in Fig.1, using ring Rq, and with
a password dictionary of size L. Fix an adversary A that runs in time t, and
makes nse, nex, nre, nco queries of type Send, Execute, Reveal, Corrupt,
respectively. Then for t′ = O(t+ (nro + nse + nex)texp):

Advake-fs
P (A) = C · nsse +O

(
nseAdvPWE

Rq (t′, n2ro) + AdvDRLWE
Rq (t′, nro)

+
(nse + nex)(nro + nse + nex)

qn
+
nse
2κ

)
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where s ∈ [0.15, 0.30] and C ∈ [0.001, 0.1] are constant CDF-Zipf regression
parameters depending on the password space L [29].

The proof of the above theorem will proceed by introducing a series of proto-
cols P0, P1, . . . , P7 related to P , with P0 = P . In P7, the only possible attack for
the adversary A is natural detectable on-line password guessing attacks. Even-
tually, there are

AdvakeP0
≤ AdvakeP1

+ ε1 ≤ · · · ≤ AdvakeP7
+ ε7

where ε1, . . . , ε7 are negligible values in k. Together with above relations, our
result is given by computing the success probability of detectable on-line attack
in P7 in the end of the proof.For the convenience of readers, we give a informal
description of protocols P0, P1, . . . , P7 in Fig.3, and given the proof sketches of
negligible advantage gain from Pi−1 to Pi in Fig.4.

We firstly explain our estimation parameters here. Let correctpw be the
event that the adversary make a correct guess of password by detectable on-
line passwords attacks. In most existing PAKE studies, passwords are assumed
to follow a uniformly random distribution, and Pr(correctpw)≤ nse

L +negl(κ),
where L is the size of the password dictionary, nse is the max number of A’s ac-
tive on-line password guessing attempts before a Corrupt query and negl() is a
negligible function. Ding Wang and Ping Wang [29] introduced CDF-Zipf model
and in this model Pr(correctpw)≤ C · nsse+negl(κ) for the Zipf parameters C
and s which is depended on the password space L. CDF-Zipf model is more con-
sistent with the real world attacks than traditional formulation. For example,
when considering trawling guessing attacks and when setting L = 106, the ac-
tual advantage will be 6.84% when nse = 102, and 12.45% when nse = 103 [28],
but the traditional formulation greatly underestimate Advantage to be 0.01%
when nse = 102, and 0.10% when nse = 103. When further considering targeted
guessing attacks (in which the adversary makes use of the target users personal
information), advantage will be about 20% when nse = 102, 25% when nse = 103

[30]. So we prefer this model in our analysis.

Proof. Firstly, we distinguish Client of A Action (CAA) queries, Client of B
Action (CBA) and Server Action (SA) queries. The adversary makes one of the
following queries:

– CBA0 query if it instructs some unused Πi
B to send the first message to

server S, and this corresponds to client B initiation in Sect.3.2;

– SA1 query if it sends some message to a previously unused Πt
S expecting

some message which is intended to be sent to some B, and this corresponds
to server S first response;

– CBA1 query if it sends some message to some Πj
B expecting some message

which is intended to be sent to some A and this corresponds to client B first
response;
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P0 The original protocol P .
P1 The hash function H1’s outputs are no longer a randomly chosen element γ in Rq,

but a ring element γ = as+ e ∈ Rq, where s, e is sampled from χβ .
P2 The honest parties randomly choose mA,mB , pA or pB values which are seen previ-

ously in the execution, the protocol halts and the adversary fails.
P3 The protocol answers Send and Execute queries without using any random oracle

queries. Subsequent random oracle queries made by A are backpatched, as much
as possible, to be consistent with the responses to the Send and Execute queries.
(This is a standard technique for proofs involving random oracles.)

P4 If an Hl(·) query is made, for l ∈ {3, 4, 5}, it is not checked for consistency against
Execute queries. That means instead of backpatching to maintain consistency with
an Execute query, the protocol responds with a random output.

P5 If before a Corrput query, a correct shared secret key guess is made against client
A or B (This can be determined by an Hl(·) query, for l ∈ {3, 4, 5}, using the
correct inputs to compute k, k′ or session key), the protocol halts and the adversary
automatically succeeds.

P6 If the adversary makes a shared secret key guess against two partnered clients, the
protocol halts and the adversary fails.

P7 The protocol uses an internal password oracle, which holds all passwords and be used
to exam the correctness of a given password. Such an oracle aims at the password
security. (It also accepts Corrupt(U) queries, which returns (f(pwC)))C if U is an
server and otherwise returns pwU to A).

Fig. 3. Informal description of protocols P0, P1, . . . , P7

P0 → P1 Unless the decision version of RLWE is solved with non-negligible advantage,
theses two protocols are indistinguishable.

P1 → P2 This is straightforward.
P2 → P3 By inspection, the two protocols are indistinguishable unless the decision ver-

sion of RLWE is solved with non-negligible advantage or the adversary makes an
Client A second response (resp. Client B finish.) query with a k (resp. k′)
value that is not the output of an H3(·) (resp. H4(·)) query that would be a correct
shared secret key guess. However, the probability of these is negligible.

P3 → P4 This can be shown using a standard reduction from PWE. On input (a,X, Y =
asy + ey,W ), where sy, ey are unknown, we plug in Y added by random RLWE
pair for client B’ pB values, and X added by random RLWE pair for server’ cB
values. Then from a correct Hl(·) guess for l ∈ {3, 4, 5}, we can compute τ(X, sy).

P4 → P5 This is obvious.
P5 → P6 This can be shown using a standard reduction from PWE, similar to the one

for Execute queries. On input (a,X, Y = asy+ey,W ), where sy, ey are unknown,
we plug in Y for client A’ pA values, and X added by random RLWE pair for
server’ cA values. Then from a correct Hl(·) guess for l ∈ {3, 4, 5}, we can compute
τ(X, sy).

P6 → P7 By inspection, there two protocols are indistinguishable. Finally, in P7, the
adversary success only if he breaks the password security or makes a correct
shared secret key guess. We show these happens with a negligible probability by
using a standard reduction from PWE.

Fig. 4. Proof sketches of negligible advantage gain from Pi−1 to Pi
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– CAA1 query if it sends some message to some unused Πi
A expecting some

message which is intended to be sent to S, and this corresponds to client A
first response;

– SA2 query if it sends some message to Πt
S expecting some message which

is intended to be sent to some B, and this corresponds to server S second
response;

– CBA2 query if it sends a message to some Πj
B expecting some message

which is intended to be sent to some A, and this corresponds client B second
response;

– CAA2 query if it sends some message to some Πi
A expecting some message

which is intended to be sent to some B, and this corresponds to client A
second response;

– CBA3 query if it sends some message to a Πj
B expecting the last protocol

message, and this corresponds to client B finish.

For the convenience of the reader, we define some events in the following.
Those events correspond to the adversary A making a session key guess against
the client instance or two partnered clients instances and verification key guess
against the client and server, respectively.

– testsk(A, i,B, S, l): for somemA,mB , pA, pB ,Amakes anHl(〈A,B, S,mA,mB ,
pA, pB , σ〉) query, CAA1 query to a client instance Πi

A with input 〈mA,
pB , kBS , wB〉 and output 〈pA, pB , kAS , kBS , wA, wB〉 and a CAA2 query to
Πi
A with input 〈cA, w, k, kSA〉, where the latest query is either theHl(·) query

or the CAA1 query, σ = rec(2cAsA, w). The associated value of this event is
Hl(〈A,B, S, mA,mB , pA, pB , σ〉), l ∈ {3, 4, 5} (respectively, the k, k′, skiA).

– testsk!(A, i,B, S): for some w and k a CAA2 query with input 〈cA, w, k, kSA〉
causes a testsk(A, i,B, S, 3) event to occur, with associated value k.

– testsk(B, j,A, S, l): for somemA,mB , pA, pB ,Amakes anHl(〈A,B, S,mA,mB ,
pA, pB , σ〉) query, and previously made CBA0 query with output 〈A,B〉,
CBA1 query to a client instance Πj

B with input 〈mA,mB〉 and output

〈mA, pB , kBS , wB〉, and previously made CBA2 query to Πj
B with input

〈pA, cA, cB , kSA, kSB〉 and output 〈cA, w, k, kSA〉, σ = b2cBsBe2. The asso-
ciated value of this event is Hl(〈A,B, S, mA,mB , pA, pB , σ〉), l ∈ {3, 4, 5}
(respectively, the k, k′′, skjB).

– testsk!(B, j,A, S): a CBA3 query to Πj
B is made with k′, where a test-

sk(B, j,A, S, 4) event previously occurs with associated value k′.

– testsk*(B, j,A, S): testsk(B, j,A, S, l) occurs for some l ∈ {3, 4, 5}.
– testsk(A, i,B, j, S) for some l ∈ {3, 4, 5}, both a testsk(A, i,B, S, l) event

and a testsk(B, j,A, S, l) event occur, where Πi
A is paired with Πj

B and Πi
B

is paired with Πj
A after its CBA2 query.

– testexecsk(A, i,B, j, S, t): for somemA,mB , pA, pB ,Amakes anHl(〈A,B, S,
mA,mB , pA, pB , σ〉) query for l ∈ {3, 4, 5}, and previously A made an Ex-
ecute(A, i,B, j, S, t) query that generates mA,mB , pA, pB , w, cA, cB , σ =
rec(2cAsA, w) = rec(2cBsB , w).
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– correctsk: before any Corrupt query, either a testsk!(A, i,B, S) event
occurs for some A, i,B and S, or a testsk*(B, j,A, S) event occurs for some
B, j,A and S.

– correctskexec: a testexecsk(A, i,B, j, S, t) event occurs for someA, i,B, j, S
and t.

– pairedskguess: a testsk(A, i,B, j, S) event occurs, for some A, i,B, j, S.
– correctkBS: for some mB , pB , A makes an H2(〈A,B, S, bB , σB〉) query, a

SA1 query to a server instance Πt
S with input 〈A,B〉 and output 〈mA,mB〉,

and a SA2 query to Πt
S with input 〈pA, pB , kAS , kBS , wA, wB〉, and maybe a

H1(pw2) query returning η with a password pw2, where the latest query is
either the H2(·) query or the SA2 query, σB = rec(2pBsg, wB), bB = mB−η,
bB = asg + eg. The associated value of this event is kBS .

– correctkAS: for some mA, pA, A makes an H2(〈A,B, S, bA, σA〉) query, a
SA1 query to a server instance Πt

S with input 〈A,B〉 and output 〈mA,mB〉,
and a SA2 query to Πt

S with input 〈pA, pB , kAS , kBS , wA, wB〉, and maybe a
H1(pw1) query returning γ with a password pw1, where the latest query is
either the H2(·) query or the SA2 query, σA = rec(2pAsf , wA), bA = mA−γ,
bA = asf + ef . The associated value of this event is kAS .

– correctkSB: for some mB , pB , A makes an H2(〈A,B, S, pA, σB〉) query,
and a CBA1 query to a server instance Πj

B with input 〈mA,mB〉 and output

〈mA, pB , kBS , wB〉, and a CBA2 query toΠj
B with input 〈pA, cA, cB , kSA, kSB〉,

and maybe a H1(pw2) query returning η with a password pw2, where the lat-
est query is either the H2(·) query or the CBA2 query, σB = rec(2pBsg, wB),
bB = mB − η, bB = asg + eg. The associated value of this event is kSB .

– correctkSA: for some mA, pA, A makes an H2(〈A,B, S, pB , σA〉) query,
and a CAA1 query to a instance Πi

A with input 〈mA, pB , kBS , wB〉 and
output 〈pA, pB , kAS , kBS , wA, wB〉, and a CAA2 query to Πi

A with input
〈cA, w, k, kSA〉, and maybe a H1(pw1) query returning γ with a password
pw1, where the latest query is either the H2(·) query or the CAA2 query,
σA = rec(2pAsf , wA), bA = mA − γ, bA = asf + ef . The associated value of
this event is kSA.

We assume that nro and nse + nex are both at least 1. And we make a
standard assumption of the random oracle that a new query is answered with a
fresh random value, and a query that is not new is answered identically to the
past response. Furthermore, let H1 : {0, 1}∗ → Rq, be a hash function where the
final hashed element γ ∈ Rq is sampled uniformly from Rq. We assume that if
the adversary A made an Hl(·) query for l ∈ {3, 4, 5}, then the corresponding
Hl′(·) query is made automatically where l′ ∈ {3, 4, 5} \ {l}. Even if all queries
are considered to be made by A, A is only able to see the outputs of the hash
function.
Protocol P0: Let P0 be the original protocol P .
Protocol P1: Let P1 be identical to P0 except that the hash function H1’s
outputs are no longer a randomly chosen element γ in Rq, but a ring element
γ′ = as + e ∈ Rq, where s, e is sampled from χβ . For details, hash function H1

would map password pw ∈ {0, 1}∗ to (s, e) ∈ Rq × Rq where s, e are sampled
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from χβ , then computes a ring element γ′ = as+e ∈ Rq, finally outputs γ′. Note
that γ and γ′ are indistinguishable under the assumption of RLWE. Hence P1 is
indistinguishable from P0 until DRLWE is solved with non-negligible advantage.
The reason why we define this protocol is to prove the security of our protocol
correctly in P4, P6 and P7.

Claim 1 For any adversary A,

AdvakeP0
(A) ≤ AdvakeP1

(A) + AdvDRLWE
Rq (t′, nro).

The claim above is straightforward from the definition of P1.
Protocol P2: Let P2 be identical to P1, except that if the honest parties random-
ly choose mA, mB , pA or pB values which are seen previously in the execution,
the protocol aborts and thus the adversary fails.

For convenient, here we define four events:

– Let E1 (resp., E2) be the event that an mA (resp., mB) value generated in a
SA1 or Execute query is equal to an mA (resp., mB) value already seen in
a previous SA1 or Execute query, an mA (resp., mB) value which is used
as input in a previous CAA1 (resp., CBA1) or SA1 query, or an mA (resp.,
mB) value in some previous Hl(·) query (made by A), for l ∈ {3, 4, 5}.

– Let E3 (resp., E4) be the event that an pA (resp., pB) value generated in a
CAA1 (resp., CBA1) query is equal to an pA (resp., pB) value already seen
in a previous CAA1 (resp., CBA1) or Execute query, an pA (resp., pB)
value which is used as input in a previous SA1 query, or an pA (resp., pB)
value in some previous Hl(·) query (made by A), for l ∈ {3, 4, 5}.

Let E = E1∨E2∨E3∨E4 then P2 is identical to P1 except that if E occurs, the
protocol aborts (and the adversary fails). This protocol can make sure that every
Hl(·) query returns a new one which is independent of anything that previously
created.

Claim 2 For any adversary A,

AdvakeP1
(A) ≤ AdvakeP2

(A) +
O((nse + nex)(nro + nse + nex))

qn
.

Proof. The probability that mA,mB , pA, pB has previously been generated in a
Send, Execute, or random oracle query is nro+nex+nse

qn . And if event E doesn’t
occur, there need nse + nex values to be unique. Hence the probability of any of

mA,mB , pA, pB not being unique is O((nse+nex)(nro+nse+nex))
qn . The claim follows.

ut

Protocol P3: Let P3 be identical to P2, except that in Send and Execute
queries, outputs are answered without using any random oracle querie. Subse-
quent random oracle queries made by A are backpatched, as much as possible,
to be consistent with the responses to the Send and Execute queries.

For details, the queries in P3 are answered as follows:
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– In an Execute(A, i,B, j, S, t) query, mA ← asma + ema,mB ← asmb +
emb, pA ← aspa+epa, pB ← aspb+epb, where sma, ema, smb, emb, spa, epa, spb,

epb
$←− χβ , w,wA, wB

$←− {0, 1}n, k, k′, kAS , kBS , kSA, kSB
$←− {0, 1}κ and

skiA ← skjB
$←− {0, 1}κ.

– In a SA1 query to instance Πt
S , mA ← asma+ema, mB ← asmb+emb, where

sma, ema, smb, emb
$←− χβ .

– In a CBA1 query to instance Πj
B , pB ← aspb + epb, where spb, epb

$←− χβ ,

kBS
$←− {0, 1}κ, wB

$←− {0, 1}n.

– In a CAA1 query to instance Πi
A, pA ← aspa + epa, where spa, epa

$←− χβ ,

kAS
$←− {0, 1}κ, wA

$←− {0, 1}n.
– In a SA2 query to instance Πt

S , if this query causes a correctkAS and
correctkBS event to occur, then set cA ← asca + eca, cB ← ascb + ecb,

where sca, eca, scb, ecb
$←− χβ , set kSA, kSB to associated value of the events

correctkAS and correctkBS respectively, else, Πt
S aborts.

– In a CBA2 query to instance Πj
B , if this query causes a correctkSB event

to occur, then set w
$←− {0, 1}n, skjB

$←− {0, 1}κ, k, k′′
$←− {0, 1}κ, otherwise

Πj
B aborts.

– In a CAA2 query to instance Πi
A, if this query causes a correctkSA event

to occur, do the following:
• If this query causes a testsk!(A, i,B, S) event to occur, then set k′ to

associated value of the event testsk(A, i,B, S, 4), and set key skiA to
associated value of the event testsk(A, i,B, S, 5).

• Else if Πi
A is paired with an instance Πj

B , skiA ← skjB , k′
$←− {0, 1}κ.

• Otherwise, Πi
A aborts.

Otherwise, Πi
A aborts.

– In a CBA3 query to instance Πj
B , if this query causes a testsk!(B, j,A, S)

event to occur, or if instance Πj
B is paired with a client instance Πi

A, termi-

nates. Otherwise, Πj
B aborts.

– In an Hl(〈A,B, S, . . .〉) query, for l ∈ {2, 3, 4, 5}, if this Hl(·) query causes a
testsk(A, i,B, S, l) event, testsk(B, j,A, S, l) event, testexecsk(A, i,B, j, S, t)
event, correctkAS event, correctkBS event, correctkSA event or cor-
rectkSB event to occur, then output the associated value of the event, else
outputs a random value from {0, 1}κ.

Claim 3 For any adversary A,

AdvakeP2
(A) = AdvakeP3

(A) +
O(nse)

2κ
+O(AdvDRLWE

Rq (t′, nro)).

Proof. In P2, in a CBA2 query of a client instance Πj
B , if a correctkSB event

occurs, produces a skjB and k and k′′ that are uniformly chosen from {0, 1}κ,

otherwise aborts, and since the Hl(·) query that determines skjB is a new one,
this session key is independent of anything that previously created. Then in a
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CBA3 query, if a testsk!(B, j,A, S) event occurs, or Πj
B is paired, the instance

terminates, and if Πj
B is unpaired and no testsk!(B, i, A, S) event occurs, then

either the instance terminates or aborts, and it is easy to verify that the total
probability of any instance terminating in this case is at most nse

2κ .

And in P2, for any client instance Πi
A, if a correctkSA event occurs, either:

(1) a testsk!(A, i,B, S) event occurs, and then k′ and skiA are set to the values
associated with the testsk(A, i,B, S, 4) and testsk(A, i,B, S, 5) events, respec-
tively. or (2) no testsk!(A, i,B, S) event occurs, but exactly one instance Πj

B is

paired with Πi
A, then set skiA = skjB , and k′ is uniformly chosen from {0, 1}κ,

independent of anything that previously occurred (since no testsk(A, i,B, S, 3)
event could have occurred in this case), or (3) no testsk!(A, i,B, S) event occurs
and no instance is paired with Πi

A, then either the instance terminates or aborts.
Note that in the last case the total probability of any instance terminating is at
most nse

2κ .

In P2, for server Πt
S , either: (1) if correctkAS event and correctkBS and

occurs, set kSA, kSB to associated value of the event correctkAS and cor-
rectkBS respectively; (2) correctkAS or correctkBS event don’t occur, Πt

S

abort.

For any H3(〈A,B, S, ·, ·, ·, ·〉) query, either: (1) it causes a testsk(B, j,A, S, 3)
event, or testexecsk(A, i,B, j, S, t) event to occur, in which case the output is
set to be the associated value of the event, or (2) it does not cause a test-
sk(A, i,B, j, S, 3) event, but does cause a testsk(A, i,B, j, S) event to occur
(that is, Πi

A is paired with Πi
B), where the CAA2 query of the event had input

〈·, ·, k, ·〉, in which case either Πi
A terminated and the output is k, or Πi

A abort-
ed and the output is uniformly chosen from {0, 1}κ\{k}, or (3) H3(·) output
a uniformly chosen value from {0, 1}κ, which is independent of anything that
previously produced, since this is a new H3(·) query. The second case only occur
when an unpaired client instance terminated with no testsk!(A, i,B, S) event.

For any H4(〈A,B, S, ·, ·, ·, ·〉) query, either: (1) it causes a testsk(B, j,A, S, 4)
event, or testexecsk(A, i,B, j, S, t) event to occur, in which case the output is
set to be the associated value of the event, or (2) it does not cause a test-
sk(A, i,B, j, S, 4) event, but does cause a testsk(A, i,B, j, S) event to occur, in
which case Πi

A terminated, or (3) H4(·) output a uniformly chosen value from
{0, 1}κ, which is independent of anything that previously produced, since this
is a new H4(·) query. The second case only occur when an H3(·) query causes a
second case where its output is fixed.

For any H5(〈A,B, S, ·, ·, ·, ·〉) query, either: (1) it causes a testsk(B, j,A, S, 5)
event, or testexecsk(A, i,B, j, S, t) event to occur, in which case the output is
set to be the associated value of the event, or (2) it does not cause a test-
sk(A, i,B, j, S, 5) event, but does cause a testsk(A, i,B, j, S) event to occur, in
which case Πi

A terminated, or (3) H5(·) output a uniformly chosen value from
{0, 1}κ, which is independent of anything that previously produced, since this
is a new H5(·) query. The second case only occur when an H3(·) query causes a
second case where its output is fixed.
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If an unpaired client instanceΠi
A never terminates without a testsk!(A, i,B, S)

event, an unpaired instance Πj
B never terminates without a testsk!(B, j,A, S)

event, and A can not solve decision version of RLWE, then P3 is consistent with
P2. The claim follows. ut

Protocol P4: Let P4 be identical to P3 except that in anHl(〈A,B, S,mA,mB , pA,
pB , σ〉) query, l ∈ {3, 4, 5}, there is no check for a testexecsk(A, i,B, j, S, t)
event.

Claim 4 For any adversary A running in time t, there is a t′ = O(t + (nro +
nse + nex)texp) such that

AdvakeP3
(A) ≤ AdvakeP4

(A) + 2AdvPWE
Rq (t′, nro) +O(AdvDRLWE

Rq (t′, nro)).

Proof. Let E be the event that the testexecsk(A, i,B, j, S, t) occurs. Obvious-
ly, P3 and P4 are indistinguishable if E does not occur. When A is running
against protocol P3, we suppose that the probability that E occurs is ε, then
Pr(SuccakeP3

(A))≤ Pr(SuccakeP4
(A))+ε and thus AdvakeP3

(A) ≤AdvakeP4
(A)+2ε.

Firstly, assume that the adversary can cause testexecsk(A, i,B, j, S, t) event
occurs with non-negligible probability. Then we construct an algorithm D that
attempts to solve PWE problem by running A on a simulation of the protocol
P3. Given (a,X, Y,W ), the objective is to find τ(X, sy) = rec(2Xsy,W ) if Y =

asy + ey for some sy, ey
$←− χβ . D simulates P3 for A with following changes:

– In an Execute(A, i,B, j, S, t) query, set pB = Y +asf+ef where sf , ef
$←− χβ

and cB = X + asg + eg where sg, eg
$←− χβ ;

– When A finishes, for every Hl(〈A,B, S,mA,mB , pA, pB , σ〉) query, where
pB , cB and w were generated in an Execute(A, i,B, j, S, t) query, σ =
rec(2vB , w) with vB = cBsB +e′′B . Then we have: bB := asB +eB = mB−η1
and

vB = cBsB + e′′B = (X + asg + eg)(sy + sf ) + e′′B

= Xsy + (asg + eg)sy + (X + asg + eg)sf + e′′B

≈ Xsy + Y · sg + (X + asg + eg)sf + e′′B

So we have Xsy ≈ vB − Y · sg − (X + asg + eg)sf − e′′B . Let

σ′ = rec(2(vB − Y · sg − (X + asg + eg)sf − e′′B),W ).

Add the value of σ′ to the list of possible values for τ(X, sy).

Note that the simulation sets pB = Y + (asf + ef ) instead of pB = aspb+ epb
which is distinguishable if there are anyone who can solve the decision version of
RLWE problem. It is the same for the setting of cB . Then if E occurs, D adds
the correct τ(X, sy) to the list with non-negligible advantage. Such a simulation
D is indistinguishable from P3 until E occurs or the DRLWE problem is solved
with a non-negligible advantage. If E occurs, D adds the correct τ(X, sy) to
the list with non-negligible advantage. After E occurs, the simulation would be
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distinguishable from P3. But we do make the assumption that A still follows the
appropriate time and query bounds even if A distinguishes the simulation from
P3.

If the running time of simulator is t′, and they creates a list of size nro with
advantage ε. Note that t′ = O(t+ (nro + nse + nex)texp), the claim follows from
the fact that AdvPWE

Rq
(D) ≤AdvPWE

Rq
(t′, nro). ut

Protocol P5: Let P5 be identical to P4 except that if correctsk occurs
then the protocol halts and the adversary succeeds automatically. Note that this
causes following changes:

– In a CAA2 query toΠi
A, if a testsk!(A, i,B, S) event occurs and no Corrupt

query has been made, the protocol halts and the adversary automatically
succeeds.

– In an Hl(·) query, for l ∈ {3, 4, 5}, if a testsk*(B, j,A, S) event occurs and
no Corrupt query has been made, the protocol halts and the adversary
automatically succeeds.

Claim 5 For any adversary A

AdvakeP4
(A) ≤ AdvakeP5

(A).

The above claim is obviously by the definition.
Note that in P5, until correctsk event or a Corrupt query occurs, no un-

paired client will terminate.
Protocol P6: Let P6 be identical to P5 except that if a pairedskguess event
occurs, the protocol halts and A fails. And we assume that the test for the event
pairedskguess occurs before the test for correctsk while a query is made. Note
that this involves the following change: if a testsk(A, i,B, S, l) event occurs (this
should be checked in a CAA2 query, or an Hl(·) query) for l ∈ {3, 4, 5}, check if
a testsk(A, i,B, j, S) event also occurs.

Claim 6 For any adversary A running in time t, there is a t′ = O(t + (nro +
nse + nex)texp) such that

AdvakeP5
(A) ≤ AdvakeP6

(A) + 2nseAdvPWE
Rq (t′, nro).

Proof. When A is running against protocol P5, we suppose the probability that
pairedskguess event occurs is ε. Then Pr(SuccakeP5

(A) ≤Pr(SuccakeP6
(A))+ε, and

we have AdvakeP5
(A) ≤AdvakeP6

(A)+2ε.
Here we construct an algorithm D which attempts to solve PWE by running

the adversary on a simulation of the protocol P5. Given (a,X, Y,W ), D chooses
a random d ∈ {1, . . . , nse} and simulates P5 for the adversary with following
changes:

– In the dth CAA1 query, say to a client instance Πi′

A, with some input
〈mA, pB , kBS , wB〉, set pA ← Y .
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– In a SA1 query to a server instanceΠt
S , with input 〈pA, pB , kAS , kBS , wA, wB〉

where there was a CBA1 query to Πj
B with input 〈mA,mB〉 and output

〈mA, pB , kBS , wB〉, and a CAA1 query to Πi′

A (i.e., the instance with the dth
CAA1 query) with input 〈mA, pB , kBS , wB〉 and output 〈pA, pB , kAS , kBS , wA,
wB〉, set cA ← X + asg + eg where sg, eg

$←− χβ .

– In a CAA2 query to Πi′

A, if Πi′

A is unpaired, D outputs 0 and halts.

– In a CBA3 query to Πj
B , if Πj

B was paired with Πi′

A after its CBA2 query,

but is not now paired with Πi′

A, no test for correctsk is made, and Πj
B

aborts (This makes any paired Πj
B must be paired only after CBA2 query).

– WhenA finishes, for everyHl(〈A,B, S,mA,mB , pA, pB , σ〉) query, l ∈ {3, 4, 5}
where pA was generated by Πi′

A, pB , w were generated by Πj
B and mA,mB ,cA

were generated by a server instance Πt
S , respectively, where Πj

B was paired

with Πi′

A after its CBA2 query, σ = rec(2vA, w) with vA = cAsA,

we can see that,
vA = cAsA = (X + asg + eg)sy

= Xsy + (asg + eg)sy

≈ Xsy + Y · sg
So Xsy ≈ vA − Y · sg, and,

σ′ = rec(2(vA − Y · sg),W ).

Finally, add the value of σ′ to the list of possible values for τ(X, sy).
This simulation is perfectly indistinguishable from P5 until (1) a testsk∗(B, j,

A, S) event occurs, where Πj
B was paired with Πi′

A after the CBA2 query, or (2)

Πi′

A is not paired with a client instance when the CBA2 query is made. Note

that the probability of pairedskguess event occurring for Πi′

A is at least ε
nse

,
and this is at most the probability of an event of type (1) occurring. Since an
event of type (2) implies that pairedskguess would never have occurred in P5

for Πi′

A. If an event of type (1) occurs, D adds the correct τ(X, sy) to the list.
Note that in either case, such a simulation may be distinguishable from P5, but
the fact that a pairedskguess event occur with probability at least ε

nse
doesn’t

change. However even if A can distinguish the simulation from P5, A still follows
the appropriate time and query bounds by our assumption.

Note that with advantage ε
nse

, D creates a list of size nro, and the running
time of D is t′ = O(t+ (nro + nse + nex)texp). Then the claim follows from the
fact that AdvPWE

Rq
(D) ≤AdvPWE

Rq
(t′, nro). ut

Protocol P7: Let P7 be identical to P6 except that there is an internal pass-
word oracle, which holds all passwords and be used to exam the correctness of a
given password. Such an oracle aims at the password security. Password oracle
is not available to adversary and generates all passwords during initialization.
Then this oracle accepts queries of the form testpw(U, pw) and returns TRUE
if pw = pwU , and FALSE otherwise. It also accepts Corrupt(U) queries, which
returns (f(pwC))C if U is an server and otherwise returns pwU to A. When a
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Corrupt(U) query is received in the protocol, it is answered using a Corrup-
t(U) query to the password oracle.

Claim 7 For any adversary A,

AdvakeP6
(A) = AdvakeP7

(A).

Proof. Obviously, P6 and P7 are indistinguishable. ut

Let correctpw be the event that the adversary makes a correct guess of
password. From the description of P7, it is easy to find that the probability of
an adversary A succeeding in P7 is bounded by

Pr(SuccakeP7
(A)) ≤Pr(correctpw) +

(
Pr(correctsk|¬correctpw)

+ Pr(SuccakeP7
(A)|¬correctsk ∩ ¬correctpw)

· Pr(¬correctsk ∩ ¬correctpw)
)
· Pr(¬correctpw).

Firstly we analysis the value of Pr(SuccakeP7
(A)|¬correctsk∩¬correctpw). Here

we note that suppose correctsk event doesn’t occur, and the password security
is not broken, then the adversary succeeds if and only if when A makes a Test
query to a fresh instance Πi

U , and he guesses the bit used in the Test query. We
will prove that the view of A is independent of skiU , and then the probability of
the adversary success is exactly 1

2 .

We examine Reveal queries here. For Reveal queries, we know that if Πi
U is

fresh, there could be no one for Reveal(U, i) query. And suppose Πi
U is partnered

with some Πj
U ′ , there is no Reveal(U ′, j) query. Furthermore, since sid includes

the exchanged messages (mA,mB , pA, pB), if more than a single client A instance
and a single client B instance accept with a same sid, the adversary fails (by
protocol P2). Hence the output of Reveal queries is not dependent on skiU .

Second, for H5(·) queries, note that from P5, until a correctpw event or a
Corrupt query, there will be no unpaired client or server instance terminates,
and this means that an instance may only be fresh and receives a Test query if
it is partnered. However by P6 if Πi

U is partnered by an H5(·) query will never
reveal skiU . Therefore, the view of A is independent of skiU and the probability
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of success is exactly 1
2 . So,

Pr(SuccakeP7
(A)) ≤Pr(correctpw) +

(
Pr(correctsk|¬correctpw)

+ Pr(SuccakeP7
(A)|¬correctsk ∩ ¬correctpw)

· Pr(¬correctsk ∩ ¬correctpw)
)
· Pr(¬correctpw)

=Pr(correctpw) +
(

Pr(correctsk|¬correctpw)

+
1

2
· (1− Pr(correctsk|¬correctpw))

)
· Pr(¬correctpw)

≤1

2
+

1

2
Pr(correctpw) +

1

2
Pr(correctsk|¬correctpw)

− 1

2
· Pr(correctsk|¬correctpw) · Pr(correctpw)

≤1

2
+

1

2
Pr(correctpw) +

1

2
Pr(correctsk|¬correctpw)

Next we compute Pr(correctpw). We need to consider two types of attacks:
undetectable on-line password guessing attacks [10] and off-line password guess-
ing attacks [16]. If our scheme can resist those two attacks, then the adversary
can only guess the passwords by on-line detected attack. In order to make the
scheme resist these two attacks, we add the authentication information to the
transmission information. If it can be proved that the probability of the authen-
tication information can be calculated correctly by the adversary is negligible,
then we can say that the scheme is secure under those two attacks.

We prove that the probability of the adversary guessing the authentication
information is negligible, i.e. Pr[correctkSA ∪ correctkSB ∪ correctkAS ∪
correctkBS] ≤ negl(λ). Since the proofs for those four events are similar, with-
out loss of generality, we consider correctkBS event in the following.

Claim 8 For any adversary A running in time t, there is a t′ = O(t + (nro +
nse + nex)texp) such that

Pr[correctSB] ≤ Pr[SuccPWE
Rq (t′, nro)] +O(Pr[SuccDRLWE

Rq (t′, nro)]).

Proof. Let E be the event that a correctkSB event occurs. Assume that the
adversary can cause E event occurs with non-negligible probability. Then we
construct an algorithm D that attempts to solve PWE problem by running A
on a simulation of the protocol P7. Given (a,X, Y,W ), the objective is to find

τ(X, sy) if Y = asy + ey for some sy, ey
$←− χβ . D simulates P7 for A with

following changes:

– In an Execute(A, i,B, j, S, t) query, set mB = X + asg + eg where sg, eg
$←−

χβ and pB = Y + asf + ef where sf , ef
$←− χβ ;

– When A finishes, for every H2(〈A,B, S, pA, σB〉) query, where mB , pA, pB
and wB were generated in an Execute(A, i,B, j, S, t) query, and an H1(pw2)
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query returned η = asη + eη, σB = rec(2v1, wB) with v1 = bBsB + e′B ,
bB = mB − η, and there is:

v1 = bBsB + e′B = (X + asg + eg − η)(sy + sf ) + e′B

= Xsy + (asg + eg − η)sy + (X + asg + eg − η)sf + e′B

≈ Xsy + Y · (sg − sη) + (X + asg + eg − η)sf + e′B

So we have Xsy ≈ v1 − Y · (sg − sη)− (X + asg + eg − η)sf − e′B . Let

σ′ = rec(2(v1 − Y · (sg − sη)− (X + asg + eg − η)sf − e′B),W ).

and add the value of σ′ to the list of possible values for τ(X, sy).

Note that the simulation sets pB = Y + (asf + ef ) instead of pB = aspb+ epb
which is distinguishable if there is anyone who can solve the decision version of
RLWE problem. It is the same for the setting of mB . Then if E occurs, D adds
the correct τ(X, sy) to the list with non-negligible advantage. Such a simulation
D is indistinguishable from P7 until E occurs or the DRLWE problem is solved
with a non-negligible advantage. If E occurs, D adds the correct τ(X, sy) to
the list with non-negligible advantage. After E occurs, the simulation would be
distinguishable from P7. But we do make the assumption that A still follows the
appropriate time and query bounds even if A distinguishes the simulation from
P7.

If the running time of simulator is t′, and they creates a list of size nro with
advantage ε. Note that t′ = O(t+ (nro + nse + nex)texp), the claim follows from

the fact that Pr[SuccPWE
Rq (D)] ≤ Pr[SuccPWE

Rq (t′, nro)]. ut

Therefore, we can only consider the detectable on-line attacks. In most exist-
ing PAKE studies, passwords are assumed to follow a uniformly random dis-
tribution, and in this model Pr(correctpw)≤ nse

L +negl(κ), where L is the
size of the password dictionary, nse is the max number of A’s active on-line
password guessing attempts before a Corrupt query and negl() is a negligi-
ble function. However, Ding Wang and Ping Wang [29] introduced CDF-Zipf
model, which is more consistent with the real world attacks and we prefer this
model in our analysis. In this model, Pr(correctpw)≤ C · nsse+negl(κ) for the
Zipf parameters C and s which is depended on the password space L. That is
Pr(correctpw)≤ C · nsse+O(Pr[SuccPWE

Rq (t′, nro)] + Pr[SuccDRLWE
Rq (t′, nro)]).

Next, we also need that probability that correctsk event occurs is negligible.

Claim 9 For any adversary A running in time t, there is a t′ = O(t + (nro +
nse + nex)texp) such that

Pr[correctsk] ≤ O(Pr[SuccPWE
Rq (t′, nro)]).

Proof. Assume the adversary can cause event correctsk occurs with non-negligible
probability, we construct an algorithm D which attempts to solve PWE by run-
ning the adversary on a simulation of the protocol P7. We consider the case
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that testsk!(A, i,B, S) event occurs for some A, i,B and S, and for the case
of testsk*(B, j,A, S) event, the proof is similar. Given (a,X, Y,W ), D chooses
a random d ∈ {1, . . . , nse} and simulates P7 for the adversary with following
changes:

– In the dth CAA1 query, say to a client instance Πi′

A, with input B,S, set
pA ← Y .

– In a SA2 query to a server instanceΠt
S , with input 〈pA, pB , kAS , kBS , wA, wB〉

where there was a CAA1 query to Πi′

A (i.e., the instance with the dth CAA0
query) with input mA, pB , kBS , wB and output 〈pA, pB , kAS , kBS , wA, wB〉,
and a query to Πj

B with input mA,mB and output mA, pB , kBS , wB , set

cA ← X + asg + eg where sg, eg
$←− χβ .

– Tests for correctsk and pairedskguess are not made.

– WhenA finishes, for everyHl(〈A,B, S,mA,mB , pA, pB , σ〉) query, l ∈ {3, 4, 5}
where pA was generated by Πi′

A, pB , w were generated by Πj
B and cA, cB were

generated by a server instance Πt
S , respectively, σ = rec(2vA, w), vA = cAsA,

we can see that,

vA = cAsA = (X + asg + eg)sy

= Xsy + asgsy + egsy

≈ Xsy + Y sg

So Xsy ≈ vA − Y sg. And,

σ′ = rec(2(vA − Y sg),W )

Finally, add the value of σ′ to the list of possible values for τ(X, sy).

Note that such a simulation D is indistinguishable from P7 until a cor-
rectsk event or a pairedpwguess event event occurs, or A makes a Cor-
rupt query. But this does not change the fact that pairedpwguess event oc-
curs with negligible probability. When a correctsk event (to be exact, test-
sk!(A, i,B, S) event) occurs, D adds the correct τ(X, sy) to the list with non-
negligible probability. Hence for t′ = O(t+(nro+nse+nex)texp), Pr(correctsk)≤
O(Pr[SuccPWE

Rq (t′, nro)]), and obviously there is Pr(correctsk|¬ correctpw)≤
O(Pr[SuccPWE

Rq (t′, nro)]) ut

So there is

Pr(SuccakeP7
(A)) ≤1

2
+

1

2
Pr(correctpw) +

1

2
Pr(correctsk|¬correctpw)

=
1

2
+

1

2
C · nsse +O(Pr[SuccPWE

Rq (t′, nro)] + Pr[SuccDRLWE
Rq (t′, nro)])

The theorem follows from Claim 1-9 . ut
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5 Concrete Parameters and Implementation of
RLWE-3PAK

In this section, we present our choices of parameters and outline the performance
of our RLWE-3PAK.

Here we use the fact of the product of two Gaussian distributed random values
that are stated in [32]. Let x, y ∈ R be two polynomials with degree of n, and the
coefficients of x and y are distributed according to discrete Gaussian distribution
with parameter βx, βy, respectively. Then the individual coefficients of the poly-
nomial xy are approximately normally distributed around zero with parameter
βxβy

√
n. Hence for ||vB−cAsA||∞ = ||eAsBsS+e1sB+e′′B−eBsAsS−e2sA||∞ <

q
8 , by applying Lemma 1 we have that ||vB − cAsA||∞ > 6

√
2n2β6 + 2nβ4 + β2

with probability approximating 2−162. Hence we set 6
√

2n2β6 + 2nβ4 + β2 < q
8 ,

then the two clients will end with the same key with overwhelming probability.
And such choices of parameter also make ||v2−pAsf ||∞ < q

8 and ||v1−pBsg||∞ <
q
8 with overwhelming probability be satisfied.

We take n = 1024, β = 8 and q = 232−1. Our implementations are written in
C without any parallel computations or multi-thread programming techniques5.
The program is run on a 3.5GHz Intel(R) Core(IM) i7-4770K CPU and 4GB
RAM computer running on Ubuntu 16.04.1 64 bit system. The timings for server
and clients actions of the authentication protocol are presented in Table 1.

Table 1. Timings of proof-of-concept implementations in ms

B initiation S first response B first response A first response

<0.001 ms 0.165 ms 1.960 ms 1.779 ms

S second response B second response A second response B finish

2.030 ms 2.195 ms 2.088 ms <0.001 ms

Sampling and multiplication operations are the main time cost. The sampling
technique used in our protocol is the same with [5], which uses the Discrete Gaus-
sian to approximate the continuous Gaussian. And to improve performance, we
have used multiplication with FFT. Note that by the proof of concept imple-
mentation, our protocol can be very efficient.

6 Conclusion

In this paper, we propose a 3PAKE protocol based on RLWE: RLWE-3PAK.
We provide a full proof of security of our protocol in the random oracle model.
Finally, we construct a proof-of-concept implementation to examine the efficien-
cy of our protocol. The performance results indicate that our protocol is very
efficient and practical. Since some literature [4] show that it is delicate to prove

5 https://github.com/LiuChaoCrypto/RLWE3PAK
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quantum resistance with random oracle. It is meaningful to design an efficient
3PAKE protocol without random oracle heuristics in the future.
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