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Abstract. Many isogeny-based cryptosystems are believed to rely on the
hardness of the Supersingular Decision Diffie-Hellman (SSDDH) problem.
However, most cryptanalytic efforts have treated the hardness of this
problem as being equivalent to the more generic supersingular `e-isogeny
problem — an established hard problem in number theory.
In this work, we shine some light on the possibility that the combination of
two additional pieces of information given in practical SSDDH instances —
the image of the torsion subgroup, and the starting curve’s endomorphism
ring — can lead to better attacks cryptosystems relying on this assumption.
We show that SIKE/SIDH are secure against our techniques. However,
in certain settings, e.g., multi-party protocols, our results may suggest a
larger gap between the security of these cryptosystems and the `e-isogeny
problem.
Our analysis relies on the ability to find many endomorphisms on the
base curve that have special properties. To the best of our knowledge,
this class of endomorphisms has never been studied in the literature. We
informally discuss the parameter sets where these endomorphisms should
exist. We also present an algorithm which may provide information about
additional torsion points under the party’s private isogeny, which is of
independent interest. Finally, we present a minor variation of the SIKE
protocol that avoids exposing a known endomorphism ring.
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1 Introduction

By the early 2000s, the elliptic curve discrete logarithm problem had become
the primary choice for concrete instantiations of fundamental cryptographic
protocols, and enabled many new advancements in the field. Looking closer at
the structure of, and relationship between elliptic curve groups gave way to
a natural generalization: rather than using scalar multiplication maps, cyclic
isogenies could be used to achieve similar algebraic properties [9, 20, 22]. In 2006,
Charles, Goren and Lauter [5] introduced the first cryptographic primitive (a
hash function) relying on the hardness of finding isogenies between supersingular
elliptic curves. Their work introduced the “supersingular `e-isogeny problem”
in a cryptographic context, and provided heuristic analysis of its hardness by
studying the structure of the set of all possible isogenies between supersingular
elliptic curves.

In 2011, supersingular isogeny-based cryptography received renewed attention
with the demonstration of a quantum sub-exponential algorithm for finding isoge-
nies between ordinary elliptic curves by Childs, Jao, and Soukharev [7]. Motivated
by avoiding this attack, De Feo and Jao [13] revisited the `-isogeny graph of
supersingular curves first considered in [5], and introduced the Supersingular
Isogeny Diffie-Hellman protocol (SIDH).

In order to overcome a technical obstacle in constructing the protocol, the
public keys in SIDH include the images of certain torsion points under the (pri-
vate) isogenies. The Supersingular Isogeny Decisional Diffie-Hellman assumption
(SSDDH) – and its computational versions Supersingular Isogeny Computational
Diffie-Hellman assumption (SSCDH) and Computational Supersingular Isogeny
assumption (CSSI) – were introduced to prove the security of this protocol
given the additional information. The Supersingular Key Encapsulation Mech-
anism SIKE [12], currently being considered for standardization in the NIST
Post-Quantum Standardization Process [6], also relies on the hardness of the
relatively-new SSDDH problem on a fixed starting curve. This new computa-
tional assumption was presumed to be equivalent to the supersingular `e-isogeny
problem.

The distinction between the SSDDH assumption and the `e-isogeny problem
(namely, that torsion point images of private kernels are revealed) was first
exploited in 2016, when the prominent work due to Galbraith, Petit, Silva, and
Ti [11] (later referred to as “GPST”) presented an active attack on the use of
static-keys in SIDH.

As mentioned, SIKE actually relies on a potentially stronger assumption;
SSDDH instantiated using a particular starting elliptic curve whose endomorphism
ring is well-known. In 2017, the authors in [10] showed heuristically that solving
the supersingular `e-isogeny problem is equivalent to the problem of constructing
the endomorphism rings of both the starting and ending supersingular elliptic
curves. Since the endomorphism rings of the target elliptic curves are unknown,
and there are no known efficient algorithms which find the endomorphism rings
of arbitrary supersingular elliptic curves, their approach does not reduce the
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security of SIKE. However, their work demonstrated that the problem of finding
endomorphism rings is intricately linked to the security of SIKE.

Since then, numerous works have shown constructions of additional primitives
assuming the hardness of classical `e-isogeny problems, SSDDH, and strengthened
variants of SSDDH. Most of the current best-known attacks [1,24] on SIDH/SIKE
find direct solutions to the `e-isogeny problem. Recently, the authors in [14] have
also suggested that the quantum attack of Biasse et al. [4] exploiting the algebraic
structure of supersingular elliptic curves defined over Fp might be better than
the often cited generic quantum claw-finding attack [24].

In 2017, Petit [17] described a passive polynomial time algorithm for solving
the CSSI problem on two non-SIKE parameter sets, the first work to utilize both
the image of the torsion points, and the knowledge of the endomorphism ring of
the starting curve. In the first variant, one party reveals drastically more torsion
information than in SIDH/SIKE (like in multi-party settings [3]), and in the
other variant both parties work in torsion subgroups larger than p2 (where p is
the characteristic of the field) and reveal slightly more torsion information than
in SIDH/SIKE. The novelty of the work we present in this paper is that we arrive
at potentially stronger results in the same vein of that work, but using different
methods. More specifically, we aim to answer the following question: is there an
offline algorithm which solves CSSI by repeatedly restricting the search-space by
a non-negligible factor, e.g., a passive counterpart to [11]?

1.1 Our Contributions and Organization of the Paper

This work constitutes an independent line of research into non-generic attacks
on the instantiations of the CSSI problem. We describe a reduction between the
security of SIDH-like protocols and the CSSI problem on certain starting elliptic
curves. Given an oracle for this new problem, we present a passive algorithm
which iteratively shrinks the search space for solutions to the CSSI problem,
which corresponds to recovering a private key (isogeny) in protocols relying on
the CSSI assumption. Our approach exploits the knowledge of the images of the
private isogeny on a torsion subgroup, and the structure of the endomorphism
ring of the starting curve.

In Section 2 we review the hardness assumptions used to establish the security
of SIKE, and in Section 3 we give a technical overview of the work in this
document. Similar to our reduction, the “GPST attack” [11] iteratively gives
malformed public keys to halve the search space. Our methods can be interpreted
as a generalization of the underlying ideas implicit in the GPST attack (see
Table 1 for a comparison). While the best-known attacks deal with elliptic curves
and other rich structures, our analysis interprets torsion points as vectors and
endomorphisms as matrices, and applies techniques from linear algebra. We
formulate the GPST attack using this terminology in Section 4.

Section 5 describes our main observation: a passive algorithm which, when
given desirable endomorphisms, solves CSSI. We can increase the efficiency of
our algorithm by assuming that these desirable endomorphisms are represented
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in a novel way, called a triangular kernel. Thus, we show a reduction between
the CSSI problem and the problem of finding desirable endomorphisms.

Once we fix a specific (starting) elliptic curve, constructing such endomor-
phisms essentially reduces to solving a particular quadratic form. In Section 6,
we make explicit the reduction between the security of SIDH/SIKE variants and
the problem of finding (desirable) solutions to this quadratic form. An important
result of our investigations, which we show in Section 7, is that SIKE is secure
against our cryptanalysis.

Section 8 explores whether these desirable endomorphisms exist in the multi-
party setting (e.g., group key agreements [3]). We provide arguments that suggest
the security of the standard 3-party and 4-party cases may be significantly less
than currently believed. Specifically, we provide heuristic evidence about the
existence of desirable endomorphisms for our attacks in the 4-party setting.

Section 9 examines the tradeoff between the runtime of our algorithm and the
amount of information each desirable endomorphism provides. Section 10 focuses
on improving the algorithm so that it requires fewer desirable endomorphisms.
Informally, we achieve this by learning the images of the private isogeny on
additional torsion points.

Finally, in Section 11, we introduce a modified version of SIKE (called SITH)
which relies on a qualitatively weaker security hypothesis. We end with our
conclusions and future work in Section 12. This work shares a similar conclusion
to that of Petit [17], which presented a passive polynomial-time algorithm to
solve two variants of the CSSI problem.

2 Preliminaries

As we will be working in a broader setting than SIKE, Section 2.1 introduces
the necessary notation for general isogeny-based key exchanges, and Section 2.2
reviews the hard problems upon which the security of these key exchanges is
based.

2.1 Notation

Throughout, we will assume a generalization of the SIKE setup. In particular,
let Fq denote a finite field with q elements, where q = p2 for some prime p of
the form p = N1N2 − 1, for coprime positive integers N1 and N2. The security
parameter of isogeny-based cryptosystems is λ = log p. In much of Sections 7
and 8 we will be assuming p ≡ 3 (mod 4). In this case, as Fp2 ∼= Fp[x]/〈x2 + 1〉,
we can represent elements in Fp2 as u+ vi, where i2 = −1, for some u, v ∈ Fp.

We will let E(F) denote a supersingular elliptic curve E over a field F. As
well, let E[N ] denote the subgroup of N -torsion points over the algebraic closure
Fq, and let [N ] denote the isogeny that acts as scalar multiplication by N .

For any N ∈ Z, where p - N , the subgroup E[N ] ∼= Z/NZ × Z/NZ. We fix
bases for the N1 and N2 torsion subgroups: E[N1] = 〈PA, QA〉 and E[N2] =
〈PB , QB〉.
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Let RA = PA + [rA] · QA for some number rA ∈ {0, . . . , NA − 1}, and let
φA : E → EA be an isogeny with ker(φA) = 〈RA〉. Alice will be the static
initiator in the key exchange, whose private key is rA. We refer to RA as her
private point, which generates the kernel of her private isogeny φA. Her public
key is (φA(E), φA(PB), φA(QB)).

Occasionally, we will also use an isogeny φB : E → EB , where ker(φB) =
〈PB+[rB ] ·QB〉 for some number rB ∈ {0, . . . , NB−1}. Bob will be the responder
in the key exchange, whose private key is rB. We refer to RB as his private
point, which generates the kernel of his private isogeny φB. His public key is
(φB(E), φB(PA), φB(QA)).

Definition 2.1. Let φ : E → E′ be an isogeny. Then φ is said to be cyclic when
there is no integer m 6= {±1} and isogeny ψ such that φ = [m] · ψ.

We denote the action of the isogeny φ restricted to the N -torsion points by
φ|E[N ] , typically with respect to a given basis {P,Q} for E[N ]. Finally, φ̂ will
denote the dual of an isogeny φ.

Let End(E) denote the endomorphism ring of E. Since E is supersingular,
we can write End(E) as a Z-module generated by some basis of endomorphisms
{b1, b2, b3, b4}.

For a natural number N and linear transformation M on E[N ], let

EigNM = {R ∈ E[N ] : |R| = N, 〈M(R)〉 ⊂ 〈R〉}.
We refer to this as the N-eigenspace of M , and call a torsion point R an
eigenvector of M if it is in EigN (M). For an endomorphism φC and natural
number N , let

EigN (φC) = {R ∈ E[N ] : |R| = N, 〈φC(R)〉 ⊂ 〈R〉}.
We refer to this as the N-eigenspace of φC , and call a torsion point R an
eigenvector of φC if it is in EigN (φC) for some natural number N . Notice that if
gcd(deg φC , N) = 1 and R ∈ EigN (φC), then 〈R〉 = 〈φC(R)〉.

Let H(ρ) be the information entropy of a binary probability event ρ. Then
the expected information content of ρ is H(ρ) bits, and can be computed as
follows

H(ρ) = ρ log2(1/ρ) + (1− ρ) log2(1/(1− ρ)).

2.2 Hard Isogeny Problems

As we discussed earlier, most of the current best-known attacks [1, 24] on
SIDH/SIKE find direct solutions to the `e-isogeny problem:

Problem 2.2 (`e-Isogeny Problem). Suppose there exists an isogeny φ :
E → E′ whose kernel is generated by R ∈ E[`e]. If you are only given E and E′,
the problem is to find 〈R〉.

In contrast, the security of SIDH/SIKE is based on the following problem
instantiated at a particular elliptic curve:
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Problem 2.3 (Supersingular Decision Diffie-Hellman (SSDDH) Prob-
lem). Given a tuple sampled with probability 1/2 from one of the following two
distributions:

1. (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EAB), generated via the SIDH
protocol and

EAB ∼= E0/〈PA + [rA] ·QA, PB + [rB ] ·QB〉,

2. (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EC), where everything except
EC is generated via the SIDH protocol and

EC ∼= E0/〈PA + [r′A] ·QA, PB + [r′B ] ·QB〉,
where r′A and r′B are chosen at random from Z/N1Z and Z/N2Z, respectively,

determine from which distribution the tuple is sampled.

A computational variant of this problem was introduced by Jao and De Feo
in [13].

Problem 2.4 (Supersingular Computational Diffie-Hellman (SSCDH)
Problem). Let φA : E0 → EA be an isogeny whose kernel is equal to 〈PA+[rA] ·
QA〉, and let φB : E0 → EB be an isogeny whose kernel is equal to 〈PB+[rB ]·QB〉,
where rA (respectively rB) is chosen at random from Z/N1Z (respectively Z/N2Z).
Given the curves EA, EB , and the points φA(PB), φA(QB), φB(PA), φB(QA), find
the j-invariant of E0/〈PA + [rA] ·QA, PB + [rB ] ·QB〉.

SSDDH reduces to SSCDH in the obvious way, and the converse is true as
well [26]. Both the decisional and computational Diffie-Hellman assumptions
depend on the following computational problem in the obvious way.

Problem 2.5 (Computational Supersingular Isogeny (CSSI) Problem).
Let E0 be a supersingular elliptic curve, and let φ : E0 → EA be an isogeny
whose kernel is generated by 〈PA + [rA] ·QA〉 for a random rA ∈ Z/N1Z, over
Fp2 where p = N1N2 − 1 is a prime such that gcd(N1, N2) = 1. Given EA and
the action of φ on E0[N2], find rA.

This work aims to study the security of SIDH/SIKE instances by solving the
CSSI Problem, which in turn solves the SSCDH and SSDDH problems.

The security of the NIST Round 1 version of SIKE [6] is based on an in-
stantiation of the SSDDH problem at the elliptic curve E0 : y2 = x3 + x with
j-invariant 1728. The endomorphism ring of this elliptic curve is known, and
it has many endomorphisms with small norm. It is the knowledge of the core
structure of the endomorphism ring of the starting elliptic curve E0, along with
torsion points φA(PB) and φA(QB), that we exploit in the security reductions
given in this paper. The elliptic curve in the Round 2 Version of SIKE has a
related endomorphism ring because it is adjacent to the SIKE Round 1 curve on
the 2-isogeny graph, and can therefore be analyzed in a similar manner.
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3 Technical Preview

Constructing public-key cryptosystems like SIDH relying on the hardness of
SSDDH can be done by viewing an isogeny as a private key, and an image curve
(and torsion points) under that isogeny as the public key. Appendix A.1 presents
numerous approaches for passive attacks on SIDH that have been presented
in the literature, such as the generic claw-finding algorithms from Tani [24], a
quantum algorithm performing unstructured searches through an algebraically
constrained space of candidate solutions by Biasse, Jao and Sankar [4], and
the work by Petit [17] which showed a relationship between the hardness of
multi-party SIDH-like protocols and solving certain quadratic forms.

While we study similar concepts as this last attack, our approach is structurally
different, as we draw inspiration from the active GPST attack [11], which showed
why SIDH is not IND-CCA secure. See Table 1 for a comparison between this
work and the GPST attack. For this discussion let us assume that Bob is a
dishonest party wishing to discover the other party’s, Alice’s, private key.

In the standard SIDH protocol, Bob is required to send particular points
derived from his private isogeny during the run of the protocol. In the GPST
attack (which we describe in more detail in Section 4.1), Bob, acting as an
attacker, repeatedly sends a specially crafted linear combination of his points
instead.

Bob’s correct points form a basis of EB [N1], as do his malicious points. We
will consider the change of basis matrix between these bases. The main idea
behind the GPST attack is that, with probability 1/2, Alice is able to reconstruct
the correct isogeny given Bob’s malicious points. Whether or not this second
isogeny of hers is constructed correctly gives Bob information about Alice’s
private key, and this information is completely determined by the change of basis
matrix that Bob used.

In our methods, the attacker uses an endomorphism on the starting curve
instead of a change of basis matrix. More specifically, we show that given a
particular endomorphism, the attacker can discover information about Alice’s
private point.

Contrary to the GPST attack, we provide an reduction which requires access
to desirable endomorphisms. Hence, for our reduction to result in a useful attack
we need i) to obtain a non-negligible amount of information about Alice’s private
point during each iteration, and ii) that the cost of each iteration only requires
reasonably bounded effort. These two goals add different restrictions on the type
of endomorphisms that we consider.

We first study the amount of information determined at each iteration. In the
GPST attack, the change of basis matrix between Bob’s correct points and his
malformed points can be thought of as acting on the subgroup E[N1] containing
Alice’s private point (as described in Section 4). In this interpretation, if Alice’s
private point is an eigenvector of this change of basis matrix, then the protocol
succeeds, otherwise (with overwhelming probability) the protocol fails.

The optimal situation for Bob is if the protocol, at each iteration of the
GPST attack, succeeds exactly half the time. This way, he discovers a bit of
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information of Alice’s private point during each iteration. Our observation is that
the protocol succeeds exactly half the time because Bob chooses a change of basis
matrix such that Alice’s private point is an eigenvector exactly half of the time.
More generally, if Alice’s private point is an eigenvector of the change of basis
matrix with a probability ρ < 1/2, then Bob is expected to discover H(ρ) bits of
information about Alice’s private key (the information entropy of ρ). Based on
the success or failure of the protocol with the malformed image points, Bob can
adapt the change of basis matrix, and repeat a similar procedure, learning H(ρ)
bits of Alice’s private key with each iteration.

GPST attack Our work

Mode Active Passive

Algorithm type Attack Reduction (requires Oracle queries)

Target Static SIDH Instantiated SSDDH

Objects Change of basis matrices Endomorphisms

Bits recovered 1 bit H(ρ) bits

Runtime Poly-time Depends on degree of endomorphism

Memory Poly-space Poly-space

Table 1: Comparison of the GPST attack with our work.

Instead of a change of basis matrix, our methods assume that the reduction
has access to desirable endomorphisms on the starting curve. However, such
endomorphisms also act as a matrix on the subspace that contains all of Alice’s
possible private points. As with the GPST attack, if Alice’s private point is an
eigenvector of the endomorphism with a high probability ρ ≤ 1/2, then, using
our methods, the attacker learns close to one bit of information of Alice’s private
key. By repeating this attack with different endomorphisms, the attacker can
discover Alice’s private key. Therefore, in order to gain a significant amount of
information about Alice’s private point, the attacker uses endomorphisms where
Alice’s private point is an eigenvector of the endomorphisms with a reasonably
high probability.

Given an endomorphism (with many eigenvectors), the algorithm in our
reduction requires the adversary to construct an isogeny on Alice’s curve of the
same degree. The runtime of our algorithm depends on the time it takes the
attacker to construct this isogeny. As the endomorphism and the related isogeny
have the same degree, the difficulty of constructing this related isogeny roughly
grows with the degree of the endomorphism. Thus, we are interested in using
endomorphisms that have particular degrees.

Alice’s public key includes the image under her private isogeny of the subspace
of points whose order divides N2 = 3b. As we will see in Section 5, this additional
information makes it easy to construct an isogeny on Alice’s curve EA that is
the composition of three isogenies, where the first and last isogenies have degrees
dividing N2 and the middle isogeny is ideally of small degree. Thus, we are
interested in endomorphisms (on the starting curve) whose degrees have the form
kL where L | N2

2 and k is small and coprime to N1. One of our contributions in
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that section is the notion of a triangular kernel (see Section 5), which is a triple
of points that generates the isogenies in this decomposition.

In summary, for our reduction to be practical, it requires endomorphisms on
the starting curve with large eigenspaces and certain conditions on the degrees.
As above, by repeating this procedure with many endomorphisms, Alice’s private
key can be recovered.

In order to investigate the existence of desirable endomorphism, we can exploit
the knowledge of the endomorphism ring of the starting curve of SIDH/SIKE. In
this case, the problem of finding desirable endomorphisms is reduced to solving
a particular quadratic form. By studying the quadratic forms arising in the
SIKE setting, we are able to show the following non-existence result: no desirable
endomorphisms exist that make the above attack strategy on SIKE more efficient
than known attacks. A similar result holds for the standard parameterizations of
SIDH.

However, investigating the quadratic form arising in multi-party isogeny-based
protocols (where the structure of the prime is modified to p = N1 · . . . ·Nn − 1,
for coprime natural numbers N1, . . . , Nn) leads us to heuristic arguments about
the existence of desirable endomorphisms for these cases. This suggests that
there exist endomorphisms that could be used to give an improved attack in
the 4-party case. That being said, it is unclear how difficult it is to construct
such endomorphisms. In the 3-party case we do not have heuristics for why such
endomorphisms should exist, but if they do, then our cryptanalysis improves
upon the best-known attacks in the literature.

We also show a trade-off between the amount of information about Alice’s
private point that an endomorphism reveals, and how efficiently this information
can be determined. This trade-off is between the size of the eigenspace of the
desirable endomorphism and the degree of the endomorphism on the image
curve (specifically, the part of the endomorphism that needs to be searched for
exhaustively).

Additionally, we show that if Alice’s key is found to be in the eigenspace of two
(independent) desirable endomorphisms, then we can improve our reduction. In
particular, these endomorphisms can be used to find information about the image
of torsion points on the starting curve under Alice’s private isogeny. Thus, instead
of just using the torsion information in Alice’s public key, we have additional
torsion information to exploit.

We conclude this paper with a recommendation consisting of a SIKE-like
protocol which randomizes the starting curve, and thus avoids any potential
future attack that utilizes the known endomorphism ring of the starting curve.

4 Interpreting Private Keys as Eigenvectors

In this section, we reformulate the work of GPST [11] to motivate our approach to
solving isogeny problems. Section 4.1 begins our investigation into cryptanalysis
by recalling the GPST attack, the most devastating attack on the CPA variant of
SIDH to date, and reformulating it in terms of whether or not a party’s private
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point is an eigenvector of a change of basis matrix. In Section 4.2 we replace
the matrices in the GPST attack by endomorphisms, and this gives us our first
results concerning whether or not a party’s private point is an eigenvector of an
endomorphism.

4.1 The GPST Active Attack on SIDH

In 2015, Galbraith, Petit, Shani and Ti [11] introduced an active attack on users
with static SIDH keys who do not use a Fujisaki-Okamoto type transformation [16]
to verify the other communicating party’s public key. This attack was originally
formulated in terms of Bob’s public key containing a malicious linear combination
of the points φB(PA) and φB(QA). It has since been observed that Bob is, in
essence, altering the points of φB(PA) and φB(QA) using a change of basis
matrix [25], where the matrix has entries in Z/N1Z and is chosen to have
determinant 1 to avoid detection (using the Weil-pairing test [21, §III.8]). In this
subsection, we will rephrase the GPST attack by noticing that these change of
basis matrices are designed to have large eigenspaces.

Notation 4.1. Throughout this section, p = 2a3b−1, where N1 = 2a ≈ 3b = N2.

In this subsection we assume that the adversary, Bob, is trying to find Alice’s
private key. A similar analysis could be done to attack Bob’s private key (see [11]
for the details).

Specifically, in this attack, Bob maliciously alters the image points φB(PA)
and φB(QA) to another linear combination of those points before sending them
to Alice. Depending on whether or not Alice and Bob compute the same shared
secret key, by observing if Alice terminates the session, Bob can deduce one bit
of information of Alice’s private key rA. By repeating this attack with n different
linear combinations of the image points φB(PA) and φB(QA), Bob can discover
all n bits of Alice’s private key. This attack is devastating against static keys.

We provide the first iteration in the GPST attack as an illustration.

Attack (GPST Attack Iteration 1). Suppose that instead of sending Alice his
public key EB , φB(PA), φB(QA), Bob maliciously sends EB , φB(PA), φB(QA) +
[2a−1] · φB(PA). Then Alice follows the protocol and calculates ψ′A with kernel

〈φB(PA) + [rA] · (φB(QA) + [2a−1] · φB(PA))〉,
although Alice believes that she is calculating ψA with kernel

〈φB(PA) + [rA] · φB(QA)〉.
Meanwhile, Bob calculates ψB with kernel

〈φA(PB) + [rB ] · φA(QB)〉.
We know from the theory of isogenies, that j(ψA(EB)) = j(ψB(EA)). The order
of φB(PA) is 2a, which implies [2a−1rA] · PA = 0 if and only if rA is even. Thus,
if rA is even then j(ψ′A(EB)) = j(ψA(EB)) = j(ψB(EA)). Conversely, if rA is
odd, then almost always j(ψ′A(EB)) 6= j(ψB(EA)). Therefore, if the protocol
runs correctly, then rA is (almost always) even, otherwise rA is odd.
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The first iteration reveals a single bit of information about Alice’s private
key. In each of the following n iterations of the GPST attack, Bob adaptively
adjusts the linear combination of points in his public key to reveal additional
bits of Alice’s private key.

It has been observed that adaptively adjusting the linear combination of
points is the same as altering the points of φB(PA) and φB(QA) using a change
of basis matrix (i.e., an invertible linear transformation) [25]. However, what has
not been previously observed is that the GPST attack is possible because Bob
uses change of basis matrices with large eigenspaces.

Along these lines, a better way to think of the GPST attack is that it exploits
whether or not Alice’s secret kernel, kerφA, is invariant under particular change of
basis matrices to determine rA. We state this reinterpretation of the GPST attack
in the language of linear algebra in the following discussion. This perspective will
be useful in Section 5, where we will use similar language to describe potential
offline attacks where Alice’s kernel may be invariant under some particular
endomorphisms.

Remark 4.2. Given a linear map M on E[N ], a subgroup G of E[N ], and an
isogeny φB with gcd(deg φB , N) = 1, if M(G) = G, then the isogenies with
kernels 〈φB(G)〉 and 〈φB(M(G))〉 are equal.

The following notation will transform Remark 4.2 into the framework of the
GPST attack (see Proposition 4.5).

Notation 4.3. Suppose Bob chooses a linear transformation M on E[2a]. We
will represent M as a matrix in SL2(Z/2aZ) with respect to the basis {PA, QA}.
We also represent PA + [rA] ·QA as the vector

[
1
rA

]
, and φB(PA) + [rA] ·φB(QA)

as φB
([

1
rA

])
.

When Bob sends the malicious points to Alice, he is actually using a change
of basis matrix to send a different basis of EB [2a].

Lemma 4.4. If M is an invertible matrix acting on E[2a], and R is an eigen-
vector of M , then M(〈R〉) = 〈R〉.

Proof. Since M is invertible, |M(R)| = |R|. Thus M(〈R〉) = 〈R〉. �

Substituting Lemma 4.4 into Remark 4.2 gives us the following proposition,
which is the essence of the GPST attack. To make the GPST attack practical the
change of basis matrices are chosen to have a high percentage of eigenvectors.

Proposition 4.5. Suppose M is an invertible matrix acting on E[2a]. If
[

1
rA

]
is

an eigenvector of M , then the isogeny ψA whose kernel is generated by φB
([

1
rA

])
is equal to the isogeny ψ′A whose kernel is generated by φB

(
M
[

1
rA

])
.

Proof. Letting R =
[

1
rA

]
in Lemma 4.4, we find that M(〈R〉) = 〈R〉. The result

follows from letting G = 〈R〉 in Remark 4.2. �

12



To see how Proposition 4.5 provides a new interpretation of the GPST attack,
notice that in Iteration 1 of the attack, if

[
1
rA

]
is an eigenvector of M =

[
1 0

2a−1 1

]
,

then ψA = ψ′A (the converse is almost always true). Iteration 1 is efficient
because Alice’s private key is an eigenvector of M with probability 1/2. Thus,
this iteration allows the attacker to gain a bit of information about Alice’s private
key. The change of basis matrix M in each successive iteration in the GPST
attack is adaptively chosen so that Alice’s private key is an eigenvector of M with
probability 1/2. This allows the attacker to gain an additional bit of information
about Alice’s key per iteration.

The central idea of this paper is to replace the change of basis matrix in
Proposition 4.5 by an endomorphism with many eigenvalues, and thus design
an offline algorithm which repeatedly restricts the search-space for recovering a
private isogeny in SIDH-like protocols.

4.2 GPST-Inspired Cryptanalysis

We now describe a first attempt at generalizing the GPST attack to the language
of endomorphisms. Although our ideas were inspired by the active GPST attack,
our aim differs in that our work is towards an offline attack on private keys; that
is, our methods do not require any participation from Alice after she provides
her public key, nor multiple interactions with her. Unless otherwise specified, we
will aim to attack Alice’s private key, although our methods can be applied to
any party.

We note that the approach given in this subsection is not meant to be practical
and certainly is not useful in the SIKE setting. However, it presents the basic ideas
upon which the rest of this work is built. Specifically, although this subsection
does not use the (image) points provided in Alice’s public key, a more practical
approach of attacking isogeny-based algorithms is presented in Section 5 that
does utilize these points.

The attacker chooses a particular endomorphism φC on E that will mimic the
role the matrix M played in the GPST attack, as presented in Section 4.1. We
introduce the following notation related to φC that distinguishes the commutative
diagram in Figure 1 as being different from the usual SIDH setup (see Figure 20).
This endomorphism φC should be thought of as different from φB for two reasons:
it is an endomorphism (an isogeny from E to itself), and it will not be used as
part of an SIDH key exchange.

Notation 4.6. In addition to the notation of Section 2.1, let φC be a cyclic
endomorphism on E of degree k that is generated by a point RC in E(Fp2), where
gcd(k,N1) = 1.

Let {PC , QC} denote a basis for E[k]. Without loss of generality we can assume
RC = PC+[rC ]·QC for some rC . Let ψC denote the isogeny on EA with the kernel
〈φA(RC)〉, and ψCA denote the isogeny on E with kernel 〈φC(PA + [rA] · QA)〉,
as shown in Figure 1. (Here the superscript C in ψCA refers to the fact that its
kernel is the image of kerφA under the map φC , as opposed to ψA in SIKE whose
kernel is the image of kerφA under φB in Figure 20.)
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As φC acts as a linear transformation on E[N1], we can let M ∈ SL2(Z/N1Z)
model the action of φC on E[N1] with respect to the basis {PA, QA}. Let ECA

be the image of ψC , and let EAC be the image of ψCA .

As gcd(k, deg φA) = 1, the matrix M acts on {PA, QA} as an (invertible)
change of basis matrix. Also, as gcd(k,N1) = 1, the square in Figure 1 commutes;
that is, ψC ◦ φA = ψCA ◦ φC .

E EA

E EAC
∼= ECA

φA

φC

ψC

ψCA

Fig. 1: Commutative diagram with endomorphism φC

With this new notation, we observe the following proposition (similar to
Proposition 4.5). Proposition 4.7 will allow us to replace the active part of the
GPST attack with an offline computation.

Proposition 4.7. Suppose PA + [rA] · QA is a point of order N1 on E and
φA : E → EA is an isogeny with kernel 〈PA+ [rA] ·QA〉. If PA+ [rA] ·QA =

[
1
rA

]
is an eigenvector with respect to some endomorphism on E of degree k, with
gcd(k,N1) = 1, then there exists an endomorphism on EA of degree k.

Proof. Suppose φC is an endomorphism on E of degree k, such that Alice’s private
point PA + [rA] · QA is an eigenvector with respect to φC . As gcd(k,N1) = 1,
we see that φC acts as an invertible linear transformation on E[N1]. Thus by
Lemma 4.4

〈PA + [rA] ·QA〉 = φC(〈PA + [rA] ·QA〉).

As φA has kernel 〈PA + [rA] ·QA〉 and ψCA has kernel φC(〈PA + [rA] ·QA〉) (see
Figure 1), we see that φA ∼= ψCA . Thus

ECA
∼= EAC = ψCA(E) ∼= φA(E) = EA.

Therefore, ψC is an endomorphism on EA of degree k. �

We now explicitly describe the kernel of this endomorphism for later use.

Corollary 4.8. If RA is an eigenvector of φC , then the endomorphism of degree
k from Proposition 4.7 has kernel φA(kerφC).

If k = deg φC is small enough to allow us to brute-force the computation
of all codomain j-invariants of all k-isogenies from EA, then it is easy to use
Proposition 4.7 to test if

[
1
rA

]
is an eigenvector of φC or not. This is made

concrete in the following theorem.

Theorem 4.9. Suppose we are given

1. a supersingular elliptic curve E(Fp2) such that p = N1N2 − 1 for coprime N1

and N2,

2. the image of an N1-degree isogeny EA = φA(E) with kernel 〈RA〉, and
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3. k such that there exists a k-endomorphism φC of E, where gcd(k,N1) = 1
and k < N1.

Then there exists a (classical) algorithm with worst case runtime Õ(k3) which
decides whether RA ∈ EigN1

(φC) or RA 6∈ EigN1
(φC) with overwhelmingly high

probability. Further, if k is log p-smooth, then the runtime is Õ(
√
k).

Proof. By Proposition 4.7 and since k < N1, it follows that we need to examine
the difficulty of testing if EA is k-isogenous to EA. We will examine to the main
two computations involved: constructing a field extension for which EA[k] is
defined, and then the computation of degree k isogenies.

We begin by discussing the difficulty of finding an appropriate extension.
Factoring the k-th division polynomial over Fp2 will give an irreducible polynomial
of degree k (many exist, but any will suffice) which will give an appropriate
field extension to contain all x-coordinates of EA[k]. The degree of this division

polynomial is k2−1
2 and the polynomial requires this much time and space to

compute. Therefore, by [15], finding a root of this polynomial takes Õ(k3) time.
A quadratic extension on this field will then be guaranteed to contain the y-
coordinates as well, and thus all of EA[k]. However, when k is, say D-smooth,
this field can be constructed as a tower of extensions, and thus only takes
O(D log k) = O(log2 p) time.

Next we assume the field extension has been constructed. When k is prime,
constructing all k-isogenies with domain EA using Vélu’s formulas involves
computing the k + 1 isogenies of prime degree k and domain EA. Prime degree
isogenies currently require O(k) operations to compute [27]. This case, therefore,
gives us the worst-case bound of O(k2), as there are approximately k such
isogenies to check.

When k is not prime, claw-finding methods can be applied to improve per-
formance. In the case where k = k1k2 for some log p-smooth positive integers k1
and k2 each approximately of size

√
k, then classical claw-finding will require

computing O(k1) many isogenies of degree k1 and computing O(k2) isogenies of
degree k2 [13, 5.1], and O(

√
k) space. When k is log p-smooth, then the isogeny

computations themselves are O(log k) which is negligible.
Thus, the worst case for this iteration is when k is prime where the runtime is

Õ(k2), and the best case is when k is log p-smooth where the runtime is Õ(
√
k).

Observe that if k is small (say, less than 100, 000 [23]) this computation can be
performed by checking if the tuple (j(EA), j(EA)) is a root of the kth modular
polynomial. Therefore, the runtime of this step is dominated by the cost of
creating a field extension, namely Õ(k3).

By Proposition 4.7, if RA is an eigenvector of φC then the above process will
succeed as EA must have an endomorphism of degree k. If RA is not an eigenvector,
then a false-positive endomorphism may exist, but is highly improbable when
k < N1. �

Remark 4.10. As we see from the proof, the best case for this algorithm is if k
is a log p-smooth integer, where the algorithm takes approximately

√
k time and

space (logarithmic factors omitted).
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Suppose that for some ρ = ω(1/ poly(λ)), there is an endomorphism φC with
small degree k, such that the conditions

|E[N1] ∩ EigN1
(φC)| ≤ (1− ρ) · |S|, and (1)

|E[N1] \ EigN1
(φC)| ≤ (1− ρ) · |S| (2)

hold. By applying the result of Theorem 4.9, we can discover

H(ρ) = ρ log2(1/ρ) + (1− ρ) log2(1/(1− ρ))

bits of information about Alice’s key.

Remark 4.11. Although there are matrices on E[N1] (for instance, those used
in the GPST attack, see [11]) that satisfy Conditions 1 and 2, if p has the standard
form p = 2a3b − 1, then there is no endomorphism that satisfies these conditions
with degree k ∈ O(p) (see Corollary A.3). Thus the algorithm referred to in
Theorem 4.9 does not give a viable attack on SIDH.

This theorem does, however, provide the basic premise on which the rest of
this work is built.

5 Exploiting Endomorphisms

The goal of this section is to prove our first main result, Theorem 5.11, which
reduces the security of SIDH/SIKE variants to the problem of finding certain
types of endomorphisms of the starting elliptic curve, which we will refer to as
desirable endomorphisms. We will prove the main result of this section by giving
a stronger version of the algorithm from Theorem 4.9 which utilizes the torsion
group information given in Alice’s public key.

5.1 Triangular Kernels

The input of the algorithm from Theorem 4.9 is E,EA, and kerφC , where E is a
public parameter of the system, EA is part of Alice’s public key, and kerφC is a
pre-computed endomorphism with a low degree and many eigenvectors.

However, in isogeny-based key establishments, Alice’s public key contains
more information than simply EA. It also includes the image under φA of a large
torsion subgroup, namely φA|E[N2]

. Thus, from Alice’s public key, it is efficient

to calculate an isogeny whose kernel is contained in EA[N2]. Moreover, it is faster
(than simply using brute-force) to calculate an isogeny whose kernel has a large
intersection with EA[N2]. In this section, we will formalize this idea.

Suppose we have an endomorphism φC of degree Lk, where L | N2, gcd(k,N1) =
1 and k < N1. Then, there exist isogenies φC,1 and φC,0 on E such that

φC = φ̂C,0 ◦ φC,1, and kerφC,0 = kerφC ∩ E[N2], see Figure 2. Knowledge of Al-
ice’s public key implies that it is efficient to calculate φA(kerφC,0), and so this fact
can be used to make Theorem 4.9 faster in the case where gcd(deg φC , N2) > 1.
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E φC

E

EC,0 ∼= EC,1

φC,1 deg k

φC,0 deg L

Fig. 2: Decomposing endomorphisms (simple)

In fact, not only are we able to improve Theorem 4.9 if gcd(deg φC , N2) is
large, but we can improve Theorem 4.9 even more if gcd(deg φC , N

2
2 ) is larger than

gcd(deg φC , N2). When this holds, there is another natural way to decompose
φC . This leads us to introduce a new definition that captures the concept behind
this type of decomposition.

Definition 5.1. Suppose φC is a cyclic endomorphism of E. A triangular decom-
position of φC with respect to N2 is a triple of cyclic isogenies φC,0, φC,1, φC,2,
where φC,0 and φC,1 have degrees dividing N2,

φC = φ̂C,0 ◦ φC,2 ◦ φC,1,
and if gcd(N2,deg φC,2) 6= 1, then deg φC,0 = deg φC,1 = N2.

A triangular kernel of φC with respect to N2 is a triple of torsion points
denoted by ker4φC = (K0,K1,K2), which generate the kernels of the correspond-
ing isogenies of a triangular decomposition, that is, kerφC,i = 〈Ki〉. Furthermore,
let k = |K2|.

Remark 5.2. This representation has the advantage that only the extension
field containing the k-torsion points is needed to write the kernel, instead of the
(N2)2k-torsion points. This is because K0,K1 ∈ E[N2].

Notice that K0,K1 and K2 could theoretically all be trivial.

Notation 5.3. Let φC,0, φC,1, φC,2 denote a triangular decomposition of φC with
respect to N2. Let EC,0, EC,1 and EC,1,2 denote the images of φC,0, φC,1, φC,2,
respectively, as illustrated in Figure 3. Then, up to isomorphism, EC,0 ∼= EC,1,2.

E φC

E

EC,1

EC,0 ∼= EC,1,2

φC,1

φC,0
φC,2

Fig. 3: Decomposing endomorphisms

We wish to study a passive adversary’s ability to transfer φC on E over
to a corresponding potential endomorphism on EA, using the isogenies in the
triangular decomposition of φC (so that they can test if Alice’s private key is an
eigenvector of φC). In order to calculate the corresponding objects on EA, we
introduce notation for additional isogenies.

Notation 5.4. Let ψC,0 be the isogeny with domain EA and kernel φA(kerφC,0),
and ψCA,0 be the isogeny with domain EC,0 and kernel φC,0(kerφA). Let the images

be ECA,0 = ψC,0(EA) and EAC ,0 = ψCA,0(EC,0), as illustrated in Figure 4.
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Since deg φC,0 and deg φA are relatively prime, ECA,0
∼= EAC ,0.

E EA

EC,0 EAC ,0
∼= ECA,0

φA

φC,0

ψC,0

ψCA,0

Fig. 4: Maps with known kernels

Notation 5.5. We decompose the isogeny with domain EA and kernel equal to
φA(kerφC,2 ◦ φC,1) as ψC,2 ◦ ψC,1, where kerψC,1 = φA(kerφC,1) and kerψC,2 =
ψC,1 ◦ φA(kerφC,2). Let ψCA,1,2 be the isogeny with domain EC,1,2 whose kernel
is φC,2 ◦ φC,1(kerφA). We will let the images be ECA,1 = ψC,1(EA), ECA,1,2 =
ψC,2(ECA,1) and EAC ,1,2 = ψCA,1,2(EC,1,2).

Note that degψC,1 = deg φC,1 (which implies, degψC,1 | N2), and degψC,2 =
deg φC,2. Since deg φC,2◦φC,1 and deg φA are relatively prime, ECA,1,2

∼= EAC ,1,2

as shown in Figure 5.

E EA

EC,1 ECA,1

EC,1,2 EAC ,1,2
∼= ECA,1,2

φA

φC,1

ψC,1

φC,2

ψC,2

ψCA,1,2

Fig. 5: Maps with known and unknown kernels

Now Bob can calculate ψC,0 and ψC,1, since Alice sent him φA|E[N2]
. Putting

the previous two diagrams together gives us Figure 6.

E EA

EC,1 ECA,1

EC,0 ∼= EC,1,2 EAC ,1,2
∼= ECA,1,2

EAC ,0
∼= ECA,0

φA

φC,1

φC,0

ψC,1

ψC,0φC,2 ψC,2

ψCA,1,2

ψCA,0

Fig. 6: Combining Figures 4 and 5

As our goal is to adapt the results of Section 4.2 to incorporate the torsion
information revealed by Alice, we next present the analogous Proposition 4.7.

Lemma 5.6. Suppose gcd(k,N1) = 1. If RA is an eigenvector with respect to
φC , then ECA,1 is k-isogenous to ECA,0.

Proof. Choose a triangular decomposition of φC as follows:

φC = φ̂C,0 ◦ φC,2 ◦ φC,1.
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Let φ′C = φC,2 ◦ φC,1 ◦ φ̂C,0. Then φ′C is an endomorphism of EC,0. Moreover,

φ′C(φC,0(RA)) = φC,2 ◦ φC,1 ◦ φ̂C,0(φC,0(RA))

= φC,2 ◦ φC,1([deg φC,0] ·RA)

= [deg φC,0] · φC,2 ◦ φC,1(RA)

= φC,0(φ̂C,0 · φC,2 ◦ φC,1)(RA).

However, as RA is an eigenvector of φC (with eigenvalue λ where gcd(λ, kN2) = 1),
this implies

φ′C(φC,0(RA)) = [λ] · φC,0(RA).

Thus φC,0(RA) is an eigenvector of φ′C .
Recall that 〈φC,0(RA)〉 is the kernel of the isogeny ψCA,0 on EC,0, see Figure 7.

Therefore, we can apply Corollary 4.8, and so ψ′C is an endomorphism on EAC,0,
where kerψ′C = ψCA,0(kerφ′C).

EC,0 EAC,0

EC,0 EAC ,0

ψCA,0

φ′C

ψ′C

ψCA,0
′

Fig. 7: φ′C fixing the kernel of ψCA,0

Let ψCA,0
′ be the isogeny on EC,0 with kernel φ′C(kerψCA,0). Since gcd(k,N1) =

1, the following equation holds: ψCA,0
′ ◦ φ′C ∼= ψ′C ◦ ψCA,0.

It remains to be shown that EAC,0 ∼= EAC,1,2, that is, the codomain of ψCA,0
′

is isomorphic to EAC,0. Similar to above we find

kerψCA,0
′ = φ′C(kerψCA,0)

= φC,2 ◦ φC,1 ◦ φ̂C,0(〈φC,0(RA)〉)
= φC,2 ◦ φC,1(〈[deg φC,0] ·RA〉)
= [deg φC,0] · ker(ψCA,1,2)

= ker(ψCA,1,2).

Then,

EAC,1,2 ∼= ψCA,1,2(EC,1,2) ∼= ψCA,0
′(EC,0)

∼= ψCA,1,2 ◦ φ′C(EC,0) ∼= ψ′C ◦ ψCA,0(EC,0) ∼= EAC,0.

Thus EAC ,0 and EAC ,1,2 are isomorphic. Hence

ECA,0
∼= EAC ,0

∼= EAC ,1,2
∼= ECA,1,2.

However, ψC,2 is a k-isogeny between ECA,1 and ECA,1,2. This implies ECA,1 and
ECA,0 are k-isogenous. �

If k is small enough, then Lemma 5.6 will prove useful in the coming reduction.
We note the similarity of Theorem 5.7 to Theorem 4.9, except that it allows us
to extract a factor of up to N2

2 out of the runtime of Theorem 4.9.

Theorem 5.7. Suppose we are given
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1. a starting supersingular elliptic curve E(Fp2) such that p = N1N2 − 1 for
coprime N1 and log p-smooth N2,

2. the image curve of an N1-degree isogeny EA = φA(E) with kernel 〈RA〉,
3. the action φA|E[N2]

, and

4. a triangular kernel ker4φC of a cyclic Lk-degree endomorphism φC in Fp2
such that:

(a) gcd(k,N1) = 1,

(b) L | (N2)2, and

(c) k < N1.

Then there exists a (classical) algorithm with worst case runtime Õ(k3) which
decides whether RA ∈ EigN1

(φC) or RA 6∈ EigN1
(φC) with overwhelmingly high

probability. Further, if k is log p-smooth, then the runtime is Õ(
√
k).

We start by describing the algorithm referred to in the theorem, thereby
showcasing its existence, and subsequently analyze its running time and success
probability to prove the theorem. The probability of a false-positive (our algorithm
saying RA ∈ EigN1

(φC) when RA /∈ EigN1
(φC)), can be approximated using the

mixing properties of the isogeny graph.

Algorithm 5.8.
Input: E, p,N1, N2, {PA, QA}, EA, φA|E[N2]

, ker4φC = (K0,K1,K2), and a nat-

ural number k = |K2|. Note: K2 is not actually needed, only k = |K2|.
Output: True if RA ∈ EigN1

(φC), and False if RA 6∈ EigN1
(φC)

1. Use φA|E[N2]
to compute φA(K0) and φA(K1).

2. Compute the isogenies ψC,0, and ψC,1 with respective kernels 〈φA(K0)〉 and
〈φA(K1)〉 (see Figure 6).

3. For all k-isogenies from ECA,0, check if their codomain has j-invariant
j(ECA,1).

4. If one does, then return True, otherwise return False.

Proof. First, we discuss the success probability. If Algorithm 5.8 returns False,
then

[
1
rA

]
is not an eigenvector with respect to φC by the contrapositive of

Lemma 5.6. Suppose Algorithm 5.8 returns True. Notice that the total number of
non-backtracking isogenies from ECA,0 of degree k, if we write the factorization
k =

∏
1≤i≤r

qeii , is ∏
1≤i≤r

(qi + 1)qei−1i .

Also, we know that there are approximately p
12 isomorphism families of elliptic

curves in an isogeny graph. From these two pieces of information we deduce that
the probability that there is a cyclic k-isogeny between ECA,0 and ECA,1 is no
more than

12

p

∏
1≤i≤r

(qi + 1)qei−1i .
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This probability is negligible since k < N1 ≈
√
p. Therefore, under this assumption

on k, if there is a k-isogeny from ECA,1 to EA, then the kernel subgroup is fixed
by φC .

Next, we discuss the runtime. Step 1 and Step 2 are efficient in p since N2 is
log p-smooth. The analysis of verifying when ECA,1 and EA are k-isogenous is
identical to the proof of Theorem 4.9. Thus, the worst case is when k is prime,
with runtime O(k3). �

It follows from this theorem that if k is small enough, then it will be feasible to
test if an unknown kerφA is fixed by an endomorphism φC or not. Algorithm 5.8
will be a subroutine in our main reduction (Theorem 5.11). That reduction will
assume an oracle which outputs triangular kernels of endomorphisms, and then use
Algorithm 5.8 with each of those endomorphisms. In Section 7.3 we demonstrate
that the SIKE/SIDH starting curve likely does not have an endomorphism which
satisfy the conditions of Theorem 5.7.

5.2 Main Theorem

In this section, we present the first main result of the paper, Theorem 5.11. We
prove this result by describing Algorithm 5.12 and analyzing its runtime. We
start by presenting Oracle 5.9, which we will use in our reduction.

As mentioned previously, it is useful for the oracle to output a triangular
kernel, instead of the kernel, to avoid unnecessary extension fields, see Remark 5.2.
Since we are no longer discussing a single Lk-isogeny, with k ≤ N1, but potentially
multiple from repeated calls to an oracle, we instead use K ≤ N1 to denote
the upper bound on all such k. We also introduce the variable ρ to quantify
the amount of information each endomorphism provides. The closer ρ is to 1/2,
the closer the endomorphism is to providing a full bit of information on Alice’s
private key (by the definition of H(ρ)).

Oracle 5.9.
Input: E, p, N2, a set S ⊆ E[N1], an integer K ≤ N1, and ρ ∈ (0, 1/2] satisfying
ρ = ω(1/ poly(λ)).
Output: The ker4φC = (K0,K1,K2) of a cyclic endomorphism φC such that
the following constraints hold:

1. |K2| ≤ K,

2. gcd(|K2|, N1) = 1,

3. |S ∩ EigN1
(φC)| ≤ (1− ρ) · |S|, and

4. |S \ EigN1
(φC)| ≤ (1− ρ) · |S|,

or it returns ⊥ if no endomorphism satisfying these constraints exists.

With the following definition, we give a name to the endomorphisms output
by Oracle 5.9.

Definition 5.10. We call an endomorphism that satisfies the conditions of
Oracle 5.9 a desirable endomorphism.
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The next theorem gives our main reduction. In essence, it states that each
endomorphism φC returned by Oracle 5.9 can be used to gain information about
Alice’s private key rA. More specifically, it is possible to use Algorithm 5.8 to
decide whether or not RA is in the eigenspace of each endomorphism φC .

Theorem 5.11. Suppose we are given

1. a starting supersingular elliptic curve E(Fp2) such that p = N1N2 − 1 for
coprime N1 and log p-smooth N2,

2. the image of an N1-degree isogeny EA = φA(E),

3. the action φA|E[N2]
, and

4. access to Oracle 5.9, O, such that for an overwhelming fraction of sets S, O
will succeed for a non-negligible fraction of K ∈ {0, . . . , N1} and ρ ∈

[
1

f(λ) ,
1
2

]
,

where f is some fixed polynomial.

Then there exists a (classical) algorithm which outputs rA, where kerφA = 〈RA〉,
with non-negligible probability, makes m = O

(
logN1

− log(1−ρ)

)
queries to O, and

runs in worst-case time Õ
(
K3 ·m

)
. Further, if the endomorphisms all have

log p-smooth degree, then the runtime is Õ
(√

K ·m
)

.

We now present the algorithm that is referred to in Theorem 5.11. At a high
level, Algorithm 5.12 iteratively reduces the size of the search space, which is
denoted Si at the ith iteration, for Alice’s private point. Step 5 is not required to
prove the runtimes as stated in Theorem 5.11, however, we include it to highlight
operational improvements that can be made.

Algorithm 5.12.
Input: E, p,N1, N2, {PA, QA}, EA, φA|E[N2]

, the polynomial f , and access to
Oracle 5.9 denoted O.
Output: rA or ⊥.

1. Let S0 = {PA + [r] ·QA | 0 ≤ r < N1}, and i = 0.

2. Set ρ = 1/f(λ).

3. Set K = N1.

4. Call O with (E, p, Si, N2,K, ρ) :
If O outputs ⊥, then return ⊥.
Else, obtain φC from O (satisfying the conditions 1 to 4 from Oracle 5.9).

5. While O outputs a solution:
Halve K and call O. Let K be the last value where O did not output ⊥.

While ρ ≤ 1/2, and O outputs a solution:
Double ρ and call O.

Let ρ be the last value for which O did not output ⊥.
Let (K0,K1,K2) be the output of O called with (E, p, Si, N2,K, ρ).

6. Let X = (Si ∩ EigN1
(φC)) and Y = (Si \ EigN1

(φC)).
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7. Use the Algorithm 5.8 with input E, p, N1, N2, {PA, QA}, EA,φA|E[N2]
,

(K0,K1,K2), and k to determine whether RA ∈ X or RA ∈ Y .

8. If RA ∈ X, then let Si+1 = X, otherwise if RA ∈ Y , then let Si+1 = Y .

9. Increment i and repeat Steps 2 to 8 until |Si| ≤ f(λ).

10. For each point R ∈ Si, compute the isogeny with kernel 〈R〉, and return R if
the image curve is isomorphic to EA.

We now analyze Algorithm 5.12, thereby proving Theorem 5.11.

Proof. (Theorem 5.11) The proof will consist in analyzing the success probability
and runtime of Algorithm 5.12. In particular, we will now show that in the setting
of Theorem 5.11, Algorithm 5.12 runs in time K3 poly(λ).

Let σ1 be the fraction of sets S ⊆ E[N1] for which there exists a non-negligible
amount of K ≤ N1 and ρ ≤ 1/2 for which O will succeed. By hypothesis σ1 is
exponentially close to 1. Hence, with probability σ1, the reduction makes it to
Step 8 instead of outputting ⊥.

Note that at the end of Step 7, |Si+1| ≤ (1− ρ)|Si| for all i. Let C = poly(λ)

and m =
⌈
logN1−logC
− log(1−ρ)

⌉
. Then

log |Sm| ≤ log ((1− ρ)mN1)

= m log(1− ρ) + logN1

≈ logN1−logC
− log(1−ρ) log(1− ρ) + logN1

= logC.

This implies that to ensure |Sm| ≤ (1− ρ)mN1 has polynomial size, O(m) calls
to O are required. Therefore, we expect there to be at least O(log(λ)) many
iterations of Steps 2 to 8.

Step 5 performs two binary searches using O. The search for the minimum K
takes logN1 calls, and the search for the maximum ρ takes log(poly(λ)) calls, for
a total of poly(λ) calls. By the statement of Theorem 5.7, Step 7 will terminate
with high probability, say σ2, in worst case time Õ(K3). Therefore, since Steps 2
to 8 happens O(log λ) many times, Algorithm 5.12 terminates in worst-case time
K3 poly(λ) log(λ), and succeeds with probability (σ1σ2)O(log(λ)) = 1−negl(λ). �

We will further discuss the relationship between ρ and K in Section 9.2.

6 Quadratic Forms and Endomorphism Rings

If we know the structure of End(E), then we can efficiently reduce Oracle 5.9 to
an oracle which finds solutions to a particular multivariate quadratic equation
that satisfy certain algebraic conditions. In particular, once the endomorphism is
described in terms of a basis, then finding an endomorphism of a particular degree
amounts to finding a solution to a particular multivariate quadratic equation (see
Section 6.1). Similarly, if we choose a basis for both End(E) and E[N1], then the
eigenvector conditions of the endomorphism amount to finding the eigenspace of
a particular matrix (see Section 6.2).
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6.1 Quadratic Forms from Degrees of Endomorphisms

So far we have been describing endomorphisms by giving their kernels. Since an
endomorphism is well-defined up to isomorphism by its kernel, knowing its kernel,
or even better a triangular kernel, makes it is easy to calculate the endomorphism
using Vélu’s formulas.

It is well known that the endomorphism ring of an elliptic curve E has the
structure of a 4-dimensional Z-module. In other words, there exist endomorphisms
b1, b2, b3, b4 of E such that

{[w] · b1 + [x] · b2 + [y] · b3 + [z] · b4 | w, x, y, z ∈ Z}
describes the set of endomorphisms in E. We use the phrase knowing the en-
domorphism ring of an elliptic curve, to mean that we know an explicit basis
{b1, b2, b3, b4} of End(E).

One advantage of a basis representation is that there is a simple formula
for computing the degree of a general endomorphism in terms of the respective
traces and degrees of the endomorphisms in the basis. Another advantage, which
we will see in Section 6.2, is that the description of an endomorphism in terms
of a well-known basis makes it easy to explicitly find the eigenspace of that
endomorphism.

In Proposition 6.3 we will show how to turn a description of an endomorphism
in terms of a basis of End(E) into the triangular kernel description, so that the
results of Section 5 can be utilized. We will do this using the following lemma,
which shows how to find the action of an endomorphism on a torsion subgroup
from its basis coefficients.

Lemma 6.1. Suppose End(E) = 〈b1, b2, b3, b4〉 and N is a natural number. For
integer variables (w, x, y, z), the action of any endomorphism

[w] · b1 + [x] · b2 + [y] · b3 + [z] · b4
on E[N ] can be written as a 2× 2-matrix M(w, x, y, z) whose entries are linear
in the four variables. In the worst case, this can be done in Õ(N3) time and in
the best case Ω(log2 p) time (when N is log p-smooth).

Proof. We prove Lemma 6.1 by describing an algorithm that returns the required
output and analyzing its runtime. Consider the factorization of N =

∏
1≤i≤r

qeii .

Algorithm 6.2.
Input: E, a basis {b1, b2, b3, b4} of End(E), integer variables (w, x, y, z), N, and
optionally a basis {P,Q} for E[N ].
Output: A 2×2-matrix M(w, x, y, z) whose entries are linear in the four variables
and a basis {P,Q} for E[N ] if it was not provided.

1. If P,Q is not given, find a basis {P,Q} of E[N ] ⊂ E(Fp2).

2. Calculate bi(P ) and bi(Q) for i = 1, . . . , 4. Solving the discrete logarithm
for these values, in terms of P and Q, gives bi|E[N ] which we can write as a
matrix Mi.

3. Calculate M = wM1+xM2+yM3+zM4, where w, x, y, z are integer variables.
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4. Output P,Q,M .

The most difficult part of Algorithm 6.2 is constructing the field extension
in Step 1. Once the extension is constructed, the arithmetic in that extension is
efficient in N and p. Recall that Step 1 has runtime Õ(N3) in the case where E[N ]
is not defined over Fp2 , as seen in the proof of Theorem 4.9. The best-case scenario

for constructing the basis in Step 1 takes Ω(log2 p) when N is log p-smooth or
the N -torsion is defined over a small field extension (see Theorem 4.9).

Step 2 has runtime O
( ∑

1≤i≤r
ei(logN +

√
qi)
)

[19], which is always less than

the runtime in Step 1. �

Now, we will use Lemma 6.1 in Proposition 6.3 to transform endomorphisms
(in terms of their basis) into a triangular kernel. This will allow us to apply
Theorem 5.11 with the basis representation.

More specifically, in Proposition 6.3 we will find a triangular kernel (K0,K1,K2),

where φC = φ̂C,0 ◦ φC,2 ◦ φC,1. To do this we first fix the orders of K0,K1,K2

to be numbers that satisfy the conditions of a triangular kernel. Additionally,
gcd(|K2|, N1) = 1. We can use Lemma 6.1 and the following facts to find
(K0,K1,K2):

• kerφC,0 = ker M̂ , where M̂ describes the action of φ̂C on E [|K0|],
• kerφC,1 = kerM , where M describes the action of φC on E [|K1|], and
• kerφC,2 = φC,1(kerMk), whereMk describes the action of φC on E [|K1| · |K2|].

Proposition 6.3. Suppose we are given

1. a starting supersingular elliptic curve E(Fp2) such that p = N1N2 − 1 for
coprime, positive integers N1 and N2, such that N2 is log p-smooth,

2. a basis {b1, b2, b3, b4} of End(E), and

3. a cyclic Lk-degree endomorphism

φC = [w0] · b1 + [x0] · b2 + [y0] · b3 + [z0] · b4
of E, where L | (N2)2.

Then there exists an algorithm to find points generating the triangular kernel
of φC with respect to N2 whose worst case runtime is Õ(k3). Further if k is
log p-smooth, then the runtime is Õ(

√
k).

Proof. We prove Proposition 6.3 by describing the necessary steps in the algorithm
and analyzing their runtime.

1. Write deg φC = Lk with L maximal such that L | (N2)2.

2. Let L0 = min(L,N2). We will find a triangular kernel (K0,K1,K2), where
|K1| = L0, |K0| = L/L0, and |K2| = k.

3. First we solve for K0. Fix a basis {P0, Q0} =
{[

N2

|K0|

]
PB ,

[
N2

|K0|

]
QB

}
of

E [|K0|].
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4. We will use the fact that kerφC,0 = ker M̂ , where M̂ describes the action

of φ̂ on E [|K0|]. That is, run Algorithm 6.2 with input {b̂1, . . . , b̂4}, integer
variables (w, x, y, z), |K0| and the basis {P0, Q0} for E [|K0|]. Let the output

be the matrix M̂ .

5. Find some vector
[ α0

β0

]
which generates the kernel of M̂(w0, x0, y0, z0). Set

K0 = [α0] · P0 + [β0] ·Q0.

6. We now find the kernel point K1 in a similar process. Fix a basis {P1, Q1} ={[
N2

|K1|

]
PB ,

[
N2

|K1|

]
QB

}
of E [|K1|].

7. We will use the fact that kerφC,1 = kerM , where M describes the action of
φC on E [|K1|]. That is, run Algorithm 6.2 with input {b1, . . . , b4}, integer
variables (w, x, y, z), L0 and basis {P1, Q1} for E [|K1|]. Let the output be
the matrix M .

8. Find some vector
[ α1

β1

]
which generates the kernel of M(w0, x0, y0, z0). Set

K1 = [α1] · P1 + [β1] ·Q1.

9. Lastly we describe how to find the kernel point K2. We perform a similar
process to the last two kernel points, except we need to push the point
through an isogeny (see Definition 5.1).

10. Run Algorithm 6.2 with {b1, . . . , b4}, integer variables (w, x, y, z), and k. Let
the output be the matrix Mk and the basis {Pk, Qk} for E[k] ⊂ E(Fp2).

11. Find some vector
[ αk
βk

]
which generates the kernel of Mk(w0, x0, y0, z0).

12. Let φC,1 be the isogeny from E with kernel 〈K1〉, and set K2 = φ1([αk] ·Pk +
[βk] ·Qk).

13. Return K0,K1,K2.

Steps 4 and 7 run in time O(log p), since N2 is log p-smooth and E[N2] ⊂
E(Fp2). By Lemma 6.1, Step 10 will run in worst case time Õ(k3) and best case

time Õ(
√
k) when k is log p-smooth (assuming k does not divide N2, in which

case it is even better). �

Remark 6.4. The converse of Proposition 6.3 is true as well, in the sense that
there exists an algorithm which outputs coefficients (w, x, y, z) upon input of a
triangular kernel for φC with respect to N2, and it has the same runtime. We do
not state this converse algorithm, as will we not use it.

Proposition 6.3 will allow us to convert Oracle 5.9 (which returns an endomor-
phism in terms of a triangular kernel) to an oracle that returns the coefficients of
an endomorphism in terms of a basis. The advantage of this becomes apparent
when we look at the explicit description of the degree and eigenspaces of an
endomorphism represented in terms of a basis.

More specifically, associated to any basis of the endomorphism ring is a
4-variable quadratic form which represents the degrees of the endomorphisms.

Lemma 6.5. If φC = [w] · b1 + [x] · b2 + [y] · b3 + [z] · b4 is any endomorphism
given in terms of a basis {b1, b2, b3, b4} of the endomorphism ring, then the degree
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of φC is given by the following quadratic form:

q(w, x, y, z) = φC ◦ φ̂C = [w2 deg b1 + x2 deg b2 + y2 deg b3 + z2 deg b4

+ wxTr(b1b̂2) + wyTr(b1b̂3) + wzTr(b1b̂4) + xyTr(b2b̂3)

+ xzTr(b2b̂4) + yzTr(b3b̂4)].

From Proposition 6.3 and Lemma 6.5 we see that an oracle which outputs
solutions to certain quadratic forms may be used instead of an oracle that outputs
triangular kernels. This new oracle will be presented at the end of Section 6.2
(see Oracle 6.11). Next we explore what the eigenspace conditions of Oracle 5.9
become if we use this basis description of endomorphisms.

6.2 Quadratic Forms from Eigenspaces of Endomorphisms

In the last subsection we showed that, if End(E) is known, then instead of
representing endomorphisms by triangular kernels, we can represent them in
terms of a basis of End(E). We saw that this basis representation allows for a
simple description of the degree and the action of the endomorphism on the set
of Alice’s possible private points.

In this subsection, we explore when the eigenspace requirements (Conditions
3 and 4) of Oracle 5.9 are satisfied, assuming the endomorphism is described in
terms of a basis. We do this by first analyzing the eigenspace of a random matrix
on E[N1]. We simplify our calculations by assuming that N1 is a prime power,
although a similar analysis should work if N1 is any log p-smooth number.

The following notation will be useful in the main theorem of this subsection.

Notation 6.6. Let ` and e be fixed positive integers. Normally, in SIDH and

in SIKE, `e = 2a or `e = 3b. Let
[
α β
γ δ

]
denote a matrix with entries in Z/`eZ.

Given an eigenvector [ 1r ] of this matrix and a fixed small prime `, we use the
following notation in the remainder of this document:

• ν denotes the largest natural number such that `ν | β and `ν | δ − α.
• β′, ε′ are the numbers such that β = `νβ′ and δ − α = `νε′.
• ξ is the largest natural number such that `ξ | ε′ − 2β′r and ξ ≤ e−ν

2 .
• ζ = e− ν − ξ.

Remark 6.7. In Theorem 6.8 we will describe the `e-eigenspace of a matrix
M . We will see in the proof of Theorem 6.8, that the definitions of ξ and ζ are
independent of the choice of eigenvector [ 1r ] of M . In other words, ξ and ζ are
defined with respect to M and prime `.

Theorem 6.8 shows that if there is an eigenvector of a matrix and the associated
ζ is small, then there are many eigenvectors.

Theorem 6.8. Suppose there is an eigenvector [ 1r ] of a matrix
[
α β
γ δ

]
in E[`e].
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• If ` | β′, then [ 1κ ] is an eigenvector if and only if it has the form
[

1
r+c`ζ

]
for

some c ∈ Z.
• If ` - β′, then [ 1κ ] is an eigenvector if and only if it has the form

[
1

r+c`ζ

]
or[

1
−r+ε′(β′)−1+c`ζ

]
for some c ∈ Z.

Proof. Note that [ 1r ] is an eigenvector of the matrix
[
α β
γ δ

]
over Z/`eZ if and

only if γ + (δ − α)r − βr2 ≡ 0 (mod `e), see Lemma A.1. Now, suppose
[

1
r+x

]
is

also an eigenvector. This implies

γ + (δ − α)r − βr2 ≡ 0 (mod `e)

and

γ + (δ − α)(r + x)− β(r + x)2 ≡ 0 (mod `e).

Subtracting these two equations shows that
[

1
r+x

]
is an eigenvector if and only

if x satisfies:

(δ − α)x− β(2rx+ x2) ≡ 0 (mod `e).

This is equivalent to

(δ − α− β(2r + x))x ≡ 0 (mod `e). (3)

and also,

(ε′ − β′(2r + x))x ≡ 0
(
mod `e−ν

)
. (4)

Suppose ` | β′. Then ` - ε′, and hence a vector of the form
[

1
r+x

]
is an

eigenvector if and only if it has the form x ≡ 0 (mod `e−v). This is equivalent to

saying
[

1
r+x

]
has the form

[
1

r+c`ζ

]
, since ξ = 0.

Suppose ` - β′. Then Equation (4) is equivalent to

(ε′(β′)−1 − (2r + x))x ≡ 0
(
mod `e−ν

)
. (5)

Further suppose x is a solution to Equation (5). One of the following two
cases holds:

x ≡ −2r + ε′(β′)−1
(
mod `ζ

)
and

x ≡ 0
(
mod `ξ

)
,

or

x ≡ 0
(
mod `ζ

)
and

x ≡ −2r + ε′(β′)−1
(
mod `ξ

)
.

Thus the eigenvector
[

1
r+x

]
must have the form given in the theorem.

Conversely, suppose that x = c`ζ . By the definition of ξ, we have that
x ≡ 0 ≡ −2r + ε′β′−1

(
mod `ζ

)
. Thus x is a solution to Equation (5).

Now suppose that x = −2r + ε′β′−1 + c`ζ , then x ≡ 0
(
mod `ξ

)
. Thus x is a

solution to Equation (5). �

Remark 6.9. Theorem 6.8 proves that for a matrix

1. the number of `e-eigenvectors is `e−ζ = `ν+ξ or 2`e−ζ = 2`ν+ξ, and
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2. the probability that a random point of order `e is an eigenvector is `−ζ or
1
2`
−ζ (depending on if ` | β′).

Given a basis {b0, b1, b2, b3} for an endomorphism ring, Lemma 6.1 shows that
the action of the set of endomorphisms

{[w] · b1 + [x] · b2 + [y] · b3 + [z] · b4 | w, x, y, z ∈ Z}
on E[`e] can be given a 2 × 2-matrix M(w, x, y, z) whose entries are linear in
the four variables. Thus, we are interested in the values (w0, x0, y0, z0) which
the matrix M(w0, x0, y0, z0) has many eigenvectors. In other words, we want
M(w0, x0, y0, z0) to have at least one eigenvector and ζ to be small. We will now
replace Conditions 3 and 4 of Oracle 5.9 with more concrete conditions. This
allows us to restate Theorem 5.11 with an oracle that has a more concrete output.

Remark 6.10. In order to use of Theorem 6.8 to derive the following ora-
cle/reduction, we require N1 = `e. For a more general statement simply replace
Conditions 4 and 5 in Oracle 6.11 with a condition that eigenspace of φC separates
S (the space that potentially contains Alice’s private point) into two large subsets
(as in Oracle 5.9).

Oracle 6.11.
Input: E, p,N2, a set S ⊆ E[`e], a quadratic form q(w, x, y, z), a 2× 2-matrix
M(w, x, y, z) acting on E[`e] whose entries are linear in the four variables, an
integer K ≤ `e, and s ∈ [0, e].
Output: Integers (w0, x0, y0, z0), with no common divisor, satisfying the equation
q(w0, x0, y0, z0) = Lk, such that the following constraints hold:

1. k ≤ K,

2. L | (N2)2,

3. gcd(k, `) = 1,

4. M(w0, x0, y0, z0) has at least one eigenvector, and

5. M(w0, x0, y0, z0) has ζ < s, (where ζ is defined with respect to M and `),

or ⊥ if no solution satisfying these constraints exists.

The next theorem is analogous to Theorem 5.11 and constitutes the second
main result of this work. It states that endomorphisms associated to the outputs
of Oracle 6.11 can be used to gain information about Alice’s private key rA.

Theorem 6.12. Suppose we are given

1. a starting supersingular elliptic curve E(Fp2) such that p = N1N2 − 1 for N1

coprime to N2, where N1 = `e and N2 is log p-smooth,

2. bases {PA, QA} of E[N1] and {PB , QB} of E[N2],

3. a basis {b1, b2, b3, b4} of End(E),

4. the image of an N1-degree isogeny EA = φA(E),

5. the action φA|E[N2]
with respect to {PB , QB}, and
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6. access to Oracle 6.11 (denoted O), and for an overwhelming fraction of sets
S, the oracle O will succeed for a non-negligible fraction of K ≤ `e, and
s ∈ [0, e] (the input to O).

Then there exists a (classical) algorithm which outputs rA, where kerφA = 〈RA〉,
with non-negligible probability, makes m = O

(
logN1

− log(1−ρ)

)
queries to O, and

runs in worst case time Õ(K3 ·m). Further, if the k’s output from O are all
log p-smooth, then the runtime is Õ(

√
K ·m).

Theorem 6.12 may initially look more complicated than the main theorem,
Theorem 5.11, because there are more conditions. However, the result is actually
simpler because, inputting bases allows us to reduce the oracle to linear algebra
and solving a quadratic form.

Proof. To prove this theorem, we can appeal to Theorem 5.11. We do so by
describing the procedure to turn Oracle 6.11 into Oracle 5.9, and showing that
the steps required can be performed efficiently.

Algorithm 6.13.
Input : The input to Oracle 6.11, (E, p, log p-smooth N2, bases {PA, QA} and

{PB , QB} a set S ⊂ E[`e], an integer K ≤ `e, ρ ∈ (0, 1/2] where ρ ∈
[

1
f(λ) ,

1
2

]
for a polynomial f), and access to O.
Output : The output to Oracle 5.9 (ker4φC of a cyclic endomorphism φC subject
to the same constraints as Oracle 5.9, or ⊥ if no such endomorphism φC exists).

Notice that both the oracles output ⊥ at the same time, by our definition of
the output.

1. Use Algorithm 6.2 with input E, {b1, . . . , b4}, integers variables (w, x, y, z), `e,
and the basis {PA, QA} for E [`e]. Let the output be the matrix M(w, x, y, z).

2. Compute the quadratic form given in Lemma 6.5 associated to the basis
{b1, b2, b3, b4}.

3. Set s = min
{
e,max

{
log`

(
1
ρ

)
, log`

(
1

1−ρ

)}}
. If Oracle 6.11 instantiated at

O(E, p,N2, S, q(w, x, y, z),M(w, x, y, z),K, s)

succeeds, then label the output as (w0, x0, y0, z0). Otherwise output ⊥.

4. Use Proposition 6.3 with input E, {b1, b2, b3, b4}, basis {PB , QB} of E[N2],
and (w0, x0, y0, z0) to get a triangular kernel ker4φC of

φC = [w0] · b1 + [x0] · b2 + [y0] · b3 + [z0] · b4.
5. Output ker4φC .

Now that we have an algorithm to convert Oracle 6.11 into Oracle 5.9, we
will convert Algorithm 5.12 for Theorem 5.11 to an algorithm for Theorem 6.12.
Specifically, each call to Oracle 5.9 by Algorithm 5.12\Theorem 5.11 can be
replaced with Algorithm 6.13 (which calls Oracle 6.11 as a subroutine).

Algorithm 6.13 runs in worst case time Õ(K3) and best case time Õ(
√
K)

by Proposition 6.3. We now give an argument to show that this choice of s will
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give a solution (w0, x0, y0, z0) so that M(w0, x0, y0, z0) roughly satisfies the the
size conditions of Oracle 5.9 (Steps 3 and 4). To simplify our exposition we will
consider the situation where the ratio of the eigenspace to search space is `e−ζ

to `e. Observe that the condition on ρ in Oracle 5.9, combined with the formula
for the number of eigenvectors from Remark 6.9 leads to the following:

ρ, 1− ρ < `e−ζ

`e
= `−ζ .

Rearranging, we see that if s = max
{

log`

(
1
ρ

)
, log`

(
1

1−ρ

)}
, then s > ζ. Note

that this does not guarantee the conditions on |S| from Oracle 5.9, only that the
size is correct. �

Notation 6.14. In later sections we say that s is close to e to mean that

s ≥ min
{
e,max

{
log`

(
1
ρ

)
, log`

(
1

1−ρ

)}}
,

for an implicit ρ given in terms of a polynomial f .

Instead of using the abstract language of endomorphisms given in Theo-
rem 5.11, Theorem 6.12 is framed in terms of Oracle 6.11, which finds solutions to
a particular set of 4-variable linear and quadratic equations. This new language
makes the requirements on Oracle 6.11 more accessible.

7 Instantiating the Oracle for j = 1728

The goal of this section will be to instantiate Oracle 6.11 at an elliptic curve
of particular interest, namely the elliptic curve with j-invariant 1728, whose
endomorphism ring is known. This was the starting curve for the Round 1 SIKE
submission to the NIST post-quantum standardization process [6]. As this elliptic
curve is closely related to the Round 2 starting curve [2], which is presently a
candidate for standardization, our analysis is still relevant.

To instantiate the oracle, we need to investigate a quadratic form that describes
the degree of endomorphisms on this curve (Section 7.1), and discuss the number
of eigenvectors of an endomorphism of this curve (Section 7.2). Finally, we will
show that our methods do not give a practical attack on Bob’s private key in
SIKE (Section 7.3). The choice to look at Bob’s key is done because his torsion
subgroup has a particularly convenient basis, but similar analysis could be done
for Alice’s key.

7.1 The Quadratic Form for j = 1728

We fix the starting curve to be the above mentioned SIKE curve. We do this
because it is the NIST Round 1 starting curve. As the Round 2 starting curve [2]
is adjacent on the 2-isogeny graph to this curve, the endomorphism rings of
these two starting curves are almost the same, so our analysis is relevant. We
chose the Round 1 elliptic curve due to the simplicity of the description of its
endomorphism ring.
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Notation 7.1. For the next two sections, we let E0 denote the elliptic curve
having j-invariant 1728 over Fp, where p = 2a3b − 1 for some integers a ≥ 2 and
b ≥ 1.

The endomorphism ring of End(E0) is an excellent candidate for applying
the reduction in Theorem 5.11 as it has many endomorphisms of small degree.
End(E0) is known, and can be described in terms of the following two functions.

Notation 7.2. Let π : E0 → E0 denote the Frobenius map π(x, y) = (xp, yp),
and ι : E0 → E0 denote the distortion map ι(x, y) = (−x, iy).

Lemma 7.3. The endomorphism ring of E0 is

End(E0) ∼= Z[1]⊕ Zι⊕ Z [1]+π
2 ⊕ Z ι+ιπ

2 .

Proof. Since p ≡ 3 (mod 4), we can apply Proposition 4.2 of [18] where J = π
and I = ι to find:

End(E0) ∼= Z [1]+π
2 ⊕ Z ι+ιπ

2 ⊕ Zπ ⊕ Zιπ.
The statement follows by applying a change of basis. �

To find endomorphisms of a particular degree, we look for solutions to the
quadratic form associated to the endomorphism’s degree (as in Lemma 6.5). By
direct substitution in Lemma 6.5, we get the following.

Lemma 7.4. Suppose φC = [w] · [1] + [x] · ι + [y] · [1]+π2 + [z] · ι+ιπ2 for some
integers (w, x, y, z). Then the degree of φC is given by the following quadratic
form

q(w, x, y, z) = w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz.

The proof of Lemma 7.4 is straightforward and given in Appendix A.3.
We now show how to find a slightly nicer form for q. A straightforward

computation gives the following result in the case where N2 is a power of 2,
although there is a similar result for more general N2.

Lemma 7.5. If a 4-tuple (w0, x0, y0, z0) is a solution to

w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz = 2mk, (6)

then the 4-tuple (2w0 + y0, 2x0 + z0, y0, z0) is a solution to

w2 + x2 + p(y2 + z2) = 2m+2k. (7)

Conversely, if a 4-tuple (w0, x0, y0, z0) is a solution to Equation (7), then the
4-tuple (w0 − y0, x0 − z0, 2y0, 2z0) is a solution to Equation (6).

From now on, we will focus on the quadratic form given in the left-hand side
of Equation (7) in Lemma 7.5.

Notation 7.6. Let q0(w, x, y, z) = w2 + x2 + p(y2 + z2). This is the degree of
the quadratic form associated to a subring R = 〈1, ι, π, ιπ〉 ⊂ End(E0).
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To find endomorphisms of the degree required by Oracle 6.11, it suffices to
find solutions to

q0(w0, x0, y0, z0) = 2m+2k.

We will often drop the +2 for ease of description.

Remark 7.7. It is not hard to find a solution to this equation if we ignore the
constraint that the resulting endomorphism should have many eigenvectors. This
can be done by first fixing a large m ≤ 2a and a small k. Randomly choose y and
z of different parity until x and w can be chosen via Cornacchia’s algorithm [8].
This is demonstrated in Example A.7.

The next subsection gives conditions on endomorphisms on E0[`e] having
many eigenvectors.

7.2 The Main Reduction for j = 1728

In this subsection, we reverse the torsion subgroups of Alice and Bob, E[N1]
and E[N2], compared to the SIKE torsion subgroups for ease of description.
More specifically, we instantiate Oracle 6.11 at E0 using the quadratic form
q0(w, x, y, z), where N1 = 3239 and N2 = 2372. Then Theorem 6.12 (when it calls
Oracle 6.11 with N1 = 3239 and N2 = 2372) can be thought of as computing
Bob’s private key in SIKE.

We proceed by describing the action of φC on E0[N1] in terms of a particular
basis of E0[3239]. The basis of E0[`e] is chosen so that the distortion map ι and
the Frobenius map act nicely with respect to this basis.

Definition 7.8. A convenient basis of E0[`e] is a basis {P,Q} where

Q = ι(P ) = π(P ).

Remark 7.9. A convenient basis may not always exist (see Lemma A.5). For
example, no such basis exists for E0[2372], although other simplified bases exist
for E0[2372]. For E0[3239] a convenient basis does exist, see Example A.6. For
simplicity, in the next two subsections, we consider the situation where Bob’s
basis, {PB , QB}, is a convenient basis (i.e., where N1 = 3239).

The following lemma shows that if a convenient basis does exist, then there
is a simple matrix description of φC on E0[`e].

Lemma 7.10. If there exists a convenient basis {P, π(P )} = {P, ιP} of E0[`e],
then the endomorphism of R

φC = [w] · [1] + [x] · ι+ [y] · π + [z] · ιπ
acts as the matrix

M(w, x, y, z) =
[w−z −x+y
x+y w+z

]
on E0[`e] with respect to this basis.

Proof. As ι2(P ) = [−1] · P and π2(P ) = P , the result follows. �
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Notation 7.11. Let M0(w, x, y, z) =
[w−z −x+y
x+y w+z

]
.

We now instantiate the generic Oracle 6.11 into a new oracle acting on the
SIKE parameters. Inputting the matrix M0 and q0 into Oracle 6.11, gives the
following oracle.

Oracle 7.12.
Input: E0 with j(E0) = 1728, p, N2, a set S ⊆ E0[N1], an integer K ≤ N1 = 3239,
and s ∈ [0, 239].
Output: Integers (w0, x0, y0, z0) with no common divisors, satisfying w2

0 + x20 +
p(y20 + z20) = Lk such that:

1. k ≤ K,

2. L | (2372)2,

3. gcd(k, 3) = 1,

4.
[w0−z0 −x0+y0
x0+y0 w0+z0

]
has at least one eigenvector, and

5.
[w0−z0 −x0+y0
x0+y0 w0+z0

]
has ζ < s, (where ζ is defined with respect to M and ` = 3),

or ⊥ if no solution satisfying these constraints exists.

The following proposition shows that the security assumption of SIKE/SIDH
relies on the hardness of constructing Oracle 7.12 for K smaller than sub-
exponential in the security parameter. More specifically, there should be very few
endomorphisms

φC = [w0] · 1 + [x0] · ι+ [y0] · π + [z0] · ιπ ∈ R
which satisfy Conditions 1 to 5 of Oracle 7.12 (with K = poly(log p)), because
each such endomorphism has the potential to reveal information about Bob’s or
Alice’s private key.

Proposition 7.13. Oracle 7.12 is an instantiation of Oracle 6.11 at E0, q0, and
M0.

Proof. This result follows from making following substitutions into Oracle 6.11.
Note that Oracle 6.11 does not require q or M to be associated to End(E0), so it
will accept q0 and M0 of R.

1. the elliptic curve E = E0,

2. N1 = 3239,

3. N2 = 2372,

4. the quadratic form q(w, x, y, z) = w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz,

5. the matrix M0(w, x, y, z) =
[w−z −x+y
x+y w+z

]
, (see Lemma 7.10), and

6. set ρ = min
{

1
3ζ
, 1− 1

3ζ

}
(where ζ is defined with respect to M and ` = 3),

and s = min
{

239,max
{

log3

(
1
ρ

)
, log3

(
1

1−ρ

)}}
. �

Remark 7.14. Using this more concrete Oracle 7.12, Theorem 6.12 can now
target Bob’s private key in the NIST Round 1 SIKE starting curve with j-invariant
1728. Note that we use q0 and M0 for R, instead of the entirety of End(E0) as in
Steps 1 and 2 of Algorithm 6.13, but this is equivalent by Lemma 7.10 assuming
there is a convenient basis.
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7.3 Characterizing Large Eigenspaces for j = 1728

The condition for an endomorphism having a large number of eigenvectors splits
naturally into two conditions. We investigate these two conditions separately and
then concurrently, to show that even together, the two conditions are not enough
to affect the security of SIKE. In other words, if Theorem 6.12 calls Oracle 7.12
(instead of calling Oracle 6.11, as discussed in Remark 7.14), then Theorem 6.12
runs in an impractical amount of time.

Remark 7.15. Remark 6.9 shows that the following conditions are the two
conditions which we could place on a matrix M with entries in Z/`eZ to attain
a large number of eigenvectors (that is, to ensure ζ is close to 0):

1. Divisibility condition: ν is large, preferably close to e, (where ν is the largest
natural number such that `ν | β and `ν | δ − α).

2. Modular condition: ξ is large, preferably close to e−ν
2 , (where ξ is the largest

natural number such that `ξ | (δ−α)−2βr`ν and ξ ≤ e−ν
2 ).

We investigate the weaker of these conditions, the modular condition, first.
We will show that if Oracle 7.12 only outputs endomorphisms that satisfy this
modular condition, then the algorithm from Remark 7.14 runs in an impractical
amount of time. More specifically, we show the modular condition is too weak to
use on its own in any setting.

The following theorem tells us that it is reasonably easy to find endomorphisms
that satisfy the modular condition.

Theorem 7.16. Suppose we have a convenient basis {P, π(P )} = {P, ι(P )} for

E[`e]. Suppose that there is an eigenvector [ 1r ] of a matrix
[
α β
γ δ

]
in E0[`e]. Then

ν + ξ ≥ e
2 if and only if 4y2 + 4z2 ≡ 4x2 (mod `e).

Proof. Since [ 1r ] is an eigenvector, we see that r satisfies

γ + (δ − α)r − βr2 ≡ 0 (mod `e).

We can use the ring version of the quadratic formula on this equation to obtain

−2βr ≡ −(δ − α)±
√

(δ − α)2 + 4βγ (mod `e).

Rearranging the terms, we get

((δ − α)− 2βr)2 ≡ (δ − α)2 + 4βγ (mod `e). (8)

By definition of ν and ξ,

(δ − α)− 2βr ≡ 0
(
mod `ν+ξ

)
.

Suppose that ν + ξ ≥ e
2 . Rewriting the modular condition, we have that

(δ − α) − 2βr ≡ f`ν+ξ (mod `e), for some f ∈ Z. Substituting this in the
Equation (8), we obtain,

(f`ν+ξ)2 ≡ (δ − α)2 + 4βγ (mod `e),

implying that

(δ − α)2 + 4βγ ≡ 0 (mod `e),
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since ν + ξ ≥ e
2 . Using the matrix representation of the endomorphism,

[
α β
γ δ

]
=[w−z −x+y

x+y w+z

]
, our equation transforms to,

(2z)2 + 4(x+ y)(−x+ y) ≡ 0 (mod `e).

This implies that

4y2 + 4z2 ≡ 4x2 (mod `e).

Conversely, suppose that 4y2 + 4z2 ≡ 4x2 (mod `e). Then, using the matrix
representation as before in the ring version of the quadratic formula for r, we
obtain

−2βr ≡ −(δ − α)±
√

(δ − α)2 + 4βγ (mod `e)

≡ −2z ±
√

4z2 + 4(y2 − x2) (mod `e)

≡ −2z + f`c (mod `e),

where (f`c)2 = 0 (mod `e) for some c ≥ e
2 and f ∈ Z. We substitute this as

follows,

(δ − α)− 2βr ≡ 2z − 2z + f`c (mod `e)≡ 0 (mod `c).

By the definition of ν and ξ, `ν+ξ is the largest power of ` that divides (δ−α)−2βr.
Hence, ν + ξ ≥ c ≥ e

2 . �

Remark 7.17. Although Theorem 7.16 allows us to easily construct solutions
where ξ is almost e−ν

2 (see Example A.8), it is not clear how to obtain solutions
with a small value of k. If such an endomorphism with a small k were to be found,
then we could gain information about Bob’s private key (in E[N1]). However,
even if endomorphisms with a small k could be found, the following proposition,
Proposition 7.18, states that using endomorphisms that satisfy only the modular
condition does not yield an algorithm with a practical runtime.

Proposition 7.18. Endomorphisms which only satisfy the modular condition

(that is, ν = 0, ξ is large, `ξ = (δ−α)−2βr
`ν , and ξ ≤ e−ν

2 ), have eigenspace no

larger than 2`e/2.

Proof. Since ν = 0, it directly follows that ξ ≤ e−ν
2 = e

2 by definition. The result
follows from Remark 6.9. �

Corollary 7.19. If Oracle 7.12 outputs endomorphisms that only satisfy the
modular condition, the information entropy H(ρ) gained from one output of the
oracle is at most 2e`−

e
2 log `.

Proof. See Appendix A.2.

Result 7.20. If Oracle 7.12 outputs endomorphisms that only satisfy the modular
condition, then by Corollary 7.19, the parameters of SIKE are impractical to
attack by our method of instantiating Oracle 6.11 as Oracle 7.12 in Theorem 6.12.

We will now consider the divisibility condition, in particular, the implication
the divisibility condition has on (w0, x0, y0, z0) for an endomorphism

φC = [w0] · 1 + [x0] · ι+ [y0] · π + [z0] · ιπ ∈ R.
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Lemma 7.21. Suppose the matrix

M0 =
[w0−z0 −x0+y0
x0+y0 w0+z0

]
=
[
α β
γ δ

]
.

has at least one eigenvector of the form [ 1r ]. If ` 6= 2, then `ν | x0, y0, z0 if and
only if `ν | β, δ − α.

Proof. The forward direction is straightforward. Conversely, if `ν | δ − α, then
`ν | z0. Since `ν | β, showing that `ν | γ would give `ν | x0, y0. From Lemma A.1,
we have

βr2 + (α− δ)r − γ ≡ 0 (mod `e).

Then, since `ν | β, δ − α, we see that `ν | γ. �

If N1 and N2 are prime powers of 2 and 3, then there are no endomorphisms
with y = z = 0 that have non-trivial eigenspaces (see Corollary A.3). Thus
Lemma 7.22 is relevant for all desirable endomorphisms in the SIKE setting. It
provides an obstruction to finding endomorphisms that satisfy the divisibility
condition.

Lemma 7.22. Assume the following:

1. E0(Fp2) has j-invariant 1728, where p = N1N2 − 1,

2. φC = [w0] · [1] + [x0] · ι+ [y0] · [1]+π2 + [z0] · ι+ιπ2 is an endomorphism on E0

of degree Lk where L | (N2)2,

3. at least one of y0 and z0 is nonzero, and

4. `µ | x0, y0, z0 for a positive integer µ.

Then k has a lower bound of approximately `2µ.

Proof. By Lemma 7.4, (w0, x0, y0, z0) is a solution to

w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz = Lk. (9)

By Lemma 7.5, (w1, x1, y1, z1) = (2w0 + y0, 2x0 + z0, y0, z0) is a solution to

w2 + x2 + p(y2 + z2) = 4Lk,

and it is clear that `µ | x0, y0, z0 implies that `µ | x1, y1, z1. Therefore, we can
define (w2, x2, y2, z2) such that (w2, `

µx2, `
µy2, `

µz2) = (w1, x1, y1, z1). Then
(w2, x2, y2, z2) is a solution to

w2 + `2µx2 + `2µp(y2 + z2) = 4Lk.

This implies:

`2µp(y2 + z2) ≤ 4Lk.

The statement of Lemma 7.22 follows from the fact that L | (N2)2 ≈ p. �

Remark 7.23. Having `ν | x, y, z where ν is close to e is the best way to get
an endomorphism φC with enough eigenvectors so that there is a reasonably
high probability that a random point in E0[`e] is an eigenvector of φC . However,
Lemma 7.22 and Proposition A.2 show that requiring ν to be close to e forces to
k to be impractically large in the SIKE/SIDH setting.
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Result 7.24. If Oracle 7.12 outputs endomorphisms that only satisfy the divisi-
bility condition, then by Lemma 7.22, the parameters of SIKE are impractical to
attack by our method of instantiating Oracle 6.11 as Oracle 7.12 in Theorem 6.12.

We now consider endomorphisms that satisfy both division and modular
conditions.

Proposition 7.25. The expected runtime for Algorithm 6.13 when applied to
2-party SIKE (with the parameters as above) is at least `

e
2 .

Proof. Let ν and ξ be defined as in Notation 6.6 with respect to M . The modular

condition is optimal at ξ = e−ν
2 , which would imply there are `ν+ξ = `

e+ν
2

eigenvectors. There would need to be at least `
e−ν
2 endomorphisms to cover the

space of possible eigenvectors.

The expected event is that after 1
2`

e−ν
2 many calls to the oracle, a kernel-fixing

endomorphism is found. (Of course, our algorithm will likely require more than
one kernel-fixing endomorphism, but even just finding one requires approximately
1
2`

e−ν
2 many calls to the oracle.) Hence, if m is the expected number of calls

to the oracle (as in Theorem 5.11), we have m ≥ 1
2`

e−ν
2 . By Lemma 7.21 and

Lemma 7.22, k is at least `2ν . Thus the expected runtime for Algorithm 6.13 has
the lower bound

m
√
k ≥ `

e−ν
2

√
k ≥ `

e−ν
2 `ν = `

e+ν
2 .

This is optimal when ν = 0. �

Result 7.26. By Proposition 7.25, the runtime of our approach applied to SIKE

has a lower bound of `
e1
2
1 . This is similar to well-known classical attacks.

Remark 7.27. Figure 8 depicts the different sets of endomorphisms in the SIKE
case. Recall Notation 6.14.

• Black area: endomorphisms satisfying only the divisibility condition (ν is
close to e).

• Blue ellipse: endomorphisms with many eigenvectors (ζ is close to 0). These
endomorphisms with many eigenvectors are said to satisfy the mixed condition;
either divisibility condition holds strongly, or the modular condition holds
and the divisibility condition holds (weakly).

• Purple area: endomorphisms which have the desired degree conditions (with
small k).

By Result 7.26, the blue and purple areas in Figure 8 do not overlap; that is,
there are no desirable endomorphisms, and so our methods are infeasible in the
SIKE setting. This result holds against Bob’s private key, but a similar analysis
suggests our methods cannot be used to find Alice’s private key. Section 8 will
provide similar figures for alternative settings.
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Fig. 8: Endomorphisms in the SIKE setting

We detail some examples in the Appendix that satisfy a subset of these
constraints. Example A.7 presents an endomorphism with small k degree while
Example A.8 presents an endomorphism satisifying the modular condition alone.
However, as Figure 8 illustrates, there do not exist endomorphisms in the SIKE
setting that satisfy all the conditions necessary for our methods to yield an
efficient attack.

In this subsection we proved the negative result that Remark 7.14 does not
provide a practical algorithm to attack Bob’s key in the SIKE setting. However,
there is more potential to create a practical oracle to use in Theorem 6.12 for
supersingular isogeny-based algorithms in different settings, as will be shown in
the following section.

8 Alternate Settings

In the previous sections, we were interested in fields of prime characteristic of the
form p = N1N2− 1, where N1 ≈ N2, as this is what is needed for SIKE. However,
in the literature, there are supersingular isogeny-based n-party algorithms that
use primes of the form p = N1 · . . . ·Nn − 1, where N1 ≈ N2 ≈ · · · ≈ Nn [3]. In
Sections 8.1 and 8.2 we will consider the 3-party and 4-party case, respectively.
In Section 8.3 we will consider the unbalanced case, where the prime has the
form p = N1N2 − 1, where N1 ≈ Nn−1

2 for some n ≥ 2.

8.1 3-Party Setting

As was the case in the 2-party setting with Result 7.20, in the 3-party setting
the modular condition alone does not provide endomorphisms with a large
enough percentage of eigenvectors to make Remark 7.14 practical. Thus, we need
endomorphisms that satisfy the divisibility condition.

Notation 8.1. We introduce the following notation specific to the 3-party
setting:

• Let p = N1N2N3 − 1, where p = N1N2N3 − 1, for N1 ≈ N2 ≈ N3.
• Let N1 = `e and N2, N3 be log p-smooth.
• Let E0 be the elliptic curve with j-invariant 1728 over Fp2 .
• Each of the parties will generate a private isogeny φ1, φ2, and φ3, from an

element of full order in E0[N1], E0[N2], and E0[N3], respectively.
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Without loss of generality, we will consider an attacker trying to find the first
party’s private key in E0[N1]. We still have the following:

• The endomorphisms has the form φC = [w] · [1] + [x] · ι+ [y] · [1]+π2 + [z] · ι+ιπ2 .

• The degree of φC is q(w, x, y, z) = w2 + x2 +
(
p+1
4

)
(y2 + z2) +wy + xz, and

as shown in Lemma 7.5, solutions to q can be translated to and from similar
solutions to q0(w, x, y, z) = w2 + x2 + p(y2 + z2).

• For simplicity we will also assume there is a convenient basis {P1, Q1} for
E0[N1]. Thus φC acts as the matrix

M0(w, x, y, z) =
[w−z −x+y
x+y w+z

]
on E0[N1] with respect to {P1, Q1}.

• ν and ξ are defined as in Notation 6.6 with respect to M0.

Analogous to Lemma 7.22, the following lemma provides an obstruction
to finding endomorphisms that satisfy the divisibility condition. In particular,
although endomorphisms satisfying the divisibility conditions might exist, ν is
not close to e.

Lemma 8.2. Assume the following:

1. E0(Fp2) has j-invariant 1728, where p = N1N2N3 − 1 and N1 = `e, for
N1 ≈ N2 ≈ N3,

2. φC = [w0] · [1] + [x0] · ι+ [y0] · [1]+π2 + [z0] · ι+ιπ2 is an endomorphism on E0

of degree Lk, where L | (N2N3)2,

3. at least one of y0 and z0 is nonzero, and

4. `µ | x0, y0, z0 for a positive integer µ.

Then k has a lower bound of approximately `2µ−e > 1.

Proof. If the point (w0, x0, y0, z0) is a solution to

w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz = Lk′, (10)

then (w1, x1, y1, z1) = (2w0 + y0, 2x0 + z0, y0, z0) is a solution to

w2 + x2 + p(y2 + z2) = Lk,

where k = 4k′. As `µ | x1, y1, z1, we can let (w1, x1, y1, z1) = (w2, `
µx2, `

µy2, `
µz2).

Then (w2, x2, y2, z2) is a solution to

w2 + `2µx2 + `2µp(y2 + z2) = Lk.

The statement follows from the fact that p ≈ `3e and L ≤ `4e. �

We now attempt to optimize Algorithm 6.13 in the 3-party case.

Proposition 8.3. The expected runtime of Algorithm 6.13 in the 3-party case
is at least `

e
4 .

Proof. Consider an endomorphism φC = [w0] · [1] + [x0] · ι+ [y0] · [1]+π2 + [z0] · ι+ιπ2
on E0 of degree Lk, where L | N2N3. If there is a convenient basis {P1, Q1} for
E0[`], then φC acts as the matrix M0 with respect to {P1, Q1}. Let ν and ξ be
defined as in Notation 6.6 with respect to M0.
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Given a fixed ν, the best we can hope for from the modular condition is

ξ = e−ν
2 , which implies there are `ν+ξ = `

e+ν
2 eigenvectors. Therefore, at least

`
e−ν
2 endomorphisms are needed to cover the space of possible eigenvectors.

We expect Algorithm 6.13 to require 1
2`

e−ν
2 calls to the oracle before a

kernel-fixing endomorphism is found. (Of course, our algorithm will likely require
more than one kernel-fixing endomorphism, but even just finding one requires

approximately 1
2`

e−ν
2 many calls to the oracle.) Hence, if m is the expected

number of calls to the oracle (as in Theorem 5.11), we have m ≥ 1
2`

e−ν
2 . By

Lemma 8.2, k is at least `2ν−e. Thus the runtime for Algorithm 6.13 has the
lower bound

m
√
k ≥ 1

2

(
`
e−ν
2

)√
k = 1

2

(
`
e−ν
2

)
max

{
1, `ν−

e
2

}
= max

{
1
2`

e−ν
2 , 12`

ν
2

}
.

The optimal value of ν is e
2 which gives an approximate runtime as `

e
4 . �

The best known quantum attacks in the 3-party case until now has been
O
(
`
e
3

)
, and Result 8.4 suggests our methods could possibly give a better attack

than even quantum meet-in-the-middle.

Result 8.4. By Proposition 8.3, the runtime of our approach in the 3-party case
has a lower bound of `

e
4 . In the best case for our work, where k is consistently

log p-smooth (and therefore Algorithm 6.13 has runtime approximately
√
K ·m),

the same optimal value as Proposition 8.3 of `
e
4 can be obtained.

Remark 8.5. In order for our methods to produce a competitive attack in the
3-party case, we expect at least `

e
4 desirable endomorphisms must be found

where k is small. This seems impractical, but it is possible that enough desirable
endomorphisms (with k small) could be found to decrease the security of the
3-party group key exchange.

Remark 8.6. Figure 9 depicts the different endomorphisms in the 3-party set-
ting, an analogue of Figure 8.

• Black circle: endomorphisms which satisfy the divisibility condition.

• Blue ellipse: endomorphisms with many eigenvectors.

• Purple circle: endomorphisms which have the desired degree conditions (with
small k).

• Green area: Result 8.4 tells us that desirable endomorphisms could exist,
giving us an improved attack in the 3-party case (even though such en-
domorphisms do not exist in the 2-party, that is, the SIKE setting, see
Figure 8).

Desirable endomorphisms which only satisfy the division condition still do not
exist (the blue ellipse and the purple circle do not intersect).
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Fig. 9: Endomorphisms in the 3-party setting

8.2 4-Party Setting

There is no setting, including the 4-party setting, where the modular condition
alone provides endomorphisms with a large enough percentage of eigenvectors to
make Theorem 6.12 practical. When it comes to the divisibility condition, in the
4-party case there is no analogy to Lemmas 7.22 and 8.2.

In this subsection we will use the obvious adaption of Notation 8.1 for the
4-party setting. Assuming there is a convenient basis {P1, Q1} for E0[N1], we get
the same matrix M0(w, x, y, z) and quadratic form q0(w, x, y, z). We will consider
an attacker trying to find the first party’s private key in E0[N1].

For the 4-party scheme to be secure, the following problem must be hard.

Problem 8.7. Let p be a prime number of the form p = N1N2N3N4−1. Suppose
there is a convenient basis of E[N1]. Find (w0, x0, y0, z0) that satisfies

w2 + `2νx2 + p`2ν(y2 + z2) = Lk

where ν + ξ is close to e, gcd(k, `) = 1, k = 4k′ is small, and L | (N2N3N4)2.

Remark 8.8. When it comes to the divisibility condition, in the 4-party case,
there is no restriction on the number of eigenvectors an endomorphism can have
that is analogous to the restrictions given in Lemmas 7.22 and 8.2. However, it is
likely that endomorphisms exist that satisfy only the divisibility condition. We
postpone the analysis of this case to Section 8.3.

Remark 8.9. Figure 10 depicts the different endomorphisms in the 4-party
setting, and is an analogue of Figures 8 and 9.

• Black circle: endomorphisms which satisfy the divisibility condition.
• Blue ellipse: endomorphisms with many eigenvectors.
• Purple circle: endomorphisms which have the desired degree conditions (with

small k).
• Green area: Remark 8.8 tells us that desirable endomorphisms (the green

area in Figure 9) could exist which give us an offline attack in the 4-party
case (even though such endomorphisms do not exist in the 2-party, that is,
the SIKE setting, see Figure 8). If enough of these endomorphisms have ν
close enough to e and small enough k, then the private key could be found
in polynomial time.
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Additionally, desirable endomorphisms which only satisfy the division condition
are possible (the intersection between the black and purple circles). In Section 8.3,
we give a heuristic argument stating that it is, in fact, likely that some desirable
endomorphisms exist in the 4-party situation.

deg dividing N2
2N

2
3N

2
4 k

Divisibility
Condition

Mixed
Condition

Fig. 10: Endomorphisms in the 4-party setting

8.3 Unbalanced Setting

We now consider the general n-unbalanced case, and then we use this analysis to
determine where our results begin to outperform the best known attacks.

We use the field Fp2 , with p = N1N2 − 1, where Nn−1
1 ≈ N2. We use

the obvious adaptation of Notation 8.1. Assuming there is a convenient basis
{P1, Q1} for E[N1], we get the same matrix M0(w, x, y, z) and quadratic form
Q0(w, x, y, z).

We can now analyze the relationship needed between N1 and N2 to allow
desirable endomorphisms to exist which satisfy the divisibility condition (ν is
close to e). The analogous quadratic form to that given in Lemma 7.22 is

w2 +N2
1x

2 +N2
1 p(y

2 + z2) = N2
2 k.

This implies

w2 +N2
1x

2 +N3
1N2(y2 + z2) ≈ N2

2 k.

Suppose we impose the restriction of k = O(logr p) for some constant r. Then w
and x will not dominate the asymptotics. Thus,

N3
1 (y2 + z2) ≈ N2k

and N3
1 ∈ Õ(N2). Therefore, N2

1 6≈ N2. However, N3
1 ≈ N2 does not provide an

obstruction, (like with Lemmas 7.22 and 8.2). This lack of an obstruction when
N3

1 ≈ N2 is similar to the lack of obstruction in a 4-party scheme.
For the unbalanced scheme to be secure, we need it to be hard to find many

desirable endomorphisms. Hence, similar to Problem 8.7 in the 4-party case, the
following problem must be hard.

Problem 8.10. Let p be a prime number of the form p = N1N2 − 1, where
N3

1 ≈ N2. Find (w0, x0, y0, z0) such that

w2 + `2νx2 + `2νp(y2 + z2) = Lk

for small k, gcd(k, `) = 1, ν close to e, and L | N2
2 .

43



We have the following heuristic argument for why we expect solutions to
Problem 8.10 to exist.

Remark 8.11. Consider the following case where p = N1N2 − 1 and N3
1 =

(3b)3 ≈ 2a = N2 (the more general case is similar). Recall that the supersingular
`-isogeny graph is a Ramanujan graph with exactly p+13

12 vertices [13].
We consider isogenies of degree some multiple of 22a. With this size of degree,

we have passed the mixing number (that is, the codomain of the isogeny has

any supersingular j-invariant with probability at least 6
p+13 ), which is

log p+13
6

log 3/2
√
2
-

many steps in the 2-graph [13]. Thus we are guaranteed the existence of an

endomorphism of degree 22ak, and we expect there to be at around 22ak
p ≈ p

1
2 k

endomorphisms with this degree.
Now we address the relationship between the quantity of endomorphisms and

the size of their eigenspaces to better understand the impact of our results in this
setting. By increasing k we expect to get many endomorphisms. However, the
requirement of many eigenvectors increases the coefficients in the quadratic form.
By expecting x, y, z to all be divisible by approximately 3b it is unlikely that there
are solutions in the SIKE setting. Yet, by assuming 33b ≈ 2a and k ∈ O(3b/2),
it again becomes reasonable to expect some solutions where x, y, z are divisible
by approximately 3b. This follows from the fact that there are approximately k
isogenies of degree k and approximately 3b isogenies of degree bounded above by
3
b
2 . Therefore, we have a heuristic argument why Problem 8.7 has solutions.

As the 4-party case is similar to the unbalanced case where N3
1 ≈ N2, we

could give a similar (although slightly more involved) heuristic argument to the
one given in Remark 8.11 that suggests there likely exist desirable endomorphisms
in the 4-party setting. We have yet to construct these desirable endomorphisms
in the 4-party setting, but if found, then Theorem 6.12 will lead to a reduction
of security. If enough desirable endomorphisms are found, this could result in a
polynomial time attack for recovering private keys in the 4-party setting.

8.4 Summary of our Results

We conclude this section with a summary of our analysis and how our results
compare with the best attacks currently known on the different settings.

• 2-party. A mixed approach of the modular and divisibility condition does not
produce an attack that is better than previously studied attacks. Recall that

the best known classical attack runs in O(N
1
2
1 ) [1] and in O(N

1
3
1 ) for the best

quantum one [14], [24].

• Unbalanced 2-party. We show a potentially better exponential attack on
an unbalanced 2-party key establishment where p = N1N2 − 1 whenever
N2 > N2

1 , and a potential polynomial attack whenever N2 > N3
1 . The only

possibly better classical attack in this setting comes from [17], where the
authors obtain a polynomial attack in the largely unbalanced case where
logN2 ∈ O(log2N1).
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• 3-party. A mixed approach of the modular and divisibility conditions could

potentially produce a O(N
1
4
1 ) exponential attack in the worst case, which is a

significant improvement over the known generic attacks (which are the same
as in the 2-party case).

• 4-party. The divisibility condition alone could be enough to produce a poly-
nomial time attack, much better than the generic attacks (again, the same
as in the 2-party case). Desirable endomorphisms likely exist that could be
used to weaken the security of 4-party isogeny-based protocols.

9 Using Endomorphisms with Almost-Eigenvectors

Note: This section and the following section are still under revision.
Since they are relevant to the other results in our paper, we consid-
ered it important to include them.

In this section we wish to address one case in which Algorithm 5.12 is inefficient.
Specifically, we consider the case where the endomorphisms found do not have
enough eigenvectors (in the sense that ρ is too small), even if they are very
efficient endomorphisms (in the sense that k is small). If the resulting values
of k associated to each of these endomorphisms are small enough, it might still
be possible to use the method described in this section to transform them into
more desirable endomorphisms. This method works for endomorphisms that have
many eigenvectors in E[N ], for some large divisor N of N1, (although possibly a
smaller number of eigenvectors for N1).

We start in Section 9.1, by discussing endomorphisms that preserve (and
almost preserve) Alice’s kernel. In Section 9.2 we discuss how this theory can be
used to create a new oracle and associated reduction theorem.

9.1 Almost-Invariant Kernels

In this subsection we consider another well-known method to construct endomor-
phisms on EA. We will see that this other construction gives us an alternative
way of viewing the endomorphism ψC . In the next subsection, we will use this
viewpoint to relax the condition on the endomorphisms Oracle 5.9 outputs, by
making certain endomorphisms (with eigenspaces that are slightly too small)
more desirable.

Given an endomorphism φC on E, there is a natural endomorphism of EA
induced by φA, namely φA ◦ φC ◦ φ̂A, as shown in Figure 11.

E EA
φA

φC ψC

E EA

E EA

φC

φ̂A

φA◦φC◦φ̂A

φA

Fig. 11: Endomorphism induced by φA
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In fact, ψC and φA ◦ φC ◦ φ̂A are scalar multiples of each other if and only
if kerφA is invariant under φC . To show this, we begin by giving an explicit
description of the kernel of φ̂A.

Lemma 9.1. Suppose {P,Q} forms a basis of E[N ], and φ : E → E′ denotes a
separable isogeny where kerφ = 〈P 〉. Then φ(Q) generates the kernel of the dual

isogeny φ̂. Moreover, if φ(R) generates ker φ̂, then {P,R} forms a basis of E[N ].

Proof. Let φ′ be an isogeny with domain E′ and kernel 〈φ(Q)〉. Then 〈P,Q〉 ⊂
ker(φ′ ◦ φ), since

P
φ−→ O φ′−→ O

Q
φ−→ φ(Q)

φ′−→ O

Thus

ker[N ] = E[N ] = 〈P,Q〉 ⊂ ker(φ′ ◦ φ).

As

|ker[N ]| = N2 = deg(φ′ ◦ φ) = |ker(φ′ ◦ φ)|,

it follows that [N ] ∼= φ′ ◦ φ. By [21, §III, Theorem 6.1 (a)], this implies φ′ is the
dual of φ.

To see the second statement, notice that φ(R) = [λ′] · φ(Q) for some λ′

relatively prime to N . Thus, R = [λ′] · Q + [λ] · P for some [λ] · P ∈ kerφ.
Therefore, 〈P,Q〉 = 〈P,R〉. �

While Lemma 9.1 described ker φ̂A, Lemma 9.2 describes ker(φA ◦ φC ◦ φ̂A),
as illustrated in the commutative diagram in Figure 12. Understanding the kernel
of φA ◦ φC ◦ φ̂A will allow us to relate ψC and φA ◦ φC ◦ φ̂A.

Lemma 9.2. Suppose ker(φA) = 〈PA+ [rA] ·QA〉 = 〈RA〉, ker(φC) = 〈RC〉, and
gcd(N1,deg φC) = 1. Then

ker(φA ◦ φC ◦ φ̂A) = 〈φA(QA), φA(RC), S〉,
for any S ∈ EA[(N1)2] such that 〈φ̂A(S)〉 = 〈φ̂C(RA)〉.

E EA

E EA

kerφC=〈RC〉

ker φ̂A=〈φA(QA)〉

φA◦φC◦φ̂A

kerφA=〈PA+rAQA〉

Fig. 12: Endomorphism induced by φA with Kernels

Proof. We can see that 〈φA(QA), φA(RC), S〉 ⊆ ker(φA ◦ φC ◦ φ̂A), since

φA(QA)
φ̂A−→ [N1] ·QA = O φC−→ O φA−→ O

φA(RC)
φ̂A−→ [N1] ·RC

φC−→ O φA−→ O

S
φ̂A−→ φ̂A(S) = φ̂C(RA)

φC−→ [N1] ·RA
φA−→ O
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Now, we finish the proof by showing that the subgroup has the same order as
the kernel and is thus equal to it. Note that

|ker(φA ◦ φC ◦ φ̂A)| = deg φA deg φC deg φ̂A

= (N1)2 deg φC .

By the assumption gcd(N1,deg φC) = 1, we obtain that |〈φA(RC)〉| = deg φC .

By the first isomorphism theorem of φ̂A restricted to 〈φA(QA), S〉,
|〈φA(QA), S〉| = |ker φ̂A| · |φ̂A(〈φA(QA), S〉)|

= deg φA · |〈φ̂A(S)〉|

= deg φA · |〈φ̂C(RA)〉|
= N1 · |〈RA〉|
= (N1)2.

Hence,

|〈φA(QA), φA(RC), S〉| = |〈φA(RC)〉| · |〈φA(QA), S〉|
= N2

1 deg φC . �

We can now use this knowledge of ker(φA ◦ φC ◦ φ̂A) to show φA ◦ φC ◦ φ̂A is
essentially [N1] · ψC , as seen in Figure 13.

Theorem 9.3. Let ψC be the isogeny with kernel 〈φA(RC)〉, and gcd(deg φC ,

N1) = 1. Then ker(φA ◦ φC ◦ φ̂A) = ker([N1] · ψC) if and only if φC(kerφA) =

kerφA. Furthermore, when this holds, φA ◦ φC ◦ φ̂A ∼= [N1] · ψC .

EA

E EA

E EA

φ̂A [N1]

φA◦φC◦φ̂A

φC

φA

ψC

φA

Fig. 13: ψC and the endomorphism induced by φA

Proof. We will start by considering ker(φA ◦ φC ◦ φ̂A). By Lemma 9.2 we know
that

ker(φA ◦ φC ◦ φ̂A) = 〈φA(QA), φA(RC), S〉,

for any S ∈ EA[(N1)2] such that φ̂A(S) = [λ] · φ̂C(RA) for some natural number
λ, where gcd(λ,N1) = 1. Since gcd(N1,deg φC) = 1, we find

ker(φA ◦ φC ◦ φ̂A) = 〈φA(QA), S〉 ⊕ 〈φA(RC)〉
= 〈φA(QA), S〉 ⊕ kerψC , (11)

where ⊕ denotes a direct sum. On the other hand, since gcd(N1,deg φC) = 1, we
have the group decomposition:

ker([N1] · ψC) = EA[N1]⊕ kerψC . (12)
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Equations (11) and (12) imply that it suffices to show that 〈φA(QA), S〉 = EA[N1]
if and only if kerφA is invariant under φC .

Suppose φC(kerφA) = kerφA. Since gcd(N1,deg φC) = 1, this implies kerφA =

φ̂C(kerφA), or equivalently, φ̂C(RA) = [λ′]·RA for some λ′, where gcd(λ′, N1) = 1.

By the definition of S this implies φ̂A(S) = [λλ′] ·RA. Since
̂̂
φA = φA, φ̂A(S) gen-

erates ker
̂̂
φA. By Lemma 9.1, not only φA(QA) = ker φ̂A, but also {φA(QA), S}

forms a basis of EA[N ].

Conversely, suppose 〈φA(QA), S〉 = EA[deg φA]. By Lemma 9.1, 〈φ̂A(S)〉 =

ker
̂̂
φA = kerφA. Thus φ̂A(S) = [λ′] ·RA, for some λ′, where gcd(λ′, N1) = 1. As

φ̂A(S) = [λ]·φ̂C(RA), this implies [λ]·φ̂C(RA) = [λ′]·RA. Since gcd(N1,deg φC) =
1, this proves φC(kerφA) = kerφA. �

Theorem 9.3 explains why our methods work. In particular, if Alice’s private
point is invariant under an endomorphism φC , then φA ◦ φC ◦ φ̂A is a scalar
multiple of an endomorphism ψC on EA, which means ψC exists. However,
Theorem 9.3 also suggests a generalization for the case where Alice’s private
point is almost invariant under φC . We will explore this generalization now, along
with its ramifications.

Moreover, if N2 is log p-smooth, for example if it has the form N2 = `e, then
the proof of Theorem 9.3 can be generalized to give us Theorem 9.6. In particular,
if the kernel of φA is almost-invariant under φC , then there is an endomorphism
of EA that has almost the same degree as φC . Before proving this statement, we
require additional notation and definitions.

Definition 9.4. We call a point R of order N1 = `e an almost-eigenvector (by
`e−d for some d ∈ {0, . . . , e}) of an endomorphism φ on E if

φ([`e−d] ·R) = [λ] · ([`e−d] ·R)

for some integer λ satisfying gcd(λ,deg φ) = 1. This is equivalent to saying
[`e−d] ·R ∈ Eig`dφ.

Notation 9.5. Suppose N1 = `e. For the remainder of this section we fix
d ∈ {0, . . . , e}. Let φdA denote the isogeny on E with kernel 〈[`e−d] · RA〉, and
let EdA denote the image of φdA. Let ψdC denote the isogeny on EdA with kernel
〈φdA(RC)〉, and let EdCA denote the image of ψdC , see Figure 14.

E EdA EA

E EdCA EA

φC

φdA

ψdC

ψC

Fig. 14: Partial isogenies

With this notation in mind, we now generalize Theorem 9.6 to almost-
eigenvectors.

Theorem 9.6. Suppose gcd(deg φC , N1) = 1, where N1 = `e for some natural

number e, and let d ∈ {0, . . . , e}. Then ker(φdA ◦ φC ◦ φ̂dA) ∼= [`d] · ker(ψdC) if and
only if φC([`e−d] · kerφA) = [`e−d] · kerφA.
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This proof is similar to the proof for Theorem 9.3, and the concept is illustrated
in Figure 15.

EA

E EdA EA

E EdCA EA

[`d]
φ̂dA φA◦φC◦φ̂A

φC

φdA

ψdC

ψC

φdA

Fig. 15: Almost-Invariant kernels

Next we use Theorem 9.6 to generalize our reduction given in Theorem 5.7.

9.2 Almost-Eigenvectors

In previous sections, we always assumed that Alice’s kernel was invariant under
the endomorphism φC . However, Theorem 9.6 suggests that it might be possible
to use endomorphisms where Alice’s private point is an almost-eigenvector. More
technically, we are interested in endomorphisms that have many eigenvectors in
E[N ], for some large divisor N of N1. This gives a natural generalization of our
earlier discussions. We start with a generalization of Theorem 5.7.

Theorem 9.7. Suppose we are given

1. a starting supersingular elliptic curve E(Fp2) such that p = N1N2 − 1 for
coprime N1 = `e and log p-smooth N2,

2. the image of an N1-degree isogeny EA = φA(E) which has kernel 〈RA〉,
3. the action of φA restricted to the N2-torsion points φA|E[N2]

4. d ∈ {0, . . . , e}, and

5. triangular kernel ker4φC of an Lk-degree endomorphism φC in Fp2 where

(a) gcd(k,N1) = 1, and

(b) L | (N2)2.

Then there exists a (classical) algorithm which runs in time Õ(`e−dk3) and that
decides whether [`e−d]·RA ∈ Eig`dφC or [`e−d]·RA 6∈ Eig`dφC with overwhelmingly

high probability. Further, if k is log p-smooth, then the runtime is Õ
(
`e−d
√
k
)

.

We first describe such an algorithm and then analyze its runtime as a proof
of the theorem.

Algorithm 9.8.
Input: EA, φA|E[N2]

, ker4φC = (K0,K1,K2), a number d ∈ {0, . . . , e}, and a
natural number k.
Output: True if [`e−d] ·RA ∈ Eig`dφC , and False if [`e−d] ·RA 6∈ Eig`dφC .

1. Calculate all the possible `e−d isogenies from EA. Denote them φi.

2. For each isogeny φi, calculate φi(EA), φi(φA(PB)) and φi(φA(QB)).
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3. For each isogeny φi, run Algorithm 5.8 with φi(EA), φi(φA(PB)), φi(φA(QB)),
(K0,K1,K2) and k. If it returns True, then return True.

4. Return False.

Proof. Since the worst case runtime (when k is prime) of Algorithm 5.8 is Õ(k3),
the worst case runtime of Algorithm 9.8 is Õ(`e−dk3). �

We can now generalize Oracle 6.11, to produce almost-eigenvectors:

Oracle 9.9.
Input: N2, a set S ⊆ E[`d] (where d ∈ {0, . . . , e}), a quadratic form q(w, x, y, z),
a 2× 2-matrix M(w, x, y, z) acting on E[`d] whose entries are linear in the four
variables, an integer K ≤ `d, and r ∈ {0, . . . , d}
Output: (w0, x0, y0, z0) ∈ Z4 satisfying q(w0, x0, y0, z0) = Lk, subject to the
constraints:

1. k ≤ K,

2. L | (N2)2,

3. gcd(k, `) = 1,

4. M(w0, x0, y0, z0) has at least one `e−d-eigenvector, and

5. M(w0, x0, y0, z0) has ζ < r, (where ζ is defined with respect to M and `),

or ⊥ if no solution satisfying these constraints exists.

Using Algorithm 9.8 and Oracle 9.9 gives us a more general version of
Theorem 5.11.

The endomorphisms with many `d-eigenvectors are actually the same endo-
morphisms as those with many almost-eigenvectors. The following proposition
makes this formal.

Proposition 9.10. An endomorphism φC has `ν+ξ (or 2`ν+ξ if ` - β′), many
`e-eigenvectors if and only if it has `ν+ξ+e−d (or 2`ν+ξ+e−d if ` - β′) many
almost-eigenvector by `e−d, where ν + ξ ≤ d and d ≤ e.

Proof. Recall [ 1r ] ∈ E[`e] is an eigenvector of
[
α β
γ δ

]
if and only if it satisfies

Equation (3) from Theorem 6.8, namely,

(δ − α− β(2r + x))x ≡ 0 (mod `e). (13)

Thus [ 1r ] ∈ E[`d] is an almost-eigenvector by `e−d of
[
α β
γ δ

]
if and only if it

satisfies

(δ − α− β(2r + x))x ≡ 0
(
mod `d

)
. (14)

By Theorem 6.8, if ` | β′, then [ 1κ ] is an almost-eigenvector by `e−d if and only if it

has the form
[

1
r+c`d−ν−ξ

]
for some c ∈ Z. If ` - β′, then [ 1κ ] is an almost-eigenvector

by `e−d if and only if it has the form
[

1
r+c`d−ν−ξ

]
or
[

1
−r+ε′(β′)−1+c`d−ν−ξ

]
for

some c ∈ Z.
Conversely, following the proof of Theorem 6.8, we get that x = c`d−ν−ξ and

x = −2r + ε′(β′)−1 + c`d−ν−ξ are solutions to Equation (14), for any c ∈ Z. �
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Remark 9.11. Proposition 9.10 shows that by using the almost-eigenspace (by
`e−d), we essentially increase the number of (almost) eigenvectors by `e−d. Hence,
in Theorem 9.7, for endomorphisms whose eigenspace is not quite as large as
we wish, by using almost-eigenspaces we can essentially increase the size of the
eigenspace by `e−d at the cost of slowing the algorithm down by `e−d. Therefore,
in Theorem 5.11 in the case N1 = `e we can essentially increase the size of the
eigenspace by `e−d (as long as ρ`e−d < 1

2 ), at the cost of increasing the runtime
by `e−d.

The results in this section have generalized our techniques in order to increase
the space of eigenvectors for an endomorphism. These methods do not decrease the
runtime of Theorem 5.11. However, it does accommodate for the possible scenario
when the endomorphisms found do not have sufficiently many eigenvectors, even
if they have an efficiently computable degree (namely, k is small).

While this section focused on making the attack more applicable, the next
section will instead aim to reduce the number of oracle calls to theorems like
Theorem 6.12.

10 Learning Secret Torsion Information

Recall that our reductions rely on the repeated use of Theorem 5.7. However,
Theorem 5.7 not only determines (with overwhelming probability) whether
RA ∈ EigN1

(φC) or RA 6∈ EigN1
(φC), but in the case where RA ∈ EigN1

(φC), it
also constructs the map ψC .

In this section, we propose a method which makes use of the explicit endomor-
phism ψC on EA to determine the image of more torsion points under φA other
than the points given in Alice’s public key. We will discuss the idea underlying
our methods in the simplest case, that is, when the endomorphisms have the
easiest form to work with.

Suppose that φC(kerφA) = kerφA. Recall that, by Theorem 9.3, [N1] · ψC =

φA ◦ φC ◦ φ̂A, see Figure 16.

E EA

E EA

φA

φC

ψC

φA

Fig. 16: Commutative diagram where φC fixes kerφA

Thus we expect ψC to act on the torsion points of E in a similar manner to
how φC acts on the torsion points of EA. We will start by showing the (well-
known) fact that φA : E → EA takes a basis for E[N ] to a basis of EA[N ]
(assuming gcd(N, p) = gcd(N,N1) = 1).

Lemma 10.1. Let φ : E → EA be a separable isogeny and {P,Q} be a basis for
E[N ], where N , deg φ and p are pairwise coprime, then EA[N ] = 〈φ(P ), φ(Q)〉.
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Proof. Recall E[N ] ∼= Z/NZ× Z/NZ, hence |E[N ]| = N2. As |E[N ]| and deg φ
are relatively prime, kerφ ∩ E[N ] = {O}. By the first isomorphism theorem on
the restriction map φ|E[N ], we find that

Imφ|E[N ]
∼=

E[N ]

kerφ|E[N ]

∼= E[N ].

There is only one subgroup of EA of this form, namely EA[N ]. Thus, φ(EA[N ]) ∼=
EA[N ]. Therefore, the isogeny φ restricted to E[N ] acts as an (isomorphic) linear
transformation to EA[N ]. The result follows. �

In Proposition 10.2 we show that (under the same conditions as in Lemma 10.1),
the action of φC on E[N ] is similar (that is, conjugate as a linear transfor-
mation) to the action of ψC on E[N ]. This is depicted in Figure 17 (where
gcd(deg φC , p ·N ·N1) = 1).

E[N ] EA[N ]

E[N ] EA[N ]

φA

φC |〈P,Q〉=M

ψC |〈φA(P ),φA(Q)〉=M

φA

Fig. 17: Action of φC and ψC on torsion subgroups

Proposition 10.2. Suppose the following:

1. {P,Q} is a basis for E[N ].

2. φA ◦ ψC = φC ◦ φA.

3. N ≥ 2, and N1, N, p, and deg φC are all pairwise coprime.

If φC |〈P,Q〉 = M for some matrix M ∈ GL2(Z/NZ), then

ψC |〈φA(P ),φA(Q)〉 = M.

Proof. By Lemma 10.1, we know that EA[N ] = 〈φA(P ), φA(Q)〉. We demonstrate
that ψC |〈φA(P ),φA(Q)〉 = M . Let

M =

(
m11 m12

m21 m22

)
.

Then,

φA ◦ φC ◦ φ̂A (φA(P )) = φA ◦ φC ([N1] · P )

= [N1]φA(φC(P ))

= [N1]φA([m11] · P + [m21] ·Q)

= [m11N1]φA(P ) + [m21N1]φA(Q).

Similarly,

φA ◦ φC ◦ φ̂A (φA(Q)) = [m12N1]φA(P ) + [m22N1]φA(Q).

We conclude that

φA ◦ φC ◦ φ̂A
∣∣∣
〈φA(P ),φA(Q)〉

= (N1)M.

Since the diagram in Figure 16 commutes, we have

φA ◦ φC = ψC ◦ φA,
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φA ◦ φC ◦ φ̂A = ψC ◦ φA ◦ φ̂A,

and since [N1] = φA ◦ φ̂A we conclude that

φA ◦ φC ◦ φ̂A = ψC ◦ [N1].

Therefore,

(N1)M = φA ◦ φC ◦ φ̂A
∣∣∣
〈φA(P ),φA(Q)〉

= ψC ◦ [N1]|〈φA(P ),φA(Q)〉

=
(
ψC |〈φA(P ),φA(Q)〉

)
·
(

[N1]|〈φA(P ),φA(Q)〉

)
=
(
ψC |〈φA(P ),φA(Q)〉

)
·N1.

Since N1 is invertible modulo N , we can divide both sides of the above equality
by N1 and obtain the desired result. �

Proposition 10.2 says that if φC preserves kerφA, and φA maps a basis 〈P,Q〉
to a basis 〈φA(P ), φA(Q)〉, then the matrix of φC with respect to 〈P,Q〉 equals
the matrix of ψC with respect to 〈φA(P ), φA(Q)〉. However, we are interested in
the converse direction:

• Does the equation φC |〈P,Q〉 = ψC |〈P ′,Q′〉 reveal any information about the

relationship between 〈P,Q〉 and 〈P ′, Q′〉?
• Furthermore, can we use this relationship to deduce information about the

action of φA on E[N ]?

We answer these questions in the affirmative in the case where the action is given
as a diagonal matrix, see Figure 18.

Proposition 10.3. Suppose the following:

1. we are given an endomorphism φC on E, with gcd(deg φC , pN1) = 1,

2. φC(kerφA) = kerφA, and

3. the action of φC on E[N ] with respect to a basis {P,Q} is a diagonal matrix
D (which is not a scalar multiple of the identity) for some natural number
N , where gcd(N, pN1 deg φC) = 1.

Then we can determine φA(P ) and φA(Q) up to scalar multiples.

E[N ] EA[N ]

E[N ] EA[N ]

φA

φC |〈P,Q〉=D

ψC |〈R,S〉=D

φA

Fig. 18: Action of φC and ψC on torsion subgroups

Proof. Since φC(kerφA) = kerφA, ψC exists by Proposition 4.7. By Proposi-
tion 10.2, the action of φC |E[N ] is diagonalizable, and moreover, ψC |EA[N ] is

similar (as a matrix) to D. Thus, there exists a basis {R,S} of EA[N ] such that
ψC |EA[N ] with respect to {R,S} is also D.
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Let D =
[
d1 0
0 d2

]
. Proposition 10.2 states that ψC acts as D with respect to

the basis {φA(P ), φA(Q)}. This means that φA(P ) and φA(Q) are eigenvectors
of D of eigenvalue d1 and d2, respectively. But we also have that, R and S are
eigenvectors ofD of eigenvalue d1 and d2, respectively. This implies φA(P ) = [α]·R
and φA(Q) = [β] · S for some α, β ∈ (Z/NZ)∗.

�

Proposition 10.3 tells us that we can almost learn the action of φA on arbitrary
subgroups E[N ] (under some reasonable coprimality restrictions of N) when
there is a basis for which φC acts as a diagonal matrix. The following Remark 10.4
shows that it is easy to choose a torsion group E[N ] for some basis such that φC
acts as a diagonal matrix.

Remark 10.4. Given a random matrix M , it is often possible to find a number
N such that the reduction of M modulo N is similar to a non-scalar diagonal
matrix. More specifically, suppose there exists N that divides a non-diagonal entry
and the diagonal entries are not equal mod N . Let M ′ denote the reduction of
M modulo N . By our choice of N , the matrix M ′ is triangular, and the diagonal
entries are not equal. As the diagonal entries are not equal, this triangular matrix
can be diagonalized.

To our knowledge, ψC alone is not enough to uniquely determine φA|E[N ],

(even if we use techniques involving the Weil pairing [28], as is done in the proof
of the next proposition). However, in certain cases, two endomorphisms ψC and
ψ′C are enough to almost uniquely determine φC |E[N ], which we discuss now.

Proposition 10.5. Suppose the following:

1. we are given two endomorphisms φC and φ′C on E,

2. φC(kerφA) = kerφA and φ′C(kerφA) = kerφA,

3. φC acts on E[N ] as a diagonal matrix D with respect to a basis {P,Q},
4. φ′C acts on E[N ] as a diagonal matrix D′ with respect to a basis {P ′, Q′},
5. deg φC ,deg φ′C each are pairwise coprime with N,N1 and p, and

6. P ′ = [γ] · P + [δ] ·Q for some integers γ, δ ∈ (Z/NZ)∗.

Then we can determine (φA(P ), φA(Q)) up to a sign.

Proof. We describe the algorithm that outputs (φA(P ), φA(Q)) up to sign given
the conditions as described in Proposition 10.5 followed by a justification of its
correctness and analysis of its runtime.

Algorithm 10.6.
Input: E,EA, N , bases {P,Q} , {P ′, Q′} of E[N ], endomorphisms ψC , ψ

′
C with

action on EA[N ] equal to D,D′ respectively.
Output: ±(φA(P ), φA(Q)).

1. Find a basis {R,S} of EA[N ] such that the action of ψC on EA[N ] with
respect to a basis {R,S} is D.
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2. Find a basis {R′, S′} of EA[N ] such that the action of ψ′C on EA[N ] with
respect to a basis {R′, S′} is D′.

3. Determine γ and δ such that P ′ = [γ] · P + [δ] ·Q.

4. Without loss of generality (by switching R′ and S′ if necessary) it is possible
to find γ′ and δ′ ∈ (Z/NZ)∗ such that R′ = [γ′] ·R+ [δ′] · S.

5. Evaluate the Weil pairings g = eN (P,Q) and h = eN (R,S).

6. Solve the discrete log for x in gN1 = hx.

7. Solve α2 ≡ δγ′

δ′γx (mod N) for α.

8. Set β ≡ α−1x (mod N).

9. Return φA(P ) = [α] ·R, φA(Q) = [β] · S.

We now justify the correctness of our algorithm. Observe that,

φA(P ′) = [γ] · φA(P ) + [δ] · φA(Q) = [γα] ·R+ [δβ] · S,
and also, by Proposition 10.3, there is some integer ε such that

φA(P ′) = [ε] ·R′ = [εγ′] ·R+ [εδ′] · S.
By comparing coefficients we see that

ε = αγγ′−1 = βδδ′−1,

which implies α =
(
δγ′

δ′γ

)
β. The Weil pairing gives us our second equation relating

α and β:

eN (φA(P ), φA(Q)) = eN (P,Q)
N1 = gN1 ,

and,

eN (φA(P ), φA(Q)) = eN (R,S)
αβ

= hx.

Therefore, x = αβ and can be computed by solving discrete log as described
in Step 6. Substituting for β from the previous equation in terms of α, we get
the expression for α2 in Step 7. Hence, we obtain two solutions ±(α, β) and the
result follows. �

Intuitively, Proposition 10.5 states that if two endomorphisms of E are found
that each fix the subgroup kerφA, then it is possible to learn the action of φA up to
a sign on any torsion subgroup where the hypotheses of Proposition 10.5 are satis-
fied. In particular, either the pair (φA(P ), φA(Q)) or the pair (−φA(P ),−φA(Q))
is found.

We now present a procedure to relax the assumption of Oracle 6.11.

Oracle 10.7.
Input : φC , φ

′
C ∈ End(E) and N as in the statement of Proposition 10.5, and the

input to Oracle 6.11.
Output : The same output of Oracle 6.11, except Step 2 is replaced with

L | (N ·N2)2.
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Theorem 10.8. The statement of Theorem 6.12 holds when Oracle 6.11 is
replaced with Oracle 10.7 when N is log p-smooth.

Proof. We need to show that given the input to Oracle 10.7 and access to
Oracle 6.11, we can construct the output to Oracle 10.7.

By Proposition 10.5 we can construct the pair ±(φA(P ), φA(Q)) for basis
{P,Q} of E[N ]. Thus we are interested in endomorphisms with triangular kernels
with respect to NN2 (instead of triangular kernels with respect to N2). Next,
similar to the proof of Proposition 6.3, we can transform the quadratic form
solution into a triangular kernel, but now say with NN2-torsion components
KN,1 and KN,0. Traversing through the reductions, we see that we must modify
Algorithm 5.8 to accommodate for the new factor of N . Consider the following
modified Step 3 of Algorithm 5.8:

3.′ Compute the isogenies ψN,0 and ψN,1 with respective kernels 〈ψC,0 ◦
φA(KN,0)〉 and 〈ψC,1 ◦ φA(KN,1)〉, and set codomain curves to be ECNA,0 and
ECNA,1, respectively. For all k-isogenies from ECNA,0, check if their codomain
has j-invariant j(ECNA,1).

�

If the torsion images were found completely (instead of only up to sign), then
this approach could be combined with [17] to efficiently solve the CSSI problem.
We leave this for future work.

11 Recommendations

The work given in this paper, and by Petit in [17], demonstrate that the hardness
assumptions of specific instances of the CSSI problem differ from the `e-isogeny
problem. In particular, by fixing a starting elliptic curve, SIKE and most of the
other protocols also fix a particular instantiation of the CSSI problem with a
known endomorphism ring.

The best use of our methods on the `e-isogeny problem is given in Theorem 4.9,
but Remark 4.10 demonstrates some of its limitations. However, Theorem 5.11
gives a more practical result; it reduces the CSSI problem to the problem of
finding desirable endomorphisms. Our next main result, Theorem 6.12, reduces a
particular instantiation of the CSSI problem (at a supersingular elliptic curve
with known endomorphism ring) to the problem of finding solutions to a simple
quadratic form.

In [10], the authors prove that if endomorphism rings of both the starting
curve and ending curve are known, then it is possible to construct an isogeny
between them. Knowing only the endomorphism ring of the starting curve is not
known to decrease the security in the case of SIKE, but even without concrete
attacks, being more conservative is not unwarranted.

One solution to thwart any potential attacks exploiting this knowledge is
to initialize the protocol with a supersingular elliptic curve with an unknown
endomorphism ring. However, known methods for constructing a supersingular
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elliptic curve also give a description of its endomorphism ring, so it is not imme-
diately clear how to effectively modify SIKE to start with a fixed supersingular
curve with an unknown endomorphism ring. For example, using an isogeny path
from a supersingular elliptic curve with a known endomorphism ring gives the
endomorphism ring of the new supersingular elliptic curve (at least to whomever
computed the isogeny).

We propose to slightly alter the SIKE protocol, by requiring Alice to randomize
the starting curve each time by taking a random walk from the initial SIKE curve
as her first step. In the spirit of many recent works in post-quantum cryptography,
we humorously propose the name Supersingular Isogeny Two-party Handshake
(SITH) for our variant. By performing this change, the endomorphism ring of
the new starting curve is only known to Alice. Figure 19 illustrates the steps for
this new algorithm.

To prevent a GPST-style attack, SIKE uses the Fujisaki-Okamoto transform,
which requires the other party, Bob, to divulge his encryption randomness
seed to Alice, see [16]. As a result, it does not matter if Alice has additional
secret information about the starting elliptic curve ER, as Alice has no interest
in attacking Bob (since she already obtains all of his secret entropy). More
importantly, in our proposed modification, neither Bob nor any eavesdroppers
have any information about the endomorphism ring of ER.

11.1 Supersingular Isogeny Two-party Handshake (SITH)

Figure 19 depicts the SITH proposal. The only differences between SITH and
SIKE are the key generation procedure and the resulting public key. We briefly
present these differences.

For key generation, Alice now computes an isogeny φR whose kernel is in
E[2a3b], and whose degree is large enough to ensure cryptographic security. Then
she computes ER = φR(E), and bases 〈PA, QA〉 = ER[2a], and 〈PB , QB〉 =
ER[3b].

After this, Alice chooses a random number 0 ≤ rA < 2a. She calculates the
isogeny φA on ER whose kernel is generated by PA + [rA] ·QA and also calculates
EA = φA(ER), φA(PB) and φA(QB).

More specifically, key generation now involves the computation of

φR(E), PA, QA, PB , QB , φ(ER), φA(PB), φA(QB)

instead of φA(E), φA(PB), φA(QB) as in SIKE.
Alice’s public key is now

(ER, PA, QA, PB , QB , EA, φA(PB), φA(QB))

instead of EA, φA(PB), φA(QB), namely more than twice as long as in SIKE.
Note that there is a time/memory trade-off that can be considered with respect

to key generation. In the version we presented, Alice sends the generated points
PA, QA, PB , QB. Naturally, these points could also be independently generated
by Bob. The best option depends on the computational resources of the entities
running such a protocol.
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The rest of the steps, namely, key generation for Bob, encapsulation and
decapsulation are the same as in SIKE, with the starting curve being now ER
instead of E.

EA

E ER EAB

EB

ψB

φR

φA

φB ψA

Fig. 19: Supersingular Isogeny Two-party Handshake (SITH)

12 Conclusion and Future Work

In this work, we have investigated a connection between solving the Computational
Supersingular Isogeny (CSSI) problem and finding endomorphisms of a certain
type of degree with large eigenspaces. While endomorphisms have been exploited
in cryptanalytic efforts before (see [17]), our methods are fundamentally different
from those used previously.

We presented a generic reduction from SIDH-based protocols with arbi-
trary number of parties to an oracle which returned endomorphisms with large
eigenspace and certain bounded degree. As part of this reduction, we have intro-
duced the notion of triangular decomposition of endomorphisms to circumvent
relying on large extension fields, which may prove useful in future cryptanalytic
efforts on isogeny-based cryptosystems.

More specifically, our approach exploits endomorphisms whose degrees have a
large common divisor with N2

1 , and whose eigenspaces have a large intersection
with the space of possible private keys. In the case where the endomorphism
ring of the starting curve is known, we have shown that finding these specific
endomorphisms is equivalent to finding solutions to a particular quadratic form.
In certain cases, instead of solving the degree and eigenspace conditions separately,
the eigenspace conditions can be combined to produce another quadratic form
(whose solutions give us desirable endomorphisms).

In the case of 2-party SIDH/SIKE, we have shown that our reduction could
not yield an attack that takes sub-exponential time. However, in Section 8, we
have provided heuristic evidence that our reduction may yield faster attacks on
multi-party CSSI-based cryptosystems than demonstrated previously – even for
a small number of parties (possibly as small as 3 or 4). The relationship between
quadratic forms and the security of CSSI-based cryptosystems (exploiting torsion
images) had been investigated before in [17], but Petit’s methods are not directly
applicable to small multi-party cases, unless extra torsion information is revealed.

We also examined the tradeoff between the runtime of our reduction and the
amount of information each desirable endomorphism provides. Finally, we pre-
sented a method of learning the images of the private isogeny on additional torsion
points, which meant that our reduction required fewer desirable endomorphisms.

Based on our investigations, our recommendation is to avoid using starting
curves in supersingular isogeny-based key establishments with known endomor-
phism rings, which mitigates any future attack based on our approach or Petit’s.
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Since we do not know of an efficient method to select a (universal) starting curve
whose endomorphism ring is completely unknown, we recommend that the first
step during key generation in SIKE, and related protocols, be changed to choosing
a new starting curve. After this, the remaining steps of the key establishment
can proceed unchanged.

12.1 Future Work

The avenue of attack explored in this work is far from complete, and leaves much
to be explored and understood. Broadly speaking, it is important to understand
the potentials and limitations of exploiting the knowledge of the endomorphism
ring of the starting elliptic curve together with the knowledge of the action of
an isogeny on a torsion subgroup. A complete investigation of these elements is
necessary to thoroughly understand the security of supersingular isogeny-based
cryptosystems. Specifically, the major elements we leave for future work are:

• Find endomorphisms with a certain type of degree with a large percentage of
eigenvectors, in the unbalanced/multi-party cases. This amounts to finding
solutions to w2 +Dx2 +Dp(y2 + z2) = Lk for a large divisor D of N1 and
large divisor L of N2

2 . We have made a heuristic argument as to why we
believe such solutions exist when there are at least 4-parties, but have no
concrete solutions.

• If such endomorphisms can be found, investigate the distribution of the
eigenspaces.

• Investigate how this attack would work in the unbalanced case for computa-
tionally feasible cases, where the prime p is small enough to work.

• Determine, for a fixed prime p, if there are certain particular starting elliptic
curves that are more or less susceptible to our methods of attack. That
is, what is the most appropriate choice of starting curve in a 2-party key
exchange assuming we wish to have a fixed starting curve?

• Is there a more efficient reduction from SSDDH to finding solutions to our
quadratic form Q. Perhaps combining these methods with other works, for
example, that of Petit [17], could yield new cryptanalytic results.

• An in-depth comparison of sizes and performance between SIKE and SITH.

Acknowledgments. We thank Elena Bakos Lang, Edward Eaton, and Daniela
Maftuleac for their helpful suggestions.
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A Appendix

A.1 SIKE

The most important isogeny-based algorithm is SIKE, a KEM that was submitted
to the NIST call for quantum-safe algorithms. Let Fq denote a finite field with q
elements. Let E be an elliptic curve over Fq.

Suppose that Alice and Bob would like to use SIKE to agree on a secret key.
Refer to Figure 20 when reading the SIKE algorithm.
Public Parameters: Let p = 2a3b − 1. Let E be a supersingular elliptic curve
with j-invariant 1728. This is the starting curve for the NIST Round 1 version of
SIKE. The Round 2 version uses a starting curve that is adjacent to this one on
the 2-isogeny graph.
Key Generation: Alice chooses a random number 0 ≤ rA < 2a. She calculates
the isogeny φA on E whose kernel is generated by PA + [rA] · QA. She also
calculates EA = φA(E), φA(PB) and φA(QB).
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Public Key: EA, φA(PB), φA(QB).
Encapsulation: Similarly, Bob chooses a random 0 ≤ rB < 3b. He calculates
EB = φB(E), φB(PA) and φB(QA), where φB is an isogeny on E whose kernel is
generated by PB + [rB ] ·QB .

Bob also calculates the image EBA of the isogeny ψB on EA with kernel
generated by φA(PB)+[rB ] ·φA(QB). He calculates the j-invariant of EBA, which
we denote jBA, and uses this j-invariant to encrypt rB .
Encapsulated Key: EB , φB(PA), φB(QA),EncjAB (rB).
Decapsulation: Alice computes the isogeny ψA on EB whose kernel is generated
by φB(PA) + [rA] · φB(QA). She calculates the j-invariant of EAB. If both
participants performed honestly, then j(EAB) = j(EBA). Alice uses j(EAB) to
decrypt rB . She then derives E′B , φB(PA)′, φB(QA)′ using rB and compares them
to Bob’s encapsulated key to verify his honesty. Both parties can now use a key
derivation function on j(EAB) to get a shared symmetric key.

EA

E EAB

EB

ψBφA

φB ψA

Fig. 20: SIKE

A.2 Proofs

Proof (Corollary 7.19). If Oracle 7.12 outputs endomorphisms satisfying only
the modular condition, then by Proposition 7.18, the size of the eigenspace is

bounded above by 2`
e
2 . Thus, ρ ≤ 2`

e
2

`e = 2`−
e
2 ≤ 1

2 . Since H is monotonically
increasing in [0, 12 ],

H(ρ) ≤ 2`−
e
2 log

(
1
2`

e
2

)
+ (1− 2`−

e
2 ) log

(
1

1− 2`−
e
2

)
= 2`−

e
2 log

(
1
2`

e
2 (1− 2`−

e
2 )
)
− log (1− 2`−

e
2 )

= 2`−
e
2 log

(
1
2`

e
2 − 1

)
− log (1− 2`−

e
2 )

Observe that, for x = `−
e
2 ,

lim
x→0

(
− log (1− 2x)

2x log ( 1
2x − 1)

)
= 0.

So, for reasonably large e (such as in the SIKE setting),

− log (1− 2`−
e
2 ) ≤ 2`−

e
2 log

(
1
2`

e
2 − 1

)
.

Hence, we can bound H(ρ) by

H(ρ) ≤ 2(2`−
e
2 log (1

2`
e
2 − 1))

≤ 4`−
e
2 log `

e
2

≤ 2e`−
e
2 log `. �
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Proof (Lemma 7.4). The isogeny φC ◦ φ̂C is equal to [deg φC ]. We will use

the general fact that given isogenies ψ1, ψ2, it follows that ψ̂1 + ψ2 = ψ̂1 + ψ̂2.
Additionally, it is well-known that ι̂ = −ι and π̂ = −π. This implies

[deg φC ] = φC ◦ φ̂C

=

(
[w] + [x]ι+ [y]

(
[1] + π

2

)
+ [z]

(
ι+ ι ◦ π

2

))
·
(

[w]− [x]ι+ [y]

(
[1]− π

2

)
+ [z]

(
−ι− ι ◦ π

2

))
= [w2] + [wy] + [x2] + [xz] +

(
p+ 1

4

)(
[y2] + [z2]

)
=

[
w2 + wy + x2 + xz +

(
p+ 1

4

)(
y2 + z2

)]
where the second last equality follows from the fact that the maps corresponding
to [yz] and [zy] coefficients are negatives of one another. �

Proof (Lemma 7.5). This proof involves basic algebraic manipulations. Suppose
a 4-tuple (w0, x0, y0, z0) is a solution to

w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz = 2mk.

As the left-hand side of the equation is a quadratic form, it follows that that
(2w0, 2x0, 2y0, 2z0) is a solution to

w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz = 2m+2k.

Thus (2w0, 2x0, y0, z0) is a solution to

w2 + x2 + 2wy + 2xz + (p+ 1) (y2 + z2) = 2m+2k.

By completing the square we see that (2w0, 2x0, y0, z0) is a solution to

(w + y)2 + (x+ z)2 − y2 − z2 + (p+ 1) (y2 + z2) = 2m+2k.

Thus (2w0 + y0, 2x0 + z0, y0, z0) is a solution to

w2 + x2 + p(y2 + z2) = 2m+2k.

Conversely, suppose (w0, x0, y0, z0) is a solution to

w2 + x2 + p(y2 + z2) = 2mk,

then it is also a solution to

w2 + x2 − y2 − z2 + (p+ 1)(y2 + z2) = 2mk.

This implies that (w0 − y0, x0 − z0, y0, z0) is also a solution to

(w + y)2 + (x+ z)2 − y2 − z2 + (p+ 1)(y2 + z2) = 2mk.

Expanding the brackets implies (w0 − y0, x0 − z0, y0, z0) is a solution to

w2 + x2 + 2wy + 2xz + (p+ 1) (y2 + z2) = 2mk.

Therefore, (w0 − y0, x0 − z0, 2y0, 2z0) is a solution to

w2 + x2 + wy + xz +

(
p+ 1

4

)
(y2 + z2) = 2mk. �
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Lemma A.1. Note that [ 1r ] is an eigenvector of the matrix
[
α β
γ δ

]
over Z/`eZ

if and only if γ + (δ − α)r − βr2 ≡ 0 (mod `e).

Proof. If [ 1r ] is an eigenvector, then[
α β
γ δ

]
[ 1r ] =

[
βr+α
δr+γ

]
= λ [ 1r ]

for some λ ∈ Z/`eZ. Thus

rsλ ≡ δr + γ ≡ βr2 + αr (mod `e),

which implies

γ + (δ − α)r − βr2 ≡ 0 (mod `e).

Conversely, suppose γ + (δ − α)r − βr2 ≡ 0 (mod `e), then

δr + γ ≡ αr + βr2 (mod `e).[
α β
γ δ

]
[ 1r ] =

[
βr+α
δr+γ

]
=
[
βr+α

αr+βr2

]
= (βr + α) [ 1r ] .

So [ 1r ] is an eigenvector. �

We now propose the conditions under which there are no non-trivial endo-
morphisms with eigenvectors when y = z = 0. This helps to prove Remark 4.11
and our claim prior to Lemma 7.22.

Proposition A.2. Let φC denote a endomorphism on E whose degree is less
than p

4 . Let ` be prime, e ∈ N+. Assuming φC is non-constant on E[`e], then φC
has eigenvectors in E[`e] if and only if ` ≡ 1 (mod 4).

Proof. By Lemma 7.3 we know that

φC = [w] · [1] + [x] · ι+ [y] · [1]+π2 + [z] · ι+ιπ2 .

By Lemma 7.4 we know that

deg φC = w2 + x2 +
(
p+1
4

)
(y2 + z2) + wy + xz

=
(
w +

y

2

)2
+
(
x+

z

2

)2
+
p

4
(y2 + z2).

As deg φC < p
4 we see that y = z = 0, and hence φC = [w] + [x]ι. Let {P, ι(P )}

be a basis for E[`e]. Since ι2(P ) = −P , φC on E[`e] acts as [w −xx w ] with respect
to {P, ι(P )}.

To find the eigenvectors notice that the characteristic polynomial of this
matrix is λ2 − 2wλ+ w2 + x2. The eigenvalues are

λ =
2w ±

√
4w2 − 4(w2 + x2)

2
= w ± x

√
−1.

We conclude that, in order for eigenvectors to exist, the number −1 has to be a
quadratic residue modulo `e. In view of the restriction `e > 2, this happens if
and only if ` ≡ 1 (mod 4). �

Proposition A.2 shows that in the SIKE/SIDH setting there are no endomor-
phisms of small degree that have eigenvectors.
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Corollary A.3. The non-trivial endomorphisms with degree less than p
4 have no

`e-eigenvectors in the SIKE/SIDH setting (where ` ∈ {2, 3}, as ` 6≡ 1 (mod 4)).

Remark A.4. A similar statement to Corollary A.3 holds for almost eigenvec-
tors, (see Definition 9.4 for a definition of almost eigenvectors).

Corollary A.3 means that Theorem 4.9 is not viable against Alice’s or Bob’s
private key, as it will reveal a trivial amount of information.

A.3 Convenient Basis

Lemma A.5 is used in Example A.6 and Remark 7.9, where Example A.6 finds
a convenient basis for the torsion group E0[3239] and is also mentioned in Re-
mark 7.9.

Lemma A.5. Given a point P on E, then π(P ) = ιP if and only if P =
(ui, v(1− i)) for some u, v ∈ Fp. Furthermore, this happens exactly when u−u3 =
−2v2 for u, v ∈ Fp.

Proof. We start by proving the first statement. Let P = (r+ui, v+si) ∈ E(Fp2),
for r, u, v, s ∈ Fp, and assume π(P ) = ι(P ). Then π(P ) = (r − ui, v − si)
and ι(P ) = (−r − ui,−s + vi). Hence, r = 0 and s = −v, and we can write
P = (ui, v(1− i)).

Now, suppose P = (ui, v(1− i)) for some u, v ∈ Fp. Then π(P ) = (−ui, v(1 +
i)) = (−(ui), (i)(v(1− i))) = ι(P ).

Next we prove the second statement. Let u, v ∈ Fp satisfy u − u3 = −2v2.
Then

(ui)3 + (ui) = −i(u3 − u) = −i(−2v2) = 2iv2 = (v(1− i))2,

so there is a point (ui, v(1− i)) on E.
Lastly, suppose P = (ui, v(1− i)) for some u, v ∈ Fp. Then

(ui)3 + (ui) = (v(1− i))2

implies that

−2v2 = u− u3. �

Example A.6. (Referenced in Remark 7.9) We will now give an example of a
basis of the form {P, ιP} = {P, π(P )} for the power of 3 that is used in SIKE.
Consider the prime p = 23723239 − 1.

Let P = (57055647952093124204618885412360749610656016406190746655038
4438849978105317427915430702852898083512987673860531431396211577428396
6526258409728000811219500206294237520306098215331277970869143286920762
75754730669931633440054111 · i,
1705296797115708719489341778870812530299653844906841993634684093570927
9561601524493610818501559911751464546869560854421810985624872192397305
7187123901749477184914154433309844493495718071811551302575552223407602
899906055523667 +
1018418806205773438102883405997972406839742426105838697075272126969758
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6145066463601566774711545467596109907742923231658167094055727800630419
9869733448694023397917926856456034898649040128809633756776595346275838
98972759596053164 · i).

Then P and π(P ) have order 3239 and satisfy the condition of Lemma A.5.
This means {P, π(P )} is a convenient basis for E0[3239]. Thus, by Lemma 7.10
with respect to this basis for E0[3239], endomorphisms of the form

φC = [w] · [1] + [x] · ι+ [y] · [1]+π2 + [z] · ι+ιπ2 .

act as the matrix
[w−z −x+y
x+y w+z

]
on E0[3239]. �

A.4 Solutions to Quadratic Equations

As mentioned in Remark 7.7, we can find endomorphisms by using Cornacchia’s
algorithm [8] to find solutions of the quadratic form in the SIKE setting.

Example A.7. (Referenced in Remark 7.7) Recall the prime used in SIKEp751
is p = 23723239 − 1. Given p = 23723239 − 1. Let

f(w, x, y, z) = w2 + x2 + p+1
4 (y2 + z2) + wy + xz.

Using Cornacchia’s algorithm [8] we found the solutions

f(w, x, y, z) = 2744 505

given by y = 2, z = 0,
w = 190459273013886173789469058477389405072977989329809313036300027049
913856737274269267420579193501276882631488221299,
x = 100934992803712252583499232003067684289983166377831353212224870329
35396520078551181471652673632454717826921219943, and

f(w, x, y, z) = 3471 797

given by y = 6, z = 2,
w = 44024439264548121092225470973064474976017053779321578978148522918
1170280599899239917017398683585337535797497667429,
x = 35339403437600739712840074289411453872461880583545702160848694913
6846529962267603900382470795510648299515992269154.
However, the associated endomorphisms do not have a large number of eigenvec-
tors, hence they are not useful in Theorem 6.12. �

We now give an example of an endomorphism satisfying only the modular
condition.

Example A.8. (Referenced in Remark 7.17) In the case of the SIKEp751 prime

p = 23723239 − 1, it is reasonably easy to find matrices of the form
[
α β
γ δ

]
,

where 3 - γ, δ − α, β, that have an eigenvector [ 1r ] , and satisfy the modular

condition (δ − α)− 2βr ≡ 0
(

mod 3
240
2

)
. We found a matrix whose entries are

α = 0, γ = 1, δ = 1, and
β = 80731150449963850187880620912834047867559326300677546375486314294
4360806423365184661810647285478547377694955793200
with an eigenvector [ 1r ] where
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r = 10764153393328513358384082788377873049007910173423672850064841905
92481075231153579549080863047304729836926607724265.
Solving

[
α β
γ δ

]
=
[w−z −x+y
x+y w+z

]
for w, x, y, z gives an endomorphism φC = [w] ·

[1] + [x] · ι + [y] · [1]+π
2 + [z] · ι+ιπ2 with 3

238
2 eigenvectors. Although this en-

domorphism has many eigenvectors, it does not have a high proportion of
eigenvectors. Furthermore, for this example k is also impractically large, as
k = 26910383483321283395960206970944682622519775433559182125162104764
8120268807788394887270215761826182459231651931067. �
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