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Abstract. In this work we analyze the impact of translating the well-
known LLL algorithm for lattice reduction into the quantum setting. We
present the first (to the best of our knowledge) quantum circuit repre-
sentation of a lattice reduction algorithm in the form of explicit quantum
circuits implementing the textbook LLL algorithm. Our analysis identi-
fies a set of challenges arising from constructing reversible lattice reduc-
tion as well as solutions to these challenges. We give a detailed resource
estimate with the Toffoli gate count and the number of logical qubits as
complexity metrics.
As an application of the previous, we attack Mersenne number cryp-
tosystems by Groverizing an attack due to Beunardeau et al. that uses
LLL as a subprocedure. While Grover’s quantum algorithm promises a
quadratic speedup over exhaustive search given access to a oracle that
distinguishes solutions from non-solutions, we show that in our case, re-
alizing the oracle comes at the cost of a large number of qubits. When
an adversary translates the attack by Beunardeau et al. into the quan-
tum setting, the overhead of the quantum LLL circuit may be as large as
2 52 qubits for the text-book implementation and 2 33 for a floating-point
variant.

Keywords: LLL · lattice reduction · quantum circuit · Grover’s algo-
rithm · Mersenne number cryptosystems

1 Introduction

The famous lattice reduction procedure by Lenstra-Lenstra-Lovász (LLL) [13]
was the first algorithm to solve high dimensional lattice problems provably in
polynomial time. While its original application was in the factorization of poly-
nomials, has since been applied to great effect in many branches of computer
algebra, such as integer programming, Diophantine equations, and cryptanaly-
sis. Recently, the National Institute for Standards and Technology (NIST) has
launched a project to standardize post-quantum cryptosystems. Out of 69 round
1 candidates 27 were based on the hardness of lattice problems. In round 2
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14 of the 26 selected candidates are related to lattice problems. The LLL al-
gorithm’s application to cryptanalysis extends beyond attacks on lattice-based
cryptosystems to other attacks that require shortest vector oracles, e.g., attacks
on Mersenne number cryptosystems. Therefore, when analyzing post-quantum
cryptosystems, it is natural to analyze lattice reduction procedures in a quantum
context.

The original LLL algorithm was based on rational arithmetic and terminates
after polynomial many steps as a function of the initial norms of the lattice basis
and the lattice rank, i.e., O(r6 log3 B̃) where r is the rank of the lattice and B̃
bound the maximal initial norm of a vector. Furthermore, it appears to perform
better in practice than a rigorous analysis would suggest [17]. One can improve
on the theoretical and practical run time by considering floating-point variants
that approximate the rational numbers to a certain precision. The first floating-
point LLL that would provably find a LLL-reduced basis was due to Schnorr [22]
who implemented the coefficients of the intermediate Gram-Schmidt matrix as
floating-point numbers with precision O(r+log B̃). Additionally he introduced a
new method to update the matrix in every iteration of the lattice reduction. The
L2 algorithm by Stehlé and Nguyen [16] is the only LLL variant which achieves a
complexity quadratic in the bound of the initial norms, namely O(r5 log2 B̃). The
quadratic complexity results from approximating the coefficients of the Gram-
Schmidt matrix using a precision of 1.6r + o(r) and performing a more efficient
vector size-reduction. Nevertheless, both floating-point variants of the LLL algo-
rithm do improve on the time spent for arithmetic operations during the lattice
reduction, but retain the same upper bound on iterations of the main reduction
loop. Furthermore, the underlying operations, such as the vector-size reduction
remain equivalent to that of the original LLL algorithm.

Quantum Algorithms. With Shor’s algorithm [24, 21] most of the deployed
public-key cryptosystems are rendered insecure in the context of large-scale
quantum computers. The famous result gave rise to research on post-quantum
cryptosystems, i.e., cryptography that can withstand quantum attacks. In con-
trast to Shor’s famous algorithm, the equally famous result of Grover does not
lead to a complete break of cryptosystems. Grover’s algorithm [10] promises a
quadratic improvement of exhaustive (key) searches, effectively halving the key
length of schemes that aim to achieve the same security level. Grover’s algorithm
depends on the implementation of a function that captures the problem in ques-
tion by identifying its solutions and distinguishing them from non-solutions.

Mersenne prime key encapsulation A public key encryption scheme on
integer relations modulo a Mersenne number was first introduced by Aggarwal et
al. [1] and a later refined thereof was developed and submitted to the NIST post-
quantum competition by Aggarwal et al. and independently by Szepieniec [25].
The schemes build upon computation over the ring induced modulo a Mersenne
prime using secret integers with low Hamming weight.

Shortly after the introduction of Mersenne number cryptosystems by Ag-
garwal et al. [1], researchers Beunardeau, Connolly, Graud and Naccache [3]
presented an attack with an exponential complexity in the Hamming weight of
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the sparse secret integers. The main idea of the attack is find the correct lattice
representation that hides the sparse secrets as the shortest vector; a lattice re-
duction algorithm can then extract the secrets. The name reflects the strategy of
repeatedly partitioning the sparse integers at random until lattice reduction suc-
ceeds in extracting the secret. The attack’s complexity arises from the relatively
small probability of randomly sampling a good partition.

Our contribution. First, we present a quantum circuit representation of the
textbook LLL algorithm. Particularly we explicitly present a range of subcircuits
that appear in our representation and discuss how they impact the ancillary
qubits. We identify a set of challenges arising from reversible lattice reduction
and propose explicit quantum circuits to overcome these. Furthermore, we pro-
vide an in-depth complexity analysis of our proposed solution in the quantum
setting. We analyze the number of ancillary qubits as well as the number of
Toffoli gates needed. We compare the estimates to the memory requirements
induced by a floating-point implementation and discuss the memory overhead
for the general problem of a reversible lattice reduction. We show that, due to
the need for reversibility of the lattice reduction, we need to allocate and main-
tain a large amount of qubits in every iteration to remember the reduction of
the basis vectors. While our circuits are based on the rational textbook LLL we
show that our results carry over to floating-point variants implementing the same
arithmetic operations. Second, we use this quantum LLL algorithm to complete
the analysis of a Groverization of the Slice-and-Dice attack on Mersenne num-
ber cryptosystems. As a result, a quantum Slice-and-Dice attack on Mersenne
number cryptosystems using the LLL algorithm may have a quantum memory
overhead as high as 2 52 qubits.

Roadmap. Section 2 provides an overview of notions and definitions used
for our implementation and analysis. We review the classical LLL algorithm
which we used as a starting point for our implementation. Furthermore we give
an overview of Mersenne number cryptography and explain the attack by Beu-
nardeau et al. In Section 3 we present our quantum circuits for the LLL algorithm
by giving a range of quantum component circuits needed to perform the lattice
reduction. We estimate the resources needed to implement those constructions
and suggest potential improvements. Section 4 shows how to combine Grover’s
algorithm with the attack by Beunardeau et al. using our quantum LLL circuit
as a subroutine. We calculate the needed quantum resources when instantiating
the crytosystems to achieve a 128-bit security level against quantum attack, as
per the parameters suggested by Aggarwal et al. [1] and by Szepieniec [25].

2 Preliminaries

LLL algorithm. The LLL algorithm is a well-known lattice reduction algorithm
with many applications in cryptanalysis. Given a modular equation y ≡

∑
i αixi

mod p with
∏
i xi < p the LLL algorithm is able to determine the unique solution

in polynomial time [12]. The solution is determined by constructing a lattice of
rank r represented by the canonical basis (b1, . . . , br). On input of the basis
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matrix, the lattice reduction procedure computes a reduced basis B̃ for a fixed
approximation factor δ such that the Gram-Schmidt orthogonalized basis B̃
satisfies ||b̃∗i ||2(δ − 1

4 ) ≤ ||b̃∗i+1||2 for all 1 ≤ i ≤ r [12, ch. 10]. In general the
length of the shortest vector can be approximated with the Minkowski theorem
as the first minimum of the lattice: λ1(L) ≤ √γrdet(L)

1
r where γr is Hermite’s

constant. Depending on the approximation factor δ and the difference in length
between the first and the second minima of the lattice the shortest vector might
not be found.

The algorithm first computes an orthogonal basis using the Gram-Schmidt
procedure followed by an iterative approach examining each two subsequent
vectors of the basis. Each iteration considers the plane spanned by the two
vectors bi, b̃i+1 and attempts to reduce the vector b̃i+1 by an integer multiple
of the vector b̃i. Then, if the two vectors fulfill the Lovász condition, δ||b̃∗i ||2 ≤
||b̃∗i+1||2 + (b̃i+1|b̃∗i )/||b̃∗i ||

2 , the vector b̃i+1 is size-reduced and projected onto the
hyperplane spanned by all lesser vectors. If the ordering is not fulfilled, the
vectors are swapped such that the vector bi+1 is compared to the lesser vectors in
the following iterations. Intuitively the Lovász condition ensures that the vectors
are approximately orthogonal and allows to reorder them if this is not the case.
The LLL algorithm terminates as soon as each subsequent pair of basis vectors
fulfills the Lovász condition and if they are ordered by length with respect to
the approximation factor.

The pseudo-code in Algorithm 2.1 reflects the classical approach using exact
values, implemented with rational numbers to compute the coefficients of the
Gram-Schmidt matrix M .

Algorithm 2.1: LLL Algorithm

1: Input: Basis B = (b1, b2, ..., br)
2: Output: Reduced Basis B∗

3: B∗,M ← Gram-Schmidt orthogonalization(B)
4: Li ← Compute length of vectors bi for i ∈ {1, 2, ..., r}
5: k ← 2
6: while k ≤ r do
7: Reduce bk by bmk,k−1ebk−1 and update M s.t. B = MB∗

8: if Lovász condition holds on bk and bk−1 then
9: for j = k − 2 to 0 do

10: Reduce bk by bmk,jebj and update M s.t. B = MB∗

11: k+ = 1
12: else
13: Swap bk and bk−1

14: Update length Li, Li−1 and Gram-Schmidt matrix M to re-
flect swap

15: k ← max(2, k − 1)

The complexity of the LLL algorithm is dominated by the main loop and
further depends on the size of the numbers that being processed. The number
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of iterations of the main loop can be bounded by defining the potential of the
lattice: D =

∏r
i=0 ||b∗i ||2i as shown by Nguyen and Valle [Thm 10][18]. Whenever

the Lovàsz condition is not fulfilled two vectors are swapped and D decreases
by a factor of δ. Since D is an integer larger than 0, the number of swaps is
bounded by the logarithm of D, bound by B̃2d, where B̃ is the maximum initial
norm of the input vectors.
Withing the main loop the most expensive operation is to update the Gram-
Schmidt matrix of size rd. Furthermore the rationals in the naive LLL algorithm
have bit length at most O(r log B̃). The operations within LLL on these numbers
can be computed in at most square time. This results in an overall complexity
of O(r5d log3 B̃) [18].

Schnorr [22] introduced a more efficient variant using floating-point approx-
imations with precision O(r + log B̃) for the coefficients of the Gram-Schmidt
matrix. The approximation of the coefficients significantly reduces the compu-
tational effort of each loop iteration, resulting in a complexity of O(r4 log B̃(r+
log B̃)2) operations.

The result was later improved by Nguyen and Stehlé [16] introducing the
L2 algorithm, the first provable lattice reduction algorithm with complexity
quadratic in the norm of the input vectors. The L2 algorithm adopts the ap-
proach to approximate the Gram-Schmidt coefficients using floating-point num-
bers and combines it with a provable floating-point procedure mimicking the
Gram-Schmidt orthogonalization process. The algorithm is the best known re-
sult for a lattice reduction with a complexity of O(r5(r + log B̃) log B̃).

Reversible floating-point arithmetic. The use of floating-point repre-
sentations in classical computing usually implies the loss of information due to
rounding errors. Translating this inherently non-reversible process into an uni-
tary operations requires preserving additional information, e.g., the inputs of
the initiating arithmetic operation. Bennett [11] showed how to translate any
ordinary Turing machine running in time T and space S into a reversible Tur-
ing machine running in time O(T 1+ε) and space O(S log T ), making it clear that
such an operation can be implemented on a quantum computer. While this gives
a constructive approach for a reversible Turing machine it may not be clear how
to translate this into an circuit. The first reversible floating-point adder meeting
the requirements of industrial standards was introduced by Nachtigal et al. [15,
14]. While the quantum gate-cost of their circuit was linear in the number of
(qu)bits, the output also includes O(n) garbage qubits. Nguyen and Meter [6]
presented improved floating-point arithmetic circuits with only a constant num-
ber of garbage qubits. However, both representations must preserve one of the
inputs to allow reversibility.
There is no widely adopted procedure to implement floating-point numbers in a
quantum circuit. The classical approach with two registers containing mantissa
and exponent seems to be a feasible scheme. However, one would need an extra
register to keep track of a “remainder” which is discarded in classical computing.
Another approach was introduced by Wiebe et al. [26] by implementing small
rotations onto single qubits which allows to mimic and compute on mantissa and
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exponent. Due to the lack of standardized or widely adopted representation of
floating-point arithmetic in the quantum setup we do not optimize nor establish
any arithmetic circuits for floating-point operations.

Grover’s algorithm. We assume the reader to be familiar with the basic
notions of quantum computation (a standard text is Nielsen & Chuang [19]).
Grover’s algorithm improves the search of an unordered data set with a quantum
computer gaining a quadratic improvement [10] over an unstructured classical
search. The algorithm employs a procedure that starts out with a superposition
of all elements in the data set, such that each element is equally likely to be
observed. A successive application of the Grover iteration improves the success
probability of observing a target element as described below.

Let there be an unordered set of cardinality N containing M target elements.
The goal is to extract any one of the targets. Consider H to be a Hilbert space
which describes the state space of a quantum system. Furthermore assume the
access to a black-box operator UO : H → H which computes |x, c〉 7→ |x, c⊕f(x)〉
and implements the function f mapping target elements to 1 and non-target
elements to 0. The operator therefore splits the state space into a direct sum
of subspaces such that the good subspace for f(x) = 1 represents the target
elements and the bad subspace for f(x) = 0 represents the non-target elements.
Let ρ denote the initial success probability of observing a target element. Then
Grover’s algorithm requires ρ−

1
2 iterations until a target element is observed

with high probability.

Mersenne number key encapsulation. Mersenne number cryptosystems
compute over the integer ring Z/pZ where p = 2n−1 is a Mersenne number such
that all integers have bit length at most n. The encapsulation schemes follow the
idea of establishing a shared noisy one-time pad using a noisy Diffie-Hellman pro-
tocol. The later is embedded into a framework featuring de-randomization and
re-encryption to achieve CCA security in the (quantum) random oracle model.
Two sparse integers a, b ∈ Z/pZ are chosen uniformly random with Ham-
ming weight ω during the key generation. Together with an uniformly random
G ∈ Z/pZ and H = aG + b mod p they form the secret and the public key:
sk := (a, b), pk := (G,H). The schemes suggested by Aggarwal et al. [1] and
by Szepieniec [25] are based on the Mersenne low Hamming combination search
problem (LHCS): given a tuple (G, aG + b mod p) with parameters as above,
find the integers a and b. The problem is believed to be hard for classical as well
as quantum computers.

Slice-and-Dice attack. Beunardeau et al. [3] presented an attack on the
LHCS Problem exploiting the uniqueness of the sparse solutions to the equation
H = aG + b mod p. The attack revolves around the idea of partitioning the
binary expansion of unknown integers into intervals. The intervals are used to
construct a lattice which is then reduced to find the shortest vectors. If the
intervals are chosen “correctly”, the constructed lattice hides the secrets a, b as
shortest vectors: Consider the segmentation of a, b into partitions Pa, Pb. Since
the two integers are sparse there are relatively few ones, such that there exists
a partition where each block represents a “small” number. Such a partitioning
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msb lsb

Fig. 1: Partition of a sparse integer into intervals. The blocks represent the binary
expansion, the black blocks as ones and the white blocks as zeros. Interpreting an
interval as integer yields a small number, e.g., the first interval represents 23 = 8.

is depicted in Figure 1. Each partition is uniquely defined by a set of starting
positions pa,i, pb,j inducing the partitioning into blocks.

The intention of the attack is to sample these starting positions and construct
a lattice accordingly as in Equation (1) such that there exists an exponential gap
in terms of vectors’ length between those representing the secrets and any other
vectors of the lattice. De Boer et al. [4] show that this occurs if and only if all
the ones of the secrets fall into a certain range of each interval.

La,b,H =

{
(x1, ..., xk, y1, ...yl, z)

∣∣∣ k∑
i

2pa,ixiG+

l∑
j

2pb,jyj ≡ H mod p

}
(1)

For correctly sampled starting positions the shortest vector represents the se-
crets and can be extracted using a lattice reduction technique, e.g., the LLL
algorithm. In order to apply the LLL algorithm one needs the canonical repre-
sentation of the lattice basis as matrix from the partitions Pa and Pb. Consider
the case where the integers are partitioned into k+ l parts and let I denote the
(k + l)× (k + l) sized identity matrix. Then the matrix in Equation (2) as a set
of row vectors form a basis for the lattice La,b,H . Each row vector represents an
interval and is constructed to fulfill Equation (1). After performing the lattice
reduction with sampled partitions one needs to check the Hamming weight of
the reduced basis vectors. If the Hamming weight of the shortest vectors equals
the Hamming weight of the secrets, the attack was successful [3, Sec. 2].

Algorithm 2.2: Slice-and-Dice

1: Input: Basis H,G, p, ω
2: Output: a, b
3: while True do
4: Pa ← sample ω random intervals covering the range (0, p)
5: Pb ← sample ω random intervals covering the range (0, p)
6: B ← construct La,b,H(H,G, p, Pa, Pb)
7: B∗ ← LLL(B)
8: if ∃b∗ ∈ B∗ s.t. Ham(bin(b∗)) = 2 · ω then
9: Return b∗

I
0
...
0

−2pa,1GH−1 mod p
...

−2pb,lH−1 mod p

0 . . . 0 1 −H
0 . . . 0 0 p

 (2)
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Algorithm 3.1: Conditioned Loop

k ← 0
while k ≤ r do

ApplyTask(k)
if SomeCondition(k) then

k ← k + 1
else

k ← k − 1

3 Quantum Lattice Reduction Algorithm

The textbook description of the LLL algorithm by Joux [12, ch. 10] using rational
numbers serves as a starting point for our implementation. We chose this variant
over the more efficient approximate floating-point techniques due to the natural
correspondence of implementing (quantum) arithmetic with rational numbers,
in particular, the impossibility to forget rounding errors in the quantum setting:
floating-point operations as in the classical sense require forgetting information,
whereas fractional arithmetic does not. However, the results from our implemen-
tation of a conditioned loop and the uncomputation of the Gram-Schmidt matrix
carry over to the floating-point variants. We use the following list of quantum
registers throughout our implementation:

|B〉 The basis matrix spanning the lattice.
|B∗〉 The Gram-Schmidt orthogonalized basis.
|L〉 The lengths of the vectors in B.
|M (k)〉 The Gram-Schmidt matrix M for each iteration k.
|L〉 A single qubit containing the result of checking the Lovász condition
|K〉 The counter of the main loop.
|ctl〉 Generic control qubits.

Furthermore, we make use of the following subcircuits implementing basic
arithmetic operations:

Addition A : |x, y, 0〉 7→ |y, y, x+ y〉
Multiplication M : |x, y, 0〉 7→ |x, y, x+ y〉
Division D : |x, y, 0〉 7→ |r, y, x/y〉, where r is the remainder of x/y

3.1 Quantum designs.

Conditional loops. Conditioned while-loops are widely used in classical com-
puting to execute a certain task based on the current state of a variable, which
may or may not be modified within the loop. Consider the loop in Algorithm
3.1 that runs until the variable k reaches the value of r. The loop may or may
not run for an infinite time depending on the outcome of the condition.

When translating this structure to a quantum circuit, k may be in super-
position, say |K〉, representing multiple different values at the same time. The
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conditioned loop may require a different number of iterations of a task for each
value represented by |K〉. However, the algorithm in Figure 3.1 applies the loop
to the register k in every iteration. Our quantum implementation in Circuit 2
controls the application of the loop task based on a lower and upper control qu-
bit, checking if the counter |K〉 is within its valid limitation. In order to assure
that the loop is applied often enough, one needs to find an upper bound on the
number of iterations, and hence on the counter |K〉. The loop then consists of
bound(K) many cycles where the task is applied if the counter is within its valid
limits.

|K〉

|cntl1〉

|cntl2〉

|ψ〉

|K
〉
≥

0

|K
〉
≤
r

Apply Task

(|
K
〉
≤
r)
−
1

(|
K
〉
≥

0
)−

1

+1 −1 |K〉

|cntl1〉

|cntl2〉

|ψ〉

bound(K) cycles

Fig. 2: Conditioned quantum loop with lower and upper limit control qubits.

Therefore, our implementation of the quantum while-loop is a for -loop with
some reasonable termination bound. The important takeaway here is that condi-
tioned loops always have worst-case run time. In the particular case of the LLL
algorithm the Line 6 of Algorithm 2.1 is such a construction.

Uncomputation. The copy-uncompute trick, first introduced by Bennett et
al. [2], is a well known procedure to reset quantum memory to a known state.
The purpose of resetting garbage qubits is to avoid unwanted interference when
using subroutines in a larger circuit. Additionally, uncomputed qubits may be
reused as ancillary qubits for following operations. The trick allows to design
reversible operations where the number of “used” output qubits matches the
number of “used” input qubits. For example, consider the following addition
procedure where the register y is reset to a known state |0〉 such that |y| many
qubits can be reused after the operation:

|x, y, 0max(|x|,|y|)+1|〉 7→ |x, y, x+ y〉 7→ |x, 0|y|, x+ y〉 (3)

However, not all operations within the LLL algorithm can be implemented in a
way, that allows to reuse all input qubits in such generic way. Consider a function
that computes a vector-size reduction: a vector bi ∈ B is length reduced by an
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|0|mij |〉

|mij 〉

|0|mij |〉

|bi〉

|0|bi|〉

|bj〉

|0|bi|〉

b·
e

|dmijc〉

|b
i
〉−
|d
m

ij
c〉
|b

j
〉

|b̂i〉
|b̂

i
〉+
|d
m

ij
c〉
|b

j
〉

|bi〉

|b
i
〉−
|b

i
〉 |0〉

(|
b̂ i
〉+
|d
m

ij
c〉
|b

j
〉)
−
1

|0〉

|m
ij
〉−
|d
m

ij
c〉

b·
e

|m̂ij〉

|mij 〉

|0|mij |〉

|0|bi|〉

|0〉

|bj〉

|b̂i〉

reset |bi〉

Fig. 3: Vector size-reduction and uncomputation of original vector bi.

integer multiple of some vector bj by a factor of dmijc. On a basic level the
following operations are performed:

dmijc ← round(mij) (4)

b̂i ← bi − dmijcbj (5)

m̂ij ← mij − dmijc (6)

In the classical case, the computation of the new value m̂ij overriding the
value mij results in the loss of the information required to recompute bi from the

size-reduced vector b̂i. In order to be able to reverse the size-reduction it is nec-
essary to maintain addition information, mainly the old value mij . Translating
this procedure into the quantum context results in Circuit 3: the size-reduced
basis vector |b̂i〉 is computed from the (rounded) coefficient |mij〉 and some vec-
tor |bj〉. Then the new Gram-Schmidt coefficient |m̂ij〉 is computed from |mij〉
and its rounded value. With the quantum registers |mij〉 and |b̂i〉 the value of the
vector |bi〉 can be first recomputed. This can then be used to reset the original
quantum register |bi〉 into a zero state, and then the value of |bi〉 can be uncom-
puted. At last either the quantum register containing the rounded value |dmijc〉
or the quantum register |mij〉 can be uncomputed. However, neither of them
can be uncomputed with out the information contained in the other. Therefore,
either |mij〉 or |dmijc〉 have to be preserved when using reversible arithmetic
operations.

Figure 4 shows a dependency graph visualizing the operation in question.
The directed edges depict the flow of information, whereas the rounded nodes
represent quantum registers and the squared nodes represent the functions. In
order to uncompute an input value of a function, one needs to preserve the
output as well as the other inputs. Since the node dmijc is both input and



Quantum LLL with an Application to Mersenne Number Cryptosystems 11

mij −

d·c dmijc

m̂ij

Fig. 4: Information flow when updating Gram-Schmidt matrix coefficients.

Algorithm 3.2: GSO Algorithm [12, Alg 10.3]

1: Input: Basis B = (b1, b2, ..., br)
2: Output: Orthogonal basis B∗ and transformation M
3: for i← 1 to r do
4: b∗i ← bi
5: for j ← 1 to i− 1 do

6: mi,j ←
(bi|b∗j )
||b∗j ||

2

7: b∗i ← b∗i −mi,jb
∗
j

|bi〉

|b∗j 〉

|0〉

|0〉

|0〉

(|
b i
〉|
|b
∗ j
〉)

(|bi〉||b∗j 〉)

(|
b∗ j
〉|
|b
∗ j
〉)

(|b∗j 〉||b
∗
j 〉)

D

|R〉

|mij〉

M

|mijb
∗
j 〉

−
A

M
−
1

D
−
1 (|bi〉||b∗j 〉)

(|
b i
〉|
|b
∗ j
〉)
−
1

|0〉

(|
b∗ j
〉|
|b
∗ j
〉)
−
1

|b∗i 〉

|b∗j 〉

|0〉

|0〉

|mij〉

compute |mi,j〉 uncompute inner productscompute |b∗i 〉

Fig. 5: Single iteration of the quantum Gram-Schmidt orthogonalization inner loop.

output of a function it cannot be uncomputed while serving as information for
uncomputation.

Overall, the size-reduction operator requires preserving the initial coefficient
of the Gram-Schmidt matrix for reversibility. In the quantum case, this operation
is applied in every iteration of the main loop in Line 6 of Algorithm 2.1.

3.2 Miscellaneous Circuits

Quantum Gram-Schmidt orthogonalization. The circuit implementing
a single iteration of the quantum Gram-Schmidt orthogonalization (QGSO) in
Figure 5 is based on the Pseudo-code 3.2 of the classical procedure by Joux [12].

Rounding to the nearest integer. The vector length reduction bi ←
bi − dmijcbj appearing in the LLL algorithm requires rounding the rational
number mij = mn/md to the nearest integer. The rounding to the closest integer
in positive direction is based on the decimal part. Therefore, we need to compute
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|mn〉

|md〉

|0〉

|0n〉

|0〉

|0〉
D

a
n
d

si
g
n

b
it

|mf 〉
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Fig. 6: Rounding to the nearest integer in positive direction.
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Fig. 7: Circuit implementing the operation K := max(2,K − 1)

the division of mn/md with some precision. In our example we choose a precision
of 1 (qu)bit. The integer part is stored in register |m0...n−1〉, the decimal part in
register |m.f〉. The sign (qu)bit of the rational number is stored in the register
|ms〉. The rounded value equals the integer part plus or minus 1, depending on
the decimal part and the sign (qu)bit as below:

ms = 1 ∧m.f = 1⇔ dmc = bmc − 1

ms = 0 ∧m.f = 1⇔ dmc = bmc+ 1

m.f = 0⇔ dmc = bmc

We implement our vector size-reduction using the rounding operator in Figure
6. The gate cost of the rounding circuit is 2DT + 3AT and referred to as RT .

max(2, k-1). Circuit 7 implements the |K〉 = max(2, |K〉−1) operator that
is required to conditionally decrement the counter in the second branch of the
main loop.

LLL. Circuit 8 shows the LLL algorithm with the respective conditioned
loops and the controls of the branching. In each cycle we cache coefficients of
the Gram-Schmidt matrix in a new register |M〉 to preserve reversibility.

3.3 Resource estimate

Gate count. Toffoli gates are universal for quantum computing and can be
constructed from the Clifford+T group, whereas the cost of such a gate depends
mostly on the number of T -gates. Selinger [23] gives a construction of a Toffoli
gate with T-depth of 1. Therefore, the Toffoli gate count is closely related to the
full cost of a quantum circuit. In addition, Fowler, Mariantoni and Cleland [7]
show that the number of logical qubits scales with the number of Toffoli gates.
Consequently, we use the Toffoli gate count as a complexity metric in this work.
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á
sz

0
≥
|J
〉
≤
|K
〉
−

2

b
ra

n
ch

:
si

z
e
-r

e
d
u
c
e

(0
≥
|J
〉
≤
|K
〉
−

2
)−

1 +
1

0
≥
|J
〉
≤
|K
〉
−

2

b
ra

n
ch

:
sw

a
p

(0
≥
|J
〉
≤
|K
〉
−

2
)−

1

max(2, |K〉 − 1)

|L〉

|B〉

|M〉

|Lov〉

|K〉

|ctl1〉

|ctl2〉

|J〉

bound(K) cycles

rank(L) cycles rank(L) cycles

Fig. 8: Quantum circuit implementing the LLL algorithm where the branch: size reduce
represents the size reduction if the Lovász holds and the branch: swap the respective
other branch. Note that each cycle of the main loop requires additional qubits for the
Gram-Schmidt matrix M .

Let m be the (qu)bit-length of the numbers processed in the LLL algorithm.
We use the Toffoli gate count of the following implementations of quantum cir-
cuits in our analysis:

– Curracaro [5] presented a quantum adder using 2m + O(1) Toffoli gates
referred to as AT . Note that a subtraction can be implemented using the
same gates.

– Gidney [9] achieves a multiplication circuit using windowing and table lookups
in O(m

2
/logn) Toffoli gates as MT .

– Rines and Chuang [20] propose a division circuit comprising 4m2 Toffoli
gates as DT .

Let r := rank(L) be the rank of the lattice such that there are r basis vectors:
(b1, . . . , br) with bi ∈ Rd. The frequently used inner product (bi|bj) or ||bj ||2 can
be constructed from d · MT · AT Toffoli gates. We will refer to this count as
IT . Note that the Toffoli gate depth is significantly lower when applying vector
multiplication in parallel and enabling a tree like addition procedure.

QGSO. The quantum GSO consists of an outer loop iterating the r basis
vectors and an inner loop iterating the respective lesser vectors. Each iteration
consists of the computation of a coefficient of the Gram-Schmidt matrix by
computing two inner products and a division, which intermediate result has to
be uncomputed with total cost: 2(2IT + DT ). Furthermore the vector |b∗i 〉 is
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computed with a scalar multiplication and a vector subtraction. The cost in
Toffoli gates with uncomputation is: 2d(MT +AT ). Overall the quantum GSO

requires r2−r
2 (4IT + 2DT + 2d(MT +AT )) Toffoli gates.

Main Loop. The gate count of the main loop of the textbook LLL imple-
mentation is closely related to the worst-case analysis of the classical case.

The computation of the first branch consists of the computation of a length
reduction for r vectors. Each reduction requires a rounding operator, the actual
size-reduction and the computation of the new Gram-Schmidt coefficient |mij〉
with cost: 2RI + 2d(MT + AT ) + AT . The remaining coefficients in the same
row of the matrix are updated using r(MT +AT ) Toffoli gates. The first branch
is dominated by the terms (2rd+ r2)(MT +AT ).

The second branch consists of swapping the vectors and updating the Gram-
Schmidt matrix accordingly with a Toffoli cost of r(2(MT +AT )). Uncomputa-
tion cost is negligible due to caching the matrix in every iteration. Both branches
have to be applied subsequently.
The computation of the Lovász qubit and the initial length reduction is negligi-
ble and therefore omitted from the calculation. The number of cycles of the main
loop can be bound using by the classical worst-case with bound(K) := r2 log B̃,
e.g. by Nguyen [17], where B̃ bounds the norms of the input basis. Expressing
the gate count with regards to the (qu)bit length m of the arithmetic operations
the Toffoli gate count is in the order of:

O

(
2 log B̃

(
r3d+ r4

)( m2

logm
+ 2m

))
(7)

Logical qubits. The number of logical qubits is derived from representing
the basis matrix |B〉 and the Gram-Schmidt matrix |M〉 with rd coefficients
where each one has qubit length m = r log B̃ for the textbook implementation.
One requires to cache r2 log B̃ such matrices. Additionally our implementation
requires r2 log B̃ for the counter |K〉, as well as max(r, d) ·m ancillary qubits for
arithmetic operations. The total number of qubits for a reversible LLL algorithm
is thus:

r4d log2 B̃ + r2 log B̃ +max(d, r) ·m (8)

Physical qubits. We note that the number of physical qubits to implement a fault
tolerant circuit using an error correcting architecture is significantly higher.

3.4 Improvements

Intermediate uncomputation. We propose a time/space trade-off to improve
on the number of logical qubits required. During the course of the lattice reduc-
tion we suggest to independently run the (quantum) LLL circuit on intermediate
lattice basis’ and to recompute the Gram-Schmidt matrices. This allows to reset
the cached matrices to a known value, i.e., a quantum register with a zero vector,
and to reuse these qubits in the following operations.

The vector size-reduction takes as input the matrices B(i) and M (i) and out-
puts the reduced basis B(i+1) with updated Gram-Schmidt matrix M (i+1). With
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|M (i)〉 |M (i+1)〉 . . . |M (j−2)〉 |M (j−1)〉 |M (j)〉

main loop sequence

forward: recompute

backward: uncompute

Fig. 9: Sequential uncomputation of Gram-Schmidt matrices

every such operation new memory to cache the matrix M (i+1) is required, while
B(i) can be reset to a known state. Let |M | be the number of qubits required
to store the Gram-Schmidt matrix (|B| respectively for the basis matrix). Then
the following sequence is computed over the course of the main loop:

|B(i)〉|M (i)〉|0|B|〉|0|M |〉 size−reduce7−−−−−−−−→ |0|B|〉|M (i)〉|B(i+1)〉|M (i+1)〉

|B(i+1)〉|M (i+1)〉|0|B|〉|0|M |〉 size−reduce7−−−−−−−−→ |0|B|〉|M (i+1)〉|B(i+2)〉|M (i+2)〉
. . .

|B(j−2)〉|M (j−2)〉|0|B|〉|0|M |〉 size−reduce7−−−−−−−−→ |0|B|〉|M (j−2)〉|B(j−1)〉|M (j−1)〉

|B(j−1)〉|M (j−1)〉|0|B|〉|0|M |〉 size−reduce7−−−−−−−−→ |0|B|〉|M (j−1)〉|B(j)〉|M (j)〉

Given the registers |M (j−1)〉|B(j)〉|M (j)〉 it is impossible to reconstruct the
matrices |B(i)〉|M (i)〉. However, the sequence was computed from the initial basis
|B(i)〉 and the Gram-Schmidt matrix |M (i)〉, hence one can use the initial state
to uncompute the sequence:

Forward steps Recompute |M (i+1)〉, |M (i+2)〉, . . . , |M (j−2)〉, |M (j−1)〉.
Backwards steps Each Gram-Schmidt matrix can be used to uncompute its

successor, e.g., |M (j−2)〉 is used to uncompute |M (j−1)〉.

By following this procedure, one can free all the quantum memory but the
initial register |M (i)〉 and the last cached state |M (j)〉. The number of cached
qubits in the sequence can been reduced from (j+1) ·sizeOf(M) to 2 ·sizeOf(M)
as in Figure 9. The trade-off allows to reset j · sizeOf(M) many qubits using j
iterations of the main loop and j · sizeOf(M) temporary ancillary qubits. Let
bound(K) be the number of iterations of the main loop in our implementation
and hence the number of cached Gram-Schmidt matrices. The trade-off is opti-
mal for j = (bound(K))

1
2 . This is equivalent to performing an uncomputation

sequence every (bound(K))
1
2 iterations of the main loop.

By applying this improvement the number of cached Gram-Schmidt matrices
can be reduced by a square root to r(log B̃)

1
2 in our textbook implementation.

The largest term from Equation (8) on the number of logical qubits is now re-

duced to r3d log B̃(log B̃)
1
2 . The enhancement carries over to the naive floating

point variant and the loop implementing the L2 algorithm.
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Floating-point LLL. Our results regarding conditioned loops and the re-
versibility of reducing vectors by an integer multiple carry over to naive floating-
point variants. In particular, the LLL algorithm shares certain computational
methods with its provable floating point variants, such as the vector size-reduction
by an integer multiple or the conditioned loop. The significant increase in effi-
ciency is based on the the representation and processing of the Gram-Schmidt
coefficients. Applying our analysis on Schnorr’s [22] variant results in the use

of ≥ r2d log B̃(log B̃)
1
2 qubits. The L2 algorithm due to Nguyen and Stehlé [16,

Fig. 4] implements an equivalent vector length-reduction. It follows that the L2

algorithm [16, Theorem 2] with a precision of l = 1.6d + o(d) would require
≥ r2d log B̃(1.6d + o(d)) many qubits to preserve reversibility in the quantum
setup. However, we did not analyze the L2 algorithm in detail and do not claim
that this is optimal.

Execution parameters. The (classical) worst-case of the number of it-
erations can be improved by adjusting the parameter δ resulting in a loss of
“quality” of the reduced basis with regards to the length of the reduced vectors.
Nguyen and Stehlé [17] evaluate the running time of LLL for different domains,
such as random knapsack problems, and suggest that the complexity is lower
on average. We leave an analysis of specific problem instances as a future line
of work. However, we do give an heuristic value for the Slice-and-Dice attack in
the next section.

4 Quantum Slice-and-Dice

The combination of the Slice-and-Dice attack with Grover’s algorithm utilizes
our quantum representation of the LLL algorithm from the previous section as a
subroutine. Given the public-key of a Mersenne number cryptosystem one starts
out with a superposition of all possible partitions which in turn represent all
possible starting positions of intervals. The lattice reduction subroutine distin-
guishes those partitions that allow extraction of the secret sparse vectors using a
lattice reduction, and those that do not allow said extraction. First, the subrou-
tine computes the basis matrix, which is the direct translation of the classical
case. Each partition is now represented by the superpositions |Pa〉, |Pb〉. The
lattice reduction is performed and the “correct” partitions are identified. This
procedure can be implemented using canonical modular operations to recompute
the public key and comparing to the input. Afterwards the process has to be
inverted to uncompute all operations. Figure 10 shows Grover’s algorithm with
our subroutine.

Identification of the shortest vector. The attack is successful if and
only if the Grover oracle can successfully distinguish the sparse secret integers
in the reduced basis from other short vectors. Then the oracle qubit has to be
flipped according to the secret integers and respectively not-flipped by other
short vectors. In the classical case, Beunardeau et al. identify the solutions by
computing the sum of the Hamming weights of the resulting basis vectors. This
is not sufficient in the quantum setting due to the existence of other vectors with
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Fig. 10: Groverized Slice-and-Dice with a LLL oracle.

low Hamming weight.
De Boer et al. [4] showed that the lattice contains vectors of the form

(0, . . . , 0, 2m,−1, 0, . . . , 0) of length (4|Pi|+1)
1
2 . Moreover, the authors bound the

minimal size of the partition based on an approximation of the first minimum by
Gama and Nguyen [8]: λ1(L) ≈ (n/2πe)

1
2 · 2n

r . Furthermore, De Boer et al. show
that the lattice reduction is successful if the intervals have size at least n/r+Θ(n).

In the quantum case, the input basis is a superposition of all possible parti-
tions. Therefore, there exists a lattice construction that contains a partition with
small block size such that the vectors described by De Boer et al. are shorter
than the vectors representing the secrets. Furthermore, these vectors have low
Hamming weight and may thus be misidentified as solutions. Therefore, in the
quantum setting, we recompute the public component H ′ = a′G + b′ for every
basis vector and flip the oracle qubit on the outcome of the comparison with H.

Number of Grover iterations. The number of iterations is determined
by the initial success probability of measuring a correct partition. The success
probability depends directly on the number of correct partitions and hence on
the positions of the ones, therefore varies with every secret key that is attacked.
De Boer et al. [4] analyze the probability that the bits of a secret key fall into
the “correct” interval. The authors showed that the lattice reduction succeeds in
identifying the secret if the average size of the intervals is O(n/ω + log n). Based
on an upper and lower bound for a valid size of the intervals they derive the
probability to recover the secret key on input of a random lattice as 1

2 − c(
r
ω )2 +

o(1). Since the dimension of the lattice in the case of the quantum attack is fixed
to r = 2ω the expected number of partitions allowing to recover the secrets is

E[valid partitions] =

N∑
i=1

(
1

2
− 8c+ o(1)

)2ω

. (9)

In the setup of the quantum Slice-and-Dice attack the number N of all partitions
is equal to the number of all possible starting positions: N = n2ω. The number
of Grover iterations follows as(

N

M

) 1
2

=

(
n2ω

n2ω
(

1
2 − 8c+ o(1)

)2ω
) 1

2

=

(
2

1− 8c+ 2o(1)

)ω
. (10)
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Bounding LLL iterations. Consider a partition of the binary expansion
of the public key integer aG + b −H mod p for the Slice-and-Dice attack into
intervals. Each interval is represented by a single basis vector. De Boer et al. [4]
bound the maximal size of the initial vectors for a successful attack as

n

2ω

(
1− r(r − 1) log γ

2n
− r log r

2n

)
,where γ is Hermite’s constant .

We suggest the following Heuristic 1 to bound the initial potential of a “cor-
rectly” partitioned public key and hence the required number of swap operations.

Heuristic 1 (Number of swaps for a correct Slice-and-Dice Lattice) Let
L be a lattice constructed from “correct” partitioning a public key aG + b ≡ H
mod p of bit length at most n into ω parts. Then the LLL algorithm finds the
shortest vectors after at most n/2ω swaps.

Consider a register in superposition representing lattices constructed from parti-
tions in superposition. The superposition represents lattices that hide the secrets
and those that do not. After performing LLL iterations according to 1 the lattice
representations hiding the secrets will be fully reduced. The other lattices might
not be fully reduced yet. However, their basis vectors do not hide the secret
vectors and are thus not relevant for flipping the oracle qubit. Therefore, one
can bound the number of LLL iterations for the Slice-and-Dice attack according
to Heuristic 1.

Instantiation. Consider the instantiation of a Mersenne number cryptosys-
tem with the bit-length n = 756839 ≥ 219 and Hamming weight ω = 128 = 27

of the sparse integers. An implementation of the Groverized attack uses 2ω in-
tervals where each interval represents a number in Zn. The quantum registers
in superposition representing the partitions |PA〉, |PB〉 are can be implemented
by ≥ 227 qubits.

The oracle is constructed for a lattice of rank 2·(ω+2) ≥ 2ω whereas the basis
vectors are of equally many coefficients, hence d ≥ 2ω. The basis matrix contains
(2ω + 2)2 ≥ 2ω2 coefficients. Following the heuristic the necessary number of
iterations of the main loop can be bounded by 219

/28 = 211. We base the estimate
of the number of logical qubits on the largest term in Equation 8 with application
of the trade-off: r(log B̃)

1
2m), where m is the (qu)bit length of the coefficients

of the Gram-Schmidt matrix. The Toffoli gate count is based on Equation 7.

Textbook implementation. Considering only the largest term an implemena-
tion following our circuit representation requires a total of r3d log B̃(log B̃)

1
2 ≥

224 ·28 ·211 ·2 19
2 ≥ 252 qubits to cache the Gram-Schmidt matrices. The num-

ber of Toffoli gates would be as high as 285 + 266.
Fp-LLL à la Schnorr. Implementing the coefficients of the Gram-Schmidt ma-

trix as floating point numbers with precision m = r + log B̃ the number of
qubits is reduced to at least 244 + 233 ≥ 244. The number of Toffoli gates
would be reduced to 265 + 254 .

L2L2L2. The L2 algorithm can implement the attack in at most 233 qubits and using
at most 255 Toffoli gates.
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5 Conclusion

Our quantum circuit representation of the LLL algorithm suggests that quantum
lattice reduction requires a large number of logical qubits. We do not claim opti-
mality. The construction of reversible circuits that require less quantum memory
as well as the detailed analysis of floating-point variants are lines of future work.
The presented quantum design can be adapted to be used in similar reduction
processes or to be used as subroutines, e.g., as a quantum shortest vector oracle.
Another line of thought goes towards the evaluation of problem classes where
the number of iterations of the main loop can be bounded tightly.
Our result challenges the idea that Grover’s algorithm improves the attack com-
plexity by a square root. Taking Grover’s promise as given to evaluate the secu-
rity of cryptosystems leads to a very pessimistic security estimates. In the case
of the attack on Mersenne number cryptosystems an instantiation of the LLL
algorithm as Grover’s oracle requires a large amount of qubits as well as a large
Toffoli gate count, throwing into question the practicality of the attack even in
the context of large scale quantum computers.
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