
When NTT Meets Karatsuba:
Preprocess-then-NTT Technique Revisited

Yiming Zhu1,2, Zhen Liu1,2, and Yanbin Pan1(�)

1 Key Laboratory of Mathematics Mechanization, NCMIS,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Beijing, 100190, China
panyanbin@amss.ac.cn

2 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

liuzhen16@mails.ucas.ac.cn

zhuyiming17@mails.ucas.ac.cn

Abstract. The Number Theoretic Transform (NTT) technique is widely
used in the implementation of the cryptographic schemes based on the
Ring Learning With Errors problem(RLWE), since it provides efficient
algorithm for multiplication of polynomials over the finite field. However,
to employ NTT, the finite field is required to have some special root of
unity, such as n-th root, which makes the module q in RLWE big since we
need q ≡ 1 mod 2n to ensure such root exits. At Inscrypt 2018, Zhou
et al. proposed a technique called preprocess-then-NTT to reduce the
value of modulus q while the NTT still works, and the time complexity
is just a constant (> 1) multiple of the original NTT algorithm asymp-
totically. In this paper, we revisit the preprocess-then-NTT technique
and point out it can be improved such that its time complexity is as
the same as the original NTT algorithm asymptotically. What’s more,
through experiments we find that even compared with the original NTT
our improved algorithm may have some advantages in efficiency.

Keywords: NTT, Ring Learning With Errors, preprocess-then-NTT

1 Introduction

In recent years, there have been a substantial amount of research in quan-
tum computers. If quantum computers are ever builted, the public-key cryp-
tosystems currently in use, based on the hardness of solving (elliptic curve)
discrete logarithm or factoring large integers, will be broken easily [10]. To avoid
this problem, the concept of post-quantum cryptography has been proposed.
Lattice-based cryptography is widely believed to be a promising candidate in
post-quantum cryptography. Compared with the classic hard lattice problems
such as the shortest vector problem and the closest vector problem, the learn-
ing with errors problem (LWE) [9] appears to be much more versatile in the
construction of cryptographic construction, especially the Ring-Learning With
Errors problem (RLWE) [8].



2 Y. Zhu, Z. Liu, et al.

Simply speaking, RLWE works on some polynomial ring, usually Zq[x]/(xn+
1), so a polynomial can be used in RLWE instead of a matrix in the original
LWE, which leads to a mush smaller cost to represent an RLWE sample than
an LWE sample. RLWE is widely used in the construction of public-key en-
cryption, digital signatures, key exchange and so on, such as [8, 6, 1]. To further
improve the efficiency of RLWE-based schemes, the time-consuming discrete
Gauss distribution is usually replaced with some other discrete distribution easy
to sample. Hence, the most time-consuming operation in the implementation of
RLWE-based schemes becomes the polynomial multiplication in the ring.

Many algorithms have been proposed to improve the efficiency of the polyno-
mial multiplication, such as Karatsuba algorithm [5, 4] and Fast Fourier Trans-
form (FFT) algorithm [3]. For RLWE, since the coefficient ring of the polynomial
ring is usually a residue class ring, such as Zq, an FFT-analogy called Num-
ber Theoretic Transform (NTT) was proposed by using the root of unity in the
residue class ring instead of the field of complexity number. For example, consid-
ering the polynomial multiplication in the widely used ring Rq = Zq[x]/(xn + 1)
where q is a prime and n is some power of 2, the product can be efficiently com-
puted by NTT when there exists 2n-th root of unity in Zq, that is, 2n|(q−1) [7].
As a result, applying the NTT algorithm significantly improves the efficiency of
these RLWE-based schemes.

Note that the modulus q is required to satisfy that 2n|(q−1) in NTT. A large
enough q should be chosen for the RLWE-based cryptographic schemes, which
obviously enlarges the key size and decreases the efficiency. To overcome the
issue, at Inscrypt 2018 Zhou et al.[11] presented a technique called preprocess-
then-NTT which just requires n|(q− 1) or n

2 |(q− 1) to weaken the restriction of
modulus q. Their main idea is dividing the polynomial into new low-dimentional
polynomials according to the parity of index and then applying the NTT to the
new low-dimensional polynomials respectively. Moreover, they showed that the
time complexity of their 1-Round Preprocess-then-NTT (1PtNTT) in the case
that n|(q− 1) would be 7

6 times of the original NTT and the time complexity of
their 2-Round Preprocess-then-NTT (2PtNTT) in the case that n

2 |(q−1) would
be 5

4 times of the original NTT.

In this paper, we revisit the preprocess-then-NTT technique.

At first, we present a method with divide-and-conquer strategy to reduce the
value of modulus q, which can be seen as the hybrid of the Karatsuba algorithm
and NTT algorithm. In analogy with the idea of Karatsuba algorithm [5, 4],
we simply divide the polynomial into several polynomials of lower degree, then
apply the NTT on the multiplications of low-degree polynomials, and at last get
the multiplication by the Karatsuba algorithm. With the technique, modulus q
is only required to satisfy that n

2α−1 |(q − 1) when we divide the polynomial into
2α parts. The technique is quite easy to be understood but cost 5

3 times of the
original NTT algorithm.

Then we turn to improve the preprocess-then-NTT technique, and find that
we can save one NTT computation in Zhou et al.’s algorithm, and then we prove
that the time complexity of the improved algorithm is as the same as the origi-



When NTT Meets Karatsuba: Preprocess-then-NTT Technique Revisited 3

nal NTT asymptotically. Furthermore, we save several point-wise multiplication
computations to improve the efficiency of our improved algorithm.

Roadmap. The remainder of the paper is organized as follows. In Section 2
we present some premilinaries. In Section 3 we present our first algorithms based
on Karatsuba algorithm and NTT.In Section 4 we present an improved version of
the preprocess-then-NTT technique. In section 5 we give the experiment results
of the techniques. In Section 6 we give the conclusion.

2 Preliminaries

2.1 Ring-Learning With Errors (RLWE) problem

The Learning with Errors (LWE) problem was raised by Regev [9] who proved
that, solving a random LWE instance is as hard as solving worst-case instances
of certain lattice problems under a quantum reduction. Later on, Lyubashevsky,
Peikert and Regev[8] proposed a variant of the LWE problem, the Ring-LWE
problem, whose hardness is related to the worst case hardness of finding short
vectors in ideal lattices.
The Ring Learning with Errors problem The decisional version of the
Ring Learning with Errors problem, with parameters m, modulo q and error
distribution χ, is defined as follows: given m samples either all of them are in
the form (a, b = a ·s+e mod q) where for a secret s ∈ Rq is fixed, a is uniformly
randomly chosen from Rq and e is chosen according to the distribution χ, or all
of them are in the form (a, b) where (a, b) is uniformly randomly chosen from
the uniform distribution over Rq × Rq, decide whether the samples come from
the former or the latter case.

2.2 Karatsuba algorithm

Karatsuba [5, 4] introduced a method to perform multiplication of large num-
bers in fewer operations than the usual direct multiplication. The idea can also
be used in computing the product of two polynomials.

Denote by f(x), g(x) two polynomials of degree bounded by n. Karatsuba
algorithm first divides them into polynomials of lower degrees as follows:

f = f0 + x
n
2 f1 , g = g0 + x

n
2 g1.

Then the product can be computed as follows:

h = f · g
= (f0 + x

n
2 f1) · (g0 + x

n
2 g1)

= f0 · g0 + xnf1 · g1 + x
n
2 (f1 · g0 + f0 · g1)

= f0 · g0 − f1 · g1 + x
n
2 (f1 · g0 + f0 · g1)

= f0 · g0 − f1 · g1 + x
n
2 ((f0 + f1) · (g0 + g1)− f0 · g0 − f1 · g1)



4 Y. Zhu, Z. Liu, et al.

Thus by using Karatsuba algorithm we only need to compute products of poly-
nomials of lower degrees for 3times to compute the original product. Repeating
the process until the degree of the polynomial is zero, the complexity of multi-
plication operations for the final algorithm is shown to be O(nlog 3).

2.3 Number-theoretic transform

The Number Theoretic Transform (NTT)[3] is a specialized version of the
Fast Fourier Transform (FFT) over a finite field.

Considering the polynomial ring Rq = Zq[x]/(xn + 1) where n is some power
of 2, and q is a prime satisfying that 2n|(q − 1), let ω be an n-th primitive root
of unity in Zq, and f be any element of Rq. Then for 0 ≤ i ≤ n − 1, we define

the forward transformation f̂ = NTT (f) by f̂i =
∑n−1
j=0 fj · ωij mod q,and

the inverse transformation f = NTT−1(f̂) is given by fi = n−1
∑n−1
j=0 f̂j · ω−ij

mod q. Notice that f = NTT−1(NTT (f)) holds.
Let f , g be elements of Rq. Computing h = f · g mod xn + 1 would re-

quire applying the NTT of length 2n at the first glance. Then h is given by
NTT−1(NTT (f̂ ◦ ĝ)) mod xn+1, where ◦ is the component-wise product. How-
ever, this method will require the computation of a reduction modulo xn+1 and
it seems not necessary to use a 2n-point NTT since the degree of h is at most
n−2. In order to avoid this, an algorithm was introduced in [7], which behaves as
follows. We denote γ the 2n-th primitive root of unity in Zq such that γ =

√
ω,

and let f̃ = (f0, γf1, · · · , γn−1fn−1) and g̃ = (g0, γg1, · · · , γn−1gn−1), then h is
given by (1, γ−1, · · · , γ1−n) ◦NTT−1(NTT (f̃ ◦ g̃)).

Notice here we require that q satisfies that 2n|(q − 1),which guarantees the
existence of a 2n-th primitive root of unity in Zq.

To analyze the time complexity, we just count the number of multiplica-
tions. The time complexity of the operations for a forward transformation NTT
is determined by a function T (n) = n log n in [2], and same for the inverse
transformation NTT−1. The time complexity of the point-wise multiplications,
computing (1, ω, · · · , ωn−1) are all bounded by n. Since the multiplication of
two polynomials contains two forward transformations, three point-wise mul-
tiplication and one inverse transformation, the total time complexity is given
by

T (n) = 3n log n+O(n).

3 A hybrid algorithm of Karatsuba and NTT for the
multiplication in Rq

3.1 2-Part-Sepration when n|(q − 1)

To decrease the value of q, we will not have the 2n-th roots in the finite
field and then NTT will not work. However, if we compute the multiplication
of several lower-degree polynomials as what we do in the Karatsuba algorithm,
then we do not need the exitance of the 2n-th roots. Hence we can first divide the



When NTT Meets Karatsuba: Preprocess-then-NTT Technique Revisited 5

polynomials into several polynomials of lower degrees similar to the Karatsuba
algorithm, and then apply NTT algorithm on multiplications of polynomials
with lower degrees, which can decrease the value of modulus q. This is our idea.

We first consider to divide each polynomial into 2 parts as follows:

f = f0 + x
n
2 f1 , g = g0 + x

n
2 g1.

In this case the degree of product of fi and gj is bounded by n, which means we
only need n|(q − 1). Thus it dose decrease the value of modulus q. We denote ω
the n-th primitive root of unity in Zq, f , g elements of Rq and we can compute
the product h as follows:

h = f · g
= (f0 + x

n
2 f1) · (g0 + x

n
2 g1)

= f0 · g0 − f1 · g1 + x
n
2 ((f0 + f1) · (g0 + g1)− f0 · g0 − f1 · g1)

= NTT−1(f̂0 ◦ ĝ0 − f̂1 ◦ ĝ1 + x̂
n
2 ◦ ((f̂0 + f̂1) ◦ (ĝ0 + ĝ1)− f̂0 ◦ ĝ0 − f̂1 ◦ ĝ1))

Note that we do not need to compute x̂
n
2 = NTT (x

n
2 ) by the NTT algo-

rithm, but just compute it as (γ
n
2 , γ

3n
2 , · · · , γ

(2n−1)n
2 ) directly. The most time-

consuming operations of the algorithm are NTT transformations and point-wise
multiplications. Actually, it consists of 4 forward NTT transformations, 1 inverse
NTT transformation and 4 point-wise multiplications. Then the computational
cost is given by

T (n) = 5n log n+O(n).

3.2 2α-Part-Separation when n
2α−1 |(q − 1)

In this section, we are going to generalize the algorithm above. Similarly, we
first divide the original polynomial into 2α parts as follows:

f =
∑2α−1
i=0 (x

in
2α · fi).

Notice that modulus q is only required to satisfy that n
2α−1 |(q−1) when we divide

the original polynomial into 2α parts. At last, we can compute the product h as



6 Y. Zhu, Z. Liu, et al.

follows:

h = f · g

=

2α−1∑
i=0

(x
in
2α fi) ·

2α−1∑
j=0

(x
jn
2α gj)

=

2α−1∑
i=0

2α−1∑
j=0

(x
(i+j)n

2α fi · gj)

= NTT−1(

2α−1∑
i=0

2α−1∑
j=0

(NTT (x
(i+j)n

2α ) ◦ f̂i ◦ ĝj))

= NTT−1(

2α−1∑
i=0

(NTT (x
in

2α−1 ) ◦ f̂i ◦ ĝi)

+
∑

0≤i<j≤2α−1

(NTT (x
(i+j)n

2α ) ◦ ((f̂i + f̂j) ◦ (ĝj + ĝi)− f̂i ◦ ĝi − f̂j ◦ ĝj)))

The most costly operations of the algorithm are NTT transformations and point-
wise multiplications. Actually, it consists of 2α+1 forward NTT transformations,
1 inverse NTT transformation and (22α + 2α+1 − 4) point-wise multiplications.
Then the computational cost is given by

T (n) = 2α+1 · n

2α−1
log

n

2α−1
+ n log n+O(n) = 5n log n+O(n).

4 Revisit the Preprocess-then-NTT technique

Note that a more efficient way to compute the multiplication f · g in Rq
is described in Section 2.3, by computing (1, ω, · · · , ωn−1) ◦ NTT−1(NTT (f̃ ◦
g̃)) where f̃ = (f0, ωf1, · · · , ωn−1fn−1) and g̃ = (g0, ωg1, · · · , ωn−1gn−1). For

simplicity, for any polynomial f ∈ Rq, we denote by N̂TT (f) = NTT (f̃) and

N̂TT
−1

(·) = (1, ω, · · · , ωn−1) ◦NTT−1(·)

4.1 Zhou et al.’s Algorithms

First, we racall the algorithms proposed in [11]. Denote x2 by y. Their 1-
round preprocess-then-NTT algorithm used the even-indexed and odd-indexed
coefficients of f(x) ∈ Rq separately to define two new polynomials feven(y) and
fodd(y) whose degrees are bounded by n

2 :

feven(y) = f0 + f2 · y + f4 · y2 + · · ·+ fn−2 · yn/2−1 ∈ Zq[y]/(yn/2 + 1),
fodd(y) = f1 + f3 · y + f5 · y2 + · · ·+ fn−1 · yn/2−1 ∈ Zq[y]/(yn/2 + 1).



When NTT Meets Karatsuba: Preprocess-then-NTT Technique Revisited 7

What’s more, denote fodd(y) = y · fodd(y) ∈ Zq[y]/(yn/2 + 1). Their 1PtNTT
algorithm is presented as follows:

Step 1: (Sepration) f(x) = feven(x2)+x·fodd(x2) , g(x) = geven(x2)+x·godd(x2),
where the degrees of feven,fodd,geven,godd are bounded by n

2 .

Step 2: (Multiplication) Compute heven(y), hodd(y) ∈ Zq[y]/(yn/2 + 1) as in the
following:

heven(y) = feven(y) · geven(y) + fodd(y) · godd(y)

= N̂TT
−1

(N̂TT (feven(y)) ◦ N̂TT (geven(y))

+ N̂TT (fodd(y)) ◦ N̂TT (godd(y)))

hodd(y) = feven(y) · godd(y) + fodd(y) · geven(y)

= N̂TT
−1

(N̂TT (fodd(y)) ◦ N̂TT (geven(y))

+ N̂TT (feven(y)) ◦ N̂TT (godd(y))).

Step 3: (Gatheration) Compute h in Rq as following:

h(x) = heven(x2) + x · hodd(x2).

By their analysis, 1PtNTT algorithm consists of 5 forward NTT transfor-
mations, 2 inverse NTT transformations and 4 point-wise multiplications. As a
result, we have the following property.

Property 1. The computational cost of computing product of two polynomials
whose degrees are bounded by n by using 1PtNTT algorithm is

T (n) = 7n
2 log n− 3

2n.

Similarly, their 2-round preprocess-then-NTT(2PtNTT) algorithm divides each
polynomial into 4 parts, and then transform the original multiplication into
several multiplications of polynomials of lower degrees. They have the following
result of complexity of 2PtNTT.

Property 2. The computational cost of computing product of two polynomials
whose degrees are bounded by n by using 2PtNTT algorithm is

T (n) = 15n
4 log n− 7

2n.

Notice that the complexity of the algorithm grows while the number of round
increases. It seems meaningless to consider the general case(i.e. α-round) for the
PtNTT algorithm, since the efficiency loss can not be tolerated when the number
of round is somehow large. However, we present an improved algorithm which
makes it diffrent.



8 Y. Zhu, Z. Liu, et al.

4.2 1-Round Improved-Preprocess-then-NTT(1IPtNTT)

The improved algorithm of 1PtNTT we present here is different in the step 2
of 1PtNTT algorithm. Actually, we find that there is no need for us to compute

N̂TT (godd(y)). However, we only need to compute N̂TT (y) = (γ, γ3, · · · , γn−1)
instead. Then there is one more point-wise multiplication at a cost but one less
forward NTT transformation. What’s more, in analogy with karatsuba’s idea we
can reduce the number of point-wise multiplications to improve the efficiency
further. We present the difference from 1PtNTT algorithm here:

heven(y) = feven(y) · geven(y) + fodd(y) · (y · godd(y))

= N̂TT
−1

(N̂TT (feven(y)) ◦ N̂TT (geven(y))

+ N̂TT (y) ◦ N̂TT (fodd(y)) ◦ N̂TT (godd(y)))

hodd(y) = feven(y) · godd(y) + fodd(y) · geven(y)

= N̂TT
−1

(N̂TT (fodd(y)) ◦ N̂TT (geven(y))

+ N̂TT (feven(y)) ◦ N̂TT (godd(y)))

= N̂TT
−1

((N̂TT (feven(y)) + N̂TT (fodd(y)))◦

(N̂TT (geven(y)) + N̂TT (godd(y)))

− N̂TT (feven(y)) ◦ N̂TT (geven(y))− N̂TT (fodd(y)) ◦ N̂TT (godd(y)))

Note that N̂TT (y) = (γ, γ3, · · · , γn−1). Thus, 1IPtNTT algorithm consists of 4
forward NTT transformations, 2 inverse NTT transformations and 4 point-wise
multiplications. Then the computational cost is given by

T (n) = 4 · n2 log n
2 + 2 · n2 log n

2 + 4 · n2 = 3n log n− n.

As a result, we have the following property.

Property 3. The computational cost of computing product of two polynomials
whose degrees are bounded by n by using 1PtNTT algorithm is

T (n) = 3n log n− n.

4.3 α-Round Improved-Preprocess-then-NTT(αIPtNTT)

In this section, we focus on the general case of the Preprocess-then-NTT
algorithm and denote x2

α

by z. We can similarly present the improved algorithm
for the 2-round case, and the complexity of it is also given by T (n) = O(3n log n).
Actually, we will present the improved algorithm for the general case as follows:

Step 1: (Sepration) f(x) =
∑2α−1
i=0 xi ·f i(x2

α

) , g(x) =
∑2α−1
j=0 xj ·gj(x2

α

), where

the degrees of f i(z),gj(z) are bounded by n
2α .



When NTT Meets Karatsuba: Preprocess-then-NTT Technique Revisited 9

Step 2: (Multiplication) Compute hi(y) ∈ Zq[y]/(yn/2
α

+ 1) as following:

hi(z) =

i∑
l=0

f l(z) · gi−l(z) +

2α−1∑
l=i+1

z · f l(z) · g2α+i−l(z)

= N̂TT
−1

(

i∑
l=0

N̂TT (f l(z)) ◦ N̂TT (gi−l(z))

+

2α−1∑
l=i+1

N̂TT (z) ◦ N̂TT (f l(z)) ◦ N̂TT (g2α+i−l(z)))

where 0 ≤ i < 2α.
Step 3: (Gatheration) Compute h in Rq as following:

h(x) =
∑2α−1
i=0 xi · hi(x2

α

).

Similarly, N̂TT (z) can be computed directly instead of by the NTT algo-

rithm. And In the step 2, when we compute the each part N̂TT (f i) ◦ N̂TT (gj),
for i = j we do it as usual while for i 6= j we will compute two corresponding
parts together as follows in practice:

N̂TT (f i) ◦ N̂TT (gj) + N̂TT (f j) ◦ N̂TT (gi) = (N̂TT (f i) + N̂TT (f j)) ◦
(N̂TT (f i) + N̂TT (f j))− N̂TT (f i) ◦ N̂TT (gi)− N̂TT (f j) ◦ N̂TT (gj)

Through this technique we can reduce the number of point-wise multiplications
to 1 from 2 when compute the each part for i 6= j.

Thus by simple analysis, αIPtNTT algorithm consists of 2α+1 forward NTT
transformations, 2α inverse NTT transformations and (3 · 22α−2 + 2α−1) point-
wise multiplications. Then the computational cost is given by

T (n) = 2α+1 · n2α log n
2α + 2α · n2α log n

2α + (3 · 22α−2 + 2α−1) · n2α
= 3n log n+ (3 · 2α−2 − 3α+ 1

2 )n.

Thus, we have the following property.

Property 4. The computational cost of computing product of two polynomials
whose degrees are bounded by n by using αIPtNTT algorithm is

T (n) = 3n log n+ (3 · 2α−2 − 3α+ 1
2 )n.

From the above property, we find that the complexity of 2-Round Improved-
Preprocess-then-NTT(2IPtNTT) algorithm is given by T (n) = 3n log n − 5

2n,
same for the 3-Round case. Actually, it is the most efficient one among all cases
while the complexity of 1-Round case is given by T (n) = 3n log n − n. What’s
more, in the next section we will give some experimental results to further con-
firm this.

Remark 1. Actually, we can also apply the Karatsuba’s idea to the polynomial
multiplication in Z[x] using FFT. As a consequence, we will improve the effi-
ciency of the algorithm too.



10 Y. Zhu, Z. Liu, et al.

5 Experiment Results

We have the C implemrntation for our improved NTT algorithm, and we
present the exprimental results in this section. It is worth mentioning that our
algorithm just simply call the original NTT algorithm rather than change it
essentially, so if there is any optimization of the original NTT algorithm, it can
also be applied to our algorithm.

Although 1PtNTT and αIPtNTT(α = 1, 2, 3) can use some parameters that
are not suitable for NTT, we analyze and compare the computational cost of
NTT, 1PtNTT and αIPtNTT for the same parameters by runing a C implemen-
tation compiled with gcc-8.2.0 on a 3.70GHZ Inter(R) Core(TM) i3-4170 proces-
sor, so that we can make it easy to demonstrate the improvement of αIPtNTT
on the efficiency. The results are reported in Table 1 as follows:

Table 1. Results of our C implementation(average of 10000 runs)

Algorithm

Time(ms) Parameters
n=256,q=7681 n=512,q=12289 n=1024,q=12289

NTT 0.045 0.101 0.2283

1PtNTT 0.04725 0.1138 0.2582

1IPtNTT 0.039 0.0972 0.2261

2IPtNTT 0.03525 0.0879 0.2087

3IPtNTT 0.035 0.0836 0.1996

To make it more intuitive, we present the ratio of each algorithm to NTT algo-
rithm in Table 2 as follows:

Table 2. the ratio of each algorithm to NTT algorithm

Parameters n=256,q=7681 n=512,q=12289 n=1024,q=12289

1PtNTT-theoretical-ratio 1.0600 1.0714 1.0806

1PtNTT-experimental-ratio 1.0500 1.1267 1.1310

1IPtNTT-theoretical-ratio 0.9200 0.9286 0.9355

1IPtNTT-experimental-ratio 0.8667 0.9624 0.9904

2IPtNTT-theoretical-ratio 0.8600 0.8750 0.8871

2IPtNTT-experimental-ratio 0.7833 0.8703 0.9141

3IPtNTT-theoretical-ratio 0.8600 0.8750 0.8871

3IPtNTT-experimental-ratio 0.7778 0.8277 0.8743



When NTT Meets Karatsuba: Preprocess-then-NTT Technique Revisited 11

6 Conclusion

We have presented a new technique and an improved version of previous
work to decrease the value of modulus q. The former one is simpler and easier
to understand, while the latter one is more efficient even than the original NTT
algorithm.

References

1. Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the tls protocol from the ring learning with errors problem. In
2015 IEEE Symposium on Security and Privacy, pages 553–570. IEEE, 2015.

2. Eleanor Chu and Alan George. Inside the FFT black box: serial and parallel fast
Fourier transform algorithms. CRC Press, 1999.

3. James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

4. Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In Soviet
physics doklady, volume 7, pages 595–596, 1963.

5. Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital
numbers by automatic computers. In Doklady Akademii Nauk, volume 145, pages
293–294. Russian Academy of Sciences, 1962.

6. Vadim Lyubashevsky. Lattice signatures without trapdoors. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 738–755. Springer, 2012.

7. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft:
A modest proposal for fft hashing. In International Workshop on Fast Software
Encryption, pages 54–72. Springer, 2008.

8. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

9. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM (JACM), 56(6):34, 2009.

10. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In 35th Annual Symposium on Foundations of Computer Science - FOCS,
pages 124–134, 1994.

11. Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu, Bao Li, and
Jingnan He. Preprocess-then-ntt technique and its applications to k yber and n
ew h ope. In International Conference on Information Security and Cryptology,
pages 117–137. Springer, 2018.


