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Abstract. We consider the problem of efficiently simulating random quantum states and random
unitary operators, in a manner which is convincing to unbounded adversaries with black-box oracle
access.

This problem has previously only been considered for restricted adversaries. Against adversaries with
an a priori bound on the number of queries, it is well-known that t-designs suffice. Against polynomial-
time adversaries, one can use pseudorandom states (PRS) and pseudorandom unitaries (PRU), as
defined in a recent work of Ji, Liu, and Song; unfortunately, no provably secure construction is known
for PRUs.

In our setting, we are concerned with unbounded adversaries. Nonetheless, we are able to give stateful
quantum algorithms which simulate the ideal object in both settings of interest. In the case of Haar-
random states, our simulator is polynomial-time, has negligible error, and can also simulate verification
and reflection through the simulated state. This yields an immediate application to quantum money:
a money scheme which is information-theoretically unforgeable and untraceable. In the case of Haar-
random unitaries, our simulator takes polynomial space, but simulates both forward and inverse access
with zero error.

These results can be seen as the first significant steps in developing a theory of lazy sampling for
random quantum objects.

1 Introduction

1.1 Motivation

Efficient simulation of randomness is a task with countless applications, ranging from cryptography to deran-
domization. In the setting of classical probabilistic computation, such simulation is straightforward in many
settings. For example, a random function which will only be queried an a priori bounded number of times t
can be perfectly simulated using a t-wise independent function [31]. In the case of unbounded queries, one
can use pseudorandom functions (PRFs), provided the queries are made by a polynomial-time algorithm [16].
These are examples of stateless simulation methods, in the sense that the internal memory of the simulator
is initialized once (e.g., with the PRF key) and then remains fixed regardless of how the simulator is queried.
Against arbitrary adversaries, one must typically pass to stateful simulation. For example, the straightfor-
ward and well-known technique of lazy sampling suffices to perfectly simulate a random function against
arbitrary adversaries; however, the simulator must maintain a list of responses to all previous queries.

Each of these techniques for simulating random classical primitives has a plethora of applications in
theoretical cryptography, both as a proof tool and for cryptographic constructions. These range from con-
structing secure cryptosystems for encryption and authentication, to proving security reductions in a wide
range of settings, to establishing security in idealized models such as the Random Oracle Model [6].

Quantum randomness. As is well-known, quantum sources of randomness exhibit dramatically different
properties from their classical counterparts [23,7]. Compare, for example, uniformly random n-bit classical
states (i.e., n-bit strings) and uniformly random n-qubit (pure) quantum states. A random string x is
obviously trivial to sample perfectly given probabilistic classical (or quantum) computation, and can be



copied and distributed arbitrarily. However, it is also (just as obviously) deterministic to all parties who
have examined it before. By contrast, a random state |ϕ〉 would take an unbounded amount of information
to describe perfectly. Even if one manages to procure such a state, it is then impossible to copy due to the
no-cloning theorem. On the other hand, parties who have examined |ϕ〉 many times before, can still extract
almost exactly n bits of randomness from any fresh copy of |ϕ〉 they receive – even if they use the exact
same measurement procedure each time.

The differences between random classical and random quantum maps are even more stark. The outputs of
a classical random function are of course classical random strings, with all of the aforementioned properties.
Outputs which have already been examined become effectively deterministic, while the rest remain uniformly
random and independent. This is precisely what makes efficient simulation possible via lazy sampling. A
Haar-random unitary U queried on two inputs |ψ〉 and |φ〉 also produces (almost) independent and uniformly
random states when queried, but only if the queries are orthogonal, i.e., 〈ψ | φ〉 = 0. Unitarity implies that
overlapping queries must be answered consistently, i.e., if 〈ψ | φ〉 = δ then 〈(Uψ) | (Uφ)〉 = δ. This possibility
of querying with a distinct pure state which is not linearly independent from previous queries simply doesn’t
exist for classical functions.

We emphasize that the above differences should not be interpreted as quantum random objects simply
being “stronger” than their classical counterparts. In the case of classical states, i.e. strings, the ability to copy
is quite useful, e.g., in setting down basic security definitions [8,3,2] or when rewinding an algorithm [29,30,14].
In the case of maps, determinism is also quite useful, e.g., for verification in message authentication.

1.2 The problem: efficient simulation

Given the dramatic differences between classical and quantum randomness, and the usefulness of both, it
is reasonable to ask if there exist quantum analogues of the aforementioned efficient simulators of classical
random functions. In fact, given the discussion above, it is clear that we should begin by asking if there even
exist efficient simulators of random quantum states.

Simulating random states. The first problem of interest is thus to efficiently simulate the following ideal
object: an oracle IS(n) which contains a description of a perfectly Haar-random n-qubit pure state |ϕ〉,
and which outputs a copy of |ϕ〉 whenever it is invoked. We first make an obvious observation: the classical
analogue, which is simply to generate a random bitstring x ← {0, 1}n and then produce a copy whenever
asked, is completely trivial. In the quantum case, efficient simulation is only known against limited query
algorithms (henceforth, adversaries.)

If the adversary has an a priori bound on the number of queries, then state t-designs suffice. These are
indexed families {|ϕk,t〉 : k ∈ Kt} of pure states which perfectly emulate the standard uniform “Haar”
measure on pure states, up to the first t moments. State t-designs can be sampled efficiently, and thus yield
a stateless simulator for this case [4]. A recent work of Ji, Liu and Song considered the case of polynomial-
time adversaries [18]. They defined a notion of pseudorandom states (PRS), which appear Haar-random to
polynomial-time adversaries who are allowed as many copies of the state as they wish. They also showed how
to construct PRS efficiently, thus yielding a stateless simulator for this class of constrained adversaries [18];
see also [9].

The case of arbitrary adversaries is, to our knowledge, completely unexplored. In particular, before this
work it was not known whether simulating IS(n) against adversaries with no a priori bound on query or
time complexity is possible, even if given polynomial space (in n and the number of queries) and unlimited
time. Note that, while the state family constructions from [18,9] could be lifted to the unconditional security
setting by instantiating them with random instead of pseudorandom functions, this would require space
exponential in n regardless of the number of queries.

Simulating random unitaries. In the case of simulating random unitaries, the ideal object is an oracle
IU (n) which contains a description of a perfectly Haar-random n-qubit unitary operator U , and applies U
to its input whenever it is invoked. The classical analogue is the well-known Random Oracle, and can be
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simulated perfectly using the aforementioned technique of lazy sampling. In the quantum case, the situation
is even less well-understood than in the case of states.

For the case of query-limited adversaries, we can again rely on design techniques: (approximate) unitary
t-designs can be sampled efficiently, and suffice for the task [10,21]. Against polynomial-time adversaries,
Ji, Liu and Song defined the natural notion of a pseudorandom unitary (or PRU) and described candidate
constructions [18]. Unfortunately, at this time there are no provably secure constructions of PRUs. As in
the case of states, the case of arbitrary adversaries is completely unexplored. Moreover, one could a priori
plausibly conjecture that simulating IU might even be impossible. The no-cloning property seems to rule out
examining input states, which in turn seems to make it quite difficult for a simulator to correctly identify
the overlap between multiple queries, and then answer correspondingly.

Extensions. While the above problems already appear quite challenging, we mention several natural exten-
sions that one might consider. First, for the case of repeatedly sampling a random state |ϕ〉, one would ideally
want some additional features, such as the ability to apply the two-outcome measurement {|ϕ〉〈ϕ|,1−|ϕ〉〈ϕ|}
(verification) or the reflection 1−2|ϕ〉〈ϕ|. In the case of pseudorandom simulation, these additional features
can be used to create a (computationally secure) quantum money scheme [18]. For the case of simulating
random unitaries, we might naturally ask that the simulator for a unitary U also has the ability to respond
to queries to U−1 = U†.

1.3 This work

In this work, we make significant progress on the above problems, by giving the first simulators for both ran-
dom states and random unitaries, which are convincing to arbitrary adversaries. We also give an application of
our sampling ideas: the construction of a new quantum money scheme, which provides information-theoretic
security guarantees against both forging and tracing.

We begin by remarking that our desired simulators must necessarily be stateful, for both states and
unitaries. Indeed, since approximate t-designs have Ω((22n/t)2t) elements (see, e.g., [26] which provides a
more fine-grained lower bound), a stateless approach would require superpolynomial space simply to store
an index from a set of size Ω((22n/t(n))2t(n)) for all polynomials t(n).

In the following, we give a high-level overview of our approach for each of the two simulation problems
of interest.

Simulating random states. As discussed above, we wish to construct an efficient simulator ES(n) for
the ideal oracle IS(n). For now we focus on simulating the procedure which generates copies of the fixed
Haar-random state; we call this IS(n).Gen. We first note that the mixed state observed by the adversary
after t queries to IS(n).Gen is the expectation of the projector onto t copies of |ψ〉. Equivalently, it is the
(normalized) projector onto the symmetric subspace Symn,t of (C2n)⊗t:

τt = Eψ∼Haar|ψ〉〈ψ|⊗t ∝ ΠSymtC2n . (1)

Recall that Symn,t is the subspace of (C2n)⊗t of vectors which are invariant under permutations of the t
tensor factors. Our goal will be to maintain an entangled state between the adversary A and our oracle
simulator ES such that the reduced state on the side of A is τt after t queries. Specifically, the joint state
will be the maximally entangled state between the Symn,t subspace of the t query output registers received
by A, and the Symn,t subspace of t registers held by ES. If we can maintain this for the first t queries,
then it’s not hard to see that there exists an isometry V t→t+1 which, by acting only on the state of ES,
implements the extension from the t-fold to the (t+ 1)-fold joint state.

The main technical obstacle, which we resolve, is showing that V t→t+1 can be performed efficiently. To
achieve this, we develop some new algorithmic tools for working with symmetric subspaces, including an
algorithm for coherent preparation of its basis states. We let A denote an n-qubit register, Aj its indexed
copies, and At = A1 · · ·At t-many indexed copies (and likewise for B.) We also let {|Sym(α)〉 : α ∈ S↑n,t}
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denote a particular orthonormal basis set for Symn,t, indexed by some set S↑n,t (see Section 3 for definitions
of these objects.)

Theorem 1. For each n and t, there exists a polynomial-time quantum algorithm which implements an
isometry V = V t→t+1 from Bt to At+1B

t+1 such that, up to negligible trace distance,

(1At ⊗ V )
∑

α∈S↑n,t

|Sym(α)〉At |Sym(α)〉Bt =
∑

β∈S↑n,t+1

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

Above, V is an operator defined to apply to a specific subset of registers of a state. When no confusion
can arise, in such settings we will abbreviate 1⊗ V—the application of this operator on the entire state—as
simply V .

It will be helpful to view V t→t+1 as first preparing |0n〉At+1 |0n〉Bt+1 and then applying a unitary U t→t+1

on At+1B
t+1. Theorem 1 then gives us a way to answer Gen queries efficiently, as follows. For the first query,

we prepare a maximally entangled state |φ+〉A1B1
across two n-qubit registers A1 and B1, and reply with

register A1. Note that Symn,1 = C2n . For the second query, we prepare two fresh registers A2 and B2,
both in the |0n〉 state, apply U1→2 on A2B1B2, return A2, and keep B1B2. For the t-th query, we proceed
similarly, preparing fresh blank registers At+1Bt+1, applying U t→t+1, and then outputting the register At+1.

With this approach, as it turns out, there is also a natural way to respond to verification queries Ver
and reflection queries Reflect. The ideal functionality IS.Ver is to apply the two-outcome measurement
{|ϕ〉〈ϕ|,1 − |ϕ〉〈ϕ|} corresponding to the Haar-random state |ϕ〉. To simulate this after producing t sam-
ples, we apply the inverse of U t−1→t, apply the measurement {|02n〉〈02n|,1 − |02n〉〈02n|} to AtBt, reapply
U t−1→t, and then return At together with the measurement outcome (i.e., yes/no). For IS.Reflect, the ideal
functionality is to apply the reflection 1−2|ϕ〉〈ϕ| through the state. To simulate this, we perform a sequence
of operations analogous to Ver, but apply a phase of −1 on the |02n〉 state of AtBt instead of measuring.

Our main result on simulating random states is to establish that this collection of algorithms correctly
simulates the ideal object IS, in the following sense.

Theorem 2. There exists a stateful quantum algorithm ES(n, ε) which runs in time polynomial in n,
log(1/ε), and the number of queries q submitted to it, and satisfies the following. For all oracle algorithms
A, ∣∣∣Pr

[
AIS(n) = 1

]
− Pr

[
AES(n,ε) = 1

]∣∣∣ ≤ ε .
A complete description of our construction, together with the proofs of Theorem 1 and Theorem 2, are

given in Section 3.

Application: untraceable quantum money. To see that the efficient state sampler leads to a powerful
quantum money scheme, consider building a scheme where the bank holds the ideal object IS. The bank
can mint bills by IS.Gen, and verify them using IS.Ver. As each bill is guaranteed to be an identical and
Haar-random state, it is clear that this scheme should satisfy perfect unforgeability and untraceability, under
quite strong notions of security.

By Theorem 7, the same properties should carry over for a money scheme built on ES, provided ε is
sufficiently small. We call the resulting scheme Haar money. Haar money is an information-theoretically
secure analogue of the scheme of [18], which is based on pseudorandom states. We remark that our scheme
requires the bank to have quantum memory and to perform quantum communication with the customers.
However, given that quantum money already requires customers to have large-scale, high-fidelity quantum
storage, these additional requirements seem reasonable.

The notions of correctness and unforgeability (often called completeness and soundness) for quantum
money are well-known (see, e.g., [1].) Correctness asks that honestly generated money schemes should verify,
i.e., Ver(Mint) should always accept. Unforgeability states that an adversary with k bills and oracle access to
Ver should not be able to produce a state on which Ver⊗k+1 accepts. In this work, we consider untraceable
quantum money (also called “quantum coins” [24].) We give a formal security definition for untraceability,
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which states that an adversary A with oracle access to Ver and Mint cannot do better than random guessing
in the following experiment:

1. A outputs some candidate bill registers {Mj} and a permutation π;
2. b← {0, 1} is sampled, and if b = 1 the registers {Mj} are permuted by π; each candidate bill is verified

and the failed ones are discarded;
3. A receives the rest of the bills and the entire internal state of the bank, and outputs a guess b′ for b.

Theorem 3. The Haar money scheme HM, defined by setting

1. HM.Mint = ES(n, negl(n)).Gen
2. HM.Ver = ES(n, negl(n)).Ver

is a correct quantum money scheme which satisfies information-theoretic unforgeability and untraceability.

One might reasonably ask if there are even stronger definitions of security for quantum money. Given
its relationship to the ideal state sampler, we believe that Haar money should satisfy almost any notion of
unforgeability and untraceability, including composable notions. We also remark that, based on the structure
of the state simulator, which maintains an overall pure state supported on two copies of the symmetric
subspace of banknote registers, it is straightforward to see that the scheme is also secure against an “honest
but curious” or “specious” [27,15] bank. We leave the formalization of these added security guarantees to
future work.

Sampling Haar-random unitaries. Next, we turn to the problem of simulating Haar-random unitary
operators. In this case, the ideal object IU(n) initially samples a description of a perfectly Haar-random
n-qubit unitary U , and then responds to two types of queries: IU.Eval, which applies U , and IU.Invert, which
applies U†. In this case, we are able to construct a stateful simulator that runs in space polynomial in n and
the number of queries q, and is exactly indistinguishable from IU(n) to arbitrary adversaries. Our result can
be viewed as a polynomial-space quantum analogue of the classical technique of lazy sampling for random
oracles.

Our high-level approach is as follows. For now, suppose the adversary A only makes parallel queries to
Eval. If the query count t of A is a priori bounded, we can simply sample an element of a unitary t-design.
We can also do this coherently: prepare a quantum register I in uniform superposition over the index set of
the t-design, and then apply the t-design controlled on I. Call this efficient simulator EUt. Observe that the
effect of t parallel queries is just the application of the t-twirling channel T (t) to the t input registers [10],
and that EUt simulates T (t) faithfully. What is more, it applies a Stinespring dilation6 [28] of T (t) with
dilating register I.

Now suppose A makes an “extra” query, i.e., query number t + 1. Consider an alternative Stinespring
dilation of T (t), namely the one implemented by EUt+1 when queried t times. Recall that all Stinespring
dilations of a quantum channel are equivalent, up to a partial isometry on the dilating register. It follows
that there is a partial isometry, acting on the private space of EUt, that transforms the dilation of T (t)

implemented by EUt into the dilation of T (t) implemented by EUt+1. If we implement this transformation,
and then respond to A as prescribed by EUt+1, we have achieved perfect indistinguishability against the
additional query. By iterating this process, we see that the a priori bound on the number of queries is
no longer needed. We let EU denote the resulting simulator. The complete construction is described in
Construction 4 below.

Our high-level discussion above did not take approximation into account. All currently known efficient
constructions of t-designs are approximate. Here, we take a different approach: we will implement our con-
struction using exact t-designs. This addresses the issue of adaptive queries: if there exists an adaptive-query
distinguisher with nonzero distinguishing probability, then by post-selection there also exists a parallel-query
one via probabilistic teleportation. This yields that the ideal and efficient unitary samplers are perfectly in-
distinguishable to arbitrary adversaries.

6 The Stinespring dilation of a quantum channel is an isometry with the property that the quantum channel can be
implemented by applying the isometry and subsequently discarding an auxiliary register.
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Theorem 4. For all oracle algorithms A, Pr
[
AIU(n) = 1

]
= Pr

[
AEU(n) = 1

]
.

The existence of exact unitary t-designs for all t is a fairly recent result. It follows as a special case of
a result of Kane [19], who shows that designs exist for all finite-dimensional vector spaces of well-behaved
functions on path-connected topological spaces. He also gives a simpler result for homogeneous spaces when
the vector space of functions is invariant under the symmetry group action. Here, the number of elements of
the smallest design is bounded just in terms of the dimension of the space of functions. The unitary group is
an example of such a space, and the dimension of the space of homogeneous polynomials of degree t in both
U and U† can be explicitly derived, see e.g. [26]. This yields the following.

Corollary 1. The space complexity of EU(n) for q queries is bounded from above by 2q(2n+log e)+O(log q).

An alternative approach. We now sketch another potential approach to lazy sampling of unitaries. Very
briefly, this approach takes a representation-theoretic perspective and suggests that the Schur transform [5]
could lead to a polynomial-time algorithm for lazy sampling Haar-random unitaries. The discussion below
uses tools and language from quantum information theory and the representation theory of the unitary and
symmetric groups to a much larger extent than the rest of the article, and is not required for understanding
our main results.

We remark that the analogous problem of lazy sampling a quantum oracle for a random classical function
was recently solved by Zhandry [32]. One of the advantages of Zhandry’s technique is that it partly recovers
the ability to inspect previously made queries, an important feature of classical lazy sampling. The key
insight is that the simulator can implement the Stinespring dilation of the oracle channel, and thus record
the output of the complementary channel.7 As the classical function is computed via XOR, changing to the
Zn2 -Fourier basis makes the recording property explicit. It also allows for an efficient implementation.

In the case of Haar-random unitary oracles, we can make an analogous observation. Consider an algorithm
that makes t parallel queries to U . The relevant Fourier transform is now over the unitary group, and is

given by the Schur transform [5]. By Schur-Weyl duality (see e.g. [12]), the decomposition of
(
C2n

)⊗t
into

irreducible representations is given by (
Cd
)⊗t ∼= ⊕

λ`dt

[λ]⊗ Vλ,d. (2)

Here λ `d t means λ is any partition of t into at most d parts, [λ] is the Specht module of St, and Vλ,d is
the Weyl module of U(d), corresponding to the partition λ, respectively. By Schur’s lemma, the t-twirling
channel acts as

T (t) =
⊕
λ`dt

id[λ] ⊗ ΛVλ,d , (3)

where id is the identity channel, and Λ = Tr(·)τ with the maximally mixed state τ is the depolarizing
channel. We therefore obtain a Stinespring dilation of the t-twirling channel as follows. Let B̃, B̃′ be registers
with Hilbert spaces

HB̃ = HB̃′ =
⊗
λ`dt

Vλ,d (4)

and denote the subregisters by B̃λ and B̃′λ, respectively. Let further |φ+〉B̃B̃′ be the standard maximally
entangled state on these registers, and let C be a register whose dimension is the number of partitions of t
(into at most 2n parts). Define the isometry

V̂AtB̃→AtB̃C =
⊕
λ`dt

FVλ,dB̃λ ⊗ I[λ] ⊗ |λ〉C (5)

7 The complementary channel of a quantum channel maps the input to the auxiliary output of the Stinespring
dilation isometry.
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In the above equation Vλ,d and [λ] are understood to be subspaces of At, the identity operators on B̃µ, µ 6= λ
are omitted and F is the swap operator. By (3), a Stinespring dilation of the t-twirling channel is then given
by

VAt→AtB̃B̃′C = V̂AtB̃→AtB̃C |φ
+〉B̃B̃′ . (6)

By the equivalence of all Stinespring dilations, the exists an isometry WB̂t→B̃B̃′C that transforms the state
register of EU(n) after t parallel queries so that the global state is the same as if the Stinespring dilation
above had been applied to the t input registers. But now the quantum information that was contained in
the subspace Vλ,d of the algorithm’s query registers can be found in register B̃λ.

1.4 Organization

The remainder of the paper is organized as follows. In Section 2, we recall some basic notation and facts,
and some lemmas concerning coherent preparation of certain generic families of quantum states. The proofs
for these lemmas are given in Appendix A. We also describe stateful machines, which will be our model
for thinking about the aforementioned ideal objects and their efficient simulators. In Section 3 we describe
our efficient simulator for Haar-random states, and in Section 4 we describe our polynomial-space simulator
for Haar-random unitaries. We end by describing the Haar money scheme and establishing its security in
Section 5.
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2 Preliminaries

2.1 Some basics

Given a fixed-size (e.g., n-qubit) register A, we will use A1, A2, . . . to denote indexed copies of A. We will use
At to denote a register consisting of t indexed copies of A, i.e., At = A1A2 · · ·At. Unless stated otherwise,
distances of quantum states are measured in the trace distance, i.e.,

d(ρ, σ) =
1

2
‖ρ− σ‖1 where ‖X‖1 = Tr

(√
X†X

)
.

Distances of unitary operators are measured in the operator norm.
We will frequently apply operators to some subset of a larger collection of registers. In that context, we

will use register indexing to indicate which registers are being acted upon, and suppress identities to simplify
notation. The register indexing will also be suppressed when it is clear from context. For example, given an
operator XA→B and some state ρ on registers A and C, we will write X(ρ) in place of (X⊗1C)(ρ) to denote
the state on BC resulting from applying X to the A register of ρ.

We let |φ+〉AA′ denote the maximally entangled state on registers A and A′. For a linear operator X and
some basis choice, we denote its transpose by XT .

Lemma 1 (Mirror lemma; see, e.g., [22]). For XA→B a linear operator,

XA→B |φ+〉AA′ =

√
dim(B)

dim(A)
XT
B′→A′ |φ+〉BB′ .
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2.2 Unitary designs

Let µn be the Haar measure on the unitary group U(2n). We define the Haar t-twirling channel T (t)
Haar by

T (t)
Haar(X) =

∫
U(2n)

U⊗tX
(
U⊗t

)†
dµ(U). (7)

For a finite subset D ⊂ U(2n), we define the t-twirling map with respect to D as

T (t)
D (X) =

1

|D|
∑
U∈D

U⊗tX
(
U⊗t

)†
. (8)

An n-qubit unitary t-design is a finite set D ⊂ U(2n) such that

T (t)
D = T (t)

Haar(X) (9)

Another twirling channel is the mixed twirling channels with ` applications of the unitary and t − `
applications of it’s inverse,

T (`,t−`)
Haar (Γ ) =

∫
U(2n)

U⊗` ⊗
(
U⊗(t−`)

)†
Γ
(
U⊗`

)† ⊗ U⊗(t−`)dµ(U). (10)

The mixed twirling channel T (`,t−`)
D for a finite set D ⊂ U(2n) is also defined analogous to Equation (8). As

our definition of unitary t-designs is equivalent to one based on the expectation values of polynomials (see,
e.g., [21]), we easily obtain the following.

Proposition 1. Let D be an n-qubit unitary t-design and 0 ≤ ` ≤ t. Then

T (`,t−`)
Haar = T (`,t−`)

D (11)

Finite exact unitary t-designs exist. In particular, one can apply the following theorem to obtain an upper
bound on their minimal size. Here, a design for a function space W on a topological space X with measure
µ is a finite set D ⊂ X such that the expectation of a function f ∈ W is the same whether it is taken over
X according to µ or over the uniform distribution on D.

Theorem 5 ([19], Theorem 10). Let X be a homogeneous space, µ an invariant measure on X and W a
M -dimensional vector subspace of the space of real functions on X that is invariant under the symmetry group
of X, where M > 1. Then for any N > M(M − 1), there exists a W -design for X of size N . Furthermore,
there exists a design for X of size at most M(M − 1).

The case of unitary t-designs is the one where X = U(2n) is acting on itself (e.g., on the left), µ is the
Haar measure, and W is the vector space of homogeneous polynomials of degree t in both U and U†8. The
dimension of this space is

Mt =

(
22n + t− 1

t

)2

≤
(
e(22n + t− 1)

t

)t
, (12)

see e.g. [26]. We therefore get

Corollary 2. For all n, there exists an exact n-qubit unitary t-design with a number of elements which is
at most (

e(22n + t− 1)

t

)2t

.

8 The output of the twirling channel (7) is a matrix of such polynomials.
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2.3 Real and ideal stateful machines

We will frequently use stateful algorithms with multiple “interfaces” which allow a user to interact with
the algorithm. We will refer to such objects as stateful machines. We will use stateful machines to describe
functionalities (and implementations) of collections of oracles which relate to each other in some way. For
example, one oracle might output a fixed state, while another oracle reflects about that state.

Definition 1 (Stateful machine). A stateful machine S consists of:

– A finite set Λ, whose elements are called interfaces. Each interface I ∈ Λ has two fixed parameters
nI ∈ N (input size) and mI ∈ N (output size), and a variable tI initialized to 1 (query counter.)

– For each interface I ∈ Λ, a sequence of quantum algorithms {S.Ij : j = 1, 2, . . . }. Each S.Ij has an
input register of nI qubits, an output register of mI qubits, and is allowed to act on an additional shared
work register R (including the ability to add/remove qubits in R.) In addition, each S.Ij increments the
corresponding query counter tI by one.

The typical usage of a stateful machine S is as follows. First, the work register R is initialized to be empty,
i.e., no qubits. After that, whenever a user invokes an interface S.I and supplies nI qubits in an input
register M , the algorithm S.ItI is invoked on registers M and R. The contents of the output register are
returned to the user, and the new, updated work register remains for the next invocation. We emphasize
that the work register is shared between all interfaces.

We remark that we will also sometimes define ideal machines, which behave outwardly like a stateful
machine but are not constrained to apply only maps which are implementable in finite space or time. For
example, an ideal machine can have an interface that implements a perfectly Haar-random unitary U , and
another interface which implements U†.

2.4 Some state preparation tools

We now describe some algorithms for efficient coherent preparation of certain quantum state families. The
proofs for the following lemmas can be found in Appendix A. We begin with state families with polynomial
support.

Lemma 2. Let |ϕ〉 =
∑
x∈{0,1}n ϕ(x)|x〉 be a family of quantum states whose amplitudes ϕ have an efficient

classical description ϕ̃, and such that |{x : ϕ(x) 6= 0}| ≤ poly(n). Then there exists a quantum algorithm P
which runs in time polynomial in n and log(1/ε) and satisfies

‖P|ϕ̃〉|0n〉 − |ϕ̃〉|ϕ〉‖2 ≤ ε .

Given a set S ⊂ {0, 1}n, we let

|S〉 :=
1√
|S|

∑
x∈S
|x〉 and |S̄〉 :=

1√
2n − |S|

∑
x∈{0,1}\S

|x〉

denote the states supported only on S and its set complement S̄, respectively. Provided that S has polynomial
size, we can perform coherent preparation of both state families efficiently: the former by Lemma 2 and the
latter via the below.

Lemma 3. Let S ⊂ {0, 1}n be a family of sets of size poly(n) with efficient description S̃, and let ε > 0.
There exists a quantum algorithm P which runs in time polynomial in n and log(1/ε) and satisfies∥∥∥P|S̃〉A|0n〉B − |S̃〉A|S̄〉B∥∥∥

2
≤ ε .

Finally, we show that if two orthogonal quantum states can be prepared, then so can an arbitrary
superposition of the two.

9



Lemma 4. Let |ζ0,j 〉, |ζ1,j 〉 be two familes of n-qubit quantum states such that 〈ζ0,j | ζ1,j〉 = 0 for all j, and
such that there exists a quantum algorithm Pb which runs in time polynomial in n and log(1/ε) and satisfies
‖Pb|j〉|0n〉 − |j〉|ζb,j 〉‖2 ≤ ε for b ∈ {0, 1}.

For z0, z1 ∈ C such that |z0|2 + |z1|2 = 1, let z̃ denote a classical description of (z0, z1) to precision at
least ε. There exists a quantum algorithm Q which runs in time polynomial in n and log(1/ε) and satisfies∥∥Q|j〉|z̃〉|0n〉 − |j〉|z̃〉(z0|ζ0,j 〉+ z1|ζ1,j 〉

)∥∥
2
≤ ε . (13)

3 Simulating a Haar-random state oracle

3.1 The problem, and our approach

We begin by defining the ideal object we’d like to emulate. Here we deviate slightly from the discussion
above, in that we ask for the reflection oracle to also accept a (quantum) control bit.

Construction 1 (Ideal state sampler) The ideal n-qubit state sampler is an ideal machine IS(n) with
interfaces (Init,Gen,Ver,CReflect), defined as follows.

1. IS(n).Init : takes no input; samples a description ϕ̃ of an n-qubit state |ϕ〉 from the Haar measure.
2. IS(n).Gen : takes no input; uses ϕ̃ to prepare a copy of |ϕ〉 and outputs it.
3. IS(n).Ver : receives n-qubit input; uses ϕ̃ to apply the measurement {|ϕ〉〈ϕ|, 1 − |ϕ〉〈ϕ|}; return the

post-measurement state and output acc in the first case and rej in the second.
4. IS(n).CReflect : receives (n+ 1)-qubit input; uses ϕ̃ to implement the controlled reflection Rϕ := |0〉〈0|⊗

1+ |1〉〈1| ⊗ (1− 2 |ϕ〉〈ϕ|) about |ϕ〉.

We assume that Init is called first, and only once; the remaining oracles can then be called indefinitely
many times, and in any order. If this is inconvenient for some application, one can easily adjust the remaining
interfaces to invoke Init if that has not been done yet. We remark that Ver can be implemented with a single
query to CReflect.

Lemma 5. Ver can be simulated with one application of CReflect.

Proof. Prepare an ancillary qubit in the state |+〉 and apply the reflection on the input controlled on the
ancillary qubit. Then apply H to the ancilla qubit and measure it. Output all the qubits, with the ancilla
interpreted as 1 = acc and 0 = rej. ut

Our goal is to devise a stateful simulator for Construction 1 which is efficient. Efficient here means that,
after t total queries to all interfaces (i.e., Init, Gen, Ver, and CReflect), the simulator has expended time
polynomial in n, t, and log(1/ε).

As described in Section 1.3, our approach will be to ensure that, for every t, the state shared between
the adversary A and our stateful oracle simulator ES will be maximally entangled between two copies of
the t-fold symmetric subspace Symn,t: one held by A, and the other by ES. The extension from the t-fold
to the (t+ 1)-fold joint state will be performed by an isometry V t→t+1 which acts only on the state of ES
and two fresh n-qubit registers At+1 and Bt+1 initialized by ES. After V is applied, At+1 will be given to
A. As we will show, V can be performed efficiently using some algorithmic tools for working with symmetric
subspaces, which we will develop in the next section. This will yield an efficient way of simulating Gen.
Simulation of Ver and CReflect will follow without much difficulty, as outlined in Section 1.3.

3.2 Some tools for symmetric subspaces

A basis for the symmetric subspace. We recall an explicit orthonormal basis of the symmetric subspace
(see, e.g., [18] or [17].) Let

S↑n,t =
{
α ∈ ({0, 1}n)

t
∣∣∣α1 ≤ α2 ≤ ... ≤ αt

}
(14)
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be the set of lexicographically-ordered t-tuples of n bit strings. For each α ∈ S↑n,t, define the unit vector

|Sym(α)〉 =

t! ∏
x∈{0,1}n

fx(α)!

− 1
2 ∑
σ∈St

|ασ(1)〉|ασ(2)〉...|ασ(t)〉. (15)

Here, fx(α) is the number of times the string x appears in the tuple α. The set {|Sym(α)〉 : α ∈ S↑n,t} is

an orthonormal basis for SymtC2n . We remark that the Schmidt decomposition of |Sym(α)〉 with respect to
the bipartition formed by the t-th register vs. the rest is given by

|Sym(α)〉 =
∑

x∈{0,1}n

√
fx(α)

t
|Sym(α−x)〉|x〉, (16)

where α−x ∈ S↑n,t−1 is the tuple α with one copy of x removed.

Some useful algorithms. We now describe some algorithms for working in the above basis. Let A and
B denote n-qubit registers. Recall that Aj denotes indexed copies of A and that At denotes A1A2 · · ·At,
and likewise for B. In our setting, the various copies of A will be prepared by the oracle simulator and then
handed to the query algorithm at query time. The copies of B will be prepared by, and always remain with,
the oracle simulator.

Proposition 2. For each n, t and ε = 2−poly(n,t), there exists an efficiently implementable unitary USym
n,t

on At such that for all α ∈ S↑n,t, U
Sym
n,t |α〉 = |Sym(α)〉 up to trace distance ε.

Proof. Clearly, the operation
|Sym(α)〉|β〉 7→ |Sym(α)〉|β ⊕ α〉 (17)

is efficiently implementable exactly, by XORing the classical sort function of the first register into the second
register.

Let us now show that the operation |α〉 7→ |α〉|Sym(α)〉 is also efficiently implementable (up to the
desirable error) by exhibiting an explicit algorithm. We define it recursively in t, as follows. For t = 1,
Sym(x) = x for all x ∈ {0, 1}n, so this case is simply the map |x〉 7→ |x〉|x〉. Suppose now the operation
|α〉 7→ |α〉|Sym(α)〉 can be implemented for any α ∈ S↑n,t−1. The t-th level algorithm will begin by applying

|α〉 7→ |α〉
∑

x∈{0,1}n

√
fx(α)

t
|x〉 .

Since fx(α) is nonzero for only t-many x ∈ {0, 1}n, this can be implemented efficiently by Lemma 2.
Next, we perform |α〉|x〉 7→ |α〉|x〉|α−x〉. Using the algorithm for t − 1, we then apply |α〉|x〉|α−x〉 7→
|α〉|x〉|α−x〉|Sym(α−x)〉, and uncompute α−x. By (16), we have in total applied |α〉 7→ |α〉|Sym(α)〉 so far.
To finish the t-th level algorithm for approximating |α〉 7→ |Sym(α)〉, we simply apply (17) to uncompute α
from the first register. ut

Theorem 6 (Restatement of Theorem 1). For each n, t and ε = 2−poly(n,t), there exists an efficiently
implementable isometry V t→t+1 from Bt to At+1B

t+1 such that, up to trace distance ε,

V :
∑

α∈S↑n,t

|Sym(α)〉At |Sym(α)〉Bt 7−→
∑

β∈S↑n,t+1

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

Proof. We describe the algorithm assuming all steps can be implemented perfectly. It is straightforward to
check that each step we use can in reality be performed to a sufficient accuracy that the accuracy of the
entire algorithm is at least ε.

11



We will need a couple of simple subroutines. First, given α ∈ S↑n,t and x ∈ {0, 1}n, we define α+x to be the
element of S↑n,t+1 produced by inserting x at the first position such that the result is still lexicographically
ordered. One can perform this reversibly via |α〉|0n〉|x〉 7→ |α〉|x〉|x〉 7→ |α+x〉|x〉.

Second, we will need to do coherent preparation of the state

|ψα〉 =
∑

x∈{0,1}n

√
1 + fx(α)

2n + t
|x〉 . (18)

For any given α ∈ S↑n,t, the state |ψα〉 can be prepared by using the preparation circuit for the two orthogonal
components of the state whose supports are {x : fx(α) > 0} and {x : fx(α) = 0}. These two components can
also be prepared coherently using Lemma 2 and Lemma 3, respectively. Their superposition can be prepared
with Lemma 4. Putting it all together, we get an algorithm for |α〉|0n〉 7→ |α〉|ψα〉.

The complete algorithm is a composition of several efficient routines. We describe this below, explicitly
calculating the result for the input states of interest. For readability, we omit overall normalization factors.∑

α

|Sym(α)〉At |Sym(α)〉Bt

7−→
∑
α

|Sym(α)〉At |0n〉|Sym(α)〉Bt |0n〉 add working registers

7−→
∑
α

|Sym(α)〉At |0n〉|α〉Bt |0n〉 apply
(
USym
n,t

)†
to Bt

7−→
∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉|α〉Bt |0n〉 prepare |ψα〉

7−→
∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉|α+x〉Bt+1 insert x into α

7−→
∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉At+1

|Sym(α+x)〉Bt+1 apply USym
n,t+1 to Bt+1

To see that the last line above is the desired result, we observe that we can index the sum in the last line
above in a more symmetric fashion: the sum is just taken over all pairs (α, β) such that the latter can be
obtained from the former by adding one entry (i.e., the string x). But that is the same as summing over all
pairs (α, β), such that the former can be obtained from the latter by removing one entry.

∑
α,x

√
1 + fx(α)

2n + t
|Sym(α)〉At |x〉At+1

|Sym(α+x)〉Bt+1

=
∑
β,x

√
fx(β)

2n + t
|Sym(β−x)〉At |x〉At+1 |Sym(β)〉Bt+1

=

√
t

2n + t

∑
β

(∑
x

√
fx(β)

t
|Sym(β−x)〉At |x〉At+1

)
|Sym(β)〉Bt+1

=

√
t

2n + t

∑
β

|Sym(β)〉At+1 |Sym(β)〉Bt+1 .

Here, the last equality is (16), and the prefactor is the square root of the quotient of the dimensions of
the t- and (t+ 1)-copy symmetric subspaces, as required for a correct normalization of the final maximally
entangled state. ut
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3.3 State sampler construction and proof

Construction 2 (Efficient state sampler) Let n be a positive integer and ε a negligible function of n. The
efficient n-qubit state sampler with precision ε is a stateful machine ES(ε, n) with interfaces (Init,Gen,Reflect),
defined below. For convenience, we denote the query counters by t = tGen and q = tReflect in the following.

1. ES(ε, n).Init : prepares the standard maximally entangled state |φ+〉A1B1
on n-qubit registers A1 and B1,

and stores both A1 and B1.
2. ES(ε, n).Gen : On the first query, outputs register A1. On query t, takes as input registers Bt−1 and

produces registers AtB
t by applying the isometry V t−1→t from Theorem 6 with accuracy ε2−(t+2q); then

it outputs At and stores Bt.
3. ES(ε, n).CReflect : On query q with input registers CA∗, do the following controlled on the qubit register

C: apply
(
U t−1→t)†, a unitary implementation of V t−1→t, with accuracy ε2−(t+2(q−1)), in the sense that

V t−1→t = U t−1→t|02n〉AtBt , with A∗ playing the role of At. Subsequently, apply a phase −1 on the all-zero
state of the ancilla registers At and Bt, and reapply U t−1→t, this time with accuracy ε2−(t+2(q−1)+1).

We omitted defining ES.Ver since it is trivial to build from CReflect, as described in Lemma 5. By
Theorem 6, the runtime of ES(ε, n) is polynomial in n, log(1/ε) and the total number of queries q that are
made to its various interfaces.

We want to show that the above sampler is indistinguishable from the ideal sampler to any oracle
algorithm, in the following sense. Given a stateful machine C ∈ {IS(n),ES(n, ε)} and a (not necessarily
efficient) oracle algorithm A, we define the process b← AC as follows:

1. C.Init is called;
2. A receives oracle access to C.Gen and C.CReflect;
3. A outputs a bit b .

Theorem 7. For all oracle algorithms A and all ε > 0 that can depend on n in an arbitrary way,∣∣∣Pr
[
AIS(n) = 1

]
− Pr

[
AES(n,ε) = 1

]∣∣∣ ≤ ε . (19)

Proof. During the execution of ES(ε, n), the i-th call of V t−1→t (for any t) incurs a trace distance error of
at most ε2−i. The trace distance between the outputs of AES(ε, n) and AES(0, n) is therefore bounded by∑∞
i=1 ε2

−i = ε. It is thus sufficient to establish the theorem for ES(0, n).

For any fixed q, there exists a stateful machine ÊS(0, q, n) which is perfectly indistinguishable from

IS(n) to all adversaries who make a maximum total number q of queries. The Init procedure of ÊS(0, q, n)
samples a random element Ui from an exact unitary 2q-design D2q = {Ui}i∈I . Queries to Gen are answered

with a copy of Ui|0〉, and Reflect is implemented by applying 1 − 2Ui|0〉〈0|U†i . It will be helpful to express

ÊS(0, q, n) in an equivalent isometric form. In this form, the initial oracle state is

|η〉 = |I|−1/2
∑
i∈I
|i〉B̂ . (20)

Gen queries are answered using the B̂-controlled isometry

V̂ t→t+1

B̂→B̂At+1
=
∑
i∈I
|i〉〈i|B̂ ⊗ Ui|0〉At+1

. (21)

Reflect queries are answered by

V̂ Reflect
B̂A∗→B̂A∗ =1− 2

∑
i∈I
|i〉〈i|B̂ ⊗ Ui|0〉〈0|A∗U

†
i (22)

=1− 2V̂ t→t+1

B̂→B̂A∗

(
V̂ t→t+1

)†
B̂A∗→B̂

. (23)
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Now suppose A is an arbitrary (i.e., not bounded-query) algorithm making only Gen queries. We will

show that after q queries, the oracles ES(0, n) and ÊS(0, q, n) are equivalent, and that this holds for all
q. We emphasize that ES(0, n) does not depend on q; as a result, we can apply the equivalence for the
appropriate total query count qtotal after A has produced its final state, even if qtotal is determined only at
runtime. It will thus follow that ES(0, n) is equivalent to IS(n).

To show the equivalence betwen ES(0, n) and ÊS(0, q, n), we will demonstrate a partial isometry V switch,t

that transforms registers Bt of ES(0, n) (after t Gen queries and no Reflect queries) into the register B̂ of

ÊS(0, q, n), in such a way that the corresponding global states on AtBt and AtB̂ are mapped to each other.

The isometry is partial because its domain is the symmetric subspace of C2n⊗t. It is defined as follows:

V switch,t

Bt→B̂
=

√
dSymtCd2n

|I|
∑
i∈I

(
〈0|UTi

)⊗t
Bt
⊗ |i〉B̂ . (24)

To verify that this is indeed the desired isometry, we calculate:

(
〈0|UTi

)⊗t
Bt
|φ+

Sym〉AtBt =

√
2nt

dSymtC2n

(
〈0|UTi

)⊗t
Bt
ΠSym
Bt |φ

+〉AtBt (25)

=

√
2nt

dSymtC2n

(
〈0|UTi

)⊗t
Bt
|φ+〉AtBt (26)

=

√
2nt

dSymtC2n
(〈0|)⊗tBt ⊗ (Ui)

⊗t
At |φ

+〉AtBt (27)

=

√
1

dSymtC2n
(Ui|0〉)⊗tAt . (28)

Here we have used the fact that
(
〈0|UTi

)⊗t
is in the symmetric subspace in the second equality, and the third

and forth equality are applications of the Mirror Lemma (Lemma 1) with d = d′ = 2nt, and d = 1, d′ = 2nt,
respectively.

We have hence proven the exact correctness of ES(0, n) without the Reflect interface. Note that the global
state after t queries to ES(0, n).Gen is the maximally entangled state of two copies of the t-fold symmetric
subspace; of course, this is only true up to actions performed by the adversary, but those trivially commute
with maps applied only to the oracle registers. As the global state is in the domain of V switch,t

Bt→B̂
, we obtain

the equation
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
= V switch,t+1

Bt+1→B̂
V t→t+1
Bt→Bt+1At+1

. (29)

More precisely, we observe that the two sides of the above have the same effect on the global state, and then
conclude that they must be the same operator by the Choi-Jamoi lkowski isomorphism.

Recalling that V switch,t is partial with the symmetric subspace as its domain, we see that Equation (29)
is equivalent to (

V switch,t+1

Bt+1→B̂

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
=ΠSymt+1C2n

Bt+1 V t→t+1
Bt→Bt+1At+1

(30)

=V t→t+1
Bt→Bt+1At+1

ΠSymtC2n

Bt . (31)

By taking the above equality times its adjoint, we arrive at(
V switch,t

Bt→B̂

)† (
V̂ t→t+1

B̂→B̂At+1

)†
V switch,t+1

Bt+1→B̂

(
V switch,t+1

Bt+1→B̂

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂

=ΠSymtC2n

Bt

(
V t→t+1
Bt→Bt+1At+1

)†
V t→t+1
Bt→Bt+1At+1

ΠSymtC2n

Bt . (32)
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By Equation (29), the range of V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂
is contained in the range of V switch,t+1

Bt+1→B̂
⊗ 1At+1 . We can

thus simplify as follows:(
V switch,t

Bt→B̂

)† (
V̂ t→t+1

B̂→B̂At+1

)†
V̂ t→t+1

B̂→B̂At+1
V switch,t

Bt→B̂

=ΠSymtC2n

Bt

(
V t→t+1
Bt→Bt+1At+1

)†
V t→t+1
Bt→Bt+1At+1

ΠSymtC2n

Bt . (33)

Now observe that both sides of the above consist of a projection operator “sandwiched” by some opera-
tion. These two projection operators are precisely the projectors which define the reflection operators of
ÊS(0, q, n) (on the left-hand side) and ES(0, n) (on the right-hand side.) We thus see that Equation (33)

shows that applying ES(0, n).Reflect is the same as switching to ÊS(0, q, n), applying ÊS(0, q, n).Reflect,
and then switching back to ES(0, n). The same holds for the controlled versions ES(0, n).CReflect and

ÊS(0, n).CReflect.
This completes the proof of the exact equality between the stateful machines IS(n) and ES(0, n). As

argued at the start of the proof, the approximation case follows. ut

4 Simulating a Haar-random unitary oracle

4.1 The problem, and our approach

We begin by defining the ideal object we’d like to emulate. This ideal object samples a Haar-random unitary
U , and then answers two types of queries: queries to U , and queries to its inverse U†.

Construction 3 (Ideal unitary sampler) Let n be a positive integer. The ideal unitary sampler is an
ideal machine IU(n) with interfaces (Init,Eval, Invert), defined as follows.

1. IU(n).Init : takes no input; samples a description Ũ of a Haar-random n-qubit unitary operator U .
2. IU(n).Eval : takes n-qubit register as input, applies U and responds with the output;
3. IU(n).Invert : takes n-qubit register as input, applies U−1 and responds with the output.

Below, we construct a stateful machine that runs in polynomial space (and the runtime of which we don’t
characterize), and that is indistinguishable from IU(n) for arbitrary query algorithms.

Our approach. It turns out that the solution of a much easier task comes to our help, namely simulating a
Haar random unitary for an algorithm that makes an a priori polynomially bounded number t of queries. In
this case we can just pick a unitary t-design, sample an element from it and answer the up to t queries using
this element. As in the proof of Theorem 7, we can also construct an isometric stateful machine version of
this strategy: Instead of sampling a random element from the t-design, we can prepare a quantum register
in a superposition, e.g. over the index set of the t-design (Init), and then apply the t-design element (Eval)
or its inverse (Invert) controlled on that register.

Now consider an algorithm that makes t parallel queries to a Haar random unitary (for ease of exposition
let us assume here that the algorithm makes no inverse queries). The effect of these t parallel queries is just
the application of the t-twirling channel (or the mixed twirling channel defined in Equation (10)) to the
t input registers. The t-design-based isometric stateful machine simulates this t-twirling channel faithfully.
What is more, it applies a Stinespring dilation of the t-twirling channel, the dilating register being the one
created by initialization.

Now suppose we have answered t queries using the t-design-based machine, and are now asked to an-
swer another, still parallel, query. Of course we cannot, in general, just answer it using the t-design, as its
guarantees only hold for t applications of the unitary. But all Stinespring dilations of a quantum channel
are equivalent in the sense that there exists a (possibly partial) isometry acting on the dilating register of
one given dilation, that transforms it into another given dilation. So we can just apply an isometry that
transforms our t-design based Stinespring dilation into a t + 1-design based one, and subsequently answer
the t+ 1st query using a controlled unitary.
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4.2 Construction and proof

We continue to describe a stateful machine that simulates IU(n) exactly and has a state register of size
polynomial in n and the total number of queries q that an algorithm makes to its Eval and Invert interfaces.
The existence of the required unitary t-designs is due to Corollary 2.

We recall our conventions for dealing with many copies of fixed-sized registers. We let A denote an n-qubit
register, we let Aj denote indexed copies of A, and we let At denote A1A2 · · ·At. In this case, the various
copies of A will be the input registers of the adversary, on which the simulator will act. The oracle will now
hold a single register B̂t whose size will grow with the number of queries t. This register holds an index of
an element in a t-design.

For the construction below, we need the following quantum states and operators. For a positive integer
n, choose a family of n-qubit unitary designs {Dt}t∈N, where Dt = {Ut,i}i∈It is a unitary t-design. Let B̂t
be a register of dimension |It| and define the uniform superposition over indices

|ηt〉B̂t =
1√
|It|

∑
i∈It

|i〉B̂t . (34)

For nonnegative integers t, t′, `, define the unitaries

V
(t,t′,`)

At′ B̂t
=
∑
i∈It

(Ut,i)
⊗`
A1A2...A`

⊗
(
U†t,i

)⊗t′−`
A`+1A`+2...At′

⊗ |i〉〈i|B̂t . (35)

These isometries perform the following: controlled on an index i of a t-design Ut,i, apply Ut,i to ` registers

and U†t,i to t′− ` registers. For us it will always be the case that t′ ≤ t, since otherwise the t-design property
no longer makes the desired guarantees on the map V .

We also let W
(t,`)

B̂t→B̂t+1
be an isometry such that

V
(t+1,t,`)

AtB̂t+1
|ηt+1〉B̂t+1

= WB̂t→B̂t+1
V

(t,t,`)

AtB̂t
|ηt〉B̂t (36)

for ` = 0, ..., t. The isometry W always exists, as all Stinespring dilations are isometrically equivalent, and

both V
(t,t,`)

AtB̂t
|ηt〉B̂t and V

(t+1,t,`)

AtB̂t+1
|ηt+1〉B̂t+1

are Stinespring dilations of the mixed twirling channel T (t,`) by

the t-design property.
We are now ready to define the space-efficient unitary sampler.

Construction 4 (Space-efficient unitary sampler) Let n be a positive integer and {Dt}t∈N a family of
n-qubit unitary t-designs Dt = {Ut,i}i∈It , with |It| = 2poly(n,t). Define a stateful machine EU(n, ε) with
interfaces (Init,Eval, Invert) as follows. The machine will maintain counters te (the number of Eval queries),
ti (the number of Invert queries), and t := te + ti.

1. EU(n).Init : Prepares the state |η1〉B̂1
and stores it.

2. EU(n).Eval :

– If t = 0, apply V
(1,1,1)

A1B̂1
, where A1 is the input register.

– If t > 0, apply W
(t,te)

B̂t→B̂t+1
to the state register and subsequently apply V t+1,1,1

At+1B̂t+1
, where At+1 is the

input register.
3. IU(n).Invert :

– If t = 0, apply V
(1,1,0)

A1B̂1
, where A1 is the input register.

– If t > 0, apply W
(t,te)

B̂t→B̂t+1
to the state register and subsequently apply V t+1,1,0

At+1B̂t+1
, where At+1 is the

input register.

We want to show that the above sampler is indistinguishable from the ideal sampler to any oracle
algorithm, in the following sense. Given a stateful machine C ∈ {IU(n),EU(n, ε)} and a (not necessarily
efficient) oracle algorithm A, we define the process b← AC as follows:
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1. C.Init is called;
2. A receives oracle access to C.Eval and C.Invert;
3. A outputs a bit b .

Theorem 8. For all oracle algorithms A

Pr
[
AIU(n) = 1

]
= Pr

[
AEU(n,ε) = 1

]
. (37)

Proof. We begin by proving the following claim by induction. The claim states that the theorem holds for
adversaries who only make parallel queries.

Claim. For all x ∈ {0, 1}t, let V
(x)

At→AtB̂t
be the isometry that is implemented by making t parallel queries

to EU(n, ε), where the i-th query is made to the Eval interface if xi = 1 and to the Invert interface if xi = 0.
Let further σ ∈ St be a permutation such that σ.x = 11...100...0, where the lower dot denotes the natural
action of St on strings of length t. Then

V
(x)

At→AtB̂t
= σ−1

At V
(t,t,`)

AtB̂t
|ηt〉B̂t , (38)

where σ acts by permuting the t registers.

Proof. For t = 1, the claim trivially holds. Now suppose the claim holds for t− 1. By definition of the Eval
and Invert interfaces,

V
(x)

At→AtB̂t
= V t,1,xt

AtB̂t
W

(t,`)

B̂t−1→B̂t
V

(x[1;t−1])

At−1→At−1B̂t−1
, (39)

where x[a,b] = xaxa+1...xb. By the induction hypothesis, we have

V
(x[1;t−1])

At−1→At−1B̂t−1
= σ̂−1

At−1V
(t−1,t−1,`−xt)
At−1B̂t−1

|ηt−1〉B̂t−1
(40)

for an appropriate permutation σ̂ ∈ St−1. By the design property of Dj for j = t, t− 1 and the definition of
W (t,`) we obtain

T (t−1,`−xt)
Dt−1

= T (t−1,`−xt)
Dt

⇔ W
(t−1,`)

B̂t−1→B̂t
V

(t−1,t−1,`−xt)
At−1B̂t−1

|ηt−1〉B̂t−1
= V

(t,t−1,`−xt)
At−1B̂t

|ηt−1〉B̂t
⇔ W

(t,`)

B̂t−1→B̂t
σ̂−1
At−1V

(t−1,t−1,`−xt)
At−1B̂t−1

|ηt−1〉B̂t−1
= σ̂−1

At−1V
(t,t−1,`−xt)
At−1B̂t

|ηt−1〉B̂t . (41)

Here we have used the fact that the permutation and W (t−1,`) commute because they act on disjoint sets of
registers. Putting Equations (39), (40) and (41) together, it follows that

V
(x)

At→AtB̂t
= V t,1,xt

AtB̂t
σ̂−1
At−1V

(t,t−1,`−xt)
At−1B̂t

|ηt〉B̂t . (42)

But clearly

V t,1,xt
AtB̂t

σ̂−1
At−1V

(t,t−1,`−xt)
At−1B̂t

= σ−1
At V

(t,t,`)

AtB̂t
(43)

For an appropriate permutation σ that consists of applying σ̂ and then sorting in xt correctly.

The generalization to adaptive algorithms is done via post-selection: Given an algorithm A, consider non-
adaptive algorithm Ã that first queries the Eval and Invert interfaces of the stateful machine it is interacting
with on the first halves of a sufficient number of maximally entangled states. Subsequently the adaptive
adversary is run, answering the queries by running quantum teleportation on the inputs together with the
remaining halves of the maximally entangled states. This way, the query registers of the adaptive queries are
teleported into the previously made non-adaptive queries, but of course they incur a random Pauli error on
the way, that cannot be corrected.

As the output of Ã is, however, exactly the same whether it interacts with IU(n) or with EU(n, 0),
the same holds for the version of Ã where we post-select, or condition, on the outcome that all the Pauli
corrections in all the teleportation protocols are the identity. But this post-selected algorithm has the same
output as A no matter what oracles it is given. ut
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Using Corollary 2 and the above, we get the following upper bound on the space complexity of lazy
sampling Haar random unitaries.

Corollary 3. The space complexity S of simulating IU(n) as a function of n and the number of queries q is
bounded from above by the logarithm of number of elements in any family of exact n-qubit unitary q-designs,
and hence

S(n, q) ≤ 2q(2n+ log e) +O(log q) . (44)

Proof. According to Corollary 2, There exists an exact unitary q-design such that 2q log
(
e(22n+q−1)

q

)
≤

2q(2n + log e) qubits suffice to coherently store the index of an element from it. The only additional infor-
mation that EU(n) needs to store is how many direct and inverse queries have been answered, which can be
done using log q bits.

ut

Our results suggest two possible approaches to devise a time-efficient lazy sampler for Haar random
unitaries. The most promising one is to use the same approach as for the state sampler and explicitly
constructing the update isometry, possibly using explicit bases for the irreducible representations of U(2n),
or using the Schur transform [5]. The other one would be to use the t-design update method described
above, but using efficient approximate t-designs, e.g. the ones constructed in [10]. This would, however,
likely require a generalization of the Stinespring dilation continuity result from [20] to so-called quantum
combs [11]. In addition, we would need to show that the transition isometries, i.e. the approximate analogue
of the isometries W (t,`) from Construction 4, are efficiently implementable. We leave the exploration of these
approaches for future work.

5 Application: untraceable quantum money

5.1 Untraceable quantum money

Our definition of quantum money deviates somewhat from others in the literature [1,18]. We allow the bank
to maintain an internal quantum register, we do not require that the money states are pure, and we allow
adversaries to apply arbitrary (i.e., not necessarily efficiently implementable) channels.

Definition 2 (Quantum money). A quantum money scheme is a family of stateful machines M indexed
by a security parameter λ, and having two interfaces:

1. Mint: receives no input, outputs an n-qubit register;
2. Ver: receives an n-qubit register as input, outputs an n-qubit register together with a flag {acc, rej},

satisfying the following two properties:

– correctness: ‖Ver ◦Mint− 1⊗ |acc〉〈acc|‖ ≤ negl(λ);9

– unforgeability: for all channels Λ with oracle, and all k ≥ 0,

Pr
[
acck+1 ← flag|Ver⊗k+1 ◦ ΛVer ◦Mint⊗k

]
≤ negl(λ) ,

where flag| denotes discarding all registers except Ver flags.

It is implicit in the definition that n is a fixed polynomial function of λ, and that all relevant algorithms
are uniform in λ.

Next, we define untraceability for quantum money schemes.

9 Note that it is understood that this inequality should hold no matter which interfaces have been called in between
the relevant Mint and Ver calls
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Definition 3 (Untraceability game). The untraceability game Untraceλ[M,A] between an adversary A
and a quantum money scheme M at security parameter λ proceeds as follows:

1. set up the trace: A(1λ) receives oracle access to Ver and Mint, and outputs registers M1, M2, . . . , Mk

and a permutation π ∈ Sk;

2. permute and verify bills: b ← {0, 1} is sampled, and if b = 1 the registers M1 · · ·Mk are permuted by π.
Ver is invoked on each Mj; the accepted registers are placed in a set M while the rest are discarded;

3. complete the trace: A receives M and the entire internal state of M, and outputs a guess b′ ∈ {0, 1}.

The output of Untraceλ[M,A] is δbb′ ; in the case b = b′, we say that A wins.

Definition 4 (Untraceable quantum money). A quantum money scheme M is untraceable if, for every
algorithm A,

Pr [1← Untraceλ[M,A]] ≤ 1

2
+ negl(λ) .

The intuition behind the definition is as follows. In general, one might consider a complicated scenario
involving many honest players and many adversaries, where the goal of the adversaries is to trace the
movement of at least one bill in transactions involving at least one honest player. Tracing in transactions
involving only adversaries is of course trivial. The first natural simplification is to view all the adversaries
as a single adversarial party; if that party cannot trace, then neither can any individual adversary. Next,
we assume that honest players will verify any bills they receive immediately; obviously, if they do not do
this, and then participate in transactions with the adversary, then tracing is again trivial. We thus arrive
at the situation described in the game: the adversary is first allowed to create candidate bills arbitrarily,
including storing information about them and entangling them with additional registers, before handing
them to honest players who may or may not perform some transactions; the goal of the adversary is to
decide which is the case, with the help of the bank. Note that one round of this experiment is sufficient in
the security game, as an adversary can always use the Ver and Mint oracles to simulate additional rounds.

One might reasonably ask if there are even stronger definitions of untraceability than the above. Given its
relationship to the ideal state sampler, we believe that Haar money, defined below, should satisfy almost any
notion of untraceability, including composable notions. We also remark that, based on the structure of the
state simulator, which maintains an overall pure state supported on two copies of the symmetric subspace of
banknote registers, it is straightforward to see that the scheme is also secure against an “honest but curious”
or “specious” [27,15] bank. We leave the formalization of these added security guarantees to future work.

5.2 Haar money

Next, we show how the lazy state sampler (Construction 2) yields untraceable quantum money. The con-
struction follows the idea of [18] sample a single (pseudo)random quantum state and hand out copies of it
as banknotes.

Construction 5 (Haar money) Let n be a positive integer and ε > 0. The Haar scheme HM(n, ε) is
defined as follows:

– Mint: on first invocation, instantiate ES := ES(n, ε) by running ES.Init. On all invocations, output
result of ES.Gen;

– Ver: apply ES.Ver; in the acc case, call Mint and output the result; in the rej case, output 0n.

We remark that, while Construction 2 does not explicitly include a Ver interface, one can easily be added
by Lemma 5.

Proposition 3. Haar money is an untraceable quantum money scheme.

19



Proof. We need to show three properties: completeness, unforgeability, and untraceability. For the complete-
ness and unforgeability properties, observe that Theorem 7 implies that the adversary’s view is indistin-
guishable (up to negligible terms) if we replace the efficient state sampler ES with the ideal IS. Once we’ve
made that replacement, completeness follows from the definition of IS.Gen and IS.Ver, and unforgeability
follows from the complexity-theoretic no-cloning theorem [1].

For untraceability, it is of course true that IS is obviously untraceable. However, we cannot simply invoke
Theorem 7 to conclude the same about ES, since the adversary will receive the state of the bank at the end
of the game. Instead, we argue as follows. Consider step 2 (permute and verify bills) in the untraceability
game Untraceλ[HM,A]. An equivalent way to perform this step is to (i.) verify all the registers first, (ii.)
discard the ones that fail verification, and then (iii.) apply the permutation, conditioned on the challenge
bit b. Steps (i.) and (ii.) are applied always and in particular do not depend on b. However, after (i.) and
(ii.) have been applied, by the definition of ES the joint state of the bank and all the Mj ∈M (and indeed
all verified bills in existence) is negligibly far from the state |φ+

Sym〉, i.e., the maximally entangled state on
the symmetric subspace. This state is clearly invariant under permutation of the money registers, and in
particular under the permutation of the registers in M selected by the adversary. We emphasize that this
invariance holds for the entire state (including the bank.) As the remainder of the game experiment is simply
some channel applied to that state, and this channel does not depend on b, the result follows. ut

While Haar money is an information-theoretically unforgeable and untraceable quantum money scheme, it
is easy to see that the quantum money scheme devised in [18] is computationally unforgeable and untraceable.
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A State preparation lemma proofs

We now prove the state preparation lemmas from the preliminaries.

Lemma 6 (Restatement of Lemma 2). Let |ϕ〉 =
∑
x∈{0,1}n ϕ(x)|x〉 be a family of quantum states whose

amplitudes ϕ have an efficient classical description ϕ̃, and such that |{x : ϕ(x) 6= 0}| ≤ poly(n). Then there
exists a quantum algorithm P which runs in time polynomial in n and log(1/ε) and satisfies

‖P|ϕ̃〉|0n〉 − |ϕ̃〉|ϕ〉‖2 ≤ ε .

Proof. Let supp(ϕ) := {x : ϕ(x) 6= 0}, let t = |supp(ϕ)| and let xϕ1 , x
ϕ
2 , . . . , x

ϕ
t be an indexing of supp(ϕ), e.g.,

by lexicographic order. We first observe that, from the classical description ϕ̃, we can efficiently compute a
circuit for a dlog te-qubit unitary Ũϕ, such that Ũϕi,1 = ϕ(xϕi ). In [25], Chapter 4, it is described how any

r-qubit unitary can be implemented up to precision δ using a quantum circuit of length O(r24r logc
(
r24r/δ

)
)

for some universal constant c, and how to compute such a circuit efficiently. The recipe consists of a decom-
position into a circuit of CNOT and arbitrary single qubit gates, and an application of the Solovay-Kitaev
theorem to implement the single-qubit gates using, say, the Clifford+T gate set. The former is easily verified
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to be efficiently computable, and an algorithmic version of the latter can be found in, e.g., [13]. We apply
this algorithm to compute a circuit for Ũϕ from ϕ̃; let m denote its maximum length.

The total algorithm that, on input ϕ̃, produces the circuit Cϕ for Ũ (ϕ), can be written as a reversible
circuit and implemented as a quantum circuit Cmeta such that UCmeta

|ϕ̃〉|0m〉 = |ϕ̃〉|Cϕ〉. Here, UC is the
unitary implemented by a quantum circuit C. We can then apply a universal quantum circuit to apply Cϕ to
a fresh ancilla register initialized in the state 0dlog te, and then again apply UCmeta to uncompute the circuit
description.

We are now ready to define the algorithm P as follows. On input |ϕ̃〉|0n〉, we attach ancillas in the 0
state and use the above to apply

|ϕ̃〉|0dlog te〉|0n〉 7−→ |ϕ̃〉Ũ |0dlog te〉|0n〉 = |ϕ̃〉
t∑
i=1

ϕ(xϕi )|i〉|0n〉 .

Next, controlled on the first two registers being in state |ϕ̃〉|i〉 we apply Xxϕi to the last register. Finally,
controlled on the first and last registers being in state |ϕ̃〉 and |x〉, respectively, we apply Xi to the middle
register if x = xϕi for some i (and the identity otherwise), and discard the middle register.

Lemma 7 (Restatement of Lemma 3). Let S ⊂ {0, 1}n be a family of sets of size poly(n) with efficient
description S̃, and let ε > 0. There exists a quantum algorithm P which runs in time polynomial in n and
log(1/ε) and satisfies ∥∥∥P|S̃〉A|0n〉B − |S̃〉A|S̄〉B∥∥∥

2
≤ ε .

Proof. We first observe that there is a quantum algorithm of size polynomial in n and log(1/ε) for the task
of, given a classical description S̃ of a poly(n)-size set S, preparing the state |S̄〉 with precision ε. This
algorithm proceeds by repeatedly preparing the uniform superposition and then applying the two-outcome
measurement defined by the projector

∑
x∈S |x〉〈x|. After

r = max

(
1,

⌈
log

(
3|S|
ε

)
− n

⌉)
repetitions, one of the attempts will succeed with probability at least 1−ε/3. Finally, the algorithm swaps the
successful register into a fixed output register (or outputs some fixed state if all attempts failed.) Let Cε be
the quantum circuit for executing this entire algorithm, including measurements and conditional operations.

The algorithm P will perform Cε in a coherent (i.e., measurement-free) way, while uncomputing some
garbage on the fly. In the end, the remaining garbage is uncomputed. The i-th coherent iteration step is
done as follows. Initialize a qubit Ci and an n-qubit register Di, both in the all-zero state. Now, controlled
on Ci−1 and using the convention that C0 = 1, apply Hn to B and coherently measure whether B ∈ S,
storing the outcome in Ci. Now, controlled on Ci, swap B and D, and unprepare |S〉 in register Di with
precision ε

3r using the algorithm form Lemma 2. After this procedure, Di is in the zero state and can be
safely discarded. After r iterations, the state is 2ε/3-close to

|S̃〉A|S̄〉B ⊗

[
r∑
`=0

( s
2n

)`/2(2n − s
2n

)1/2

|1〉⊗` ⊗ |0〉⊗r−`
]
C1C2...Cr

. (45)

But the state the C-registers is in is a superposition of r many computational basis states, so we can
unprepare it using the algorithm from Lemma 2 with precision ε/3, so we have prepared |S̃〉A|S̄〉B up to
error ε.

Lemma 8 (Restatement of Lemma 4). Let |ζ0,j 〉, |ζ1,j 〉 be two familes of n-qubit quantum states such
that 〈ζ0,j | ζ1,j〉 = 0 for all j, and such that there exists a quantum algorithm Pb which runs in time polynomial
in n and log(1/ε) and satisfies ‖Pb|j〉|0n〉 − |j〉|ζb,j 〉‖2 ≤ ε for b ∈ {0, 1}.

For z0, z1 ∈ C such that |z0|2 + |z1|2 = 1, let z̃ denote a classical description of (z0, z1) to precision at
least ε. There exists a quantum algorithm Q which runs in time polynomial in n and log(1/ε) and satisfies∥∥Q|j〉|z̃〉|0n〉 − |j〉|z̃〉(z0|ζ0,j 〉+ z1|ζ1,j 〉

)∥∥
2
≤ ε . (46)
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Proof. We first use Lemma 2 to implement a unitary U such that U |z̃〉|0〉 = |z̃〉(z0|0〉+z1|1〉) up to error ε/5.
After attaching an ancillary qubit and applying this circuit, our total state is |j〉|z̃〉|0n〉O(z0|0〉 + z1|1〉)Q,
where we have named some of the registers for easier reference. Note that any efficient quantum circuit has
an efficient controlled version. We can thus next prepare (in register O) the state |ζ0,j 〉 controlled on Q being
in state |0〉, and subsequently prepare (also in O) the state |ζ1,j 〉 controlled on Q being in state |1〉, both
with accuracy ε/5. Now we apply the inverse of the circuit for the preparation of |ζ0,j 〉 to register O, without
control. Controlled on O being in state |0〉n, we then apply X to Q, after which the preparation circuit for
|ζ0,j 〉 is applied to O again (note that orthogonality of the two state families is crucial for this step.) The
register Q is now in the state |1〉 and can be safely discarded.
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