Hardware-Software Co-Design Based Obfuscation of
Hardware Accelerators

Abhishek Chakraborty and Ankur Srivastava
Department of Electrical and Computer Engineering, University of Maryland, College Park
abhi1990 @umd.edu, ankurs@umd.edu

Abstract—Existing logic obfuscation approaches aim to protect
hardware design IPs from SAT attack by increasing query count
and output corruptibility of a locked netlist. In this paper, we
demonstrate the ineffectiveness of such techniques to obfus-
cate hardware accelerator platforms. Subsequently, we propose
a Hardware/software co-design based Accelerator Obfuscation
(HSCAO) scheme to provably safeguard the IP of such designs
against SAT as well as removal/bypass type of attacks while
still maintaining high output corruptability for applications. The
attack resiliency of HSCAO scheme is manifested by using a
sequence of keys to obfuscate instruction encoding for an applica-
tion. Experimental evaluations utilizing an accelerator simulator
demonstrate the effectiveness of our proposed countermeasure.

I. INTRODUCTION

Hardware designs are increasingly outsourced to offshore
foundries in order to reduce the cost of fabrication. How-
ever, this trend has raised several security concerns related
to reverse-engineering, Intellectual Property (IP) piracy, over-
production, and counterfeiting of designs [18]. Several logic
locking approaches have been proposed in literature [16], [17],
[18], [21], [24] to counter supply chain attacks on hardware
designs by an untrusted foundry. In a typical combinational
logic locking scheme, a design is obfuscated by inserting
additional key-gates in the synthesized netlist and it exhibits the
correct functionality only when a chip is activated by loading
the correct key into an on-chip famper-proof memory.

Customized hardware accelerators [12], [15], [1] have
gained a lot of popularity with the increase in compute-
intensive workloads as well as deep neural network (DNN)
applications. To the best of our knowledge, there has been no
study to analyze the security guarantees provided by existing
logic locking schemes for protecting the design IP of domain-
specific hardware accelerator platforms such as Google’s Ten-
sor Processing Unit (TPU) [15]. For the sake of illustration, in
this work, we consider a Google TPU-like accelerator chip
based on an open-source instruction set architecture (ISA)
standard [9]. We obfuscate the control (decoder) logic as well
as the computational module (matrix multiply unit) of such
an accelerator using state-of-the-art stripped-functionality logic
locking (SFLL) approach [25]. Then, we devise a SAT formula-
tion based attack to completely deobfuscate the chip’s decoder
logic despite the existence of theoretical security guarantees of
SFLL [25]. The computational module is also approximately
deobfuscated to the point that applications running on the
platform see very little to no impact on their functionality.
For example, the experimental results of running a regression
task on Boston Housing dataset on the approximately unlocked
TPU-like design (simulated using a TPU simulator framework
[8]) demonstrate the ineffectiveness of such a logic obfuscation
approach to protect the IPs of hardware accelerator chips.

Subsequently, we present a Hardware/software co-design
based Accelerator Obfuscation (HSCAO) approach which ren-
ders an unactivated hardware accelerator design completely
useless for running any application correctly. Commercially
available hardware accelerators come with proprietary software

Personal use only. Published in IEEE Annual Symposium on VLSI 2019.

development kits (SDKs) [6] without which these accelerator
chips cannot be used. Such an SDK is developed in the
design house and its details are not exposed to an untrusted
foundry. Moreover, state-of-the-art software obfuscation tools
[3] can be used to protect an SDK against reverse-engineering.
In our proposed countermeasure framework, the accelerator’s
proprietary SDK serves as the root of trust and it generates a
sequence of keys to obfuscate instruction binary encoding of a
compiled application. The instruction binaries are successfully
deobfuscated on-chip during application run-time only if the
accelerator hardware is properly activated post-fabrication.
Unlike traditional logic locking approaches, this scheme par-
titions obfuscation/ deobfuscation procedures across software/
hardware portions of the hardware accelerator framework, thus
creating a novel co-design based locking solution.

Our proposed HSCAO scheme augmented designs are
provably resilient to state-of-the-art SAT formulation based
attacks [20], [14], [19] as well as removal [26] or bypass
type attacks [23]. The high security guarantees of the proposed
HSCAO scheme against SAT attack is achieved due to the use
of a sequence of keys (generated from an initial secret key)
for locking the compiled instruction binaries. This technique
ensures that only the secretr key successfully deobfuscates the
accelerator design. According to our theoretical analysis, the
probability of SAT attack converging to the single correct key
is exponentially small in terms of the key-size, hence, making
it as impractical as brute force attack. In order to evaluate
the effectiveness of our proposed technique, we augmented
the proposed hardware-software co-design based obfuscation
scheme to OpenTPU accelerator simulator [8] and studied the
application-level error impact due to use of wrong keys for
unlocking the accelerator. The outcomes of the experiments
demonstrate that any wrong key leads to significant output
corruptions, thus highlighting the effectiveness of our proposed
HSCAO countermeasure.

II. RELATED WORK

Several existing logic locking techniques [16], [17], [18]
have been shown to be vulnerable to SAT attack which
successfully deobfusates a netlist within few hours [20]. The
SAT formulation based attack strategy iteratively finds distin-
guishing input-output (DIO) pairs to eliminate unique subsets
of wrong keys until none exists, thus converging to find a
correct key. Point-function based schemes like Anti-SAT [21]
and SARLock [24] were subsequently proposed which make
the number of SAT iterations an exponential function in terms
of the key-size, thus countering SAT attack in practice. How-
ever, such point-function based schemes were susceptible to
AppSAT attack [19] which approximately unlocks a netlist.
Even recently proposed Delay Locking approach [22] which
obfuscates a circuit utilizing its timing profile has also been
shown to be vulnerable to SAT formulation based attack [11].
In [25], the authors propose a provably secure logic locking
approach called stripped-functionality logic locking (SFLL)
which not only thwarts all known attacks but also provides a
quantifiable trade-off among them. In SF L L-H D" technique,
all protected input cubes are at same Hamming distance (HD)

of h from the correct key. If k is the key-size, then the number
of such protected inputs |P| is (}). Also, if we assume 7 inputs
to the netlist (n > k), then SFLL-HD" is:

o (k— [loga (Zﬂ)—secure against SAT attack

o 2("=F)(¥)_gecure against removal attack

where, the notion of A-secure and related theoretical derivations
are provided in [25]. In summary, h can be adjusted to trade
resilience between the above attacks: h € {0, k} deliver highest
resilience to SAT attack, whereas h = k/2 maximizes the
resilience to removal attack. For any wrong key, there will
be at most twice the number of error injection at the output
as the number of protected input cubes. This implies that for
a wrong key the maximum probability of erroneous output is
PSFL L:Z(Z{/z" (with k£ = n). In section III-D2, we utilize this
expression for psprr to study the error injected by the SFLL
scheme when running an application on a locked accelerator.

III. SAT ATTACK ON LOCKED ACCELERATOR
A. Hardware accelerators

1) Existing architectures: The ever increasing demand
for computational power by compute intensive applications
such as speech recognition, computer vision, natural language
processing, search ranking and other DNN applications have
made architectural innovations crucial to achieve high per-
formance and energy efficiency. GPUs as well as several
domain specific hardware accelerators such as Diannao [12]
and Google’s Tensor Processing Unit (TPU) [15] have been
developed which provide higher throughput while consuming
much lower energy compared to general purpose processors. In
this work, we study the effectiveness of existing logic locking
schemes to protect the hardware accelerator IPs from an
untrusted foundry. We use the TPU framework for the purpose
of illustration, however our ideas are equally applicable to other
accelerator designs.

2) Open ISA: The operation of any processor or
accelerator hardware is guided by its instruction set architecture
(ISA). In this work, we assume a hardware accelerator design
which is based on an open-source ISA standard (i.e., instruction
formats and opcodes are known). While some conventional
ISAs have been proprietary, recent works have touted the
benefits of making the ISA open source [9]. The industry would
benefit by making the ISA free as it will enable affordable
processor designs to expand the IoT framework. Moreover,
open-source ISA doesn’t imply that commercial proprietary
processor designs cannot use such an ISA. This is due to the
fact that the though the ISA is standardized, the chip designer
decides the micro-architectural features to be implemented as
well as the logical and physical design approaches [7]. For
example, Intel 64 processors [5], Codix-Bk3 [2] use open ISAs.

B. Threat Model

We consider that an attacker in the untrusted foundry setting
has access to the following three components for analysis:

e An activated hardware accelerator chip bought from the open
market, used to obtain the correct input-output responses.

e The gate-level netlist of the hardware accelerator chip
reverse-engineered from layout level details available in
GDS-II file.

e The hardware accelerator’s software development kit (SDK)
and ISA standard.

It is to be noted that availability of the first two components

have been assumed in several related works [16], [17], [18],

[20], [21]. In addition, we also consider that the adversary has

access to the SDK of the hardware accelerator. This is a reason-

able assumption as the SDKs of most commercially available

hardware accelerators are freely available for download (e.g.,

Nvidia’s CUDA SDK [6]). We assume that the attacker can use
such an SDK to generate executable corresponding to some
developed microbenchmark application. This enables her to
observe correct input-output response pairs from the activated
chip by mapping the instruction binaries to the corresponding
register contents [10].

C. Attack Framework

1) Google TPU: 1In this work, we use the Google TPU ar-
chitecture [15] as a testbed for illustrating our ideas. In Google
TPU framework, the host CPU sends instructions over PCle
bus to an instruction buffer for the TPU to execute rather than
fetching them itself. The main computational component called
the Matrix Multiply Unit (MMU) consists of 256X256 MACs
which performs 8-bit multiply-and-adds on signed/unsigned
integers. The inputs to the MMU are provided by weight FIFO
and unified buffer (UB) components. The MMU outputs 16-bit
products which are collected in the accumulator unit, which are
then passed on to the activation unit. Finally, the results are
written back to UB. A DMA controller transfers data between
the CPU host memory (HM) and UB.

2) Obfuscation Approach: We consider locking both the
instruction decoder logic and the matrix-multiply unit (MMU)
of a TPU-like chip using state-of-the-art SF'LL-H D" scheme
[25]. As highlighted in section II, SFLL approach provides
a quantifiable trade-off among all known types of attacks
against logic locking techniques, including SAT based attacks
[20], [19]. In order to study the application-level error impact
of obfuscating accelerator designs, we used the OpenTPU
simulator [8] and ran a regression task on Boston Housing
dataset (more experimental details in section V).

D. SAT Attack on locked TPU-like chip

1) Decoder Deobfuscation: To perform the experiments,
we first synthesized a gate-level netlist of an 8-to-20 instruction
decoder design (assuming there are 20 valid 8-bits opcodes
in the ISA). Then, we locked the design following SFLL-
HDP technique (i.e. h=0) to ensure maximum resilience to
SAT attack (as much as point function schemes such as Anti-
SAT [21] and SARLock [24]). Note that the number of valid
opcodes (20 in our case) is much smaller compared to the
size of input space of the decoder (2%) and also known to the
attacker (open ISA). We launched a modified SAT attack: in
each iteration of conventional SAT formulation [20] we used a
valid opcode as distinguishing input. The key returned by the
SAT solver after all such opcodes are exhausted is guaranteed
to retrieve the correct decoder functionality for the given ISA.
In our experiments (second column of table I) we observe that
only 2 iterations of SAT attack was sufficient to find a correct
key with known opcode inputs.

In order to further study the effectiveness of this modified
SAT attack strategy on the decoder design, we also augmented
random (RLL) [18] and fault analysis based logic locking
(FLL) [16] to the SFLL scheme for inserting additional key-
gates (with gate overheads of 5%,10%, and 20%) in the
netlist. As evident from table I, such augmentations didn’t
help improve the security of locked decoder netlist and only
3 iterations of SAT attack was sufficient to deduce a correct
key in all the test cases. In summary, despite using SAT attack
tolerant locking schemes such as SFLL-H DY, the SAT attack
was highly effective to deobfuscate the decoder circuit.

TABLE I: SAT attack results on locked decoder netlist
scheme SFLL | SFLL+RLL | SFLL+FLL
% overhead — 5[10]20 [5]10]20

#SAT iterations 2 3131313313
time (1073s) 4 8| 8| 8 |8] 8| 8

outcome of error injection runs (%)
3

o

=1b=2 b=4 b=8 b=16 =1 b=2 b=4 b=8 b=16

=1 b=2 b=4 b=8 b=16

Fig. 1: Error irr;'f)oact on host mefr'nﬂory (HM) content for SFLL-
HD" locked MMU design

2) MMU Deobfuscation: Next, we evaluate the ef-
fectiveness of SFLL-HD" scheme to lock the multiplier
units in the MMU component of the accelerator chip. Each
multiplier takes as input two 8-bits operands and outputs a
16-bits representation of the product. For our experiments, we
set the key-size k equal to the the multiplier’s input size n,
i.e., k =n = 16, and the h value of SFLL-H D" scheme was
varied between h € {0, 1, 2}. As noted earlier, h = 0 represents
the highest security to SAT attack but least output corruptabil-
ity; while h = 2 has higher corruptability but substantially
smaller SAT attack resilience. On this locked TPU-like chip,
we run a regression application to evaluate the security offered
by the obfuscation scheme considered. We term the outcome
of an application run being correct if the host memory content
matches exactly with the golden memory content (obtained
without any error injection), else we term the outcome as being
erroneous. For each type of SFLL-HD" lock, we injected
appropriate amount of error in the multiplication outcomes
as follows: First, a b bit random number was generated and
then, it was XORed with the correct multiplier output with a
probability of psrr=2(1)/2" (as outlined in section II). In
addition, we varied the number of bits b € {1,2,4,8,16}
to capture the error impact due to varying widths of fanout
cones affecting the netlist output for a wrong key. In figure
1, we report the percentage of erroneous outcomes in the host
memory contents of the OpenTPU simulator out of 1000 error
injection runs for different values of h. As evident from the
figure, for (i) h = 0: almost all (ii) h = 1: above 95% and (iii)
h = 2: above 85% of the fault injection runs (out of 1000) are
correct across all the values of b. There are two main reasons
behind this outcome: First, the error injected by the locking
schemes are not very high. Secondly, several machine learning
applications (such as the regression task used for experiments)
have inherent resiliency to errors. This strongly motivates the
need of a new type of obfuscation framework which effectively
safeguards the IP of hardware accelerator designs from an
attacker in untrusted foundry.

IV. HARDWARE-SOFTWARE CO-DESIGN BASED
ACCELERATOR OBFUSCATION

A. Root of Trust

An overview of our proposed HSCAO framework is pre-
sented in figure 2 (details in section IV-B). HSCAO relies
on partitioning the obfuscation/deobfuscation task between the
accelerator’s SDK and the hardware. Conventional locking
approaches [18], [16], [25] rely exclusively on hardware keys
to obfuscate a design. However, most hardware accelerators
comprise of proprietary SDKs [6] without which these accel-
erator chips cannot be used. These SDKs represent substantial
software development efforts and are developed by the design
house (generally not exposed to the untrusted fab). The details
of an SDK implementation can be easily hidden from users/fabs
using software obfuscation techniques [13]. For example, Dex-
Guard tool [3] provides state-of-the-art software obfuscation
features to protect an SDK against reverse-engineering. As per
our threat model, the attacker can only use such an SDK as
a black box without having access to its internal details. It is

I
I
i
I
i
:application ‘
i
I
i
I
I
I

quite reasonable to assume that the attacker doesn’t have the
capability to develop a substitute SDK utilizing the GDS-II
file of a chip. This is because several architecture-level design
specifications/protocols of accelerator designs are not publicly
available [4], [6], [1].

B. Proposed HSCAO Framework

HSCAO framework consists of following three components:

o Key sequencer: It generates a pseudo-random key se-
quence using a secret key K..q as initial seed value.

o Software-level Obfuscation: The control bits of instruc-
tions consisting of opcode and flag bits are locked by pro-
prietary SDK and then communicated to the accelerator
hardware design.

e Hardware-level Deobfuscation: Subsequently, the con-
trol bits are unlocked on-chip using a hardware-level
deobfuscation module before further processing the in-
structions in other modules.

The overall approach is to share the obfuscation/deobfuscation
processes between the software and hardware components of
an accelerator. The software portion obfuscates the instructions
with dynamic keys generated using the key sequencer algo-
rithm. The hardware portion replicates the key sequencer on-
chip and is fully synchronized with its software counterpart to
deobfuscate the locked instructions. The secret key Kgeeq i
shared by the hardware and software counterparts of HSCAO
framework: it resides in the SDK (root of trust) and in an on-
chip tamper-proof memory (TPM). It is to be noted that such a
hardware-software co-design based obfuscation approach aims
to protect the design IP of an accelerator, not the information
content of an user application running on it. Next, we present
the details of different components in HSCAO framework.

1) Key sequencer: The key sequencer utilizes the secret
key Kceq to generate a pseudo-random sequence of keys K eq
for locking/unlocking of instructions in software/hardware
counterparts. According to the threat model considered (see
section III-B), the attacker has knowledge of the accelerator’s
instruction format: we consider that an instruction consists of
n bits of opcode and control flags, referred to as control bits.
The remaining bits of the instruction consists of data handling
and memory access related information, referred to as non-
control bits. We lock the functionality of overall hardware
accelerator by only obfuscating the control bits of instructions
in an application. The control bits of the i*" instruction is
locked by XORing it bit-wise with n-bits of K; which is the
it" key in K seq- The software/ hardware counterparts initializes
their key sequencer implementations with the same K .4, thus
generating identical K., for locking/unlocking instructions.

Now, we describe the process of generating the pseudo-
random key sequence K., from the secret key Kceq. In our
design we use IV cyclic shift registers (each n bits in length)
as shown in figure 3. Both NV and n are design parameters.
These N shift registers are initialized with Kg..q of size n x
N bits. Figure 3 illustrates the state of the key sequencer for
generating the first key K in the sequence from the secret key
Kyceq. The m* bit, m € {1,2,...,n} , of K; (denoted by
K1) is obtained by XORing the m'" bits of all the N shift
registers. For generating the next key K> in the sequence, all
the shift registers are cyclically shifted by certain number of

bits as specified in a shift vector S = [s1, Sa,...,Sn] where

Deobfuscation

1
SDK]
1

Obfuscation

K.

seed

Accelerator
modules

K.

seed
on-chip mem

1
root of trust :
1 Hardware

Fig. 2: Hardware-software Co-design based obfuscation

Kimy Ky

,n

—nN——> —n—
1 2
Kseed Kseed seed

Fig. 3: Cyclic shift register based key sequencer

sj, j € {1,2,..., N}, corresponds to the number of bits the

jth register is to be shifted. Now, as before, the contents of
all the registers are bit-wise XORed together to generate the
key K>. This process is repeated to generate the subsequent
keys in K 4. It is to be noted that the shift vector is randomly
generated at run-time in the accelerator SDK for software-level
obfuscation of an instruction, and its contents are not known
to an attacker. For generating the same K4, not only Kyeeq
must be common, but also these shift vectors needs to be shared
between the software and hardware counterparts in the HSCAO
framework.

2) Software-level Obfuscation: The accelerator’s SDK
(root of trust) generates K., by implementing the above key
sequencer algorithm in software. Each key in K., is XORed
bit-wise with the control bits of an instruction to obfuscate it.
Thus, the application binary is locked in software as a function
of secret key Keeq and shift vectors (dynamically generated
per instruction). The SDK also locks the shift vector S to
generate locked shift vector S' = [s},s5,...,sy| for every

instruction, where the mapping from S to S’ is obtained using a
secret look-up table (shift LUT). This shift LUT is not available
to an attacker who uses the SDK as a black-box. Note that, like
Keed, the contents of shift LUT is also shared between the
software and hardware counterparts of HSCAO framework. For
generating the same K., in hardware, the locked shift vectors
are communicated to the chip using following ISA extensions:

e INITK: Initiate key instruction resets the N registers
(each of length n bits) with the n X N bits of Keeq-

e CSHFT: Cyclic shift instruction shifts the contents of N
registers as per the corresponding elements in shift vector
S = [s1,82,...,8n] only if the shift LUT is cgrrectlx
configured on-chip, else a faulty mapping from S’ to S
will result in wrong operations. The CSHFT instruction
format is as follows:

CSHFT [s},85,..., 8]
The CSHFT instruction consists of an array of length N,
where each element s corresponds to a random number
between —7,,4, and +7,,40-

In section IV-C, we show that an adversary will be practically
unable to reconstruct the key sequence K., without the
knowledge of Kseeq and shift LUT contents. Thus in effect,
the software component of HSCOA successfully locks the
functionality of accelerator design.

3) Hardware-level Deobfuscation: The hardware-level
deobfuscation module serves as a counterpart of the software-
level obfuscation module. It replicates the key sequencer design
on-chip to unlock the control bits of software-obfuscated
instructions using the same secret key Kgeoq and shift LUT
information (by bit-wise XORing keys with the locked con-
trol bits). On encountering an INITK instruction from the
software interface, the hardware key sequencer design resets
the cyclic shift registers with Kg..q content. If a CSHFT
instruction is encountered, first the content of the shift vector
S is retrieved from the locked shift vector S (using shift
LUT stored in on-chip TPM) and then, all N registers are

cyclically shifted according to S. This process allows perfect

synchronization between the key sequencers in software and
hardware counterparts of the HSCOA framework. Therefore,
both the modules generate the same K., for performing in-
struction obfuscation/deobfuscation operations. As highlighted
in figure 2, the above deobfuscation process is carried out on-
chip before performing any application-specific computations
in accelerator modules. Note that as both K..q and shift LUT
are configured by the designer post-fabrication in on-chip TPM,
these are not known to an untrusted foundry.

4) Overall process: In summary, the proposed HSCOA
framework obfuscates the functionality of a hardware acceler-
ator chip as follows: The proprietary SDK locks the encoding
of instructions and sends them to the accelerator chip, where
they are deobfuscated using the shared Kg..q4 and shift LUT
information. By default, the software initially sends an INITK
instruction to reset the on-chip shift registers in the hardware
key sequencer module. The very first instruction of an ap-
plication is locked using the key K; which depends on the
state of the registers initialized with K..q. The obfuscation of
subsequent instructions using keys { Ko, K3, ... , K1} in Kyeq
is governed by the shift vectors which are randomly generated
at run-time in secure SDK. This information is communicated
to the accelerator chip using CHSFT type instructions. Note
that one does not need to obfuscate each of the subsequent
instructions with a separate key in K,.,. The designer can
choose to lock blocks of instructions with common keys or
lock a few randomly selected instructions, thereby reducing
the locking overhead. In section IV-C, we provide theoretical
analysis to demonstrate the resiliency of HSCOA framework
against SAT formulation based attack. We also describe how
this framework is also immune to removal [26] or bypass [23]
types of attacks. We assume that the sizes (design parameters)
of Kgeeq and shift LUT are large enough so that the attacker
cannot devise any brute force based attack strategy. Our pro-
posed hardware-software based obfuscation approach can also
be seamlessly integrated with conventional logic obfuscation
schemes [18], [17], [25] to lock other components (like MMU)
of an accelerator chip to further enhance the security-level.

C. Security Analysis of HSCAO

1) Resiliency to SAT attack: First we illustrate how
the process of determining K..q is computationally infeasible
through SAT formulation based attack [20]. According to our
threat model, an attacker has access to the netlist of the key
sequencer design. Her objective is to find the key sequence
K seq for unlocking the software obfuscated instructions using
SAT attack. Note that the very first instruction is obfuscated
using K;, which is derived from the state of the key sequencer
initialized with K ¢4 (using default INITK instruction). Unlike
subsequent keys in K., which are dependent on shift vectors
generated at run-time (and thus varies from one application
run to another), K is run-time independent. The attacker can
deduce K as follows: At first, she develops a microbenchmark
application having knowledge of all the instruction types. Then,
she finds K by simply XORing bit-wise the locked control bits
of first instruction with the correct opcode bits (known from
ISA). This is because (a ® b) ®a = b, where a represents the
opcode bits, b = K; and & denotes bit-wise XOR operation.

Note that K is derived from K ;.. using the key sequencer
algorithm whose functionality is known to the attacker. Hence,
she can use SAT solver (or any other Boolean solver) to find
a key K4, belonging to the equivalence class of all keys that
result in ;. Note this K, may or may not be equal to secret
key Kceq. Although K., correctly determines K, the entire
key sequence generated assuming K4, was the initial seed
of the key sequencer may not be the same as the actual key
sequence K. . This is because the sequence of keys generated
by the key sequencer design with separate initialization seeds

(producing same K7) will not be the same. Hence, finding a
key K4, is not sufficient and the attacker needs to find the
exact key K ceq. We show that the probability of K4, equals
K eeq 1s exponentially small in terms of size of the secret key
Keeq, thus making SAT attack (or other Boolean logic based
attacks) against HSCOA as impractical as a brute force attack.

Theorem 1: The probability of finding Keeq using the
above SAT attack approach is 1/ 2(N=Dnwhere N is the
number and 7 is the size of the cyclic shift registers.

Proof: Let v} denote the value of ith bit, i € {1,n}, of
the jt", j € {1, N}, cyclic shift register. Also, let .S; denote
the set of all v, ie., S; = {v},v?,...,vN}. Without loss of
generality let us assume NV is odd (similar arguments hold for
N being even). As per the key sequencer design, the i* key-bit
of the first key K1 (denoted by K ;) is obtained by XORing
all the elements of .S;. The value of K ; is O whenever there
are even number of ones in S;, while K ; is 1 when there are
odd number of ones in S;. Therefore, the number of possible
combinations Q9 of values of elements in S; which result in
K1; = 0 can be expressed as follows:

Q?:(]Z)+(];>+(]Z)+"'+(N]il) @

Similarly, the number of possible combinations @} of values
of elements in S; which result in K ; = 1 is as follows:

. (N N N N
Qi:(1>+(3)+(5)+”'+<1\1) @

Since (JZ) = (N]Xk), k € {0, N}, from equations (1) and (2)
we get Q¥ = Q! = Q; =2V /2 = 2N~ As the cyclic shift
registers are initialized with K,..4 and any two bits in a shift
register are independent of eachother, any two bits of the key
K are also independent of each other. Therefore, the number
of possible values of key K4, which results in the same K;
(of size n bits) is 2V-1n, Essentially, the set of keys which
result in the same K has a size of 2¥ =17 Only one of these
keys is Ksc.q. Hence, the probability of finding Keeq from
K using SAT attack based approach is 1/ 2(N=1)n [|

From the above theorem, we see that the probability of
finding the secret key Ksceq 1S exponentially small in terms of
the key-size. Note that using the shift LUT we end up hiding
the randomly generated shift vectors as well. This adds to the
security guarantee even further as both K,..q and the contents
of shift LUT needs to be determined correctly to break the
HSCOA framework.

2) Resiliency to other attacks: Our proposed HSCAO
scheme is inherently secure to other types of attack on logic
locking schemes, like removal attack [26] and bypass attack
[23]. The underlying principle of such approaches is to either
remove or bypass the protection circuitry to retrieve the netlist
exhibiting correct functionality. Though the hardware-level
deobfuscation logic of our proposed HSCAO scheme can be
structurally identified, the removal/bypass of it won’t neutralize
the effect of software-level obfuscation performed by the pro-
prietrary accelerator SDK (root of trust). Also, as highlighted
in section IV-A, the attacker doesn’t have the capability to
develop a substitute SDK using the netlist information.

V. EXPERIMENTAL RESULTS

For our experiments, we used OpenTPU simulator [8]
which is an open-source re-implementation of Google’s TPU
chip [15]. We considered a Tensorflow based implementation of
Multi-layer Perceptron (MLP) regressor on the Boston Housing
dataset [8]. In figure 4, we present the assembly-level program
of such an application with detailed description of each instruc-
tion type. To augment the proposed HSCAO scheme with the
OpenTPU simulator, we designed a key sequencer with N=9
cyclic shift registers (each n = 16 bits in length) to generate
key sequence K., initialized with a randomly selected K ccq

RHM) RHMG, 0, 10 # read from host mem addr 0, to UB addr O, for length N = 10
RW1) RW 0 # read weights from dram addr 0 to FIFO

RW2) RW 1 # read weights from dram addr 1 to FIFO

RW3) RW 2 # read weights from dram addr 2 to FIFO

MMC1) MMC.SO 0, 0, 10 # Do MM on UB addr 0, to accumulator addr 0, for length 10

ACT1) ACTRO, 0, 10
MMC2) MMC.SO , 0, 10
ACT2) ACTRO, 0, 10
MMC3) MMC.SO 0, 0, 10
ACT3) ACTRO, 0, 10
WHM) WHM 0, 0, 10
HLT) HLT

Do ACT ReLU on accumulator addr 0, to UB addr 0, for length 10

write result from UB addr 0, to host mem addr 0, for length 10
halt execution

Fig. 4: Assembly-level of MLP regression application

229 9 |231| 0 |233| 20 (196 5 |230)247|213|241 241 o/o0o/0/0|0f0fO0OfO|O|0|O0|O0]|O
241| 6 |29 | 51|53 (21440 | 0 |23 |247|37 |241|15 0O/ojo|o|ofof0of0|0o|0|0|0]|O
246| 15 (222|223|237248| 31 | 7 | 0 |127|14 |241|242 ofofofojo0|0|0|0|O0O|O0OfO|O| O
39| 16 |29 | 51|53 |222| 35 [215| 41 |247 | 37 (241|68 143 0 (o (0|0 0|0 |0O|O0O |0 |0 |O]|O
13 | 4 |250(237| 17 (241 O |224|247| 8 |241|241| O 159/ 0 |0 |0|O0O|O0O|O0O |0 O |0 |O0O|0O]|O
235| 16 | 43 |230(233| 9 |244|238|253|247|240 (241243 0/0|ofojofo|o|o/ofo|o0|0]|0
251| 13 | 29 | 51| 53 [245(240(242| 9 |247|37 |241| 1 221lo(0f0|/0|0|O0|O0O|O0O|O|O0O|0O]|O
240| 16 | 29 (211|237 14 |246(245|246 247 (224|241 241 0O|0fofo/o|jo0o|0|O0|0fO0|O0|0O]|O
1| 0 | 0 |229(233|235|221(198|255|247|249|241|250 o/ofojof0o|0|O0fO0O|O0O|O0O|O0|O|O
247(161| 41 |247|237|238| 22 | 8 |248|247 |242|241 242 211/ 0|0 |0|O0O|O|O0O|O0O 0|0 |O0O|0O]|O

(a) Initial HM (b) Final HM with Kyceq

229(9 (231 0 233| 20 (196| 5 |230|247 (213 (241|241 229(9 (231| 0 |233| 20 [196| 5 |230|247(213 (241241

241| 6 |29 51|53 [214| 40 [O |23 [247|37 (241|15 241| 6 |29 | 51|53 (214| 40 | O |23 [247|37 (241|15

246| 15 (222|223|237(248| 31| 7 | 0 |127|14 (241242 246| 15 (222|223(237|248| 31| 7 | 0 |12714 (241|242

39|16 |29 51|53 [222| 35 |215| 41 |247 | 37 (241|68 3916 (29 |51 53 |222| 35 |215| 41 247 | 37 [241|68

13 | 4 [250(237| 17 |241| O (224|247| 8 |241(241| O 13 | 4 [250(237| 17 |241| O (224(247| 8 |241[241| O

235| 16 | 43 (230{233| 9 |244(238|253(247 |240(241|243| |235| 16 | 43 |230/233| 9 |244|238|253(247 (240|241 (243

251(13 | 29 | 51| 53 |245|240|242| 9 (24737 [241| 1 25113 | 29 | 51 53 (245|240(242| 9 |247|37 (241 1

240| 16 | 29 |211|237| 14 |246|245|246 247 |224|241|241 240| 16 | 29 |211|237| 14 |246|245|246 247|224 (241|241

1| 0 | 0 (229/233|235|221(198(255|247|249|241(250 1|0 | 0 |229|233|235(221(198|255|247 249 (241|250

247(161|41 |247|237(238| 22 | 8 |248 (247 242241242 247(161| 41 |247|237|238| 22 | 8 248|247 |242 (241242

(d) Final HM with K2,
(cause: early termination)

(c) Final HM with K},
(cause: exception raised)

Fig. 5: Error impact on host memory (HM) due to wrong
instruction deobfuscation for different equivalent keys

of size 144 bits. Each key belonging to K., was bit-wise
XORed with the opcode bits (as specified in OpenTPU ISA)
for performing obfuscation/ deobfuscation of an instruction in
the software/ hardware counterparts of HSCAO framework.
In figures 5a and 5b, we present the initial host memory
content and the final host memory content (after running the
application) of an unlocked TPU-like chip (activated using
the correct key Kgcq). Each small green square contains the
correct value of a memory location.

To study the application-level error impact due to the use
of an equivalent first round key for unlocking the TPU-like
chip, we used two such keys K, éqv and K, gqv as initial seeds
and ran the regression application (see figure 4). Note that
for performing these experiments, we considered that the shift
LUT is configured correctly. But in practice, the attacker will
face additional challenge to determine the shift LUT contents.
In figures 5c and 5d, we present the final host memory
contents for using K éqv and Kgqv respectively. With Kelqv,
the application terminated with an exception that a new matrix
multiply (MMC) type instruction cannot be dispatched while
a previous instruction is still being issued, thus resulting in no
memory update (as denoted by red squares). Similarly, with
K2, also there was no memory update as well due to early
appqlication termination (no exception raised). We observed
that the reason behind this early termination being one of
the keys (in the sequence generated by K fqv) when bit-wise
XORed with the corresponding obfuscated instruction opcode
incorrectly resulted in the opcode for exit/halt condition (HLT).
These results highlight that use of such equivalent keys fail to

o/o|o|o|o|o|o|ofofo 0|0 0 o|ofofofoflo|o|ofofofo|0 0 o/o|o|ojo|o|o|o0o|0|0|0|0]fo0O 112(197| 0 [0 (79| 0 (63 0|0 [0 |0 [0 |0
o|o|o|o|lo|o|o|o|ofo 0|00 o|lo|o|ojo/ofo|o|o|o|0fo0]0 o|o|o|oflo|ofo|oflo|o|o|o0]|o0 134/ 0 [103) 0 ([0 (0 (0|0 |0 |0 0|0 |0
ojofo|ofo|ofo|ofo|o| 0|00 104 0 [0 (0|0 |0 0 0|0 |0 |00 O ojofo|ofojofo|ofo|o 0|0 0 128380 (0| 0 |0 |154 0 |0 0 [0 |0 |0
143} 0 (oo |o|o|o|o|o|o|o|o]o 32/0/o0fo0|0ofo|o0|o0fof0o 0|00 o/o|ofojofo|ofo|ofo|ofo]o 147|77| 7 |0 |91 |0 |82/ 0|0 0 [0 |0 |0
159| 0 (0 (o |0 |0 fo|o 0|0 0|00 9% |0 0fo|ofo|o|o|o|o|o|o0]|0 o [o|o|oflo|ofojofo|o 0|00 101/210(230/188| 0 |58 (0 [211| 0 [0 [0 |0 | O
0/0|o0|o|o|/ofo|o|lof|o|ofofo| [1€|0|0ofo|o/o|0|0|0o|0|0 0|0 0/0|o|o|ojofo|oflo|o|ofo]o0 224/ 0 |66/ 0|00 0|0 0 0|0 0|0
2210 |0 |0|0f0|0|0|0 0|0 0|0 0|lo|ojojoj0oj0f0|0 0|0 0|0 120/ 0 (0| 0|0 |0 |0 0|0 0|0 0|0 163| 46 | 57 (247 79 |237| 0 (153/ 0 (0 [0 |0 | O
0|0 fo|ofo|ofo|ofo|o 0|00 0/0fo|ofo0|0| 0|00 0|0 0|0 0/0fo|ofo|ofo|o0|0 0|0 0f0O 15| 0 148 0 | 74| 0 [193/ 0 [0 (0 (0 |0 | O
o/ofo|ofo|ofo|o|o|o 0|00 248/ 0 (o |o|o0o|o|o0o|o|o|o|o0o|0 0 olo|ojolo|o|o|o|o|o|o|o]|o 116/ 0 [248/ 0 |0 [0 |0 0|0 0|0 |0 |0
211{0 |0 |ofo|ofo|o|o|o 0|00 o|/o|ofojojofo|ofo|o 0f0]0 o/o|o|ofo|o|o|o0|of0 |00 O o|lojofojojo|o0fo0|o0f0|0 0|0
(a) No error (with Kgsceq) (b) Locked RW1 (c) Locked RW2 (d) Locked RW3
229| 9 (231| 0 (233(20(196] 5 (230(247213|241|241 o|fo|ofojo/o oo o|o0o|0|o0]0 570 (162 0| 0|0 |0 0|0|0|0 |0 0O o|/ofofofofofoj0|0|0|0|O O
241| 6 |29 |51(53(214/40 | 0 |23 [247|37 [241|15 o|o|ofo|o/ofo|o|o|o|0oo0]o0 186/ 0 245/ 0 |0 [0 |0 0|0 |0 |0 |0 |0 o|o|o|o|lo|o|o|o|ofo|o0fo0]0
246| 15 |222(223(237(248(31 | 7 | 0 (12714 [241 242 35/ 0|0 |0(o|o|ofofofo|o|o]|o0 26| 0 216/ 0 [0 |0 |0 |0|0 |0 |0 0|0 o/ofo|ofojofo|o|o|0|00]0O
39|16 |29 | 5153 [222| 35 215| 41 [247| 37 |241 |68 60| 0|0 |o0|o|o|ofofo|ofo|o]|o0 231/ 0 118/ 0 (0 [0 |0 |0 |0 |0 |0 [0 |0 o/o|ofofofo|o|ofo|o|o]|o0]|o0
13 | 4 (250(237| 17 |241| 0 (224|247| 8 [241[241| O 52/ 0 (0 foflo|o|o|ofo|o0o|0|o0]|0O 21 (72| 0 | 0|102 0 (122/ 0 (0 [0 |0 |0 |0 o|o|o|oflo|o|o|o|ofo|ofo]0
235| 16 | 43 |230(233| 9 |244(238(253(247(240|241/243 300 o0/ 0/0|0|0|0|0|0|0|0]|O 162/ 0 lo (oo 0|0 |0f0|0|0f0]0 0|0/ o0/ o0/o0ojo0o|0fo0|0f0|0|0]|O
251(13 | 29 [51| 53 (245/240(242| 9 |247|37 |241| 1 1750 (0|00 |0|O0O|O0|O0fO0O 0|0 O 118|103| 86 (128 0 (72| 0 |194/ 0 (0 (0 (0 | O 97|o0|/0|0|0|0|0|0|0|O0|0 0[O
240| 16 | 29 [211|237| 14 |246|245(246|247 224|241 241 1730 {0 (0|0 0|0 |0 0|0|0 0|0 196| 63 |158/208/ 0 170/ 0 |27 | 0 [0 |0 |0 [O 137/ 0 (o |o|ofo|o|o|o|o0o|0|o0fo0
1|0 | 0 (229(233(235/221|198(255(247 |249(241|250 17/ 0|0 fo|ofo|o ofo|o 0|00 181|218| 66 150 0 (82| 0 233/ 0 [0 |0 |0 |0 237/ 0|0 |o/ofo|ofo|ofo|o0|o0fo0
247(161| 41 (247|237|238| 22 | 8 |248 [247 242|241 242 o|o|ofo|ojofo|o|o|o|00]o0 99 |168(201(239 0 [237| 0 (79| 0 |0 [0 |0 |0 1910 0|0 |ofo|o|o|o|o 0o 0|0

(e) Locked MMC1/ WHM (f) Locked ACT1

(g) Locked MMC2/MMC3/ACT3

(h) Locked ACT2

\:\ correct data update \:l wrong data update \:’ corrupted data \:I initial content ‘:I no update

Fig. 6: Error impact on host memory (HM) due to single locked instruction

unlock the accelerator obfuscated using HSCOA framework.

The above approach of obfuscating every instruction,
though effective, may incur significant delay for running ap-
plications due to updates of cyclic shift registers (depending
on shift vector contents) per instruction. Therefore, we locked
only a single instruction in the entire application assembly
(apart from the first RHM instruction which is locked by
run-time independent key K;) and observed the resulting
corruption in final memory contents. The outcomes of such
experimental runs are presented in figure 6, where each subfig-
ure shows the final host memory content for a particular locked
instruction in the regression application. The states of memory
locations are classified into 4 categories: (i) correct data update
(ii) wrong data update which signifies data update in a faulty
memory location (iii) corrupted data update where the memory
update location is correct but the data content is wrong and (iv)
no data update from initial data content. As observed from the
figures, even locking a single instruction leads to significant
errors in the application outcomes, highlighting the strength of
our proposed HSCAO countermeasure to protect the IP of an
accelerator chip design.

VI. CONCLUSION

In this paper, we first show the ineffectiveness of state-
of-the-art locking scheme to protect the IP of hardware ac-
celerators. Subsequently, we propose a hardware-software co-
design based obfuscation approach to render an unactivated
accelerator chip functionally useless. Our proposed HSCOA
scheme uses proprietary SDK as the root of trust for generating
locked program binary which is subsequently deobfuscated in
the hardware. The experimental results obtained by running a
regression application on OpenTPU simulator demonstrate the
effectiveness of such an obfuscation framework.

REFERENCES

[1]
[2]
[3]
[4]
[5]

AlI chip. https://www.gyrfalcontech.ai/solutions/2801s/.
Codix-Bk3. https://www.codasip.com/risc-v-processors.
DexGuard. https://www.guardsquare.com/en/products/dexguard.
Google Edge TPU. https://cloud.google.com/edge-tpu/.

Intel ISA. https://www.intel.com/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-software-developer-
instruction-set-reference-manual-325383.pdf.

[6]
[7]

[8]
[9]

[10]
(11]
(12]
[13]
[14]

[15]

[16]
(17]

(18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

NVIDIA CUDA. http://www.nvidia.com/cuda/.

Open ISA based processor. https://www.codasip.com/2017/08/08/does-
risc- v-mean-open- source- processors/.

OpenTPU. https://github.com/UCSBarchlab/OpenTPU.

K. Asanovié¢ and D. A. Patterson. Instruction sets should be free: The
case for risc-v. EECS, UCB, Tech. Rep. UCB/EECS-2014-146, 2014.

A. Chakraborty et al. GPU obfuscation: attack and defense strategies.
In 55th Annual Design Automation Conference, page 122. ACM, 2018.

A. Chakraborty et al. Timingsat: timing profile embedded sat attack. In
International Conference on Computer-Aided Design. ACM, 2018.

T. Chen et al. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. Sigplan Notices, 49(4):269-284, 2014.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Technical report, The University of Auckland, 1997.

M. El Massad et al. Integrated circuit (ic) decamouflaging: Reverse
engineering camouflaged ics within minutes. In NDSS, 2015.

N. P. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE
44th Annual International Symposium on, pages 1-12. IEEE, 2017.

J. Rajendran et al. Security analysis of logic obfuscation. In Proceedings
of 49th Annual Design Automation Conference, pages 83-89, 2012.

J. Rajendran et al. Fault analysis-based logic encryption. Computers,
IEEE Transactions on, 64(2):410-424, 2015.

J. A. Roy et al. Epic: Ending piracy of integrated circuits. In Proceedings
of the conference on Design, Automation and Test in Europe, pages
1069-1074. ACM, 2008.

K. Shamsi et al. Appsat: Approximately deobfuscating integrated
circuits. In IEEE Symp. Hardware-Oriented Security and Trust, 2017.
P. Subramanyan et al. Evaluating the security of logic encryption
algorithms. In Hardware Oriented Security and Trust, 2015, 2015.

Y. Xie and A. Srivastava. Mitigating sat attack on logic locking. In
CHES 2016, pages 127-146. Springer, 2016.

Y. Xie et al. Delay locking: Security enhancement of logic locking
against ic counterfeiting and overproduction. In 54th Annual Design
Automation Conference, 2017.

X. Xu et al. Novel bypass attack and bdd-based tradeoff analysis
against all known logic locking attacks. In International Conference
on Cryptographic Hardware and Embedded Systems. Springer, 2017.
M. Yasin er al. Sarlock: Sat attack resistant logic locking. In Hardware
Oriented Security and Trust (HOST), 2016, pages 236-241. IEEE, 2016.
M. Yasin et al. Provably-secure logic locking: From theory to practice.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1601-1618. ACM, 2017.

M. Yasin et al. Removal attacks on logic locking and camouflaging
techniques. /IEEE Transactions on Emerging Topics in Computing, 2017.

