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Abstract

End-to-end encrypted databases have been heavily studied in the last two decades. A crucial
aspect that previous work has neglected, however, is that real-world databases are distributed
in the sense that data is partitioned among a cluster of nodes—as opposed to being stored on a
single node. In this work, we initiate the study of encrypted distributed data structures which
are end-to-end encrypted variants of distributed data structures; themselves fundamental to
the design of distributed databases. In particular, we design and analyze encrypted variants
of distributed dictionaries (EDDX), which are an important building block in distributed sys-
tem design and have applications ranging from content delivery networks to off-chain storage
networks for blockchains and smart contracts.

We formalize the notion of an encrypted DDX and provide simulation-based security defi-
nitions that capture the security properties one would desire from such an object. We propose
an EDDX construction that uses a distributed hash table (DHT) as a black box. Interestingly,
we show that our construction leaks information probabilistically, where the probability is a
function of how well the underlying DHT load balances its data. We also show that in order
to be securely used with our construction, a plaintext DHT needs to satisfy a form of “pro-
grammability”, a property that usually only emerges in context of cryptographic primitives. To
show that these properties are indeed achievable in practice, we study the balancing properties
of the Chord DHT—arguably one of the most influential DHT—and show that it is also pro-
grammable. Finally, we consider the problem of encrypted DDXs in the context of transient
networks, where nodes can be arbitrarily added or removed from the network.

“archita_agarwal@alumni.brown.edu. Work done while at Brown University.

+

seny@brown.edu



Contents

1

Introduction
1.1 Our Contributions . . . . . . . . o e
1.2 Related Work . . . . . . .

Preliminaries
Encrypted Distributed Dictionaries

Distributed Hash Tables
4.1 The Chord DHT . . . . . . . . e
4.2 Formalizing DHTs . . . . . . . . . .

A DDX Encryption Scheme in the Perpetual Setting
Transient DHTSs
A DDX Encryption Scheme in the Transient Setting

Conclusion

10
11
12

17

23

27

32



1 Introduction

As we continue to produce and consume large amounts of sensitive and intrusive data, we are
faced with the problem of securing it. With constant data breaches, it is clear that the traditional
database management systems are not enough to protect the data stored in them. They sometimes
encrypt data at rest and in transit, but the security provided is still piece-meal. In practice, they
decrypt the data before use and each decryption exposes the data and increases its likelihood of
being stolen.

An alternative approach is end-to-end encryption, where data is kept encrypted at all times.
This approach provides much stronger security guarantees than in-transit and at-rest encryption.
Given the high level of interest in end-to-end encrypted database solutions, they have been widely
researched in the past two decades, and researchers have developed a multitude of solutions.

Distributed databases. One crucial point that the research community has missed, however,
is that in reality databases are distributed in the sense thatthe data is not stored on a single
machine but instead is partitioned amongst a cluster of machines. Queries to the database are
routed to the right set of machines in the cluster, and results from the individual machines are
merged before being returned back to the user. This kind of distributed database architecture
allows large internet companies like Amazon, Google and Facebook to scale and provide services
using commodity hardware in data centers distributed across the world.

In order to develop real-world usable encrypted databases, it is crucial that we design solutions
keeping the distributed nature of databases in mind. Developing ad-hoc cryptographic solutions for
distributed systems might not be the best for security and efficiency, and therefore it is important
that we start reasoning about the two together. In this work, we initiate the study of encrypted
distributed data structures. In particular, we consider the case of encrypted distributed dictionaries.
While dictionaries are an important building block of encrypted data structures and encrypted
databases, they are also important on their own since they capture NoSQL databases like key-value
stores, which are popular in industry due to their efficiency guarantees. For example, Amazon’s
DynamoDB [16, 37] underlies the Amazon shopping cart, LinkedIn’s Voldemort[41], Facebook’s
Cassandra [29], or Google’s BigTable [12].

Distributed dictionaries and hash tables. The most fundamental building block in the design
of highly scalable and reliable distributed databases are distributed dictionaries (DDX). Roughly
speaking, a DDX is a data structure that stores label/value pairs (¢,v) and that supports Get and
Put operations. The former takes as input a label ¢ and returns the associated value v. The latter
takes as input a pair (¢,v) and stores it. DDXs are distributed in the sense that the pairs are stored
by a set of n nodes Ny,...,N,, and they provide many useful properties; the most important of
which are load balancing and fast data retrieval and storage even when the data is distributed across
multiple nodes. In this work, we focus on two settings, the perpetual setting where the set of nodes
underlying the dictionary is fixed, and the transient setting where nodes can be added/removed.
One of the most common ways of instantiating a DDX is through a distributed hash table
(DHT). To communicate and route messages to and from nodes, DHTs rely on (1) a randomly
generated overlay network which, intuitively, arranges nodes in a chosen network topology (e.g.,
star topology, tree topology) and (2) a distributed routing protocol that routes messages between
nodes. DHTs were first introduced in the context of peer-to-peer (P2P) file sharing but have
since found applications beyond P2P systems; including for load balancing, distributed storage
and blockchains. An important limitation of early DHTs was that get and put operations were
supported in O(n), where n is the number of nodes in the system. This was improved by a new



generation of DHTs for “structured P2P” settings like Chord [40] and Pastry [36] which support
gets and puts in O(logn).

Applications of DDXs/DHTs. It is hard to overstate the impact that DDXs have had on
system design and listing all their possible applications is not feasible so we will recall just a few.
One of the first applications of DHTs was to the design of content distribution networks (CDNSs).
In 1997, Karger et al. introduced the notion of consistent hashing [27] which was adopted as a core
component of Akamai’s CDN. Since then, many academic and industry CDNs have used DHTs for
fast content delivery [20, 39]. DHTs are also used by many P2P systems like BitTorrent [2] and
its many trackerless clients including Vuze, r'Torrent, Ktorrent and pgTorrent. Many distributed file
systems are built on top of DHTs, including CFS [15], Ivy [32], Pond [34], PAST [18].

Currently, the field of distributed systems is going through revolution brought about by the
introduction of blockchains [33]. Roughly speaking, blockchains are distributed and decentralized
storage networks with integrity and probabilistic eventual consistency. Blockchains have many
interesting properties and have fueled an unprecedented amount of interest in distributed systems
and cryptography. For all their appeal, blockchains have several shortcomings; the most important
of which are limited storage capacity and lack of confidentiality. To address this, a lot of effort in
recent years has turned to the design of distributed and/or decentralized off-chain storage networks
whose primary purpose is to store large amounts of data while supporting fast retrieval and storage
in highly transient networks. In fact, many influential blockchain projects, including Ethereum
[42, 3], Enigma [43], Storj [35] and Filecoin [28] rely on off-chain storage: Ethereum, Enigma and
Storj on their own custom networks and Filecoin on IPFS [4]. Due to the storage and scalability
requirements of these blockchains, these off-chain storage networks often use DHTs as a core building
block.

EDDXs and structured encryption. Due to the ubiquity of DDXs, we believe that a formal
study of confidentiality in DDXs is a well-motivated problem of practical importance. In this work,
we introduce the notion of an encrypted DDX (EDDX) and propose formal syntax and security
definitions for these objects. Designing the secure version of such a basic building block will enable
us to build a range of privacy-preserving systems on top of them.

The notion of an EDDX can be viewed and understood from the perspective of structured
encryption (STE). STE schemes are encryption schemes that encrypt data structures in such a
way that they can be privately queried. From this perspective, EDDXs are a form of distributed
encrypted dictionaries and, in fact, one recovers the latter from the former when the network
consists of only one node. Due to this natural connection, we formalize EDDX schemes using
STE-style syntax and security definitions.

Even though encrypted DDXs syntactically look similar to encrypted dictionaries (in context of
structured encryption), we will see that defining and analyzing the security of EDDXs is significantly
more complex. This is because we will consider an adversary that corrupts a fraction of nodes in
the network, and it is not obvious how to precisely analyze the security one can achieve against an
adversary with only partial view of the data. To illustrate this point, suppose a subset of nodes are
corrupted and collude. During the operation what information can they learn about the client’s
data and/or queries? A-priori, it might seem that the only information they can learn is related
to what they collectively hold (i.e., the union of the data they store). For example, they might
learn that there are at least m pairs stored, where m is the sum of the number of pairs held by
each corrupted node. With respect to the client’s queries they might learn, for any label handled
by a corrupted node, when a query repeats. While this intuition might seem correct, it is not true.



In fact, the corrupted nodes can infer additional information about data they do not hold. For
example, they can infer a good approximation on the total number of pairs in the system even if
they collectively hold a small fraction of it. Here, the problem is that for efficieny reasons, DDXs
are load balanced in the sense that, with high probability, each node will receive approximately the
same number of pairs. Because of this, the corrupted nodes can guess that, with high probability,
the total number of pairs in the system is about mn/t, where t is the number of corrupted nodes
and n is the total number of nodes.

While this may seem benign, this is just one example to highlight the fact that finding and
analyzing information leakage in distributed systems can be non-trivial. In fact, some of the very
properties which we aim for in the context of distributed systems (e.g., load balancing) can have
subtle effects on security.

1.1 Owur Contributions

In this work, we aim to formalize the use of end-to-end encryption in DDXs and the many systems
they support. We define formal syntax and security definitions of an EDDX scheme and equipped
with these definitions, we design and analyze a concrete EDDX construction. We make several
contributions.

A DHT-based EDDX scheme. Our EDDX scheme BDX uses a DHT as a building box. Given
a label/value pair (¢,v), the client computes (Fk, (¢),Enck,(v)), where F' is a pseudo-random
function and Enc is a symmetric-key encryption scheme, and then it simply sends the “encrypted”
pair to the underlying DHT to store. The DHT then assigns this “encrypted” pair to a storage
node in a load balanced manner, handles routing, and moves pairs around the network if a node
is added or removed from the network. As we will see, analyzing and proving the security of even
this simple scheme is complex. The reason is because, as we will see, the security of the BDX is
tightly coupled with how the underlying DHT is designed.

Formalizing DHTs. To better understand the security properties of BDX, we will isolate prop-
erties of its underlying DHT that have an effect on security, and decouple the components of the
system that have to do with the DHT from the cryptographic primitives we use like encryption
and PRFs. Our first step, therefore, is to formally define DHTs. This includes a formal syntax but,
more interestingly, a useful abstraction of the core components of a DHT including, their network
overlays, their allocations (i.e., how they map label/value pairs to nodes) and their routing com-
ponents. This abstraction will allow us to analyze various properties of DHTs and prove bounds
on their behavior. Furthermore, it lays the foundations that will allow future work to concretely
analyze the security of BDX when it is instantiated with the myriad of DHT designs proposed in
the literature [30, 21].

As mentioned above, we found that the security of BDX is tightly coupled with two main
properties of DHTs. More precisely, we discovered that the former’s leakage is affected by a property
we call balance which, roughly speaking, means that with probability at least 1 —¢ over the choice of
overlays, the DHT allocates any label ¢ to any 6-sized set of nodes with probability at most € (over
the choice of allocation). Another interesting finding we made was that if BDX is to satisfy our
simulation-based definition, then the underlying DHT has to satisfy a form of “programmability”.
Intuitively, the DHT must be designed in such a way that, for any fixed overlay within a (large)
class of overlays, it is possible to “program” the allocation so that it maps a given label to a given
node. We found the appearance of programmability in the context of DHTs quite surprising as it
is usually a property that comes up in the context of cryptographic primitives.



Having isolated the properties we need from a DHT in order to prove the security of BDX, it
is natural to ask whether there are any known DHTs that satisfy them. Interestingly, we not only
found that such DHTs exist but that Chord [27]—which is arguably the most influential DHT—
is both balanced and non-committing in the sense that it supports the kind of programmability
discussed above. Without getting into details of how this DHT works, we mention here that it
make use of two hash functions, and we show that it is both balanced and non-committing if one
of its hash function is modeled as a random oracle.

Security of EDDXs. Another contribution we make is a simulation-based definition of security
for EDDXs. The definition is in the real/ideal-world paradigm commonly used to formalize the
security of multi-party computation [8]. Formulating security in this way allows for definitions
that are modular and intuitive. Furthermore, this seems to be a natural way to define security
since EDDXs are distributed objects. In our definition, we compare a real-world execution between
n nodes, an honest client and an adversary, where the latter can corrupt a subset of the nodes.
Roughly speaking, we say that an EDDX is secure if this experiment is indistinguishable from an
ideal-world execution between the nodes, the honest client, an ideal adversary (i.e., a simulator)
and a functionality that captures the ideal security properties of EDDXs. As discussed above, for
any EDDX scheme, including BDX, there can be subtle ways in which some information about the
dataset is leaked (e.g., its total size). To formally capture this, we parameterize our definition with
(stateful) leakage functions that capture exactly what is or is not being revealed to the adversary.
We note that our definitions handle static corruptions and are in the standalone setting.

EDDX and structured encryption. STE schemes are encryption schemes that encrypt data
structures in such a way that they can be privately queried. Encrypted dictionaries (in context of
structured encryption) are captured as a special case of our work where the network consists of a
single node that is corrupted. We note that this connection to single-node encrypted dictionaries
is not just syntactical, but also holds with respect to the security definitions of both objects and to
their leakage profiles. Indeed the leakage profile of BDX on a single-node network reduces to the
leakage profile of common dictionary encryption schemes [13, 11]. This leakage, however, represents
the “worst-case” leakage of BDX. This is due to the fact that BDX leaks the operation equality,
opeq of labels probabilistically whereas standard single-node encrypted dictionaries leak it for all
the labels. This suggests that distributed STE schemes can leak less than non-distributed STE
schemes which makes sense intuitively since, in the distributed setting, the adversary can only
corrupt a subset of the nodes whereas in the non-distributed setting the adversary corrupts the
only existing node and, therefore, all the nodes. With this in mind, one can view our results as
another approach to the recent efforts to suppress the leakage of STE schemes [26, 24]. That is,
instead of (or in addition to) compiling STE schemes as in [26] or of transforming the underlying
data structures as in [24], one could distribute the encrypted data structure.

Probabilistic leakage. Our security definition allows us to formally study any leakage produced
by EDDX schemes. Interestingly, our analysis of BDX will show that it achieves a very novel kind
of leakage profile, which in itself quite interesting. First, it is probabilistic in the sense that it
leaks only with some probability p < 1. As far as we know, this is the first time such a leakage
profile has been encountered. Here, the information it leaks (when it does leak) is the operation
equality pattern (see [26] for a discussion of various leakage patterns) which reveals if and when
an operation on the same label was made in the past. This is not surprising as labels are passed
as Fg(¢) to the underlying DHT, which are deterministic. This leakage profile is also interesting



because the probability p with which it leaks is determined by properties of the underlying DHT
and, in particular, its load balancing properties. Specifically, the better the DHT load balances its
data the smaller the probability that BDX will leak the operation equality.

Worst-case vs. expected leakage. A-priori one might think that the adversary should only
learn information related to pairs that are stored on corrupted nodes and that, since DHTs are load
balanced, the total number of pairs visible to the adversary will be roughly mt¢/n. But there is a
slight technical problem with this intuition: a DHT’s allocation of labels depends on its overlay
and, for any set of corrupted nodes, there are many overlays that can induce an allocation where,
say, a very large fraction of labels are mapped to corrupted nodes. The problem then is that, in
the worst-case, the adversary could see all the (encrypted) pairs. We will show, however, that the
intuition above is still correct because the worst-case is unlikely to occur. More precisely, we show
that with probability at least 1—§ over the choice of overlay, the standard scheme achieves a certain
leakage profile £ which is a function of § (and other parameters). As far as we know, this is the
first example of a leakage analysis that is not worst-case but that, instead, considers the expected
leakage (with high probability) of a construction. We believe this new kind of leakage analysis is of
independent interest and that the idea of expected leakage may be a fruitful direction in the design
of low- or even zero-leakage schemes.

Transient EDDXs. All the analysis discussed above was for what we call the perpetual setting
where the set of nodes in the network is fixed. Note that the perpetual setting is realistic and in-
teresting in itself. It captures, for example, how DDXs are used by many large companies who run
nodes in their own data centers, e.g., Amazon, Google, LinkedIn. Nevertheless, we also consider the
transient setting where clients can arbitrarily add or remove nodes from the network. We extend
our syntax and security definitions to the transient setting, and prove that our extended construc-
tion BDX*—equipped with certain add and remove node protocols—achieves another probabilistic
leakage profile. Our leakage analysis in the transient setting relies on a new and stronger property
of the underlying DHT we call stability which, roughly speaking, means that with probability at
least 1 — § over the choice of overlay parameter w, for all large enough overlays, the DHT allocates
any label to any 0-sized set with probability at most €.

Having analyzed BDX™ in the transient setting, we study its properties when it is instantiated
with a transient variant of Chord. Our analysis of Chord’s stability is non-trivial. At a very high
level the main challenge is that, in the transient setting, Chord’s overlay changes with every leave
or join. To handle this, we introduce a series of (probabilistic) bounds to handle dynamic overlays
that may be of independent interest.

1.2 Related Work

Since we already discussed related work on DDXs/DHTs and their applications, in this section we
only focus on the work related in encrypted search literature.

Encrypted search was first considered explicitly by Song, Wagner and Perrig in [38] which
introduced the notion of searchable symmetric encryption (SSE). Curtmola, Garay, Kamara and
Ostrovsky introduced and formulated the notion of adaptive semantic security for SSE [14] together
with the first sub-linear and optimal-time constructions. Chase and Kamara introduced the notion
of structured encryption (STE) which generalizes SSE to arbitrary data structures [13]. Multi-map
encryption schemes are a special case of STE and have been used to achieve optimal-time single-
keyword SSE [14, 25, 11, 5, 6], sub-linear Boolean SSE [10, 22], encrypted range search [19, 17],
encrypted relational databases [23], and graph encryption [13, 31]. Some of these techniques have



been deployed in real-world databases as well, e.g., MongoDB’s queryable encryption now offers its
clients the ability to encrypt and query their data [1].

2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0,1}", and the set of all finite
binary strings as {0,1}*. [n] is the set of integers {1,...,n}, and 2[" is the corresponding power
set. We write x < x to represent an element x being sampled from a distribution y, and x & x
to represent an element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by z + A. Given a sequence v of n elements, we refer to its i element
as v; or v[i]. If S is a set then |S| refers to its cardinality. If s is a string then |s|2 refers to its bit
length. We denote by Ber(p) the Bernoulli distribution with parameter p.

Dictionaries. A dictionary structure DX of capacity n holds a collection of n label/value pairs
{(4i,v;) }i<n and supports get and put operations. We write v; := DX[{;] to denote getting the
value associated with label ¢; and DX[¢;] := v; to denote the operation of associating the value v; in
DX with label ¢;. A multi-map structure MM with capacity n is a collection of n label/tuple pairs
{(#4i,v;) }i<n that supports get and put operations. Similar to dictionaries, we write v; := MM[/;] to
denote getting the tuple associated with label ¢; and MM[{;] := v; to denote operation of associating
the tuple v; to label /;.

3 Encrypted Distributed Dictionaries

An encrypted distributed dictionary scheme encrypts a distributed dictionary in such a way that
it can support efficient get and put operations on encypted data stored across multiple nodes. We
formalize two types of schemes depending on whether or not a client can add/remove nodes from
the underlying storage network. The perpetual setting comprises of a fixed set of nodes that are all
known at the initialization time, whereas in the transient setting the nodes are not known a-priori,
and the client and add and remove nodes at any time. The former is suitable for settings where
a client rents a fixed sized cluster from a cloud provider like AWS or Azure, while the latter is
more suitable for settings where a client adds/removes nodes to its rented cluster depending on its
current storage needs.

Definition 3.1 (Perpetual EDDX scheme). A perpetual EDDX scheme Xgppx = (Init, Put, Get)
1s a collection of three protocols between the client C and a set of currently active nodes C =
(N1,...,Ny). They work as follows:

o« (K;EDDXjy;...;EDDX,) « hite.c(1%; L;...; L,,) is a probabilistic protocol where the client
enters the security parameter, while the nodes input nothing. The client receives a key K
while a node N; receives a shard EDDX; of the encrypted distributed dictionary EDDX.

o (L;EDDX|;...;EDDX],) + Putc c(K, ¥, v;EDDXy;...;EDDX,,) is a (probabilistic) protocol,
where the client inputs the secret key K and a label/value pair ¢ and v, while the nodes input
their respective shards of the encrypted distributed dictionary. At the end of the protocol,
the client receives nothing while the nodes receive updated shards of the encrypted distributed
dictionary.



o (v;L1;...51y) < Gete c(K,¢;EDDXy;...;EDDX,,) is same as the put protocol with the dif-
ference that the client receives a value v, while the nodes receive nothing at the end of the
protocol.

Definition 3.2 (Transient EDDX scheme). A transient EDDX scheme Ygppx+ = (Init, Put, Get,
AddNode, RemoveNode) is a collection of five protocols where the first three are same as in the
perpetual setting and the last two work as follows:

 (L;EDDXj;...;EDDX], 1) < AddNodec ¢ n+(L; EDDX) is a (probabilistic) protocol executed
when the client wants to add a node N not already active to the network. The client inputs
nothing while the original nodes input their respective shards EDDX;. At the end of the
protocol, the nodes including the node NT receive an updated shard EDDX] of the encrypted
distributed dictionary.

o (L;EDDX};...;EDDX/,_;) + RemoveNodec c(L;EDDX) is same as the AddNode protocol
and is executed when the client wants to remove an active node N~ € C from the network.

At the end of the protocol, each of the remaining nodes receive an updated shard.

Note that when a node N € C is removed from the network, the set of active nodes C auto-
matically shrinks to exclude N. Similarly, when a node N ¢ C is added to the network, the set of
active nodes C expands to include N. From now on, whenever we write C we are referring to the
current set of active nodes. Also note that here the client initiates the addition/removal of nodes,
but we can easily adapt our definitions to include another entity, e.g. cluster manager, to initiate
these processes instead of the client.

Security in the perpetual setting. We now turn to formalizing the security of an EDDX
scheme. We do this by combining the definitional approaches used in secure multi-party compu-
tation [8] and in structured encryption [14, 13]. The security of multi-party protocols is generally
formalized using the Real/Ideal-world paradigm. This approach consists of defining two probabilis-
tic experiments Real and Ideal where the former represents a real-world execution of the protocol
where the parties are in the presence of an adversary, and the latter represents an ideal-world
execution where the parties interact with a trusted functionality. The protocol is secure if no en-
vironment can distinguish between the outputs of these two experiments. Below, we will describe
both these experiments more formally.

Before doing so, we discuss an extension to the standard definitions. To capture the fact that
a protocol could leak information to the adversary, we parameterize the definition with a leakage
profile that consists of a leakage function £ that captures the information leaked by the Put and
Get operations. Our motivation for making the leakage explicit is to highlight its presence.

The real-world experiment. The experiment is executed between a client C, a set C of n
nodes Ni,...,N,, an environment Z and an adversary A. Given z € {0,1}*, the environment
Z sends to the adversary A, a subset I C C of nodes to corrupt. The client and the nodes then
execute (K; EDDXy;...;EDDX,,) « Init(1%; L;...; L,) protocol, and the client receives a secret key
K while a node N; recieves a shard EDDX; of the encrypted distributed dictionary EDDX. Z then
adaptively chooses a polynomial number of operations op;, where op; € {get,put} x L x {V, 1}
and sends it to C. If op; = (get, /), the client C executes Get(K,(; EDDXy;...;EDDX,,) protocol
with the nodes, and if op; = (put,/,v), C initiates EDDX.Put(K,¢,v; EDDXy;...;EDDX,). The
client forwards its output from running the get/put operations to Z. A computes a message m
from its view and sends it to Z. Finally, Z returns a bit that is output by the experiment. We let
Real 4 z(k) be a random variable denoting Z’s output bit.



Functionality .7-",§X
]—'gx stores a dictionary DX initialized to empty, and it proceeds as follows, running with client C, active
nodes in C and a simulator Sim:

o Upon receiving a (put, ¢,v) message from client C, it sets DX[¢] := v, and sends the leakage
L(DX, (put, £,v)) to the simulator Sim.

o Upon receiving a Get(¢) message from client C, it returns DX[¢] to the client C and the leakage
L(DX, (get, ¢, 1)) to the simulator Sim.

o Upon receiving a removenode(N) message from client C, where N € C, it returns the leakage
L(DX, (removenode, N)) to the simulator Sim and updates its set C.

o Upon receiving an addnode(N) message from client C, where N € N\ C, it returns the leakage
L(DX, (addnode, N)) to the simulator Sim and updates its set C.

Figure 1: ]:ng : The transient DX functionality parameterized with leakage function £. In the
perpetual setting, the functionality only implements the get and put operations.

The ideal-world experiment. The experiment is executed between a client C, a set C of n
nodes Ni,...,N,, an environment Z and a simulator Sim. Each party also has access to the
ideal functionality F5py (Figure 1). Given z € {0,1}*, the environment Z sends to the simulator
Sim, a subset I C C of nodes to corrupt. Z then adaptively chooses a polynomial number of
operations op;, where op; € {get,put} x L x {V, L}, and sends it to the client C which, in
turn, forwards it to .7-'|§X. If op; = (get, (), the functionality executes ]-",gX.Get(ﬁ). Otherwise, if
op; = (put, £,v) the functionality executes Fy-Put(€,v). C forwards its outputs to Z whereas Sim
sends Z some arbitrary message m. Finally, Z returns a bit that is output by the experiment. We
let Idealsim, z (k) be a random variable denoting Z’s output bit.

Definition 3.3 (L-security). We say that a perpetual encrypted distrubuted dictionary Xeppx =
(Init, Put, Get) is L-secure, if for all PPT adversaries A and all PPT environments Z, there exists a
PPT simulator Sim such that for all z € {0,1}*,

| Pr[Real 4 z(k) = 1] — Pr[Idealsim z (k) = 1]| < negl(k).

Security in the transient setting. Note that at any time, an EDDX only has a set C of active
nodes (i.e., the nodes currently in the network). Let N be the set of all the possible nodes, e.g.,
one can think of N as the set of all IPv4 addresses but only a subset C are in the network.

Then in the transient setting, the real and ideal experiments are the same as the perpetual
setting with the following two differences. First, the environment selects and activates a subset a
set C C N of nodes in the beginning; second, the environment also sends AddNode and RemoveNode
operations adaptively along with Get and Put operations to the client. For AddNode operation, it
selects a node N € N\ C that is not already in the network and, for RemoveNode operation, it
selects a node N € C already in the network.

4 Distributed Hash Tables

A distributed hash table is a distributed storage system that instantiates a distributed dictionary
data structure. Our encrypted distributed dictionary scheme BDX uses them as a building block
where it encrypts the label /value pairs before storing them in a DHT. In order to help us analyze the

10
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Figure 2: Chord DHT

security of BDX, we formalize DHTs and abstract their core components. The formalism introduced
here is in itself interesting and provides us with a framework to model distributed systems. We use
Chord DHT as a running example to make the exposition easier to understand.

4.1 The Chord DHT

Setting up Chord. Chord works in a logical m-bit address space A = {0,...,2m 1}, It views
the set of addresses to be arranged in a ring (see Fig 2). At the time of setup, it samples two hash
functions, H; and Hs, where Hp assigns each node N an address Hi(N) and Hj assigns each label
¢ an address Hy(¢). We call the set x = {H1(N1),...,Hi1(N,)} of addresses asssigned to nodes a
configuration. Intuitively, a configuration denotes the placement of nodes on the ring of addresses.

Given a configuration x, Chord defines the “successor” of an address a as the node that follows a
on the address ring in clockwise direction. The first successor of a is the first node that follows a, the
second successor is the second node that follows a, and so on. The predecessors of an address/node
are defined in the same way. We use the notation succy (a) to denote the first successor of address
a, and predx(a) to denote its first predecessor. For visual clarity, we sometimes drop x from the
subscript when its clear from context.

Routing in Chord. At the time of setup, each node also constructs a routing table where they
store the addresses of their 2¢th successor where 0 < i < logn. Note that a routing table contains
at most logn other nodes. The Chord routing protocol is fairly simple: given a message destined
to a node Ny, a node N checks if N = Ny. If not, the node forwards the message to the node N’
in its routing table with an address closest to N4. Note that given a configuration y, the route
between any two nodes is fixed. Moreover, the structure of routing tables ensures that the route
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lengths are at most logn long [40].

Storing and retrieving. Once the DHT is instantiated, each node instantiates an empty dic-
tionary data structure DX;. When a client executes a Put operation on a label/value pair (¢,v),
it chooses a node N (called the front-end node) and forwards the Put request to Ns. Ny then
computes Ny = succ(Hz(¢)) and uses the Chord routing protocol to send the pair (¢, v) to the node
Ny who stores it in its local dictionary DX;. Similarly, when executing a Get query on a label ¢, the
client chooses and forwards its get request to a node Ny;. The front-end node Ny then computes
Ny = succ(Hz(¢)) and, uses the Chord routing protocol to send the label ¢ to Ng. The latter looks
up £ in its local dictionary DX; and return the associated value v to Ng, which in turn returns
v to the client. We note that Chord allows its clients to choose any node as the front-end node.
Moreover, it does not restrict them to connect to the same node everytime the client wants to query
the same /.

4.2 Formalizing DHTs

Syntax. We formalize perpetual DHTs as a collection of six algorithms DHT = (Overlay, Alloc,
FrontEnd, Init, Put, Get) that work as follows:

e The first three algorithms, Overlay, Alloc and FrontEnd are executed only once by the entity
responsible for setting up the DHT. They all take as input an integer n > 1. Overlay outputs
a parameter w from a space 2, Alloc outputs a parameter v from a space ¥, and FrontEnd
outputs a parameter ¢ from space ®. We refer to these parameters as the DHT parameters and
represent them by I' = (w, 1, ¢). Each DHT has an address space A and the DHT parameters
in I' define different components of the DHT over this address space. For example, w maps
node names to addresses in A, ¥ maps labels to addresses in A, ¢ maps operation requests
to the address of a front-end node (or starting node). Once the responsible entity generates
T', it sends it to all the nodes in the network.

o The next algorithm Init(I") takes the DHT parameters as input and is executed by each active
node NN; € C in the network. It outputs an empty dictionary DX; and a state st; at node IV;.

o Finally, the last two protocols Put (Get) are executed between the client and the nodes, where
the client inputs its label /value pair (a label for Get) and the nodes input their dictionaries
and states. At the end of the protocol, the client receives nothing (a value v in case of Get),
and the nodes receive updated dictionaries (nothing for for Get).

Abstracting DHTs. We now abstract the core components of DHTs out. These abstractions
will be helpful in our security analysis. Given I'; we can describe a DHT using a tuple of function
families (addr, server, route, fe) that are all parameterized by subset of parameters in I'. These
functions are defined as

addr, : N — A server,, ,, : L — N,

route, : N x N — 2NN, fep : L — N

where addr,, maps names from a name space N to addresses from an address space A, server,, ,
maps labels from a label space L to the node that stores it, route, maps two nodes to the set
of nodes on the route between them, and fe, maps labels to node addresses who forward client
requests to the rest of the network. For visual clarity we abuse notation and represent the path
between two addresses by a set of addresses instead of as a sequence of addresses, but we stress that
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paths are sequences. Note that this is an abstract representation of a DHT that will be particularly
useful for our analysis but, in practice, these are implemented by the six algorithms defined in the
last section.

We also note that at any time, a DHT only has a subset C C N of active nodes (i.e., the nodes
currently in the network); e.g., one can think of N as the set of all IPv4 addresses but only a subset
would join the DHT network. Together w and C create an overlay, and henceforth we refer to
(w,C) as an overlay.

Instantiating abstractions for Chord. For Chord, w = H; and ¥ = Hy, where H; and H>
are modeled as random oracles. Then the overlay (w,C) is equivalent to a configuration x =
{H1(N1),...,H1(Np)}. The map addr,, is H; which assigns to each active node N € C an address
Hi(N) in A. The map server,, , is the function succ o Hy, that stores a label £ at the successor of
Hy (). Recall that given a configuration y, the route between any two nodes is fixed. Therefore,
the route,, map for Chord is deterministic and well defined.

Further recall that Chord allows its clients to choose any node as the front-end node to issue its
operations. Moreover, it does not restrict them to connect to the same node fey (), time the client
wants to query the same ¢. This means that for Chord, fey is not necessarily a function but can
be a one-to-many relation. Unfortunately we will later see that we cannot prove that an EDDX
based on Chord is “secure” for arbitrary fe,’s. We therefore modify Chord and let ¢ be a third
hash function H3 that maps labels to nodes currently active. Then, fes is the hash function H3
itself that assigns a front-end node H3(¢) to each request for ¢.

Visible addresses. An important notion for our purposes will be that of the set of wisible ad-
dresses to a node. Intuitively, we say that an address a is visible to a node N, if labels mapped
to a are either stored by N or are routed by it. Notice that whether or not addresses mapped
to a are routed by N depend on the node where the request for the label originates. Changing
the frontend node, changes the route, even if the destination node remains the same. Therefore,
instead of simply defining the visibility of a node, we define what we call a node’s N,-visibility,
where N is the starting node of the routes. Throughout we assume the set of visible addresses to
be efficiently computable.

Definition 4.1 (N,-visibility). Let (w, C) be an overlay, 1 be an allocation parameter and Ny € C
be an active node. Then we say an address a € A is Ng-visible to a node N € C if there exists
a label ¢ € L such that if ¢ allocates £ to a, then either: (1) N = server, (¢); or (2) N €
route,, (N, server,, ,(¢)). We denote the set of Ns-visible addresses to N by Vis(Ng, N).

Since the set of Ns-visible addresses depends on w, the set C of nodes that are currently active,
and the allocation parameter v, we subscript Vis,, ¢ (/NVs, V) with all these paramters. Finally,
we extend the notion of visibility of a single node to the visibility of a set of nodes S C C. It is
defined simply as the union of visibilities of individual nodes, i.e., for § C C, Vis,, ¢ (Ns, S) =
UnesVisy cu(Ns, N). Again, for visual clarity, we will drop the subscripts wherever they are clear
from the context.

Visibility in Chord. Given a configuration x, let arc of a node N is the set of addresses
in A between N and its predecessor in x (see Figure 2). More formally, we write arc,(N) =
(pred, (H1(N)), ..., H1(N)], where pred, (N) is the predecessor function defined earlier.

Recall that an address a is visible to a node N, if (1) N stores the labels hashed to a or, (2) N
routes the labels hashed to a (starting from Ng). In Chord, a node N stores all the labels that are
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hashed to its arc. Therefore, due to (1), all the addresses in N’s arc are visible to it. Moreover,
due to (2), addresses in the arcs of any other node N’ are also Ns-visible to N, if N falls on the
route between Ny and N’. This is because, all the labels hashed in the arc of N’ will be routed by
N. In summary, given a fixed configuration y, and two distinct nodes Ns, N € C:

Visy o (Ns, N) = arcy o (N) | {arcXC(N') :N € routeXc(Ns,N’)}

Allocation distribution. The next important notion in our analysis is what we refer to as
a label’s allocation distribution which is the probability distribution that governs the address at
which a label is allocated. More precisely, this is captured by the random variable 1 (¢), where
1 is sampled by the algorithm Alloc. We therefore simply refer to this distribution as the DHT’s
allocation distribution. Given an overlay (w,C) and a front-end parameter ¢, we now define two
distributions A;(S,¢) and Ay(¢), the first of which is parameterized by a set of addresses S C A
and a label ¢ € L, while the second is only paramterized by a label £ € L. The distributions are over
the choice of the allocation parameter 1) and we assume both of them to be efficiently computable.

The first distribution A (.S, £) intuitively captures the conditional probability of ¢ being assigned
to a particular address a, given that it is assigned to an address in S. Formally, an address a € A

has probability mass function
P l) = 0HelsS
Fausofa) = Prlv) =alv(0 € 5] = T ZE RO €S

However, for an address a ¢ S, the probability is 0. This is because in this case, ¥({) € S

and therefore the numerator evaluates to 0. Moreover, for a € S, the numerator evaluates to

Pr[¢(£) = a] because the event {1(¢) = a} implies the event {¢(¢) € S}.

For the case of Chord, recall that it assigns labels to addresses using a random oracle Hy. Therefore

it follows that for all configurations x, all labels £ € L and all subsets S C A, and all a € S,
Pr(Hy(f)=a] a7 1

fAl(S,f)(a) - PI‘[HQ(E) c S] - % - E

The second distribution Ay(¢) captures the probability of ¢ being assigned to an address in S.
The probability mass function of a set S C A is

fas0)(S) =Pry(() € S].

For Chord, it is equal to |S|/|A|. We stress that both distributions are over the randomness of the
algorithm Alloc.

Non-committing allocations. As we will see in Section 5, our EDDX construction can be
based on any DHT but the security of the resulting scheme will depend on certain properties of
the underlying DHT. We describe these properties here. The first property that we require of a
DHT is that the allocations it produces be non-committing in the sense that it supports a form
of equivocation. More precisely, for some fixed overlay (w,C) and allocation parameter v, there
should exist some efficient mechanism to arbitrarily change/program . In other words, there
should exist a polynomial-time algorithm Program such that, for all (w,C) and v, given a label
¢ € L and address a € A, Program(¢, a) modifies the DHT so that ¢ (¢) = a.

For the special case of Chord, given a label ¢ and an address a, the allocation parameter Ho
can be changed by programming the random oracle Hy to output a when it is queried on ¢!.

!This is also true for every DHT we are aware of [30, 21, 40, 18].
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Balanced overlays. The second property is related to how well the DHT load balances the
label /value pairs it stores. While load balancing is clearly important for storage efficiency we will
see, perhaps surprisingly, that it also has an impact on security. Intuitively, we say that an overlay
(w, C) is balanced if for all labels ¢, the probability that any set of 8 nodes “sees” ¢ is small.

Definition 4.2 (Balanced overlays). Let w € Q be an overlay parameter and let C C N be a set
of active nodes. We say that an overlay (w, C) is (g,0)-balanced if for all ¢ € L and for all S C C
with 8] = 0,

Pr [S N route, (fe¢(£), serverw,zp(é)) # (Z))} <e

where the probability is over the coins of Alloc and FrontEnd and where € can depend on 6 and |C]|.

We will later see that the better the balance, the better the security gurantee of our EDDX scheme.
The reason is that, inuitively, if an adversary sees a label with low probability, then it learns
information about it with low probability.

Definition 4.3 (Balanced DHT). We say that a distributed hash table DHT = (Overlay, Alloc,
FrontEnd, Daemon, Put, Get) is (¢, 6, 0)-balanced if for all C C N, the probability that an overlay

(w, C) is (g,0)-balanced is at least 1 — § over the coins of Overlay and where € and § can depend on
C and 6.

Balance of Chord. We now analyze the balance of Chord. We show that with high probability,
Chord samples an H; (i.e., a configuration x) such that the visibility of any 6 nodes is not too large.
Showing this is non-trivial and requires us to bound the total lengths of 6 (possibly non-contiguous)
arcs in x. Let sumarcs(xc,x) be the random variable denoting the total lengths of any x arcs in
configuration x.

One way to bound sumarcs(xc, ) is to bound the length of the largest arc, and then use a
union bound on it for x arcs. Precisely, if the length of the largest arc is at most A, then the total
length of any 6 arcs can be at most #A. Unfortunately, this is a very weak bound, and we improve
it by noticing that there cannot be a lot of very large arcs in a configuration. Intuitively, if one arc
is on the larger side, then others will be on the smaller side. Formally speaking, the arc lengths
are negatively dependent on each other, and we use the following result from [7]. We adapt their
theorem in our notation.

Theorem 4.4 ([7]). Let xc be a configuration chosen uniformly at random. Then for 0 < 4ne~2,

0|A 1
Pr[sumarcs(xc, 0) < 6||log(z>} >1-— o()
n

n

Notice that this bound is only O(log ) away from the optimal: in the best case, all the arcs are of
average length |A|/n, setting a lower bound of #|A|/n on sumarcs(xc,6).

Also notice that this theorem in some sense bounds the probability that a label will be stored
at one of the 6 adversarial nodes. This is because, Chord maps labels to addresses with uniform
probability, and Theorem 4.4 bounds the fraction of the address space that the adversary holds in
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its arcs. Formally, for a set of nodes I such that |I| = 6 < 4ne~2, with probability at least 1 — 0(%),

Pr [server(é) € I] =Pr |:H2(€) c U arc(N)}
Nel
_ | Unerarey (V)
A
< sumarcs(x, |1|)
N Al

T iog(7) (1)

Finally, we bound the probability that a label is routed by an adversarial node. The main
idea is the following: for all labels ¢, given a random front end node (due to H3), and an (almost)
random destination node (due to Hj), the adversary cannot place itself on ¢’s route with very high
probability, especially when Chord ensures that routes are at most logn long. Formally, we show
the following:

IN

Theorem 4.5. Let xc be a configuration chosen uniformly at random. Then for all labels ¢, and
for all I C C\ {fe(¢),server(¢)}, with |I| =6 < n/logn,

Pr|I Nroute(fe(?),server(f)) # 0| < legn‘ (2)

Proof. For all £ € L, let £ be the event that at least one of the nodes in I is on the path to the
server of £. Precisely,

E = {I Nroute(fe(?),server(f)) # 0}
By the union bound and the law of total probability, we have that,
Pr[&€] =Pr[INroute(fe(l),server(?)) # 0]

< Z Pr[N € route(fe(?), server(¢))]
Nerl

= Z Z Z Pr[N € route(Ny, Ny) | server({) = Ny Afe(€) = N |-
NEIN,€C N4eC
Pr[fe(¢) = Ny |server({) = Ny] - Pr[server(¢) = Ny]
= Z Z Z Pr[N € route(Ns, Ny) | server(¢) = Ny A fe(€) = Ny -
NEIN.€C N4€eC
Pr[fe({) = Ns]- Pr[server({) = Ng] (3)

where, the last equality follows from the fact that fe(¢) and server(¢) are chosen independently. But
note that,

logn

Pr[N € route(Ns, Ng) | | server(f) = Ny Afe(f) = Ng] <
n

which follows from the fact that path lengths in Chord are at most logn. Substituting this in Eq.
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(3) we get,

IOin - Pr[fe({) = Ns| - Pr[server({) = N4

PE]<Y Y Y

Nel NyeC N4eC

logn
= Z i Z Z Pr[fe(¢) = Ny] - Pr[server({) = Ny]
Nel N,€C NseC

B Z logn
Ner "
_ Ologn

n

We now use Equations 1 and 2 to show that Chord is balanced.
Theorem 4.6. Chord, is (¢,6,60) balanced for:

:8910gn and HSL and 5—1—0<1>
8logn n

Proof. Given a y, we bound the probability that for a label ¢, an adversarial node is on the route
from fe(¢) to server(¢). There are three ways in which this can happen: (1) front end node is
corrupted, or (2) the storage node is corrupted, or (3) one of the nodes on the route (excluding
(fe(¢)) and server(¢)) are corrupted. Therefore, we have that:

€

Pr [I N route(fe(?), server(£)) # (Z)]

=Pr {fe(ﬂ) € I} + Pr [server(ﬁ) € I} + Pr [I N route(fe(?), server(¢)) # ()

fe(€) ¢ I Nserver(?) ¢ I]

=Pr |:H3(£) € I] + % log<z> +Pr {I N route(H3(¢),server(£)) # () ‘ H3(0) ¢ I \server({) ¢ I}

(4)

where the second and third inequalities follow from Equations 1 and 2. Note that the bound
above only makes sense for § < n/8logn. Finally, we know that Equation 1 holds with probability
1-— o(%), therefore, we conclude that Chord is balanced for the given values of €, § and 6. O

Note that assigning labels uniformly at random to nodes would achieve ¢ = 6/n, whereas
Theorem 4.6 achieves ¢ = O(6logn/n). This shows that the balance of Chord is only logn factor
away from optimal balance which is very good given that the optimal balance is achieved with no
routing at all.

5 A DDX Encryption Scheme in the Perpetual Setting

In this section, we describe an EDDX scheme BDX in the perpetual setting where nodes are fixed
throughout the lifetime of the EDDX. BDX relies on simple cryptographic primitives and a non-
committing and balanced DHT.
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Let DHT = (Overlay, Alloc, FrontEnd, Put, Get) be a distributed hash table, SKE = (Gen, Enc, Dec) be
a symmetric-key encryption scheme and F' be a pseudo-random function. Consider the encrypted
distributed dictionary scheme EDDX = (Init, Put, Get) that works as follows:

o Inite.c(1%; Ly;.. .5 Ly):

1. C samples K & {0,1}* and compute Ky <+ SKE.Gen(1%);

2. C computes w <= DHT.Overlay(n), ¢ <— DHT.Alloc(n), and ¢ < DHT.FrontEnd(n);
3. Csends I' = (w, 4, @) to all the active nodes;

4. C outputs K = (K7, K»);

5. all the nodes N; € C execute (st;, DX;) <— DHT.Init(T");

6. all the nodes N; € C output EDDX; = (st;, DX;);

o Putec(K,¢,v;EDDXy;...;EDDX,,) :

1. C parses K as (K1, K»);

2. C compute t := Fi, ({);

3. C compute e < SKE.Enc(Ks,v);

4. all the nodes N; € C parse EDDX; as (st;, DX;);
5. C and the nodes N; € C execute

(L; (sty,DX});.. .5 (stn, DX))) <= DHT.Put(t, e; (st, DXy);. . .; (stn, DX,,));

6. all the nodes N; € C output EDDX] = (st;, DX});
o Gete,c(K,¢;EDDXy;...;EDDX,,):

1. C parses K as (K3, K3)

2. C computes t := Fg, (£)

3. all the nodes N; € C parse EDDX; as (st;, DX;);
4. C and the nodes N; € C execute

(e; Ly;...5L,) < DHT.Get(t ; (st1,DX1);...; (stn, DXy));

5. if e £ L, client C computes and outputs v < SKE.Dec(K>, e);

Figure 3: BDX: A DDX encryption scheme in the perpetual setting.

Overview. The scheme BDX = (Init, Put, Get) is described in detail in Figure 3 and, at a high
level, works as follows. It makes black-box use of a distributed hash table DHT = (Overlay,
Alloc, FrontEnd, InitPut, Get), a pseudo-random function F' and a symmetric-key encryption scheme
SKE = (Gen, Enc, Dec). At the time of Init, the client uses a security parameter 1* to generate a
key K3 for the pseudo-random function F' and a key K5 for the symmetric encryption scheme SKE.
It then executes DHT.Overlay, DHT.Alloc, and DHT.FrontEnd to generate and forward the DHT
paramters w, ¥ and ¢ to all the active nodes in C. The nodes then input the DHT parameters
into DHT.Init to setup their local dictionaries and states. To store a label/value pair (¢,v), the
client first computes t := Fi, (¢) and e < Enc(K3,v) and then executes DHT.Put(t,e) with the
nodes. To retrieve the value associated with a label ¢, the client computes t := F, (¢) and executes
e < DHT.Get(t) with the nodes. It then decrypts SKE.Dec(K, e) the value returned and outputs
it.
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Security. We now describe the leakage of EDDX. Intuitively, it reveals to the adversary the times
at which a label is stored or retrieved with some probability. More formally, it is defined with the
following stateful leakage function:

o L.(DX,(op,t,v)) :

1. if £ has never been seen

(a) sample and store by < Ber(e)
2. ifbp=1

(a) if op = put, output (put,opeq(¥))

(b) else if op = get, output (get,opeq(¥))
3. elseif by =0

(a) output L

where opeq is the operation equality pattern which reveals if and when a label was queried or put in
the past. Note that when e = 1 (for some ), L. reduces to the leakage profile achieved by standard
encrypted dictionary constructions [13, 11]. On the other hand, when e < 1, this leakage profile is
“better” than the profile of known constructions.

Discussion. We now explain why the leakage function is probabilistic and why it depends on the
balance of the underlying DHT. Intuitively, one expects that the adversary’s view is only affected
by get and put operations on labels that are either: (1) allocated to a corrupted node; (2) start at
a corrupted front end node; or (3) allocated to an uncorrupted node whose path (starting from the
client) includes a corrupted node. In such a case, the adversary’s view would not be affected by all
operations but only a subset of them. Our leakage function captures this intuition precisely and it
is probabilistic because, in the real world, the subset of operations that affect the adversary’s view
is determined probabilistically because it depends on the choice of overlay and allocation—both of
which are chosen at random. The way this is handled in the leakage function is by sampling a bit
b with some probability and revealing leakage on the current operation if b = 1. This determines
the subset of operations whose leakage will be visible to the adversary.

Now, for the simulation to go through, the operations simulated by the simulator need to be
visible to the adversary with the same probability as in the real execution. But these probabilities
depend on DHT parameters I' = (w, ¥, ¢), which are not known to the leakage function. Note that
this implies a rather strong definition in the sense that the scheme hides information about the
overlay and the allocation of the DHT.

Since w, ¥ and ¢ are unknown to the leakage function, the leakage function can only guess as
to what they could be. But because the DHT is guaranteed to be (g, 4, 0)-balanced, the leakage
function can assume that, with probability at least 1 — §, the overlay will be (g, #)-balanced which,
in turn, guarantees that the probability that a label is visible to any adversary with at most 6
corruptions is at most €. Therefore, in our leakage function, we can set the probability that b =1
to be € in the hope that simulator can “adjust” the probability internally to be in accordance to
the w that it sampled. Note that the simulator can adjust the probability only if for its own chosen
w, the probability that a query is visible to the adversary is less than €. But this will happen with
probability at least 1 — § so the simulation will work with probability at least 1 — 4.

We are now ready to state our main security Theorem which proves that our EDDX scheme
is Lc-secure with probability that is negligibly close to 1 — ¢ when its underlying DHT is (e, 0, 0)-
balanced.

19



Theorem 5.1. If |I| < 6 and if DHT is (e, 9, 6)-balanced and has non-committing allocation, then
BDX is L.-secure with probability at least 1 — § — negl(k).

Proof. Consider the simulator Sim that works as follows. Given a set of corrupted nodes I C C,
it computes w < DHT.Overlay(n), ¢ < DHT.FrontEnd(n), initializes n nodes Ni,..., N, in C,
simulates the adversary A with I as input, and generates a symmetric key K < SKE.Gen(1¥).
When a put/get operation is executed, Sim receives from Fpyt the leakage

S {(put,opeq(ﬂ)), (get, opeq(ﬁ)),L}.

If A = L then Sim does nothing. If A # 1, then Sim checks the operation equality to see if the
label has been seen in the past. There are two cases:

1. Label was not seen in the past: If the label was not seen in the past (as deduced from

operation equality), it sets ¢ & {0,1}%, and samples and stores a bit

/
b < Ber (p) .
€

where, p/ “/ py [¥(t) € Vis(fey(t), I)]. Note that, this is indeed a valid Bernoulli distribution
since

p' = Pr[y(t) € Vis(fe(t),I)] < ¢,
where the last inequality follows from |I| < 6 and (w, C) being (e, 8)-balanced.

If ¥ = 0, it does nothing, but if ¥ = 1, it computes e < SKE.Enc(K,0), sets the fron-
tend node Ny < fe(t), samples an address a « Ay (Vis(fe(t),I)). It then programs 1) to map

t to a. Finally, if the operation was a put, it executes DHT.Put(¢, e), otherwise it executes
DHT.Get(t).

2. Label was seen in the past: If the label was seen in the past (as deduced from operation
equality), Sim retrieves the bit b’ that was previously sampled. If &’ = 0, then it does nothing,
but if b’ = 1 it sets ¢ to the d-bit value previously used, and computes e - SKE.Enc(K,0). Fi-
nally, if the operation was a put, it executes DHT.Put(t, e), otherwise it executes DHT.Get(?).

Once all of the environment’s operations are processed, the simulator returns whatever the adver-
sary outputs.

It remains to show that the view of the adversary A during the simulation is indistinguishable
from its view in a Real experiment. We do this using a sequence of games.

Gamey : is the same as a Real 4 z(k) experiment.

Game; : is the same as Gameg except that the encryption of the value v during a Put is replaced
by SKE.Enc(K3,0).

Games : is the same as Game; except that output of the PRF F' is replaced by a truly random
string of d bits.
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Games : is the same as Gamey except that for each operation (op,?,v) (where v can be null),
we check if ¢ has been seen before. If not, we sample a bit by, < Ber(e), else we set by to
the bit previously sampled. If by = 1 and op = (put,¥,v), we replace the Put operation
with Sim(put,opeq(?)), and if by = 1 and op = (get,¥), we replace the Get operation with
Sim(get, opeq(¢)). If b, = 0, we do nothing.

Game; is indistinguishable from Gamey, otherwise the encryption scheme is not semantically se-
cure. Gamey is indistinguishable from Game; because the outputs of pseudorandom functions are
indistinguishable from random strings.

We now show that the adversary’s views in Gamey and Games are indistinguishable. We denote
these views by viewa([) and viewg([), respectively, and consider the ith “sub-views” viewsa'([)
and views'(I) which include the set of messages seen by the adversary (through the corrupted
nodes) during the execution of op;. Let op denote the sequence of ¢ operations generated by the
environment. Let ¢1,...,¢; be the labels of the operations in op, and let ¢1,...,t; be the cor-
responding random strings obtained by replacing Fx(¢;) with random strings. Because DHT is
(e, 9, 0)-balanced, we know that with probability at least 1 — ¢, the overlay (w,C) will be (g, 6)-
balanced. So for the remainder of the proof, we assume the overlay is (e, §)-balanced.

First, we treat the case where t; (or equivalently ¢;) has never been seen before. Let & be the
event that i (t;) € Vis(fe(t;), ). For all possible views v, we have
Pr [Viewzi(f) =v]

=Pr [viewzi(l) = v/\&-] + Pr [viewf([) = v/\&}
= Pr [viewa'(I) = v| & ]

where the third equality follows from the fact that, conditioned on &;, the nodes in I do not see
any messages at all.

= Pr [viewz'(I) r[& ]+ Pr[viewa'(I) =v|&] - (1 - Pr[&-})

E|-P

Turning to views, let Q; be the event that b; = 1 A b, = 1. Then for all possible views v, we
have

Pr [views'(I) = v |
=Pr[views'(I) = vA Q;]| + Pr[views'(I) = vA Q]
= Pr[views'(I) = v| Q;] - Pr[Q;] + Pr [viewy'(I) = v | Q;] - (1 —PT[QiD
= Pr[views'(I) =v [ Q;] - Pr[Q;] (5)
where the third equality follows from the fact that, for all i, conditioned on Q;, either Sim is never

executed or Sim does nothing. In either case, the nodes in I will not see any messages so for all v
we have Pr [VieW;;i(I) =v| @} =0.

Notice, however, that

Pr [w(tz) € ViS(fed)(ti), I)]
e

Pr(Q;]=Pr[bj=1Ab=1]=¢- =Pr[&],

so to show that the views are equally distributed it remains to show that for all v,

Pr [ViEWzi(I) =vV| Ei} =Pr [view;),i(l) =v| Qi}.
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To see why this holds, notice that, conditioned on &; and Q;, the only difference between Games and
Gameg is that, in the former, the labels t; are mapped to an address a according to an allocation 1
generated using Alloc, whereas in the latter, the labels #; are programmed to an address a sampled
from A;(Vis(fe(t;),I)). We show, however, that in both cases, the labels ¢; are allocated with the
same probability distribution. In Games, for all a € A, we have,
Pr[¢(t) =aN&]
Pr[w(tz>_a|gz]_ PI‘[SZ]
_ Pr[g(t) = a A (L) € Vis(fe(t:), 1) ’
N Pr[4(t;) € Vis(fe(t;), I)] (6)

We see that for a ¢ Vis(fe(t;), I), the nuemrator is 0, and therefore for a ¢ Vis(fe(t;), ), we have
that,

Prig(t) =al&]=0
However, for a € Vis(fe(t;), 1), Eqn 6 evaluates to:

Pr[y(t;) = a]
Pr[¢(t;) € Vis(fe(t;), I)]

which follows from the fact that for a € Vis(fe(t;), I), the event {¢(t;) = a} C &;.
In Games, since the simulator only programs t; to an address in Vis(fe(¢;),I) when b; = 1 and
b, =1, we have that for all a ¢ Vis(fe(t;), I),

Pr{¢(t) =a|Qi]=0

Pr{y(t) =al&]=

However, for a € Vis(fe(t;), I), we have that,

B L Pr[¢(t;) = a]
Pry(ti) =a|Qi] = 5- [4(t:) € Vis(fe(t;), 1) ]

where the first equation follows from the fact that a is sampled from A;(Vis(fe(t;),I)). Since, for
all 4, conditioned on Q; and &;, labels are allocated to addresses with the same distribution in both
games and since this is the only difference between the games,

Pr[view;;i([) =vV| Qi} :Pr[viewzi(I):v|&-}. (7)
Plugging Eq. 7 into Eq. 5, we have that for all ¢ and all v,
Pr {viewzi(I) = V} =Pr {VieW3i(I) = V}.

Now we consider the case where ¢; has been seen in the past. In this case, Put or Get operations
will produce the same messages that were generated in the past which means that views(I) will
be the same as before. Similarly, views’(I) will be the same as before because, whenever ¢; has
been seen in the past, Sim behaves the same as the last time it saw ¢;. ]

Security of the Chord-based BDX. In the following Corollary we formally state the security
of BDX scheme when its underlying DHT is instantiated with Chord. The proof follows directly
from the fact that Chord has non-committing allocations and that it is balanced for:

&?:8910gn and 6< n and 6:1—0<1>
n 8logn n
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Corollary 5.2. If |L| = ©(2F), |I| = 6 < n/log?n, and if EDDX is instantiated with Chord,

then it is L.-secure with probability at least 1 — 0(%) — negl(k) in the random oracle model, where
e = 80 logn
=

Proof. The corollary follows from Theorem 5.1, Theorem 4.6 and the fact that Chord has non-
committing allocations when H is modeled as a random oracle. Note that during the simulation,
the probability that A queries Hy on at least one of the strings ¢1,...,t, is at most poly(k)/|L|.
This is because A is polynomially-bounded so it can make at most poly(k) queries to Ha. And
since for all i, t; = f(¢;), where f is a random function, the probability that A queries Hy on at
least one of t1,...,t, is at most poly(k)/|L|. And since |L| = ©(2¥), this probability is negligible
in k. O

Notice that if the number of corruptions # is at most n/(alogn), where o > 8, then we get
that e = O(1/a). Recall that, on each query, the leakage function leaks the query equality with
probability at most . So, intuitively, this means that if an « fraction of n/log n nodes are corrupted
then, the adversary can expect to learn the operation equality of an O(1/«) fraction of client queries.
Note that this confirms the intuition that distributing an STE scheme suppresses its leakage.

Efficiency of BDX. Our construction BDX does not add any asymptotic overhead to time, round,
communication and storage complexities of the underlying DHT.

6 Transient DHTs

In this section, we consider DHT5 in the transient setting. Transient DHTs are the same as perpetual
DHTs with the difference that nodes are not known a-priori and can join and leave at any time.
Instead of using perpetual DHTs as a building block, we will instead use transient DHTS in our
construction. Similar to the perpetual setting, we will use Chord as our running example.

Syntax. Transient DHTs are a collection of eight protocols DHT™ = (Overlay, Alloc, FrontEnd, Init,
Put, Get, Leave, Join). The first six algorithms are same as in the perpetual setting. The seventh
is a protocol Leave executed between a node N € C when it wishes to leave the network and all
the other nodes in the network. Leave takes as input the states and dictionaries of all the nodes
in the network, and outputs an updated state and an updated dictionary at the remaining nodes.
The eighth is also a protocol Join is the same as the Leave protocol with the difference that it is
executed between a node N € N\ C that wishes to join the network and the nodes already in
the network. When a node executes a Leave or Join, the routing tables of all the other nodes are
updated and label/value pairs are moved around in the network according to allocation 1. In other
words, when a node leaves, its pairs are reallocated in the network and when a node joins, some
pairs stored on the other nodes are moved to the new node.

Note that when a node N € C leaves the network, the set of active nodes C automatically
shrinks to exclude N. Similarly, when a node N € N\ C joins the network, the set of active nodes
C expands to include N. From now on, whenever we write C we are referring to the current set of
active nodes.

Leaves and joins in Chord. The Chord paper [40] does not precisely specify how joins and
leaves should be handled. In particular, when a node N leaves, it describes which nodes should
receive N’s pairs, but it does not describe exactly how the pairs should get there. Similarly, when
anode N joins, it describes which pairs should move to IV, but it does not describe how these pairs
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Ny joins

R Hl (Ng) ——

H,(N-)Q % Label/value pairs
1UVy

H,(Ng) ->  Storage node before leave/join

H,(Ny) H,(N3)

----------- » Storage node after leave/join

Figure 4: Leaves and joins in Chord. When a node joins, label/value pairs stored at its successor
are rehashed, and as a result some of the pairs stored at the successor move to the newly joined
node. For example, when Ny joins, {1 moves to Ng while o continues to be stored at No. When a
node leaves, all its pairs are moved to its successor. For example, when N; leaves, all its pairs are
moved to Ny.

should move to N. Because of this, we describe a simple approach based on “re-hashing”. We note
that this is not the most efficient way to handle leaves and joins but it is correct and our focus is
on security rather than efficiency.

When a new node N € N\ C joins the network, it is first assigned an address H;(N) € A.
Then, the routing tables of all the other nodes are updated. Finally, all the label/value pairs stored
at succyo(H1(N)) are re-hashed and stored at their new destination (if necessary). When a node
N € C leaves, the routing tables of all the other nodes are updated, and all the label/value pairs
stored at N are moved to the succy(Hi(N)).

Intuitively, when a node N joins, it splits the arc of its successor, and all the pairs that hashed
to the part of the arc that is now the arc of N, are moved to N. As shown in Figure 4, when a
new node Ny joins, ¢1 which was previosuly stored at Ny moves to Ng. Similarly, when a node N
leaves, its arc becomes a part of its successor N'’s arc. Hence all the pairs that initially hashed to
N’s arc, now hash to N”’s arc, and hence move to N’. For example, in Figure 4, when N leaves,
all its pairs move to Ny.

Stability. To prove the security of EDDXs in the transient setting, we need the underlying DHT
to satisfy a stronger notion than balance which we call stability. Stability requires that Overlay
returns an overlay parameter w such that, with high probability, (w, C) is balanced for all possible
subsets of active nodes C simultaneously. Balance, on the other hand, only requires that for all
sets of active nodes C, with high probability Overlay will output an overlay parameter w such that
(w, C) is balanced. In other words, stability requires a single overlay parameter w that is “good”
for all subsets of active nodes whereas balance does not.
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Definition 6.1 (Stability). We say that a transient distributed hash table DHTT = (Overlay, Alloc,
FrontEnd, Init, Put, Get, Leave, Join) is (e, d, 0)-stable if

Pr[ /\ {(w, C) is (5,«9)—balanced}] >1-6

CCN:|C|>0

where the probability is over the choice of w, and € and 6 are functions of C.

Stability of Chord. Recall that in the perpetual setting, we have a single configuration yc
corresponding to a fixed set of active nodes C. However, in the transient setting, we have multiple
configurations — every time a node leaves/joins, the set C changes and hence the configuration xc
changes. In order to show that Chord is stable, we need to show that all the configurations xc are
balanced. And in order to do so, for each configuration, we need to bound the probability of (1)
the front end node being corrupted, (2) a label being stored at a corrupted node, and (3) a label
being routed by a corrupted node.

Notice that given a configuration yc, the probability that a front-end node is corrupted only
depends on the fraction of nodes currently corrupted and hence is always 6/|C|. Similarly, the
probability that a label is routed by a corrupted node only depends on the path lengths, which
are log |C| long in any configuration. Therefore, we bound the probability of (3) by 6log|C|/|C]
following the same argument we used to bound the probability of a label being routed by a corrupted
node in the persistent setting (Theorem 4.5).

Notice that bounding (2) simultaneously for all the configurations is non-trivial, and it is because
the event of a label being stored at a corrupted node is not independent across configurations. For
example, if an uncorrupted node adjacent to a corrupted node leaves, in the new configuration, the
corrupted node also occupies the arc of the node that left the system, and hence it has a higher
likelihood of storing a label than what it previously had in the old configuration.

As before, for a given configuration xc, in order to bound (2), we upper bound the total
lengths of the @ largest arcs in yc. However, instead of bounding it as a function of the number
of currently active nodes |C|, we bound it as function of the size of the namepspace |N|. We rely
on two main observations. The first is that any configuration yc can be expressed as yn \ XN\C
which, intuitively, means we can recover xc by starting with yn (which includes every node in the
name space) and removing the nodes N\ C. The second observation is that if we start with a given
configuration xc and remove a node N, then N’s arc becomes visible to some other (currently
active) node.

But how can we use these observations to bound the total lengths of 6 largest arcs in xc using
the bound in yn? We start with yn and remove the nodes in N\ C; but for each node N that is
removed, we assume the worst-case and assign N’s arc to one of the # nodes with largest arcs. The
resulting area will be an upper bound on the true maximum area. More formally, we have that
sumarcs(xc, #) < sumarcs(xn, 0 + |[N| — |C|). We next show that for large enough C'’s, i.e., when
|C| > |N|—d, sumarcs(xN, 0+ |N|—|C|) < sumarcs(xn, 0 +d). Finally, we bound sumarcs(xn, 0+d)
using the same result from [7] which we used earlier.

Theorem 6.2. Let xn be a configuration drawn wu.a.r and let d be a positive integer such that
0 +d < 4|N|e"2. Then,

Pf[ A {sumarcs(XC’Q) < 6(6 Tl\ﬁ”A‘ log(,g’leZ) H S1- 0(’;”)

CCN:|C|>|N|~d
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Proof. Proof follows directly from the observation that for all the configurations yc, the proba-
bibilty of the event {sumarcs(xc, ) < a} is at least as the probability of the event {sumarcs(xn, 6+
d) < a}. Precisely,

Pr[ /\ {sumarcs(Xc,H) < 606+ d)|A| log< NI )H

CCN:|CI>|N|—d IN] o+d

A N
>Pr{sumarCS(XN79+d)<6(9+d) ’1og<9’ \)]

IN]| +d
> 1 (1)
>1-ol ==
IN]

where the last step follows from Theorem 4.4. ]

We finally show that Chord is (e, d, 0) stable, where € and 6 depend on the number of nodes currently
active.

Theorem 6.3. Transient Chord is (e,9,0) stable for

6(0 4+ d)log|N|  20log|C]| g 1
€= + and 6 <4|Nle “—d and 521—0(),
IN| C| IN]

where d is some positive integer.

Proof. For a given set of active nodes C, let £c be the following event:

{Pr {I N route, (fep, (€), servery . (¢)) # @} < 50}

Let us rewrite ec = €& + €& + €&, where:

Ve

€ C

2 6(0 + d) log |N| n 201og |C|
c IN| |C]
3 fc log |C|

© C|

and let us define three new events as follows:

&= {Pr fer, (£) € I] < gg}

E& = {Pr server, . (¢) € ]] < E%}

Q%
I

{Pr -{I N route, (fep, (£), servery g (6))} #0

fer, (€) ¢ I N servery () ¢ ]] < 63(’:}

Then,

prl A /\}gg}:pr[/\ A& =TIr A e (8)

CCN:|C|>0 i€[3 i€[3] CCN:|C|>0 ic[3] “CCN:|C|>6

26



where the last inequality follows from the fact that Eé’s are independent. We next evaluate the
three terms inside the product one by one.

We start by evaluating Pr {/\CCN:C>0 5(13} We notice that given any configuration, probability

that front end of label is a corrupted node only depends on the fraction of nodes currently corrupted,
and not on how nodes are arranged in a configuration. Precisely, for all C,

fc
Pr{feH (E) € I:| = —
’ C|

Therefore, for all C, the event Sé always occurs, and hence

Pr{ A 54:131{ A 1]:1 (9)

CCN:|C|>0 CCN:|C|>0

Similarly, we notice that the probabibilty that a corrupted node falls on the path of a label to its
server (excluding the ending points of the path) solely depends on the route lengths, which given
any configuration, are always log |C| long. Therefore, the event £ always occurs with probability
1, and hence,

Pr [CQN/:|\CZB gg] =1 (10)

However, the probability that a label is stored on a corrupted node is not independent across
configurations, and hence the event £3 is not independent for all C. In particular,

Pr{ /\ Eé} = Pr[ /\ {sumarcs(xc7 ) < 5%;” >1-96 (11)

CCN:|C|>0 CCN:|C|>0
where the last step follows from Theorem 6.2. From Eqnations 811, we conclude that:

Pr[ A /\56}21_5

CCN:|C|>0 i3]

Notice that E& A E& A EE imply the event Ec. And hence,

Pr{ A 50} >1-94

CCN:|C|>6

7 A DDX Encryption Scheme in the Transient Setting

In the transient setting, the scheme consists of BDX™ = (Init, Put, Get, AddNode, RemoveNode) five
protocols. The first three are exactly the same as the BDX scheme in the perpetual setting (See
Figure 3). To remove a node N from the network, the client sends a message to node N indicating
that it should leave the network. The node N then executes DHT.Leave which in turn moves it
pairs to the remaining nodes in the network. Similarly, to add a node N, the client sends N a
message, which in turn executes DHT.Join. We start with a description of the leakage for add and
remove node operations and then discuss the leakage for put and get operations.
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Add and remove node leakage. Roughly speaking, during the execution of the scheme, the
adversary sees leakage on label/value pairs that are either stored at corrupted nodes or routed
through corrupted nodes. Now, when an add or remove node operation occurs, label/value pairs
are moved throughout the network (e.g., during a remove node, the leaving node’s pairs are redis-
tributed to other nodes). At this point, the adversary could get new leakage about pairs that it
had not seen before the add/remove node operation. For example, this would occur if a previously
unseen label/value pair (i.e., that was stored on the leaving node) gets routed through a corrupted
node during the re-distribution.

To simulate a add /remove node operation correctly, the simulator will have to correctly simulate
the re-distribution of pairs including of pairs it has not seen yet. But at this stage, it does not even
know how many such pairs exist. This is because it does not get executed on put operations for
labels not stored or routed by corrupted nodes. To overcome this, we reveal to the simulator how
many of these pairs exist through the leakage function.

This, however, affects the get and put leakages for these pairs: now that the pairs have been re-
distributed to (or routed through) a corrupted node the adversary will receive get and put leakages
on these pairs. There is a technical challenge here, which is that we do not know how to simulate
only the pairs that are re-distributed to (or routed through) corrupted nodes, so to address this we
additionally reveal to the simulator the leakage of all the previously unseen pairs. It is not clear
if this is strictly necessary and it could be that the scheme achieves a “tighter” leakage function.
Note that this does not affect new pairs, i.e., pairs that are added after the leave/join operation
(until another leave/join operation occurs). We denote the number of previously unseen pairs by
K.

The leakage profile. We are now ready to formally describe the leakage profile achieved by our
construction BDX™ in the transient setting.

e L. (DX, {(op,ﬁ, v), (op, N)}):

1. if op = get V put and ¢ has never been seen
(a) sample and store by <— Ber(ec)
2. ifby =1
(a) if op = put output (put,opeq(¥))
(b) else if op = get output (get,opeq(¥))
3. elseif by =0
(a) Increment k if op = put and ¢ has never been seen
(b) output L
4. if op = removenode V addnode
(a) output (op, N, k)
(b) if op = removenode, C = C\ N
(c) if op = addnode, C=CUN
(d)
(¢)

We now show that EDDX™ is L.-secure in the transient setting with probability negligibly close to
1 — 0 when its underlying transient DHT is (g, d, #) stable and is non-committing.

set by = 1 for all the put labels that have been seen in the past

reset Kk to 0
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Theorem 7.1. If |I| < 6 and DHT™T is (¢, 6,0)-stable and has non-committing allocations, then
BDX™ is L.-secure with probability at least 1 — & — negl(k).

Proof. Consider the simulator Sim that works as follows. Given a set of corrupted nodes I C N,
and a set of active nodes C C N, it computes w + DHT".Overlay(n), ¢ +~ DHT.FrontEnd(n),
initializes n nodes Ni,..., N, in C, simulates the adversary A with I as input, and generates a
symmetric key K < SKE.Gen(1¥). It then sets I’ = C N I.

When a leave/join operation is executed, the simulator receives from Fp, 1+ the leakage

A e {(removenode, N, Ii), (addnode, N, /<c> }

For each j € [k], it sets t; & {0,1}? and e; + SKE.Enc(K,0), samples an address a <+ Aj(A \
Vis(fe(t;),1")), programs ¢ to map t; to a, computes N’ < server(t;), and adds (¢;,e;) to MM[N'].
It also sets b; = 1 for all the labels it has received until now.

If the operation is a leave operation, it updates C = C \ {N}, updates the routing tables
to exclude N, and executes DHT.Put(¢,e) on all the (t,e) pairs stored in MM[N], updating MM
according to how pairs move. It finally, resets MM[N] to L, and recomputes I’ = I N C.

If the operation is a join operation, it updates C = C U {N}, updates the routing tables to
include N, and executes DHT.Put(¢, €) on all the (¢, e) pairs stored in MM for all the nodes, updating
MM according to how pairs move. Finally, it recomputes I’ = I N C.

When a put/get operation is executed, it does the exact same thing as in the case of persistent
setting. There are only two differences: (1) for a put operation if b, = 0, the simulator generates
a random (,e) pair, and program (t) = a, where a <— A;(A \ Vis(fe(t;),1")), and (2) it updates
MM in the process of executing Get and Put as well.

Once all of the environment’s operations are processed, the simulator returns whatever the ad-
versary outputs.

It remains to show that the view of the adversary A during the simulation is indistinguishable
from its view in a Real experiment. We do this using a sequence of games.

Gamey : is the same as a Real 4 z(k) experiment.

Game; : is the same as Gameg except that the encryption of the value v during a Put is replaced
by SKE.Enc(K3,0).

Games : is the same as Game; except that output of the PRF F' is replaced by a truly random
string of d bits.

Games : is the same as Gamey except that for each operation op, if op € {(get, ¢), (put,?,v)}, we
check if the label ¢ has been seen before. If not, we sample and store a bit by < Ber(e), else
we set by to the bit previously sampled for ¢. If by = 1 and op = (put, ¢, v), we replace the
Put operation with Sim(put, opeq(¢)) and if op = (get, ) we replace the Get operation with
Sim(get,opeq(¥)). If by = 0, we do nothing. If however op = (removenode, N), we replace the
Leave operation with Sim(removenode, N, k) and set by = 1 for all the put labels that have
been seen in the past. Similarly if op = (addnode, N), we replace the Join operation with
Sim(addnode, N, k) and set by = 1 for all the put labels that have been seen in the past.

Game; is indistinguishable from Gameg, otherwise the encryption scheme is not semantically se-
cure. Game, is indistinguishable from Game; because the outputs of pseudorandom functions are
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indistinguishable from random strings.

Let (w,C) be the current overlay. Since DHT is (g,d, 6)-stable, with probability at least 1 — 4§,
for all C C N, (w, C) will be (g, #)-balanced. It follows then that the simulator aborts with proba-
bility at most d so for the rest of the proof, we argue indistinguishability assuming (e, §)-balanced
overlays.

As in the proof of Theorem 5.1, we will consider the views of nodes in I’ for each operation and
show them to be indistinguishable across Gamey and Games. We will denote this by viewzi(I ") and
views'(I') for Gamey and Games respectively. Let op denote the sequence of operations generated
by the environment. To prove the indistinguishability of views, we divide the operations in op into
buckets where the bucket boundaries are the leave/join operations.

Now consider the first bucket. Since no leaves/joins have yet been simulated, b can only be 0
or 1 but not L. Notice that for get and put operations in the bucket, when b, = 1, the simulator
programs ¢ in the same way as the simulator of Theorem 5.1. It does some extra bookkeeping in
addition but that does not affect the view of the nodes in set I’ for that operation. Moreover, for
put operations when b, = 0, it only programs v to addresses not visible to I’ and does nothing else
which generates any extra view for nodes in I’. Therefore, using the same argument as in Theorem

5.1, we conclude that for get and put operations the views are indistinguishable.

Let op; be the first leave/join operation (boundary of the first bucket) and let ¢1,...,¢, be
the distinct labels of put operations in first bucket. Now let A, be the random variable denoting
the allocation of t1,...,t; to addresses in views. Then, using the law of total probability, we get

Pr [viewf([’) = v} is equal to
> Prlviewy'(I') =v| A, = (a1,...,09)] - Pr[4, = (on,...,0)] (12)
(oe1,...,aq) €AY
Similarly, let A be the random variable denoting the allocation of ¢1, ..., %, to addresses in views.
Then, Pr {view;),i(l’) = v}
Z Pr[views'(I') = v| Ay = (a1, ...,0q) | *Pr[Ay = (o1,..., )]
(a1,...,aq)EAY

But conditioned on a fixed allocation (a1, ..., o) € A9 of labels, during leave/join operations, the
views of the nodes in I’ will be the same in both the games, since both of them will be re-distributing
the same number of pairs using DHT.Put. Therefore,

Pr [viewzi(I') =v|A = (a,... ,aq)} =Pr [VieW3i(I’) =v|A; = (aq,... ,aq)} (13)

Next we show that,

Notice that we can rewrite 2

Pr(A, = (a1,...,a9)] = ] Prlv(t;) = a;]

J€lal

Zthere is an implicit assumption made here that for each label, its allocation to an address is independent of the
previous allocations. However, the proof can be extended when no such assumption is made using the chain rule of
probability.
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The allocation in Gameg is determined by the programmed 1 function. To avoid any confusion
with the 9 function of Gamey, we denote by ¥p, the programmed allocation function of Games.
Then, we can rewrite,

PriAs;=(o,...,aq)] = H PrvYp(t;) = aj]

Jj€ld]

There are two subcases to consider. In the first case, a; € Vis(fe(t;),I’). Then,
Pryp(t;) = a;] = Pr|bj = LA, =1 Aa; = o]

where a; < Aq(Vis(fe(t;),1")). Now,

p Pr[4(t;) € Vis(fe(t;), I')]
= Pr[¥(t) = o]

Pr b =1V, =1Aa;=a;| =¢- Pr [4(t)) € Vis(fe(t;), I')] Prv(t;) = ay]

In the second case, a;; € A\ Vis(fe(t;),I’). Then,
Pr[yp(tj) = o] = Pr& ]+ Pr[&]
where

Pr[gl]:Pr[bjzl/\b;-:()/\aj:aj}, and

Pr[bj:O/\aj:aj]

)—U
~

&
I

such that aj <— Ay(A\ Vis(fe(t;),I’)). Let B = Vis(fe(t;),I’), and let G = A\ Vis(fe(t;),I’). Then,

Pl"[gl]:PI‘[bjzl/\b;:O/\aj:Ozj}

.. (1 _ Prv() € B]) Prio(t) = a4l
€ Pry(t;) € G]

, and

Pr[EQ]:Pr[bj:O/\ajzaj]

Pr¢(t;) = oy

== B ) € 0]

Adding the two probabilites, we get,

Pr(&]+Pr(&] = D) = a5l (5. (1_W) 4 (1—5»
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Hence,
PriA, =(a1,...,aq) ]| =Pr[As; = (au,...,aq)] (14)

Therefore, by substituting Equations 13 and 14 in Equation 12, we conclude that at the first churn
operation,
Pr {ViGng(I,) = v} =Pr {view;:,i(]/) = V:|

Moreover, since the allocation distribution before the churn operation is the same and both the
games use the same DHT.Put to move the pairs, therefore, the new allocation distribution will also
be the same. Hence using induction on each bucket, we prove that views will be indistinguishable for
all the buckets. The proof follows by noticing that Games is same as Idealsm z (k) experiment. [

Security of Chord-based BDX'. In the following Corollary we formally state the security of
BDX™ scheme when its underlying DHT is instantiated with transient Chord. The proof follows
directly from the fact that Chord has non-committing allocations and from Theorem 4.6, which
shows that Chord is stable for:

~ 6(0 4+ d)log |N| n 201og |C|
N C|

1
and @0 <4Nle2-d and 6=1- o()
IN]
Corollary 7.2. If |L| = ©(2F), |I| = 0 < 4ne~2 — d, and if EDDX" is instantiated with transient
Chord, then it is L.-secure with probability at least 1 — o(ﬁ) —negl(k) in the random oracle model,
where

6(0 + d) log |IN| n 201og |C|
IN| cl

Efficiency. The time, round and communication complexities of add and remove node operations
of the BDX™ are the same as the underlying DHT.

8 Conclusion

In this work, we initiated the study of distributed encrypted data structures and of DDXs in
particular. We designed encrypted DDXs in both the perpetual and the transient settings. Our
constructions used DHTs as a building block and we analyzed their security guarantees in terms
of the load balancing properties of the underlying DHTs. We also analyzed their security when
the underlying DHT is instantiated with Chord. We see our work as a first step towards designing
provably-secure end-to-end encrypted distributed systems like end-to-end encrypted databases, off-
chain networks, distributed storage systems, and distributed caches. Our work motivates several
open problems and directions for future work.

Beyond Chord. The most immediate direction is to study the security of BDX when it is instan-
tiated with other DHTs than Chord. Instantiations based on Kademlia [30] and Koorde [21] would
be particularly interesting due to the former’s popularity in practice and the latter’s theoretical
efficiency. Because Koorde is similar to Chord in structure (though its routing is different and
based on De Bruijn graphs) the bounds we introduce in this work to study Chord’s balance and
stability might find use in analyzing Koorde. Kademlia, on the other hand, has a very different
structure than Chord so it is likely that new custom techniques and bounds are needed to analyze
its balance and stability.
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New EDDX constructions. Another direction is to design new EDDX schemes with better
leakage profiles. Here, a “better” profile could be the same profile L. achieved in this work but
with a smaller € than what we show. Alternatively, it could be a completely different leakage profile.
This might be done, for example, by using more sophisticated techniques from cryptography, (e.g.,
leakage suppression, oblivious RAMs) and distributed systems (e.g., replication, consensus).

Encryption in other distributed data structures. A third immediate direction is to design
and analyze end-to-end encryption in other distributed data structures such as multimaps, trees and
graphs. Since data structures are the most basic building blocks of any system, getting encryption
into them would enable us to build more sophisticated privacy-preserving systems on top of them.
Moreover, the process of integrating encryption into the most basic distributed data structures
would help us deepen our understanding of the impact the properties of distributed systems have
on secruity.

Adding replication for reliability. Another important direction of immediate practical interest
is to design a replicated encrypted DDX. In such a system, the encrypted label/value pairs would
be replicated throughout the network for reliability. Replication, however, introduces a host of
challenges including the problem of updating pairs in a consistent manner. Consistent distributed
systems are already very hard to design (and prove correct) but the added challenge of achieving
consistency on end-to-end encrypted data would seemingly make the problem even harder. The
benefit, however, is that such a system would essentially yield a provably-secure end-to-encrypted
reliable database which, in of itself, would be impactful.

Connections between consistency notions and security. When multiple operations execute
concurrently on a distributed data structure, the output of an operation is not fixed and is deter-
mined by the consistency guarantee offered by how the data structure is designed. This means
that different implementations of a data structure offer different consistency guarantees. One can
look at different notions of consistencies as trade-offs between performance and correctness. While
cryptography has provided us with a reasonable understanding of the relationship between leakage
and efficiency, and distributed systems has provided us with a good understanding of the relation-
ship between consistency and efficiency, it is not clear how consistency and leakage interact with
each other. In particular, are stronger notions of consistency better for security or vice versa? It is
a particularly intriguing question which would require us to understand how the two fields interact
with each other.

Stronger adversarial models. Our security definitions are in the standalone model and against
an adversary that makes static corruptions. Extending our work to handle arbitrary compositions
(e.g., using universal composability [9]) and adaptive corruptions would be very interesting.
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