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Abstract. Boomerang attacks are extensions of differential attacks, that
make it possible to combine two unrelated differential properties of the
first and second part of a cryptosystem with probabilities p and q into a
new differential-like property of the whole cryptosystem with probability
p2q2 (since each one of the properties has to be satisfied twice). In this
paper we describe a new version of boomerang attacks which uses the
counterintuitive idea of throwing out most of the data (including poten-
tially good cases) in order to force equalities between certain values on
the ciphertext side. This creates a correlation between the four proba-
bilistic events, which increases the probability of the combined property
to p2q and increases the signal to noise ratio of the resultant distin-
guisher. We call this variant a retracing boomerang attack since we make
sure that the boomerang we throw follows the same path on its forward
and backward directions.

To demonstrate the power of the new technique, we apply it to the
case of 5-round AES. This version of AES was repeatedly attacked by
a large variety of techniques, but for twenty years its complexity had
remained stuck at 232. At Crypto’18 it was finally reduced to 224 (for
full key recovery), and with our new technique we can further reduce the
complexity of full key recovery to the surprisingly low value of 216.5 (i.e.,
only 90, 000 encryption/decryption operations are required for a full key
recovery on half the rounds of AES).

In addition to improving previous attacks, our new technique unveils a
hidden relationship between boomerang attacks and two other cryptan-
alytic techniques, the yoyo game and the recently introduced mixture
differentials.

Keywords: boomerang attack, yoyo, mixture differentials, rectangle attack,
AES.
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1 Introduction

Differential attacks, which were introduced by Biham and Shamir [13] in 1990,
use the evolution of differences between pairs of encryptions in order to construct
high probability distinguishers. They can concatenate two short differential prop-
erties with probabilities p and q into a longer property with probability pq, but
only when the output difference of the first property is equal to the input differ-
ence of the second property. To overcome this restriction, Wagner [41] introduced
in 1999 the idea of the boomerang attack, which “throws” two plaintexts through
the encryption process, and then watches the two resultant ciphertexts (with
some modifications) return back through the decryption process. This made it
possible to concatenate two arbitrary differential properties whose probabilities
are p and q into a longer property whose probability is p2q2, since it requires
that four probabilistic events will simultaneously happen. This seems to be in-
ferior to plain vanilla differential attacks, but in many cases we can find two
short unrelated differential properties with much higher probabilities p and q,
which more than compensates for their quadratic occurrence in p2q2. A typical
example of the successful application of a boomerang attack is the best known
related-key attack on the full versions of AES-192 and AES-256, presented by
Biryukov and Khovratovich [16]. Consequently, boomerang attacks have become
an essential part of the toolkit of any cryptanalyst, and many variants of this
technique had been developed over the last 20 years.

In this paper we develop a new variant of the boomerang attack. We call
it a retracing boomerang attack, since the boomerang we throw through the
encryption not only returns to the plaintext side, but also follows closely related
paths on its forward and backward journey. This makes it possible to increase
the probability of the combined differential property to p2q, since an event that
happened once with probability q will reoccur a second time with probability
1. This idea had already been used by Biryukov and Khovratovich [16] in 2009
to get an extra free round in the middle of the encryption, but we use it in a
different way which yields better attacks on several AES variants.

The main AES variant we consider in this paper is the 5-round version of
AES. This variant had been repeatedly attacked in many papers by a large
variety of techniques over the last 20 years, but all the published key recovery
attacks had a complexity of 232 or higher. It was only in 2018 that this record had
been broken, when [3] showed how to recover the full secret key for this variant
with a complexity of6 224. In this paper we use our new retracing boomerang
attack to break the record again, reducing the complexity to 216.5, albeit in the
stronger attack model of adaptive chosen plaintext and ciphertext. This attack
was fully verified experimentally.

Another AES variant we successfully attack is the 5-round version of AES
in which the S-box and the linear mixing operations are secret key-dependent

6 Besides the full key recovery attack, the authors of [3] present an attack with com-
plexity of 221.5 that recovers 24 bits of the secret key. Since our attack recovers the
full secret key, we compare it with the full key recovery attack of [3].
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components of the same general structure as in AES. The best currently known
key-recovery attack on this variant, presented by Tiessen et al. [39] in 2015, had
data and time complexity of 240. In this paper we show how to use our new
techniques in order to reduce this complexity to just 226. A comparison of our
new attacks on 5-round AES and on 5-round AES with a secret S-box with
previous attacks7 is presented in Table 1.

Apart of allowing us to obtain better results in cryptanalysis of specific AES
variants, our new technique unveils a hidden relation between the boomerang
attack and the yoyo tricks with AES, introduced recently by Rønjom et al. [37].
While it seems that the ‘yoyo tricks’ differ significantly from boomerang at-
tacks, we show that they fit naturally into the retracing boomerang framework.
In a similar way, we show that mixture differentials, introduced recently by
Grassi [27], fit naturally into the framework of the rectangle attack [8,29] (which
is the chosen plaintext version of the boomerang attack), via the retracing rect-
angle attack framework. In the case of mixture differentials, the relation between
the attacks is even more surprising, and may unveil additional interesting fea-
tures of the mixture differential technique.

This paper is organized as follows. In Section 2 we present the previous related
work and introduce our notations. We introduce the retracing boomerang attack
in Section 3. We apply our new attack to 5-round AES and to 5-round AES
with a secret S-box in Sections 4 and 5, respectively. In Section 6 we present the
retracing rectangle attack and unveil the relation between the mixture differential
technique and the rectangle technique. In the appendices we present several
more variants and applications of the retracing boomerang, and in particular,
we further exemplify the technique by improving Biryukov’s boomerang attack
on reduced-round AES [14]. We summarize the paper in Section 7.

2 Background and Previous Work

The retracing boomerang attack is related to a number of other variants of
the boomerang attack, as well as to several other previously known techniques.
In this section we briefly present the techniques that are most relevant to our
results, while the other techniques are presented in App. A.

2.1 The boomerang attack

As the boomerang attack builds upon differential cryptanalysis, a short intro-
duction to the latter is due.

7 We note that [5,26,28,38] attacked an intermediate variant, in which only the S-box
is key-dependent, while MixColumns is the same one as in AES. The best currently
known attack on this variant, obtained by Bardeh and Rønjom [5], has complexity
of 232. Obviously, our attack applies to this variant as well.
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Attack Data Memory Time
(Chosen plaintexts) (128-bit blocks) (encryptions)

5-Round AES

Square [36] 211 small 245

Partial Sum [40] 28 small 240

Improved Square [25] 233 small 235

Imp. Diff. [11] 233.5 238 235

Mixture Diff. [27] 232 232 234

Yoyo [37] 213.3 ACC small 233

Mixture Diff. [3] 224 † 221.5 224 †

Our Attack (Sect. 4) 29 ACC 29 223

Our Attack (Sect. 4) 215 ACC 29 216.5

5-Round AES with Secret S-boxes

Integral [38] 2128 small 2128

Imp. Diff. [28] 2102 28 2102

Imp. Diff. [26] 276.4 28 276.4

Mult.-of-n. [26] 253.3 216 253.3

Square‡ [39] 240 236 240

Yoyo [5] 232 ACC small 231

Our Attack‡ (Sect. 5) 217.5 ACC 217 229

Our Attack‡ (Sect. 5) 225.8 ACC 217 225.8

† — the data and time complexity for partial key recovery is 221.5

‡ — the attack applies also when the linear transformation is key-dependent
ACC — Adaptive Chosen Plaintexts and Ciphertexts

Table 1. Attacks on 5-Round AES (full key recovery)

Differential cryptanalysis. Introduced by Biham and Shamir [13] in 1990,
differential cryptanalysis is a statistical attack on block ciphers that studies
the development of differences between two encrypted plaintexts through the
encryption process. Assume that we are given an iterative block cipher E :
{0, 1}n × {0, 1}k → {0, 1}n that consists of m (similar) rounds, and denote
the intermediate value at the beginning of the i’th round in the encryption
processes of the plaintexts P and P ′ by Xi and X ′i, respectively. An r-round
differential characteristic with probability p of a cipher is a property of the form

Pr[Xi+r ⊕X ′i+r = ΩO|Xi ⊕X ′i = ΩI ] = p, denoted in short ΩI
p−→ ΩO.

Differential cryptanalysis shows that if there exists a differential characteristic
for most of the rounds of the cipher that holds with a non-negligible probability,
then the cipher can be broken faster than exhaustive search by an attack that
requires O(1/p) chosen plaintexts. Differential cryptanalysis was used to mount
the first attack faster than exhaustive search on the full DES [35], as well as
on many other block ciphers. Together with linear cryptanalysis, introduced by
Matsui [33], it immediately became the central cryptanalytic technique, and
resistance to differential cryptanalysis, and in particular, non-existence of high-



The Retracing Boomerang Attack 5

probability differential characteristics spanning many rounds of the cipher, has
become a central criterion in block cipher design.

The boomerang attack. Introduced by Wagner [41], the boomerang attack
was one of the first techniques to show that non-existence of ‘long’ high-probability
differentials is not sufficient to guarantee security with respect to differential-type
attacks. Suppose that the cipher E can be decomposed as E = E1◦E0, such that

for E0, there exists a differential characteristic α
p−→ β, and for E1, there exists

a differential characteristic γ
q−→ δ, depicted in Fig. 1, where pq � 2−n/2. Then

one can distinguish E from a random permutation, using Algorithm 1 presented
below.

Algorithm 1 The Boomerang Attack Algorithm

1: Initialize a counter ctr ← 0.
2: Generate (pq)−2 unique plaintext pairs (P1, P2) with input difference α.
3: for all pairs (P1, P2) do
4: Ask for the encryption of (P1, P2) to (C1, C2).
5: Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ. . δ-shift
6: Ask for the decryption of (C3, C4) to (P3, P4).
7: if P3 ⊕ P4 = α then
8: Increment ctr
9: if ctr ≥ 1 then

10: return: This is the cipher E.
11: else
12: return: This is a random permutation.

P1

P2

X1

X2

α
β

E0

C1

C2

E1

C4
δ

X4

γ

X3

γ

C3
δ

β

P3

P4

α

Fig. 1. The Boomerang Attack
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The theoretical analysis of the algorithm is as follows. Denote the interme-
diate values after the partial encryption by E0 of the plaintext Pj by Xj , for
1 ≤ j ≤ 4. Let (P1, P2) by a plaintext pair such that P1 ⊕ P2 = α. By the
differential characteristic of E0, we have

X1 ⊕X2 = β, (1)

with probability p. On the other side, as the ciphertexts satisfy C1 ⊕ C3 =
C2 ⊕ C4 = δ, by the differential characteristic of E1 we have

(X1 ⊕X3 = γ) ∧ (X2 ⊕X4 = γ), (2)

with probability q2. (We recall that the differential characteristic γ
q−→ δ for E1

is identical to the differential characteristic δ
q−→ γ for E−11 , in the sense that

both count the same set of input/output pairs for E1.) If both Eq. (1) and (2)
hold, then we have

X3 ⊕X4 = (X3 ⊕X1)⊕ (X1 ⊕X2)⊕ (X2 ⊕X4) = γ ⊕ β ⊕ γ = β. (3)

Therefore, by the differential characteristic of E0, we have P3 ⊕ P4 = α, with
probability p. Hence, assuming (somewhat non-carefully, as discussed in [34] and
in App. A) that all these events are independent, we have

Pr[P3 ⊕ P4 = α|P1 ⊕ P2 = α] = p2q2. (4)

As we take 1/(pq)2 pairs (P1, P2), then with a high probability (= 1 − e−1 ≈
63%),8 for at least one of them we obtain P3⊕P4 = α, and hence, the algorithm
outputs ‘the cipher E’. On the other hand, for a random permutation we have
Pr[P3 ⊕ P4 = α] = 2−n, and hence, the expected number of pairs (P1, P2) for
which P3⊕P4 = α holds is 2−n · (pq)−2 � 1 (as we assumed pq � 2−n/2). Thus,
with an overwhelming probability, the algorithm outputs ‘random permutation’.

Therefore, the above algorithm indeed allows distinguishing E from a random
permutation, using in total 4(pq)−2 adaptively chosen plaintexts and ciphertexts
(in the sequel: ACPC).

2.2 The S-box switch

In [16], Biryukov and Khovratovich showed that in certain cases, the boomerang
attack can be improved significantly by ‘bypassing for free’ some operations in
the middle of the cipher. One of those cases, called S-box switch, is particularly
relevant to our results. Assume that E = E1 ◦E0, where the last operation in E0

is a layer S of S-boxes applied in parallel (which is the usual scenario in SP net-
works, like the AES). That is, S divides the state ρ into ρ = (ρ1, ρ2, . . . , ρt) and
transforms it to S(ρ) = (f1(ρ1)||f2(ρ2)|| . . . ||ft(ρt)), for t independent (keyed)

8 The success probability of the attack can be increased by slightly enlarging the data
complexity. If we start with c/(pq)2 pairs, then the success probability is 1− e−c.
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functions fj . Suppose that the differential characteristics in E0, E1 are such that
in both β and γ, the difference in the part of the intermediate state X that
corresponds to the output of some fj is ∆. In other words, denoting this part of
the intermediate state X by Xj , if both characteristics hold then we have

(X1)j ⊕ (X2)j = (X1)j ⊕ (X3)j = (X2)j ⊕ (X4)j = ∆.

In such a case, we have (X1)j = (X4)j and (X2)j = (X3)j , and hence, if the
differential characteristic in the function (fj)

−1 holds for the pair (X1, X2) then
it must hold for the pair (X3, X4). Thus, the overall probability of the boomerang
distinguisher is increased by a factor of (q′)−1, where q′ is the probability of the
differential characteristic in fj .

This ‘switch’, along with other ‘switches in the middle’, was a key ingredient
in the attack of [16] on the full AES-192 and AES-256. Later on, some of these
switches were generalized in the Sandwich attack of [24] for the case of a prob-
abilistic transition in the middle layer and used to attack KASUMI, the cipher
of 3G cellular networks. Recently, a more complete and rigorous analysis of the
transition between E0 and E1 was suggested, using the Boomerang Connectivity
Table [20] that covers these and related ideas. These developments are described
in more detail in App. A.

2.3 The yoyo game and mixture differentials

In addition to the classical boomerang attack, two more techniques – the yoyo
game and mixture differentials – are closely related to our attacks. We describe
them very briefly below, but in more detail in the sequel. Our new type of
boomerang attacks allows us to unveil a close relation of these two techniques
to the boomerang and rectangle techniques, respectively.

The yoyo game. The yoyo technique was introduced by Biham et al. [7] in 1998.
Like the boomerang attack, the yoyo game is based on encrypting a pair of plain-
texts (P1, P2), modifying the corresponding ciphertexts (C1, C2) into (C3, C4),
and decrypting them. However, while the boomerang distinguisher just checks
whether the resulting plaintexts (P3, P4) satisfy some property, in the yoyo game
the process continues: (P3, P4) are modified into (P5, P6) which are encrypted
into (C5, C6), those in turn are modified into (C7, C8) which are decrypted into
(P7, P8), etc. The process satisfies the property that all pairs of intermediate
values (X2`+1, X2`+2) at some specific point of the encryption process satisfy
some property (e.g., zero difference in some part of the state). Since for a ran-
dom permutation, the probability that such a property is satisfied by a sequence
of pairs (X2`+1, X2`+2) is extremely low, this property can theoretically be used
for distinguishing the cipher from a random permutation. Practically, exploiting
this property is not so easy, as the adversary does not see the intermediate values
(X2`+1, X2`+2). Nevertheless, Biham et al. showed that in some specific cases,
such a distinguishing is possible and even allows for key recovery [7].
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Biham et al. [7] applied the yoyo technique to a 16-round variant of the block
cipher Skipjack. Biryukov et al. [17] applied it to attack generic 5-round Feistel
constructions, and Rønjom et al. [37] used it to attack reduced-round AES with
at most 5 rounds. As the attack of Rønjom et al. [37] is a central ingredient in
our attacks on 5-round AES, it is presented in detail in Sect. 4.

Mixture differentials. The mixture differential technique was presented by
Grassi [27]. The technique works in the following setting. Assume that the ci-
pher E can be decomposed as E = E1 ◦ E0, where E0 can be considered as a
concatenation of several permutations, i.e., P = (ρ1, ρ2, . . . , ρt) and E0(P ) =
f1(ρ1)||f2(ρ2)|| . . . ||ft(ρt)), for t independent functions fj . A well known exam-
ple of such E0 is 1.5 rounds of AES, that can be treated as four parallel super
S-boxes (see [21]).

Definition 1. Given a plaintext pair (P 1, P 2), where P 1 = (ρ11, . . . , ρ
1
t ) and

P 2 = (ρ21, . . . , ρ
2
t ) we say that (P 3, P 4), where P 3 = (ρ31, . . . , ρ

3
t ) and P 4 =

(ρ41, . . . , ρ
4
t ) is a mixture counterpart of (P 1, P 2) if for each 1 ≤ j ≤ t, the quartet

(ρ1j , ρ
2
j , ρ

3
j , ρ

4
j ) consists of two pairs of equal values or of four equal values. The

quartet (P 1, P 2, P 3, P 4) is called a mixture.

The main observation behind the mixture differential technique is that if (P 1, P 2,
P 3, P 4) is a mixture then the XOR of the corresponding intermediate values
(X1, X2, X3, X4) is zero. Indeed, for each j, as (ρ1j , ρ

2
j , ρ

3
j , ρ

4
j ) consists of two pairs

of equal values, then the same holds for (fj(ρ
1
j ), fj(ρ

2
j ), fj(ρ

3
j ), fj(ρ

4
j )) as well. In

particular, fj(ρ
1
j )⊕fj(ρ2j )⊕fj(ρ3j )⊕fj(ρ4j )) = 0. As a result, if we have X1⊕X3 =

γ, then X2⊕X4 = γ holds as well. Now, if there exists a differential characteristic

γ
q−→ δ for E1, then with probability q2, the corresponding ciphertexts satisfy

C1 ⊕ C3 = C2 ⊕ C4 = δ.
Grassi [27] applied the technique to mount several attacks on AES with up

to 6 rounds. The 5-round attack of Grassi was recently improved in [3] into an
attack with overall complexity of 224 for full key-recovery (or 221.5 for recovering
24 bits of the secret key), that is significantly faster than all other known attacks
on 5-round AES.

3 The Retracing Boomerang Attack

Our new retracing boomerang framework contains two attack types – a shifting
type and a mixing type. In this section we present these two types and discuss
their advantages over the standard boomerang attack and their relation to previ-
ous works. In the following sections and in the appendix we present applications
of the new techniques, along with a few variants and extensions.

3.1 The shifting retracing attack

Assumptions. Suppose that the block cipher E can be decomposed as E =
E12 ◦ E11 ◦ E0, where E12 consists of dividing the state into two parts (a left
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part of b bits and a right part of n− b bits) and applying to them the functions
EL12, E

R
12, respectively. Furthermore, suppose that for E0, there exists a differ-

ential characteristic α
p−→ β, for E11, there exists a differential characteristic

γ
q1−→ (µL, µR), for EL12, there exists a differential characteristic µL

qL2−−→ δL, and

for ER12, there exists a differential characteristic µR
qR2−−→ δR (see Fig. 2).9
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P2

X1

X2

Y1

Y2

α
β

E0

C1

C2

E11

E12

C4

Y4

δ

µ

X4

γ

X3

γ

C3

Y3

δ

µ

β

P3

P4

α

X2 X4

γ

Y L
2

Y R
2

Y L
4

Y R
4

µL

µR

CL
2

CR
2

CL
4

CR
4

δL

δR

E11

E12

E11

E12

Fig. 2. The Retracing Boomerang Framework

In other words, we make the same assumptions as in the boomerang attack,
with the additional assumption that E1 can be further decomposed into two
sub-ciphers, and that the second sub-cipher has a specific structure. While this
additional assumption may look very restrictive, it applies for a wide class of
block ciphers. For example, if E is a SASAS construction [18], then E12 can be
taken to be the last S layer; a specific such example is AES [36], where E12 can
be taken to be the last 1.5 rounds.

The attack procedure and its analysis. Assuming that pq1q
L
2 q

R
2 � 2−n/2,

the standard boomerang attack can be used to distinguish E from a random
permutation, with data complexity of 4(pq1q

L
2 q

R
2 )−2.

The basic idea of the retracing boomerang attack is to add an artificial (b−1)-
bit filtering in the middle of the attack procedure. Namely, after encrypting
(P1, P2) into (C1, C2), we first check whether

CL1 ⊕ CL2 = 0 or δL. (5)

Only if there is equality, we continue with the boomerang process. Otherwise,
we simply discard the pair (P1, P2). See Fig. 3 for the process.

This is a surprising move, as the discarded pair may actually be a right pair
with respect to the differential characteristic α → β (i.e., a pair that satisfies

9 A variant of the attack that is applicable when the top part of the cipher can be
further decomposed into two sub-ciphers, is presented in App. B.
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Fig. 3. A Shifted Quartet (dashed line means equality)

the characteristic). Hence, a natural question arises: What do we gain from this
filtering?

Note that for any value of δL, if Eq. (5) holds then the two unordered pairs
(CL1 , C

L
3 ) and (CL2 , C

L
4 ) are identical. Hence, if one of these pairs satisfies the

differential characteristic δL
qL2−−→ µL, then the other one must satisfy it as well.

As a result, the probability of the boomerang distinguisher among the examined
pairs is increased by a factor of (qL2 )−1 from (pq1q

L
2 q

R
2 )2 to (pq1q

R
2 )2qL2 .

Advantages of the new technique. At first glance, our new variant of the
boomerang attack seems completely odd and useless. Note that as the block size
of EL12 is b bits, then any possible differential characteristic of EL12 has probability
of at least 2−b+1, and so, the overall probability of the boomerang distinguisher
is increased by a factor of at most 2b−1. On the other hand, our filtering leaves
only 2−b+1 of the pairs, so we either gain nothing (if qL2 = 2−b+1) or even lose
(otherwise)!

It turns out that there are several advantages to this approach:

1. Improving the signal to noise ratio. Recall that the ordinary boomerang attack
applies if pq1q

L
2 q

R
2 � 2−n/2, as otherwise, the probability that P3⊕P4 = α holds

for E is not larger than the respective probability for a random permutation. In
the retracing boomerang attack, the probability that P3 ⊕ P4 = α holds among
the examined pairs is increased by a factor of (qL2 )−1, while the probability for
a random permutation remains unchanged. As a result, the attack can succeed
in cases where the ordinary boomerang attack fails due to insufficient filtering.

Furthermore, the adversary can use the increased gap between the probabil-
ities of the checked event for E and for a random permutation to replace the

differential characteristic β
p−→ α used for the pair (X3, X4) in the backward
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direction with a truncated differential characteristic10 β
p′−→ α′ of a higher prob-

ability p′ in which α′ specifies the difference in only some part of the bits, while
still having a larger probability of the event P3 ⊕ P4 = α′ for E than for a ran-
dom permutation. An example of this advantage is demonstrated in the attack
on 5-round AES presented in App. C.1.

2. Reducing the data complexity. The new attack saves data complexity on the
decryption side. Indeed, as decryption is performed only to the pairs that satisfy
the filtering condition, the number of decryptions is reduced by a factor of 2b−1.
While usually, the effect of this reduction is not significant as then the encryp-
tions dominate the overall complexity, there are cases in which more queries are
made on the decryption side, and in such cases, the data complexity may be
reduced significantly. This advantage (like the previous one) is demonstrated in
the attack on 5-round AES in App. C.1.

3. Reducing the time complexity. The smaller number of pairs on the decryp-
tion side may affect also the time complexity of the attack. This effect is not
significant when the attack complexity is dominated by encryption/decryption
of the data. However, in many cases (e.g., where a round is added before the
distinguisher and the adversary has to guess some key material in the added
round and check whether the condition P3 ⊕ P4 = α holds), the complexity of
the attack is dominated by analysis of the pairs (P3, P4). In such cases, the time
complexity may be reduced by a factor of (qL2 )−1, as the number of pairs (P3, P4)
is reduced by this ratio.

Relation to previous works. Our new technique uses several ideas that al-
ready appeared in previous works in different contexts. Those include:

– Discarding part of the data before the analysis. The counter-intuitive idea of
neglecting part of the data appears in various previous works, e.g., in the
context of time-memory tradeoff attacks on stream ciphers [23], and in the
context of conditional linear attacks on DES [12].

– Increasing the probability of the boomerang attack by exploiting dependency
between differentials. As we mentioned above, several previous works on the
boomerang attack used dependency between differentials, and in particular,
situations in which the four inputs to some function in the encryption process
are composed of two pairs of equal values, to increase the probability of the
boomerang distinguisher (see, e.g., [15,16,20,24]). The closest to our attack
is the S-box switch of Biryukov and Khovratovich [16] described in Sect. 2. In
all these attacks, the gain is obtained in the transition between the two sub-
ciphers E0, E1. In contrast, the retracing boomerang exploits dependency
between the two differentials in the same sub-cipher (by forcing dependency
via the artificial filtering).

– Increasing the probability of the boomerang attack by exploiting representa-
tion of a sub-cipher as two (or more) functions applied in parallel. Such a

10 For explanation on truncated differential characteristics, see Appendix A.
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probability increase was obtained by Biryukov and Khovratovich [16] in the
ladder switch technique, which exploits a subdivision into multiple functions
(e.g., a layer of S-boxes) along with dependency between differentials, to
increase the probability of the transition between the two sub-ciphers.

– Using quartets of the form (x, x, y, y) to force dependency. This idea was
recently used by Grassi in [27, Theorem 4], in the context of the mixture
differential attack described in Sect. 2.

3.2 The mixing retracing attack

The attack setting. Recall that the shifting retracing boomerang attack in-
creases the probability of the boomerang distinguisher by forcing equality be-
tween the unordered pairs (CL1 , C

L
2 ) and (CL3 , C

L
4 ) that enter (EL12)−1. Such an

equality can be forced in an alternative way, without inserting an artificial fil-
tering.

Instead of working with the same shift δ for all ciphertexts, one may shift
each ciphertext pair (C1, C2) by (CL1 ⊕ CL2 , 0), thus obtaining the ciphertexts

C3 = (CL3 , C
R
3 ) =

(
CL1 ⊕ (CL1 ⊕ CL2 ), CR1 ⊕ 0

)
= (CL2 , C

R
1 ),

and (similarly) C4 = (CL1 , C
R
2 ), see Fig. 4. In such a case, the unordered pairs

(CL1 , C
L
3 ) and (CL2 , C

L
4 ) are equal, and hence, we gain a factor of (qL2 )−1, like in

the shifting retracing attack. Furthermore, in the right part we have CR1 = CR3
and CR2 = CR4 , and thus, we gain also a factor of (qR2 )−2 (as both charac-
teristics in ER12 hold trivially with probability 1). This results in a total gain
of (qL2 )−1(qR2 )−2.
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Fig. 4. A Mixture Quartet of Ciphertexts (a dashed line means equality)
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Relation to ‘yoyo tricks with AES’. Interestingly, in the special case of the
AES, the mixing described here is exactly the core step of the yoyo attack of
Rønjom et al. [37] (presented in detail in Sect. 4). Hence, this type of retrac-
ing boomerang is not entirely novel, but rather generalizes and presents a new
viewpoint on the yoyo attack of Rønjom et al.

We note that this interpretation of the yoyo as related to the boomerang
attack did not appear in [37]. This is not surprising, as the yoyo attack indeed
does not look similar to the boomerang attack: there is no single differential
characteristic for the second sub-cipher, but rather each ciphertext pair is mixed
in a certain way. However, our description shows that this attack is in fact very
closely related to the boomerang attack.

Comparison between the two types of retracing boomerang. At first
glance, it seems that the mixing retracing attack is clearly better than the shifting
retracing attack presented above. Indeed, it obtains an even larger gain in the
probability of the distinguisher, while not discarding ciphertext pairs! However,
there are several advantages of the shifting variant that make it more beneficiary
in various scenarios:

– Using structures. As is described in App. A, a central technique for extending
the basic boomerang attack is adding a round at the top of the distinguisher,
using structures. This technique can be combined with the shifting retracing
technique, as follows. First, the adversary performs the ordinary boomerang
attack with structures (i.e., encrypts structures of plaintexts, shifts all ci-
phertexts by δ and decrypts the resulting ciphertexts), and then she checks
the artificial filtering together with the condition on P3, P4, since both can be
checked simultaneously using a hash table. As a result, the data complexity
remains the same as in the ordinary boomerang attack (with structures!),
while the retracing boomerang leads to an improvement in the signal to
noise ratio, which can be translated to a reduction in the data complexity,
as described above.
For mixing retracing, such a combination is impossible, since each ciphertext
pair (C1, C2) has to be modified by its own shift (CL1 ⊕ CL2 , 0), and so, one
cannot shift entire structures as a single block. Therefore, the reduction of
data complexity by using structures cannot be obtained.
A similar advantage of the shifting variant is the ability to combine it with
extension of the boomerang attack by adding a round at the bottom, as we
demonstrate in our attack on 6-round AES in App. C.3.

– Combination with E11. In the mixing variant, since the output difference for
(EL12)−1 (namely, (C1)L ⊕ (C2)L), is arbitrary and changes between differ-
ent pairs, in most cases there is no good combination between differential
characteristics of (EL12)−1 that can be used and differential characteristics of
(E11)−1. Indeed, in the yoyo attack of [37] on 5-round AES, this part of the
attack succeeds simply because E11 is empty. It seems that while the mixing
retracing technique can be applied also in cases where E11 is non-linear (and,
in particular, non-empty), it will usually (or even almost always) be inferior
to the shifting retracing boomerang in such cases.
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– Construction of ‘friend pairs’. An important ingredient in many boomerang
attacks is ‘friend pairs’, which are pairs that are attached to given pairs in
such a way that if some pair satisfies a desired property then all its ‘friend
pairs’ satisfy the same property as well (such pairs are used in most attacks
in this paper; see App. D for a discussion). While both types of the retracing
boomerang attack allow constructing several ‘friend pairs’ for each pair, the
number of pairs in the shifting variant is significantly larger, which makes it
advantageous in some cases.

The names of the attacks. The shifting type of the retracing boomerang is
named this way since it preserves the δ-shift of the original boomerang attack,
and uses the filtering to enhance the probability of the original boomerang pro-
cess. The mixing type is named this way since it replaces the δ-shift by a mixing
procedure, like the one used in mixture differentials [27].

4 Retracing Boomerang Attack on 5-round AES

Our first application of the retracing boomerang framework is an improved at-
tack on 5-round AES, which allows recovering the full secret key with data
complexity of 215, time complexity of 216.5, and memory complexity of 29. The
attack was fully implemented experimentally. Since our attack is based on cen-
tral components of the yoyo attack of Rønjom et al. [37] on 5-round AES (which
can be seen as a mixing retracing boomerang attack, as was shown in Sect. 3.2),
we begin this section with describing the structure of the AES and presenting
the attack of [37]. Then we present our attack, its analysis, and its experimental
verification.

4.1 Brief description of the AES and notations

The Advanced Encryption Standard (AES) [36] is a substitution-permutation
(SP) network which has 128-bit plaintexts and 128, 192, or 256-bit keys. Since
the descriptions of all attacks we present in this paper are independent of the
key schedule, we do not differentiate between these variants.

The 128-bit internal state of AES is treated as a byte matrix of size 4x4,
where each byte represents a value in GF (28). An AES round (described in
Fig. 5) applies four operations to this state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-

trix over the field GF (28), and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

An additional AddRoundKey operation is applied before the first round, and in
the last round the MixColumns operation is omitted. The number of rounds is
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Fig. 5. An AES Round

between 10 and 14, depending on the key length. We omit the key schedule, as
it does not affect the description of our attacks.

The bytes of each state of AES are numbered 0, 1, . . . , 15, where for 0 ≤ i, j ≤
3, the j’th byte in the i’th row is numbered i + 4j (see the state after SB in
Fig. 5). We always consider 5-round AES, where the MixColumns operation in
the last round in omitted. The rounds are numbered 0, 1, 2, 3, 4. The subkeys are
numbered k−1, k0, . . . , k4, where k−1 is the secret key XORed to the plaintext
at the beginning of the encryption process. We denote by W,Z, and X the
intermediate states before the MixColumns operation of round 0, at the input
to round 1 and before the MixColumns operation of round 2, respectively. The
j’th byte of a state or a key Xi is denoted by Xi,j or by (Xi)j . When several
bytes j1, . . . , j` are considered simultaneously, they are denoted by Xi,{j1,...,j`}
or by (Xi){j1,...,j`}.

The term ‘`’th shifted column’ (resp. ‘`’th inverse shifted column’) refers to
the result of application of SR (resp., SR−1) to the `’th column. For example,
the 0’th shifted column consists of bytes 0, 7, 10, 13, and the 0’th inverse shifted
columns consists of bytes 0, 5, 10, 15. We also denote by SR(j) (resp., SR−1(j))
the byte position to which byte j is transformed by SR (resp., SR−1).

When considering differences between the encryption processes of a pair of
plaintexts, we say that a component (e.g., byte or column) at some stage of
the encryption process is active if the difference in that component is non-zero.
Otherwise, we call the component passive. Finally, we say that some values
x1, x2, . . . , xm ‘sum up to zero’ if x1 ⊕ x2 ⊕ . . .⊕ xm = 0.

4.2 The yoyo attack of Rønjom et al. on 5-round AES

The idea behind the attack. The attack decomposes 5-round AES as E =
E12 ◦E11 ◦E0, where E0 consists of the first 2.5 rounds, E11 is the MC operation
of round 2, and E12 consists of rounds 3 and 4. For E0 in the forward direction,
the adversary uses a truncated differential characteristic whose input difference
is zero in three inverse shifted columns, and whose output difference is zero in
a single shifted column. The probability of the characteristic is 4 · 2−8 = 2−6,
since it holds if and only if the output difference of the active column in round 0
is zero in at least one byte. For E12 in the backward direction, recall that 1.5
rounds of AES can be represented as four 32-bit to 32-bit super S-boxes applied
in parallel (see [21]). For each ciphertext pair (C1, C2), the adversary modifies
it into one of its mixture counterparts (see Definition 1) with respect to the
division into super S-boxes, calls the new ciphertext pair (C3, C4), and asks for
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its decryption. Due to the mixture construction, the four outputs of each super S-
box are composed of two pairs of equal values, and hence, the four corresponding
inputs to the super S-boxes sum up to 0. As MC is a linear operation, this implies
that X1 ⊕ X2 ⊕ X3 ⊕ X4 = 0. Therefore, with probability 2−6, the difference
X3⊕X4 equals zero in a shifted column. This, in turn, implies that the difference
Z3 ⊕ Z4 equals zero in an inverse shifted column (i.e., one of the four quartets
of bytes: (0, 5, 10, 15), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)).

At this point, the adversary would like to attack bytes 0, 5, 10, 15 of the
subkey k−1, using the fact that in one of the bytes of the first column, we have
Z3 ⊕ Z4 = 0. However, this information provides only an 8-bit filtering, while
32 subkey bits are involved. In order to improve the filtering, the authors of [37]
construct ‘friend pairs’ of the pair (Z3, Z4), such that if we have Z3 ⊕Z4 = 0 in
byte `, then the same holds for all friend pairs. The resulting attack algorithm
(of [37]) is given in Alg. 2.

Algorithm 2 Rønjom et al.’s Yoyo Attack on 5-Round AES

1: Ask for the encryption of 26 pairs (P1, P2) of chosen plaintexts that have non-zero
difference only in bytes 0,5,10,15.

2: for all corresponding ciphertext pairs (C1, C2) do
3: Define four modified ciphertext pairs (Cj

3 , C
j
4) (j = 1, 2, 3, 4) to be mixture

counterparts of the pair (C1, C2).
4: Ask for the decryption of the ciphertext pairs and consider the pairs of inter-

mediate values after round 0, (Zj
3 , Z

j
4).

5: for all ` ∈ {0, 1, 2, 3} do
6: Assume that all four pairs (Zj

3 , Z
j
4) and the pair (Z1, Z2) have zero difference

in byte `.
7: Use the assumption to extract bytes 0, 5, 10, 15 of k−1.
8: if a contradiction is reached then
9: Increment `

10: if ` > 3 then
11: Discard the pair

12: else
13: Use the fact that Zj

3⊕Z
j
4 = 0 in the entire `’th inverse shifted column to

attack the three remaining columns of round 0 (sequentially) and thus to deduce
the rest of k−1.

Analysis of the attack. The data complexity of the attack is about 29, since for
each of 26 pairs (P1, P2), the adversary decrypts four ciphertext pairs (Cj3 , C

j
4).

The time and memory complexities are dominated by the attack on k−1 in Step 7.
In a naive application, this attack requires about 232 operations for each pair
(P1, P2) and each value of ` ∈ {0, 1, 2, 3}, and thus, the overall time complexity
of the attack is about 232 · 26 · 4 = 240. The authors of [37] managed to improve
the overall complexity to 231, using a careful analysis of round 0, including
exploitation of the specific matrix used in MC. We do not present this part of
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the attack, as it can be replaced by a simpler and stronger tool, as we describe
below. To summarize, the data complexity of the attack is 29 adaptively chosen
plaintexts and ciphertexts, the memory complexity is 29 and the time complexity
is 231 encryptions.

4.3 A simple improvement of the yoyo attack on 5-round AES

A simple improvement of the attack of Rønjom et al. is to use a meet-in-the-
middle (MITM) procedure to attack bytes 0, 5, 10, 15 of k−1 in Step 7.

Denote the intermediate value in byte m before the MC operation of round 0
in the encryption of a plaintext P by Wm. W.l.o.g. we consider the case ` = 0,
and recall that by the structure of AES, byte 0 in the input to round 1 satisfies

Z0 = 02x ·W0 ⊕ 03x ·W1 ⊕ 01x ·W2 ⊕ 01x ·W3. (6)

In the MITM procedure, the adversary guesses bytes 0, 5 of k−1, computes the
value

02x · (W j
3 )0 ⊕ 03x · (W j

3 )1 ⊕ 02x · (W j
4 )0 ⊕ 03x · (W j

4 )1 (7)

for j = 1, 2, 3, and stores the concatenation of these values (i.e., a 24-bit value)
in a sorted table. Then she guesses bytes 10, 15 of k−1, computes the value

01x · (W j
3 )2 ⊕ 01x · (W j

3 )3 ⊕ 01x · (W j
4 )2 ⊕ 01x · (W j

4 )3 (8)

for j = 1, 2, 3, and checks for a match in the table (which is, of course, equivalent
to the condition (Zj3)0 = (Zj4)0 for j = 1, 2, 3). As this condition is a 24-bit
filtering, about 232 · 2−24 = 28 suggestions for bytes 0, 5, 10, 15 of k−1 remain,
and those can be checked using the conditions (Z4

3 )0 = (Z4
4 )0 and (Z1)0 = (Z2)0.

The data complexity of the attack remains 29. The time complexity is reduced
to 26 · 4 · 216 = 224 operations, where each operation is roughly equivalent to a
computation of one AES round in a single column for 6 plaintexts, or a total of
less than 223 encryptions.

It seems that the use of MITM increases the memory complexity of the attack
to about 216. However, one can maintain the memory at 29 using the dissection
technique [22] (see, e.g., [3] for similar applications of dissection). Therefore, the
time complexity of the attack is reduced to 223 encryptions, while the data and
memory complexities remain unchanged at 29.

4.4 An attack on 5-round AES with overall complexity of 216.5

We now show how one can reduce the time complexity of the attack described
above to 216.5, at the expense of increasing the data complexity to about 215.

The idea behind the attack is to enhance the MITM procedure, such that on
each of the two sides, the number of possible key values is reduced to 28 (instead
of 216). The reduction is obtained using two methods:

Constructing an extra equation by a specific choice of plaintexts. In order to
reduce the number of possible values of k−1,{0,5}, we choose plaintext pairs with
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non-zero difference only in bytes 0, 5. For such pairs, the condition (Z1)0 = (Z2)0
simplifies into

02x · (W1)0 ⊕ 03x · (W1)1 ⊕ 02x · (W2)0 ⊕ 03x · (W2)1, (9)

as bytes 2, 3 of W cancel out. This equation depends only on the plaintexts and
on bytes 0, 5 of k−1, and since it is an 8-bit filtering, it leaves only 28 possible
values of k−1,{0,5}. In order to detect these 28 candidates efficiently, we make
our choice of plaintexts even more specific.

We choose only pairs of plaintexts (P1, P2) that satisfy (P1)5 ⊕ (P2)5 = 01x.
In addition, as a precomputation phase we compute the row of the Difference
Distribution Table (DDT) of the AES S-box that corresponds to input difference
01x and store it in memory, where each output difference is stored along with
the value(s) that lead to it.11

As a result, for each pair (P1, P2) and for each guess of k−1,0, we can use
Eq. (9) to compute the output difference of the SB operation in byte 5. As the
input difference is fixed to be 01x, we can use the precomputed row of the DDT
to find the inputs to that SB operation by a single table lookup, and hence, to
retrieve instantly the possible value(s) of k−1,5 that correspond to the guessed
value of k−1,0.

This process allows us to compute the 28 possible values of k−1,{0,5} in about
28 simple operations for each pair.

Eliminating a key byte from the equation by using multiple ‘friend pairs’. In order
to reduce the number of possible values of k−1,{10,15}, we attach to each plaintext
pair (P1, P2) multiple ‘friend pairs’, such that if (P1, P2) satisfies the differential
characteristic of E0, then all friend pairs satisfy the same characteristic as well.
We perform the boomerang process for all friend pairs together with the original
pairs, obtaining many pairs (P j3 , P

j
4 ). We choose one such pair for which we have

(P j3 )10 ⊕ (P j4 )10 = 0 or (P j3 )15 ⊕ (P j4 )15 = 0. (10)

Assume w.l.o.g. that the equality holds in byte 10. We perform the MITM pro-
cedure presented above with the single pair (P j3 , P

j
4 ). Note that the first step

provided us with 28 possible values for k−1,{0,5}. Hence, in the MITM attack
there are only 28 possible values for the expression (7). On the other hand, by
the choice of the pair, there is zero difference in byte 2 before the MC operation,
and thus, the subkey byte k−1,10 cancels out from the expression (8). As a re-
sult, this expression depends on a single key byte, and thus, has only 28 possible
values, just like Eq. (7). Thus, the MITM procedure requires about 29 simple
operations and (as the data provides an 8-bit filtering) leaves 28 suggestions for
subkey bytes k−1,{0,5,15}. Finally, we can take any other couple of ‘friend pairs’
and recover the unique value of k−1,{0,5,10,15} by another MITM procedure in
which one side computes the contribution of bytes 0, 1, 3 to Eq. (9) (applied for

11 Constructing this row takes 29 simple operations, and storing it takes much less than
29 128-bit cells of memory.
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the difference (Z3)0 ⊕ (Z4)0) and the other side computes the contribution of
byte 2, as on each side there are about 28 possible values.

Therefore, the complexity of the MITM attack on k−1,{0,5,10,15} is reduced to
about 28 operations for each pair (P1, P2) and each value of `, or a total of about
216 operations. As for the data complexity, in order to have a friend pair that
satisfies Eq. (10) with a high probability, we have to take about 27 friend pairs
for each of the 26 pairs (P1, P2). Hence, the total data complexity is increased
to about 215. A more precise analysis is given below.

Attack algorithm. The algorithm of our improved attack on 5-round AES is
as follows.

1. Precomputation: Compute the row of the DDT of the AES S-box that
corresponds to input difference 01x, along with the actual values.

2. Online phase: Take 64 pairs (P1, P2) of plaintexts such that in each pair,
we have (P1)5 = 00x and (P2)5 = 01x, in byte 0 the values (P1, P2) are
distinct, and in all other bytes, the values (P1, P2) are equal.

3. To each plaintext pair (P1, P2), attach 27 ‘friend pairs’ (P j1 , P
j
2 ), such that

for each j we have (P j1 ⊕P j2 ) = P1⊕P2, and (P j1 ){0,5,10,15} = (P1){0,5,10,15}.
4. Do the following for each plaintext pair (P1, P2), and for each ` ∈ {0, 1, 2, 3}:

[we present the operations for ` = 0, the other cases are similar.]
(a) For each guess of byte k−1,0, partially encrypt (P1, P2) through the SB

operation in byte 0 of round 0 to find its output difference. Then, as-
suming that the pair (P1, P2) satisfies the characteristic of E0 with ` = 0
(i.e., that (Z1)0 = (Z2)0), use Eq. (9) to find the output difference of the
SB operation in byte 5 of round 0. Then use the precomputed DDT to
deduce the actual inputs to that SB operation, and deduce from them
the value of subkey byte k−1,5. Store in a table the 28 possible values
k−1,{0,5}.

(b) Ask for the encryption of (P1, P2) and of its 27 ‘friend pairs’ (P j1 , P
j
2 ).

For each ciphertext pair (C1, C2) or (Cj1 , C
j
2) we obtain, replace it by

one of its mixture counterparts, which we denote by (C3, C4) or (Cj3 , C
j
4)

(respectively), and ask for its decryption. Denote the resulting plaintext
pairs by (P3, P4) and (P j3 , P

j
4 ).

(c) Find a value j for which the pair (P j3 , P
j
4 ) satisfies Eq. (10). [In the follow-

ing steps we assume w.l.o.g. that the condition yields equality in byte 10.
If the equality is in byte 15, the steps should be modified accordingly.]

(d) Perform a MITM attack on Column 0 of round 0, using the plaintext pair
(P j3 , P

j
4 ). Specifically, use the 28 possible values for k−1,{0,5} computed

in Step 4(a) to obtain 28 possible values for (7) and store them in a table.
Then, for each guess of subkey byte k−1,15, compute (8) and check in
the table for a collision. Each collision provides us with a possible value
of k−1,{0,5,15}.

(e) Perform a MITM attack on Column 0 of round 0, using two other

plaintext pairs (P j
′

3 , P
j′

4 ). Specifically, use the 28 possible values for
k−1,{0,5,15} computed in the previous step to obtain the contribution
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of bytes 0, 1, 3 to Eq. (6) (applied for the difference (Z3)0 ⊕ (Z4)0, for
both pairs) and store in a table. Then, for each guess of subkey byte
k−1,10, compute the contribution of byte 2 to Eq. (6) and check in the
table for a collision. (Each collision provides us with a possible value of
k−1,{0,5,10,15}, along with a filtering for wrong pairs.) If a contradiction
is reached, move to the next value of `; if contradiction is reached for all
values of `, discard the pair (P1, P2) and move to the next pair.

5. Using a pair (P1, P2) for which no contradiction occurred in Step 4 and its
‘friend pairs’, perform MITM attacks on Columns 1, 2, and 3 of round 0
(sequentially), exploiting the fact that Z3⊕Z4 equals zero in the `’th inverse
shifted column (e.g., for ` = 0 this column consists of bytes 0, 5, 10, 15), to
recover the rest of the subkey k−1.

Attack analysis. The attack succeeds if the data contains a pair that satisfies
the truncated differential characteristic of E0 (i.e., leads to a zero difference in
at least one byte in the active column in round 0), and in addition, for one of
the ‘friend pairs’ of that pair, the corresponding plaintext pair (P j3 , P

j
4 ) has zero

difference in either byte 10 or 15. With 64 plaintext pairs and 128 ‘friend pairs’
for each pair, each of there events occurs with probability of about 1−e−1 ≈ 0.63,
and hence, under standard randomness assumptions, the success probability of
the attack is about 0.632 ≈ 0.4. This probability can be increased significantly
by increasing the number of pairs we start with and the number of their ‘friend
pairs’. For example, with 128 plaintext pairs and 128 friend pairs for each of
them, the expected success probability is (1− e−2)(1− e−1) ≈ 0.54.

We note that the success probability can be increased further by exploiting
other ways to cancel terms in Eq. (8). For example, if for some j, j′, the unordered

pairs {(P j3 )10, (P
j
4 )10} and {(P j

′

3 )10, (P
j′

4 , )10} are equal, then we can use the
XOR of Eq. (8) for both pairs to cancel out the effect of subkey byte k−1,10 on
the equation. This allows us to apply the efficient MITM attack described above
also in cases where no ‘friend pair’ of (P1, P2) satisfies Eq. (10), thus increasing
the success probability of the attack. Our analysis shows that under standard
randomness assumptions, for the same amount of 64 initial pairs and 128 ‘friend
pairs’ for each pair considered above, this improvement increases the success
probability of the attack from 0.4 to about 0.5.

The data complexity of the attack, for the success probability 0.4 computed
above, is 2 ·26 ·27 = 214 chosen plaintexts and 214 adaptively chosen ciphertexts.
We note that the amount of chosen plaintexts can be reduced by considering
two structures of 8 plaintexts each (where in the first structure we have (P1)5 =
00x and (P1)0 assumes 8 different values, and in the second structure we have
(P2)5 = 01x and (P2)0 assumes 8 different values) and taking the 64 pairs (P1, P2)
composed of one plaintext in each structure. (In such a case, the ‘friend pairs’ are
also taken in structures obtained by XORing the same value to all elements in the
two initial structures.) This reduces the data complexity to slightly more than
214 adaptively chosen plaintexts and ciphertexts (as the number of encrypted
plaintexts is negligible with respect to the number of decrypted ciphertexts).
On the other hand, this slightly reduces the success probability of the attack,
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Fig. 6. Attack Success Probability

due to dependencies between the examined pairs (P1, P2), as demonstrated in
the next subsection. To conclude, with data complexity of 215 adaptively chosen
plaintexts and ciphertexts we obtain success probability of more than 50%.

The memory complexity of the attack is no more than 29 128-bit memory
cells, like in the yoyo attack of Rønjom et al. [37].

As for the time complexity, it is dominated by several steps that consist of
about 216 simple operations each. The comparison of these operations to AES
encryptions is problematic, and hence, we adopt a common strategy of counting
the number of S-box applications and dividing it by 80, which is the number of
S-boxes in 5-round AES. The number we obtain (divided by 216), in addition to
the 214 + 211 full encryptions of Step 4(b), is: negligible for Steps 1 and 4(c), 2
for Step 4(a), 6 for Step 4(d), 8 for Step 4(e), and 24 · 3 = 72 for Step 5. Hence,
the total complexity is less than 216.5 full encryptions.

We conclude that our 5-round attack requires 215 adaptively chosen plain-
texts and ciphertexts, 29 memory and 216.5 time, and recovers the full secret key
with success probability of more than 50%.

4.5 Experimental verification

To verify the success probability of our attack computed above, we implemented
two variants of the 5-round attack. The first variant uses up to 128 independent
plaintext pairs. The second variant uses two structures, one of 8 plaintexts and
another of 16 plaintexts, to create a total of 128 plaintext pairs. For each pair
(P1, P2), we generated 128 friend pairs. We ran the attack on 500 different ran-
domly generated keys. For each success of the attack, we saved the number of
pairs we had to try before finding the key. Then we extracted from this data the
success probability of the attack, as a function of the amount of available data.
Fig. 6 shows this success probability, as a function of the number of plaintext
pairs, up to a maximum of 128 pairs.

It can be seen that the success probability is slightly lower than the probabil-
ity predicted by the above analysis. In particular, for 64 initial pairs, the success
probability is slightly higher than 0.3 (rather than the predicted 0.4). We conjec-
ture that the deviation from the theoretical estimate occurs due to dependency
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issues, but leave this small discrepancy for further research. Anyway, for data
complexity of 215, the experimental success probability is well above 50%.

The source code used in the experiments, along with the raw data, can be
found at https://github.com/eyalr0/AES-Cryptoanalysis.

5 Improved Attack on 5-round AES with a Secret S-box

In [39], Tiessen et al. initiated the study of AES with a secret S-box, namely a
variant of AES in which the SB operation is replaced by a key-dependent S-box.
They showed that 5 rounds of the new variant can be broken with complexity
of 240 and 6 rounds can be broken with complexity of 290, using variants of the
Square attack on AES [36]. In the last four years, four more papers analyzed
5-round variants of AES with a secret S-box: in [38] using the Square attack,
in [28] using impossible differentials, in [26] using impossible differentials and the
multiple-of-n property, and in [5] using the yoyo technique. The best currently
known result was obtained by Bardeh and Rønjom [5] – data complexity of
232 adaptively chosen plaintexts and ciphertexts and time complexity of 231

operations (in addition to generating the data).
In this section we use the retracing boomerang technique to devise an attack

on 5-round AES with a secret S-box with a complexity of 225.8 in the adaptively
chosen plaintext and ciphertext model. Like the attacks of [5,26,28,38], our attack
recovers the secret key, without fully recovering the secret S-box. (Actually,
we recover the S-box up to an invertible affine transformation in (GF (2))8; as
our attack is of a differential nature, it cannot distinguish between secret S-
boxes that differ by such transformation.) On the other hand, it applies even
against a stronger variant in which MC is also replaced by a key-dependent
MDS transformation (see [21]) applied on each column. Among the previous
attacks, only the Square attack of Tiessen et al. [39] applies to this variant and
can break it with complexity of 240.

Our attack uses the same retracing boomerang framework as our attack on 5-
round AES. Namely, we start with plaintext pairs (P1, P2) with difference only in
bytes 0, 5, 10, 15, and for each such pair, we modify the corresponding ciphertext
pair (C1, C2) into one of its mixture counterparts, which we denote by (C3, C4),
and ask for its decryption. We know that with probability 2−6, the corresponding
pair (Z3, Z4) of intermediate values at the input of round 1 has zero difference
in an inverse shifted column (e.g., in bytes 0, 5, 10, 15). (Note that this part does
not use the specific structure of SB or of MC, and hence, can be applied also to
a variant of AES with key-dependent SB and MC operations). Our goal now is
to use this knowledge to attack round 0, as the attack we used for 5-round AES
heavily relies on the fact that the S-box is known to the adversary.

Partial recovery of the secret S-box. To attack round 0, we use the strategy
proposed in the structural attack of Biryukov and Shamir on SASAS [18], that
was already used against AES with a secret S-box in [39], albeit inside the frame-
work of the Square attack. Assume w.l.o.g. that the retracing boomerang predicts

https://github.com/eyalr0/AES-Cryptoanalysis
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zero difference in byte 0 of the state Z, i.e., yields the equation (Z3)0⊕(Z4)0 = 0.
(In the actual attack, if the procedure with byte 0 leads to a contradiction, the
adversary has to perform it again with bytes 1, 2, 3.) By Eq. (6), we can rewrite
this equation as

0 = (Z3)0 ⊕ (Z4)0 =02x · ((W3)0 ⊕ (W4)0)⊕ 03x · ((W3)1 ⊕ (W4)1)

⊕ 01x · ((W3)2 ⊕ (W4)2)⊕ 01x · ((W3)3 ⊕ (W4)3).
(11)

Note that each of the values (W3)j has the form SB(P3 ⊕ k−1,j′), where for
j = 0, 1, 2, 3, j′ = SR−1(j) takes the value 0, 5, 10, 15, respectively. Therefore, if
we define 4 · 256 = 1024 variables xm,j = SB(m⊕ k−1,j′) (for m = 0, 1, . . . , 255
and j′ = 0, 1, 2, 3), then each plaintext pair (P1, P2) for which the corresponding
intermediate values (Z3, Z4) satisfy

(Z3)0 ⊕ (Z4)0 = 0, (12)

provides us with a linear equation in the variables {xm,j}.
In order to recover the variables {xm,j} by solving a system of linear equa-

tions, we need many pairs (Z3, Z4) that satisfy Eq. (12) simultaneously. We
obtain these pairs by attaching about 210 ‘friend pairs’ to each original pair
(P1, P2), like we did in the attack on 5-round AES in Sect. 4. Hence, we start
with 26 pairs (P1, P2), and for each pair and about 210 friend pairs we perform
the mixing retracing boomerang process and use each of the pairs to obtain a lin-
ear equation in the variables {xm,j}. (This part of the attack has to be repeated
for ` = 0, 1, 2, 3, as each value of ` leads to different equations. The equations
presented above correspond to ` = 0.) Then, we recover as many as we can of the
variables {xm,j} by solving a system of linear equations. We take a bit more than
210 friend pairs for each pair in order to obtain extra filtering, which allows us
to efficiently discard pairs (P1, P2) that do not satisfy the boomerang property.

As was shown in [39], the equations do not allow determining the variables
{xm,j} (and thus, the secret S-box) completely. Indeed, as our basic Eq. (11)
represents differences and not actual values, it is invariant under composition of
the secret S-box with an invertible linear transformation over (GF (2))8. Thus,
the best we can obtain at this stage is four functions S0, S1, S2, S3, such that

Sj(x) = L0(SB(x⊕ k−1,j′)),

for some unknown invertible linear transformation L0. In addition, by repeating
the attack for three other columns in round 0 (using the fact that for a pair
(P1, P2) that satisfies the boomerang property, an entire inverse shifted column
of Z3 ⊕ Z4 equals zero), we obtain the S-boxes Sj(x) for all j ∈ {0, 1, . . . , 15},
albeit with multiplication by a different matrix Lt in all the S-boxes of (inverse
shifted) Column(t).

Recovering the secret key. While this information does not recover the S-
box completely, it does allow us to recover the secret key k−1, up to 256 possible
values. This is done in two steps.
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First, for each j′ ∈ {1, 2, 3} we can easily recover k̄j′ = k−1,0⊕ k−1,j′ in time
28, as k̄j′ is the unique value of c such that Sj(x) = S0(x⊕c) for all x. In a similar
way, we can recover each inverse shifted column of k−1 up to 256 possible values
(e.g., to find the values k−1,1⊕ k−1,s for s ∈ {6, 11, 12} by attacking Column 3).
This already reduces the number of possible values of k−1 to 232.

Second, we find the differences k−1,0 ⊕ k−1,j for j = 1, 2, 3 by taking several
quartets of values (x1, x2, x3, x4) such that S0(x1)⊕S0(x2)⊕S0(x3)⊕S0(x4) = 0
and finding the unique value of cj such that

Sj(cj ⊕ x1)⊕ Sj(cj ⊕ x2)⊕ Sj(cj ⊕ x3)⊕ Sj(cj ⊕ x4) = 0.

(The quartets are used to eliminate the effect of the difference between the linear
transformations L0 and Lj in the definitions of S0 and Sj .) Thus, in about 212

operations we recover the entire secret key k−1, up to the value of a single
byte k−1,0. Assuming that the secret S-boxes are determined by the secret key,
the attack can be completed by exhaustive search over the 28 remaining key
possibilities. The resulting attack algorithm is given in Alg. 3.

Algorithm 3 Attack on 5-Round AES with Secret S-Box and MixColumns

1: Ask for the encryption of 26 pairs (P1, P2) of chosen plaintexts that have non-zero
difference only in bytes 0,5,10,15.

2: for all Plaintext pairs (P1, P2) do
3: Generate 210 + 10 ‘friend pairs’ (P j

1 , P
j
2 ), such that for each j: (P j

1 ⊕ P
j
2 ) =

P1 ⊕ P2, and (P j
1 ){0,5,10,15} = (P1){0,5,10,15}.

4: Ask for the encryption of all ‘friend pairs’ (P j
1 , P

j
2 )

5: for all pairs (P1, P2) and for each ` ∈ {0, 1, 2, 3} do . We present the case of
` = 0, the other cases are similar.

6: for all m ∈ {0, 1, . . . , 255} and j ∈ {0, 1, 2, 3} do
7: Define xm,j = SB(m⊕ k−1,SR−1(j))

8: Assume that Eq. (11) is satisfied for all Zj
3 , Z

j
4 of the ‘friend pairs’ (P j

1 , P
j
2 )

9: Obtain the corresponding linear system of equations in xm,j

10: Solve the system of 1034 linear equations in 1024 variables
11: if a contradiction is reached then
12: Increment `
13: if ` > 3 then
14: Discard the pair

15: else
16: The solution yields four functions Sj(x) = L0(SB(x ⊕ k−1,SR−1(j))), for

some unknown invertible linear transformation L0.

17: Repeat the attack on the other three columns with (P1, P2) to obtain Sj(x) for
j = 4, 5, . . . , 15.

18: Find the rest of the secret key by exhaustive key search (assuming the secret S-box
depends on the master 128-bit key k−1)
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Attack analysis. The data complexity of the attack is 26 · 2 · 210 = 217 chosen
plaintexts and 217 adaptively chosen ciphertexts. Like in the attack on 5-round
AES presented in Section 4, we can reduce the required amount of chosen plain-
texts to about 214 using structures, and so the overall data complexity is less
than 217.5 adaptively chosen plaintexts and ciphertexts.

The time complexity is dominated by solving a system of 1034 equations
in 1024 variables in Step 10, that has to be performed for each of the 26 pairs
(P1, P2) and for ` = 0, 1, 2, 3. Using the Four Russians Algorithm ([1]; see [4]
for the motivation for choosing it), each solution of the system takes about
(210)3/ log(210) ≈ 227 simple operations, that are equivalent to about 227/80 ≈
221 encryptions. Hence, the time complexity of the attack is 229. (Note that the
solution of a system of equations in Step 17 is much cheaper, as it has to be
performed only for a single pair (P1, P2).)

The memory complexity is dominated by the memory required for solving
the system of equations, which is less than 217 128-bit blocks. (There is no need
to store the plaintext/ciphertext pairs, as they can be analyzed ‘on the fly’.)

We conclude that the data complexity of the attack is 217.5 adaptively cho-
sen plaintexts and ciphertexts, the time complexity is 229 encryptions, and the
memory complexity is 217 128-bit blocks.

Improving the overall complexity by applying a distinguisher before
the attack. Note that in the attack, we have to apply the equation-solving step
28 times, since we do not know which pair (P1, P2) and which value of ` satisfies
the boomerang property. Hence, if we can obtain this information in some other
way, this will speedup the attack considerably.

A possible way to find a pair that satisfies the boomerang condition is to
apply the yoyo distinguishing attack on 5-round AES of Rønjom et al. [37],
which does not depend on knowledge of the S-box, and thus, can be applied in
the secret S-box setting. (Note however that this attack depends on the MDS
property of MC (see [21]). Hence, unlike the attack described above which applies
when MC is replaced by an arbitrary invertible linear transformation, this attack
applies only if the transformation is assumed to satisfy the MDS property.)
The attack of [37] requires 225.8 adaptively chosen plaintexts and ciphertexts,
and in addition to distinguishing 5-round AES from a random permutation, it
finds a pair (P1, P2) with non-zero difference only in bytes 0, 5, 10, 15, such that
the corresponding intermediate values (Z1, Z2) have non-zero difference in only
two bytes. This pair satisfies our boomerang property, and thus, can be used
(along with 1034 friend pairs) in the attack described above. This reduces the
complexity of each equation-solving step to 221, and thus, the overall complexity
of the attack is dominated by the complexity of Rønjom et al.’s attack. We
conclude that this variant of the attack has data and time complexities of 225.8

and memory complexity of 217.
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6 The Retracing Rectangle Attack – Connection to
Mixture Differentials

In this section we present the retracing rectangle attack, which is the retracing
variant of the rectangle attack [8]. First we recall the amplified boomerang and
rectangle attacks, then we present and analyze the new retracing boomerang
attack, and then we use our new framework to expose a close relation of the
recently introduced mixture differential attack [27] to the rectangle attack.

6.1 The amplified boomerang (a.k.a. rectangle) attack

An apparent drawback of the boomerang attack is the need to use adaptively
chosen plaintexts and ciphertexts – a very strong ability for the attacker. In [29],
Kelsey et al. presented the amplified boomerang attack, which imitates the pro-
cedure of the boomerang attack using only chosen plaintexts. In the attack,
the adversary considers pairs of pairs of plaintexts ((P1, P2), (P3, P4)) such that
P1⊕P2 = P3⊕P4 = α, and for each of them, she checks whether the correspond-
ing quartet of ciphertexts ((C1, C2), (C3, C4)) satisfies C1 ⊕ C3 = C2 ⊕ C4 = δ.

The analysis behind the attack is as follows. By the differential characteristic
of E0, with probability p2 we have X1 ⊕ X2 = X3 ⊕ X4 = β, and thus, X1 ⊕
X3 = X2 ⊕X4. Assuming that these differences are equal to γ, which happens
with probability 2−n under standard randomness assumptions, the differential
characteristic of E1 implies that C1 ⊕ C3 = C2 ⊕ C4 = δ holds with probability
q2. Hence, we expect that the two equalities C1 ⊕ C3 = C2 ⊕ C4 = δ hold for
a fraction of p2q22−n of the quartets. Since for a random permutation, these
two equalities hold with probability 2−2n, the attack can distinguish E from
a random permutation if pq � 2−n/2. The data complexity of the attack is 4 ·
2n/2(pq)−1, as this is the amount of plaintexts required for constructing 2n(pq)−2

quartets. While it may seem that the time complexity is as high as O(2n(pq)−2)
(which is the number of quartets we have to check), it can be actually reduced
to O(2n/2(pq)−1), by using hash tables.

Kelsey et al. applied the amplified boomerang attack to the AES’ candidates
MARS and SERPENT. In a subsequent work, Biham et al. [8] presented several
enhancements of the attack (in particular, allowing to use many differentials in
parallel, like Wagner’s suggestion for the original boomerang attack, see App. A),
and gave it the name rectangle attack, which is the currently more commonly-
used name.

6.2 The retracing rectangle attack

The transformation from the retracing boomerang attack to the retracing rectan-
gle attack is similar to the transformation from the (classical) boomerang attack
to the rectangle attack.
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The attack setting. We assume that E can be decomposed as E = E1 ◦E02 ◦
E01, where E01 consists of dividing the state into two parts (a left part of b bits
and a right part of n − b bits) and applying to them the functions EL01, E

R
01.

Furthermore, we suppose that for EL01, there exists a differential characteristic

αL
pL1−−→ µL, for ER01, there exists a differential characteristic αR

pR1−−→ µR, for

E02, there exists a differential characteristic µ
p2−→ β, and for E1, there exists a

differential characteristic γ
q−→ δ (see Fig. 7).
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Fig. 7. The Retracing Rectangle Setting

Assuming that pq1q
L
2 q

R
2 � 2−n/2, the rectangle attack can be used to distin-

guish E from a random permutation, with data complexity of O((pq1q
L
2 q

R
2 )−1 ·

2n/2) chosen plaintexts. Recall that in the standard rectangle attack, we con-
sider quartets of plaintexts ((P1, P2), (P3, P4)) such that P1⊕P2 = P3⊕P4 = α,
and check whether the corresponding quartets of ciphertexts ((C1, C2), (C3, C4))
satisfy C1 ⊕ C3 = C2 ⊕ C4 = δ. In the retracing rectangle attack, we consider
only quartets of plaintexts that satisfy

(P1 ⊕ P2 = α) ∧ (P3 ⊕ P4 = α) ∧ ((P1)L ⊕ (P3)L = 0 or αL). (13)

As a result, the two unordered pairs (PL1 , P
L
2 ) and (PL3 , P

L
4 ) are identical, and

hence, if one of them satisfies the differential characteristic of EL10, then so does
the other. Thus, the probability of the rectangle distinguisher is improved by a
factor of (pL1 )−1.

Advantages. Unlike the shifting retracing boomerang attack, here we obtain
an improvement in the probability of the distinguisher without a need to discard
some part of the data. (This holds since the adversary can choose the plaintexts
as she wishes, and in particular, can force the additional restriction (PL1 ⊕PL3 =
0 or αL) ‘for free’.) In addition, the signal to noise ratio is improved, like in the
retracing boomerang attack.
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It should however be noted that in most applications of the rectangle attack,
the adversary starts with structures S of pairs with input difference α, such that
each pair-of-pairs within the same structure satisfies the initial condition of the
rectangle distinguisher. Then, for each structure, the adversary uses a hash table
to check all these

(|S|
2

)
quartets in time |S|. In the retracing rectangle attack,

one has to either give up the structures and work with each pair-of-pairs that
satisfies Eq. (13) separately, or else perform the ordinary rectangle attack and
then check the additional condition (PL1 ⊕ PL3 = 0 or αL) simultaneously with
the condition C1⊕C3 = C2⊕C4 = δ (which can be done using a hash table). In
either case, the overall data complexity of the attack is not reduced, compared
to the rectangle attack with structures, and thus, improvement of the signal to
noise ratio is the main advantage of the retracing rectangle technique.

A mixing variant – relation to mixture differentials. Like in the mix-
ing retracing boomerang attack, the adversary can force equality between the
unordered pairs (PL1 , P

L
2 ), (PL3 , P

L
4 ) by choosing P3 = (PL2 , P

R
1 ) and P4 =

(PL1 , P
R
2 ), or in other words, by taking the pair (P3, P4) to be the mixture

counterpart of the pair (P1, P2). As this choice also forces equality between the
pairs (PR1 , P

R
2 ) and (PR3 , P

R
4 ), the probability of the rectangle distinguisher is

increased by a factor of (pL1 p
R
1 )−1.

Interestingly, it turns out that the core step of the mixture differential attack
of Grassi [27] on 5-round AES is included in the mixture retracing rectangle
attack framework.

Specifically, the core of [27]’s result is a chosen plaintext distinguishing attack
on a 3.5-round variant of AES. In this attack, 3.5-round AES is decomposed as
E1 ◦E02 ◦E01, where E01 consists of the first 1.5 rounds, E02 consists of a single
MC layer, and E1 is composed of the last 1.5 rounds. The attack uses quartets
of plaintexts (P1, P2, P3, P4) constructed by a mixing procedure, as described
in Definition 1, and considers the corresponding quartets (X1, X2, X3, X4) and
(Y1, Y2, Y3, Y4) of intermediate values after E01 and E02, respectively. The repre-
sentation of 1.5-round AES as four Super-S-boxes applied in parallel [21] allows
deducing that X1⊕X2⊕X3⊕X4 = 0 holds with probability 1. As E02 is linear,
the same holds for Y1, Y2, Y3, Y4. Finally, the attack uses a truncated differen-
tial characteristic of E1 with probability 1 that starts with difference 0 in an
inverse shifted column (e.g., bytes 0, 5, 10, 15) and ends with difference 0 in a
shifted column (e.g., bytes 0, 7, 10, 13). (This characteristic also follows from the
Super-S-boxes representation of 1.5-round AES.) If the pair (Y1, Y3) satisfies the
input difference of this characteristic – an event that occurs with probability of
2−32 – then (Y2, Y4) satisfies the input difference as well, and then we know for
sure that both (C1, C3) and (C2, C4) have zero difference in bytes 0, 7, 10, 13.
This provides a 64-bit filtering, that is exploited in [27] to obtain a key recovery
attack on 5-round AES.

While this may not be apparent at a first glance, this attack is indeed a
variant of the mixing retracing rectangle attack described above. The choice of
plaintext quartets is exactly the same, and so is the treatment of E1 (taking
note that the differential characteristics used in a boomerang/rectangle attack



The Retracing Boomerang Attack 29

may be truncated, as mentioned above). The only seeming difference is E0,
where instead of considering a specific differential characteristic we only make
sure that the four outputs sum up to zero. However, this is actually the same
as using all possible differential characteristics simultaneously, as is commonly
done in boomerang/rectangle attacks (see App. A).

It should be mentioned that in [27], the mixture differential attack was not
described as related to the rectangle attack in any way. It indeed does not look
similar, but our retracing boomerang framework unveils the hidden relation be-
tween these two techniques. We hope that this relation will shed more light on
the mixture differential technique.

7 Summary and Open Problems

In this paper we introduced a new version of boomerang attacks called a retrac-
ing boomerang attack, and used it to significantly improve the best known key
recovery attacks on 5 rounds of AES (both in its standard form and when the
S-box and the linear transformation are secret key-dependent components). The
most interesting problems left open in this paper are:

– Find additional applications of the new technique.
– Find other types of correlations which can further increase the probability

of the combined differential property.
– Create a “grand unified theory” of boomerang-like attacks which will explore

their hidden relationships and treat them rigorously.
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A Variants and Extensions of the Boomerang attack

In this appendix we present several variants/extensions of the boomerang attack
that are related to our new retracing boomerang attack. After briefly presenting
each variant we explain its relation to our work.

A.1 Using truncated differentials in the boomerang attack

A truncated differential characteristic is a characteristic that predicts the differ-
ence in only part of the state. Truncated differential characteristics were men-
tioned already in [13], and were fully developed by Knudsen [32]. In [41], Wagner
observed that the boomerang attack can exploit truncated differential charac-
teristics, if several difficulties are addressed. First, in the truncated setting, the

equivalence between the differential characteristic γ
q−→ δ for E1 and the differ-

ential characteristic δ
q−→ γ for E−11 does not hold anymore. Moreover, Eq. (3)

no longer holds for sure, if the values β, γ correspond to only part of the inter-
mediate state bits. Finally, if the characteristic used for the pair (X3, X4) in the
backward direction does not predict the full difference P3 ⊕ P4, then the prob-
ability that the property holds for a random permutation is higher than 2−n.
Nevertheless, Wagner showed that the analysis can be adapted to this case as
well (of course, at the expense of increasing the data complexity of the attack).
This extension was used in various cases, in particular by replacing the differ-
ential characteristic used for the pair (X3, X4) in the backward direction with
a truncated characteristic in order to increase the overall probability, in cases
where pq was much higher than 2−n/2.

Relation to the retracing boomerang attack. Truncated differential char-
acteristics play a central role in our attacks. In fact, all characteristics we use in
this paper are truncated.

A.2 Adding a round to the boomerang distinguisher using
structures

A common technique for extending the applicability of the boomerang attack is
appending a round before or after the boomerang distinguisher (see, e.g., [9]).
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Adding a round at the beginning. Assume that E can be decomposed as E1◦
E0◦E′, where for E1◦E0 there exists a boomerang distinguisher with probability
(pq)2 that starts (and ends) at difference α. Let χ, χ′ be intermediate values
after the application of E′ such that χ⊕χ′ = α, and consider the corresponding
plaintexts P = (E′)−1(χ) and P ′ = (E′)−1(χ′). Of course, the difference P ⊕P ′
is not fully determined by the assumption χ⊕ χ′ = α (unless E′ is linear), but
in many cases, P and P ′ must be equal in a large part of the state. Let us
decompose the plaintext P as P = (Ppassive, Pactive), where the difference in the
part Ppassive is known with probability 1. We denote by ` the number of bits in
Pactive. These notations are given in Fig. 8.

E′ E0 E1
P

P ′
χ

χ′
X

X ′
C

C′

χ⊕ χ′ = α

P = (Ppassive||Pactive)
n− ℓ ℓ

P ′ = (P ′
passive||P ′

active)

Ppassive ⊕ P ′
passive is constant

Fig. 8. Attacking Rounds Before the Boomerang Distinguisher

In the following description of the distinguisher, we assume that the differ-
ence Ppassive ⊕ P ′passive is fixed to zero. The transformation of the described
procedure to the case of Ppassive ⊕ P ′passive = const 6= 0 is immediate and does
not change the complexities. One can mount a distinguisher for E as follows.
Consider structures S of 2` plaintexts each, such that in each structure, the bits
of Ppassive are equal for all the values in the structure and the bits of Pactive
attain all 2` possible values. For each structure, encrypt the entire structure S
to obtain 2` ciphertexts, then modify each of them by xoring δ to it, and decrypt
the 2` resulting ciphertexts to obtain a structure S′ of plaintexts. Find all pairs
in S′ that have zero difference in the bits of Ppassive.

Note that each structure contains 22`−1 pairs (P1, P2), and for 2`−1 of them,
the corresponding intermediate difference χ1⊕χ2 equals α. For a fraction of (pq)2

of those 2`−1 pairs, the corresponding intermediate values ‘on the way back of
the boomerang’ satisfy χ3 ⊕ χ4 = α, and thus, the corresponding plaintexts
P3, P4 have zero difference in the bits of Ppassive. Thus, if we take (pq)−2/2`−1

structures, then with probability of about 1−1/e, we are expected to find at least
one pair (P3, P4) with zero difference in the bits of Ppassive. If p, q are sufficiently
large, then this probability is larger than the corresponding probability for a
random permutation, and hence, the distinguisher succeeds.
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The data complexity of the distinguisher is ((pq)−2/2`−1) · 2` · 2 = 4(pq)−2

ACPCs, which is exactly the same as in the boomerang distinguisher for E1◦E0.
Therefore, we extended the distinguisher to include also E′, without increasing
the data complexity.

Adding a round at the end. In a similar way, one can add a round at the
end of the distinguisher. This time, E is decomposed as E = E′′ ◦ E1 ◦ E0 and
it is assumed that there exists a boomerang distinguisher for E1 ◦ E0 whose
output difference is δ. We consider pairs of intermediate values χ, χ′ before E′′,
assume that χ ⊕ χ′ = δ, and check the difference between C = E′′(χ) and
C ′ = E′′(χ′). If the ciphertexts can be divided into two parts: Cpassive (of size
n− ` bits) in which the difference is known when χ⊕χ′ = δ, and the remaining
` bits Cactive whose difference is unknown, then we can extend the boomerang
distinguisher to contain also E′′ in the following way. (Similarly to the extension
by E′ presented above, we assume that Cpassive⊕C ′passive = 0; the modification
required for dealing with another constant instead of 0 is straightforward.)

We start with pairs (P1, P2) with difference α and encrypt them through E.
For each ciphertext pair (C1, C2), we consider the 2` possible values Cj3 of the
form C1 ⊕ ηj , where ηj is equal to zero in the bits of Cpassive, and similarly, the

2` possible values Cj4 of the form C2 ⊕ ηj . We decrypt these values and obtain

two pools of 2` plaintexts {P j3 } and {P j4 }. Using a hash table, we find all pairs

j, j′ such that P j3 ⊕ P j4 = α.

An analysis similar to the analysis presented above shows that if p, q are
sufficiently large then this variant allows to insert E′′ into the distinguisher.
However, unlike the case of adding a round at the top, here the data and time
complexities of the attack are increased by a factor of 2`, as for each encrypted
plaintext, we have to decrypt 2` modified ciphertexts. Note that in this variant
of the attack, the number of decrypted ciphertexts is significantly larger than
the number of encrypted plaintexts.

Adding a round on both sides. Finally, in some cases both extensions can be
combined into an attack that extends the basic boomerang distinguisher by two
rounds – one round on each side. We omit the details and refer the interested
reader to [9].

Relation to the retracing boomerang attack. Extension of the boomerang
distinguisher by one round at the end is one of the cases where shifting retracing
boomerang is advantageous over the standard boomerang attack. The reason for
the advantage is that in this case, the number of decryptions in the attack is much
larger than the number of encryptions, and hence, the reduction in the number
of decryptions obtained in the shifting retracing boomerang framework reduces
the overall data complexity of the attack significantly. In addition, structures
play a central role in all our attacks.
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A.3 Using several differential characteristics in parallel in the
boomerang attack

In [41], Wagner observed that the probability of the boomerang distinguisher
can be increased by using many differential characteristics in parallel. Assume

that in addition to the differential characteristic α
p−→ β, there exists another

characteristic α
p′−→ β′. Then by the same analysis as in the basic boomerang

attack, for each pair (P1, P2) that satisfies the alternative characteristic , if the
corresponding ciphertexts satisfy Eq. (2), then we have X3⊕X4 = β′, and thus,
P3 ⊕ P4 = α holds with probability p′. The pairs counted here are disjoint from

the pairs counted for the characteristic α
p−→ β, and hence, overall we have

Pr[P3 ⊕ P4 = α|P1 ⊕ P2 = α] ≥ (p2 + (p′)2)q2.

The same holds for the differential characteristics of E1. Hence, the overall lower
bound on the probability of the boomerang distinguisher can be enhanced to

∑

β′,γ′

Pr[α −−→
E0

β′]2 Pr[γ′ −−→
E1

δ]2 = (p̂q̂)2, (14)

where Pr[α −−→
E0

β′] is the probability of the differential characteristic α → β′

through E0 and p̂ is defined as p̂ =
√∑

β′ Pr[α −−→
E0

β′]2, and similarly for q̂. In

many cases, this ability to take into account multiple differential characteristics
improves the boomerang attack significantly.

Relation to the retracing boomerang attack. For sake of simplicity, through-
out the paper we considered the case where only a single characteristic is available
for each sub-cipher. The retracing boomerang attack readily combines with the
use of several characteristics in parallel; for example, in the shifting retracing
boomerang attack, the probability p can be upgraded to p̂ and the probabil-
ity q can be upgraded to q̂. A specific example of using multiple differential
characteristics in the retracing framework is the mixture differential attack on
5-round AES, discussed (and presented inside the retracing rectangle framework)
in Sect. 6.

A.4 Related-key boomerang and rectangle attacks

In 2004, Kim et al. [31], and independently, Biham et al. [10], observed that
the boomerang attack can be used also in the related-key setting [6], where the
attacker can request for encryption under several (unknown) keys with a known
(or even chosen) relation between them, and her goal is to recover the keys. In
order to briefly present this attack, we need an additional notation. We say that
the related-key differential characteristic ΩI −−−−→

E,∆K
ΩO holds with probability p

if
Pr[EK(P )⊕ EK⊕∆K(P ⊕ΩI) = ΩO] = p,



36 Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir

where EK(P ) denotes encryption of P with the cipher E, using the secret key
K. In the related-key boomerang attack, we assume that there exist related-
key differentials α −−−−−−→

E0,∆Kab

β for E0 with probability p and γ −−−−−−→
E1,∆Kac

δ for

E1 with probability q. In the attack, the adversary considers pairs of plaintexts
(P1, P2) with difference α, and for each of them, she asks for the encryption of
P1 under the secret key Ka and for the encryption of P2 under the related-key
Kb = Ka ⊕∆Kab. Then, she modifies the corresponding ciphertexts C1, C2 into
C3 = C1 ⊕ δ, C4 = C2 ⊕ δ, and asks for the decryption of C3, C4 under the
related-keys Kc = Ka ⊕∆Kac and Kd = Kb ⊕∆Kac. She then checks whether
the corresponding plaintexts P3, P4 satisfy P3 ⊕ P4 = α.

An analysis similar to that of the basic boomerang attack shows that for
the cipher E, the equation P3 ⊕ P4 = α holds with probability (pq)2. A key
observation used here is that

Kc⊕Kd = (Kc⊕Ka)⊕(Ka⊕Kb)⊕(Kb⊕Kd) = ∆Kac⊕∆Kab⊕∆Kac = ∆Kab,

and thus, the related-key differential of E0 can be applied to the decryption of
the pair (X3, X4) through E0.

Like in the basic boomerang attack, one can use many related-key differentials
in parallel, utilize related-key truncated differentials, and transform the attack
into a chosen plaintext attack. The related-key boomerang attack proved to be
especially strong, and was used to mount the only known attack on the full AES
which is significantly faster than exhaustive search (on the 192-bit and 256-bit
key variants) [16], a practical-time attack on KASUMI – the cipher of 3G cellular
networks [24], and many other attacks.

Relation to the retracing boomerang attack. Retracing boomerang can
be readily combined with related-key differentials, provided that there is no key
difference that affects the values whose equality we force (e.g., the key difference
∆Kac equals zero in the bits that affect EL12).

A.5 Rigorous analysis of the probability of the boomerang
distinguisher.

While the S-box switch presented in Sect. 2.2 demonstrates how dependency be-
tween the differentials can be used in favor of the adversary, Murphy [34] showed
that in various cases of interest, such dependency may increase the complexity of
the boomerang attack and even reduce its success probability significantly. Many
additional examples show that the naive assumption of independence between
differential characteristics fails badly (in both directions) in various realistic sce-
narios (e.g., [15,16,24,30]).

In [24], Dunkelman et al. proposed the sandwich framework in order to take
into account the dependency between the sub-ciphers in the attack analysis.
Recently, Cid et al. [20] proposed the boomerang connectivity table (BCT), which
allows computing the complexity of the boomerang attack more accurately, and
moreover, enables the adversary to choose the differential characteristics of E0
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and E1 in a way that exploits the dependency between the sub-ciphers to amplify
the overall probability of the boomerang distinguisher. Several follow-up papers
studied and extended the BCT (e.g., [19,42]), and this area is far from being
fully explored.

Relation to the retracing boomerang attack. In this paper we presented
the basic idea of the retracing boomerang attack and relied on simplistic ran-
domness assumptions, without going into rigorous probability computations. The
next logical step, which we leave for further research, is to develop a framework
(e.g., similar to the sandwich framework or to the BCT, which currently address
only dependency between the two sub-ciphers and not dependency inside the
same sub-cipher) that will allow for a rigorous probability computation also for
the retracing boomerang attack.

B A Variant of the Shifting Retracing Attack

In this appendix we present a variant of the shifting retracing attack. In this
variant, instead of introducing an artificial filtering on the ciphertext side, we
introduce such a filtering on the plaintext side.

The attack setting. Like in the retracing rectangle attack presented in Sect. 6,
we suppose that E can be decomposed as E = E1 ◦E02 ◦E01, where E01 consists
of dividing the state into two parts (a left part of b bits and a right part of n− b
bits) and applying to them the functions EL01, E

R
01. Furthermore, we suppose

that for EL01, there exists a differential characteristic αL
pL1−−→ µL, for ER01, there

exists a differential characteristic αR
pR1−−→ µR, for E02, there exists a differential

characteristic µ
p2−→ β, and for E1, there exists a differential characteristic γ

q−→ δ
(see Fig. 7).

In this scenario, we can introduce an artificial filtering on the plaintext side.
We first perform the ordinary boomerang process, and then, before checking
whether the equation P3 ⊕ P4 = α holds, we first check whether

PL1 ⊕ PL3 = 0 or αL, (15)

and otherwise, we discard the pair (P1, P2). Like in the shifting retracing attack,
if Eq. (15) holds then the unordered pairs (PL1 , P

L
2 ), (PL3 , P

L
4 ) are equal. Hence,

if the pair (P1, P2) satisfies the differential characteristic of EL01 in the forward
direction, then the pair (EL01(P3), EL01(P4)) must satisfy the differential charac-
teristic of EL01 in the backward direction. This increases the probability of the
boomerang distinguisher by a factor of pL1 , at the expense of discarding all but
fraction 21−b of the plaintext pairs.

Advantages. This variant of retracing boomerang is less advantageous than
the shifting variant, as it does not reduce the data complexity of the attack.
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(Indeed, the artificial filtering is performed only after the data is collected).12

The main advantage of this attack is improving the signal to noise ratio, which
allows applying this attack in cases where the ordinary boomerang attack cannot
be applied. Another possible advantage is reducing the time complexity, as was
described above for the shifting retracing boomerang attack.

Combining with the shifting retracing attack. If the cipher E has both
the structure of the shifting retracing attack and of the current attack simulta-
neously (i.e., if both E0 and E1 can be decomposed into two sub-ciphers of the
prescribed form), then the two techniques can be combined by performing two
artificial filterings – one on the ciphertext side (before the decryption) and one
on the plaintext side (after the decryption). The analysis is a straightforward
generalization of the analysis presented above.

C Improving Biryukov’s Boomerang Attack on
Reduced-Round AES

In this appendix we apply the retracing boomerang technique to improve Biryukov’s
boomerang attack on 5-round AES [14] and to reduce the data complexity of
Biryukov’s attack on 6-round AES [14]. While this is not one of our strongest
results, we present it here as a clear demonstration of the advantages of retracing
boomerang over the classical boomerang attack.

C.1 Biryukov’s boomerang attack on reduced-round AES

The attack on 5-round AES. In the attack of Biryukov [14] on 5-round
AES, the cipher is decomposed as E = E1 ◦ E0, where E0 consists of the first
2.5 rounds and E1 consists of the last 2.5 rounds. As usual, we denote the
plaintexts involved in the boomerang attack by P1, P2, P3, P4, the corresponding
ciphertexts by C1, C2, C3, C4, and the intermediate values at the input to E1 by
X1, X2, X3, X4. The attack is composed of the following components (see Fig. 9):

– For E0 in the forward direction, (i.e., for the pair (P1, P2)), the attack uses a
truncated differential characteristic whose input difference can be any non-
zero value in bytes 0, 5, 10, 15 and zero in all other bytes, and whose outputs
have a zero difference in three shifted columns. (Note that the difference
in the fourth column is not specified, as well as the position of the ‘active’
shifted column.). The probability of the characteristic is 2−22. Indeed, with
probability 2−22, the difference after round 0 is non-zero in just one S-box,
and then the truncated characteristic holds for sure.

12 A result of this disadvantage is that if the data model allows starting with chosen
ciphertexts and then choosing plaintexts in an adaptive manner, then this variant is
outperformed by applying a shifting retracing attack from the ciphertext side. Nev-
ertheless, this variant is also needed, both for the sake of scenarios where adaptively
chosen plaintexts are not allowed, and for the sake of combining the two types of
artificial filtering, as is described below.
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– In E1, the attack uses a truncated differential characteristic whose output dif-
ference can be any non-zero value in a single byte and zero in all other bytes.
With probability 1, the corresponding difference in the input to round 3 is
non-zero in only four bytes (that form an inverse shifted column). Hence, if
two pairs (C1, C3), (C2, C4) satisfy the output difference of the characteris-
tic, then with probability 2−32, the four corresponding intermediate values
at the input to round 3 sum up to zero. As MC is linear, this implies that
X1 ⊕X2 ⊕X3 ⊕X4 = 0.

– In E0 in the backward direction (i.e., for the pair (X3, X4)), the attack uses a
different truncated differential characteristic. Note that if the characteristics
of E0 and E1 described above are satisfied, then X3 ⊕ X4 is non-zero in
only a single shifted column. With probability of 6 ·2−16 ≈ 2−13.5, this leads
to non-zero difference in only two bytes at the input of round 1. In such a
case, P3 and P4 have zero difference in 8 bytes. (To be precise, there is zero
difference in at least one of 6 possible sets of 8 bytes that form two inverse
shifted columns).

In total, starting with a plaintext pair (P1, P2) and performing the boomerang
process (with δ having a non-zero value in a single byte, which can be arbi-
trary), the resulting plaintexts (P3, P4) have zero difference in one of six sets of
8 bytes with probability 2−22 ·2−32 ·2−13.5 = 2−67.5. In the attack, the adversary
starts with structures of 232 plaintexts that attain all possible values in bytes
0, 5, 10, 15 and are constant in the remaining bytes. For each structure, the ad-
versary performs the boomerang process for all the plaintexts in the structure
simultaneously, and then uses a hash table to find all pairs (P1, P2) in the struc-
ture for which the corresponding plaintexts (P3, P4) have a zero difference in two
inverse shifted columns. Each structure contains 263 pairs that satisfy the input
difference of the truncated characteristic for E0, and hence, about 26 structures
(or 238 plaintexts in total) are sufficient for containing a pair for which (P3, P4)
satisfies the property, with a very high probability. It should be mentioned that
in addition to a right pair (P1, P2) (i.e., a pair for which the boomerang property
is satisfied), there are several more ‘random’ pairs that satisfy the condition, as
the signal to noise ratio is less than 1. However, these pairs can be easily filtered
out by auxiliary techniques.

Therefore, the attack allows distinguishing 5-round AES from a random per-
mutation, with data and time complexity of 239 and memory complexity of 232.

Extension to 6-round AES. As was shown in [14], the 5-round attack de-
scribed above can be easily extended into a distinguisher of 6-round AES with
data and time complexity of 271 and memory complexity of 232. Indeed, de-
note the intermediate value before the last round in the encryption process of P
by Y . The adversary guesses 4 subkey bytes in the last round. For each guess,
she applies the 5-round attack, where for each pair (P1, P2), the guessed subkey
bytes allow finding the required change in the ciphertexts such that the obtained
intermediate values Y3, Y4 will satisfy Y3 = Y1 ⊕ δ and Y4 = Y2 ⊕ δ. The rest
of the attack remains unchanged. Due to the extra subkey guess, the data and
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Fig. 9. Biryukov’s 5-Round Boomerang Distinguisher for AES

time complexities are increased from 239 to 271, while the memory complexity
remains unchanged at 232.

C.2 Improving the 5-round attack using a shifting retracing
boomerang

In the retracing boomerang attack, we use the decomposition E = E12 ◦ E11 ◦
E0, where E0 is the first 2.5 rounds like in the boomerang attack, E11 is the
MC operation of round 2, and E12 consists of rounds 3 and 4. Recall that we
assume w.l.o.g. that the MC operation in round 4 is omitted, and thus, E12

can be represented as four 32-bit to 32-bit super S-boxes applied in parallel
(see [21]). Hence, we denote one of these super S-boxes by EL12 (w.l.o.g., in the
sequel we take EL12 to be the super S-box whose output is bytes 0, 7, 10, 13) and
concatenation of the other three by ER12. We fix δL to be some arbitrary output
difference of EL12.

As in Biryukov’s attack, we encrypt a structure of M plaintexts that attain
different values in bytes 0, 5, 10, 15 and are equal in all other bytes (where M
will be determined below). Then, we filter the corresponding ciphertexts using
a hash table, so that only pairs (C1, C2) with difference 0 or δL in the output of
EL12 remain. For each such pair, we ask for the decryption of C3 = C1⊕ δ, where
δ = (δL, 0) (i.e., difference δL in EL12 and difference 0 in ER12) and C4 = C2⊕δ, and
check a condition (explained shortly) on the corresponding plaintexts (P3, P4).

Note that for each examined quartet ((C1, C2), (C3, C4)), the four correspond-
ing inputs to EL12 are composed of two pairs of equal values and thus sum up to
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zero, and so are the four corresponding inputs to ER12. As E11 is linear (consist-
ing of a single MC operation), this implies that the four inputs of E11, namely,
X1, X2, X3, X4, sum up to zero with probability 1! Thus, with probability of
2−22, the difference X3⊕X4 equals zero in all bytes except for a shifted column.
This lies in sharp contrast with the original boomerang attack, where the same
event holds with probability 2−54.

We can use the increased probability to replace the truncated differential
characteristic used for (E0)−1 by a characteristic with a higher probability that
predicts the difference in a smaller part of the state. (Here we use the improved
signal to noise ratio in the retracing boomerang attack). Specifically, if X3⊕X4

is non-zero in only a single shifted column, then with probability of 4·2−8 = 2−6,
this leads to non-zero difference in only three bytes at the input of round 1. In
such a case, P3 and P4 have a zero difference in 4 bytes. (To be precise, there is
zero difference in at least one of 4 possible sets of 4 bytes that form an inverse
shifted column). Note that for a random permutation, this property holds with
probability 2−30, instead of the much lower probability of 2−61.5 of the property
used in Biryukov’s attack. However, for the cipher E, the property holds with
probability 2−22 · 2−6 = 2−28, and hence, this weaker filtering is sufficient for
leaving only a few wrong pairs.

Algorithm 4 Our Enhancement of Biryukov’s Boomerang Attack on 5-Round
AES
1: Initialize a counter ctr ← 0 and fix a 32-bit difference δL 6= 0.
2: Ask for the encryption of 231 plaintexts that attain different values in bytes

0, 5, 10, 15 and are equal in all other bytes.
3: Find all ciphertext pairs (C1, C2) whose difference in bytes 0, 7, 10, 13 is either 0 or
δL.

4: for all pairs (C1, C2) do
5: Set δ = (δL, 0) to be a 128-bit state value that is equal to δL in bytes 0, 7, 10, 13

and is equal to 0 in all other bytes. Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.
6: Ask for the decryption of (C3, C4) to (P3, P4).
7: if P3 ⊕ P4 has a zero difference in an inverse shifted column then
8: Increment ctr
9: if ctr > 2 then return This is the cipher E.

10: elsereturn This is a random permutation.

Our attack algorithm is presented in Algorithm 4.

Analysis of the attack. The structure of plaintexts contains 261 plaintext
pairs. About 261 · 2−31 = 230 of them are expected to satisfy the condition on
C1 ⊕ C2, and hence, the decryption process is performed for 230 pairs. For a
random permutation, as the probability of the condition on P3 ⊕ P4 is 2−30,
then the expectation of the final value of count is 1. On the other hand, for
E, out of the 230 examined pairs, 230 · 2−22 = 28 are expected to satisfy the
characteristic in E0 and out of them, 28 · 2−6 = 4 are expected to satisfy the
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characteristic in (E0)−1. Therefore, the expectation of the final value of count is
4, and so, the attack indeed distinguishes E from a random permutation with a
very high probability.

It is clear that the attack complexity is dominated by encrypting and storing
the data, and hence, its data, memory, and time complexities are 231. We note
that the complexity of the attack can be reduced a bit further, using a fine tuning
of the characteristics used in the attack.

Related work. A distinguisher with a lower complexity of 225.8 on 5-round AES
with a secret S-box was obtained by Rønjom et al. [37]. Our distinguisher has a
somewhat higher complexity, but is more general, as the distinguisher of [37] uses
the MDS property of the MC matrix (see [36]), while our distinguisher does not
make any assumptions on the S-box or on the MC matrix. We note however that
our key-recovery attack on 5-round AES with a secret S-box, presented in Sect. 5,
can be used to distinguish 5-round AES in time 229, which is somewhat faster
than the attack presented here, without any assumption on the MC operation.

C.3 Improving the 6-round attack using a shifting retracing
boomerang

Attack description. At first glance, it seems that there is no way to add
a round to the retracing boomerang attack presented above, since in order to
recover the outputs of EL12, one has to guess the entire final subkey. However,
an extension turns out to be possible. The basic observation we use here is that
the 5-round attack presented above works for any choice of δ. In particular, we
may take δ that has a non-zero value in a single byte. Then, it is sufficient to
guess 4 bytes of the last round key in order to be able to modify the ciphertexts
in such a way that the obtained intermediate values Y3, Y4 satisfy Y3 = Y1 ⊕ δ
and Y4 = Y2 ⊕ δ. (Note that only the non-zero byte of δ is taken care of by our
modification. The zero bytes of δ hold automatically, since we do not change the
ciphertexts at all in the three shifted columns that affect them.)

At this point, it seems that there is an additional obstacle. Due to the added
round at the end, we cannot perform the filtering in the middle of the attack,
since we do not know whether the intermediate values Y1, Y2 have difference 0 or
δ in the output of EL12 or not. (Actually, we can check this in one out of the four
bytes, due to the key guess, but not in the other bytes). To overcome this issue,
we continue the attack with all pairs, and filter out the wrong ones at a later
stage. This increases the data and time complexities, but we can reduce this
‘penalty’ by performing the modification and decryption for the entire plaintext
structure at once, and checking specific pairs only at a later stage.

In order to reduce the data complexity of the attack, we use a method that
was presented in [37] and is used also in our attack on 5-round AES in Sect. 4.
We replace the truncated differential characteristic used for (E0)−1 by a char-
acteristic with a higher probability that predicts the difference not between the
plaintexts (P3, P4), but rather between intermediate values after one round of
encryption. Specifically, let Z denote the intermediate value after round 0 in the
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encryption process of P . For E0 in the forward direction, we use a truncated
differential characteristic whose output difference is zero in a single shifted col-
umn. The probability of the characteristic is 4 · 2−8 = 2−6. For the backward
direction, note that if X3 ⊕ X4 has a zero difference in a shifted column, then
with probability 1, the corresponding difference Z3⊕Z4 equals zero in an inverse
shifted column. Furthermore, the same property holds for any pair (Z ′3, Z

′
4) ob-

tained by shifting the values (Y1, Y2) by some other value δ′ instead of δ. Hence,
we can collect several such ‘friend pairs’ (see App. D) and use the zero difference
in an inverse shifted column between Z3 and Z4 in all these pairs to attack the
subkey of round 0.

The algorithm of our attack is given in Algorithm 5.

Algorithm 5 Shifting Retracing Boomerang Attack on 6-Round AES

1: Fix eight 32-bit differences δ1, δ2 . . . , δ8 in which only the first byte is non-zero.
2: Ask for the encryption of 220 plaintexts P1 that attain different values in bytes

0, 5, 10, 15 and are equal in all other bytes.
3: for all Candidate values of bytes 0, 7, 10, 13 of the last round subkey do
4: for all Ciphertexts C1 do
5: Compute the 8 ciphertexts Cj

3 (j = 1, 2, . . . , 8) such that the corresponding
values before the last round, (Y1, Y

j
3 ), satisfy Y1 ⊕ Y j

3 = δj .
6: Ask for the decryption of Cj

3 to P j
3 .

7: for all Pairs of (C1, C2) do
8: Compute (Y1)0, (Y2)0 using the key guess.
9: if (Y1)0 = (Y2)0 then

10: for all ` ∈ {0, 1, 2, 3} do
11: for all pairs (Cj

3 , C
j
4)

12: (C3 is obtained from C1 and C4 is obtained from C2) do
13: Assume that for all j = 1, 2, . . . , 8, we have (Zj

3)` = (Zj
4)`.

14: Extract bytes 0,5,10,15 of the initial subkey from all pairs.
15: if there is a contradiction then
16: Discard pairs
17: else
18: Deduce Zj

3 = Zj
4 in the `’th shifted column holds for all

j = 1, . . . , 8.
19: Recover the rest of the initial key.

Attack analysis. The 220 chosen plaintexts contain 239 pairs. Out of them, 239 ·
2−6·2−32 = 2 are expected to satisfy both the truncated differential characteristic
in E0 and the condition on Y1 ⊕ Y2. For each such pair, and for each j, all eight
pairs (Zj3 , Z

j
4) must satisfy (Zj3)` = (Zj4)` for some ` ∈ {0, 1, 2, 3}, and thus, once

such a pair is encountered, the attack recovers bytes 0,5,10,15 of the key, and
consequently, the entire key. For a wrong pair, as the attack on bytes 0,5,10,15
contains a 64-bit filtering, the probability that there is no contradiction is only
2−32, and thus, only a few wrong pairs survive these step. Those pairs are filtered
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in the attacks on the rest of the initial subkey, as each such attack provides an
additional 32-bit filtering. Therefore, our algorithm recovers the entire secret key
with a high probability.

The data complexity of our attack is 220 · 8 · 232 = 255 ACPCs. The time
complexity is dominated by the procedure of finding bytes 0,5,10,15 of the initial
key. This procedure is performed for 239 ·2−8 = 231 pairs, for each of 232 guesses
of the last round subkey, and each of 4 values of `. Since it can be performed
in a meet-in-the-middle fashion, each application requires about 216 2-round
encryptions, which are less than 215 6-round encryptions. Hence, the overall
time complexity is less than 231 · 232 · 4 · 215 = 280 encryptions. The memory
complexity is 231, dominated by storing the pairs examined in the attack on the
initial subkey.

Two remarks. We conclude this appendix with two remarks. First, the main
interest in this 6-round attack is demonstration of the abilities of the new re-
tracing boomerang technique. Its actual result is not very interesting, as there
exist significantly stronger attacks on 6-round AES – most notably, the Square
attack [25] with data complexity of 234 chosen plaintexts and time complexity
of 242 encryptions.

Second, we note that unlike the 5-round attack where the mixing type of the
retracing boomerang can be applied instead of the shifting variant we used, with
roughly the same complexity, in this case the mixing variant cannot be used at
all. Indeed, in order to perform mixing, we have to know the entire outputs of
EL12, and this necessitates guessing the entire last round subkey. The shifting
retracing boomerang allows us to perform the modification of the ciphertexts
while being in control of only a single byte in the output of EL12. This demon-
strates one of the advantages of the shifting retracing boomerang attack over
the mixing variant.

D Different Methods of Generating ‘Friend Pairs’

An important ingredient in many cryptanalytic attacks is friend values, i.e.,
values that are attached to given values in such a way that if a given value
satisfies some desired property then all its friend values satisfy the same property
as well. Friend values amplify the advantage obtained by satisfying the property,
and are frequently used to discard wrong suggestions. (See, e.g., [2] for the central
role of friend values in slide attacks.)

In the boomerang attack, the friend values are actually friend pairs attached
to given pairs, in such a way that if a pair satisfies some of the differential
characteristics underlying the boomerang distinguisher, then so do all its friend
pairs.

Friend pairs play a central role in all attacks presented in this paper, and
hence, a discussion on the possible ways to generate friend pairs is due. In this
paper, we use (or mention) three different ways of generating friend pairs:
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– Attaching plaintext pairs (P j1 , P
j
2 ) to each pair (P1, P2), in such a way that

if (P1, P2) satisfies the differential characteristic for E0, then so do all its
friend pairs. This strategy is possible if there exist plaintext bits that do not
affect the output difference of E0, given that the input difference is fixed to
α (i.e., the input difference of the differential characteristic used in E0). For
example, this is the case in all our attacks on 5-round AES. The advantage in
this approach is that it can be combined with the use of structures. Indeed,
given a structure S, one can construct ‘friend structures’ by xoring the same
(properly chosen) value to all plaintexts in the structure, thus providing all
pairs in the structure with friend pairs simultaneously.

– Attaching ciphertext pairs (Cj3 , C
j
4) to each ciphertext pair (C1, C2). This

strategy is possible if there exist many differential characteristics of the form

γ
qj−→ δj for E1. In the shifting retracing attack, this strategy can be com-

bined with the use of structures, as the entire structure can be shifted by
several values of δ instead of a single value. Furthermore, in such cases this
strategy can be used to construct a large amount of friend pairs, since each

characteristic γ
qj−→ δj gives rise to a different friend pair. In the mixing re-

tracing attack, structures cannot be used as one has to work with each pair
separately, and only a few friend pairs can be generated. For example, in
the case of AES, up to 232 friend pairs for each pair can be generated in the
shifting retracing attack, while only 7 friend pairs can be generated for each
pair in the mixing retracing attack (see [27]). This is yet another advantage
of the shifting retracing technique over the mixing retracing technique, as
we mentioned in Sect. 3.2.

– The yoyo process – encrypting a pair of plaintexts, modifying the resulting
ciphertexts and decrypting them, modifying the resulting plaintexts and en-
crypting them, etc. (see [37]). While this is arguably the most interesting
among the three ways of generating friend pairs we discussed, this strategy
has the disadvantage of requiring a multi-round sequence of adaptively cho-
sen plaintext/ciphertext queries, which renders such an attack unrealistic
in most scenarios. Hence, in our attacks we use only the first two ways of
generating friend pairs, and not the third one.

Finding more ways to generate friend pairs will be very interesting.
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