
On the Real-World Instantiability of Admissible
Hash Functions and Efficient Verifiable Random

Functions

Tibor Jager?1 and David Niehues??2

1Bergische Universität Wuppertal, Wuppertal, Germany,
tibor.jager@uni-wuppertal.de

2Paderborn University, Paderborn, Germany,
david.niehues@uni-paderborn.de

Abstract. Verifiable random functions (VRFs) are essentially digital
signatures with additional properties, namely verifiable uniqueness and
pseudorandomness, which make VRFs a useful tool, e.g., to prevent
enumeration in DNSSEC Authenticated Denial of Existence and the
CONIKS key management system, or in the random committee selec-
tion of the Algorand blockchain.
Most standard-model VRFs rely on admissible hash functions (AHFs) to
achieve security against adaptive attacks in the standard model. Known
AHF constructions are based on error-correcting codes, which yield asymp-
totically efficient constructions. However, previous works do not clarify
how the code should be instantiated concretely in the real world. The rate
and the minimal distance of the selected code have significant impact on
the efficiency of the resulting cryptosystem, therefore it is unclear if and
how the aforementioned constructions can be used in practice.
First, we explain inherent limitations of code-based AHFs. Concretely,
we show that even if we were given codes that achieve the well-known
Gilbert-Varshamov or McEliece-Rodemich-Rumsey-Welch bounds, exist-
ing AHF-based constructions of verifiable random functions (VRFs) can
only be instantiated quite inefficiently. Then we introduce and construct
computational AHFs (cAHFs). While classical AHFs are information-
theoretic, and therefore work even in presence of computationally un-
bounded adversaries, cAHFs provide only security against computation-
ally bounded adversaries. However, we show that cAHFs can be instanti-
ated significantly more efficiently. Finally, we present a new VRF scheme
using cAHFs and show that it is currently the most efficient verifiable
random function with full adaptive security in the standard model.

Keywords: Admissible hash functions, verifiable random functions, error-
correcting codes, provable security.

? Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823.

?? Supported by the German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901/3).

1 Introduction

Verifiable random functions (VRFs), introduced by Micali, Rabin and Vad-
han [37], are the public-key counterpart to Pseudorandom Functions (PRFs).
The evaluation of a VRF Vsk(X) can only be privately computed using the se-
cret key sk. The evaluation at X yields a pseudorandom value Y together with a
non-interactive proof π. The verifier can use the public verification key vk and π
to confirm that Y was correctly computed as Vsk(X). VRFs have recently found
several interesting real-world applications. For instance, the Algorand blockchain
uses a VRF to randomly select a committee for a Byzantine agreement [19].
Furthermore, VRFs can be used to prevent enumeration attacks against hash-
based data structures, since the VRF can only be evaluated privately and the
correctness of the computation can be publicly verified. This approach is used
in the (currently inactive) IETF draft for DNSSEC Authenticated Denial of
Existence [40,48] to prevent offline DNS-enumeration attacks. Yet another ap-
plication domain of VRFs are key management systems. For instance, CONIKS,
a modern transparent key management system, uses a VRF similarly to prevent
leaking private data of users [36]. Due to these numerous practical applications,
the IETF is currently standardizing VRFs [21]. These VRFs are efficient, but
the accompanying security proofs rely on the random oracle heuristic [5], which
can not be instantiated in general [13]. In this work, we consider efficient practi-
cal constructions of VRFs in the standard model, meaning without the random
oracle heuristic.

Partitioning is a technique which is commonly used to prove security of cryp-
tographic constructions, and the only known way to construct verifiable ran-
dom functions, both in the standard model and in the random oracle model.
Essentially, a partitioning proof divides a certain considered set, such as for
instance the message space of a digital signature scheme, the domain of a ver-
ifiable random function, or the identity space of an identity-based encryption
(IBE) scheme, into two subsets:

1. A “controlled” set, which contains all elements for which the simulator in
the security proof is able to efficiently simulate, e.g., digital signatures, and

2. an “uncontrolled” set, which contains elements where the simulator is able
to efficiently embed an instance of a computationally hard problem, such
that an efficient adversary on the considered cryptographic construction can
be turned into an efficient algorithm solving the hard problem.

Partitioning is often used in the random oracle model [5], where an idealized
cryptographic hash function can be adaptively “programmed” in order to enable
a successful simulation. For instance, the well-known security proofs of Full-
Domain Hash signatures [6], BLS signatures [12], or Boneh-Franklin IBE [11]
use this approach. Furthermore, partitioning is the only known way to prove

2

security of unique signatures1 or verifiable random functions (VRFs) [37] against
adaptive adversaries.

Admissible hash functions (AHFs) are a generic and very useful tool to en-
able partitioning proofs in the standard model, that is, without random oracles.
AHFs were formally introduced in [9,14,18], but had implicitly already been
used by Lysyanskaya [33]. Essentially, the idea is that the AHF partitions the
considered set “randomly” and invisibly to the adversary, such that with notice-
able probability exactly the “right” elements fall into the “controlled” set. For
instance, the “right” message may be exactly those messages for which the ad-
versary queries a signature in the EUF-CMA security experiment. At the same
time, exactly the “right” other elements fall into the “uncontrolled” set, e.g.,
the message for which the adversary produces a signature forgery. AHFs ensure
that this holds with sufficiently high probability, even if the adversary chooses
these values adaptively and possibly maliciously. AHFs are an ubiquitous tool in
public-key cryptography, and have been used to realize numerous cryptographic
primitives with strong adaptive security and without random oracles, such as
unique signatures [33], verifiable random functions [7,23,26,33], different vari-
ants of identity-based encryption [1,9], Bonsai trees [14], programmable hash
functions [18], and constrained PRFs [2].

For some primitives AHF-based partitioning proofs (and variants thereof,
such as those defined in [7,29,50]) are still the only known way to achieve prov-
able adaptive security with an efficient polynomial-time reduction in the stan-
dard model. For some other primitives, such as identity-based encryption [9],
AHFs yielded the first constructions with adaptive security, and later more ef-
ficient constructions have been developed that apply other techniques that are
specifically designed for a particular (class of) cryptosystem(s) and are not as
generic as AHFs. We also view AHFs as an extremely useful generic tool that will
most likely find applications to further advanced cryptographic constructions in
the future.

Practical Instantiability of AHFs. Given the large number of cryptographic con-
structions based on AHFs, it is interesting and important to ask how AHF-based
constructions can be instantiated in practice. Known constructions are based on
different types of error-correcting codes with suitable minimal distance, which
is required to be a constant fraction of the length of the code, in order to make
the partitioning argument go through with noticeable success probability. There
are many possible codes to choose from [20,44,47,51], which yield very different
concrete instantiations with very different efficiency and security properties.

Most aforementioned works mention that one or another of these codes can be
used to instantiate their AHFs in the asymptotic setting, but it is never clarified
how their constructions can be instantiated concretely, by explaining how the
underlying code and other cryptographic parameters must be chosen, taking

1 That is, digital signatures where for any given (public key, message)-pair there exists
only one unique string that is accepted as a signature by the verification algorithm.

3

into account the considered security parameter, deployment parameters such as
the number of AHF evaluations by a realistic adversary, and the tightness of
the security proof. The concrete choice of the code used to instantiate the AHF
has a very significant impact on the efficiency of the resulting cryptosystem.
Hence, while AHFs provide a powerful generic tool to achieve provable security
asymptotically, it is completely unclear how efficiently they can be instantiated
concretely.

Our contributions. Our main objective is to clarify how AHFs can be securely
and efficiently instantiated concretely in practice, and to develop new techniques
that enable a more efficient instantiation of AHF-based cryptosystems. To this
end, we make the following contributions:

– We assess how AHFs can be instantiated with error-correcting codes (ECC).
We show that while AHFs are theoretically sufficient to obtain polynomial-
time constructions and security against polynomial-time adversaries in the
asymptotic setting, they yield only extremely inefficient concrete instantia-
tions. By applying bounds on ECCs from classical coding theory, we point
out inherent limitations of concrete instantiations of the AHFs presented
in prior work. Concretely, we show that even with codes that meet the
Gilbert-Varshamov or McEliece-Rodemich-Rumsey-Welch (MRRW) bound,
even optimized variants [29,50] of known verifiable random functions [26,33]
have only very inefficient practical instantiations.

– Our first main novel technical contribution is the introduction of the notion
of computational AHFs (cAHFs). Standard AHFs based on error-correcting
codes are essentially an information-theoretic primitive, which works un-
conditionally and even for computationally unbounded adversaries, which
of course is stronger than necessary for most applications. cAHFs therefore
relax this requirement, in the sense that they are only required to partition
the considered set successfully in the presence of a computationally bounded
adversary. This will make it possible to overcome the aforementioned limi-
tations of AHFs. We also give a concrete instantiation of cAHFs, based on
the notion of truncation collision resistant hash functions from [27].

– Our second novel technical contribution is a new highly efficient verifiable
random function (VRF), based on Jager’s VRF [26]. We use it to showcase
how cAHFs are applied in constructions and proofs. The new VRF is the
currently most efficient verifiable random function with full adaptive security
and exponential-sized input space, based on a non-interactive complexity
assumption, in the standard model.

Classical balanced admissible hash functions, and therefore also the security
proofs of VRFs based on those, which include [26,29,50], require reasonably close
bounds on the number of VRF evaluation queries and advantage of an adver-
sary. Our instantiation of cAHFs inherits from [27] that security proofs require
knowledge of (sufficiently close bounds on) the running time and advantage of
an adversary.

4

Related work. Boneh and Boyen [9] formally introduced AHFs to construct IBE
without random oracles. Balanced AHFs were introduced in [26]. The balanced-
ness makes it possible to apply AHF-based partitioning directly in security proofs
considering “indistinguishability-based” security experiments, without requiring
the artificial abort approach of Waters [49]. Balanced AHFs were used to con-
struct verifiable random functions [7,23,26,50], IBE [50], constrained PRFs [3],
and distributed PRFs [32]. We consider both standard and balanced AHFs in
this work.

Several papers developed techniques to optimize schemes using AHFs. Ya-
mada [50] and Katsumata [29] encode the information of the “controlled” set
into shorter bit strings and employ the AHF on this shorter string. Recently,
Kohl [31] applied a similar approach to the VRF construction of [23] to obtain
a VRF with strong security properties and shorter proofs.

Most previous applications of AHFs consider a setting where a polynomially-
bounded number of Q elements X(1), . . . , X(Q) must fall into the “controlled”
set, while one “challenge” element X∗ must fall into the “uncontrolled” set
for the reduction in the security proof to be successful. This matches what is
required for most common security experiments for primitives such as digital
signatures, VRFs, IBE, and many others. Chen et al. [15] generalize this to
AHFs that can handle more than one challenge element and ensure that n > 1
challenge elements X(1)∗, . . . , X(n)∗ fall into the “uncontrolled” set, and give a
construction with n = 2.

AHFs are related to programmable hash functions (PHFs) [24,25], but are
more general, in the sense that PHFs can generically be constructed from AHFs,
but there exist cryptographic primitives, such as VRFs, for which only construc-
tions based on AHFs are known to exist, but not on PHFs.

Changes since publication at SAC 2019. This paper is an extended and revised
full version of a paper with the same title that appeared at SAC 2019 [28].
In comparison to the construction from the original publication [28], we give
a new and improved VRF construction, which uses the same proof technique
but reduces the size of the verification key significantly, since it requires only
one group element per input bit instead of two. We detail the improvements in
Section 5.2.

We have also updated and made minor corrections to the tables showing
concrete key and proof sizes of different VRFs. In the previous version, we un-
derestimated the proof sizes of the previous construction by Yamada [50], and
the size of the public verification key in the construction by Jager [26].

Notation. Following usual conventions, we denote the natural numbers without
zero by N. We use k ∈ N as our security parameter. For n ∈ N we denote the
set {1, . . . , n} by [n] and [n] ∪ {0} by [n]0. Given a finite set S, we denote the

power set as 2S and write x
$←S for drawing x uniformly at random from S. If

A(·) is a probabilistic algorithm, we write y
$←A(x) for executing A with input x

and assigning the result of this execution to the variable y. For a vector v ∈ Sn
and n ∈ N, we denote the i-th component of v as vi. If not stated otherwise,

5

all logarithms are to the base two and ln(x) denotes the natural logarithm of
x ∈ R>0. We refer to a function ε : N → [0, 1] as negligible if for all positive
polynomials p and all n ∈ N large enough, it holds that ε(n) < 1/p(n).

2 Admissible Hash Functions

We first introduce some further notation specific to admissible hash functions.
Let n,Q be polynomials over N and let C := {Ck}k∈N be a family of functions
with Ck : Σk → Σn(k) for all k ∈ N and some finite alphabet Σ. Whenever it
is clear from the context, we use n instead of n(k) and Q instead of Q(k). For
a finite alphabet Σ with ⊥ /∈ Σ, let Σ⊥ := Σ ∪ {⊥}. For d ∈ [n], we denote

by Σ
(n,d)
⊥ the subset of Σn

⊥ containing all the elements of Σn
⊥ having exactly d

components that are not ⊥.

Binary biased PRF. An essential building block to define AHFs is the binary
biased PRF FK , that was introduced by Boneh and Boyen [9]. In some works,
it is also referred to as Bit-Fixing-Predicate.

Definition 1 (The binary biased PRF [9]). Let C : Σk → Σn and K ∈ Σn
⊥,

then define

FK(X) :=

{
0, if ∀ i ∈ [n] : C(X)i = Ki ∨Ki = ⊥ holds

1, otherwise.
(1)

Admissible hash functions. Now we are ready to define AHFs. Intuitively, an
AHF realizes a partitioning of a set Σk into a “controlled” and an “uncontrolled”
set, such that X ∈ Σk lies in the “controlled” set if and only if FK(X) = 0. For
example, in a security proof for a digital signature scheme this would typically
be used as follows:

– The reduction is able to simulate a signature for message X ∈ Σk if and
only if FK(X) = 1.

– The reduction is able to extract the solution to a computationally hard
problem from a signature for message X∗ ∈ Σk if and only if FK(X∗) = 0.

This intuition yields the following generic definition of AHFs from [9].

Definition 2 (Admissible Hash Function [9]). We call {C`}`∈N an (n,Q,
γmin)-admissible hash function family (AHF family) if there exists a PPT al-

gorithm K
$← AdmSmp(1k, Q) generating K ∈ Σn

⊥ such that for all (X(1), . . . ,
X(Q), X∗) ∈ (Σk)Q+1 with X∗ 6= X(i) it holds that

γmin(k) ≤ Pr
[
FK

(
X(1)

)
= · · · = FK

(
X(Q(k))

)
= 0 ∧ FK (X∗) = 1

]
, (2)

where the probability is over the choice of K
$←AdmSmp(1k, Q).

6

Note that γmin(k) ∈ [0, 1] is a lower bound on the probability that the parti-
tioning works as desired for any given sequence of values (X(1), . . . , X(Q), X∗).

Remark 1. There have been several slightly different definitions of AHFs. The
first definition of AHFs by Boneh and Boyen [9] includes the application of a col-
lision resistant hash function before applying the function C above, allowing to
process inputs of arbitrary length. However, most applications of AHFs, for ex-
ample in [7,18,23,26,29,31,50], only consider fixed length inputs and therefore do
not apply a collision resistant hash function. For this reason, we define standard
AHFs with a bounded length input space and view the application of a collision
resistant hash function in [9] only as a generic way of processing arbitrary length
inputs with an information-theoretic AHF.

Balanced AHFs. Balanced AHFs are an extension of standard AHFs, introduced
in [26]. Intuitively, a balanced AHF provides both a lower bound γmin and an
upper bound γmax on the probability that partitioning works as desired for any
given sequence of values (X(1), . . . , X(Q), X∗). Furthermore, it is required that
these bounds are sufficiently close. As shown in [26], this makes AHFs applica-
ble in settings considering indistinguishability-based security experiments, such
as indistinguishability of verifiable random functions. Balancedness makes it pos-
sible to avoid the “artificial abort” technique of Waters [49] and can be seen as
an abstraction and adoption of a proof technique by Bellare and Ristenpart [4]
to AHFs. Previous works [4,26] provide a detailed explanation of this.

Definition 3 (Balanced Admissible Hash Function [26]). Let ε : N →
[0, 1] be a non-negligible function. We call {Ck}k∈N an (n,Q, γmin, γmax)-balanced
AHF family if there exists a PPT AdmSmp(1k, Q, ε) and functions γmax, γmin :
N → [0, 1], such that for all (X(1), . . . , X(Q(k)), X∗) ∈ (Σk)Q(k)+1 with X∗ 6=
X(i)

γmin(k) ≤ Pr
[
FK

(
X(1)

)
= · · · = FK

(
X(Q(k))

)
= 0 ∧ FK (X∗) = 1

]
≤ γmax(k)

holds, where the probability is over the choice of K
$←AdmSmp(1k, Q(k), ε(k)).

We require that

τ(k) := ε(k)γmin(k)− γmax(k)− γmin(k)

2
. (3)

is a non-negligible function.

The term τ(k) may appear overly specific. However, it turns out that this is
exactly what is required in common proofs that use balanced AHFs. We refer to
[4,26] for details. As long as it does not lead to ambiguities, we will refer to both
balanced admissible hash functions and admissible hash functions as AHFs in
the sequel.

7

2.1 Instantiating AHFs from Error Correcting Codes

Error Correcting Codes. To describe how AHFs are instantiated from error
correcting codes, let us first recap some fundamental notions.

Definition 4 (Hamming weight and distance). Let n ∈ N, q a prime power
and x, y ∈ Fnq , then wt(x) is defined as the number of components of x that are
not zero. We call wt(x) the Hamming weight of x and ∆(x, y) := wt(x− y) the
Hamming distance between x and y.

Definition 5 (Linear ECCs). Let q be a prime power, k, n ∈ N with k < n
and G ∈ Fk×nq . Then C = {xG | x ∈ Fkq} is the linear q-ary error correcting
code (ECC) generated by the generator matrix G. We say that C has minimal
distance

d := min
x,x′∈Fkq
x 6=x′

(∆(xG, x′G)).

Furthermore we refer to δ(C) := d/n as the relative minimal distance and to
R(C) := k/n as the rate of C. If C has a minimal distance of d, we say that C
is a linear [n, k, d]q ECC.

As usual, we will also refer to the mapping C : Fkq → Fnq , x 7→ xG as an ECC. If
the alphabet of the code is clear from the context, we drop the index q.

AHFs from ECCs. To the best of our knowledge, all constructions of AHFs and
bAHFs use an algorithm AdmSmp that samples K as follows. First d ∈ [n] is
calculated as a function of a bound on Q and the advantage ε of a given adversary
A (the latter only for bAHFs). Then K is chosen uniformly at random from

K
$←Σ

(n,d)
⊥ .

Theorem 1 (Instantiation of AHFs using an ECC [18,26]). Let q be a
prime power and let {Ck}k∈N be a family of [n(k), k, n(k) · δ(k)]q ECCs, where

δ = δ(k) ∈ [0, 1/2) denotes the relative distance of Ck. If K
$←F(n,d)

q is chosen
uniformly at random for some d ∈ [n(k)], then

γmin(k) ≤ Pr
[
FK

(
X(1)

)
= · · · = FK

(
X(Q)

)
= 0 ∧ FK (X∗) = 1

]
≤ γmax(k)

holds for all X(1), . . . , X(Q), X∗ ∈
(
Fkq
)(Q+1)

and

γmin(k) := (1−Q · (1− δ(k))d) · q−d and γmax(k) := q−d. (4)

The proof is given in [26]. If

d := log1−δ

 − ln(q)

Q · ln
(

1−δ
q

)
 (5)

is used, then γmin is non-negligible as shown in [18]. Note that d in Equation 5
maximizes γmin from Equation 4 compared to [18] and therefore yields slightly
better parameters.

8

Balanced AHFs from ECCs. If the parameter d from Theorem 1 is set to

d := log1−δ

 −2 · ε · ln(q)

(2 · ε+ 1) ·Q · ln
(

1−δ
q

)


then one can also prove that the above construction is a balanced AHF [26].
Again, this value of d improves on that given in [26], in the sense that τ =
ε · γmin − (γmax − γmin)/2 is maximize.

Remark. Note that the choices of d above, just as the choices from [18,26], can
yield a d larger than n for small security parameters. However, d ∈ [n] holds for
reasonable parameters as showcased in Section 6.

2.2 Efficiency Bounds on Admissible Hash Functions

In order to be able to efficiently instantiate the code-based AHFs, it is important
to reduce the length of code words n. This is because applications usually embed
the AHF in the public keys or public parameters of a cryptosystem, and the size
of these depends on the length of code words. For example, the public key of the
VRF of [26] contains two groups element for every bit in the output of the ECC.
The VRFs in [29,50] reduce this, but still contain at least logarithmically many
group elements. Even though asymptotically logarithmic, the number may still
be impractically large when instantiated concretely - we discuss this below in
Section 6. In the following, we provide the first analysis of inherent limitations
of instantiating AHFs with ECCs, by applying results from coding theory.

Gilbert-Varshamov bound. In order to instantiate AHFs efficiently, we need a
code that has both a high rate and a high relative minimal distance. Coding
theorists worked on the construction of such codes and accompanying bounds
for decades [34]. Asymptotically, the Gilbert-Varshamov bound guarantees the
existence of well-suited families of binary ECCs, but we note that this result is
not constructive.

Theorem 2 (Gilbert-Varshamov bound [20,47]). For all n ∈ N and c ∈
(0, 1/2), there exists an ECC C ⊂ Fn2 with

δ(C) ≥ c and R(C) ≥ 1−H2(δ).

H2 denotes the binary entropy, defined as

H2(p) := p · log (1/p) + (1− p) · log (1/(1− p)) .

Even though the Gilbert-Varshamov (GV) bound guarantees the existence of
families of binary ECCs with the parameters from above, no explicit construc-
tion of such a family attaining the GV bound is known so far. Random linear
codes attain the GV bound [47]. However, as [46,17] show, there is no efficient

9

algorithm that can compute or approximate the minimal distance of a random
linear code, which would be necessary in order to instantiate the code concretely
and efficiently. Also, algebraic geometric ECCs like [43] beat the GV bound, but
only for larger, non-binary alphabets, which are not suitable for most construc-
tions using AHFs.

Hence, when instantiating a family of (balanced) AHFs, we can treat the GV
bound as an upper bound on what is possible with currently known families of
binary ECCs. The GV bound yields that for δ = 0.2, the best rate we can hope
to achieve with known construction of families of ECCs is ≈ 0.28. For the VRF
from [26], this would require a number of group elements in the public key that
is at least about four times larger than the number of input bits. It is possible
however to construct a family of binary ECCs that comes relatively close to this
bound by concatenating algebraic geometry codes with binary error correcting
codes [43, Section V].

In order to estimate the efficiency of code-based AHFs, we assumed a code
family that achieves the GV bound, and computed the size of verification keys,
secret keys, and proofs for different verifiable random functions that use AHFs
to achieve adaptive security. See Section 6, Table 1 and Table 2.

Remark 2. Our analysis based on the GV bound is somewhat conservative, in
the sense that no efficient construction of a family of codes that achieves the
GV bound asymptotically is known (even though they are known to exist).2

Therefore, our efficiency analysis of cryptosystems based on codes that meet the
GV bound is currently overly optimistic, and any known code family would lead
to even worse parameters.

McEliece-Rodemich-Rumsey-Welch (MRRW) bound. Things may improve when
we consider instantiations for a specific input length k of the ECC.3 For example
for k = 128, there is a [255, 128, 38]2 ECC C based on a BCH code [22]. Thus,
this code beats the GV bound as R(C) ≈ 1/2 and δ(C) ≈ 0.15, whereas the GV
bound only allows for R(C) ≈ 0.39 for δ(C) = 0.15. However, even when consid-
ering concrete input sizes of ECCs, there are bounds on the relation between the
rate and the relative minimal distance. The sharpest known bound for binary
ECCs is the MRRW bound presented in Theorem 3.

Theorem 3 (MRRW bound [35]). Let C be an [n, k, d]2 ECC with relative
distance δ(C) ∈ (0, 1/2) and let g(x) := H2((1−

√
1− x)/2). Then

R(C) ≤ min
0≤u≤1−2δ

{1 + g(u2)− g(u2 + 2δ(C)u+ 2δ(C))}

holds for the rate of C.

The MRRW-Bound once more yields limits on what can be achieved concretely.
For example, every binary ECC C with δ(C) = 0.15 inevitably has R(C) < 0.58.
Analogously, any ECC C with δ(C) = 0.2 has R(C) < 0.47.

2 Codes based on expander graphs can get close to this bound, while not achieving
it [45].

3 For the VRFs in [23,26,29,31,50] this is identical to the input length.

10

Again, we estimate the efficiency of code-based AHFs by assuming a code
that achieves the MRRW bound, and compute the size of verification keys, secret
keys, and proofs for different AHF-based verifiable random functions. See Section
Section 6, Table 1 and Table 2.

3 Computational Admissible Hash Functions

In order to overcome the inherent limitations of (balanced) AHFs and their in-
stantiation with ECCs, we relax the constraints and consider a computational
setting. To this end, we allow C to have inputs X,Y , X 6= Y , such that
∆(C(X), C(Y)) < δn or even C(X) = C(Y). For an adversary, however, such
inputs X and Y should be computationally infeasible to find. This relaxation al-
lows us to reduce redundancy inherent to ECCs and thus the length of the output
of C. We refer to this relaxed variant of AHFs as computational admissible hash
functions (cAHFs).

Furthermore, we aim at defining cAHFs in a way that allows us to replace
bAHFs in many constructions like [2,23,26,29,32,50], while making only minor
modifications to the constructions or their accompanying security proofs. Since
we instantiate cAHFs with families of hash functions in Section 3.1, we change
the notation and use H for the computational setting instead of C in order to
avoid confusion between the two settings.

Defining computational admissible hash functions. We keep using the binary
biased PRF FK from [9], since we strive to allow to generically replace bAHFs
with cAHFs. Allowing H to have pairs of inputs X,Y with X 6= Y and H(X) =
H(Y) comes with the problem that an adversary can have a collision for H hard
coded. Therefore, we need to draw the function H from a family of functions
H. This requires us to incorporate H and do the following minor modification
to the definition of FK . Nevertheless, note that the definition of cAHFs is not
syntactically bound to families of hash functions.

FK,H(X) =

{
0, if ∀ j ∈ [n] : H(X)j = Kj ∨Kj = ⊥
1, otherwise.

(6)

Definition 6 (Computational admissible hash function). Let H = {H :
{0, 1}∗ → {0, 1}n} be a family of functions and H ∈ H. For K ∈ {0, 1,⊥}n and
all (X(1), . . . , X(Q), X∗) with X(i), X∗ ∈ {0, 1}∗ and X(i) 6= X∗ for all i, we let
X(Q+1) := X∗ to ease notation and define the events coll and badchal as follows.

badchal ⇐⇒ FK,H(X∗) 6= 0

coll ⇐⇒ ∃ i, j with X(i) 6= X(j) s.t.

∀ ` ∈ [n] : H(X(i))` = H(X(j))` ∨K` = ⊥

Let tA ∈ N and εA ∈ (0, 1] such that tA/εA < 2k, where k is the security
parameter. We say that H is a family of computational admissible hash func-
tions (cAHFs), if there is an efficient algorithm AdmSmp(1k, tA, εA) generating

11

K ∈ {0, 1,⊥}n such that for every adversary A running in time tA outputting
(X(1), . . . , X(Q), X∗) it holds that

τ(k) := Pr[¬ badchal](εA − Pr[coll]) (7)

is non-negligible as a function in k. The probabilities are over the randomness

used by A, H
$←H and K

$←AdmSmp(1k, tA, ε).

Remark 3. The term τ in Equation 7 is the equivalent of τ for bAHFs in Defi-
nition 3, in the sense that it conveniently describes a term that typically occurs
in a reduction-based security proof that uses a computational AHF. Intuitively,
it captures a security proof that in a first step aborts when coll occurs and in a
second step aborts when badchal occurs. See Section 5.3 for a concrete applica-
tion.

3.1 cAHFs from Truncation Collision Resistant Hash Functions

We show how to construct very efficient cAHFs based on truncation collision-
resistant hash functions (TCRHFs), as introduced in [27].

Truncation collision resistant hash functions. Let H : {0, 1}∗ → {0, 1}n be a
cryptographic hash function. We write H:j : {0, 1}∗ → {0, 1}j to denote the hash
function H, with outputs truncated to the first j bits. Essentially, a hash function
is truncation collision resistant, if for every prefix of length j ∈ [n] there is no
significantly more efficient algorithm to find a collision for H:j than the birthday
attack. Note that this property is likely satisfied by standard cryptographic hash
functions, like SHA-3. Furthermore, as explained in [27], one can easily obtain a
suitable family of hash functions from a standard hash function, e.g. by choosing
a random key that is prefixed to all hash function inputs. We refer to such families
of hash functions as families of keyed hash functions4.

Definition 7 (Truncation collision resistance [27]). Let H = {H : {0, 1}∗ →
{0, 1}n} be a family of keyed hash functions. For j ∈ [n], we say that an adver-
sary A j-breaks the truncation collision resistance of H, if it runs in time tA
and

Pr
H

$←H

[
(x0, . . . xq)

$←A(H) :

∃u, v s.t. H:j(xu) = H:j(xv) ∧ xu 6= xv

]
>
tA(tA − 1)

2j+1
.

We say H is truncation collision resistant, if there exists no adversary A j-
breaking the truncation collision resistance of H for any j ∈ [n].

We deem truncation collision resistance a reasonable assumption since truncated
versions of SHA-256 (to 224 bits) and SHA-512 (to 384 bits) have already been
standardized by NIST in [38]. Furthermore, [39] defines extendable-output func-
tions (XOF) based on SHA-3. These allow to extend the output of the hash
function to an arbitrary length while maintaining collision resistance.

4 A detailed discussion of keyed hash functions can be found in [30].

12

Useful technical lemma. The following lemma is a variant of [27, Lemma 1],
tailored to our application and cAHFs, which yields better parameters than the
corresponding result in [27]. The condition t/ε < 2k captures that we consider
an efficient adversary, i. e. one with a small time complexity, a high success
probability or both. Choosing j as small as possible such that (2t(2t− 1))/2j ≤
ε/2 holds then yields the bounds on j and 1/2j below. The lower bound on 1/2j

is important because this is the probability that a prefix of length j matches a
random binary string of length j. A more thorough explanation can be found
in [27].

Lemma 1. Let t ∈ N, ε ∈ (0, 1] such that t/ε < 2k, and j := dlog(4t(2t− 1)/ε)e.
Then it holds that

j ∈ {1, . . . , 2k + 3}, 2t(2t− 1)

2j
≤ ε

2
, and

1

2j
≥ ε

16t2 − 8t
.

Proof. We start by proving j ∈ {1, . . . , 2k + 3}.

j = dlog(4t(2t− 1)/ε)e ≤
⌈
log
(
4 · 2k(2t− 1)

)⌉
≤
⌈
log
(
8 · 2kt

)⌉
≤
⌈
log
(
2k2k+3

)⌉
= 2k + 3

Since 4t(2t − 1) = 8t2 − 4t > 1 for all t ∈ N and ε ∈ (0, 1], we have log(4t(2t −
1)/ε) > 0 and therefore j ≥ 1.

We proceed to prove 2t(2t− 1)/2j ≤ ε/2.

2t(2t− 1)

2j
=

2t(2t− 1)

2dlog(4t(2t−1)/ε)e
≤ ε2t(2t− 1)

4t(2t− 1)
=
ε

2

Finally, we have

1

2j
=

1

2dlog(4t(2t−1)/ε)e
≥ 1

2
· ε

4t(2t− 1)
=

ε

16t2 − 8t
.

Constructing cAHFs from TCRHFs. Lemma 1 enables us to prove that a family
of TCRHFs is also a family of cAHFs. Note that even though the first definition
of AHFs in [9] already incorporates collision resistant hash functions, they are
only used to enable the processing of arbitrary length inputs, while the core of
the AHF in [9] is the error correcting code that yields an information-theoretic
AHF, which we replace with TCRHFs.

Theorem 4. Let H = {H : {0, 1}∗ → {0, 1}2k+3} be a family of truncation
collision resistant keyed hash functions in the sense of Definition 7. Then H
is a family of computational AHFs. In particular, let tA ∈ N and εA ∈ (0, 1]
such that tA/εA < 2k. Then for every adversary A running in time tA that,

given H
$← H, outputs X(1), . . . , X(Q), X∗ ∈ {0, 1}∗ with X(i) 6= X∗, there is an

algorithm AdmSmp(1k, t, ε) such that

Pr[¬ badchal](ε− Pr[coll]) ≥ ε2/(32t2 − 16t).

In particular, if tA is polynomial in k and ε is non-negligible in k, then ε2A/(32t2A)
is also non-negligible.

13

Proof. Let n := 2k+3. The algorithm AdmSmp(1k, t, ε) sets j := dlog(4t(2t− 1)/ε)e,
samples K ′

$←{0, 1}j , and defines K := K ′‖⊥n−j , where ‖ denotes string con-
catenation and ⊥n−j the string consisting of (n−j)-times the ⊥-symbol. In total
the key K consists of j uniformly random bits, padded to a string of length n in
{0, 1,⊥}n by appending ⊥-symbols. Note that n ≥ j by Lemma 1.

Recall that ¬ badchal occurs iff FK,H(X∗) = 0. For our construction, this
means that the first j bits of H(X∗) are identical to K ′, the first j bits of K.

Since K ′ is chosen uniformly random, and independent of H
$← H, this happens

with probability 2−j . We therefore have

Pr[¬ badchal] =
1

2j
≥ εA

16t2A − 8t
,

where the inequality uses Lemma 1. Furthermore, recall that coll occurs, if the
adversary outputs, as queries or as challenge, two values X 6= Y such that H(X)
and H(Y) are identical in all positions where K is not ⊥. In particular, we then
have H:j(X) = H:j(Y). We therefore claim that we have

Pr[coll] ≤ εA
2
.

We prove this upper bound on Pr[coll] by contradiction. Assume A outputs
X = (X(1), . . . , X(Q), X∗) such that Pr[coll] > ε/2. Then we can construct an
adversary B that j-breaks the truncation collision resistance of H. B runs A,
waits for A to output X and then outputs X itself. B’s running time consists of
the time to execute A plus the time to output X, yielding5 tB ≤ 2 ·tA. Thus, B is
an algorithm with success probability at least εA/2 in j-breaking the truncation
collision resistance of H. We furthermore have

Pr[coll] > εA/2 ≥
2tA(2tA − 1)

2j
≥ 2tA(2tA − 1)

2j
=
tB(tB − 1)

2j
>
tB(tB − 1)

2j+1
,

where the second inequality follows from Lemma 1. This contradicts the trunca-
tion collision resistance of H and therefore proves the upper bound on Pr[coll].
In conclusion, the following equation yields the theorem.

Pr[¬ badchal](εA − Pr[coll]) ≥ εA
16t2A − 8t

(
εA −

εA
2

)
=

ε2A
32t2A − 16t

Note that if tA is polynomial in k and εA is non-negligible in k, then ε2A/(32t2A−
16t) is also non-negligible.

5 One could tighten the upper bound tB to tA +Q. However, it would at most save a
factor of two in the run time of B and would complicate the analysis. We therefore
use the slightly less tight bound.

14

4 Verifiable Random Functions and Their Security

Verifiable random functions are essentially pseudorandom functions, where each
function Vsk is associated with a secret key sk and a corresponding public ver-
ification key vk. Given sk and an element X from the domain of Vsk, one can
efficiently compute a non-interactive, publicly verifiable proof π that Y = Vsk(X)
was computed correctly. For security, it is required that for each X only one
unique value Y such that the statement “Y = Vsk(X)” can be proven may exist
(unique provability), and that Vsk(X) is indistinguishable from random, if no
corresponding proof is given (pseudorandomness).

Syntax of VRFs. Formally, a VRF consists of algorithms (Gen,Eval,Vfy) with
the following syntax.

– (vk, sk)
$← Gen(1k) takes as input a security parameter k and outputs a key

pair (vk, sk). We say that sk is the secret key and vk is the verification key.

– (Y, π)
$← Eval(sk, X) takes as input a secret key sk and X ∈ {0, 1}∗, and

outputs a function value Y ∈ Y, where Y is a finite set, and a proof π.
We write Vsk(X) to denote the function value Y computed by Eval on input
(sk, X).

– Vfy(vk, X, Y, π) ∈ {0, 1} takes as input a verification key vk, X ∈ {0, 1}∗,
Y ∈ Y, and proof π, and outputs a bit.

Initialize :

(vk, sk)
$← Gen(1k)

Return vk

Evaluate(X) :

(Y, π)
$← Eval(sk, X)

Return (Y, π)

Challenge(X∗) :

(Y0, π)
$← Eval(sk, X∗)

Y1
$← Y

Return Yb

Finalize(b′) :

If b = b′ then
Return 1

Return 0

Fig. 1. Procedures defining the VRF security experiment.

Definition 8. (Gen,Eval,Vfy) is a verifiable random function (VRF) if all of
the following hold.

Correctness. For all (vk, sk)
$← Gen(1k) and X ∈ {0, 1}∗ holds: if (Y, π)

$←
Eval(sk, X), then Vfy(vk, X, Y, π) = 1. Algorithms Gen, Eval, Vfy are polyno-
mial-time.

Unique provability. For all (vk, sk)
$← Gen(1k) and all X ∈ {0, 1}∗, there does

not exist any tuple (Y0, π0, Y1, π1) such that Y0 6= Y1 and Vfy(vk, X, Y0, π0) =
Vfy(vk, X, Y1, π1) = 1.

Pseudorandomness. Consider an attacker A with access (via oracle queries)
to the procedures defined in Figure 1. Let GAVRF denote the game where A first
queries Initialize, then Challenge, then Finalize. The output of Finalize is the

15

output of the game. Moreover, A may arbitrarily issue Evaluate-queries, but
only after querying Initialize and before querying Finalize. We say that A is
legitimate, if A never queries Evaluate(X) and Challenge(X∗) with X = X∗

throughout the game. We define the advantage of A in breaking the pseudo-
randomness as

AdvVRFA (k) := Pr
[
GAVRF = 1

]
− 1/2

5 Verifiable Random Functions from cAHFs

In this section, we show a new construction of VRFs. Our construction is closely
related to the verifiable random function of Jager [26], which uses a balanced
AHF based on error-correcting codes. We show how the error correcting codes
can be replaced by a standard hash function by using computational AHFs
(cAHFs). We then show how cAHFs are used in a proof in Section 5.3. Further-
more, we improve Jager’s VRF with a new proof technique that allows us to
halve the size of public verification keys and secret keys.

5.1 Bilinear Groups.

Our VRF construction uses Bilinear Groups. We assume that they are generated
based on the security parameter. Following [23], we refer to such a generation
algorithm as Bilinear Group Generator as defined below.

Definition 9. A Bilinear Group Generator is a probabilistic polynomial-time al-
gorithm GrpGen that takes as input a security parameter k (in unary) and outputs

Π = (p,G,GT , ◦, ◦T , e, φ(1))
$← GrpGen(1k) such that the following requirements

are satisfied.

1. p is a prime and log(p) ∈ Ω(k)
2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps

φ : Zp → G and φT : Zp → GT .
3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the se-

curity parameter) maps ◦ : G × G → G and ◦T : GT × GT → GT , such
that
a) (G, ◦) and (GT , ◦T) form algebraic groups,
b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
c) φT is a group isomorphism from (Zp,+) to (GT , ◦T).

4. e is an algorithmic description of an efficiently computable (in the secu-
rity parameter) bilinear map e : G × G → GT . We require that e is non-
degenerate, that is,

x 6= 0⇒ e(φ(x), φ(x)) 6= φT (0).

The unique provability property of VRFs requires each group element from the
bilinear group to have a unique representation. Therefore, we use the notion of
Certified Bilinear Groups, introduced by Hofheinz and Jager in [23]. They allow

16

us to formally prove Unique Provability of our VRF by ensuring that each group
element has a unique representation that can efficiently be verified. Formally, we
define certified bilinear groups as follows.

Definition 10. We say that group generator GrpGen is certified, if there exist
deterministic polynomial-time (in the security parameter) algorithms GrpVfy and
GrpElemVfy with the following properties.

Parameter Validation. Given the security parameter (in unary) and a string
Π, which is not necessarily generated by GrpGen, algorithm GrpVfy(1k, Π)
outputs 1 if and only if Π has the form

Π = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 9 are satisfied.
Recognition and Unique Representation of Elements of G. Furthermore,

we require that each element in G has a unique representation, which can be
efficiently recognized. That is, on input the security parameter (in unary)
and two strings Π and s, GrpElemVfy(1k, Π, s) outputs 1 if and only if
GrpVfy(1k, Π) = 1 and it holds that s = φ(x) for some x ∈ Zp. Here
φ : Zp → G denotes the fixed group isomorphism contained in Π to specify
the representation of elements of G.

Our definition of certifiedness deviates from the original definition [23] in two
regards. First, in addition to GrpVfy, we also require the existence of an algorithm
GrpElemVfy that is used to verify the encoding of a group element, whereas
in [23], GrpVfy serves both purposes. Second, the security parameter (in unary)
is an input to both verification algorithms in our definition.

5.2 VRF Construction

Let H = {H : {0, 1}∗ → {0, 1}n} be a family of keyed hash functions for
some n ∈ N, let GrpGen be a certified bilinear group generator and let VF =
(Gen,Eval,Vfy) be the following algorithms.

Key generation. Gen(1k) runs Π
$←GrpGen(1k), chooses a random hash func-

tion H
$←H and random generators g, h

$← G, where G is from Π, and

αi
$← Zp for i ∈ [n+ 1]0. It then defines gi := gαi and the keys as

vk :=
(
H,Π, g, h, {gi}i∈[n+1]0

)
and sk := {αi : i ∈ [n+ 1]0}.

Evaluation. On input vk, sk and X ∈ {0, 1}∗, Eval computes (H1, . . . ,Hn) :=
H(X),

αX := α0 ·

(
n∏
i=1

αHii

)
· αn+1 and Y = Vsk(X) := e(g, h)αX .

17

To compute the proof, it sets π0 := gα0 and then computes π1, . . . , πn as

πi := π

(
α
Hi
i

)
i−1

for i ∈ [n]. Finally, it sets πn+1 := π
αn+1
n and outputs (Y, π = (π1, . . . , πn+1)).

Verification. Given 1k, vk, X ∈ {0, 1}∗ and (Y, π = (π1, . . . , πn+1)), Vfy tests
if Y and π contain only valid group elements using GrpVfy and GrpElemVfy,
and outputs 0 if not. Then it computes (H1, . . . ,Hn) := H(X) ∈ {0, 1}n,
defines π0 := g0, and outputs 1 if and only if for all n ∈ [n] it holds that

e(πi, g) =

{
e(πi−1, g) if Hi = 0 and

e(πi−1, gi) if Hi = 1,
(8)

and both

e(πn+1, g) = e(πn, gn+1) and Y = e(πn+1, h) (9)

hold.

Comparison to Jager’s VRF. Our construction improves Jager’s VRF in two
aspects. First, our verification and secret key contain only one element for each
i ∈ [n], compared to two in Jager’s VRF. This improvement is possible by en-
coding the keys of the cAHF into the public and secret keys in a more efficient
way. We explain this technique in detail in the proof of Theorem 5. The sec-
ond improvement is that we instantiate the VRF with a cAHF instead of an
bAHF. Therefore, the Eval and Vfy apply a standard hash function instead of an
error correcting code to each input. This changes the input space of the VRF
from {0, 1}k to {0, 1}∗. In the same way, cAHFs are applicable to the VRFs
of Katsumata [29] and Yamada [50]. Notice, that the first improvement is also
applicable when the VRF is instantiated with a bAHF instead of a cAHF.

Remark 4. The terms αn+1 and gn+1 in our construction are equivalent to ap-
pending a bit that is always set to one to each output of the hash function. This
ensures that there is no input to the hash function resulting in an all-zero output,
which is needed in the security proof. Alternatively, we could assume preimage
resistance of the hash function and use that there is no efficient adversary that is
able to find a preimage for the all-zeros output. We could then guess a position
that is one for all inputs provided by the adversary. We chose to introduce αn+1

and gn+1 instead for simplicity and clarity.

Correctness. For any k ∈ N and any X ∈ {0, 1}∗, let (vk, sk)
$← Gen(1k) and

(Y, π) ← Eval(sk, X). We now consider the behaviour of Vfy(1k, vk, X, (Y, π)).
Since Y and π are results of Eval, both GrpVfy and GrpElemVfy output 1 and
thus Vfy does not reject the input. Now let (H1, . . . ,Hn) := H(X) and π0 := g0.
Then for all n ∈ [n], we have

e(πi, g) = e

(
π
α
Hi
i

i−1

)
=

{
e(π

α0
i

i−1, g) = e(πi−1, g) if Hi = 0 and

e(π
α1
i

i−1, g) = e(πi−1, g
αi) = e(πi−1, gi) if Hi = 1.

18

Therefore, Equation 8 is fulfilled. Furthermore, we have

e(πn+1, g) = e(παn+1
n , g) = e(πn, gn+1),

which fulfills the first part of Equation 9. Moreover, notice that for all i ∈ [n],
we have

πi = gα0
∏i
j=1 α

Hj
j and πn+1 = παn+1

n = g
α0

(∏i−1
j=1 α

Hj
j

)
αn+1 = gαX .

Thus, e(πn+1, h) = e(gαX , h) = e(g, h)αX holds, fulfilling Equation 9’s second
part. Hence, Vfy outputs 1 on input (1k, vk, X, (Y, π)). Finally, as can easily be
verified, Gen,Eval and Vfy are all polynomial-time algorithms.

Unique Provability. We show that for any (vk, sk)
$←Gen(1k) and X ∈ {0, 1}∗,

there are unique Y, π such that Vfy(1k, vk, X, Y, π) = 1. Let (H1, . . . ,Hn) :=
H(X), then, since elements from G and GT have an unique encoding, πi =

π
(αi)

Hi

i−1 is the unique group element fulfilling Equation 8. By induction, πi is
therefore uniquely defined for all n ∈ [n]. Analogously, πn+1 is uniquely defined
by the first part of Equation 9. Finally, since πn+1 is uniquely defined, so is Y
by the second part of Equation 9.

Pseudorandomness. We will prove the pseudorandomness of our construction
based on the q-decisional Diffie-Hellman assumption, also used when proving
Pseudorandomness of Jager’s VRF [26], with small q = dlog(4tA(2tA − 1)/εA))e =
O(log k).

Definition 11. For a bilinear group generator GrpGen, let Gq-DDH
B (k) be the

following game. The experiment runs Π
$← GrpGen(1k), samples g, h

$← G,

x
$← Z|G| and b

$← {0, 1}. Then it defines T0 := e(g, h)x
q+1

and T1
$← GT .

Finally, it runs b′
$← B(g, gx, . . . , gx

q

, h, Tb), and outputs 1 if b = b′, and 0
otherwise. We denote with

Advq-DDH
B (k) := Pr

[
Gq-DDH
B (k) = 1

]
− 1/2

the advantage of B in breaking the q-DDH-assumption for groups generated by
GrpGen, where the probability is taken over the randomness of the challenger and
B. We say that the q-DDH-assumption holds relative to GrpGen, if Advq-DDH

B (k)
is negligible in k for all PPT algorithms B.

Note that the q-DDH assumption is trivially implied by the decisional q + 1
Bilinear Diffie-Hellman Exponent assumption introduced in [10].

Theorem 5. If VF is instantiated with the family of computational admissible
hash functions from Theorem 4, then for any legitimate attacker A that breaks
the pseudorandomness of VF in time tA with advantage εA := AdvVRFA (k), there
exists an algorithm B that, given (sufficiently close approximations of) tA and
εA, breaks the q-DDH assumption with q = dlog(4tA(2tA − 1)/εA)e in time tB ≈
tA and with advantage

Advq-DDH
B (k) ≥ ε2A/(32t2A − 16tA).

19

Remarkably, the proof of Theorem 5 is significantly simpler than the correspond-
ing AHF-based proof from [26].

5.3 Proof of Theorem 5

We prove the theorem with a sequence of games. In the sequel let us write Ei
to denote the event that Game i outputs “1”.

Finalize1(b′) :

K
$← AdmSmp(1k, tA, εA)

If b = b′ then return 1
Return 0

Finalize2(b′) :

K
$← AdmSmp(1k, tA, εA)

If coll then

b∗
$← {0, 1}

Return b∗

If b = b′ then return 1
Return 0

Finalize3(b′) :

K
$← AdmSmp(1k, tA, εA)

If coll or badchal then

b∗
$← {0, 1}

Return b∗

If b = b′ then return 1
Return 0

Finalize4(b′) :

K
$← AdmSmp(1k, tA, εA)

If bad then

b∗
$← {0, 1}

Return b∗

If b = b′ then return 1
Return 0

Fig. 2. Procedures used in the proof of Theorem 5. New or modified statements are
highlighted in boxes.

Game 0. This is the original VRF security game, as described in Definition 8.
By definition, we have

Pr [E0] = 1/2 + AdvVRFA (k)

Game 1. Recall that Theorem 5 assumes knowledge of (sufficiently close ap-
proximations of) the running time tA and the advantage εA. In this game we
replace the Finalize procedure with Finalize1, which additionally uses tA and εA
by running K

$← AdmSmp(tA, εA), as depicted in Figure 1. Note that K and H
now define the function FK,H(X) from Equation 6 and events coll and badchal

20

as

badchal ⇐⇒ FK,H(X∗) 6= 0

coll ⇐⇒ ∃ i, j with X(i) 6= X(j) s.t.

∀ ` ∈ [n] : H(X(i))` = H(X(j))` ∨K` = ⊥

like in Definition 6. Note that we denote with X(1), . . . , X(Q) the values queried
by A to Evaluate, and with X∗ the value queried to Challenge. These modifica-
tions are purely conceptual and perfectly hidden from A, such that we have

Pr [E1] = Pr [E0] .

Game 2. This game proceeds identically to Game 1, except that the challenger
aborts if event coll occurs. We formally express this change by replacing Finalize1
with Finalize2 from Figure 1. By applying Shoup’s Difference Lemma [42], we get

Pr [E2] ≥ Pr [E1]− Pr [coll] .

Game 3. This game proceeds identically to Game 2, except that we replace
Finalize2 with Finalize3, which outputs a random bit if badchal occurs. We have

Pr [E3] = Pr [E3 ∧ badchal] + Pr [E3 ∧ ¬ badchal]
= Pr [E3 | badchal] (1− Pr [¬ badchal)]) + Pr [E3 | ¬ badchal] Pr [¬ badchal]
= 1/2 + Pr [¬ badchal] (Pr [E3 | ¬ badchal]− 1/2)

= 1/2 + Pr [¬ badchal] (Pr [E2 | ¬ badchal]− 1/2)

= 1/2 + Pr [¬ badchal] (Pr [E2]− 1/2)

The third equality uses that Pr [E3 | badchal] = 1/2, since a random bit is re-
turned if badchal occurs, the fourth uses that by definition of the games it holds
that Pr [E3 | ¬ badchal] = Pr [E2 | ¬ badchal], and the last uses Pr [E2 | ¬ badchal] =
Pr [E2], since Game 2 is independent of badchal. This is because K is only sam-
pled after A made all its queries and stated its challenge and K is therefore
perfectly hidden from A.

Game 4. We replace events badchal and coll with an equivalent event, in order
to simplify the construction of adversary B. We let bad denote the event that

coll ∨ badchal. In Game 3 the experiment outputs a random bit b∗
$← {0, 1}

if (badchal ∨ coll) occurs. Now we output a random bit if bad occurs, which
is equivalent. Formally, we achieve this by replacing Finalize3 with Finalize4 as
defined in Figure 1, and get

Pr [E4] = Pr [E3]

21

Summing up probabilities from Game 0 to Game 4, we get

Pr [E4] ≥ 1/2 + Pr [¬ badchal] (Pr [E0]− 1/2− Pr [coll])

= 1/2 + Pr [¬ badchal] (εA − Pr [coll])

≥ 1/2 + τ(k) (10)

for some non-negligible function τ(k), where the last inequality is due to the
definition of cAHFs (see Equation 7).

Reduction from the q-DDH assumption. Now we are ready to describe our al-
gorithm B that solves the q-DDH problem by perfectly simulating Game 4 for
adversary A. When instantiated with the computational AHF from Theorem 4,
a q-DDH instance with q = dlog(4tA(2tA − 1)/εAe is sufficient.

The only minor difference between Game 4 and the simulation by B is

that B aborts “as early as possible”. That is, it samples the AHF key K
$←

AdmSmp(1k, tA, εA) and random bit b∗ already in the Initialize procedure, and
checks whether bad occurs after each Evaluate or Challenge query of A. If bad
occurs, then it immediately outputs b∗, rather than waiting for the adversary to
query Finalize. Obviously, this does not modify the probability of E4. We proceed
by describing B.

Description of algorithm B. The input of B is the q-DDH-challenge (g̃, g̃x, . . . , g̃x
q

,

h, T). B first tests g̃x
?
= 1. Since g̃ is a generator of G, this holds if and only if

x = 0. In this case, B tests e(1, h)
?
= T and outputs 0 if the statement is true

and 1 otherwise. Obviously, this is the correct solution to the q-DDH-challenge
if x = 0. We therefore assume x 6= 0 for the remainder of the proof.

Recall that A is playing the pseudorandomness game for the VRF from Def-
inition 8, meaning it tries to distinguish a VRF output from a random value
with the help of Initialize,Evaluate,Challenge and Finalize. B simulates these op-
erations by executing the corresponding procedures from Figure 3. Finally, B
outputs either the random bit b∗ if event bad occurs, or otherwise whatever
Finalize returns. In Figure 3, we denote the number of positions in K that are
not 1 by σ(K).

Initialization. The values (g̃, h, g̃x) in Initialize are from the q-DDH-challenge. B
computes the gi-values exactly as in the original Gen-algorithm for most i ∈ [n]

by choosing αi
$← Z|G| and setting gi := gαi , but with the exception that

gi :=

{
gαi+1/x if Ki = 0

gαi+x if Ki = 1

for all i ∈ [n] with Ki 6= ⊥. Note that due to our choice of a cAHF in Theorem 5,

we have that σ(K) ≤ q. Therefore, B can compute gα0+x
q−σ(K)−1

since q−σ(K)−
1 is at least −1 and at most q− 1, and g1/x = g̃, . . . , gx

q−1

= g̃x
q

are part of the
q-DDH-challenge. B can compute gαi+1/x for the same reason. All gi-values are
distributed correctly.

22

Initialize :

K
$← AdmSmp(1k, tA, εA)

H
$← H

b∗
$← {0, 1}

g := g̃x

For i ∈ [n+ 1]0 do

αi =
$← Z|G|

g0 := gα0+x
q−σ(K)−1

gn+1 := gαn+1+x

For i ∈ [n] do

If Ki = 0 then gi := gαi+1/x

If Ki = 1 then gi := gαi+x

If Ki = ⊥ then gi := gαi

vk :=
(
H, g, h, {gi}i∈[n+1]0

)
Return vk

Evaluate(X) :

If FK,H(X) = 0 or coll then output b∗

Y := e(gPw,X (x), h)
For j ∈ [n] do

πj := gPw,X (x)

π := (π1, . . . , πn)
Return (Y, π)

Challenge(X∗) :

If FK,H(X) = 1 then output b∗

Compute γ0, . . . , γq+1 s.t.

Pw,X(x) =
∑q+1
i=0 γix

i

Y ∗ := T γq+1 ·
∏q
i=1 e((g

xi)γi , h)
Return Y ∗

FinalizeVRF(b′) :

Return b′

Fig. 3. Procedures for the simulation of the VRF pseudorandomness experiment by B.

Helping definitions. To explain how B responds to Evaluate and Challenge queries
made by A, we define four sets Iw,X , I

0
w,X , I1w,X and I⊥w,X , which depend on a

VRF input X ∈ {0, 1}∗ and an integer w ∈ [n]. Iw,X ⊆ [w] ⊆ [n] is the set of
all indices such that H(X)i = 1. The other sets partition Iw,X in the respective
subsets of indices where Ki is 0, 1 or ⊥. Formally, the sets are defined as follows.

Iw,X := {i ∈ [w] : H(X)i = 1},
I0w,X := {i ∈ [w] : H(X)i = 1 ∧Ki = 0},
I1w,X := {i ∈ [w] : H(X)i = 1 ∧Ki = 1} and

I⊥w,X := {i ∈ [w] : H(X)i = 1 ∧Ki = ⊥},

where K and H are from B’s choice in Initialize in Figure 3. Note that Iw,X =
I0w,X ∪ I1w,X ∪ I⊥w,X . Based on these sets, we define polynomials Pw,X(x). We let

P0,X(x) := α0 + xq−σ(K)−1 and define

Pw,X(x) =


Pw−1,X(x) · (αi + 1/x) if w ∈ I0w,X ,
Pw−1,X(x) · (αi + x) if w ∈ I1w,X ,
Pw−1,X(x) · αi if w ∈ I⊥w,X and

Pw−1,X(x) otherwise,

for w ∈ [n] and X ∈ {0, 1}∗. Finally, we define Pn+1,X(x) := Pn,X(x)·(αn+1+x).
We note some important properties of these helping definitions in the following
lemma.

23

Lemma 2. Let I0w,X and I1w,X be as above, then∣∣I0w,X ∣∣ ≤ q − σ(K) and
∣∣I1w,X ∣∣ ≤ σ(K)

holds for all w ∈ [n]. Furthermore, define Pw,X as above, then

deg(Pw,X) = q − σ(K)− 1−
∣∣I0w,X ∣∣+

∣∣I1w,X ∣∣
holds for all w ∈ [n], where deg denotes the degree of a polynomial. In particular,
we have

−1 ≤ deg(Pw,X) ≤ q − 1

for all w ∈ [n]. Note that we simplify the notation by writing deg(f) = −k for a
rational function f such that 1/f is a polynomial of degree k ∈ N.

We postpone the proof of Lemma 2 to Section 5.4 as to not interrupt the proof
of Theorem 5. Similarly to [26], we observe the following.

1. For all X with FK,H(X) = 1 and w ∈ [n+1]0, we have −1 ≤ deg(Pw,X(x)) ≤
q−1. Note that in contrast to Lemma 2, the bound also holds for w = n+1.
For this, observe that for all X with FK,H(X) = 1, there is an i ∈ [n] such
that Ki 6= ⊥ and Ki 6= H(X)i. Therefore, at least one of the following
conditions hold.∣∣I0w,X ∣∣ > 0 for all w ≥ i

∣∣I1w,X ∣∣ < q − σ(K) for all w ∈ [n]

By Lemma 2, we therefore have deg(Pn,X) ≤ q − 2 implying deg(Pn+1,X) ≤
q−1. Hence, B can efficiently compute gPw,X(x) = g̃x·Pw,X(x) for all w ∈ [n+
1]0. To this end, B first computes the coefficients γ0, . . . , γq of the polynomial
x · Pw,X(x) =

∑q
i=0 γix

i with degree at most q, and then

g̃x·Pw,X(x) := g̃
∑q
i=0 γix

i

=

q∏
i=0

(g̃x
i

)γi

using the terms (g̃, g̃x, . . . , g̃x
q

) from the q-DDH challenge.
2. If FK,H(X) = 0, then H(X)i = Ki for all i ∈ [n] where Ki 6= ⊥ and thus∣∣I0n,X ∣∣ = 0 and

∣∣I1n,X ∣∣ = σ(K) hold. By Lemma 2, x ·Pn+1,X(x) therefore has

degree q + 1. We do not know how B can efficiently compute gPn+1,X(x) =
g̃x·Pn+1,X(x) in this case.

Responding to Evaluate-queries. As depicted in Figure 3, if FK,H(X(i)) = 1, then
procedure Evaluate can compute the group elements gPw,X(x) as explained above.
Note that in this case the response to the Evaluate(X(i))-query of A is correct.
Moreover, B outputs the random bit b∗ and aborts if there was an earlier query
X(j) to Evaluate such that the first q positions of H(X(j)) and H(X(i)) match,
meaning event coll occurred. B also outputs the random bit b∗ if FK,H(X) = 0
since it implies the abort condition bad. This is because if FK,H(X) = 0, then
throughout the experiment either coll or badchal must occur : For badchal not
to occur, we require FK,H(X∗) = 0, but this implies that H(X(i)) and H(X∗)
match on the first q positions, causing event coll.

24

Responding to the Challenge-query. If FK,H(X∗) = 0, then procedure Challenge
computes

Y ∗ := T γq+1 ·
q∏
i=0

e((g̃x
i

)γi , h) = T γq+1 · e(g̃
∑q
i=0 γix

i

, h)

where γ0, . . . , γq+1 are the coefficients of the degree-(q+1)-polynomial x·Pn+1,X∗(x) =∑q+1
i=0 γix

i. Note that if T = e(g̃, h)x
q+1

, then it holds that Y ∗ = Vsk(X
∗). More-

over, if T is uniformly random, then so is Y ∗. If FK,H(X∗) = 1, then B outputs
the random bit b∗ and aborts.

B’s running time. The running time tB of B consists of the running time tA of A
plus the time required to simulate the oracles as depicted in Figure 3. The latter
step essentially consists of the operations defined in the construction of the VRF
in Section 5.2 plus minor operations like sampling K, evaluating FK,H , checking
for collisions, calculate the γi to compute gPw,X (x) and some group operations
to compute the gi. Thus, we have tB ≈ tA.

B’s success probability. Let c ∈ {0, 1} denote the random bit chosen by the
q-DDH challenger. B perfectly simulates GAVRF(k) with b = c. Hence, by Equa-
tion 10, we get

Advq-DDH
B (k) ≥ Pr [E4] ≥ 1/2 + τ(k)

for a non-negligible function τ . In particular, when instantiated concretely with
the computational AHF from Theorem 4, then we have

Advq-DDH
B (k) ≥ 1/2 + ε2A/(32t2A − 16tA).

5.4 Proof of Lemma 2

Observe that by the Definition of AdmSmp in Theorem 4 and the choice of q in
Theorem 5 we have σ(K) ≤ q. Furthermore, I1n,X contains up to one element
for each i ∈ [n] such that Ki = 1, which are at most σ(K) many. Analogously,
I0w,X can contain at most q−σ(K) elements since K has only q−σ(K) positions
where it is 0. We proceed by proving that

deg(Pw,X) = q − σ(K)− 1−
∣∣I0K,w,X ∣∣+

∣∣I1K,w,X ∣∣ (11)

holds for all w ∈ [n]. Observe that in the definition of Pw,X each i ∈ I0w,X adds a
factor (αi + 1/x) to Pw−1,X and by that decreases the degree of the polynomial
by one. Analogously, each element in I1w,X increases the degree of the polynomial

by one. Finally, P0,X is defined as (α0 + xq−σ(K)−1) yielding, together with the

upper bounds on |Iw,X |0 and |Iw,X |1 above, Equation 11.
We finish the proof of Lemma 2, by showing that

−1 ≤ deg(Pw,X) ≤ q − 1

25

holds for all w ∈ [n]. By Equation 11 and |Iw,X | ≤ σ(K), the following holds.

deg(Pw,X) = q − σ(K)− 1−
∣∣I0w,X ∣∣+

∣∣I1w,X ∣∣
≤ q − σ(K)− 1 +

∣∣I1w,X ∣∣
≤ q − σ(K)− 1 + σ(K) = q − 1.

We conclude the lower bound analogously by applying Equation 11 and |Iw,X | ≤
q − σ(K).

deg(Pw,X) = q − σ(K)− 1−
∣∣I0w,X ∣∣+

∣∣I1w,X ∣∣
≥ q − σ(K)− 1−

∣∣I0w,X ∣∣
≥ q − σ(K)− 1− q − σ(K) = −1

6 Comparison of VRF Instantiations

We compare key and proof sizes of the VRFs from Katsumata [29], Yamada [50],
Jager [26] and our VRF from Section 5.3 in two different types of instantiation:
using bAHFs with ECCs and using cAHFs with TCRHFs from Section 3.1.
We do not compare Yamada’s third VRF, because it relies on a much stronger
polynomial q-type assumption [50, Appendix C (in the eprint version)]. Com-
paring the concrete number of group elements in keys and proofs shows that
instantiating the VRFs with cAHFs significantly reduces the key and proof sizes.
Furthermore, comparing our new VRF in Section 5.2 to any of the other VRFs
shows that our new VRF has either significantly smaller secret keys, verification
keys or proofs than each other VRF.

Formulas for key and proof sizes. Table 1 shows the sizes of the verification keys
|vk|, secret keys |sk| and proofs |π| as the number of group elements they contain
in dependence of k,Q, ε, δ and t. The caption precisely explains how the key and
proof sizes relate to these variables. Furthermore, the table shows the advantage
of the solver AdvB against the respective hard problem. For the VRFs of of [29]
and [50], this is the q-DBDHI assumption introduced by Boneh and Boyen [8].
For our VRF and Jager’s VRF [26] this is the q-DDH assumption. Even though
the assumptions differ, the key and proof sizes are comparable for the following
reasons.

1. Cheons algorithm [16] is the most efficient known generic algorithm to solve
both, the q-DDH assumption and the q-DBDHI assumption.

2. Except for Yamada’s VRFs [50], all schemes considered share almost the
same q in the assumption. Also, Yamada’s VRF relies on a O(k log(k))-
DBDHI assumption [50], and is therefore reasonably close the q of the other
schemes. Hence, Yamada’s VRFs would only need to use slightly larger
groups to compensate the stronger assumption.

26

Construction Instantiation |vk| #G |sk| #G |π| #G AdvB

ECCs 3 + ζd dζ + 1 d+ dn+ ζ + 1 τ + stat
[29] Sec. 5.1

cAHF 3 + ζtcrhj ζtcrh + 1 j + j(ntcrh) + ζtcrh + 1 τ tcrh + stat

ECCs 3 + d(2ζ/2+2 − 2) dζ + 1 2d− 1 τ + stat
[29] Sec. 5.3

cAHF 3 + j(2ζ
tcrh/2+2 − 2) jζtcrh + 1 2j − 1 τ tcrh + stat

ECCs dn1 + 2 d dn2 τ + stat
[50] Sec. 6.1

cAHF jntcrh
1 + 2 j jntcrh

2 τ tcrh + stat
ECCs d+ 2 d d(n1 + n2 − 1) τ + stat

[50] Sec. 6.3
cAHF j + 2 j j(ntcrh

1 + ntcrh
2 − 1) τ tcrh + stat

ECCs 2n+ 2 2n n τ
[26]

cAHFs 2ntcrh + 2 2ntcrh ntcrh τ tcrh

ECCs n+ 4 n+ 2 n+ 1 τ
Our construction

cAHFs (as shown) ntcrh + 4 ntcrh + 2 ntcrh + 1 τ tcrh

Table 1. The sizes of vk, sk, π as the number of group elements and the advantage
of the solver in the security proof for the instantiation of our VRF and the VRFS
of Jager [26], Yamada [50] and Katsumata [29]. d = b(2Q+Q/ε)/ log(1− δ)c is the
number of positions in the key of the bAHF that are not ⊥. Note that [29,26,50] all
chose d in this way. For the VRFs from Katsumata [29], ζ = blog(2n)c + 1 is the
number of bits required to encode an element from [2n]. τ is as in Definition 3 and de-
scribes the advantage of a solver against the underlying q-type assumption with q := d
for the instantiation using ECCs and q := j using TCRHFs. stat represents statisti-
cally negligible values introduced in the security proofs of Yamada’s and Katsumata’s
VRFs [50,29]. Note that for Yamada’s VRFs [50], n1, n2 ∈ N can be chosen freely
such that n = n1n2. Analogously, we have ntcrh := 2k + 3 as the output length of
the truncation collision resistant hash function, ζtcrh is the number of bits required to
encode an element from [ntcrh]. As in Theorem 4 the length of the prefix used for the
TCRHFs is j := d4t(2t − 1)/εe. Again, ntcrh

1 , ntcrh
2 ∈ N can be chosen freely such that

ntcrh = ntcrh
1 ntcrh

2 . Finally, we have τ tcrh = ε2/(32t2 − 16t) from Theorem 4.

Instantiation choices. The concrete number of group elements in keys and proofs
depends on some instantiation choices, which we describe here. Since the VRF
instantiation with cAHFs takes inputs from {0, 1}∗, we level the playing field
by assuming that the instantiations using ECCs first hash the inputs with a
collision resistant hash function H : {0, 1}∗ → {0, 1}α and thus the VRFs also
take inputs from {0, 1}∗. We let α = 2k, where k is the security parameter, to
ensure the collision resistance of H against birthday attacks. Hence, when an
ECC C is used in an instantiation, then C takes inputs from {0, 1}2k. We list
the key sizes of the different VRFs, instantiated with cAHFs and with ECCs in
Table 2.

Unfortunately, assessing the potential efficiency of the instantiation using
bAHFs with ECCs is only possible to a limited degree because finding the best
known ECC for a given input length and relative minimal distance is non-trivial
for larger numbers. Code tables [22], the to the best of our knowledge most ex-
tensive collection of best known codes for different parameters, only lists binary
codes of length up to 256, which is to small for reasonable security parame-
ters. Therefore, we compare the instantiation with cAHFs and TCRHFs to the
instantiation with bAHFs the following ECCs.

27

– We consider primitive BCH codes that we puncture to achieve the desired
relative minimal distance. Again, tables in for example [41, Table 9.1] only
list codes for lengths up to 1023. We therefore wrote a small program that
finds the most suited primitive BCH code for this purpose. It can be found at
https://github.com/DavidNiehues/bch-code-search. The program con-
siders the Bose distance of the BCH codes instead of the design distance.
The caption of Table 2 states the used primitive BCH code explicitly.

– Furthermore, we present key and proof sizes under the assumptions that
ECCs on the GV and MRRW bound can be efficiently instantiated.

Assuming instantiations with ECCs on the GV and MRRW bound gives the
instantiation with bAHFs and ECCs an advantage over instantiations using
cAHFs with TCRHFs, since ECCs on the MRRW-bound are the best theo-
retically possible ECCs and it is not known whether ECCs on the GV-bound
can be constructed efficiently.

In the calculation of the key sizes of Yamada’s VRFs [50], we pick n1 = n2
as d
√
ne in order to make the parameter sizes comparable. We make this choice,

because Yamada suggest picking n1 and n2 close to
√
n [50] and because choosing

actual divisors of n would make key and proof sizes heavily depend on the
factorization of n. This would lead to misleading results. Furthermore, we chose
δ such that all instantiations achieve the same advantage of the solver. This
makes the different instantiations comparable. Note that we did not incorporate
the statistically negligible terms stat in the calculation of the advantage.

Smaller keys and proofs using cAHFs. Table 2 shows the concrete number of
group elements of the different instantiations in the setting with k = 128, Q =
225, t = 250 and ε = 2−25. The instantiation of the VRFs with cAHFs improves
the size of keys and proofs significantly, even compared to bAHFs instantiated
with the best theoretically possible ECCs on the MRRW bound. Concretely, using
cAHFs with TCRHFs instead of bAHFs with ECCs on the MRRW bound reduces
the size of the proofs of the VRF in Section 5.1 in [29] by ≈ 61% in the setting
of Table 2. Compared to an instantiation with ECCs on the GV bound, we reduce
the proof size by even ≈ 78%. Compared to the instanitation with punctured
primitive BCH codes, the improvement is even ≈ 87%. Particularly, keys and
proofs whose size depends linearly on n shrink when the VRFs are instantiated
with cAHFs. Over all key and proof sizes affected by the improvement, the
reduction amounts for at least 9% of the size of an instantiation with ECCs
on the MRRW bound. Note that the size of all keys and proofs stays at least
the same. Hence, by making an additional (but from a practical point of view
plausible and natural) hardness assumption, we can reduce the key and proof
sizes significantly, which may be useful for many practical applications of VRF.
Furthermore, it hints at the usefulness of cAHFs for other primitives.

Efficiency of our new VRF. Table 2 shows that our new VRF nearly halves the
size of the verification and secret key of Jager’s VRF while maintaining the proof
size. Comparing our VRF with the VRFs of Katsumata and Yamada shows that

28

https://github.com/DavidNiehues/bch-code-search

Construction Instantiation |vk| #G |sk| #G |π|#G AdvB

BCH 1551 1549 261883 ≈ 2−155

GV 1551 1549 154942 ≈ 2−155

[29] Sec. 5.1
MRRW 1422 1420 85797 ≈ 2−155

cAHF 1283 1281 33291 ≈ 2−155

BCH 32769 1549 257 ≈ 2−155

GV 32769 1549 257 ≈ 2−155

[29] Sec. 5.3
MRRW 23094 1420 257 ≈ 2−155

cAHF 16131 1281 255 ≈ 2−155

BCH 5936 129 5934 ≈ 2−155

GV 4517 129 4515 ≈ 2−155

[50] Sec. 6.1
MRRW 3356 129 3354 ≈ 2−155

cAHF 2178 128 2176 ≈ 2−155

BCH 131 129 11739 ≈ 2−155

GV 131 129 8901 ≈ 2−155

[50] Sec. 6.2
MRRW 131 129 6579 ≈ 2−155

cAHF 130 128 4224 ≈ 2−155

BCH 4060 4058 2029 ≈ 2−155

GV 2402 2400 1200 ≈ 2−155

[26]
MRRW 1330 1328 664 ≈ 2−155

cAHF 520 518 259 ≈ 2−155

BCH 2033 2031 2030 ≈ 2−155

GV 1204 1202 1201 ≈ 2−155

Our construction
MRRW 668 666 665 ≈ 2−155

cAHF 263 261 260 ≈ 2−155

Table 2. Key and proof sizes for k = 128, Q = 225, t = 250, ε = 2−25 and δ = 0.235.
In consequence, we have d = 129. Puncturing a primitive [2047, 264, 495] BCH-code
18 times to a [2029, 264, 477] code yields nBCH = 2029, nBCH

1 = 46, nBCH
2 = 46 and

ζBCH = 12. If an ECC on the GV bound is used, this implies nGV = 1200, nGV
1 =

35, nGV
2 = 35 and ζGV = 12. Analogously, if an ECC on the MRRW bound is used, this

implies nMRRW = 664, nMRRW
1 = 26, nMRRW

2 = 26 and ζMRRW = 11. Finally, if the VRFs
are instantiated with a cAHF using TCRHFs, we have ntcrh = 259, ntcrh

1 = 17, ntcrh
2 =

17, j = 128 and ζtcrh = 10.

our VRF, in the worst case, has secret or verification keys about twice the size of
the verification or secret keys of VRFs by Katsumata and Yamada. At the same
time, when instantiated with cAHFs, our VRF always has either verification
or secret keys with size only ≈ 20% of the size of the respective keys of the
VRFs of Yamada and Katsumata with the same instantiation. We provide more
comparisons with different k, ε in Appendix A supporting both, the efficiency of
cAHFs and our new VRF.

References

1. Michel Abdalla, Dario Fiore, and Vadim Lyubashevsky. From selective to full
security: Semi-generic transformations in the standard model. In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 316–333. Springer, Heidelberg, May 2012.

2. Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Adaptively single-key secure constrained prfs for NC1. IACR
Cryptology ePrint Archive, 2018:1000, 2018.

3. Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Constrained PRFs for NC1 in traditional groups. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 543–574. Springer, Heidelberg, August 2018.

29

4. Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Sim-
plified proof and improved concrete security for Waters’ IBE scheme. In Antoine
Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 407–424. Springer,
Heidelberg, April 2009.

5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM CCS 93, pages 62–
73. ACM Press, November 1993.

6. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How
to sign with RSA and Rabin. In Ueli M. Maurer, editor, EUROCRYPT’96, volume
1070 of LNCS, pages 399–416. Springer, Heidelberg, May 1996.

7. Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part II, volume 10678 of LNCS, pages 567–594. Springer, Heidelberg, November
2017.

8. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer, Heidelberg,
May 2004.

9. Dan Boneh and Xavier Boyen. Secure identity based encryption without random
oracles. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
443–459. Springer, Heidelberg, August 2004.

10. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 440–456. Springer, Heidelberg, May 2005.

11. Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil
pairing. SIAM Journal on Computing, 32(3):586–615, 2003.

12. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, September 2004.

13. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004.

14. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. Journal of Cryptology, 25(4):601–639, October 2012.

15. Yu Chen, Qiong Huang, and Zongyang Zhang. Sakai-ohgishi-kasahara identity-
based non-interactive key exchange revisited and more. Int. J. Inf. Sec., 15(1):15–
33, 2016.

16. Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 1–11.
Springer, Heidelberg, May / June 2006.

17. Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximating
the minimum distance of a linear code. In 40th Annual Symposium on Foundations
of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages
475–485. IEEE Computer Society, 1999.

18. Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph
Striecks. Programmable hash functions in the multilinear setting. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages
513–530. Springer, Heidelberg, August 2013.

19. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, Shanghai, China, October 28-
31, 2017, pages 51–68. ACM, 2017.

30

20. Edgar Nelson Gilbert. A comparison of signalling alphabets. Bell System Technical
Journal, 31:504–522, 5 1952.

21. Sharon Goldberg, Leonid Reyzin, Dimitrios Papadopoulos, and Jan Vce-
lak. Verifiable random functions (vrfs). Internet-Draft draft-irtf-cfrg-vrf-
05, IETF Secretariat, August 2019. http://www.ietf.org/internet-drafts/

draft-irtf-cfrg-vrf-05.txt.
22. Markus Grassl. Bounds on the minimum distance of linear codes and quantum

codes. Online available at http://www.codetables.de, 2007. Accessed on 2019-
01-20.

23. Dennis Hofheinz and Tibor Jager. Verifiable random functions from standard
assumptions. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 336–362. Springer, Heidelberg, January 2016.

24. Dennis Hofheinz, Tibor Jager, and Eike Kiltz. Short signatures from weaker as-
sumptions. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 647–666. Springer, Heidelberg, December 2011.

25. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applica-
tions. Journal of Cryptology, 25(3):484–527, July 2012.

26. Tibor Jager. Verifiable random functions from weaker assumptions. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 121–143. Springer, Heidelberg, March 2015.

27. Tibor Jager and Rafael Kurek. Short digital signatures and ID-KEMs via trun-
cation collision resistance. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 221–250. Springer, Heidel-
berg, December 2018.

28. Tibor Jager and David Niehues. On the real-world instantiability of admissible hash
functions and efficient verifiable random functions. In Selected Areas in Cryptog-
raphy - SAC 2019 - 26th International Conference.

29. Shuichi Katsumata. On the untapped potential of encoding predicates by arith-
metic circuits and their applications. In Tsuyoshi Takagi and Thomas Peyrin, edi-
tors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 95–125. Springer,
Heidelberg, December 2017.

30. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

31. Lisa Kohl. Hunting and gathering - verifiable random functions from standard
assumptions with short proofs. In Dongdai Lin and Kazue Sako, editors, PKC 2019,
Part II, volume 11443 of LNCS, pages 408–437. Springer, Heidelberg, April 2019.

32. Benôıt Libert, Damien Stehlé, and Radu Titiu. Adaptively secure distributed PRFs
from LWE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II,
volume 11240 of LNCS, pages 391–421. Springer, Heidelberg, November 2018.

33. Anna Lysyanskaya. Unique signatures and verifiable random functions from the
DH-DDH separation. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 597–612. Springer, Heidelberg, August 2002.

34. Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error
correcting codes. North Holland mathematical library. Amsterdam [u.a.] : North
Holland, 10. impr. edition, 1998.

35. Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey Jr., and Lloyd R.
Welch. New upper bounds on the rate of a code via the delsarte-macwilliams
inequalities. IEEE Trans. Information Theory, 23(2):157–166, 1977.

36. Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. CONIKS: Bringing key transparency to end users. In Jaeyeon

31

http://www.ietf.org/internet-drafts/draft-irtf-cfrg-vrf-05.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-vrf-05.txt
http://www.codetables.de

Jung and Thorsten Holz, editors, USENIX Security 2015, pages 383–398. USENIX
Association, August 2015.

37. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In 40th FOCS, pages 120–130. IEEE Computer Society Press, October 1999.

38. National Institute of Standards and Technology. Fips pub 180–4: Secure hash
standard, August 2015. http://dx.doi.org/10.6028/NIST.FIPS.180-4.

39. National Institute of Standards and Technology. Fips pub 202: Sha-3 standard:
Permutation-based hash and extendable-output functions, August 2015. http:

//dx.doi.org/10.6028/NIST.FIPS.202.
40. Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan Včelák,

Leonid Reyzin, and Sharon Goldberg. Making NSEC5 practical for DNSSEC.
Cryptology ePrint Archive, Report 2017/099, 2017. http://eprint.iacr.org/

2017/099.
41. William Wesley Peterson and Edward J. Weldon. Error-correcting codes. Cam-

bridge, Massachusetts: MIT Press, 2. ed., 9. print. edition, 1988.
42. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/

2004/332.
43. Kenneth W. Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and

Vinay Deolalikar. A low-complexity algorithm for the construction of algebraic-
geometric codes better than the gilbert-varshamov bound. IEEE Trans. Informa-
tion Theory, 47(6):2225–2241, 2001.

44. Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Information
Theory, 42(6):1710–1722, 1996.

45. Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 238–251. ACM, 2017.

46. Alexander Vardy. The intractability of computing the minimum distance of a code.
IEEE Trans. Information Theory, 43(6):1757–1766, 1997.

47. Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting
codes. Dokl. Acad. Nauk SSSR, 117(5):739–741, 1957.

48. Jan Vcelak, Sharon Goldberg, Dimitrios Papadopoulos, Shumon Huque, and
David Lawrence. Nsec5, dnssec authenticated denial of existence. Internet-Draft
draft-vcelak-nsec5-08, IETF Secretariat, December 2018. https://www.ietf.org/
archive/id/draft-vcelak-nsec5-08.txt.

49. Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127.
Springer, Heidelberg, May 2005.

50. Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifi-
able random functions via generalized partitioning techniques. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 161–193. Springer, Heidelberg, August 2017.

51. Gilles Zémor. On expander codes. IEEE Trans. Information Theory, 47(2):835–
837, 2001.

A Further Comparisons

We provide further comparisons like Table 2. The results we present are calcu-
lated using the formulas stated in Table 1. Compared to Table 2, we provide key

32

http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
http://eprint.iacr.org/2017/099
http://eprint.iacr.org/2017/099
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://www.ietf.org/archive/id/draft-vcelak-nsec5-08.txt
https://www.ietf.org/archive/id/draft-vcelak-nsec5-08.txt

and proof sizes for k ∈ {100, 128, 256} and ε ∈ {2−25, 2−50}. For every combina-
tion of k and ε, δ is chosen such that the advantages for the instantiation using
ECCs and the instantiation using TCRHFs are approximately the same. All
variables have the same semantics as in Section 6. The results show that using
the cAHF instantiated with a TCRHF reduces key and proof sizes significantly.

Construction Instantiation |vk| #G |sk| #G |π|#G AdvB

BCH 2005 2003 567966 ≈ 2−205

GV 1851 1849 225931 ≈ 2−205

[29] Sec. 5.1
MRRW 1697 1695 110892 ≈ 2−205

cAHF 1380 1378 31222 ≈ 2−205

BCH 55443 2003 307 ≈ 2−205

GV 39119 1849 307 ≈ 2−205

[29] Sec. 5.3
MRRW 27569 1695 307 ≈ 2−205

cAHF 13467 1378 305 ≈ 2−205

BCH 9396 154 9394 ≈ 2−205

GV 6008 154 6006 ≈ 2−205

[50] Sec. 6.1
MRRW 4160 154 4158 ≈ 2−205

cAHF 2297 153 2295 ≈ 2−205

BCH 156 154 18634 ≈ 2−205

GV 156 154 11858 ≈ 2−205

[50] Sec. 6.2
MRRW 156 154 8162 ≈ 2−205

cAHF 155 153 4437 ≈ 2−205

BCH 7376 7374 3687 ≈ 2−205

GV 2934 2932 1466 ≈ 2−205

[26]
MRRW 1440 1438 719 ≈ 2−205

cAHF 408 406 203 ≈ 2−205

BCH 3691 3689 3688 ≈ 2−205

GV 1470 1468 1467 ≈ 2−205

Our construction
MRRW 723 721 720 ≈ 2−205

cAHF 207 205 204 ≈ 2−205

Table 3. Key and proof sizes for k = 100, Q = 225, t = 250, ε = 2−50 and δ = 0.286.
In consequence, we have d = 154. Puncturing a primitive [4095, 211, 1463] BCH-code
408 times to a [3687, 211, 1055] code yields nBCH = 3687, nBCH

1 = 61, nBCH
2 = 61 and

ζBCH = 13. If an ECC on the GV bound is used, this implies nGV = 1466, nGV
1 =

39, nGV
2 = 39 and ζGV = 12. Analogously, if an ECC on the MRRW bound is used, this

implies nMRRW = 719, nMRRW
1 = 27, nMRRW

2 = 27 and ζMRRW = 11. Finally, if the VRFs
are instantiated with a cAHF using TCRHFs, we have ntcrh = 203, ntcrh

1 = 15, ntcrh
2 =

15, j = 153 and ζtcrh = 9.

33

Construction Instantiation |vk| #G |sk| #G |π|#G AdvB

BCH 1551 1549 259174 ≈ 2−155

GV 1422 1420 121143 ≈ 2−155

[29] Sec. 5.1
MRRW 1422 1420 67092 ≈ 2−155

cAHF 1155 1153 26122 ≈ 2−155

BCH 32769 1549 257 ≈ 2−155

GV 23094 1420 257 ≈ 2−155

[29] Sec. 5.3
MRRW 23094 1420 257 ≈ 2−155

cAHF 11267 1153 255 ≈ 2−155

BCH 5807 129 5805 ≈ 2−155

GV 4001 129 3999 ≈ 2−155

[50] Sec. 6.1
MRRW 2969 129 2967 ≈ 2−155

cAHF 1922 128 1920 ≈ 2−155

BCH 131 129 11481 ≈ 2−155

GV 131 129 7869 ≈ 2−155

[50] Sec. 6.2
MRRW 131 129 5805 ≈ 2−155

cAHF 130 128 3712 ≈ 2−155

BCH 4018 4016 2008 ≈ 2−155

GV 1878 1876 938 ≈ 2−155

[26]
MRRW 1040 1038 519 ≈ 2−155

cAHF 408 406 203 ≈ 2−155

BCH 2012 2010 2009 ≈ 2−155

GV 942 940 939 ≈ 2−155

Our construction
MRRW 523 521 520 ≈ 2−155

cAHF 207 205 204 ≈ 2−155

Table 4. Key and proof sizes for k = 100, Q = 225, t = 250, ε = 2−25 and δ = 0.235.
In consequence, we have d = 129. Puncturing a primitive [2047, 209, 511] BCH-code 39
times to a [2008, 209, 472] code yields nBCH = 2008, nBCH

1 = 45, nBCH
2 = 45 and ζBCH =

12. If an ECC on the GV bound is used, this implies nGV = 938, nGV
1 = 31, nGV

2 = 31 and
ζGV = 11. Analogously, if an ECC on the MRRW bound is used, this implies nMRRW =
519, nMRRW

1 = 23, nMRRW
2 = 23 and ζMRRW = 11. Finally, if the VRFs are instantiated

with a cAHF using TCRHFs, we have ntcrh = 203, ntcrh
1 = 15, ntcrh

2 = 15, j = 128 and
ζtcrh = 9.

Construction Instantiation |vk| #G |sk| #G |π|#G AdvB

BCH 2005 2003 581672 ≈ 2−205

GV 1851 1849 289071 ≈ 2−205

[29] Sec. 5.1
MRRW 1697 1695 141846 ≈ 2−205

cAHF 1533 1531 39791 ≈ 2−205

BCH 55443 2003 307 ≈ 2−205

GV 39119 1849 307 ≈ 2−205

[29] Sec. 5.3
MRRW 27569 1695 307 ≈ 2−205

cAHF 19281 1531 305 ≈ 2−205

BCH 9550 154 9548 ≈ 2−205

GV 6778 154 6776 ≈ 2−205

[50] Sec. 6.1
MRRW 4776 154 4774 ≈ 2−205

cAHF 2603 153 2601 ≈ 2−205

BCH 156 154 18942 ≈ 2−205

GV 156 154 13398 ≈ 2−205

[50] Sec. 6.2
MRRW 156 154 9394 ≈ 2−205

cAHF 155 153 5049 ≈ 2−205

BCH 7554 7552 3776 ≈ 2−205

GV 3754 3752 1876 ≈ 2−205

[26]
MRRW 1842 1840 920 ≈ 2−205

cAHF 520 518 259 ≈ 2−205

BCH 3780 3778 3777 ≈ 2−205

GV 1880 1878 1877 ≈ 2−205

Our construction
MRRW 924 922 921 ≈ 2−205

cAHF 263 261 260 ≈ 2−205

Table 5. Key and proof sizes for k = 128, Q = 225, t = 250, ε = 2−50 and δ = 0.286.
In consequence, we have d = 154. Puncturing a primitive [4095, 259, 1399] BCH-code
319 times to a [3776, 259, 1080] code yields nBCH = 3776, nBCH

1 = 62, nBCH
2 = 62 and

ζBCH = 13. If an ECC on the GV bound is used, this implies nGV = 1876, nGV
1 =

44, nGV
2 = 44 and ζGV = 12. Analogously, if an ECC on the MRRW bound is used, this

implies nMRRW = 920, nMRRW
1 = 31, nMRRW

2 = 31 and ζMRRW = 11. Finally, if the VRFs
are instantiated with a cAHF using TCRHFs, we have ntcrh = 259, ntcrh

1 = 17, ntcrh
2 =

17, j = 153 and ζtcrh = 10.

34

Construction Instantiation |vk| #G |sk| #G |π|#G AdvB

BCH 1551 1549 261883 ≈ 2−155

GV 1551 1549 154942 ≈ 2−155

[29] Sec. 5.1
MRRW 1422 1420 85797 ≈ 2−155

cAHF 1283 1281 33291 ≈ 2−155

BCH 32769 1549 257 ≈ 2−155

GV 32769 1549 257 ≈ 2−155

[29] Sec. 5.3
MRRW 23094 1420 257 ≈ 2−155

cAHF 16131 1281 255 ≈ 2−155

BCH 5936 129 5934 ≈ 2−155

GV 4517 129 4515 ≈ 2−155

[50] Sec. 6.1
MRRW 3356 129 3354 ≈ 2−155

cAHF 2178 128 2176 ≈ 2−155

BCH 131 129 11739 ≈ 2−155

GV 131 129 8901 ≈ 2−155

[50] Sec. 6.2
MRRW 131 129 6579 ≈ 2−155

cAHF 130 128 4224 ≈ 2−155

BCH 4060 4058 2029 ≈ 2−155

GV 2402 2400 1200 ≈ 2−155

[26]
MRRW 1330 1328 664 ≈ 2−155

cAHF 520 518 259 ≈ 2−155

BCH 2033 2031 2030 ≈ 2−155

GV 1204 1202 1201 ≈ 2−155

Our construction
MRRW 668 666 665 ≈ 2−155

cAHF 263 261 260 ≈ 2−155

Table 6. Key and proof sizes for k = 128, Q = 225, t = 250, ε = 2−25 and δ = 0.235.
In consequence, we have d = 129. Puncturing a primitive [2047, 264, 495] BCH-code
18 times to a [2029, 264, 477] code yields nBCH = 2029, nBCH

1 = 46, nBCH
2 = 46 and

ζBCH = 12. If an ECC on the GV bound is used, this implies nGV = 1200, nGV
1 =

35, nGV
2 = 35 and ζGV = 12. Analogously, if an ECC on the MRRW bound is used, this

implies nMRRW = 664, nMRRW
1 = 26, nMRRW

2 = 26 and ζMRRW = 11. Finally, if the VRFs
are instantiated with a cAHF using TCRHFs, we have ntcrh = 259, ntcrh

1 = 17, ntcrh
2 =

17, j = 128 and ζtcrh = 10.

Construction Instantiation |vk| #G |sk| #G |π|#G AdvB

BCH 2159 2157 1177961 ≈ 2−205

GV 2005 2003 577822 ≈ 2−205

[29] Sec. 5.1
MRRW 1851 1849 283527 ≈ 2−205

cAHF 1686 1684 78960 ≈ 2−205

BCH 78543 2157 307 ≈ 2−205

GV 55443 2003 307 ≈ 2−205

[29] Sec. 5.3
MRRW 39119 1849 307 ≈ 2−205

cAHF 27390 1684 305 ≈ 2−205

BCH 13554 154 13552 ≈ 2−205

GV 9550 154 9548 ≈ 2−205

[50] Sec. 6.1
MRRW 6624 154 6622 ≈ 2−205

cAHF 3521 153 3519 ≈ 2−205

BCH 156 154 26950 ≈ 2−205

GV 156 154 18942 ≈ 2−205

[50] Sec. 6.2
MRRW 156 154 13090 ≈ 2−205

cAHF 155 153 6885 ≈ 2−205

BCH 15298 15296 7648 ≈ 2−205

GV 7504 7502 3751 ≈ 2−205

[26]
MRRW 3682 3680 1840 ≈ 2−205

cAHF 1032 1030 515 ≈ 2−205

BCH 7652 7650 7649 ≈ 2−205

GV 3755 3753 3752 ≈ 2−205

Our construction
MRRW 1844 1842 1841 ≈ 2−205

cAHF 519 517 516 ≈ 2−205

Table 7. Key and proof sizes for k = 256, Q = 225, t = 250, ε = 2−50 and δ = 0.286.
In consequence, we have d = 154. Puncturing a primitive [8191, 521, 2731] BCH-code
543 times to a [7648, 521, 2188] code yields nBCH = 7648, nBCH

1 = 88, nBCH
2 = 88 and

ζBCH = 14. If an ECC on the GV bound is used, this implies nGV = 3751, nGV
1 =

62, nGV
2 = 62 and ζGV = 13. Analogously, if an ECC on the MRRW bound is used, this

implies nMRRW = 1840, nMRRW
1 = 43, nMRRW

2 = 43 and ζMRRW = 12. Finally, if the VRFs
are instantiated with a cAHF using TCRHFs, we have ntcrh = 515, ntcrh

1 = 23, ntcrh
2 =

23, j = 153 and ζtcrh = 11.

35

Construction Instantiation |vk| #G |sk| #G |π|#G AdvB

BCH 1809 1807 920946 ≈ 2−155

GV 1680 1678 309743 ≈ 2−155

[29] Sec. 5.1
MRRW 1551 1549 171454 ≈ 2−155

cAHF 1411 1409 66060 ≈ 2−155

BCH 65793 1807 257 ≈ 2−155

GV 46443 1678 257 ≈ 2−155

[29] Sec. 5.3
MRRW 32769 1549 257 ≈ 2−155

cAHF 22915 1409 255 ≈ 2−155

BCH 10967 129 10965 ≈ 2−155

GV 6323 129 6321 ≈ 2−155

[50] Sec. 6.1
MRRW 4775 129 4773 ≈ 2−155

cAHF 2946 128 2944 ≈ 2−155

BCH 131 129 21801 ≈ 2−155

GV 131 129 12513 ≈ 2−155

[50] Sec. 6.2
MRRW 131 129 9417 ≈ 2−155

cAHF 130 128 5760 ≈ 2−155

BCH 14278 14276 7138 ≈ 2−155

GV 4802 4800 2400 ≈ 2−155

[26]
MRRW 2658 2656 1328 ≈ 2−155

cAHF 1032 1030 515 ≈ 2−155

BCH 7142 7140 7139 ≈ 2−155

GV 2404 2402 2401 ≈ 2−155

Our construction
MRRW 1332 1330 1329 ≈ 2−155

cAHF 519 517 516 ≈ 2−155

Table 8. Key and proof sizes for k = 256, Q = 225, t = 250, ε = 2−25 and δ = 0.235.
In consequence, we have d = 129. Puncturing a primitive [8191, 520, 2731] BCH-code
1053 times to a [7138, 520, 1678] code yields nBCH = 7138, nBCH

1 = 85, nBCH
2 = 85 and

ζBCH = 14. If an ECC on the GV bound is used, this implies nGV = 2400, nGV
1 =

49, nGV
2 = 49 and ζGV = 13. Analogously, if an ECC on the MRRW bound is used, this

implies nMRRW = 1328, nMRRW
1 = 37, nMRRW

2 = 37 and ζMRRW = 12. Finally, if the VRFs
are instantiated with a cAHF using TCRHFs, we have ntcrh = 515, ntcrh

1 = 23, ntcrh
2 =

23, j = 128 and ζtcrh = 11.

36

	On the Real-World Instantiability of Admissible Hash Functions and Efficient Verifiable Random Functions
	Introduction
	Admissible Hash Functions
	Instantiating AHFs from Error Correcting Codes
	Efficiency Bounds on Admissible Hash Functions

	Computational Admissible Hash Functions
	cAHFs from Truncation Collision Resistant Hash Functions

	Verifiable Random Functions and Their Security
	Verifiable Random Functions from cAHFs
	Bilinear Groups.
	VRF Construction
	Proof of Theorem 5
	Proof of Lemma 2

	Comparison of VRF Instantiations
	Further Comparisons

