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Abstract. In this paper, we introduce a polynomial-time algorithm to
compute a connecting O-ideal between two supersingular elliptic curves
over Fp with common Fp-endomorphism ring O, given a description of
their full endomorphism rings. This algorithm provides a reduction of
the security of the CSIDH cryptosystem to the problem of computing
endomorphism rings of supersingular elliptic curves. A similar reduction
for SIDH appeared at Asiacrypt 2016, but relies on totally different tech-
niques. Furthermore, we also show that any supersingular elliptic curve
constructed using the complex-multiplication method can be located pre-
cisely in the supersingular isogeny graph by explicitly deriving a path to
a known base curve. This result prohibits the use of such curves as a
building block for a hash function into the supersingular isogeny graph.
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1 Introduction

Isogeny-based cryptography is founded on the hardness of computing an isogeny
between two isogenous elliptic curves over a finite field Fq. Since this problem
appears to remain hard even for quantum computers, it is one of the main
candidates for building post-quantum cryptography [26]. Although the origins
of isogeny-based cryptography go back to work by Couveignes from 1997 using
ordinary elliptic curves [10], the currently most efficient instantiations rely on
supersingular curves. These instantiations can be broadly classified into two
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families, known as SIDH [19] and CSIDH [7], depending on which supersingular
elliptic curves and connecting isogenies are being used.

The acronym SIDH is shorthand for “Supersingular-Isogeny Diffie–Hellman”,
a key-exchange protocol introduced by Jao and De Feo in 2011 [19]. SIDH works
in the full supersingular `-isogeny graph, i.e., one considers the graph consisting
of all (isomorphism classes of) supersingular elliptic curves defined over Fp for
a specifically chosen prime p and connecting isogenies of small prime degree `.
The vertices of this graph are the j-invariants of the isomorphism classes and
are all contained in Fp2 . Finding a path between two given vertices j(E1) and
j(E2) is equivalent to constructing an isogeny between E1 and E2 whose degree
is a power of `.

The full endomophism ring of a supersingular elliptic curve is a maximal order
in a quaternion algebra. Kohel, Lauter, Petit and Tignol [22] showed that the
above path-finding problem can be solved in (heuristically) expected polynomial
time when given the endomorphism rings of E1 and E2; we will refer to this
algorithm as “KLPT”. Galbraith, Petit, Shani and Ti [16] later extended the
KLPT algorithm specifically for the SIDH setting and showed that knowledge
of the endomorphism rings of E1 and E2 suffices to break SIDH. Results by
Eisenträger, Hallgren, Lauter, Morrison and Petit [13] show that finding a path
in the isogeny graph is essentially equivalent to computing endomorphism rings.

CSIDH stands for “Commutative SIDH” and was introduced by Castryck,
Lange, Martindale, Panny, and Renes [7] in 2018. CSIDH restricts the isogeny
graph under consideration to supersingular elliptic curves and isogenies defined
over Fp and mimics Couveignes’ construction of a “hard homogeneous space”.
In particular, if E is a supersingular elliptic curve over Fp, then its ring of
Fp-rational endomorphisms is an imaginary quadratic order O ⊆ Q(

√
−p). The

letter C in “CSIDH” refers to the commutativity of O, which (much like the
situation on ordinary curves used by Couveignes) gives rise to an action of the
(commutative) ideal-class group cl(O) on the set of supersingular elliptic curves
over Fp having O as their ring of Fp-rational endomorphisms. This class-group
action immediately lends itself to several cryptographic primitives such as iden-
tification, non-interactive key agreement, and even signature schemes.

1.1 Contributions

Our first contribution reduces the key recovery problem in CSIDH to computing
the full endomorphism ring of the target curve, where in many cases even one
non-Fp-rational endomorphism suffices. More precisely, given two supersingular
elliptic curves E,E′ over Fp with Fp-rational endomorphism ring O, assuming
sufficient knowledge of their full endomorphism rings End(E) and End(E′), we
show how to compute in polynomial time an ideal a ⊆ O such that E′ = [a]E.
This result can be seen as an analogon of [16] for SIDH, but uses different
techniques, and in particular it does not rely on the KLPT algorithm [22].

Several remarks on this result are in order:

– In CSIDH all curves have the same known Fp-rational endomorphism ring O,
which therefore does not contain any information specific to E, nor to [a].
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This explains why we require knowledge of at least one endomorphism of E
that is not Fp-rational.

– Since both End(E0) and End(E) are assumed to be known, one can run the
KLPT algorithm to obtain an isogeny α : E0 → E. However, this isogeny is
most likely not Fp-rational and as such does not correspond to the CSIDH
private key. It is easy to verify that the isogeny β = α ◦ πE0

+ πE ◦ α,
with π the p-power Frobenius endomorphism on the respective curves, is an
Fp-rational isogeny3 from E0 to E. Note that β can be evaluated efficiently
on points of E0, but it is unclear how to efficiently derive an invertible ideal
b ⊆ O whose action on E0 corresponds to β. Such an ideal b is required to
break the CSIDH Diffie–Hellman key agreement and other derived protocols,
since it is essentially a curve-independent way of specifying an Fp-rational
isogeny.

– Our polynomial-time algorithm returns an ideal a whose norm is not neces-
sarily smooth. To efficiently compute the action of [a] therefore requires an
extra smoothing step, which obtains an ideal of smooth norm in the ideal
class [a]. This smoothing step is standard and consists of a combination
of a class-group computation and lattice reduction to solve an instance of
the approximate closest-vector problem (CVP). The class-group computa-
tion requires subexponential time using classical computers [18], but runs in
polynomial time on a quantum computer [21]. Using the BKZ algorithm [28],
one can solve the CVP problem up to a subexponential approximation factor
in subexponential time. This last step therefore implies that asymptotically,
the smoothing step requires subexponential time. However, we note that for
any practical instantiation of CSIDH, solving the approximate CVP problem
can be done fairly efficiently [4].

Our second contribution is motivated by an important open problem in
isogeny-based cryptography, namely how to hash into a supersingular isogeny
graph without revealing a path to a known base curve. This problem remains
open both in the SIDH (full isogeny graph) and the CSIDH (Fp-rational isogeny
graph) setting. The hash function introduced by Charles, Goren and Lauter [8]
can be used to hash any string into the supersingular isogeny graph, but by
construction, the hash function itself leaks an isogeny path from a base curve.
To illustrate the issue, we can compare with the standard elliptic-curve discrete-
logarithm setting: The equivalent of the CGL construction would start from the
public base point P ∈ E(Fq) and construct a point Q by multiplying P with
a scalar computed deterministically from the message. As such, anyone would
know the discrete logarithm of Q with respect to P , which voids cryptographic
applications relying on the assumption that the relationship between Q and P
cannot be discovered. To remedy this, elliptic-curve cryptosystems instead hash
to curve points using maps like Elligator [3], which computes a point directly
without passing through a scalar first, but an equivalent of these constructions
in isogeny-based cryptography is not known.

3 Unless β = 0.
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Besides the random-walk approach à la CGL, it is also possible to generate
supersingular elliptic curves using the complex-multiplication (CM) method [6].
It is therefore natural to wonder whether CM can be useful to hash into the
supersingular isogeny graph, and in particular, whether finding paths between
the resulting curves could be computationally hard. Our second result squashes
this hope by locating these curves (and therefore also a path to a base curve)
in the supersingular isogeny graph, in a surprisingly explicit manner (see The-
orem 26(iii) for the exact statement).

The remainder of the paper is organized as follows. In Section 2 we recall
the necessary mathematical background. In Section 3 we introduce the notion
of twisting endomorphisms and explain their relation to Fp-rational isogenies.
Section 4 describes our new algorithm to compute a connecting ideal between
two supersingular elliptic curves over Fp given their endomorphism rings and
argues that (at least classically) our approach appears to be optimal. Finally,
Section 5 shows how to locate supersingular elliptic curves constructed via CM
in the isogeny graph, by explicitly deriving a path to a known starting curve.

Acknowledgements. The authors would like to thank Benjamin Wesolowski,
Robert Granger, Christophe Petit, and Ben Smith for interesting discussions
regarding this work, and Lixia Luo for pointing out an error in an earlier version
of Lemma 22, as well as a few smaller mistakes. Thanks to Daniel J. Bernstein
for providing key insights regarding the proof of Lemma 24.

2 Preliminaries

In this section we recall the required mathematical background and fix notation.
Our focus lies on supersingular elliptic curves over finite prime fields Fp, although
much of what follows readily generalizes to arbitrary elliptic curves over arbitrary
finite fields. Some of the observations below seem new.

For ease of exposition, we shall assume p > 3 throughout, noting that this is
not necessarily a requirement for all of the statements.

2.1 Quadratic twisting

For each odd prime number p we fix a non-square element ξ ∈ Fp along with a
square root

√
ξ ∈ Fp2 \Fp; if p ≡ 3 (mod 4) then our default choice is ξ = −1 and

we write i =
√
−1. For an elliptic curve E : y2 = f(x) over Fp defined by some

squarefree cubic polynomial f(x) ∈ Fp[x], we call the curve Et : ξ−1y2 = f(x)
the quadratic twist of E over Fp. The map τE : E → Et, (x, y) 7→ (x,

√
ξ · y) is a

non-Fp-rational isomorphism. From
√
ξ
p

= −
√
ξ one easily sees that

τE ◦ πE = −πEt ◦ τE , (1)

with πE and πEt the respective Frobenius endomorphisms of E and Et.
It can exceptionally happen that our definition of the quadratic twist is a

trivial twist in the sense of [30, §X.2]:
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Lemma 1. An elliptic curve E/Fp is Fp-isomorphic to its quadratic twist Et

if and only if p ≡ 3 (mod 4) and j(E) = 1728.

Proof. After an Fp-isomorphism, we can assume E : y2 = x3 + Ax + B with
A,B ∈ Fp satisfying 4A3 + 27B2 6= 0. Then its quadratic twist is Fp-isomorphic
to y2 = x3 +Aξ2x+Bξ3 for some non-square ξ. According to [30, Prop. III.3.1]
this curve is Fp-isomorphic to E if and only if Aξ2 = Au4 and Bξ3 = Bu6 for
some u ∈ Fp \{0}. This holds if and only if B = 0 and ξ2 is a fourth power, from
which the lemma follows. ut

2.2 Hard homogeneous spaces from supersingular curves

Fix a prime number p > 3 and consider the imaginary quadratic number field
K = Q(

√
−p) along with its maximal order OK . If E is a supersingular elliptic

curve defined over Fp, then its ring Endp(E) of Fp-rational endomorphisms ad-
mits an isomorphism to an order O ⊆ K, under which πE is mapped to

√
−p.

In particular, O always contains the subring Z[
√
−p], hence if p ≡ 1 (mod 4)

then O = OK = Z[
√
−p], while if p ≡ 3 (mod 4) then either O = Z[

√
−p] or

O = OK = Z[(1+
√
−p)/2]. We write È `p(O) to denote the set of Fp-isomorphism

classes of supersingular elliptic curves having endomorphism O.

Remark 2. If p ≡ 3 (mod 4), then the Fp-endomorphism ring of a supersingu-
lar elliptic curve E/Fp is determined by its 2-torsion; see [12]: either we have
#E(Fp)[2] = 2, in which case E ∈ È `p(Z[

√
−p]), or #E(Fp)[2] = 4, in which

case E ∈ È `p(Z[(1+
√
−p)/2]).

Every such order O comes equipped with its (ideal-)class group cl(O), which
consists of invertible ideals modulo non-zero principal ideals; the class of an
invertible ideal a ⊆ O is denoted by [a]. The number of elements of cl(O) is
called the class number and denoted by h(O).

Lemma 3. If p ≡ 3 (mod 4) then h(O) is odd, while if p ≡ 1 (mod 4) then
cl(O) has a unique element of order 2, in particular h(O) is even.

Proof. This follows from genus theory [11]. ut

Through

cl(O)× È `p(O) −→ È `p(O) : ([a], E) 7−→ [a]E := E/E[a]

the class group acts in a free and transitive manner on the set È `p(O) of
(Fp-isomorphism classes of) supersingular elliptic curves defined over Fp whose
ring of Fp-endomorphisms Endp(E) is isomorphic to O [32]. Here E[a] denotes
the intersection of the kernels of all elements of a interpreted as endomorphisms
of E; to compute this intersection it suffices to consider a set of generators of a.

Ignoring constructive issues, this group action (for large enough p) is conjec-
tured to turn È `p(O) into a “hard homogeneous space”, in which the following
problems are assumed to be computationally infeasible:
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Definition 4.
(Vectorization problem.) Given E,E′ ∈ È `p(O), find the ideal class [a] ∈ cl(O)

for which E′ = [a]E.
(Parallelization problem.) Given E,E′, E′′ ∈ È `p(O), find the elliptic curve

[a][b]E where [a], [b] ∈ cl(O) are such that E′ = [a]E and E′′ = [b]E.

The hardness of the parallelization problem naturally relates to the security
of the Diffie–Hellman-style key exchange protocol built from the above group
action: starting from a publicly known base curve E ∈ È `p(O), the two parties
Alice and Bob secretly sample [a] resp. [b] from cl(O), compute [a]E resp. [b]E,
and publish the result. The shared secret is then [a][b]E, which Alice computes
as [a]([b]E) and which Bob computes as [b]([a]E). Clearly, in order to solve
the parallelization problem, it suffices to solve the vectorization problem. On a
quantum computer, the converse holds as well [14].

For later use we recall the following rule, which was pointed out in [7, Rem. 5],
albeit very briefly and without proof (see also [1, Prop. 3.31]).

Lemma 5. For all [a] ∈ cl(O) and all E ∈ È `p(O) we have [a]−1E = ([a]Et)t.

Proof. It is convenient to assume that a is generated by elements of Z[
√
−p],

which can be done without loss of generality by scaling with an appropriate
principal ideal if needed. We claim that the composition

E
τE−−→ Et −� Et/Et[a] = [a]Et

τ[a]Et

−−−−→ ([a]Et)t

is an Fp-rational isogeny whose kernel equals the ideal a obtained from a by
complex conjugation. This claim implies the lemma because aa is the principal
ideal generated by N(a).

Let ϕ be the middle isogeny Et � Et/Et[a]. Two applications of (1) yield

π([a]Et)t ◦ (τ[a]Et ◦ ϕ ◦ τE) = (τ[a]Et ◦ ϕ ◦ τE) ◦ πE ,

implying the Fp-rationality. One verifies that a+b
√
−p ∈ a if and only if a+bπEt

vanishes on kerϕ, which holds if and only if a − bπE vanishes on ker(ϕ ◦ τE),
from which it follows that ker(τ[a]Et ◦ ϕ ◦ τE) = ker(ϕ ◦ τE) = E[a]. ut

2.3 CSIDH

CSIDH (pronounced “seaside”) is an efficient instantiation of the more general
supersingular hard-homogeneous-spaces construction described in the previous
section. We let r ∈ Z≥1 and consider a prime p of the form p = 4`1`2 · · · `r − 1,
where the `i’s are distinct odd prime numbers. This implies p ≡ 3 (mod 8), so
a priori there are two options for O, namely Z[

√
−p] and the maximal order

OK = Z[(1+
√
−p)/2]. CSIDH chooses the former option. Recall from Remark 2

that this corresponds to supersingular elliptic curves over Fp having a unique
Fp-rational point of order 2.
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Remark 6. The set È `p(Z[
√
−p]) is sometimes referred to as the “floor”, as op-

posed to È `p(Z[(1+
√
−p)/2]) which is called the “surface”. This terminology

comes from the volcano structure of the 2-isogeny graph of supersingular elliptic
curves over Fp; see [12]. We stress that CSIDH can be set up equally well on the
surface, although a convenient feature of the floor is that each E ∈ È `p(Z[

√
−p])

is Fp-isomorphic to a Montgomery curve EA : y2 = x3 + Ax2 + x for a unique
coefficient A ∈ Fp; furthermore, the coefficient defining Et is then given by −A.

The prime p was chosen such that the primes `1, `2, . . . , `r exhibit particularly
easy splitting behaviour in Z[

√
−p], namely

(`i) = (`i,
√
−p− 1)(`i,

√
−p+ 1). (2)

We refer to the respective factors, which are complex conjugates of each other,
by li and li. If we define `0 := 4 then (2) also applies to i = 0, so we can similarly
define l0 and l0. All these ideals are clearly invertible, so we can consider their
classes [li] and [li] = [li]

−1 inside cl(O). Although this is not known in general,
it seems likely that the [li]’s together generate the entire class group.

Example 7. The concrete instantiation CSIDH-512 from [7] has r = 74, where
`1, `2, . . . , `73 are the odd primes up to 373 and where `74 = 587. This results
in a 511-bit prime p. The structure of cl(Z[

√
−p]) was computed by Beullens,

Kleinjung and Vercauteren [4], who verified that [l1] = [(3,
√
−p − 1)] is in fact

a generator.

The basic idea is then to let Alice and Bob choose their secrets as

[a] = [l1]a1 [l2]a2 · · · [lr]ar resp. [b] = [l1]b1 [l2]b2 · · · [lr]br,

for exponent vectors (a1, a2, . . . , ar) and (b1, b2, . . . , br) sampled at random from
some bounded subset of Zr, for instance uniformly from a hypercube [−B;B]r

of size (2B+1)r ≈ h(Z[
√
−p]) ≈ √p. The resulting public keys and shared secret

are then computed using |a1|+ . . .+ |ar| resp. |b1|+ . . .+ |br| repeated actions
of [li] or [li]

−1 = [li]. If E ∈ È `p(Z[
√
−p]) then the subgroups

E[li] = {P ∈ E[`i] | πE(P ) = P } = E(Fp)[`i]
E[li] = {P ∈ E[`i] | πE(P ) = −P }

consist of points having Fp-rational x-coordinates; therefore, these actions are
easy to evaluate using low-degree Vélu-type formulas and involving only arith-
metic in Fp.

As far as we know, the following class group relations have not appeared in
the literature before:4

Lemma 8. In cl(Z[
√
−p]), we have

[l1][l2] · · · [lr] = [l0] 6= [1] and [l1]3[l2]3 · · · [lr]3 = [1].
4 After we posted a version of this paper online, we learned that this was observed

independently and quasi-simultaneously in [27], with a more elaborate discussion.

7



Proof. One easily verifies that

l1l2 · · · lr =
(p+ 1

4
,
√
−p− 1

)
and l0l1l2 · · · lr =

(√
−p− 1

)
.

The latter identity implies [l1][l2] · · · [lr] = [l0]−1 = [l0], while the former shows
that [l1][l2] · · · [lr] is an element of order 3. Indeed, it represents a non-trivial
ideal class because Z[

√
−p] contains no elements of norm (p + 1)/4, while its

order divides 3 since(p+ 1

4
,
√
−p− 1

)
OK =

1 +
√
−p

2
OK ,

i.e., it belongs to the kernel of the group homomorphism

cl(O) −→ cl(OK), a 7−→ aOK

which is 3-to-1 by [9, Thm. 5.2]. ut

Note that this allows for reduction of the secret exponent vectors of Alice and
Bob modulo (3, 3, . . . , 3). It also shows that the action of [l1][l2] · · · [lr] can be
evaluated using a single application of [l0] = [(4,

√
−p+ 1)]. The latter step can

be taken using an isogeny of degree 4, or using a composition of two isogenies of
degree 2, which necessarily makes us pass through the surface.

2.4 The full endomorphism ring

The “full” endomorphism ring of a supersingular elliptic curve, as opposed to
merely the Fp-rational endomorphisms, plays a fundamental role in the theory
of supersingular isogeny graphs.

An elliptic curve E is supersingular if and only if End(E) is non-commutative.
In that case, End(E) embeds as a maximal order into a certain quaternion
algebra Bp,∞ ramified at p and infinity, which is unique up to isomorphism.
Concretely, Bp,∞ can be constructed as a four-dimensional Q-algebra of the
form Q ⊕ Qi ⊕ Qj ⊕ Qij, subject to the multiplication rules i2 = −q, j2 = −p,
and ji = −ij, for some positive integer q that depends on p. In the common case
that p ≡ 3 (mod 4), we can and will use q = 1. (Thus Bp,∞ may be viewed as two
imaginary quadratic fields “glued together” non-commutatively.) We certainly
cannot stress enough that the embedding End(E) ↪−→ Bp,∞ is extremely non-
unique; in fact, there are always infinitely many choices, and usually none of
them sticks out as being particularly natural.

The notions of dual, degree, and trace of endomorphisms carry over to Bp,∞:
Taking the dual corresponds to conjugation, which maps α = a+ bi + cj + dij to
α = a−bi−cj−dij. The degree turns into N(α) = αα = a2+b2q+c2p+d2qp, and
the trace is simply tr(α) = α + α = 2a. Moreover, the trace yields a symmetric
bilinear map 〈α, β〉 = tr(αβ) on Bp,∞, with respect to which the basis 1, i, j, ij
is orthogonal. With this, finding an embedding End(E) ↪−→ Bp,∞ when being
given rational maps that span End(E) in some computationally effective way
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is easy: A variant of Schoof’s point counting algorithm [29] can be used to
compute traces of endomorphisms, and thereby the map 〈·, ·〉, which can then be
used in the Gram–Schmidt process to compute an orthogonal basis of the given
endomorphism ring. Once the basis is orthogonal, some norm computations are
necessary to align the given maps with the algebraic properties of the abstract
quaternion representation. See [13, § 5.4] for details. We will commonly use the
Q-basis (1, i, j, ij) in the forthcoming algorithms to compute with End(E); the
isomorphism to the corresponding rational maps of curves will be made explicit
whenever it is realized computationally.

One reason why the endomorphism rings are interesting for cryptographic
applications is because they contain all the information necessary to construct
an isogeny between two curves: Given End(E) and End(E′), it is easy to find a
connecting ideal I between them; that is, a lattice in Bp,∞ that is a left ideal of
End(E) and a right ideal of End(E′). For example, the following choice works:

Lemma 9. Between any two maximal orders Q and Q′ in Bp,∞, the lattice
I = QQ′ = span {ab | a ∈ Q, b ∈ Q′} is a connecting ideal.

Proof. This is an easy special case of [20, Algorithm 3.5]: Clearly QI ⊆ I, hence
OL(I) ⊇ Q, and equality follows since Q is maximal. Similarly, OR(I) = Q′. ut

The intersection of all kernels of endomorphisms contained in this ideal is a
finite subgroup determining a separable isogeny E −→ E′. One can prove that
the codomain curve of the isogeny given by such a left ideal of End(E) only
depends on the left-ideal class of I: This is what the Kohel–Lauter–Petit–Tignol
algorithm [22] exploits to find a smooth-degree, hence efficiently computable,
isogeny between E and E′ given their endomorphism rings.

Since we are concerned with supersingular elliptic curves defined over Fp, our
endomorphism rings — maximal orders in Bp,∞— will always contain a copy of
the Frobenius order Z[

√
−p] ∼= Z[πE ] ⊆ Endp(E). It thus makes sense to fix the

image of the Frobenius endomorphism πE when embedding End(E) into Bp,∞
once and for all: We will always assume that πE is mapped to j.

3 Twisting endomorphisms

As before, we focus on the case of finite fields Fp with p > 3 prime.

Definition 10. Let E be an elliptic curve defined over Fp. An endomorphism
α ∈ End(E) is called a twisting endomorphism of E if

α ◦ πE = −πE ◦ α.

(Note that E must necessarily be supersingular for this to be possible.)

Lemma 11. Let E be an elliptic curve defined over Fp. The non-zero twist-
ing endomorphisms of E are precisely the elements of End(E) that are purely
imaginary over Endp(E).
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Proof. Write α = a+ bi + cj + dij with a, b, c, d ∈ Q; then using the fact that πE
is mapped to j, the equality α ◦ πE = −πE ◦ α implies a = c = 0. ut

Lemma 12. Twisting endomorphisms have kernels defined over Fp. (Thus they
always equal either the zero map or an Fp-isogeny followed by an isomorphism.)

Proof. Since π−1E (kerα) = ker(α ◦ πE) = ker(−πE ◦ α) = kerα, the subgroup
kerα is stable under the action of Gal(Fp/Fp), hence Fp-rational. ut

Lemma 13. Let E be an elliptic curve as above and let α be a non-zero twist-
ing endomorphism of E. Then τE ◦ α : E → Et is an Fp-rational isogeny of
degree N(α).

Proof. Since τE is an isomorphism we have deg(τE ◦ α) = degα = N(α), so it
remains to prove the Fp-rationality, which follows from

τE ◦ α ◦ πE = −τE ◦ πE ◦ α = πEt ◦ τE ◦ α

where the last equality uses that
√
ξ ∈ Fp2 \ Fp and therefore

√
ξ
p

= −
√
ξ.

4 Isogenies from known endomorphisms

In this section, we describe how to find a connecting ideal between two super-
singular elliptic curves over Fp given their full endomorphism rings.

The basic idea behind our approach is to exploit the symmetry of the isogeny
graph over Fp with respect to quadratic twisting; cf. Lemma 5: Intuitively, the
distance between a curve and its quadratic twist tells us where in the graph
it is located, and combining this information for two curves allows finding the
distance between them. See Figure 1 below for an illustration.

In more mathematical terms, the “distance” between E and its quadratic
twist corresponds to an invertible ideal a ⊆ O that connects E to Et, i.e.,
satisfies [a]E = Et. We will show in Algorithm 1 how to find such an ideal, given
the full endomorphism ring of E. Subsequently, given two arbitrary supersingular
elliptic curves E,E′ with the same Fp-endomorphism ring O together with such
a “twisting ideal” for each of them, Algorithm 2 can be used to find a connecting
ideal from E to E′, i.e., an invertible ideal c ⊆ O such that [c]E = E′.

The following lemma shows the relationship between ideals in Endp(E) and
End(E) that determine the same subgroup; it is of crucial significance for the
forthcoming algorithms.

Lemma 14. Let E be a supersingular elliptic curve defined over Fp. Consider
a non-zero ideal c ⊆ Endp(E) and a non-zero left ideal I ⊆ End(E) such that
the corresponding subgroups E[I] and E[c] are equal. Then I ∩ Endp(E) = πkEc
for some k ∈ Z.5

5 One could handle the purely inseparable part — powers of πE — in a unified way by
working with scheme-theoretic kernels. Since this issue is only tangential to our work,
we will for simplicity avoid this technical complication and deal with πE explicitly.
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Proof. Following [32, Thm. 4.5], we know that for every order O which can arise
as an endomorphism ring, every ideal of O is a kernel ideal, and thus

I = {γ ∈ End(E) | ker γ ⊇ E[I]} · πrE
c = {γ ∈ Endp(E) | ker γ ⊇ E[c]} · πsE

with non-negative integers r, s ∈ Z. Now E[I] = E[c] by assumption, hence it
follows that I ∩ Endp(E) = πr−sE c, which shows the claim. ut

4.1 The algorithm

Throughout this section, we write OE := Endp(E) for brevity.
Recall from Section 2.4 that we assume End(E) is represented as a maximal

order in Bp,∞ with respect to the 1, i, j, ij basis, and such that the Frobenius
endomorphism πE is mapped to j ∈ Bp,∞ under the embedding.

We start off with an algorithm to find an ideal that connects a curve to its
quadratic twist, which will be used as a building block for the main algorithm
to connect two arbitrary curves with the same Fp-endomorphism ring in the
Fp-isogeny graph.

Algorithm 1: Connecting ideal of a curve and its twist.

Input: a supersingular E/Fp and the full endomorphism ring End(E).

Output: an invertible ideal a ⊆ OE such that [a]E = Et.

Find a non-zero element α ∈ End(E) of the form xi + yij.

Compute the ideal a :=
(
End(E) · α

)
∩ OE .

Return a.

Lemma 15. Algorithm 1 is correct and runs in polynomial time.

Proof. Note that α ∈ iOE is a twisting endomorphism of E due to Lemma 11.
Hence, E[End(E) ·α] = kerα is an Fp-rational subgroup of E giving rise to an
Fp-rational isogeny E −→ Et, which is necessarily horizontal since OE = OEt .
Therefore, there exists an invertible ideal c of OE such that E[c] = kerα, and we
may apply Lemma 14 to conclude that a =

(
End(E) ·α

)
∩OE in fact equals the

desired ideal c— up to powers of πE , which is an endomorphism.
Regarding the runtime, everything consists of basic arithmetic in Bp,∞ and

some linear algebra over Q and Z. ut

As mentioned before, the inherent symmetry of the Fp-isogeny graph with
respect to quadratic twisting implies that the “location” of a curve E in the graph
is somehow related to the properties of ideals that connect E to its quadratic
twist Et. The following lemma makes this intuition precise, in the sense that it
determines a connecting ideal between two curves almost uniquely when given a
twisting ideal for each of them. This correspondence is then used in an explicit
manner to compute a connecting ideal in Algorithm 2.

11



Lemma 16. Let E0 and E1 be supersingular elliptic curves defined over Fp with
Endp(E0) ∼= Endp(E1), such that we may simply write O for both. If b, c ⊆ O
are invertible ideals such that [b]E0 = Et0 and [c]E1 = Et1, then the unique ideal
class [a] such that [a]E0 = E1 satisfies the equation [a]2 = [b][c]−1.

Proof. By Lemma 5, applying the action of an ideal class [u] to Et gives the
same result as first applying [u] = [u]−1 and then twisting. Hence, if [a]E0 = E1,
then [a]−1Et0 = Et1. However, by the assumptions, we have [a]−1Et0 = [a]−1[b]E0

on the left-hand side and Et1 = [c]E1 = [c][a]E0 on the right-hand side, which
implies the claimed equality of ideal classes as the class-group action is free. See
Figure 1 for a visualization of the situation on an isogeny cycle. ut
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E0 Et0

[b]

E1 Et1

[c][a] [a]

[t]E0[t]Et0
[b]

[t]E1[t]Et1

[c] [a][a]

[t]

Figure 1. Illustration of Lemma 16 and the square-root issue in Lemma 17. If the ideal
t = (2,

√
−p) is non-principal and invertible in O, it corresponds to a point symmetry

with respect to the “center” of the isogeny cycle, and the entire relationship between
E0,1 and their twists is replicated on the “opposite” side with the “dual” curves [t]E0,1

and their twists. This explains why the output of Algorithm 2 is a priori only correct up
to multiplication by t; the quadratic equation determining [a] simply cannot distinguish
whether [a] jumps between the two worlds or not.

Lemma 17. Algorithm 2 is correct and runs in polynomial time.
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Algorithm 2: Connecting ideal of two curves.

Input: supersingular elliptic curves E0, E1/Fp with OE0 = OE1 = O,

together with their full endomorphism rings End(E0) and End(E1).

Output: an invertible ideal a ⊆ O such that [a]E0 = E1.

Using Algorithm 1, find an invertible ideal b ⊆ O with [b]E0 = Et0.

Likewise, find an invertible ideal c ⊆ O such that [c]E1 = Et1.

Compute an ideal a ⊆ O such that [a]2 = [b][c]−1 in cl(O) using [5, § 6].

If p ≡ 1 (mod 4) and the right order of End(E0) · a in Bp,∞ is not isomorphic

to End(E1), then replace a by a · (2, 1+
√
−p).

Return a.

Proof. Most of this follows from Lemmas 16 and 15. The square root in cl(O) to
determine the ideal a can be computed in polynomial time using the algorithm
in [5, § 6].

Regarding the correctness of the output, recall from Lemma 3 that the class
number of O is odd if p ≡ 3 (mod 4), hence the square root [a] is unique. On
the other hand, if p ≡ 1 (mod 4), then Lemma 3 implies that there are exactly
two square roots. Now the order O has discriminant −4p, hence (p) = (

√
−p)2

and (2) = (2, 1+
√
−p)2 are the only ramified primes. The principal ideal (

√
−p)

becomes trivial in cl(O). However, t := (2, 1+
√
−p) is non-principal as there is

no element of norm 2 in O, hence [t] is an element of order 2 in cl(O). Thus
the two square roots of [b][c]−1 are [a] and [at]. The final check in the algorithm
identifies the correct choice by lifting a to a left End(E0)-ideal and comparing
its right order to the endomorphism ring of E1; they must be isomorphic if a
determines an isogeny E0 → E1 as intended. ut

An example. To illustrate the algorithms in this section, we will show their
workings on a concrete, rather special example.

Lemma 18. Assume p ≡ 3 (mod 4) and let E1 be a supersingular elliptic curve
over Fp with Fp-endomorphism ring O. Let E0 be the elliptic curve in È `p(O)
having j-invariant 1728. If b ⊆ O is an invertible ideal such that [b]E1 = Et1,
then the unique ideal class [a] such that [a]E0 = E1 is given by [b](h(O)−1)/2.

Proof. This follows from Lemmas 1 and 16, together with the fact that the class
number of O is odd. ut

Example 19. Assume that p ≡ 11 (mod 12). We illustrate Algorithm 2 by com-
puting a connecting ideal a between E0 : y2 = x3 + x and E1 : y2 = x3 + 1.
Note that both curves are contained in È `p(Z[

√
−p]), as can be seen by consid-

ering E(Fp)[2]. If ω ∈ Fp2 \ Fp denotes a primitive 3rd root of unity, then E1

admits the automorphism (x, y) 7→ (ωx, y), which will, by abuse of notation, be
denoted by ω as well. According to [25, Prop. 3.2],6 the endomorphism ring of

6 Unfortunately, the statement of [25, Prop. 3.2] wrongly attributes this description to
the quadratic twist of E1.
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E1 is isomorphic to the Bp,∞-order

Q = Z + Z
−1 + i

2
+ Zj + Z

3 + i + 3j + ij

6 ,

where i corresponds to 2ω+ 1 and satisfies7 i2 = −3, and as usual j corresponds
to the Frobenius endomorphism πE1 . If we choose the twisting endomorphism
α = i in Algorithm 1, then we find Qi ∩ Z[j] = (3, j − 1). (Of course, this also
follows from the fact that 2ω+ 1 is a degree-3 isogeny whose kernel {(0,±1),∞}
is Fp-rational.) So Et1 = [(3,

√
−p− 1)]E1, and we can take

a = (3,
√
−p− 1)(h(Z[

√
−p])−1)/2 (3)

by Lemma 18. Thus, in the 3-isogeny graph associated with È `p(Z[
√
−p]), which

is a union of cycles, the curve E1 and its twist Et1 : y2 = x3 − 1 can be found
“opposite” of our starting curve E0, on the same cycle. We will generalize this
example in Section 5.

Example 20. In particular, the findings of Example 19 hold for a CSIDH prime
p = 4`1`2 · · · `r−1 with `1 = 3, so that (3,

√
−p−1) = l1. Note that E : y2 = x3+1

is isomorphic to the Montgomery curve E−
√
3 : y2 = x3 −

√
3 · x2 + x through

E−
√
3 −→ E, (x, y) 7−→ (δ2x− 1, δ3y),

where
√

3 ∈ Fp denotes the square root of 3 which is a square itself, and δ2 =
√

3.
In view of the class-group computation carried out in [4] for the CSIDH-512
parameter set, the previous example shows that the ideal

l1273262211147421375885150930053196010808102571527432117962854304877988058630951

takes the starting Montgomery coefficient 0 to the coefficient −
√

3, and one
further application of l1 takes it to

√
3. Smoothing this ideal using the class-group

relations of cl(Z[
√
−p]) from [4] yields (for instance) the CSIDH-512 exponent

vector

(5, −7, −1, 1, −4, −5, −8, 4, −1, 5, 1, 0, −2, −4, −2, 2, −9, 4, 2,
5, 1, 1, 1, 5, −4, 2, 6, 5, −1, 0, 0, −4, −1, −3, −1, −4, 1, 7,
1, 4, 1, 4, −7, 0, −3, −1, 0, 1, 2, 3, 1, 2, −4, −5, 9, −1, 4,
0, 5, 1, 0, 1, 1, 3, 0, 2, 2, 2, −1, 2, 1, −1, 11, 3),

which can indeed be readily verified to connect E0 to E−
√
3 by plugging it into

a CSIDH-512 implementation, such as that of [7], as a private key.

Example 21. If in Example 19, we instead choose the twisting endomorphism

α =
i + ij

3
= −1− j + 2

3 + i + 3j + ij

6
∈ Q ,

then we obtain a twisting ideal of norm (p + 1)/3. In the CSIDH setting of
Example 20 above, one can deduce that this ideal is nothing but l̄0̄l2̄l3 · · · l̄r, so
this confirms the first class-group relation stated in Lemma 8.
7 Here we deviate from our convention that i2 = −1 as soon as p ≡ 3 (mod 4).
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4.2 Incomplete knowledge of endomorphism rings

At first sight, there appears to be no strong reason why one requires the full
endomorphism rings to be known exactly in Algorithm 1, rather than for instance
a full-rank proper subring Q ( End(E) containing O: Twisting endomorphisms
α can clearly be found in every full-rank subring, and one can still compute the
left ideal Q · α, which can then be intersected with O. The result is indeed an
ideal a of O, as desired, but unfortunately it turns out that a usually falls short
of connecting E to its quadratic twist unless in fact Q = End(E). This is not
surprising: If Q is contained in multiple non-isomorphic maximal orders, then
the algorithm would need to work for all those maximal orders — and therefore
elliptic curves — simultaneously, which is absurd. However, luckily, one can prove
that a is only locally “wrong” at the conductor, i.e., the index f :=

[
End(E) : Q

]
.

Lemma 22. Let Q ⊆ End(E) a full-rank subring containing O and α ∈ Q\{0}
a twisting endomorphism. Defining a := (Q·α)∩O and bc :=

(
End(E) ·cα

)
∩O,

we have inclusions of O-ideals

bf ⊆ a ⊆ b1,

where the norm of the quotient (b1 : bf ) divides the squared conductor f2.

Proof. The inclusions are obvious from End(E) · f ⊆ Q ⊆ End(E). Moreover,

fb1 =
(
f · End(E) · α

)
∩ (f · O) ⊆

(
End(E) · fα

)
∩ O = bf ,

and the inclusions we have just established imply a chain of surjections

b1/fb1 −� b1/bf −� b1/a

on the quotients of b1. The first module in this sequence is clearly isomorphic
to Z2/fZ2, therefore the index [b1 : bf ] must be a divisor of |Z2/fZ2| = f2. ut

Note that both ideals b1 and bf from Lemma 22 would be correct outputs for a
generalization of Algorithm 1 to proper subrings of End(E), but a typically is not.
However, the lemma still suggests an easy strategy for guessing b1 after having
obtained a from the subring variant of Algorithm 1, at least when factoring f is
feasible and there are not too many prime factors: In that case, one may simply
brute-force through all ideals c ⊆ O of norm dividing f2 and output ac for each of
them. The lemma guarantees that a correct such c exists, since the ideal (b1 : a)
is a good choice. This procedure is summarized in Algorithm 3.

We can bound the size of the set A returned by the algorithm as follows: If
the conductor f factors into primes as f =

∏r
i=1 p

ei
i , then there are at most

r∏
i=1

(
2ei + 2

2

)
∈ O

(
(log f)2r

)
distinct O-ideals of norm dividing f2. Hence, if f is factorable in polynomial
time and the number of distinct prime factors r is bounded by a constant, then
Algorithm 3 takes polynomial time to output polynomially many ideals, and at
least one of them is guaranteed to be correct.
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Algorithm 3: Twisting a curve using an endomorphism subring.

Input: a supersingular E/Fp and a rank-4 subring Q ⊆ End(E) with Q ⊇ OE .

Output: a set A of invertible ideals a ⊆ OE such that ∃ a∈A with [a]E = Et.

Find a non-zero element α ∈ Q of the form xi + yij.

Compute the ideal a :=
(
Q · α

)
∩ OE .

Determine f = [End(E) : Q] as the (reduced) discriminant of Q divided by p.

Factor f and iterate through all ideals c ⊆ O of norm dividing f2 to compute

the set A := {ac | c ⊆ O ideal, N(c) | f2}.
Return A.

4.3 Can we do better?

It is a natural question to ask whether one can tweak the KLPT quaternion-
ideal algorithm [22] to simply output an ideal corresponding to an isogeny defined
over Fp, while preserving the main characteristics of the algorithm, namely the
smoothness of the ideal that is returned and the (heuristic) polynomial runtime.

In this section, we argue that the answer is likely “no”, at least for classical
algorithms: More concretely, we show that such an algorithm can be used as
a black-box oracle to construct, under a few mild assumptions, a polynomial-
time algorithm for the discrete-logarithm problem in those imaginary-quadratic
class groups where the prospective KLPT variant would apply. In contrast, the
currently best known algorithm is only subexponential-time [18]. Thus, the basic
conclusion appears to be that either our result is essentially optimal, or there
exists an improved classical algorithm to compute class-group discrete logarithms
in (at least) some cases.

In a sense, this is not surprising: The requirement that the output be gen-
erated by an ideal of the two-dimensional subring Endp(E) removes about the
same amount of freedom as was “adjoined” when moving from Q(

√
−p) to Bp,∞

in the first place. In fact, the KLPT algorithm makes explicit constructive use
of a quadratic subring of Bp,∞ to achieve its functionality; an advantage that
can be expected to cease when imposing strong restrictions on the output.

We formalize the situation as follows. Suppose we are given an algorithm A
with the same interface as Algorithm 2, i.e., it takes as input two supersingular
elliptic curves E,E′/Fp with the same Fp-endomorphism ring O, together with
their full endomorphism rings, and outputs an ideal a ⊆ O such that [a]E = E′.
In addition, our hypothetical algorithm A now guarantees that all prime factors
of the returned ideal a are elements of some polynomially-sized set SO, which
may depend on the prime p or the ring O but not on the concrete input curves
E and E′. For example, SO might consist of the prime ideals of O with norm
bounded by a polynomial in log p.8

Then, Algorithm 5 can use such an oracle A to compute discrete logarithms
in the subgroup of cl(O) generated by the subset SO in expected polynomial

8 Under GRH, Bach [2] proved that cl(O) is generated by prime ideals of norm less
than C(log p)2 for an explicitly computable small constant C. It is not known un-
conditionally whether a polynomial bound on the norms suffices.
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time, assuming that querying A takes polynomial time. Note that the core of the
reduction is Algorithm 4, which employs A to decompose class-group elements
as a relation over the factor base SO, and those relations are subsequently used
by Algorithm 5 in a generic and fairly standard index-calculus procedure.

A remark on notation: we make use of vectors and matrices indexed by finite
sets I such as SO— in real implementations this would correspond to fixing an
ordering of I and simply storing normal vectors or matrices of length |I|. We
use the notation |I′ to restrict a vector or matrix to the columns indexed by a
subset I ′ ⊆ I.

Algorithm 4: Finding a class-group relation using A.

Input: an oracle A as above, and an ideal a ⊆ O such that [a] ∈
〈
[s] | s ∈ SO

〉
.

Output: a vector (es | s ∈ SO) ∈ ZSO such that [a] =
[∏

s∈SO
ses
]
.

Find a supersingular E/Fp with Endp(E) = O and known End(E).

Apply KLPT to End(E) · a to get an equivalent powersmooth left ideal I.

Find the codomain E′ = [a]E by computing the isogeny defined by I.

Compute End(E′) as the right order of I in Bp,∞.

Now query A to find an ideal c ∈ 〈SO〉 such that [c]E = E′ = [a]E.

By assumption, c is of the form
∏

s∈SO
ses.

Return that exponent vector e = (es | s ∈ SO).

Lemma 23. Algorithm 4 is correct. It takes polynomial time under the heuristic
that the KLPT algorithm runs in polynomial time.

Proof. Note that finding a curve E as desired is easy: first construct an arbitrary
supersingular elliptic curve over Fp using [6], then potentially walk to the surface
or floor of a 2-volcano. Next, note that the curve E′ in fact equals [a]E, since
End(E) · a and a define the same subgroup of E and I is equivalent as a left
ideal to End(E) · a. Computing End(E′) given I is easy linear algebra. Now, c is
a product of ideals in SO by assumption on A, and it must be equivalent to a in
cl(O) since the latter acts freely on È `p(O). In conclusion, Algorithm 4 indeed
returns a correct relation vector for a and takes polynomial time to do so. ut

Using Algorithm 4, we can then follow the generic index-calculus procedure
shown in Algorithm 5 to compute discrete logarithms in cl(O):

Lemma 24. Algorithm 5 is correct and runs in expected polynomial time.9

Proof sketch. It is not hard to check that the output of the algorithm is correct
if it terminates; we thus only have to bound the expected runtime.

9 Note that this does not require any assumptions on the output distribution of ∆(a),
other than that the returned vectors are correct. (The algorithm still takes polyno-
mial time if the oracle ∆ only succeeds on an inverse polynomial fraction of inputs.)
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Algorithm 5: Solving DLP using index calculus (generic).

Input: • a generating set S of a finite abelian group G.

• an upper bound B on the cardinality |G|.
• elements g, h ∈ G such that h ∈

〈
g
〉
.

• a probabilistic algorithm ∆ : G→ ZS , such that for all inputs a ∈ G,

we have ‖∆(a)‖∞ < B and a =
∏

b∈S b∆(a)b.

Output: an integer x such that gx = h.

Fix a large integer H � B2|S|+1
. (In practice, use much smaller H.)

Initialize empty matrices M ∈ Z0×2 and L ∈ Z0×S
.

For n = 1, 2, ... do

Pick integers u, v uniformly random in {−H, ...,H}.
Invoke ∆ to obtain a vector e ∈ ZS such that guhv =

∏
b∈S beb.

Append (u, v) to M as a new row. Append e to L as a new row.

Compute a basis matrix K ∈ Zr×n of the left kernel of L, which is a lattice

in Zn of rank r.

If the row span of K ·M contains a vector of the form (x, −1) then

Return x.

Since the proof is rather technical, we will merely show the overall strategy.
Note that it suffices to lower bound the success probability of the algorithm when
r = 2 by a constant: Since r ≥ n − |S| throughout, it is evident that running
|S|+α iterations of Algorithm 5 has success probability at least as big as bα/2c
independent executions of the modified algorithm. We thus want to lower bound
the probability that two entries λ1, λ2 in the second column of K ·M are coprime.

First, since ∆ cannot distinguish from which scalars (u, v) the element guhv

was obtained, the conditional distribution of each coefficient of M after fixing a
certain oracle output e is close to uniform on {−H, ...,H}. As the lattice spanned
by the rows of K ·M is clearly independent of a basis choice, we may without
loss of generality assume that the rows of K form a shortest basis of ZrK; using
lattice techniques, one can then show that the norms of vectors in a shortest
basis of ZrK are upper bounded by B2|S|. (This uses the bound on the size of
integers returned by ∆.) Hence λi is a “small” coprime linear combination of
random variables essentially uniform on {−H, ...,H}, which in turn implies that
λi is close to uniform modulo all potential prime divisors. Thus the probability
that gcd(λ1, λ2) = 1 is lower bounded by a constant, similar to the well-known
fact that the density of coprime pairs in Z2 is ζ(2)−1 = 6/π2. ut

For concreteness, we briefly spell out how to instantiate Algorithm 5 for our
particular application to cl(O). Clearly, Algorithm 4 will serve as the oracle ∆,
so the factor base S equals the set SO from Algorithm 4. In order to keep the
representation sizes limited and to obtain unique representatives of ideal classes,
the required products guhv should be computed using the square-and-multiply
algorithm combined with reduction of binary quadratic forms; see [11] for more
context on the correspondence between quadratic forms and ideals (§ 7.B) and
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the notion of reduction (§ 2.A). To select the estimate B on the group order,
recall the upper bound h(O) ∈ O(

√
p log p) from the class number formula.

5 Vectorizing CM curves

To the best of our knowledge, there exist two practical methods for construct-
ing supersingular elliptic curves over a large finite field Fp: either one reduces
curves having CM by some order R in an imaginary quadratic field F modulo
(appropriately chosen) primes that do not split in F , or one performs isogeny
walks starting from known supersingular curves. As pointed out earlier, outside
of trusted setup, the latter method is not suitable for most cryptographic applic-
ations. In this section we focus on the former method; additional details can be
found in Bröker’s paper [6] and the references therein. As we will see, from a se-
curity point of view, the situation is even more problematic in this case: we show
that the vectorization problem associated with a CM-constructed supersingular
elliptic curve over Fp admits a surprisingly easy and explicit solution.

In practice, when constructing supersingular elliptic curves over Fp one does
not explicitly write down CM curves. Rather, one computes the Hilbert class
polynomial HR(T ) ∈ Z[T ] for R, which is a monic irreducible polynomial whose
roots are the j-invariants of the curves having CM by R. This polynomial can
be computed effectively, although the existing methods are practical for orders
having small discriminants only, one reason being that the degree of HR(T )
equals h(R). The roots of HR(T ) mod p ∈ Fp[T ] are precisely those j ∈ Fp which
arise as the j-invariant of a supersingular elliptic curve obtained by reducing an
elliptic curve having CM by R. It is well-known that all these j-invariants are
in fact elements of Fp2 , i.e., the irreducible factors of HR(T ) mod p are at most
quadratic. The linear factors then correspond to elliptic curves over Fp.

Example 25. The Hilbert class polynomial for Z[
√
−17] is given by

HZ[
√
−17](T ) = T 4 − 178211040000T 3 − 75843692160000000T 2

− 318507038720000000000T − 2089297506304000000000000,

whose reduction modulo 83 factors as (T −28)(T −50)(T 2 +7T +73). This gives
rise to two pairs of quadratic twists of elliptic curves over F83 that appear as the
reduction modulo 83 of a curve with CM by Z[

√
−17].

The main result of this section is the following theorem; for conciseness, our
focus lies on the setting where p ≡ 3 (mod 4) and where

Z[
√
−`] ⊆ R ⊆ Q(

√
−`)

for some odd prime number `, i.e., we want our CM curves to come equipped
with an endomorphism Ψ satisfying Ψ ◦Ψ = [−`]. This leaves us with two options
for R, namely Z[

√
−`] and Z[(1+

√
−`)/2]. In Remark 32 we will briefly comment

on how to locate curves having CM by more general imaginary quadratic orders.
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Theorem 26. Let p ≡ 3 (mod 4) and ` < (p+ 1)/4 be primes with
(−p
`

)
= 1.

(i) If ` ≡ 1 (mod 4) then

HZ[
√
−`](T ) mod p

has precisely two Fp-rational roots, both corresponding to a pair of quadratic
twists of supersingular elliptic curves. One pair is contained in È `p(Z[

√
−p])

while the other pair is contained in È `p(Z[(1+
√
−p)/2]).

(ii) If ` ≡ 3 (mod 4) then both

HZ[(1+
√
−`)/2](T ) mod p and HZ[

√
−`](T ) mod p

have exactly one Fp-rational root each, in both cases corresponding to a
pair of quadratic twists of elliptic curves. The first such pair is contained
in È `p(Z[

√
−p]), while the other pair is contained in È `p(Z[(1+

√
−p)/2]).

(iii) Let O ∈ {Z[
√
−p],Z[(1+

√
−p)/2]} and let E,Et ∈ È `p(O) be a pair of

supersingular elliptic curves over Fp arising as above. Up to order, this pair
is given by the curves

[l](h(O)−1)/2E0 and [l](h(O)+1)/2E0 (4)

for any prime ideal l ⊆ O lying above `. Here E0 : y2 = x3 ± x is the unique
curve with j-invariant 1728 in È `p(O).

This theorem can be seen as a vast generalization of (3) from Example 19,
where we dealt with the reduction modulo p of the curve E : y2 = x3 + 1 over Q
having CM by the ring of Eisenstein integers Z[e2πi/3] = Z[(1+

√
−3)/2]. Up to

twisting it is the only such curve: the Hilbert class polynomial for Z[(1+
√
−3)/2]

is just T . An endomorphism Ψ satisfying Ψ2 = −3 can be constructed as 2ω+ 1,
where ω is the automorphism E → E, (x, y) 7→ (e2πi/3x, y).

One particularly interesting range of parameters satisfying the stated as-
sumptions is where

– p = 4`1`2 · · · `r − 1 is a CSIDH prime with r ≥ 2, and
– ` = `i for some i ∈ {1, 2, . . . , r}.

If r = 1 then `1 = (p+ 1)/4, so Theorem 26 can no longer be applied. However,
the reasons for excluding the boundary case ` = (p+ 1)/4 are rather superficial
and the statement remains largely valid in this case (the exclusion is related to
the possible occurrence of j = 1728 as a root of HR(T ) mod p, which comes with
some subtleties in terms of quadratic twisting; see the proof).

5.1 Twisting endomorphisms from Deuring reduction

Before proceeding to the proof of Theorem 26, we discuss Deuring lifting and
reduction, with a focus on how the endomorphism Ψ behaves under reduction.
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Theorem 27 (Deuring’s reduction theorem). Let p be a prime number and
let E be an elliptic curve over a number field K which has CM by some order
R in an imaginary quadratic number field F . Let p be a prime of K above p
at which E has good reduction. Then E mod p is supersingular if and only if p
ramifies or is inert in F .

Proof. This is part of [23, Thm. 12 of Ch. 13]. ut

When applying this to an elliptic curve E/K having CM by our order
R ⊆ Q(

√
−`) from above, the endomorphism Ψ satisfying Ψ ◦ Ψ = [−`] re-

duces modulo p to an endomorphism ψ which also satisfies ψ ◦ ψ = [−`]. This
is because reduction modulo p induces an (injective) homomorphism of endo-
morphism rings; see for instance [23, § 2 of Ch. 9]. The following proposition
gives sufficient conditions for ψ to be a twisting endomorphism.

Proposition 28. Assume K = Q(j(E)), p > 2 and ` ≤ (p + 1)/4. If E mod p
is supersingular and j(E mod p) ∈ Fp then deg p = 1 and

πE mod p ◦ ψ = −ψ ◦ πE mod p, (5)

i.e., ψ anticommutes with the p-power Frobenius endomorphism of E mod p.

The proof of this proposition relies on the following observation:

Lemma 29. Let α be an algebraic integer and K = Q(α). Consider a prime
number p and a prime ideal p ⊆ OK above p. If Fp(α mod p) ( OK/p, then p
divides the discriminant of the minimal polynomial f(x) ∈ Z[x] of α over Q.

Proof. If p does not divide the discriminant of f(x), then

p =
(
p, g(α)

)
,

where g(x) ∈ Z[x] is a monic polynomial of degree deg p whose reduction modulo
p is an irreducible factor in Fp[x] of f(x) mod p; this is a well-known fact, see
e.g. [24, Thm. 27]. But this implies that α mod p is a generator of OK/p over Fp,
so the lemma follows by contradiction. ut

Proof (of Proposition 28). The minimal polynomial of j(E) over Q is precisely
the Hilbert class polynomial HR(T ) for R. The field H = Q(

√
−`, j(E)) is a

quadratic extension of K known as the ring class field for R, see [11, proof of
Prop. 1.32]. If R is a maximal order, then this is better known as the Hilbert
class field.

Using that ` ≤ (p + 1)/4, we see that p does not ramify in Q(
√
−`), hence

it must be inert by our assumption that E mod p is supersingular. This implies
that pOH splits as a product of prime ideals P of degree 2, see [11, Cor. 5.25] for
a proof in case R is a maximal order and [11, proof of Prop. 9.4] for the general
case (this is where we use the assumption p > 2). Our prime ideal p is necessarily
dominated by such a P, so it follows that
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– either deg p = 1, in which case p must be inert in H, i.e., pOH = P,
– or deg p = 2, in which case p must split in H.

But the latter option would imply that

Fp(j(E) mod p) = Fp(j(E mod p)) = Fp ( OK/p

and therefore, in view of Lemma 29, it would follow that p divides the discrim-
inant of HR(T ). This is impossible: by Gross–Zagier [17, p. 195] the primes p
dividing the discriminant of HR(T ) cannot be larger than the absolute value of
the discriminant of R, which is at most 4`.

We have thus established that deg p = 1. Now let Σ be the non-trivial auto-
morphism of H over K. From [23, § 4 of Ch. 10] we see that Ψ is not defined
over K and therefore ΨΣ = −Ψ . But Σ necessarily descends to the Frobenius
automorphism σ of OH/P ∼= Fp2 over OK/p ∼= Fp, from which it follows that
ψσ = −ψ. This implies (5) and thereby concludes the proof. ut

We remark that the last part of the preceding proof mimics the proof of [15,
Prop. 6.1]. However, the statement of [15, Prop. 6.1] is lacking an assumption
on deg p. For instance, in our case, if deg p = 2 and therefore p splits in H,
the reasoning fails because the extension OH/P over OK/p becomes trivial. And
indeed, in these cases it may happen that the reduction of Ψ mod p does not
anticommute with Frobenius:

Example 30. The discriminant of the Hilbert class polynomial for Z[
√
−29] is

divisible by 83. More precisely, its reduction modulo 83 factors as T (T −50)(T −
67)2(T 2+7T +73). One can verify that inside K = Q[T ]/(HZ[

√
−29](T )), we have

83OK = (83, T )(83, T − 50)(83, T 2 − 7)(83, T 2 + 7T + 73),

where the third factor is a degree-2 prime ideal p modulo which T reduces to
67; note that 672 ≡ 7 (mod 83). So in this case we have Fp(T mod p) ( OK/p.

Let E be any of the two elliptic curves over F83 having j-invariant 67. By
exhaustive search through the possible kernels of order 29, one can check that
E admits four distinct automorphisms squaring to [−29]. These appear in the
form ±ψ,±ψσ, where as in the proof of Proposition 28 we use σ to denote the
action of the p-power Frobenius. In particular ψ does not anticommute with πE .
Nevertheless, by Deuring’s lifting theorem (recalled below), the pair (E,ψ) must
arise as the reduction of some CM curve along with an endomorphism Ψ satisfy-
ing Ψ ◦Ψ = [−29]. (Note: this also applies to the pair (E,ψσ), which is reflected
in the fact that 67 appears as a double root of HZ[

√
−`](T ) mod 83.)

Theorem 31 (Deuring’s lifting theorem). Let E/Fp be an elliptic curve
and let α ∈ End(E). There exists an elliptic curve E′ over a number field K
along with an endomorphism α′ ∈ End(E′) and a prime p of K above p at which
E′ has good reduction, such that E′ mod p is isomorphic to E and such that α′

reduces to α modulo p.

Proof. See [23, Thm. 14 of Ch. 13]. ut
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5.2 Proof of Theorem 26

Proof (of Theorem 26). Using quadratic reciprocity one checks that(
−p
`

)
= 1 ⇐⇒

(
−`
p

)
= −1,

from which we see that p is inert in Q(
√
−`). Hence a curve with CM by Z[

√
−`]

has supersingular reduction modulo p and therefore the Fp-rational roots of the
Hilbert class polynomial

HZ[
√
−`](T ) mod p

should correspond to pairs of quadratic twists in either the floor È `p(Z[
√
−p])

or the surface È `p(Z[(1+
√
−p)/2]). If ` ≡ 3 (mod 4), then the same conclusions

apply to Z[(1+
√
−`)/2].

As a side note, we remark that ` < (p+1)/4 implies that y2 = x3±x does not
admit any twisting endomorphisms of norm `, which is easy to elaborate from [25,
Prop. 3.1]. In view of Proposition 28, we therefore see that the Fp-rational roots
of the Hilbert class polynomial never include 1728. Hence by Lemma 1 there is
no ambiguity in what is meant by “pairs of quadratic twists”. (Apart from this
ambiguity, the theorem remains true under the weaker assumption ` ≤ (p+1)/4.)

We first claim that È `p(Z[
√
−p]) and È `p(Z[(1+

√
−p)/2]) both contain at

most one such pair E,Et. Indeed, using Proposition 28 we see that E comes
equipped with a twisting endomorphism ψ of degree `, which by Lemma 13
corresponds to an Fp-rational degree-` isogeny E → Et. Its kernel is necessarily
of the form E[l] for some prime ideal l above `, i.e., we must have Et = [l]E. But
then we can solve the vectorization problem E = [a]E0: from Lemma 18 we get
that [a] = [l](h(O)−1)/2. Since the pair{

[l](h(O)−1)/2, [l](h(O)+1)/2 = [l](h(O)−1)/2}
does not depend on the choice of l, this shows that the pair {E,Et} is fully
characterized by `, implying the claim. At the same time this proves (iii).

Next, let us explain why È `p(Z[
√
−p]) and È `p(Z[(1+

√
−p)/2]) contain at

least one such pair E,Et. We remark that this comes for free if ` ≡ 3 (mod 4),
since in this case the Hilbert class polynomials for Z[

√
−`] and Z[(1+

√
−`)/2]

have odd degree and split over Fp2 , their roots being supersingular j-invariants:
hence they must admit at least one Fp-rational root. In general, we can reverse
the reasoning from the previous paragraph and define E,Et using (4), for some
choice of prime ideal l above `. In particular Et = [l]E, which provides us
with an Fp-rational degree-` isogeny ϕ : E → Et, which we use to construct an
endomorphism ψ = τEt ◦ ϕ of E that is not Fp-rational. In contrast, it is easily
verified that ψ ◦ψ is Fp-rational. Therefore the minimal polynomial of ψ cannot
admit a non-zero linear term, i.e., ψ ◦ ψ must be a scalar-multiplication map,
necessarily of the form [±`]. By Deuring’s lifting theorem E can be lifted to an
elliptic curve over a number field carrying an endomorphism Ψ whose reduction
modulo a suitable prime above p yields ψ. Since Ψ must belong to an imaginary
quadratic ring we see that Ψ ◦ Ψ = [−`] as wanted.
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Altogether this proves (i), while for (ii) it leaves us with the task of showing
that if ` ≡ 3 (mod 4), then the unique Fp-rational root of

HZ[(1+
√
−`)/2](T ) mod p

corresponds to a pair of elliptic curves {E,Et} with endomorphism ring Z[
√
−p].

Equivalently, we need to show that such curves admit a unique Fp-rational
point of order 2, rather than three such points. To this end, let P ∈ E be
an Fp-rational point of order 2 and let ϕ be the endomorphism of E corres-
ponding to (1+

√
−`)/2. Proposition 28 implies that πE ◦ ϕ = ϕ ◦ πE , where

ϕ corresponds to (1−
√
−`)/2. But then clearly (ϕ + ϕ)(P ) = P 6= ∞, which

implies that ϕ(P ) 6= ϕ(P ) and therefore that πE(ϕ(P )) 6= ϕ(P ), i.e., ϕ(P ) is a
non-rational point of order 2. This concludes the proof. ut

Remark 32. The above ideas can be generalized to locate reductions mod p of
CM curves carrying an endomorphism Ψ such that Ψ ◦ Ψ = [−`1`2 · · · `s], where
the `i ≤ (p+ 1)/4 are distinct odd primes for which(

−`1`2 · · · `s
p

)
= −1. (6)

We did not elaborate this in detail, but assume for instance that each `i splits
in Q(

√
−p); note that this implies (6). Letting O ∈ {Z[

√
−p],Z[(1+

√
−p)/2]},

one expects that 2s−1 pairs E,Et in È `p(O) can be obtained as the reduction
mod p of an elliptic curve carrying such an endomorphism Ψ . Fixing for each
i = 1, 2, . . . , s a prime ideal li ⊆ O of norm `i, these pairs are characterized by

Et = [l1][l2]e2 [l2]e3 · · · [ls]esE

with (e2, e3, . . . , es) ∈ {±1}s−1. As before, an application of Lemma 18 then
solves the corresponding vectorization problems.

Code. A proof-of-concept sage [31] script demonstrating some of the algorithms
in Section 4 is available at https://yx7.cc/files/quat.sage.
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[13] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Morrison, and Chris-
tophe Petit. Supersingular isogeny graphs and endomorphism rings: Reductions
and solutions. In EUROCRYPT (3), volume 10822 of Lecture Notes in Computer
Science, pages 329–368. Springer, 2018. https://ia.cr/2018/371.

[14] Steven Galbraith, Lorenz Panny, Benjamin Smith, and Frederik Vercauteren.
Quantum equivalence of the DLP and CDHP for group actions, 2018. IACR
Cryptology ePrint Archive 2018/1199, https://ia.cr/2018/1199.

[15] Steven Galbraith and Victor Rotger. Easy decision Diffie–Hellman groups. LMS
Journal of Computation and Mathematics, 7:201–218, 2004. https://ia.cr/

2004/070.

[16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the
security of supersingular isogeny cryptosystems. In ASIACRYPT (1), volume
10031 of Lecture Notes in Computer Science, pages 63–91. Springer, 2016. https:
//ia.cr/2016/859.

[17] Benedict H. Gross and Don B. Zagier. On singular moduli. Journal für die Reine
und Angewandte Mathematik., 355:191–220, 1985.

[18] James L. Hafner and Kevin S. McCurley. A rigorous subexponential algorithm
for computation of class groups. Journal of the American Mathematical Society,
2:837–850, 1989.

[19] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In PQCrypto, volume 7071 of Lecture Notes
in Computer Science, pages 19–34. Springer, 2011. https://ia.cr/2011/506.

[20] Markus Kirschmer and John Voight. Algorithmic enumeration of ideal classes for
quaternion orders. SIAM Journal on Computing, 39(5):1714–1747, 2010. https:

//arxiv.org/abs/0808.3833.

25

https://ia.cr/2019/498
https://ia.cr/2018/383
https://ia.cr/2006/021
https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/conductor.pdf
https://ia.cr/2006/291
https://arxiv.org/abs/1310.7789
https://ia.cr/2018/371
https://ia.cr/2018/1199
https://ia.cr/2004/070
https://ia.cr/2004/070
https://ia.cr/2016/859
https://ia.cr/2016/859
https://ia.cr/2011/506
https://arxiv.org/abs/0808.3833
https://arxiv.org/abs/0808.3833


[21] Alexei Y. Kitaev. Quantum measurements and the abelian stabilizer problem.
Electronic Colloquium on Computational Complexity (ECCC), 3(3), 1996. https:
//eccc.hpi-web.de/eccc-reports/1996/TR96-003.

[22] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the
quaternion `-isogeny path problem. LMS Journal of Computation and Mathem-
atics, 17(suppl. A):418–432, 2014. https://ia.cr/2014/505.

[23] Serge Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics.
Springer, second edition, 1987. With an appendix by John Tate.

[24] Daniel A. Marcus. Number fields. Universitext. Springer, second edition, 2018.
With a foreword by Barry Mazur.

[25] Ken McMurdy. Explicit representation of the endomorphism rings of supersin-
gular elliptic curves, 2014. Preprint. https://phobos.ramapo.edu/~kmcmurdy/

research/McMurdy-ssEndoRings.pdf.
[26] National Institute of Standards and Technology. Post-Quantum Crypto-

graphy Standardization, December 2016. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization.
[27] Hiroshi Onuki and Tsuyoshi Takagi. On collisions related to an ideal class of

order 3 in CSIDH, 2019. IACR Cryptology ePrint Archive 2019/1202, https:

//ia.cr/2019/1202.
[28] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved prac-

tical algorithms and solving subset sum problems. Mathematical Programming,
66:181–199, 1994.
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