
Simple and Efficient KDM-CCA Secure

Public Key Encryption

Fuyuki Kitagawa1, Takahiro Matsuda2, and Keisuke Tanaka3

1 NTT Secure Platform Laboratories, Tokyo, Japan, fuyuki.kitagawa.yh@hco.ntt.co.jp
2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan,

t-matsuda@aist.go.jp
3 Tokyo Institute of Technology, Tokyo, Japan, keisuke@is.titech.ac.jp

Abstract

We propose two efficient public key encryption (PKE) schemes satisfying key dependent
message security against chosen ciphertext attacks (KDM-CCA security). The first one is
KDM-CCA secure with respect to affine functions. The other one is KDM-CCA secure with
respect to polynomial functions. Both of our schemes are based on the KDM-CPA secure
PKE schemes proposed by Malkin, Teranishi, and Yung (EUROCRYPT 2011). Although
our schemes satisfy KDM-CCA security, their efficiency overheads compared to Malkin et
al.’s schemes are very small. Thus, efficiency of our schemes is drastically improved compared
to the existing KDM-CCA secure schemes.

We achieve our results by extending the construction technique by Kitagawa and Tanaka
(ASIACRYPT 2018). Our schemes are obtained via semi-generic constructions using an
IND-CCA secure PKE scheme as a building block. We prove the KDM-CCA security of our
schemes based on the decisional composite residuosity (DCR) assumption and the IND-CCA
security of the building block PKE scheme.

Moreover, our security proofs are tight if the IND-CCA security of the building block
PKE scheme is tightly reduced to its underlying computational assumption. By instantiating
our schemes using existing tightly IND-CCA secure PKE schemes, we obtain the first tightly
KDM-CCA secure PKE schemes whose ciphertext consists only of a constant number of
group elements.

Keywords: key dependent message security, chosen ciphertext security

1

Contents

1 Introduction 2
1.1 Background . 2
1.2 Our Results . 3

2 Technical Overview 4
2.1 KDM-CPA Secure Scheme by Malkin et al. 5
2.2 Problem When Proving KDM-CCA Security . 6
2.3 The Technique by Kitagawa and Tanaka . 6
2.4 Adopting the Technique by Kitagawa and Tanaka 7
2.5 Solution: Symmetric Key Encapsulation Mechanism (SKEM) 7
2.6 Extension to the Multi-user Setting Using RKA Secure SKEM 8
2.7 Differences in Usage of RKA Secure Primitive with Han et al. 8
2.8 Tightness of Our Construction . 9

3 Preliminaries 10
3.1 Notations . 10
3.2 Leftover Hash Lemma . 10
3.3 Assumptions . 10
3.4 Projective Hash Function . 12
3.5 Public Key Encryption . 13

4 Symmetric KEM and Passive RKA Security 14
4.1 Definition . 14
4.2 Concrete Instantiations . 16

5 KDM-CCA Secure PKE with respect to Affine Functions 18
5.1 Proposed PKE Scheme . 19
5.2 Basic Construction of Projective Hash Function 26
5.3 Space-Efficient Construction of Projective Hash Function 27

6 KDM-CCA Secure PKE with respect to Polynomials 27
6.1 Proposed PKE Scheme . 28
6.2 Instantiations of Projective Hash Function . 34

7 Instantiations 36

A Compressing Projective Hash Functions 38

B Proofs of Lemmas 2 and 3 41

C Other Instantiations of SKEM 44

1 Introduction

1.1 Background

Key dependent message (KDM) security, introduced by Black, Rogaway, and Shrimpton [3],
guarantees confidentiality of communication even if an adversary can get a ciphertext of secret
keys. KDM security is defined with respect to a function family F . Informally, a public
key encryption (PKE) scheme is said to be F-KDM secure if confidentiality of messages is
protected even when an adversary can see a ciphertext of f(sk1, · · · , skℓ) under the k-th public
key for any f ∈ F and k ∈ {1, · · · , ℓ}, where ℓ denotes the number of keys. KDM security
is useful for many practical applications including anonymous credential systems [8] and hard
disk encryption systems (e.g., BitLocker [5]).

In this paper, we focus on constructing efficient PKE schemes that satisfy KDM security
against chosen ciphertext attacks, namely KDM-CCA security, in the standard model. As
pointed out by Camenisch, Chandran, and Shoup [7] who proposed the first KDM-CCA secure
PKE scheme, KDM-CCA security is well motivated since it resolves key wrapping problems that
arise in many practical applications. Moreover, in some applications of KDM secure schemes
such as anonymous credential systems, we should consider active adversaries and need KDM-
CCA security.

The first attempt to construct an efficient KDM secure PKE scheme was made by Apple-
baum, Cash, Peikert, and Sahai [1]. They proposed a PKE scheme that is KDM-CPA secure
with respect to affine functions (Faff-KDM-CPA secure) under a lattice assumption. Their
scheme is as efficient as IND-CPA secure schemes based on essentially the same assumption.

Malkin, Teranishi, and Yung [23] later proposed a more efficient KDM-CPA secure PKE
scheme under the decisional composite residuosity (DCR) assumption [25, 10]. Moreover, their
scheme is KDM-CPA secure with respect to polynomial functions (Fpoly-KDM-CPA secure),
which is much richer than affine functions. A ciphertext of their scheme contains d + 1 group
elements, where d is the maximum degree of polynomial functions with respect to which their
scheme is KDM-CPA secure. As a special case of d = 1, their scheme is an Faff-KDM-CPA
secure PKE scheme whose ciphertext consists of only two group elements.

Due to these works, we now have efficient KDM-CPA secure PKE schemes. As we can see,
the above Faff-KDM-CPA secure schemes are as efficient as PKE schemes that are IND-CPA
secure under the same assumptions. However, the situation is somewhat unsatisfactory when
considering KDM-CCA secure PKE.

Camenisch et al. [7] proposed the first KDM-CCA secure PKE scheme based on the Naor-
Yung paradigm [24]. They showed that for any function class F , an F-KDM-CPA secure
PKE scheme can be transformed into an F-KDM-CCA secure one assuming a non-interactive
zero knowledge (NIZK) proof system. They also showed a concrete instantiation based on the
decisional Diffie-Hellman (DDH) assumption on bilinear groups. A ciphertext of their scheme
contains O(λ) group elements, where λ is the security parameter. Subsequently, Hofheinz [13]
showed a more efficient KDM-CCA secure PKE scheme. His scheme is circular-CCA secure,
relying on both the DCR and DDH assumptions, and decisional linear (DLIN) assumption on
bilinear groups. A ciphertext of his scheme contains more than 50 group elements. Recently,
Libert and Qian [21] improved the construction of Hofheinz based on the 3-party DDH (D3DH)
assumption on bilinear groups, and shortened the ciphertext size by about 20 group elements.

The first KDM-CCA secure PKE scheme using neither NIZK proofs nor bilinear maps was
proposed by Lu, Li, and Jia [22]. They claimed their scheme is Faff-KDM-CCA secure based on
both the DCR and DDH assumptions. However, a flaw in their security proof was later pointed
out by Han, Liu, and Lyu [12]. Han et al. also showed a new Faff-KDM-CCA secure scheme
based on Lu et al.’s construction methodology, and furthermore constructed a Fpoly-KDM-CCA

2

secure PKE scheme. Their schemes rely on both the DCR and DDH assumptions. A ciphertext
of their Faff-KDM-CCA secure scheme contains around 20 group elements. A ciphertext of
their Fpoly-KDM-CCA secure scheme contains O(d9) group elements, where d is the maximum
degree of polynomial functions.

Recently, Kitagawa and Tanaka [19] showed a new framework for constructing KDM-CCA
secure schemes. Using the framework, they constructed an Faff-KDM-CCA secure PKE scheme
based solely on the DDH assumption (without bilinear maps). However, their scheme is some-
what inefficient and its ciphertext consists of O(λ) group elements.

The currently most efficient KDM-CCA secure PKE scheme is that of Han et al.. Their
schemes are much efficient compared to other KDM-CCA secure schemes. However, there are
still a large overhead compared to efficient KDM-CPA secure schemes. Especially, its overhead
compared to Malkin et al.’s scheme is large even though Han et al.’s schemes are based on
both the DDH and DCR assumptions while Malkin et al.’s scheme is based only on the DCR
assumption.

In order to use a KDM-CCA secure PKE scheme in practical applications, we need a more
efficient scheme.

1.2 Our Results

We propose two efficient KDM-CCA secure PKE schemes. The first one is Faff-KDM-CCA
secure, and the other one is Fpoly-KDM-CCA secure. Both of our schemes are based on the
KDM-CPA secure scheme proposed by Malkin et al. [23]. Although our schemes satisfy KDM-
CCA security, its efficiency overheads compared to Malkin et al.’s schemes are very small. Thus,
efficiency of our schemes is drastically improved compared to the previous KDM-CCA secure
schemes.

We achieve our results by extending the construction technique by Kitagawa and Tanaka [19].
Our schemes are obtained via semi-generic constructions using an IND-CCA secure PKE scheme
as a building block. By instantiating the underlying IND-CCA secure PKE scheme with the
factoring-based scheme by Hofheinz and Kiltz [17] (and with some optimization techniques), we
obtain KDM-CCA secure PKE schemes (with respect to affine functions and with respect to
polynomials) such that the overhead of the ciphertext size of our schemes compared to Malkin
et al.’s KDM-CPA secure scheme can be less than a single DCR-group element. (See Figures 1
and 2.)

Moreover, our security proofs are tight if the IND-CCA security of the building block PKE
scheme is tightly reduced to its underlying computational assumption. By instantiating our
schemes using existing tightly IND-CCA secure PKE schemes [14, 11], we obtain the first
tightly KDM-CCA secure PKE schemes whose ciphertext consists only of a constant number of
group elements. To the best of our knowledge, prior to our work, the only way to construct a
tightly KDM-CCA secure PKE scheme is to instantiate the construction proposed by Camenisch
et al. [7] using a tightly secure NIZK proof system such as the one proposed by Hofheinz and
Jager [15]. A ciphertext of such schemes consists of O(λ) group elements, where λ is the security
parameter.

For a comparison of efficiency between our schemes and existing schemes, see Figures 1 and 2.
In the figures, for reference, we include [23] on which our schemes are based but which is not
KDM-CCA secure. In the figures, we also show concrete instantiations of our constructions.
The details of these instantiations are explained in Section 7.

We note that the plaintext space of the schemes listed in Figures 1 and 2 except for our
schemes and Malkin et al.’s [23], is smaller than the secret key space, and some modifications
are needed for encrypting a whole secret key, which will result in a larger ciphertext size in

3

Scheme Assumption Ciphertext size Tight?

[23] (not CCA) DCR 2|ZNs |
[7] with [15, § 4] DLIN O(λ)|Gbi| ✓
[13] (Circular) DCR+DDH(†) & DLIN 6|ZN3 |+ 50|Gbi|+ OHch&sig

[21] (Circular) DCR+DDH(†) & D3DH 6|ZN3 |+ 31|Gbi|+ OHch&sig

[12] DCR+DDH(‡) 9|ZNs |+ 9|ZN2 |+ 2|ZN̄ |+ |ZN |+ OHae

[19] DDH O(λ)|Gddh|
Ours (§ 5) DCR & CCAPKE 2|ZNs |+ |πphf |+ OHcca

with [17] & CRHF DCR 2|ZNs |+ 2|ZN′ |+ lencrhf
with [14] DCR 3|ZNs |+ 28|ZN′2 |+ OHae ✓
with [11] DCR & DDH 3|ZNs |+ 3|Gddh|+ OHae ✓

Figure 1: Comparison of KDM-CCA secure PKE schemes with respect to affine functions. The last three
rows are instantiation examples of our scheme. In the “Ciphertext size” column, we use the following
notations: N and N ′ are RSA moduli, and s ≥ 2 is the exponent of N in the DCR setting; N̄ = 2N +1;
For a group G, |G| denotes the size of an element in G; Gbi denotes a group equipped with a bilinear
map, and Gddh denotes a DDH-hard group (without bilinear maps); |πphf | denotes the output size of the
underlying projective hash function; OHcca (resp. OHae) denotes the ciphertext overhead of the underlying
IND-CCA secure PKE (resp. authenticated encryption) scheme; OHch&sig denotes an overhead caused by
the underlying chameleon hash function and one-time signature scheme; lencrhf denotes the output size of
a collision resistant hash function; For λ-bit security, OHae = λ, lencrhf = 2λ, and OHch&sig can be smaller

than |ZN |. (†) DDH in the order-ϕ(N)
4 subgroup of Z∗

N3 . (‡) DDH in QRN̄ := {a2 mod N̄ |a ∈ Z∗
N̄
}.

Scheme Assumption Ciphertext size Tight?

[23] (not CCA) DCR (d+ 1)|ZNs |
[12] DCR+DDH(‡) (8d9 + 1)|ZNs |+ 9|ZN2 |+ 2|ZN̄ |+ |ZN |+ OHae

Ours (§ 6) DCR & CCAPKE (d+ 1)|ZNs |+ |πphf |+ OHcca

with [17] & CRHF DCR (d+ 1)|ZNs |+ 2|ZN′ |+ lencrhf
with [14] DCR (2d+ 1)|ZNs |+ 28|ZN′2 |+ OHae ✓
with [11] DCR & DDH (2d+ 1)|ZNs |+ 3|Gddh|+ OHae ✓

Figure 2: Comparison of KDM-CCA secure PKE schemes with respect to degree-d polynomial functions.
We use the same notation as in Figure 1.

the resulting PKE schemes. On the other hand, our and Malkin et al.’s schemes can encrypt
a whole secret key without any modification by setting s ≥ 3. (We provide a more detailed
explanation on the plaintext space of our scheme in Section 5.1.)

Organization. In Section 2, we give a technical overview behind our proposed PKE schemes.
In Section 3, we review definitions of cryptographic primitives and assumptions. In Section 4,
we introduce a new primitive that we call symmetric key encapsulation mechanism (SKEM) and
provide concrete instantiations. In Section 5, we present our KDM-CCA secure PKE scheme
with respect to affine functions, and in Section 6, we present our KDM-CCA secure PKE scheme
with respect to polynomials. Finally, in Section 7, we give instantiation examples of KDM-CCA
secure PKE schemes.

2 Technical Overview

We provide an overview of our construction. Our starting point is the construction of KDM-CPA
secure PKE proposed by Malkin et al. [23]. Their scheme is highly efficient, but only KDM-
CPA secure. Our basic idea is to construct KDM-CCA secure PKE by adopting a construction
technique used in the recent work by Kitagawa and Tanaka [19] into Malkin et al.’s scheme.

4

Standard Mode:
Enc(pk, f(sk))

Fake Mode:
Sim(pk, f)

Hide Mode:
Enc(pk, 0)

Use the secrecy of
randomness (Re-
duction knows sk)

(1)

Use the secrecy
of sk (Reduction
does not know sk)

(2)

Figure 3: The triple mode proof. “XX Mode: YY” indicates that in XX Mode, the challenger
returns YY as the answer to a KDM query from an adversary.

However, since a simple combination of them does not work, we introduce a new primitive that
ties them together. We first review Malkin et al.’s scheme. Below, we explain the overview by
focusing on constructing a PKE scheme that is Faff-KDM-CCA secure. The actual Malkin et
al.’s scheme is Fpoly-KDM-CPA secure, and we can construct a Fpoly-KDM-CCA secure scheme
analogously.

2.1 KDM-CPA Secure Scheme by Malkin et al.

Malkin et al.’s scheme is secure under the DCR assumption and all procedures of their scheme
are performed on Z∗Ns , where N = PQ is an RSA modulus with safe primes P and Q of the

same length, and s ≥ 2 is an integer. Below, let n = ϕ(N)
4 . We can decompose Z∗Ns as the

internal direct product GNs−1 ⊗ ⟨−1⟩ ⊗Gn ⊗G2, where ⟨−1⟩ is the subgroup of Z∗Ns generated
by −1 mod N s, and GNs−1 , Gn, and G2 are cyclic groups of order N s−1, n, and 2, respectively.
Note that T := 1+N ∈ Z∗Ns has orderN s−1 and it generates GNs−1 . Moreover, we can efficiently
compute discrete logarithms on GNs−1 . In addition, we can generate a random generator of Gn.

1

We can describe Malkin et al.’s scheme by using generators T and g of GNs−1 and Gn, respec-
tively, and for simplicity we consider the single user setting for now. Below, all computations
are done mod N s unless stated otherwise, and we omit to write modN s. When generating a
key pair, we sample2 a secret key as x

r←− Zn and compute a public key as h = gx. When
encrypting a message m ∈ ZNs−1 , we first sample r

r←− Zn and set a ciphertext as (gr, Tm · hr).
If we have the secret key x, we can decrypt the ciphertext by computing the discrete logarithm
of (Tm · hr) · (gr)−x = Tm.

Triple mode proof framework. We say that a PKE scheme is KDM secure if an encryption
of f(sk) is indistinguishable from that of some constant message such as 0, where sk is a secret
key and f is a function. Malkin et al. showed the Faff-KDM-CPA security of their scheme
based on the DCR assumption via the proof strategy that they call the triple mode proof.

In the triple mode proof framework, we prove KDM security using three main hybrid games.
We let f be a function queried by an adversary as a KDM query. In the first hybrid called
Standard Mode, the challenger returns an encryption of f(sk). In the second hybrid called Fake
Mode, the challenger returns a simulated ciphertext from f and the public key corresponding
to sk. In the final hybrid called Hide Mode, the challenger returns an encryption of 0. See
Figure 3.

If we can prove that the behavior of the adversary does not change between Standard Mode
and Hide Mode, we see that the scheme is KDM secure. However, it is difficult to prove it

1This is done by generating µ
r←− Z∗

Ns and setting g := µ2Ns−1

mod Ns. Then, g is a generator of Gn with
overwhelming probability.

2In the actual scheme, we sample a secret key from [N−1
4

]. We ignore this issue in this overview.

5

directly by relying on the secrecy of the secret key. This is because a reduction algorithm needs
the secret key to simulate answers to KDM queries in Standard Mode. Then, we consider the
intermediate hybrid, Fake Mode, and we try to prove the indistinguishability between Standard
Mode and Fake Mode based on the secrecy of encryption randomness. We call this part Step
(1). If we can do that, by showing the indistinguishability between Fake Mode and Hide Mode
based on the secrecy of the secret key, we can complete the proof. We call this part Step (2).
Note that a reduction for Step (2) does not need the secret key to simulate answers to KDM
queries.

Using this framework, we can prove the KDM-CPA security of Malkin et al.’s scheme as
follows. Let f(x) = ax + b mod N s−1 be an affine function queried by an adversary, where
a, b ∈ ZNs−1 . In Standard Mode, the adversary is given (gr, T ax+b · hr). In Fake Mode, the
adversary is given (T−a · gr, T b · hr). We can prove the indistinguishability of these two hybrids
using the indistinguishability of gr and T−a · gr. Namely, we use the DCR assumption and the
secrecy of encryption randomness r in this step. Then, in Hide Mode, the adversary is given
(gr, hr) that is an encryption of 0. We can prove the indistinguishability between Fake Mode
and Hide Mode based on the interactive vector (IV) lemma [6] that is in turn based on the
DCR assumption. The IV lemma says that for every constant c1, c2 ∈ ZNs−1 , (T c1 · gr, T c2 · hr)
is indistinguishable from (gr, hr) if in addition to r, x satisfying h = gx is hidden from the view
of an adversary. This completes the proof of Malkin et al.’s scheme.

2.2 Problem When Proving KDM-CCA Security

Malkin et al.’s scheme is malleable thus is not KDM-CCA secure. In terms of the proof, Step
(2) of the triple mode proof does not go through when considering KDM-CCA security. In Step
(2), a reduction does not know the secret key and thus the reduction cannot simulate answers
to decryption queries correctly.

On the other hand, we see that Step (1) of the triple mode proof goes through also when
proving KDM-CCA security since a reduction algorithm knows the secret key in this step.
Thus, to construct a KDM-CCA secure scheme based on Malkin et al’s scheme, all we need is
a mechanism that enables us to complete Step (2) of the triple mode proof.

2.3 The Technique by Kitagawa and Tanaka

To solve the above problem, we adopt the technique used by Kitagawa and Tanaka [19]. They
constructed a KDM-CCA secure PKE scheme Πkdm by combining projective hash functions PHF
and PHF′ and an IND-CCA secure PKE scheme Πcca. Their construction is a double layered
construction. Namely, when encrypting a message by their scheme, we first encrypt the message
by the inner scheme constructed from PHF and PHF′, and then encrypt the ciphertext again by
Πcca. The inner scheme is the same as the IND-CCA secure PKE scheme based on projective
hash functions proposed by Cramer and Shoup [9] except that PHF used to mask a message is
required to be homomorphic and on the other hand PHF′ is required to be only universal (not
2-universal).

The security proof for this scheme can be captured by the triple mode proof framework. We
first perform Step (1) of the triple mode proof based on the homomorphism of PHF and the
hardness of a subset membership problem on the group behind projective hash functions. Then,
we perform Step (2) of the triple mode proof using the IND-CCA security of Πcca. In this step, a
reduction algorithm can simulate answers to decryption queries. This is because the reduction
algorithm can generate secret keys for PHF and PHF′ by itself and access to the decryption
oracle for Πcca. When proving the CCA security of a PKE scheme based on projective hash
functions, at some step in the proof, we need to estimate the probability that an adversary

6

makes an “illegal” decryption query. In the proof of the scheme by Kitagawa and Tanaka, this
estimation can be done in Hide Mode of the triple mode proof. Due to this, the underlying
PHF′ needs to be only universal.

If the secret key csk of Πcca is included as a part of the secret key of Πkdm, to complete the
proof, we need to change the security game so that csk is not needed to simulate answers to
KDM queries in Step (1). It seems difficult unless we require an additional property for secret
keys of Πcca such as homomorphism. Instead, Kitagawa and Tanaka designed their scheme so
that csk is included in the public key of Πkdm after encrypting it by PHF. Then, by eliminating
this encrypted csk from an adversary’s view by using the security of PHF before Step (2) of
the triple mode proof, the entire proof goes through. Note that, similarly to the proof for the
construction by Cramer and Shoup [9], a reduction algorithm attacking the security of PHF
can simulate answers to decryption queries due to the fact that the security property of PHF is
statistical and an adversary for Πkdm is required to make a proof that the query is “legal” using
PHF′.

2.4 Adopting the Technique by Kitagawa and Tanaka

We now consider adopting the technique by Kitagawa and Tanaka into Malkin et al.’s scheme.
Namely, we add a projective hash function for proving that an inner layer ciphertext of Malkin
et al.’s scheme is well-formed, and also add an IND-CCA secure PKE scheme Πcca as the outer
layer. In order to prove the KDM-CCA security of this construction, we need to make the secret
key csk of Πcca as part of the public key of the resulting scheme after encrypting it somehow.
Moreover, we have to eliminate this encrypted csk before Step (2) of the triple mode proof.
However, this is not straightforward.

One naive way to do this is encrypting csk by the inner scheme based on the DCR assump-
tion, but this idea does not work. Since the security of the inner scheme is computational
unlike a projective hash function, a reduction algorithm attacking the inner scheme cannot
simulate answers to decryption queries. One might think the problem is solved by modifying
the scheme so that the security property of the inner scheme becomes statistical as a projective
hash function, but this modification causes another problem. In order to do this, similarly to
the DCR-based projective hash function by Cramer and Shoup [9], a secret key of the inner
scheme needs to be sampled from a space whose size is as large as the order of GNs−1⊗Gn (that
is, N s−1 · n). However, the message space of this scheme is ZNs−1 , and thus we cannot encrypt
such a large secret key by this scheme. The problem is more complicated when considering
KDM-CCA security in the multi-user setting. Therefore, we need another solution to hide the
secret key csk of Πcca.

2.5 Solution: Symmetric Key Encapsulation Mechanism (SKEM)

To solve the above problem, we introduce a new primitive we call symmetric key encapsulation
mechanism (SKEM). It is a key encapsulation mechanism in which we can use the same key
for both the encapsulation algorithm Encap and decapsulation algorithm Decap. Moreover, it
satisfies the following properties.

Encap can take an arbitrary integer x ∈ Z as an input secret key, but its computation
is done by x mod z, where z is an integer determined in the setup. Then, for correctness,
we require Decap(x mod z, ct) = K, where (ct,K) ← Encap(x). Moreover, for security, the
pseudorandomness of the session-time key K is required to hold as long as x mod z is hidden
from an adversary even if any other information of x is revealed.

Using SKEM (Encap,Decap) in addition to an IND-CCA secure PKE scheme Πcca and a
projective hash function PHF, we can construct a KDM-CCA secure PKE scheme based on

7

Malkin et al.’s scheme as follows. When generating a key pair, we first sample x
r←− [n · z] and

compute h← gx, where z is an integer that is co-prime to n and satisfies n ·z ≤ N s−1. Then, we
generate a key pair (ppk, psk) of PHF and (cpk, csk) of Πcca, and (ct,K)← Encap(x), and encrypt
psk and csk to ctsk using the one-time key K. The resulting secret key is just x and public key
is h, psk, cpk, and (ct, ctsk).

3 When encrypting a message m, we encrypt it in the same way as
the Malkin et al.’s scheme and prove that those ciphertext components are included in Gn by
using PHF. Then, we encrypt them by Πcca. When decrypting the ciphertext, we first retrieve
csk and psk from (ct, ctsk) and x using Decap, and decrypt the ciphertext using x, psk, and csk.

We can prove the Faff-KDM-CCA security of this scheme basically based on the triple mode
proof framework. By doing the same process as Step (1) of the triple mode proof for Malkin
et al.’s scheme, we can change the security game so that we can simulate answers to KDM
queries using only x mod n. Moreover, due to the use of the projective hash function PHF, we
can change the security game so that we can reply to decryption queries using only x mod n.
Therefore, at this point, we do not need x mod z to simulate the security game, and thus we
can use the security of the SKEM. We now delete csk and psk from ctsk using the security of the
SKEM. Then, by using the security of Πcca, we can accomplish Step (2) of the triple mode proof.
Note that, similarly to the proof by Kitagawa and Tanaka [19], we estimate the probability that
an adversary makes an “illegal” decryption query after Step (2) using the security of PHF.

2.6 Extension to the Multi-user Setting Using RKA Secure SKEM

The above overview of the proof considers KDM-CCA security in the single user setting. We
can extend it to the multi-user setting. When considering KDM-CCA security in the multi-
user setting, we modify the scheme so that we sample a secret key x from [n · z · 2ξ] such that
n · z · 2ξ ≤ N s−1. In the security proof, we sample a single x from [n · z] and generate the secret
key xi of the i-th user by sampling ∆i

r←− [n · z · 2ξ] and setting xi = x+∆i, where the addition
is done over Z. In this case, an affine function f of x1 . . . , xℓ is also an affine function of only
x whose coefficients are determined by those of f and ∆1, . . . ,∆ℓ. Moreover, the statistical
distance between a secret key generated in this way and that generated honestly is at most 2−ξ.
Then, we can proceed the security proof in the same way as above, except for the part using
the security of the SKEM.

The secret key xi of the i-th user is now generated as x + ∆i by using a single source x.
Thus, each user’s one-time key Ki used to hide the user’s (psk, csk) is derived from a single
source x and a “shift” value ∆i. Standard security notations do not capture such a situation.

To address this problem, we require a security property against related key attacks (RKA
security) for SKEM. However, a very weak form of RKA security is sufficient to complete the
proof. We show that such an RKA secure SKEM can be constructed based only on the DCR
assumption. Therefore, we can prove the KDM-CCA security in the multi-user setting of our
scheme based only on the DCR assumption and the IND-CCA security of the underlying PKE
scheme.

2.7 Differences in Usage of RKA Secure Primitive with Han et al.

We note that the previous most efficient KDM-CCA secure PKE schemes of Han et al. [12] (and
the scheme of Lu et al. [22] on which the constructions of [12] are based), also use a “symmetric
key” primitive that is “RKA secure”. Specifically, Han et al. use a primitive called authenticated
encryption with auxiliary-input (AIAE, for short), for which they define confidentiality and

3In the actual construction, we derive key pairs (csk, cpk) and (ppk, psk) using K as a random coin. This
modification reduces the size of a public key.

8

integrity properties both under some appropriate forms of affine-RKA. Here, we highlight the
differences between our proposed schemes and the schemes by Han et al. regarding the usage
of a symmetric primitive with RKA security.

In our schemes, an RKA secure SKEM is used to derive the secret keys (psk, csk) of the un-
derlying projective hash function and IND-CCA secure PKE scheme, and an SKEM ciphertext
is put as part of a public key of the resulting scheme. In a modified security game considered
in our security proofs, a KDM-CCA adversary sees multiple SKEM ciphertexts {cti} (con-
tained in the public keys initially given to the adversary), where each cti is computed by using
x+∆i mod z as a secret key, where ∆i ∈ [n ·z ·2ξ] is chosen uniformly at random. Consequently,
an SKEM used as a building block in our proposed schemes needs to be secure only against
“passive” addition-RKA, in which the shift values {∆i} are chosen randomly by the challenger
(rather than by an RKA adversary). Such an SKEM is easy to construct, and we will show
several simple and efficient instantiations based on the DCR assumption, the DDH assumption,
and hash functions with some appropriate form of “correlation-robustness” [18, 2].

On the contrary, in the Han et al.’s schemes, an AIAE ciphertext is directly contained
as part of a ciphertext of the resulting scheme, and thus AIAE ciphertexts are exposed to a
CCA. This is a main reason of the necessity of the integrity property for AIAE. Furthermore,
in a modified security game considered in the security proofs of their schemes, a KDM-CCA
adversary is able to observe multiple AIAE ciphertexts that are computed under secret keys
that are derived via (some restricted from of) an affine function of a single (four-dimensional)
vector of elements in ZN through affine/poly-KDM queries, and thus their AIAE scheme needs
to be secure under standard “active” affine-RKA (where key derivation functions are chosen by
an RKA adversary, rather than the challenger). Han et al.’s instantiation of AIAE is essentially
the Kurosawa-Desmedt encryption scheme [20] used as a symmetric encryption scheme, which
is why they require the DDH assumption in addition to the DCR assumption.

2.8 Tightness of Our Construction

Our construction can be tightly instantiated by using a tightly IND-CCA secure PKE scheme
as a building block. In our security proof, we can accomplish Step (1) of the triple mode proof
by applying the DCR assumption only once via the IV lemma [6]. In Step (2), we need only a
single application of the IND-CCA security of the outer scheme by requiring IND-CCA security
in the multi-challenge multi-user setting. Thus, if the underlying IND-CCA secure scheme
satisfies tight security in the setting, this step is also tight. In the estimation of the probability
of “illegal” decryption queries, we only use a statistical property, and thus we do not lose any
factor to the underlying assumption. The remaining part of our proof is eliminating secret keys
of projective hash function and IND-CCA secure PKE encrypted by SKEM from an adversary’s
view. To make the entire proof tight, we have to accomplish this step tightly.

To achieve this, we show the RKA security of our SKEM can be tightly reduced to the
underlying assumptions. Especially, in the proof of the DCR based construction, we show this
using the IV lemma that is different from that we use in Step (1) of the triple mode proof.
Namely, in this work, we use two flavors of the IV lemmas to make the security proof for the
DCR-based instantiation tight.

To the best of our knowledge, prior to our work, the only way to construct tightly KDM-
CCA secure PKE is instantiating the construction proposed by Camenisch et al. [7] using a
tightly secure NIZK proof system such as that proposed by Hofheinz and Jager [15]. Schemes
instantiated in such a way are not so practical and a ciphertext of them consists of O(λ) group
elements, where λ is the security parameter. We observe that the DDH-based construction of
Kitagawa and Tanaka [19] can be tightly instantiated by using a tightly IND-CCA secure PKE

9

scheme as a building block, though they did not state that explicitly. However, its ciphertext
also consists of O(λ) group elements. Thus, our schemes are the first tightly KDM-CCA secure
PKE scheme whose ciphertext consists of a constant number of group elements.

3 Preliminaries

In this section, we define some notations and cryptographic primitives.

3.1 Notations

In this paper, x
r←− X denotes choosing an element from a finite set X uniformly at random,

and y ← A(x) denotes assigning to y the output of an algorithm A on an input x. For an integer
ℓ > 0, [ℓ] denote the set of integers {1, . . . , ℓ}. For a function f , Sup (f) denotes the support of
f . For a finite set S, |S| denotes its cardinality, and US denotes the uniform distribution over
S.

λ denotes a security parameter. PPT stands for probabilistic polynomial time. A function
f(λ) is a negligible function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We write
f(λ) = negl(λ) to denote f(λ) being a negligible function.

Let X be a distribution over a set S. The min-entropy of X, denoted by H∞(X), is defined
by

H∞(X) := − log2max
z∈S

Pr[X = z] .

Let X and Y be distributions over a set S. The statistical distance between X and Y ,
denoted by SD(X,Y), is defined by

SD(X,Y) :=
1

2

∑
z∈S
|Pr[X = z]− Pr[Y = z]| .

We say that X and Y are ϵ-close if SD(X,Y) ≤ ϵ.

3.2 Leftover Hash Lemma

Here, we recall the leftover hash lemma. Recall that a hash family H = {H : D → R} is said
to be universal if for all distinct x, x′ ∈ D, it holds that Pr

H
r←−H[H(x) = H(x′)] ≤ 1

|R| .

Lemma 1 (Leftover hash lemma) Let H := {H : D → R} be a universal hash family, and
let X be a distribution over D. Then,

SD ((H,H(X)), (H,UR)) ≤
1

2
·
√

2−H∞(X) · |R| ,

where H
r←− H.

3.3 Assumptions

We review the algebraic structure and assumptions used in this paper.
Let N = PQ be an RSA modulus with len-bit safe primes P = 2p+1 and Q = 2q+1 where

p and q are also primes. Let n = pq. Throughout the paper, we assume len ≥ λ, and we will
frequently use the fact that SD(U[n],U[N−1

4]) =
P+Q−2
N−1 = O(2−len).

Let s ≥ 2 be an integer and T := 1 + N . We can decompose Z∗Ns as the internal direct
product GNs−1 ⊗⟨−1⟩⊗Gn⊗G2, where ⟨−1⟩ is the subgroup of Z∗Ns generated by −1 mod N s,

10

and GNs−1 , Gn, and G2 are cyclic groups of order N s−1, n, and 2, respectively. Note that
T = 1 + N ∈ Z∗Ns has order N s−1 and it generates GNs−1 . In addition, we can generate a

random generator of Gn by generating µ
r←− Z∗Ns and setting g := µ2Ns−1

mod N s. Then, g
is a generator of Gn with overwhelming probability. We also note that the discrete logarithm
(base T) is easy to compute in GNs−1 .

Let QRNs :=
{
x2
∣∣x ∈ Z∗Ns

}
. Then, we have QRNs = GNs−1 ⊗Gn. We denote ⟨−1⟩⊗QRNs

by JNs . We can efficiently check the membership of JNs by computing the Jacobi symbol with
respect to N , without P and Q.

Let GGen be an algorithm, which we call the DCR group generator, that given 1λ and an
integer s ≥ 2, outputs param = (N,P,Q, T, g), where N , P , Q, and T are defined as above, and
g is a random generator of Gn.

We adopt the definition of the DCR assumption [25, 10] used by Hofheinz [13].

Definition 1 (DCR assumption) We say that the DCR assumption holds with respect to
GGen if for any integer s ≥ 2 and PPT adversary A, we have

Advdcrs,A(λ) = |Pr[A (N, g, gr mod N s) = 1]− Pr[A (N, g, T · gr mod N s) = 1]| = negl(λ) ,

where (N,P,Q, T, g)← GGen
(
1λ, s

)
and r

r←− [n].

We recall the interactive vector game introduced by Brakerski and Goldwasser [6].

Definition 2 (Interactive vector game) Let s ≥ 2 be an integer and ℓ be a polynomial of
λ. We define the following IVs,ℓ game between a challenger and an adversary A.

1. The challenger chooses a challenge bit b
r←− {0, 1} and generates (N,P,Q, T, g)← GGen

(
1λ, s

)
.

If ℓ = 1, the challenger sends N and g1 := g to A. Otherwise, the challenger generates
αi

r←−
[
N−1
4

]
and computes gi ← gαi mod N s for every i ∈ [ℓ], and sends N , g, and

g1, . . . , gℓ to A.

2. A can adaptively make sample queries.

Sample queries A sends (a1, . . . , aℓ) ∈ Zℓ
Ns−1 to the challenger. The challenger gener-

ates r
r←−
[
N−1
4

]
and computes ei ← T b·ai ·gri mod N s for every i ∈ [ℓ]. The challenger

then returns (e1, . . . , eℓ) to A.

3. A outputs b′ ∈ {0, 1}.

We say that IVs,ℓ is hard if for any PPT adversary A, we have AdvIVs,ℓ,A(λ) = 2·
∣∣Pr[b = b′]− 1

2

∣∣
= negl(λ).

For any s and ℓ, IVs,ℓ is hard under the DCR assumption [6, 23]. We show the following
lemmas related to IVs,ℓ that are useful to prove the tight security of our constructions.

Lemma 2 Let s ≥ 2 be an integer. Let A be a PPT adversary that plays the IVs,1 game and
makes at most qiv queries. Then, there exists a PPT adversary B satisfying

Advivs,1,A(λ) ≤ 2 · Advdcrs,B(λ) +
O (qiv)

2len
.

Lemma 3 Let s ≥ 2 be an integer. Let ℓ be a polynomial of λ. Let A be a PPT adversary that
plays the IVs,ℓ game and makes exactly one sample query. Then, there exists a PPT adversary
B satisfying

Advivs,ℓ,A(λ) ≤ 2 · Advdcrs,B(λ) +
O (ℓ)

2len
.

11

The proofs of Lemmas 2 and 3 are given in Section B.

3.4 Projective Hash Function

We review the notion of projective hash functions (PHF) introduced by Cramer and Shoup
[9] (which is also called hash proof systems in the literature). In this work, we will use PHFs
defined with respect to the DCR group generator GGen.

Definition 3 (Projective hash function family) A PHF family PHF with respect to GGen
consists of a tuple (Setup,Πyes,Πno,SK,PK,K,Λ, µ,Pub) with the following properties:

• Setup is a PPT algorithm that takes param = (N,P,Q, T, g) output by GGen(1λ, s) (for
some s ≥ 2) as input, and outputs a public parameter pp that parameterizes the remaining
components of PHF. (In the following, we always make the existence of pp implicit and
suppress it from the notation.)

• Πyes, Πno, SK, PK, and K are sets parameterized by pp (and also by param). Πyes and
Πno form an NP-language,4 where for all c ∈ Πyes, there exists a witness r with which one
can efficiently check the fact of c ∈ Πyes. An element in Πyes (resp. Πno) is called an yes
(resp. no) instance.

Furthermore, it is required that given pp, one can efficiently sample a uniformly random
element from SK.

• Λ is an efficiently computable (deterministic) hash function that takes a secret key sk ∈ SK
and an yes or no instance c ∈ Πyes ∪Πno as input, and outputs a hash value π ∈ K.

• µ is an efficiently computable (deterministic) projection map that takes a secret key sk ∈
SK as input, and outputs a public key pk ∈ PK.

• Pub is an efficiently computable algorithm that takes a public key pk ∈ PK, an yes instance
c ∈ Πyes, and a witness r that c ∈ Πyes as input, and outputs a hash value π ∈ K.

• Projective property: For all sk ∈ SK, the action of Λsk(·) for yes instances c ∈ Πyes is
completely determined by pk = µ(sk). Furthermore, for all c ∈ Πyes and a corresponding
witness r, it holds that Λsk(c) = Pub(µ(sk), c, r).

We next introduce the universal property for a PHF family. In this paper, we consider the
statistical and computational variants. Our definition of the computational universal property
is based on the “computational universal2” property for a hash proof system introduced by
Hofheinz and Kiltz [16]. We adapt their definition to the “universal1” case, and also relax the
notion so that we only require that guessing a hash value for a no instance is hard, rather than
requiring that a hash value of a no instance is pseudorandom.

Definition 4 (Statistical/computational universal) Let s ≥ 2, GGen be the DCR group
generator, and PHF = (Setup,Πyes,Πno,SK,PK,K,Λ, µ,Pub) be a PHF family with respect to
GGen. We say that PHF is

• ϵ-universal if for any param output by GGen(1λ, s), any pp output by Setup(param), any
pk ∈ PK, any c ∈ Πno, and any π ∈ K, we have

Pr
sk←SK

[Λsk(c) = π|µ(sk) = pk] ≤ ϵ . (1)

4Strictly speaking, since Πyes and Πno may not cover the entire input space of the function Λsk(·) introduced
below, they form an NP-promise problem.

12

Furthermore, we simply say that PHF is universal if it is ϵ-universal for some negligible
function ϵ = ϵ(λ).

• computationally universal if for any PPT adversary A, the advantage AdvcuPHF,A(λ) in the
following game played by A and a challenger is negligible in λ:

1. First, the challenger executes param = (N,P,Q, T, g) ← GGen(1λ, s) and pp ←
Setup(param). The challenger then chooses sk

r←− SK, and computes pk ← µ(sk).
Then, the challenger sends (N,T, g, pp, pk) to A.

2. A can adaptively make evaluation queries.

Evaluation queries A sends an yes or no instance c ∈ Πyes∪Πno to the challenger.
If c ∈ Πyes, the challenger returns π ← Λsk(c) to A. Otherwise (i.e. c ∈ Πno),
the challenger returns ⊥ to A.

3. A outputs a pair (c∗, π∗) ∈ Πno×K. The advantage of A is defined by AdvcuPHF,A(λ) :=
Pr[Λsk(c

∗) = π∗].

Remark 1 (Statistical implies computational) It is not hard to see that the (statistical)
universal property implies the computational one (even against computationally unbounded
adversaries). To see this, recall that the projective property ensures that the action of Λsk(·)
for yes instances is determined by pk. Thus, the evaluation results Λsk(c) for yes instances
c ∈ Πyes do not reveal the information of sk beyond the fact that pk = µ(sk). Also, evaluation
queries with no instances c ∈ Πno are answered with ⊥. These imply that throughout the game,
the information of sk does not leak to an adversary beyond what is already leaked from pk.
Thus, at the point of outputting (c∗, π∗), sk is uniformly distributed over the subset SK|pk :=
{sk′ ∈ SK|µ(sk′) = pk} from an adversary’s viewpoint, which is exactly the distribution of sk
in the probability defining the universal property. Hence, if a PHF family is ϵ-universal, the
probability that Λsk(c

∗) = π∗ occurs is upper bounded by ϵ.

3.5 Public Key Encryption

Here, we review the definitions for public key encryption (PKE).

Definition 5 (Public key encryption) A PKE scheme PKE is a four tuple (Setup,KG,Enc,
Dec) of PPT algorithms. Below, letM be the message space of PKE.

• The setup algorithm Setup, given a security parameter 1λ, outputs a public parameter pp.
For simplicity, we omit pp from inputs for Enc and Dec.

• The key generation algorithm KG, given a public parameter pp, outputs a public key pk
and a secret key sk.

• The encryption algorithm Enc, given a public key pk and a message m ∈ M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a public key pk, a secret key sk, and a ciphertext c,
outputs a message m̃ ∈ {⊥} ∪M.

Correctness We require Dec(pk, sk,Enc(pk,m)) = m for every m ∈ M, pp ← Setup(1λ), and
(pk, sk)← KG(pp).

Next, we define key dependent message security against chosen ciphertext attacks (KDM-
CCA security) for PKE.

13

Definition 6 (KDM-CCA security) Let PKE be a PKE scheme, F function family, and ℓ
the number of keys. We define the F-KDM-CCA game between a challenger and an adversary
A as follows. Let SK andM be the secret key space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1} and generates pp ← Setup(1λ).

Next, the challenger generates ℓ key pairs (pkk, skk) ← KG(pp) (k ∈ [ℓ]). The challenger
sets sk := (sk1, . . . , skℓ) and sends (pk1, . . . , pkℓ) to A. Finally, the challenger prepares a
list Lkdm which is initially empty.

2. A may adaptively make the following queries polynomially many times.

KDM queries A sends
(
j, f0, f1

)
∈ [ℓ] × F × F to the challenger. We require that

f0 and f1 be functions such that f : SKℓ → M. The challenger returns CT ←
Enc

(
pkj , f

b(sk)
)
to A. Finally, the challenger adds (j,CT) to Lkdm.

Decryption queries A sends (j,CT) to the challenger. If (j,CT) ∈ Lkdm, the challenger
returns ⊥ to A. Otherwise, the challenger returns m← Dec

(
pkj , skj ,CT

)
to A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM-CCA secure if for any polynomial ℓ = ℓ(λ) and PPT adversary
A, we have Advkdmcca

PKE,F ,ℓ,A(λ) = 2 ·
∣∣Pr[b = b′]− 1

2

∣∣ = negl(λ).

The above definition is slightly different from the standard definition where an adversary is
required to distinguish encryptions of f(sk1, . . . , skℓ) from encryptions of some fixed message.
However, the two definitions are equivalent if the function class F contains a constant function,
and this is the case for affine functions and polynomials treated in this paper.

The definition of IND-CCA security (in the multi-user/challenge setting) is recovered by
restricting the functions used in KDM queries in the KDM-CCA game to constant functions,
and thus we omit the description of the security game for it. We denote an adversary A’s
IND-CCA advantage by AdvindccaPKE,ℓ,A(λ).

4 Symmetric KEM and Passive RKA Security

In our proposed PKE schemes, we will use a secret key variant of a key encapsulation mechanism
(KEM) satisfying a weak form of RKA security with respect to addition, as one of the main
building blocks. Since several instantiations for this building block from various assumptions
are possible, in this section we formalize it as a stand-alone primitive called symmetric KEM
(SKEM), together with its RKA security in the form we use in the security proofs of the proposed
PKE schemes. After giving the definitions in Section 4.1, we give concrete instantiations in
Section 4.2 (and in Section C).

4.1 Definition

We first give the formal syntax and functional requirements of an SKEM, and then give some
remarks.

Definition 7 (Symmetric key encapsulation mechanism) An SKEM SKEM is a three tu-
ple (Setup,Encap,Decap) of PPT algorithms.

14

• The setup algorithm Setup, given a security parameter 1λ, outputs a public parameter pp
and a pair of natural numbers (z, z̃), where z represents the size of the secret key space,
and the secret key space is [z], and z̃ is an approximation of z.We assume that z̃ (but
not necessarily z) can be efficiently derived from pp. We also assume that pp specifies the
session-key space K.

• The encapsulation algorithm Encap, given a public parameter pp and a secret key sk ∈ Z,
outputs a ciphertext ct and a session-key K ∈ K.

• The decapsulation algorithm Decap, given a public parameter pp, a secret key sk ∈ Z, and
a ciphertext ct, outputs a session-key K ∈ K.

As the functional (syntactical) requirements, we require the following three properties to hold
for all (pp, z, z̃)← Setup(1λ):

1. (Approximate samplability of secret keys:) SD(U[z],U[z̃])) ≤ O(2−λ) holds.

2. (Correctness of decapsulation:) Decap(pp, sk mod z, ct) = K holds for every sk ∈ Z and
(ct,K)← Encap(pp, sk).

3. (Implicit modular-reduction in encapsulation:) Encap(pp, sk; r) = Encap(pp, sk mod z; r)
holds for every sk ∈ Z and randomness r for Encap.

Remark 2 (On the syntax and functional requirements)

• As mentioned above, when (pp, z, z̃) is output by Setup(1λ), the secret key space under
pp is [z]. For security reasons, however, in some constructions, the exact order z cannot
be made public even for an entity executing Encap and Decap. (In particular, this is the

case in our concrete instantiation from the DCR assumption, in which we set z = ϕ(N)
4

and z̃ = N−1
4 .) Hence, we instead require its approximation z̃ to be public via pp.

• We allow Encap and Decap to take any integer sk ∈ Z (rather than sk ∈ [z] or sk ∈ [z̃]) as
a secret key, but their “correctness guarantees” expressed by the second and third items
of the functional requirements, are with respect to the modular-reduced value sk mod z.
Such flexible interface is convenient when an SKEM is used as a building block in the
proposed PKE schemes.

• The third item in the functional requirements ensures that a ciphertext/session-key pair
(ct,K) generated by using sk ∈ Z does not leak the information of sk beyond sk mod z.
This property plays an important role in the security proofs of our proposed PKE schemes.

• Note that an SKEM can satisfy our syntactical and functional requirements even if its
ciphertext is empty. (Say, Encap and Decap output some deterministic function of pp and
sk mod z̃.) In fact, our instantiation of an SKEM from a hash function is of this kind. See
Section C.

In the following, we give the formalization of passive RKA security. It is essentially the
definition of the same name defined for symmetric encryption by Applebaum, Harnik, and
Ishai [2], with the slight difference that we allow an adversary to specify the upper bound B of
the interval from which key-shifting values {∆k} are chosen randomly by the challenger.

Definition 8 (Passive RKA security) Let SKEM = (Setup,Encap,Decap) be an SKEM,
and let ℓ be a natural number. Consider the following game between a challenger and an adver-
sary A:

15

1. First, the challenger chooses a challenge bit b
r←− {0, 1} and generates (pp, z, z̃)← Setup(1λ).

Then, the challenger sends z̃ to A.

2. A sends an integer B ≥ z̃ specifying the upper bound of the interval from which key-shifting
values {∆k}k∈[ℓ] are chosen, to the challenger.

3. The challenger samples sk
r←− [z] and ∆k

r←− [B] for every k ∈ [ℓ]. Then, the challenger
computes (ctk,K

1
k) ← Encap(pp, sk + ∆k)

5 and also samples K0
k ← K for every k ∈ [ℓ].

Finally, the challenger sends pp, (∆k)k∈[ℓ], and
(
ctk,K

b
k

)
k∈[ℓ] to A.

4. A outputs b′ ∈ {0, 1}.

We say that SKEM is passively RKA secure, if for any polynomial ℓ = ℓ(λ) and PPT
adversary A, we have AdvrkaSKEM,ℓ,A(λ) = 2 ·

∣∣Pr[b = b′]− 1
2

∣∣ = negl(λ).

Remark 3 (Stretching a session-key with a pseudorandom generator) From the def-
inition, it is easy to see that a session-key of an SKEM can be stretched by using a pseu-
dorandom generator (PRG) while preserving its passive RKA security. More specifically, let
SKEM = (Setup,Encap,Decap) be an SKEM with session-key space K, and let PRG : K →
K′ be a PRG such that |K| < |K′|. Let SKEM′ = (Setup,Encap′,Decap′) be the SKEM
with session-key space K′ that is obtained by naturally composing SKEM with PRG, namely,
Encap′(pp, sk) runs (ct,K) ← Encap(pp, sk) and outputs (ct,PRG(K)), and Decap′(pp, sk, ct) :=
PRG(Decap(pp, sk, ct)). Then, if SKEM is passively RKA secure and PRG is a secure PRG, then
SKEM′ is also passively RKA secure. Moreover, if the passive RKA security of SKEM is tightly
reduced to some assumption and the multi-instance version of the security of PRG is also tightly
reduced to the same assumption, then so is the passive RKA security of SKEM′. (Since the
proof is straightforward, we omit a formal proof of this simple fact.) Note that we can easily
construct tightly secure PRG based on the DDH or DCR assumption.

4.2 Concrete Instantiations

Our definition of passive RKA security for an SKEM is sufficiently weak so that simple and
efficient constructions are possible from the DCR or DDH assumption, which are essentially
the symmetric-key version of the ElGamal KEM. We can also realize it from a hash function
satisfying an appropriate form of “correlation robustness” [18, 2]. In this subsection, we give
a concrete instantiation based on the DCR assumption. The other instantiations are given in
Section C.

Let s ≥ 2, GGen be the DCR group generator, andH =
{
H : {0, 1}2s·len → K

}
be a universal

hash family. Then, we can construct an SKEM SKEM = (Setup,Encap,Decap) whose session-key
space is K, as described in Figure 4.6

It is obvious to see that SKEM satisfies the three functional requirements of SKEM. Specifi-
cally, let (pp, z, z̃) be output by Setup. Then, we have SD

(
U[z],U[z̃]

)
= SD(U[

ϕ(N′)
4

],U[
N′−1

4

]) =
O(2−len) ≤ O(2−λ). The other two properties of the functional requirements are also satisfied
due to the fact that in Encap and Decap, a secret key is treated only in the exponent of elements
in Gn′ (where n′ = (P ′ − 1)(Q′ − 1)/4, and Gn′ is the subgroup of Z∗N ′s of order n′).

The passive RKA security of SKEM can be shown as follows.

5The addition sk+∆k is done over Z.
6Since the RSA modulus used in the SKEM has to be generated independently of that in the main constructions

presented in Sections 5 and 6, here we use characters with a prime (e.g. N ′) for values in param.

16

Setup(1λ) :
(N ′, P ′, Q′, T ′, g′)← GGen(1λ, s)

H
r←− H

pp← (N ′, T ′, g′,H)

Return (pp, z := ϕ(N ′)
4 , z̃ := N ′−1

4).

Encap(pp, sk ∈ Z) :
(N ′, T ′, g′,H)← pp

α
r←− [N

′−1
4]

ct← g′α mod N ′s

K← H(ctsk mod N ′s)
Return (ct,K).

Decap(pp, sk ∈ Z, ct) :
(N ′, T ′, g′,H)← pp
K← H(ctsk mod N ′s)
Return K.

Figure 4: The DCR-based instantiation of an SKEM.

Lemma 4 If the DCR assumption holds with respect to GGen, and ϵLHL := 1
2 ·
√

2−(s−1)·(2len−1) · |K|
= negl(λ), then SKEM is passively RKA secure.

Specifically, for any polynomial ℓ = ℓ(λ) and PPT adversary A that attacks the passive RKA
security of SKEM, there exists a PPT adversary B such that

AdvrkaSKEM,ℓ,A(λ) ≤ 2 · Advdcrs,B(λ) + ℓ ·
(
ϵLHL +O(2−len)

)
. (2)

Proof of Lemma 4. Fix arbitrarily a polynomial ℓ = ℓ(λ) and a PPT adversary A. Consider
the following sequence of games.

Game 0: This is the passive RKA security game in which b = 1. Note that in this game, sk is
sampled as sk

r←− [n′], and each session-key Kk (corresponding to the k-th ciphertext ctk)
given to A is computed as

Kk = H
(
ctsk+∆k

k mod N ′s
)
= H

(
g′αk(sk+∆i) mod N ′s

)
,

where pp = (N ′, T ′, g′,H) is a public parameter, αk is the randomness used to generate
the k-th ciphertext ctk = g′αk mod N ′s, ∆1, . . . ,∆ℓ are the key-shifting values chosen
uniformly at random from [B], and B ≥ z̃ is the bound of the interval chosen by A.

Game 1: Same as Game 0, except that sk is sampled as sk
r←−
[
N ′−1

4

]
.

Game 2: Same as Game 1, except that each Kk is computed by first choosing θk
r←− [N ′s−1]

and then computing

Kk = H
(
T ′θk · ctsk+∆k

k mod N ′s
)
= H

(
T ′θk · g′αi(sk+∆k) mod N ′s

)
.

Game 3: Same as Game 2, except that sk is sampled as sk
r←− [n′].

Game 4: This is the passive RKA security game in which b = 0. Hence, each Kk is chosen
uniformly at random from K.

For t ∈ {0, . . . , 4}, let Tt be the event that A outputs 1 in Game t. By the definition of the
advantage and the triangle inequality, we have

AdvrkaSKEM,ℓ,A(λ) = |Pr[T0]− Pr[T4]| ≤
∑

t∈{0,1,2,3}

|Pr[Tt]− Pr[Tt+1]| . (3)

Firstly, we have |Pr[T0]− Pr[T1]| ≤ O(2−len) and |Pr[T2]− Pr[T3]| ≤ O(2−len), since it

holds that SD(U[
N′−1

4

],U[n′]) = P ′+Q′−1
N ′−2 = O(2−len). Below, we estimate |Pr[T1]− Pr[T2]|

and |Pr[T3]− Pr[T4]|.

17

Estimation of |Pr[T1]− Pr[T2]|. The view of A in Game 1 is indistinguishable from that in
Game 2 due to the hardness of IVs,ℓ. More specifically, there exists a PPT adversary Biv that
makes a single query and satisfies |Pr[T1]− Pr[T2]| = Advivs,ℓ,Biv(λ). We show the description of
Biv below.

Given (N ′, g′, (g′k = g′αk mod N ′s)k∈[ℓ]) from the challenger, Biv gives z̃ := N ′−1
4 to A,

and receives from A the bound B ≥ z̃ of the interval for key-shifting values. B next chooses
H

r←− H, and sets pp← (N ′, T ′, g′,H). Then, Biv samples θ1, . . . , θℓ
r←− [N ′s−1], submits a query

(θ1, . . . , θℓ) to the challenger, and receives a reply (e1, . . . , eℓ). Biv then regards g′k as the k-th

ciphertext ctk, and samples a shift ∆k
r←− [B] and computes Kk ← H(ek · ct∆k

k mod N ′s) for
every k ∈ [ℓ]. Then, Biv sends pp, (∆k)k∈[ℓ], and (ctk,Kk)k∈[ℓ] to A. When A returns a guess
bit b′, Biv forwards it to the challenger and terminates.

By regarding the randomness r ∈ [N
′−1
4] chosen by Biv’s challenger in response to Biv’s

query as a secret key sk for A, it is straightforward to see that for each σ ∈ {0, 1}, if B’s
challenge bit is σ, then Kk = H(T ′σ·θk · ctsk+∆k

k mod N ′s) holds for every k ∈ [ℓ], and thus Biv
simulates Game (1 + σ) perfectly for A. Since Biv uses A’s final guess bit directly, we have
Advivs,ℓ,Biv(λ) = |Pr[T1]− Pr[T2]|.

Hence, due to Lemma 3, there exists another PPT adversary B such that |Pr[T1]− Pr[T2]| ≤
2 · Advdcrs,B +O(ℓ · 2−len).

Estimation of |Pr[T3]− Pr[T4]|. Due to the leftover hash lemma (Lemma 1), the view of A
in Game 3 is (ℓ · ϵLHL)-close to that in Game 4, and thus we have |Pr[T3]− Pr[T4]| ≤ ℓ · ϵLHL.
This can be seen as follows.

Consider Game 3 in which all the randomness except H ∈ H and {θk}k∈[ℓ] are fixed.
Note that this determines param = (N ′, P ′, Q′, T ′, g′) output by GGen, A’s randomness rA
and the bound B ≥ z̃ chosen by A, the secret key sk, all key-shifting values {∆k}k∈[ℓ] and
ciphertexts {ctk = g′αk mod N ′s}k∈[ℓ]. Now, for each k ∈ [ℓ], define the distribution Xk :=

{θk
r←− [N ′s−1] : T ′θk · ct(sk+∆k)

k mod N ′s}, which is independent of the choice of H. (Re-
call that A determines the bound B for ∆k’s before it is given pp that contains H.) Then,
consider the distribution D0 :=

(
rA, pp, (∆k)k∈[ℓ], (ctk)k∈[ℓ], (H(Xk))k∈[ℓ]

)
and the distribution

D1 :=
(
rA, pp, (∆k)k∈[ℓ], (ctk)k∈[ℓ], (UK)

ℓ
)
, where pp = (N ′, T ′, g′,H) and H

r←− H. Note that
for each σ ∈ {0, 1}, Dσ corresponds to the view of A in Game (3 + σ) in which everything
except H and (Kk)k∈ℓ is fixed. Hence, SD(D0, D1) upper-bounds |Pr[T3]− Pr[T4]|. Also, notice
that SD(D0, D1) = SD

(
(H, (H(Xk))k∈[ℓ]), (H, (UK)

ℓ)
)
(where H

r←− H) due to the fixing of the
values other than H and {θk}k∈[ℓ]. Moreover, since H∞(Xk) = (s−1) logN ′ ≥ (s−1) ·(2len−1)
holds for every k ∈ [ℓ], the distribution of (H,H(Xk)) is ϵLHL-close to (H,UK) by the leftover
hash lemma (Lemma 1). Then, the triangle inequality implies SD

(
(H, (H(Xk))k∈[ℓ]), (H, (U{0,1}n)

ℓ)
)

≤ ℓ · ϵLHL. Consequently, we have |Pr[T3]− Pr[T4]| ≤ ℓ · ϵLHL.

Hence, using Equation 3, we can conclude that there exists a PPT adversary B satisfying
Equation 2, as required. □ (Lemma 4)

5 KDM-CCA Secure PKE with respect to Affine Functions

In this section, we show a PKE scheme that is KDM-CCA secure with respect to affine functions
based on the DCR assumption.

We first specify the DCR language with respect to which the underlying PHF family used
in our proposed scheme is considered. Then, we give our proposed PKE scheme in Section 5.1.
We also give two instantiations for the underlying PHF family, the first one in Section 5.2 and
the second one in Section 5.3.

18

Setupaff(1
λ) :

param = (N,P,Q, T, g)← GGen(1λ, s)
ppphf ← Setupphf(param)

(ppskem, z, z̃)← Setupskem(1
λ)

ppcca ← Setupcca(1
λ)

ppaff ← (N,T, g, ppphf , ppskem, ppcca)
Return ppaff .

KGaff(ppaff) :
(N,T, g, ppphf , ppskem, ppcca)← ppaff
x

r←− [N−14 · z̃ · 2ξ]
(ct,K)← Encap(ppskem, x)
Parse K as (rKG, psk) ∈ RKG × SK.
h← g2x mod N s

ppk← µ(psk)
(cpk, csk)← KGcca(ppcca; r

KG)
Return PK := (h, ct, ppk, cpk) and SK := x.

Encaff(PK,m ∈ ZNs−1) :
(h, ct, ppk, cpk)← PK

r
r←− [N−14]

u← gr mod N s

v ← Tm · hr mod N s

π ← Pub(ppk, u2 mod N s, 2r)
CT← Enccca(cpk, (u, v, π))
Return CT.

Decaff(PK, SK,CT) :
(h, ct, ppk, cpk)← PK; x← SK
K← Decap(ppskem, x, ct)
Parse K as (rKG, psk) ∈ RKG × SK.
(cpk, csk)← KGcca(ppcca; r

KG)
(u, v, π)← Deccca(cpk, csk,CT)
If (u, v) /∈ J2Ns then return ⊥.
If π ̸= Λpsk(u

2 mod N s) then return ⊥.
Return m← logT (v · u−2x mod N s).

Figure 5: The proposed KDM-CCA secure PKE scheme Πaff with respect to affine functions.
(The public parameter ppaff is omitted from the inputs to Encaff and Decaff .)

DCR language. Let s ≥ 2, GGen be the DCR group generator, and param = (N,P,Q, T, g)
← GGen

(
1λ, s

)
. The set of yes instances Πyes is the subgroup Gn of JNs , and the set of no

instances Πno is GNs−1 ⊗ Gn \ Gn. Note that we can represent any yes instance c ∈ Gn as
c = gr mod N s, where r ∈ Z. Thus, such r works as a witness for c ∈ Πyes.

5.1 Proposed PKE Scheme

Let s ≥ 2, and GGen be the DCR group generator. Let Πcca = (Setupcca,KGcca,Enccca,Deccca) be
a PKE scheme such that the randomness space of KGcca is RKG. Let PHF = (Setupphf ,Πyes,Πno,
SK,PK,K,Λ, µ,Pub) be a PHF family with respect to GGen for the DCR language (defined
as above). Let SKEM = (Setupskem,Encap,Decap) be an SKEM whose session key space is
RKG × SK.7 Finally, let ξ = ξ(λ) be any polynomial such that 2−ξ = negl(λ). Using these
building blocks, our proposed PKE scheme Πaff = (Setupaff ,KGaff ,Encaff ,Decaff) is constructed
as described in Figure 5. The plaintext space of Πaff is ZNs−1 , where N is the modulus generated
in Setupaff .

The correctness of Πaff follows from that of SKEM and Πcca, and the projective property of
PHF.

We note that although our scheme has correctness and can be proved secure for any s ≥ 2,
the plaintext space of our scheme is ZNs−1 , and thus if s = 2, then the plaintext space ZN

becomes smaller than the secret key space
[
N−1
4 · z̃ · 2ξ

]
, in which case KDM security for affine

functions does not even capture circular security. (Malkin et al.’s scheme [23] has exactly the
same issue.) If z̃ · 2ξ is smaller than N , then the secret key space can be contained in ZN2 , in
which case s ≥ 3 is sufficient in practice.8

7Strictly speaking, the concrete format of SK could be dependent on a public parameter ppphf of PHF. However,
as noted in Remark 3, the session-key space of an SKEM can be flexibly adjusted by using a pseudorandom
generator. Hence, for simplicity we assume that such an adjustment of the spaces is applied.

8Actually, if s = 3 and our DCR-based instantiation in Section 4.2 is used as the underlying SKEM, then the

19

We also note that even if the building block SKEM SKEM and/or PKE scheme Πcca are
instantiated also from the DCR assumption (or any other factoring-related assumption), the
DCR groups formed by (N,T, g) in ppaff should not be shared with those used in SKEM and/or
Πcca. This is because in our security proof, the reduction algorithms for SKEM and Πcca will
use the information of P and Q behind N . (See our security proof below.) We also remark
that in our construction, N has to be generated by a trusted party, or by users jointly via some
secure computation protocol, so that no user knows its factorization. (The same applies to our
DCR-based SKEM.) This is the same setting as in the previous DCR-based (KDM-)CCA secure
PKE schemes [23, 12, 14].

Before proving the KDM-CCA security of Πaff , we also note the difference between the
“inner scheme” of Πaff and Malkin et al.’s scheme [23]. Although these schemes are essentially
the same, there is a subtle difference. Specifically, when generating h contained in PK of Πaff ,
we generate it as h ← g2x mod N s while it is generated as h ← gx mod N s in Malkin et al.’s
scheme. Moreover, such additional squarings are performed on u in the decryption procedure
of our scheme. By these additional squarings, if it is guaranteed that an element u appearing
in the decryption procedure belongs to JNs = GNs−1 ⊗ ⟨−1⟩ ⊗ Gn, it can be converted to an
element in GNs−1 ⊗ Gn. Thus, we can consider a PHF family on GNs−1 ⊗ Gn rather than
GNs−1 ⊗ ⟨−1⟩ ⊗Gn, and as a result, we need not worry about a case that an adversary for Πaff

may learn x mod 2 through decryption queries. This helps us to simplify the security proof.
Note that we cannot explicitly require that group elements contained in a ciphertext be elements
in GNs−1 ⊗ Gn since it is not known how to efficiently check the membership in GNs−1 ⊗ Gn

without the factorization of N , while we can efficiently check the membership in JNs using only
N .

KDM-CCA security. Let ℓ be the number of keys in the security game. We will show
that Πaff is KDM-CCA secure with respect to the function family Faff consisting of functions
described as

f (x1, . . . , xℓ) =
∑
k∈[ℓ]

akxk + a0 mod N s−1 ,

where a0, . . . , aℓ ∈ ZNs−1 . Formally, we prove the following theorem.

Theorem 1 Assume that the DCR assumption holds with respect to GGen, SKEM is passively
RKA secure, PHF is computationally universal, and Πcca is IND-CCA secure. Then, Πaff is
Faff-KDM-CCA secure.

Specifically, for any polynomial ℓ = ℓ(λ) and PPT adversary A that attacks the Faff-KDM-CCA
security of Πaff and makes qkdm = qkdm(λ) KDM queries and qdec = qdec(λ) decryption queries,
there exist PPT adversaries Bdcr, Brka, B′rka, Bcca, B′cca, and Bcu such that

Advkdmcca
Πaff ,Faff ,ℓ,A(λ) ≤ 2 ·

(
2 · Advdcrs,Bdcr(λ) + AdvrkaSKEM,ℓ,Brka(λ) + AdvrkaSKEM,ℓ,B′rka

(λ)

+AdvindccaΠcca,ℓ,Bcca(λ) + AdvindccaΠcca,ℓ,B′cca(λ) + ℓ · (qdec · AdvcuPHF,Bcu(λ) + 2−ξ)
)

+O(qkdm · 2−len) +O(2−λ) . (4)

Remark 4 (Tightness of the reduction) Note that our reductions to the DCR assumption
and the security of the building blocks are tight, except for the reduction to the computational

RSA modulus N generated at the setup of our PKE construction has to be ξ-bit larger than the RSA modulus
generated at the setup of SKEM to satisfy [N−1

4
· z̃ · 2ξ] ⊂ ZN2 . We do not need this special treatment if s ≥ 4.

20

universal property of the underlying PHF family PHF, which has the factor ℓ · qdec. However, if
PHF satisfies the statistical universal property, the term AdvcuPHF,Bcu(λ) can be replaced with a
negligible function that is independent of a computational assumption, and thus our reduction
becomes fully tight. Hence, if we use an SKEM and an IND-CCA PKE scheme with a tight
security reduction to the DCR assumption (or another assumption A), the overall reduction to
the DCR(& A) assumption becomes fully tight as well.

Proof of Theorem 1. Let ℓ be the number of keys, and A be a PPT adversary that attacks
the Faff-KDM-CCA security of Πaff and makes at most qkdm KDM and qdec decryption queries.
We proceed the proof via a sequence of games argument using 8 games (Game 0 to Game 7).
For every t ∈ {0, . . . , 7}, let SUCt be the event that A succeeds in guessing the challenge bit b
in Game t. Our goal is to bound every term appearing in the following Equation 5.

Advkdmcca
Πaff ,Faff ,ℓ,A(λ) = 2 ·

∣∣∣∣Pr[SUC0]− 1

2

∣∣∣∣
≤ 2 ·

 ∑
t∈{0,...,6}

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC7]− 1

2

∣∣∣∣
 . (5)

Game 0: This is the original Faff-KDM-CCA game regarding Πaff . By definition, we have
Advkdmcca

Πaff ,Faff ,ℓ,A(λ) = 2 ·
∣∣Pr[SUC0]− 1

2

∣∣.
The detailed description of the game is as follows.

1. The challenger chooses b
r←− {0, 1}. Then the challenger generates param = (N,

P,Q, T, g) ← GGen(1λ, s), ppphf ← Setupphf(param), (ppskem, z, z̃) ← Setupskem(1
λ),

and ppcca ← Setupcca(1
λ), and sets ppaff :=

(
N,T, g, ppphf , ppskem, ppcca

)
. Next, the

challenger generates (PKk,SKk) for every k ∈ [ℓ] as follows.

(a) Generate xk
r←−
[
N−1
4 · z̃ · 2ξ

]
.

(b) Generate (ctk,Kk)← Encap(ppskem, xk) and parse
(
rKGk , pskk

)
← Kk.

(c) Compute hk ← g2xk mod N s and ppkk ← µ (pskk).

(d) Generate (cpkk, cskk)← KGcca

(
ppcca; r

KG
k

)
.

(e) Set PKk := (hk, ctk, ppkk, cpkk) and SKk := xk.

The challenger sends ppaff and {PKk}k∈[ℓ] to A and prepares a list Lkdm.

2. The challenger responds to queries made by A.
For a KDM query

(
j,
(
a00, . . . , a

0
ℓ

)
,
(
a10, . . . , a

1
ℓ

))
made by A, the challenger responds

as follows.

(a) Set m :=
∑

k∈[ℓ] a
b
kxk + ab0 mod N s−1.

(b) Generate r
r←−
[
N−1
4

]
and compute u← gr mod N s.

(c) Compute v ← Tm · hrj mod N s and π ← Pub
(
ppkj , u

2 mod N s, 2r
)
.

(d) Return CT← Enccca
(
cpkj , (u, v, π)

)
and add (j,CT) to Lkdm.

For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if (j,CT) ∈
Lkdm, and otherwise responds as follows.

(a) Compute (u, v, π)← Deccca(cpkj , cskj ,CT). If (u, v) /∈ J2Ns , return ⊥. Otherwise,
compute as follows.

(b) Return ⊥ if π ̸= Λpskj

(
u2 mod N s

)
and m← logT

(
v · u−2xj mod N s

)
otherwise.

21

Note that the above procedure is not exactly the same as that of the decryption
algorithm Decaff , because the computations of Decap and KGcca for generating cskj
and pskj are omitted. However, the answer to a decryption query computed by the
above procedure is exactly the same as that computed by Decaff . Therefore, it does
not affect the view of A.

3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0, except for how KDM queries are replied. When A makes a KDM
query

(
j,
(
a00, . . . , a

0
ℓ

)
,
(
a10, . . . , a

1
ℓ

))
, the challenger generates v and π respectively by v ←

Tm · u2xj mod N s and π ← Λpskj

(
u2 mod N s

)
, instead of v ← Tm · hrj mod N s and

π ← Pub
(
ppkj , u

2 mod N s, 2r
)
, where r

r←−
[
N−1
4

]
and u = gr mod N s.

v is generated identically in both games. Moreover, by the projective property of PHF,
Λpskj

(
u2 mod N s

)
= Pub

(
ppkj , u

2 mod N s, 2r
)
holds, and thus π is also generated identically

in both games. Hence, we have |Pr[SUC0]− Pr[SUC1]| = 0.

Game 2: Same as Game 1, except for how the challenger generates {xk}k∈[ℓ]. The challenger

first generates x
r←−
[
N−1
4 · z̃

]
. Then, for every k ∈ [ℓ], the challenger generates ∆k

r←−[
N−1
4 · z̃ · 2ξ

]
and computes xk ← x+∆k, where the addition is done over Z.

|Pr[SUC1]− Pr[SUC2]| ≤ ℓ · 2−ξ holds since the distribution of xk in Game 2 and that in
Game 1 are 2−ξ-close for every k ∈ [ℓ].

Next, we will change the game so that we can respond to KDM queries made by A using
only x mod n = x mod ϕ(N)

4 . To this end, we make some preparation. Observe that in Game 2,
the answer to a KDM query

(
j,
(
a00, . . . , a

0
ℓ

)
,
(
a10, . . . , a

1
ℓ

))
is Enccca

(
cpkj , (u, v, π)

)
, where

u = gr mod N s ,

v = T
∑

k∈[ℓ] a
b
kxk+ab0 · u2xj mod N s ,

π = Λpskj

(
u2 mod N s

)
,

and r
r←−
[
N−1
4

]
. We also have

∑
k∈[ℓ]

abkxk + ab0 =
∑
k∈[ℓ]

abk (x+∆k) + ab0 =

∑
k∈[ℓ]

abk

x+
∑
k∈[ℓ]

abk∆k + ab0 ,

where the addition is done over Z. Thus, by defining

Ab =
∑
k∈[ℓ]

abk and Bb =
∑
k∈[ℓ]

abk∆k + ab0 , (6)

we have v = TAbx+Bb · u2xj mod N s = TAbx+Bb · (gr)2xj mod N s. Note that Ab and Bb are
computed only from

(
ab0, . . . , a

b
ℓ

)
and {∆k}k∈[ℓ].

Game 3: Same as Game 2, except that for a KDM query
(
j,
(
a00, . . . , a

0
ℓ

)
,
(
a10, . . . , a

1
ℓ

))
made

by A, the challenger responds as follows. (The difference from Game 2 is only in Step 3.)

1. Compute Ab and Bb as in Equation 6.

2. Generate r
r←−
[
N−1
4

]
.

22

3. Compute u← T−
Ab

2 · gr mod N s.

4. Compute v ← TAbx+Bb · u2xj mod N s.

5. Compute π ← Λpskj

(
u2 mod N s

)
.

6. Return CT← Enccca
(
cpkj , (u, v, π)

)
and add (j,CT) to Lkdm.

Under the hardness of IVs,1, the distributions of g
r mod N s and T−

Ab

2 · gr mod N s are com-
putationally indistinguishable. More specifically, there exists a PPT adversary Biv that makes
qkdm sample queries in the IVs,1 game and satisfies |Pr[SUC2]− Pr[SUC3]| = Advivs,1,Biv(λ). Due to
Lemma 2, this means that there exists another PPT adversary Bdcr such that |Pr[SUC2]− Pr[SUC3]| ≤
2 · Advdcrs,Bdcr(λ) +O(qkdm · 2−len).

In Game 3, the answer to a KDM query
(
j,
(
a00, . . . , a

0
ℓ

)
,
(
a10, . . . , a

1
ℓ

))
is Enccca

(
cpkj , (u, v, π)

)
,

where

u = T−
Ab

2 · gr mod N s ,

v = TAbx+Bb · u2xj mod N s = TBb−Ab∆j · g2r(x mod n) · g2r∆j mod N s ,

π = Λpskj

(
u2 mod N s

)
,

r
r←−
[
N−1
4

]
, and Ab and Bb are computed as in Equation 6. Thus, we can reply to a KDM

query made by A using only x mod n = x mod ϕ(N)
4 .

We next change how decryption queries made by A are replied.

Game 4: Same as Game 3, except for how the challenger responds to decryption queries made
by A. For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if
(j,CT) ∈ Lkdm, and otherwise responds as follows. (The difference from Game 3 is adding
Step 2 to the procedure.)

1. Compute (u, v, π) ← Deccca
(
cpkj , cskj ,CT

)
. If (u, v) /∈ J2Ns , return ⊥. Otherwise,

compute as follows.

2. If u /∈ ⟨−1⟩ ⊗Gn, return ⊥. Otherwise, compute as follows.

3. Return ⊥ if π ̸= Λpskj

(
u2 mod N s

)
and otherwise m← logT

(
v · u−2xj mod N s

)
.

We define the following event in Game i ∈ {4, 5, 6, 7}.

BDQi: A makes a decryption query (j,CT) /∈ Lkdm which satisfies the following conditions, where
(u, v, π)← Deccca

(
cpkj , cskj ,CT

)
.

• (u, v) ∈ J2Ns .

• u /∈ ⟨−1⟩ ⊗Gn. Note that JNs = ⟨−1⟩ ⊗GNs−1 ⊗Gn.

• π = Λpskj (u
2 mod N s).

We call such a decryption query a “bad decryption query”.

Games 3 and 4 are identical unless Amakes a bad decryption query in each game. Therefore,
we have |Pr[SUC3]− Pr[SUC4]| ≤ Pr[BDQ4]. Combining this with the triangle inequality, we will
also bound the terms in the following Equation 7:

|Pr[SUC3]− Pr[SUC4]| ≤
∑

t∈{4,5,6}

|Pr[BDQt]− Pr[BDQt+1]|+ Pr[BDQ7] . (7)

23

Let (j,CT) be a decryption query made by A and (u, v, π)← Deccca
(
cpkj , cskj ,CT

)
. If the

query is not a bad decryption query and u ∈ JNs , then (u2 mod N s) ∈ Gn. Thus,

u2xj mod N s = (u2)x+∆j mod N s = (u2 mod N s)(x mod n) · u2∆j mod N s .

Thus, if the query is not a bad decryption query, the answer to it can be computed by using
only x mod n.

Furthermore, recall that due to the “implicit modular-reduction in encapsulation” prop-
erty of SKEM, for every k ∈ [ℓ], the SKEM-ciphertext/session-key pair (ctk,Kk) computed
for generating the k-th public key PKk at the initial phase, can be generated by using only
xk mod z = x+∆k mod z.

Hence, due to the change in Game 4, now we have done the preparation for “decomposing”
x into its “mod n”-component and its “mod z”-component.

Game 5: Same as Game 4, except that the challenger generates x̂
r←− [n] and x̄

r←− [z] and then
uses them for x mod n and x mod z, respectively.

Note that when x
r←− [N−14 · z̃], the statistical distance between (x mod n, x mod z) and

(x̂ mod n, x̄ mod z) is bounded by SD(U[N−1
4
·z̃],U[n·z]), because if x

r←− [n · z], then the distri-

bution of (x mod n, x mod z) and that of (x̂ mod n, x̄ mod z) are identical due to the Chinese
remainder theorem.9 Note also that SD(U[N−1

4
·z̃],U[n·z]) ≤ SD(U[N−1

4
],U[n]) + SD(U[z̃],U[z]).

Here, the former statistical distance is P+Q−2
N−1 = O(2−len) ≤ O(2−λ), and the latter statistical

distance is bounded by O(2−λ) due to the “approximate samplability of a secret key” property
of SKEM. Hence, we have |Pr[SUC4]− Pr[SUC5]| ≤ O(2−λ) and |Pr[BDQ4]− Pr[BDQ5]| ≤ O(2−λ).

Game 6: Same as Game 5, except that for every k ∈ [ℓ], the challenger generates Kk
r←−

RKG × SK from which rKGk ∈ RKG and pskk ∈ SK are generated, instead of using Kk

associated with ctk.

By the passive RKA security of SKEM, the view of A in Game 6 is indistinguishable
from that of Game 5. More specifically, there exist PPT adversaries Brka and B′rka that at-
tack the passive RKA security of SKEM so that |Pr[SUC5]− Pr[SUC6]| = AdvrkaSKEM,ℓ,Brka(λ) and

|Pr[BDQ5]− Pr[BDQ6]| = AdvrkaSKEM,ℓ,B′rka
(λ) hold, respectively. The description of Brka and B′rka is

as follows.
We first show the description of Brka. Given z̃ from the challenger, Brka generates (N,P,Q,

T, g)← GGen(1λ, s), and sets the bound B = N−1
4 · z̃ · 2ξ. Brka then sends B to the challenger,

and receives ppskem, key-shifting values (∆k)k∈[ℓ], and challenge ciphertext/session key pairs
(ctk,Kk)k∈[ℓ]. Then, using the values known to Brka so far, it generates all the remaining values
of ppaff and {PKk}k∈[ℓ] where Brka regards sk in Brka’s passive RKA security game as x̄ in the
game simulated by Brka, and then interacts with A in exactly the same way as the challenger
in Game 5 does. (Note that Brka has/generates all the information (e.g. P , Q, x̂) necessary
to respond to KDM and decryption queries from A.) Finally, Brka outputs 1 if A succeeds in
guessing the challenge bit b (which was chosen by Brka), otherwise outputs 0, and terminates.
It is straightforward to see that if Brka’s challenge bit is 1 (resp. 0), Brka simulates Game 5
(resp. Game 6) perfectly for A. In particular, if Brka’s challenge bit is 1, then every pair

9Here, we are implicitly assuming that n = pq and z are relatively prime. This occurs with overwhelming
probability due to the DCR assumption. We thus ignore the case of n and z are not relatively prime in the proof
for simplicity. Note that the tightness of the reduction to the DCR assumption is not affected even if we take
into account the possibility of this undesirable event.

24

(Kk, ctk) is a real ciphertext/session-key pair generated by using a shifted secret key x̄ + ∆k,
which is exactly as in Game 5. On the other hand, if Brka’s challenge bit is 0, then every Kk

is chosen uniformly at random from RKG × SK, which is exactly as in Game 6. Thus, we have
|Pr[SUC5]− Pr[SUC6]| = AdvrkaSKEM,ℓ,Brka(λ).

The design of B′rka is exactly as Brka, except that B′rka outputs 1 if and only if A has made
a bad decryption query (which can be checked by B′rka because it owns P and Q). Such B′rka
satisfies |Pr[BDQ5]− Pr[BDQ6]| = AdvrkaSKEM,ℓ,B′rka

(λ).

Game 7: Same as Game 6, except that the challenger responds to KDM queries (j,CT) made
by A with CT← Enccca

(
cpkj , (0, 0, 0)

)
.

We can consider straightforward reductions to the security of the underlying PKE scheme
Πcca for bounding |Pr[SUC6]− Pr[SUC7]| and |Pr[BDQ6]− Pr[BDQ7]|. Note that the reduction
algorithms can check whetherAmakes a bad decryption query or not by using decryption queries
for Πcca, and ϕ(N) and {pskk}k∈[ℓ] that could be generated by the reductions themselves. Thus,

there exist PPT adversaries Bcca and B′cca such that |Pr[SUC6]− Pr[SUC7]| = AdvindccaΠcca,ℓ,Bcca(λ) and

|Pr[BDQ6]− Pr[BDQ7]| = AdvindccaΠcca,ℓ,B′cca(λ).
In Game 7, the challenge bit b is information-theoretically hidden from the view of A. Thus,

we have
∣∣Pr[SUC7]− 1

2

∣∣ = 0.
Finally, Pr[BDQ7] is bounded by the computational universal property of PHF. More specif-

ically, there exists a PPT adversary Bcu such that Pr[BDQ7] ≤ ℓ · qdec ·AdvcuPHF,Bcu(λ) +O(2−len).
To see this, consider the following PPT adversary Bcu. Given (N,T, g, ppphf , ppk) from the chal-
lenger, Bcu picks j∗ ∈ [ℓ] uniformly at random, and regards the given ppk as the projection key
ppkj∗ of the j∗-th user (and thus implicitly regards the corresponding secret key psk as pskj∗).
Then, Bcu generates all the remaining values of ppaff and {PKk}k∈[ℓ] in exactly the same way

as the challenger in Game 7 does, with one exception that Bcu picks x̂ from
[
N−1
4

]
, instead of

[n]. Then, it starts interacting with A. Bcu responds to the KDM queries from A in exactly
the same way as the challenger in Game 7 does. Bcu responds to the decryption queries (j,CT)
from A in the same way as the challenger in Game 7 does, except for the following points:

• To check whether u ∈ ⟨−1⟩ ⊗ Gn, Bcu submits u2 mod N s as an evaluation query to the
challenger. If the answer π to the query is not ⊥, Bcu decides that u ∈ ⟨−1⟩ ⊗ Gn, and
otherwise u /∈ ⟨−1⟩⊗Gn. Note that if u ∈ JNs , then u2 mod N s is guaranteed to be either
an yes or no instance, and u ∈ ⟨−1⟩ ⊗Gn if and only if u2 mod N s is an yes instance.

• Furthermore, if j = j∗ and the challenger’s response π is not ⊥, then Bcu uses the answer
π to the query as Λpskj∗ (u

2 mod N s) in the decryption procedure.

When A terminates, Bcu picks one of A’s decryption queries uniformly at random, which we
denote by (j′,CT′). If j′ = j∗, Deccca(cpkj∗ , cskj∗ ,CT

′) = (u′, v′, π′) ∈ J2Ns×{0, 1}∗, and u′2 mod
N s ∈ GNs−1⊗Gn \Gn hold simultaneously, Bcu returns (u′2 mod N s, π′) and terminates (where
u2 mod N s ∈ GNs−1 ⊗Gn \Gn can be checked by making an evaluation query). Otherwise, Bcu
simply gives up and aborts.

Note that other than picking x̂ from
[
N−1
4

]
(instead from [n]), Bcu perfectly simulates Game

7 for A, and thus the difference between the probability that A makes a bad decryption query
in the game simulated by Bcu and that in Game 7 are bounded by SD(U[N−1

4],U[n]) = O(2−len).

Note also that the position j∗ is information-theoretically hidden from A’s view, and Bcu finally
picks a query (j′,CT′) uniformly from A’s qdec decryption queries. Hence, conditioned on
the event that A has made a bad decryption query, the probability that j′ = j∗ and Bcu

25

picks it as (j′,CT′) in its final step is at least 1
ℓ·qdec . Consequently, we have AdvcuPHF,Bcu(λ) ≥

1
ℓ·qdec · (Pr[BDQ7]−O(2−len)).

From the above arguments and Equations 5 and 7, we can conclude that there exist PPT ad-
versaries Bdcr, Brka, B′rka, Bcca, B′cca, and Bcu satisfying Equation 4, as required. □ (Theorem 1)

5.2 Basic Construction of Projective Hash Function

For the PHF family for the DCR language used in our construction Πaff , we provide two in-
stantiations: the basic construction PHFaff that achieves the statistical universal property in
this subsection, and its “space-efficient” variant PHFhashaff that achieves only the computational
universal property in the next subsection.

Let s ≥ 2, and GGen be the DCR group generator. The basic construction PHFaff =
(Setup,Πyes,Πno,SK,PK,K,Λ, µ,Pub) is as follows. (The construction here is basically the
universal PHF family for the DCR setting by Cramer and Shoup [9], extended for general
s ≥ 2.) Recall that Πyes = Gn and Πno = GNs−1 ⊗ Gn \ Gn for the DCR language. Given
param output from GGen(1λ, s), Setup outputs a public parameter pp that concretely specifies
(SK,PK,K,Λ, µ,Pub) defined as follows. We define SK :=

[
N s−1 · N−14

]
, PK := Gn, and

K := GNs−1 ⊗Gn. For every sk ∈
[
N s−1 · N−14

]
and c ∈ GNs−1 ⊗Gn, we also define µ and Λ as

µ(sk) := gsk mod N s and Λsk(c) := csk mod N s .

Projective property. Let sk ∈
[
N s−1 · N−14

]
, pk = gsk mod N s, and c = gr mod N s, where

r ∈ Z is regarded as a witness for c ∈ Gn. We define the public evaluation algorithm Pub as

Pub(pk, c, r) := pkr mod N s .

We see that

pkr ≡
(
gsk
)r
≡ (gr)sk ≡ Λsk(c) mod N s ,

and thus PHFaff satisfies the projective property.

Universal property. We now show that PHFaff satisfies the statistical universal property. Let
pk ∈ Gn, c ∈ GNs−1⊗Gn\Gn, and π ∈ GNs−1⊗Gn. We can write c and π as c = T θ ·gr mod N s

and π = T θ′ · gr′ mod N s, where θ, θ′ ∈
[
N s−1] such that θ ̸= N s−1 and r, r′ ∈ [n]. Consider

the following probability

Pr
sk

r←−[Ns−1·n]
[Λsk(c) = π|µ(sk) = pk] = Pr

sk
r←−[Ns−1·n]

[
csk ≡ π mod N s

∣∣∣gsk ≡ pk mod N s
]

≤ Pr
sk

r←−[Ns−1·n]

[
T θ·sk ≡ T θ′ mod N s

∣∣∣sk ≡ logg pk mod n
]

= Pr
sk∗

r←−[Ns−1]

[
θ · sk∗ ≡ θ′ mod N s−1]

≤ Pr
sk∗

r←−[P s−1]

[
θ · sk∗ ≡ θ′ mod P s−1] , (8)

where the last inequality is true even if P is replaced with Q. Since θ ̸= N s−1, we have either θ ̸≡
0 mod P s−1 or θ ̸≡ 0 mod Qs−1. Without loss of generality, we assume that θ ̸≡ 0 mod P s−1.
(Otherwise, switch the role of P and Q.) Below, we prove that the probability in Equation 8 is
bounded by O(2−len).

First, we consider the case of GCD(P s−1, θ) = 1.10 In this case, there exists a multiplicative

10If s = 2, this always holds.

26

inverse of θ mod P s−1, and Equation 8 is at most 1
P s−1 ≤ O(2−len).

Next, we consider the case of GCD(P s−1, θ) ̸= 1. In this case, there exist ζ ∈ [s− 2] and θ0
that is co-prime to P such that θ = P ζ · θ0. Then, if θ′ is not a multiple of P ζ , then Equation 8
is 0. Otherwise (i.e. θ′ is a multiple of P ζ), Equation 8 is equal to

Pr
sk∗

r←−[P s−ζ−1]

[
θ0 · sk∗ ≡

θ′

P ζ
mod P s−ζ−1

]
.

Since θ0 is co-prime to P , there exists a multiplicative inverse of θ0 mod P s−ζ−1. Then, the
above probability is bounded by 1

P s−ζ−1 ≤ O(2−len).

Therefore, the probability in Equation 8 is bounded by O(2−len) in any case. Moreover,

SD
(
USK,U[Ns−1·n]

)
= SD

(
U[Ns−1·N−1

4],U[Ns−1·n]

)
≤ O

(
2−len

)
. Thus, PHFaff is O(2−len)-

universal.

5.3 Space-Efficient Construction of Projective Hash Function

The second instantiation is a “space-efficient” variant of the first construction. Specifically, it is
obtained from PHFaff by “compressing” the output of the function Λ in PHFaff with a collision
resistant hash function.

More formally, letH =
{
H : {0, 1}∗ → {0, 1}lencrhf

}
be a collision resistant hash family. Then,

consider the “compressed”-version of the PHF family PHFhashaff = (Setup′,Πyes,Πno,SK,PK,K′ :=
{0, 1}lencrhf ,Λ′, µ,Pub′), in which Setup′ picks H

r←− H in addition to generating pp← Setup, Λ′

is defined simply by composing Λ and H by Λ′sk(·) := H(Λsk(·)), Pub′ is defined similarly by
composing Pub and H, and the remaining components are unchanged from PHFaff . PHFhashaff

preserves the projective property of PHFaff and it is possible to show that the “compressed”
construction PHFhashaff satisfies the computational universal property.

This “compressing technique” is applicable to not only the specific instantiation PHFaff , but
also more general PHF families PHF, so that if the underlying PHF is (statistically) universal and
satisfies some additional natural properties (that are satisfied by our instantiation in Section 5.2)
and H is collision resistant, then the resulting “compressed” version PHFhash is computationally
universal. In Section A, we formally show the additional natural properties, and the formal
statement for the compressing technique as well as its proof.

The obvious merit of using PHFhashaff instead of PHFaff is its smaller output size. The disad-
vantage is that unfortunately, the computational universal property of PHFhashaff is only loosely
reduced to the collision resistance of H. Specifically, the advantage of a computational univer-
sal adversary is bounded only by the square root of the advantage of the collision resistance
adversary (reduction algorithm). For the details, see Section A.

6 KDM-CCA Secure PKE with respect to Polynomials

In this section, we show a PKE scheme that is KDM-CCA secure with respect to polynomials
based on the DCR assumption. More specifically, our scheme is KDM-CCA secure with respect
to modular arithmetic circuits (MAC) defined by Malkin et al. [23].

Our scheme is based on the cascaded ElGamal encryption scheme used by Malkin et al.,
and uses a PHF family for a language that is associated with it, which we call the cascaded
ElGamal language. Furthermore, for considering a PHF family for this language, we need to
make a small extension to the syntax of the functions µ, and thus we also introduce it here as
well.

27

After introducing the cascaded ElGamal language as well as the extension to a PHF family
below, we will show our proposed PKE scheme in Section 6.1, and give the instantiations of the
underlying PHF family in Section 6.2.

Augmenting the syntax of PHFs. For our construction in this section, we use a PHF family
whose syntax is slightly extended from Definition 3. Specifically, we introduce an auxiliary key
ak ∈ AK that is used as part of a public parameter pp output by Setup, where AK itself could
also be parameterized by param output by GGen. Then, we allow this ak to (1) affect the
structure of the witnesses for Πyes, and (2) be taken as input by the projection map µ so that it
takes ak ∈ AK and sk ∈ SK as input. We simply refer to a PHF family with such augmentation
as an augmented PHF family.

For an augmented PHF family, we have to slightly adapt the definition of the statisti-
cal/computational universal property from Definition 4. Specifically,

• for the definition of the ϵ-universal property, in addition to param, pp, pk ∈ PK, c ∈ Πno,
and π ∈ K, we also take the universal quantifier for all ak ∈ AK for considering the
probability in Equation 1.

• for the definition of the computational universal property, we change the initial phase
(Step 1) of the game to allow an adversary to choose ak ∈ AK in the following way:

1. First, the challenger executes param = (N,P,Q, T, g) ← GGen(1λ, s), and sends
(N,T, g) to A. A sends ak ∈ AK to the challenger. The challenger then executes
pp ← Setup(param), chooses sk

r←− SK, and computes pk ← µ(ak, sk). Then, the
challenger sends (pp, pk) to A.

The remaining description of the game and the definition of the adversary’s advantage are
unchanged.

We note that the implication of the statistical universal property to the computational one, is
also true for an augmented PHF family.

Cascaded ElGamal language. Let s ≥ 2, GGen be the DCR group generator, and param =
(N,P,Q, T, g) ← GGen

(
1λ, s

)
. Let d = d(λ) be a polynomial. Let the auxiliary key space AK

be defined as Gn, and let ak ∈ AK (which will be a public key of the underlying cascaded
ElGamal encryption scheme in our concrete instantiations of PHFs). The set of yes instances
Πyes is G

d
n, and the set of no instances is (GNs−1 ⊗Gn)

d \Gd
n. Any yes instance c ∈ Gd

n can be
expressed in the form c = (c1, . . . , cd) such that cd = grd mod N s and ci = gri · akri+1 mod N s

for every i ∈ [d− 1], where r = (r1, . . . , rd) ∈ Zd. Thus, such r works as a witness for c ∈ Πyes

under ak ∈ AK.

6.1 Proposed PKE Scheme

Let s ≥ 2, and GGen be the DCR group generator. Let d = d(λ) be a polynomial. Let
Πcca = (Setupcca,KGcca,Enccca,Deccca) be a PKE scheme such that the randomness space of
KGcca is RKG. Let PHF = (Setupphf ,Πyes,Πno,SK,PK,K, µ,Λ,Pub) be an augmented PHF
family with respect to GGen for the cascaded ElGamal language (defined as above). Let SKEM =
(Setupskem,Encap,Decap) be an SKEM whose session-key space is RKG × SK.11 Finally, let
ξ = ξ(λ) be any polynomial such that 2−ξ = negl(λ). Using these building blocks, our proposed

11The same format adjustment as in Πaff can be applied. See the footnote in Section 5.1.

28

Setuppoly(1
λ) :

param = (N,P,Q, T, g)← GGen(1λ, s)
ppphf ← Setupphf(param)

(ppskem, z, z̃)← Setupskem(1
λ)

ppcca ← Setupcca(1
λ)

pppoly ← (N,T, g, ppphf , ppskem, ppcca)
Return pppoly.

KGpoly(pppoly) :
(N,T, g, ppphf , ppskem, ppcca)← pppoly
x

r←− [N−14 · z̃ · 2ξ]
(ct,K)← Encap(ppskem, x)
Parse K as (rKG, psk) ∈ RKG × SK.
h← g2x mod N s

ppk← µ(h, psk) //h is used as an aux. key
(cpk, csk)← KGcca(ppcca; r

KG)
Return PK := (h, ct, ppk, cpk) and SK := x.

Encpoly(PK,m ∈ ZNs) :
(h, ct, ppk, cpk)← PK

∀i ∈ [d]: ri
r←− [N−14]; yi ← gri mod N s

ud ← yd
∀i ∈ [d− 1]: ui ← yi · hri+1 mod N s

r ← (2r1, . . . , 2rd)
u← (u21 mod N s, . . . , u2d mod N s)
v ← Tm · hr1 mod N s

π ← Pub(ppk, u, r)
CT← Enccca(cpk, ({ui}i∈[d] , v, π))
Return CT.

Decpoly(PK,SK,CT) :
(h, ct, ppk, cpk)← PK; x← SK
K← Decap(ppskem, x, ct)
Parse K as (rKG, psk) ∈ RKG × SK.
(cpk, csk)← KGcca(ppcca; r

KG)
({ui}i∈[d] , v, π)← Deccca(cpk, csk,CT)

If ({u}i∈[d] , v) /∈ Jd+1
Ns then return ⊥.

u← (u21 mod N s, . . . , u2d mod N s)
If π ̸= Λpsk(u) then return ⊥.
yd ← ud
∀i ∈ [d− 1]: yi ← ui · (yi+1)

−2x mod N s

Return m← logT (v · y−2x1 mod N s).

Figure 6: The proposed KDM-CCA secure PKE scheme Πpoly with respect to polynomials.
(The public parameter pppoly is omitted from the inputs to Encpoly and Decpoly.)

PKE scheme Πpoly = (Setuppoly,KGpoly,Encpoly,Decpoly) is constructed as described in Figure 6.
The plaintext space of Πpoly is ZNs−1 , where N is the RSA modulus generated in Setuppoly.

For the scheme Πpoly, the same remarks as those for Πaff apply. Namely, the correctness and
the security proof work for any s ≥ 2, while to capture circular security, we should use s ≥ 3.
Furthermore, if we use a statistically universal PHF family, the KDM-CCA security of Πpoly is
tightly reduced to the DCR assumption and the security properties of the building blocks Πcca

and SKEM.
For the scheme Πpoly, the same remarks as those for Πaff apply. Namely, the correctness and

the security proof work for any s ≥ 2, while to capture circular security, we should use s ≥ 3.
Furthermore, if we use a statistically universal PHF family, the KDM-CCA security of Πpoly is
tightly reduced to the DCR assumption and the security properties of the building blocks Πcca

and SKEM.

KDM-CCA security. Πpoly is KDM-CCA secure with respect to the class of circuitsMACd,
consisting of circuits satisfying the following conditions.

• Inputs are variables and constants of ZNs−1 .

• Gates are +, −, or · over ZNs−1 and the number of gates is polynomial in λ.

• Each circuit in MACd computes a polynomial whose degree is at most d. For a circuit
C ∈MACd, we denote the polynomial computing C by fC .

The formal statement for the security of Πpoly is as follows.

29

Theorem 2 Assume that the DCR assumption holds with respect to GGen, SKEM is passively
RKA secure, PHF is computationally universal, and Πcca is IND-CCA secure. Then, Πpoly is
MACd-KDM-CCA secure.

Specifically, for any polynomial ℓ = ℓ(λ) and PPT adversary A that attacks theMACd-KDM-CCA
security of Πpoly and makes qkdm = qkdm(λ) KDM queries and qdec = qdec(λ) decryption queries,
there exist PPT adversaries Bdcr, Brka, B′rka, Bcca, B′cca, and Bcu such that

Advkdmcca
Πpoly,MACd,ℓ,A(λ) ≤ 2 ·

(
2 · Advdcrs,Bdcr(λ) + AdvrkaSKEM,ℓ,Brka(λ) + AdvrkaSKEM,ℓ,B′rka

(λ)

+AdvindccaΠcca,ℓ,Bcca(λ) + AdvindccaΠcca,ℓ,B′cca(λ) + ℓ · (qdec · AdvcuPHF,Bcu(λ) + 2−ξ)
)

+O(d · qkdm · 2−len) +O(2−λ) . (9)

Before proving Theorem 2, we introduce the following lemma shown by Malkin et al. [23].

Lemma 5 Let d and ℓ be polynomials of λ. Let K ∈ N. There exists a PPT algorithm Coeff
that, given K, j ∈ [ℓ], ∆1, . . . ,∆ℓ ∈ Z, and a polynomial fC computing C ∈ MACd, outputs
a0, . . . , ad such that

fC(x+∆1, . . . , x+∆ℓ) =
∑
i∈[d]

ai (x+∆j)
i + a0 mod K .

Proof of Theorem 2. In a high-level, the structure of the proof is the same as the proof for
Πaff .

Let ℓ be the number of keys, and A be a PPT adversary that attacks theMACd-KDM-CCA
security of Πpoly and makes at most qkdm KDM and qdec decryption queries. We proceed the proof
via a sequence of games argument using 8 games (Game 0 to Game 7). For every t ∈ {0, . . . , 7},
let SUCt be the event that A succeeds in guessing the challenge bit b in Game t. Our goal is to
bound every term appearing in the following Equation 10.

Advkdmcca
Πaff ,MACd,A,ℓ(λ) = 2 ·

∣∣∣∣Pr[SUC0]− 1

2

∣∣∣∣
≤ 2 ·

 ∑
t∈{0,...,6}

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC7]− 1

2

∣∣∣∣
 . (10)

Game 0: This is the originalMACd-KDM-CCA game regarding Πpoly. By definition, we have
Advkdmcca

Πpoly,MACd,ℓ,A(λ) = 2 ·
∣∣Pr[SUC0]− 1

2

∣∣.
The detailed description of the game is as follows.

1. The challenger chooses b
r←− {0, 1}. Then, the challenger generates param← GGen(1λ, s),

ppphf ← Setupphf(param), (ppskem, z, z̃) ← Setupskem(1
λ), and ppcca ← Setupcca(1

λ),
and sets pppoly :=

(
N,T, g, ppphf , ppskem, ppcca

)
. Next, the challenger generates (PKk,SKk)

for every k ∈ [ℓ] as follows.

(a) Generate xk
r←−
[
N−1
4 · z̃ · 2ξ

]
.

(b) Generate (ctk,Kk)← Encap(ppskem, xk) and parse
(
rKGk , pskk

)
← Kk.

(c) Compute hk ← g2xk mod N s and ppkk ← µ (hk, pskk).

(d) Generate (cpkk, cskk)← KGcca

(
ppcca; r

KG
k

)
.

(e) Set PKk := (hk, ctk, ppkk, cpkk) and SKk := xk.

The challenger sends pppoly and {PKk}k∈[ℓ] to A and prepares a list Lkdm.

30

2. The challenger responds to queries made by A.
For a KDM query

(
j, C0, C1

)
made by A, the challenger responds as follows.

(a) Set m := fCb (x1, . . . , xℓ).

(b) Generate ri
r←−
[
N−1
4

]
and compute yi ← gri mod N s for every i ∈ [d].

(c) Set ud := yd and compute ui ← yi · hri+1

j mod N s for every i ∈ [d− 1].

(d) Set r = (2r1, . . . , 2rd) and u =
(
u21 mod N s, . . . , u2d mod N s

)
.

(e) Compute v ← Tm · hr1j mod N s and π ← Pub(ppkj , u, r).

(f) Return CT← Enccca
(
cpkj ,

(
{ui}i∈[d] , v, π

))
and add (j,CT) to Lkdm.

For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if (j,CT) ∈
Lkdm, and otherwise responds as follows.

(a) Compute
(
{ui}i∈[d] , v, π

)
← Deccca

(
cpkj , cskj ,CT

)
. If

(
{ui}i∈[d] , v

)
/∈ Jd+1

Ns ,

return ⊥. Otherwise, compute as follows.

(b) Set u :=
(
u21 mod N s, . . . , u2d mod N s

)
and return ⊥ if π ̸= Λpskj (u). Otherwise,

compute as follows.

(c) Set yd := ud and compute yi ← ui ·
(
y
2xj

i+1

)−1
mod N s for every i ∈ [d− 1].

(d) Return m← logT

(
v ·
(
y
2xj

1

)−1
mod N s

)
.

Note that the above procedure is not exactly the same as that of the decryption
algorithm Decpoly, because the computations of Decap and KGcca for generating cskj
and pskj are omitted. However, the answer to a decryption query computed by the
above procedure is exactly the same as that computed by Decpoly. Therefore, it does
not affect the view of A.

3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0, except for how the challenger generates {ui}i∈[d−1], v, and π when

A makes a KDM query
(
j, C0, C1

)
. The challenger generates ui ← yi · y

2xj

i+1 mod N s for
every i ∈ [d − 1]. Moreover, the challenger generates v and π respectively by v ← Tm ·
y
2xj

1 mod N s and π ← Λpskj (u), instead of v ← Tm ·hr1j mod N s and π ← Pub
(
ppkj , u, r

)
.

(r and u are generated in the same way as in Game 0.)

Clearly, {ui}i∈[d] and v are generated identically in both games. Furthermore, by the projec-

tive property of PHF, Λpskj (u) = Pub
(
ppkj , u, r

)
holds, and thus π is also generated identically

in both games. Hence, we have |Pr[SUC0]− Pr[SUC1]| = 0.

Game 2: Same as Game 1, except for how the challenger generates {xk}k∈[ℓ]. The challenger

first generates x
r←−
[
N−1
4 · z̃

]
. Then, for every k ∈ [ℓ], the challenger generates ∆k

r←−[
N−1
4 · z̃ · 2ξ

]
and computes xk ← x+∆k, where the addition is done over Z.

|Pr[SUC1]− Pr[SUC2]| ≤ ℓ · 2−ξ holds since the statistical distance between the distribution
of xk in Game 2 and that in Game 1 is at most 2−ξ for every k ∈ [ℓ].

Next, we will change the game so that we can respond to KDM queries made by A using
only x mod n = x mod ϕ(N)

4 .

Game 3: Same as Game 2, except that for a KDM query
(
j, C0, C1

)
made by A, the challenger

responds as follows. (The difference from Game 2 is only in Step 3.)

31

1. Compute
(
ab0, . . . , a

b
d

)
← Coeff

(
N s−1, j,∆1, . . . ,∆ℓ, fCb

)
.

2. Set m = fCb(x1, . . . , xℓ) = ab0 +
∑

i∈[d] a
b
ix

i
j mod N s−1.

3. Generate ri
r←−
[
N−1
4

]
and compute yi ← TAi · gri mod N s for every i ∈ [d], where

Ai =
(
−1

2

)i ·∑d
i′=i a

b
i′x

i′−i
j .

4. Set ud := yd and compute ui ← yi · y
2xj

i+1 mod N s for every i ∈ [d− 1].

5. Set u =
(
u21 mod N s, . . . , u2d mod N s

)
.

6. Compute v ← Tm · y2xj

1 mod N s and π ← Λpskj (u).

7. Return CT← Enccca
(
cpkj ,

(
{ui}i∈[d] , v, π

))
and add (j,CT) to Lkdm.

Under the hardness of IVs,1, the distributions of gri mod N s and TAi · gri mod N s are com-
putationally indistinguishable for every i ∈ [d]. More specifically, there exists a PPT adversary
Biv that makes d · qkdm sample queries in the IVs,1 game and satisfies |Pr[SUC2]− Pr[SUC3]| =
Advivs,1,Biv(λ). Due to Lemma 2, this means that there exists another PPT adversary Bdcr such
that |Pr[SUC2]− Pr[SUC3]| ≤ 2 · Advdcrs,Bdcr(λ) +O(d · qkdm · 2−len).

In Game 3, the answer to a KDM query
(
j, C0, C1

)
is Enccca

(
cpkj ,

(
{ui}i∈[d] , v, π

))
, where

ud = T (−
1
2)

d·abd · grd mod N s ,

ui = yi · y
2xj

i+1 mod N s

= T (−
1
2)

i·abi · g2(ri+1)(x mod n) · gri+2(ri+1)∆j mod N s for every i ∈ [d− 1] ,

v = T ab0+
∑

i∈[d] a
b
ix

i
j · y2xj

1 mod N s

= T ab0 · g2r1(x mod n) · g2r1∆j mod N s ,

π = Λpskj (u) ,

where ri
r←−
[
N−1
4

]
for every i ∈ [d], u = (u21 mod N s, . . . , u2d mod N2), and

(
ab0, . . . , a

b
d

)
←

Coeff
(
N s−1, j,∆1, . . . ,∆ℓ, fCb

)
. Thus, we can reply to a KDM query made by A using only

x mod n = x mod ϕ(N)
4 .

We next change how decryption queries are replied.

Game 4: Same as Game 3, except for how the challenger responds to decryption queries made
by A. For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if
(j,CT) ∈ Lkdm, and otherwise responds as follows. (The difference from Game 3 is adding
Step 2 to the procedure.)

1. Compute
(
{ui}i∈[d] , v, π

)
← Deccca

(
cpkj , cskj ,CT

)
. If

(
{ui}i∈[d] , v

)
/∈ Jd+1

Ns , return

⊥. Otherwise, compute as follows.

2. If ui /∈ ⟨−1⟩ ⊗Gn for some i ∈ [d], return ⊥. Otherwise, compute as follows.

3. Set u :=
(
u21 mod N s, . . . , u2d mod N s

)
and return ⊥ if π ̸= Λpskj (u). Otherwise,

compute as follows.

4. Set yd := ud and compute yi ← ui ·
(
y
2xj

i+1

)−1
mod N s for every i ∈ [d− 1].

5. Return m← logT

(
v ·
(
y
2xj

1

)−1
mod N s

)
.

32

We define the following event in Game i ∈ {4, 5, 6, 7}.

BDQi: A makes a decryption query (j,CT) /∈ Lkdm which satisfies the following conditions, where(
{ui}i∈[d] , v, π

)
← Deccca

(
cpkj , cskj ,CT

)
.

•
(
{ui}i∈[d] , v

)
∈ Jd+1

Ns .

• ui /∈ ⟨−1⟩ ⊗Gn for some i ∈ [d]. Note that JNs = ⟨−1⟩ ⊗GNs−1 ⊗Gn.

• π = Λpskj (u), where u =
(
u21 mod N s, . . . , u2d mod N s

)
.

We call such a decryption query a “bad decryption query”.

Games 3 and 4 are identical unless Amakes a bad decryption query in each game. Therefore,
we have |Pr[SUC3]− Pr[SUC4]| ≤ Pr[BDQ4]. Combining this with the triangle inequality, we will
also bound the terms in the following Equation 11:

|Pr[SUC3]− Pr[SUC4]| ≤
∑

t∈{4,5,6}

|Pr[BDQt]− Pr[BDQt+1]|+ Pr[BDQ7] . (11)

Let (j,CT) be a decryption query made byA. Furthermore, let
(
{ui}i∈[d] , v, π

)
← Deccca(cpkj ,

cskj ,CT), yd ← ud, and yi ← ui · y
−2xj

i+1 mod N s for every i ∈ [d− 1]. Note that if the query is
not a bad decryption query and ui ∈ JNs for every i ∈ [d], then (u2i mod N s) ∈ Gn for every

i ∈ [d]. Using this, for every i = d, . . . , 1, we can inductively show that (1) (y
2xj

i mod N s) ∈ Gn

and (2) it can be computed only using x mod n. Specifically, for the base case of i = d, we have

y
2xj

d mod N s = (u2d)
x+∆j mod N s

= (u2d mod N s)(x mod n) · (u2d mod N s)∆j mod N s ,

which also implies (y
2xj

d mod N s) ∈ Gn. For i ∈ [d−1], if (y
2xj

i+1 mod N s) ∈ Gn has been already
computed, then we have

y
2xj

i mod N s = (ui · y
−2xj

i+1)2xj mod N s

= (u2i)
xj · (y2xj

i+1)
−2xj mod N s

= (u2i mod N s)(x mod n) · (u2i mod N s)∆j

· (y2xj

i+1 mod N s)−2(x mod n) · (y2xj

i+1 mod N s)−2∆j mod N s ,

which shows that (y
2xj

i mod N2) ∈ Gn and can be computed only using x mod n. Hence, if the
query is not a bad decryption query, the answer to it can be computed by using only x mod n.

Furthermore, recall that due to the “implicit modular-reduction in encapsulation” prop-
erty of SKEM, for every k ∈ [ℓ], the SKEM-ciphertext/session-key pair (ctk,Kk) computed
for generating the k-th public key PKk at the initial phase, can be generated by using only
xk mod z = x+∆k mod z.

Hence, due to the change in Game 4, now we have done the preparation for “decomposing”
x into its “mod n”-component and its “mod z”-component.

Game 5: Same as Game 4, except that the challenger generates x̂
r←− [n] and x̄

r←− [z] and then
uses them for x mod n and x mod z, respectively.

With exactly the same argument as in the corresponding step in the proof of Theorem 1,
we have |Pr[SUC4]− Pr[SUC5]| ≤ O(2−λ) and |Pr[BDQ4]− Pr[BDQ5]| ≤ O(2−λ).

33

Game 6: Same as Game 5, except that for every k ∈ [ℓ], the challenger generates Kk
r←−

RKG × SK, from which rKGk
r←− RKG and pskk

r←− SK are generated, instead of using Kk

associated with ctk.

Again, with exactly the same argument as in the corresponding step in the proof of Theo-
rem 1, we can show that there exist PPT adversaries Brka and B′rka that use A as a subroutine
and attack the passive RKA security of SKEM so that |Pr[SUC5]− Pr[SUC6]| = AdvrkaSKEM,ℓ,Brka(λ)

and |Pr[BDQ5]− Pr[BDQ6]| = AdvrkaSKEM,ℓ,B′rka
(λ) hold, respectively.

Game 7: Same as Game 6, except that the challenger responds to KDM queries made by A
with CT← Enccca

(
pkj , 0

d+2
)
.

Again, with the same arguments as in the corresponding steps in the proof of Theorem 1,
we have that

• There exist PPT adversaries Bcca and B′cca such that |Pr[SUC6]− Pr[SUC7]| = AdvindccaΠcca,ℓ,Bcca(λ)

and |Pr[BDQ6]− Pr[BDQ7]| = AdvindccaΠcca,ℓ,B′cca(λ).

•
∣∣Pr[SUC7]− 1

2

∣∣ = 0.

• There exists a PPT adversary Bcu such that Pr[BDQ7] ≤ ℓ · qdec ·AdvcuPHF,Bcu(λ) +O(2−len).

In fact, the description of Bcu has to be slightly modified from the one we had in the proof of
Theorem 1, to take into account that PHF is now an augmented PHF family. Given (N,T, g)
from the challenger, Bcu picks j∗

r←− [ℓ], executes (ppskem, z, z̃) ← Setupskem(1
λ), samples x̂

r←−[
N−1
4

]
and ∆j∗

r←−
[
N−1
4 · z̃ · 2ξ

]
, and generates hj∗ = g2(x̂+∆j∗) mod N s. Then, Bcu submits

hj∗ ∈ Gn as an auxiliary key, and receives ppphf and ppk from the challenger. Now, Bcu regards
ppk as ppkj∗ in the j∗-th user’s public key. From here on Bcu proceeds in exactly the same way
as Bcu in the proof of Theorem 1 does. It is straightforward to see that the same analysis as
before applies.

From the above arguments and Equations 10 and 11, we can conclude that there ex-
ist PPT adversaries Bdcr, Brka, B′rka, Bcca, B′cca, and Bcu satisfying Equation 9, as required.

□ (Theorem 2)

6.2 Instantiations of Projective Hash Function

For our construction Πpoly, we use an augmented PHF family for the cascaded ElGamal lan-
guage. As in the case for Πaff , we have two instantiations: the basic construction PHFpoly
and the space-efficient construction PHFhashpoly using a collision resistant hash function. Since the

construction of PHFhashpoly from PHFpoly is exactly the same as the construction of PHFhashaff from
PHFaff given in Section 5, in this subsection we only show the basic construction PHFpoly =
(Setup,Πyes,Πno,SK,PK,K, µ,Λ,Pub).

Let s ≥ 2, GGen be the DCR group generator, and param = (N,P,Q, T, g) ← GGen(1λ, s).
Recall that for the cascaded ElGamal language, Πyes = Gd

n, Πno = (GNs−1 ⊗Gn)
d \Gd

n, and the
auxiliary key space is AK = Gn.

Given param, Setup outputs pp that concretely specifies (SK,PK,K, µ,Pub) as follows: We
define SK :=

[
N s−1 · N−14

]
, PK := G2

n, and K := (GNs−1 × Gn)
d. For every sk ∈

[
N−1
4

]
,

ak ∈ Gn, and c = (c1, . . . , cd) ∈ (GNs−1 ⊗Gn)
d, we also define µ and Λ as

µ(ak, sk) :=
(
gsk mod N s, aksk mod N s

)
and

Λsk(c) :=
(
csk1 mod N s, . . . , cskd mod N s

)
.

34

Projective property. Let sk ∈
[
N−1
4

]
, ak ∈ Gn, pk = (y, z) = (gsk mod N s, aksk mod N s),

and c = (c1, . . . , cd), where cd = grd mod N s, ci = gri · akri+1 mod N s for every i ∈ [d− 1], and
r = (r1, . . . , rd) ∈ Zd. We define the public evaluation algorithm Pub as

Pub(ppk, c, r) := (yr1 · zr2 mod N s, . . . , yrd−1 · zrd mod N s, yrd mod N s) .

We see that

yrd ≡ (grd)sk mod N s , and

yri · zri+1 ≡
(
gsk
)ri
·
(
aksk

)ri+1

≡ (gri · akri+1)sk mod N s

for every i ∈ [d − 1]. Therefore, we have Pub(pk, c, r) = Λsk(c), and thus PHFpoly satisfies the
projective property.

Universal property. We now show that PHFpoly satisfies the statistical universal property.
Let ak ∈ Gn, pk = (y, z) ∈ Sup (µ(ak, ·)), c = (c1, . . . , cd) ∈ (GNs−1 ⊗ Gn)

d \ Gd
n, where ci∗ ∈

GNs−1⊗Gn\Gn for some i∗ ∈ [d]. (Our analysis below focuses on this i∗, and proceeds identically
to the analysis of the universal property for PHFaff .) Let π = (π1, . . . , πd) ∈ (GNs−1 ⊗ Gn)

d.
We can write ci∗ = T θ · gr mod N s and πi∗ = T θ′ · gr′ mod N s, where θ, θ′ ∈

[
N s−1] such that

θ ≠ N s−1 and r, r′ ∈ [n]. Consider the following probability

Pr
sk

r←−[Ns−1·n]
[Λsk(c) = π|µ(ak, sk) = pk]

≤ Pr
sk

r←−[Ns−1·n]

[
cski∗ ≡ πi∗ mod N s

∣∣∣gsk ≡ y mod N s ∧ aksk ≡ z mod N s
]

≤ Pr
sk

r←−[Ns−1·n]

[
T θ·sk ≡ T θ′ mod N s

∣∣∣sk ≡ logg y ≡ logak z mod n
]

= Pr
sk∗

r←−[Ns−1]

[
θ · sk∗ ≡ θ′ mod N s−1]

≤ Pr
sk∗

r←−[P s−1]

[
θ · sk∗ ≡ θ′ mod P s−1] , (12)

where the last inequality is true even if P is replaced with Q. Since θ ̸= N s−1, we have either θ ̸≡
0 mod P s−1 or θ ̸≡ 0 mod Qs−1. Without loss of generality, we assume that θ ̸≡ 0 mod P s−1.
(Otherwise, switch the role of P and Q.) Below, we prove the probability in Equation 12 is
bounded by O(2−len).

First, we consider the case of GCD(P s−1, θ) = 1.12 In this case, there exists a multiplicative
inverse of θ mod P s−1, and Equation 12 is at most 1

P s−1 ≤ O(2−len).
Next, we consider the case of GCD(P s−1, θ) ̸= 1. In this case, there exist ζ ∈ [s− 2] and θ0

that is co-prime to P such that θ = P ζ ·θ0. Then, if θ′ is not a multiple of P ζ , then Equation 12
is 0. Otherwise (i.e. θ′ is a multiple of P ζ), Equation 12 is equal to

Pr
sk∗

r←−[P s−ζ−1]

[
θ0 · sk∗ ≡

θ′

P ζ
mod P s−ζ−1

]
.

Since θ0 is co-prime to P , there exists a multiplicative inverse of θ0 mod P s−ζ−1. Then, the
above probability is bounded by 1

P s−ζ−1 ≤ O(2−len).

Therefore, the probability in Equation 12 is bounded by O(2−len) in any case. Moreover,

SD(USK,U[Ns−1·n]) = SD
(
U[Ns−1·N−1

4],U[Ns−1·n]

)
≤ O

(
2−len

)
. Therefore, PHFpoly is O(2−len)-

universal.
12If s = 2, this always holds.

35

7 Instantiations

We give some instantiation examples of Faff-KDM-CCA secure PKE schemes and Fpoly-KDM-CCA
secure PKE schemes from our proposed schemes Πaff in Section 5 and Πpoly in Section 6. These
instantiations are summarized in Figures 1 and 2 in Section 1.2. In all of the following instan-
tiations, the plaintext space of the resulting schemes is ZNs−1 , where N is the RSA modulus
generated in the setup algorithm and s ≥ 3, and we assume that the underlying SKEM is
instantiated with the one presented in Section 4.2.

The first instantiations are obtained by instantiating the underlying PHF family with the
“space-efficient” PHF families (PHFhashaff for Πaff and PHFhashpoly for Πpoly), and the underlying
IND-CCA secure PKE scheme with the scheme based on the factoring assumption proposed
by Hofheinz and Kiltz [17]. The KDM-CCA security of the resulting PKE schemes is not
tightly reduced to the DCR assumption, but a ciphertext of the Faff-KDM-CCA secure scheme
consists of only two elements of ZNs , two elements of ZN ′ (caused by the Hofheinz-Kiltz scheme),
and a hash value output by a collision-resistant hash function, where N ′ is the RSA modulus
generated in the Hofheinz-Kiltz scheme. Note that if s ≥ 3, the size of two elements of ZN ′ plus
the size of a hash value is typically (much) smaller than one element of ZNs ! Furthermore, the
improvement on the ciphertext size of Fpoly-KDM-CCA secure scheme from the previous works
is much more drastic. For KDM security with respect to degree-d polynomials, a ciphertext of
our instantiation consists of (d + 1) elements of ZNs , two elements of ZN ′ , and a hash value,
and its size overhead compared to Malkin et al.’s scheme [23] is independent of d. In contrast,
the ciphertext size of the previous best construction of Han et al. [12] is O(d9) elements of ZNs

and more (and in addition its security relies on both the DCR and DDH assumptions).
The second instantiations are PKE schemes obtained by instantiating the underlying PHF

family with the “basic” PHF families (PHFaff for Πaff and PHFpoly for Πpoly), and the underlying
IND-CCA secure PKE scheme with the scheme proposed by Hofheinz [14]. Hofheinz’ scheme is
tightly IND-CCA secure under the DCR assumption, and its ciphertext overhead is 28 group
elements plus the ciphertext overhead caused by authenticated encryption. The advantage of the
second instantiations is that we obtain the first tightly Faff-KDM-CCA secure PKE scheme and
a tightly Fpoly-KDM-CCA PKE scheme based solely on the DCR assumption. The disadvantage
is the relatively large ciphertext size.

The third instantiations are obtained by replacing the underlying PKE scheme in the second
ones with the PKE scheme proposed by Gay, Hofheinz, and Kohl [11]. Gay et al.’s scheme is
tightly IND-CCA secure under the DDH assumption, and its ciphertext overhead is just three
group elements of a DDH-hard group plus the ciphertext overhead caused by authenticated
encryption. By the third instantiations, relying on both the DCR and DDH assumptions, we
obtain a tightly Faff-KDM-CCA secure PKE scheme whose ciphertext consists of essentially
only three elements of ZNs and three elements of the DDH-hard group. We also obtain a
tightly Fpoly-KDM-CCA secure PKE scheme with much smaller ciphertexts than our second
instantiation achieving the same security.

Acknowledgement A part of this work was supported by NTT Secure Platform Laborato-
ries, JST OPERA JPMJOP1612, JST CREST JPMJCR19F6 and JPMJCR14D6, and JSPS
KAKENHI JP16H01705 and JP17H01695.

References

[1] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. CRYPTO 2009, pp. 595–618.

36

[2] B. Applebaum, D. Harnik, and Y. Ishai. Semantic security under related-key attacks and
applications. ICS 2011, pp. 45–60.

[3] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of
key-dependent messages. SAC 2002, pp. 62–75.

[4] F. Böhl, G. T. Davies, and D. Hofheinz. Encryption schemes secure under related-key and
key-dependent message attacks. PKC 2014, pp. 483–500.

[5] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from
decision Diffie-Hellman. CRYPTO 2008, pp. 108–125.

[6] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). CRYPTO 2010,
pp. 1–20.

[7] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. EURO-
CRYPT 2009, pp. 351–368.

[8] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. EUROCRYPT 2001, pp. 93–118.

[9] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. EUROCRYPT 2002, pp. 45–64.

[10] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. PKC 2001, pp. 119–136.

[11] R. Gay, D. Hofheinz, and L. Kohl. Kurosawa-desmedt meets tight security. CRYPTO 2017,
Part III, pp. 133–160.

[12] S. Han, S. Liu, and L. Lyu. Efficient KDM-CCA secure public-key encryption for polyno-
mial functions. ASIACRYPT 2016, Part II, pp. 307–338.

[13] D. Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. EURO-
CRYPT 2013, pp. 520–536.

[14] D. Hofheinz. Adaptive partitioning. EUROCRYPT 2017, Part III, pp. 489–518.

[15] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption.
CRYPTO 2012, pp. 590–607.

[16] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encapsulation.
CRYPTO 2007, pp. 553–571.

[17] D. Hofheinz and E. Kiltz. Practical chosen ciphertext secure encryption from factoring.
EUROCRYPT 2009, pp. 313–332.

[18] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently.
CRYPTO 2003, pp. 145–161.

[19] F. Kitagawa and K. Tanaka. A framework for achieving KDM-CCA secure public-key
encryption. ASIACRYPT 2018, Part II, pp. 127–157.

37

[20] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
CRYPTO 2004, pp. 426–442.

[21] B. Libert and C. Qian. Lossy algebraic filters with short tags. PKC 2019, Part I, pp.
34–65.

[22] X. Lu, B. Li, and D. Jia. KDM-CCA security from RKA secure authenticated encryption.
EUROCRYPT 2015, Part I, pp. 559–583.

[23] T. Malkin, I. Teranishi, and M. Yung. Efficient circuit-size independent public key encryp-
tion with KDM security. EUROCRYPT 2011, pp. 507–526.

[24] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM STOC, pp. 427–437.

[25] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. EU-
ROCRYPT’99, pp. 223–238.

A Compressing Projective Hash Functions

In this section, we formally show that if a statistically universal PHF family satisfies some
additional natural property (that is in particular satisfied by our concrete instantiations in
Sections 5.2 and 6.2) and we compress its output by using a collision resistant hash function,
then the resulting PHF family still satisfies the computational version of the universal property.
Although our definitions and formal statements in this section are for PHF families with respect
to the DCR group generator GGen, we stress that it is only for concreteness. The compressing
technique is applicable to any (augmented) PHF family satisfying a natural “trapdoor” property.
(See Remark 5 in the end of this section.)

We first recall the formal definition of a collision resistant hash family.

Definition 9 (Collision resistant hash functions) Let H = {H : {0, 1}∗ → R} be a hash
family. We say that H is collision resistant if for any PPT adversary A, we have

AdvcrhfH,A(λ) = Pr[H(m) = H(m′) ∧m ̸= m′] = negl(λ) ,

where H
r←− H and (m,m′)← A(1λ,H).

Next, we introduce additional and yet natural properties for a PHF family that allow us to
apply the compressing technique.

Definition 10 (Compression-friendliness) Let s ≥ 2, GGen be the DCR group generator,
and PHF = (Setup,Πyes,Πno,SK,PK,K,Λ, µ,Pub) be a PHF family with respect to GGen. We
say that PHF is compression-friendly if the following properties are satisfied: Let param =
(N,P,Q, T, g)← GGen(1λ, s) and pp← Setup(param). Then,

• (Checkability of yes instances:) Given param, pp, and c ∈ Πyes ∪Πno, whether c ∈ Πyes or
not is efficiently checkable.

• (Conditional resampling of secret keys:) Given param, pp, sk ∈ SK, and pk = µ(sk), it is
possible to efficiently sample a fresh secret key s̃k ∈ SK according to a distribution that is
O(2−λ)-close to the uniform distribution over the subset SK|pk := {sk′ ∈ SK|µ(sk′) = pk}.

38

It is straightforward to see that the concrete instantiation of the PHF family for the DCR lan-
guage in Section 5.2 and that for the cascaded ElGamal language in Section 6.2 are compression-
friendly.

To see that the former PHF family is compression-friendly, recall that Πyes = Gn and
Πno = GNs−1 ⊗ Gn \ Gn. Thus, given param = (N,P,Q, T, g) and an instance c ∈ Πyes ∪ Πno,
one can efficiently check the membership of Πyes using P and Q. Furthermore, given param,

sk ∈
[
N s · N−14

]
, and pk = µ(sk) = gsk mod N s, we can sample a fresh secret key s̃k ∈ SK

by first sampling θ
r←− [N s−1] and then letting s̃k be the element satisfying s̃k ≡ sk mod n and

s̃k ≡ θ mod N s−1. (Note that such element is uniquely determined by the Chinese remainder
theorem.) Since g ∈ Gn, it is immediate to see that

µ(s̃k) = gs̃k mod N s = gs̃k mod n mod N s = gsk mod n mod N s = gsk mod N s = µ(sk) ,

and the statistical distance between the distribution of s̃k sampled as above and the uniform

distribution over SK|pk =
{
sk′ ∈

[
N s−1 · N−14

]
|gsk′ mod N s = pk

}
, is bounded by O(2−len) ≤

O(2−λ).
The fact that the PHF family for the cascaded ElGamal language in Section 6.2 is compression-

friendly can be seen analogously, and thus we omit the detail.

We now proceed to formally showing the compressing technique. Let s ≥ 2, GGen be the
DCR group generator, and PHF = (Setup,Πyes,Πno,SK,PK,K,Λ, µ,Pub) be a PHF family
with respect to GGen. Let H =

{
H : {0, 1}∗ → {0, 1}lencrhf

}
be a hash family for some poly-

nomial lencrhf = lencrhf(λ). Consider the “compressed”-version of a PHF family PHFhash =
(Setup′,Πyes,Πno,SK,PK,K′ := {0, 1}lencrhf ,Λ′, µ,Pub′), in which Setup′, Λ′, and Pub′ are de-
fined as follows (and the remaining components are unchanged between PHFhash and PHF):

• Setup′(param) runs pp← Setup(param), picks H
r←− H, and outputs pp′ := (pp,H);

• For pp′ = (pp,H), sk ∈ SK, and c ∈ Πyes ∪Πno, we define Λ′sk(c) := H(Λsk(c));

• Similarly to Λ′, Pub′ is defined by composing Pub and H straightforwardly.

It is obvious that PHFhash preserves the projective property of the underlying PHF. We
now formally show that the “compressed” PHF PHFhash satisfies the computational universal
property if the underlying PHF is compression-friendly and statistically universal, and H is
collision resistant.

Lemma 6 If PHF is compression-friendly and ϵ-universal for some negligible ϵ = ϵ(λ), and H
is collision resistant, then PHFhash is computationally universal.

Specifically, for any PPT adversary A that attacks the computational universal property of
PHFhash, there exists a PPT adversary B such that

Advcu
PHFhash,A(λ) ≤

√
AdvcrhfH,B(λ) + ϵ+O(2−λ) . (13)

Proof of Lemma 6. Let A be any PPT adversary that attacks the computational universal
property of PHFhash. Suppose the computational universal game of PHFhash is played by A and
the challenger, and A finally outputs (c∗, π∗) ∈ Πno × {0, 1}lencrhf . We denote this process by
“(c∗, π∗) ← Gcu”. From here on, the values without any mention (such as pk, sk, and H) are
those generated in the game. We then let the challenger choose two fresh keys s̃k1 and s̃k2
uniformly and independently from SK|pk. Then, consider the following events:

39

SUC0: H(Λsk(c
∗)) = π∗ holds. (That is, A wins the computational universal game.)

SUC1: H(Λ
s̃k1

(c∗)) = π∗ holds.

SUC2: H(Λ
s̃k1

(c∗)) = π∗ and H(Λ
s̃k2

(c∗)) = π∗ hold simultaneously.

COL: Λ
s̃k1

(c∗) = Λ
s̃k2

(c∗) holds.

Unless mentioned otherwise, the probabilities in the following are over the process “(c∗, π∗)←
Gcu; s̃k1, s̃k2

r←− SK|pk”.
By definition, we have Advcu

PHFhash,A(λ) = Pr[SUC0]. To complete the proof, we will show the

following four items:

• Pr[SUC0] = Pr[SUC1].

• (Pr[SUC1])
2 ≤ Pr[SUC2].

• Pr[COL] ≤ ϵ.

• There exists a PPT adversary B satisfying AdvcrhfH,B(λ) ≥ Pr[SUC2]− Pr[COL]−O(2−λ).

Note that the above (in)equalities imply Equation 13, and thus complete the proof.
Firstly, it is immediate to see that Pr[SUC0] = Pr[SUC1] holds, because the distributions of

sk and s̃k1 are identical.
Secondly, (Pr[SUC1])

2 ≤ Pr[SUC2] can be seen as follows:

Pr[SUC2] = Pr
(c∗,π∗)←Gcu; s̃k1,s̃k2

r←−SK|pk

[
H(Λ

s̃k1
(c∗)) = π∗ ∧H(Λ

s̃k2
(c∗)) = π∗

]
= E

(c∗,π∗)←Gcu

[
Pr

s̃k1,s̃k2
r←−SK|pk

[
H(Λ

s̃k1
(c∗)) = π∗ ∧H(Λ

s̃k2
(c∗)) = π∗

]]

(∗)
= E

(c∗,π∗)←Gcu

 (Pr
s̃k1

r←−SK|pk

[
H(Λ

s̃k1
(c∗)) = π∗

])2


(†)
≥

(
E

(c∗,π∗)←Gcu

[
Pr

s̃k1
r←−SK|pk

[
H(Λ

s̃k1
(c∗)) = π∗

]])2

=

(
Pr

(c∗,π∗)←Gcu; sk1
r←−SK|pk

[
H(Λ

s̃k1
(c∗)) = π∗

])2

= (Pr[SUC1])
2 ,

where the inequality (*) is because the events H(Λ
s̃k1

(c∗)) = π∗ and H(Λ
s̃k2

(c∗)) = π∗ become

independent once (c∗, π∗) and H are fixed, and s̃k1 and s̃k2 are distributed identically; The
inequality (†) is due to the Jensen inequality13.

Thirdly, it is also immediate to see that Pr[COL] ≤ ϵ holds due to the ϵ-universal property
of the underlying PHF. Indeed, we can regard s̃k1 as the sk in the probability defining the
universal property, then the ϵ-universal property ensures that the probability that Λ

s̃k1
(c∗) hits

Λ
s̃k2

(c∗) is at most ϵ, regardless of the value of s̃k2.
Finally, we show that there exists a PPT adversary B against the collision resistance of the

hash family H satisfying AdvcrhfH,B(λ) ≥ Pr[SUC2] − Pr[COL] − O(2−λ). To show this, we use the
assumption that PHF is compression-friendly. The description of B is as follows:

13E[f(X)] ≥ f(E[X]) holds for any convex function f .

40

• Given 1λ and H ∈ H from the collision-resistance challenger, B generates param =
(N,P,Q, T, g) ← GGen(1λ, s) and pp ← Setupphf(param), and sets pp′ ← (pp,H). B
then chooses sk

r←− SK, and computes pk← µ(sk). Then, B gives (N,T, g, pp′, pk) to A.

• For the evaluation queries c ∈ Πyes∪Πno from A, B checks whether c is an yes instance by
using param and pp, which is possible due to the “checkability of yes instances” property of
the compression-friendliness of PHF. If c ∈ Πyes, B computes π ← H(Λsk(c)) and returns
it to A. Otherwise (i.e. c ∈ Πno), B returns ⊥ to A.

• When A outputs (c∗, π∗) ∈ Πno × {0, 1}lencrhf , B picks two fresh keys s̃k1, s̃k2 ∈ SK|pk
using param and pp, with the method guaranteed by the “conditional resampling of secret
keys” property of the compression-friendliness of PHF. (Note that the distributions of
s̃k1 and s̃k2 are O(2−λ)-close to the uniform distribution over SK|pk.) Then, B computes
π̃1 ← Λ

s̃k1
(c∗) and π̃2 ← Λ

s̃k2
(c∗). Finally, B outputs (π̃1, π̃2) as a candidate of a collision

pair for H, and terminates.

B’s collision resistance advantage can be estimated as follows (where the notation “PrB” is
to make it explicit that the probability is over B’s collision resistance game):

AdvcrhfH,B(λ) = Pr
B
[H(π̃1) = H(π̃2) ∧ π̃1 ̸= π̃2]

= Pr
B
[H(π̃1) = H(π̃2)]− Pr

B
[π̃1 = π̃2]

≥ Pr
B
[H(π̃1) = π∗ ∧H(π̃2) = π∗]− Pr

B
[π̃1 = π̃2] .

It is straightforward to see that due to the compression-friendliness of PHF, B perfectly simulates
the computational universal game for A, and thus (c∗, π∗) output by A in the game simulated
by B is identically distributed to that generated as (c∗, π∗) ← Gcu. Also, the distributions of
s̃k1 and s̃k2 are O(2−λ)-close to the uniform distribution over SK|pk. Thus, we have∣∣∣∣PrB [H(π̃1) = π∗ ∧H(π̃2) = π∗]− Pr[SUC2]

∣∣∣∣ ≤ O(2−λ) , and∣∣∣∣PrB [π̃1 = π̃2]− Pr[COL]

∣∣∣∣ ≤ O(2−λ) .

Hence, we finally obtain AdvcrhfH,B(λ) ≥ Pr[SUC2]−Pr[COL]−O(2−λ), as desired. □ (Lemma 6)

Remark 5 (On the generality of the compressing technique) Note that in the proof of
Lemma 6, we did not use a specific property of the DCR group generator GGen. Hence, it is
straightforward to see that the compressing technique is applicable to PHFs for other languages
(not necessarily associated with the DCR group generator GGen), as long as the setup algorithm
of a PHF family, in addition to pp, outputs a trapdoor that allows the owner to (1) check
whether or not a given instance c is an yes instance (e.g. P and Q in the case of the PHF family
for the DCR language), and (2) given additionally sk and pk = µ(sk), sample a fresh secret
key s̃k conditioned on µ(s̃k) = pk from a distribution that is statistically close to the uniform
distribution over the subset SK|pk. If a PHF family supports such a trapdoor, we can conduct
essentially the same proof as our proof of Lemma 6.

B Proofs of Lemmas 2 and 3

Proof of Lemma 2. We proceed the proof via a sequence of games. For every t ∈ {0, . . . , 5},
let SUCt be the event that A succeeds in guessing the challenge bit b in Game t.

41

Game 0: This is the original IV1 game. Then, we have AdvIVs,A,1(λ) = 2 ·
∣∣Pr[SUC0]− 1

2

∣∣.
Game 1: Same as Game 0, except that the challenger generates r

r←− [n] instead of r
r←−
[
N−1
4

]
when responding to a sample query.

|Pr[SUC0]− Pr[SUC1]| ≤ qiv(P+Q−1)
N−2 holds since the distribution of r in Game 0 is (P+Q−1)

N−2 -
close to that in Game 0 and A makes at most qiv queries.

Game 2: Same as Game 1, except that the challenger generates w
r←− [n] at the beginning of

the game and when responding to a sample query a made by A, the challenger generates
r

r←− [n] and returns e = T b·a · gwr
1 mod N s.

If w is co-prime to n, then wr mod n is distributed uniformly over [n]. Thus, we can
bound |Pr[SUC1]− Pr[SUC2]| by the probability that w is not co-prime to n. Therefore, we have
|Pr[SUC1]− Pr[SUC2]| ≤ p+q−1

n−2 .

Game 3: Same as Game 2, except that the challenger generates r
r←−
[
N s−1 · N−14

]
instead of

r
r←− [n] when responding to a sample query.

The only information of r that A can obtain is r mod n through gwr
1 mod N s. The dis-

tribution of r mod n in Game 2 is (P+Q−1)
N−2 -close to that in Game 3 and A makes at most qiv

queries. Therefore, we obtain |Pr[SUC2]− Pr[SUC3]| ≤ qiv(P+Q−1)
N−2 .

Game 4: Same as Game 3, except that when Amakes a sample query a ∈ ZNs−1 , the challenger
returns T b·a · (T · gw1)

r mod N s instead of T b·a · gwr
1 mod N s.

By the DCR assumption, the distributions gw1 mod N s and T ·gw1 mod N s are computation-

ally indistinguishable, where w
r←− [n]. In other words, there exists a PPT adversary B that

satisfies |Pr[SUC3]− Pr[SUC4]| = Advdcrs,B(λ).

Game 5: Same as Game 4, except that the challenger generates r
r←−
[
N s−1 · n

]
instead of

r
r←−
[
N s−1 · N−14

]
when responding to a sample query.

|Pr[SUC4]− Pr[SUC5]| ≤ qiv(P+Q−1)
N−2 holds since the distribution of r in Game 5 is (P+Q−1)

N−2 -
close to that in Game 4 and A makes at most qiv queries.

In Game 5, the answer to a sample query a made by A is

e = T b·a · (T · gw1)r mod N s = T b·a+(r mod Ns−1) · gwr mod n
1 mod N s ,

where r
r←−
[
N s−1 · n

]
. Therefore, by (r mod N s−1), the value of b is information-theoretically

hidden from the view of A in Game 5. Thus, we have
∣∣Pr[SUC5]− 1

2

∣∣ = 0.

From the above arguments, there exists a PPT adversary B that satisfies

Advivs,1,A(λ) ≤ 2 ·
(
Advdcrs,B(λ) +

3qiv(P +Q− 1)

N − 2
+

(p+ q − 1)

n− 2

)
≤ 2 ·

(
Advdcrs,B(λ) +

(6qiv + 4)

2len

)
= 2 · Advdcrs,B(λ) +

O (qiv)

2len
.

□ (Lemma 2)

42

Proof of Lemma 3. We proceed the proof via a sequence of games. For every t ∈ {0, . . . , 4},
let SUCt be the event that A succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original IVs,ℓ game. Then, we have AdvIVs,ℓ,A(λ) = 2 ·
∣∣Pr[SUC0]− 1

2

∣∣.
Game 1: Same as Game 1, except that the challenger generates αi

r←−
[
N s−1 · N−14

]
instead of

αi
r←−
[
N−1
4

]
for every i ∈ [ℓ].

|Pr[SUC0]− Pr[SUC1]| ≤ 2ℓ(P+Q−1)
N−2 holds since the distribution of gi in Game 0 is 2(P+Q−1)

N−2 -
close to that in Game 1 for every i ∈ [ℓ].

Game 2: Same as Game 1, except that the challenger generates r
r←− [n] instead of r

r←−
[
N−1
4

]
.

|Pr[SUC1]− Pr[SUC2]| ≤ P+Q−1
N−2 holds since the distribution of r in Game 1 is P+Q−1

N−2 -close
to that in Game 2 and A make at most one sample query.

Game 3: Same as Game 2, except that when A makes a sample query (a1, . . . , aℓ) ∈ Zℓ
Ns−1 ,

the challenger compute ei by T b·ai · (T · gr)αi mod N s instead of T b·ai · gri mod N s =
T b·ai · (gr)αi mod N s.

By the DCR assumption, the distributions gr mod N s and T ·gr mod N s are computationally
indistinguishable, where r

r←− [n]. In other words, there exists a PPT adversary B that satisfies
|Pr[SUC2]− Pr[SUC3]| = Advdcrs,B(λ).

Game 4: Same as Game 3, except that the challenger generates αi
r←−
[
N s−1 · n

]
instead of

αi
r←−
[
N s−1 · N−14

]
for every i ∈ [ℓ].

|Pr[SUC3]− Pr[SUC4]| ≤ ℓ(P+Q−1)
N−2 holds since the distribution of αi in Game 3 is (P+Q−1)

N−2 -
close to that in Game 4 for every i ∈ [ℓ].

In Game 4, the answer to a sample query (a1, . . . , aℓ) made by A is (e1, . . . , ed), where

ei = T b·ai · (T · gr)αi mod N s = T b·ai+(αi mod Ns−1) · gr(αi mod n) mod N s ,

where αi
r←−
[
N s−1 · n

]
. At the beginning of the game, A is given gi = gαi mod N s =

gαi mod n mod N s for every i ∈ [ℓ]. On the other hand, for every i ∈ [ℓ], the information of
αi mod N s−1 does not appear except for ei throughout the game. Therefore, by (αi mod N s−1)
for every i ∈ [ℓ], the value of b is information-theoretically hidden from the view of A in Game 4.
Thus, we have

∣∣Pr[SUC4]− 1
2

∣∣ = 0.

From the above arguments, there exists a PPT adversary B that satisfies

Advivs,ℓ,A(λ) ≤ 2 ·
(
Advdcrs,B(λ) +

(3ℓ+ 1)(P +Q− 1)

N − 2

)
≤ 2 ·

(
Advdcrs,B(λ) +

(6ℓ+ 2)

2len

)
= 2 · Advdcrs,B(λ) +

O (ℓ)

2len
.

□ (Lemma 3)

43

C Other Instantiations of SKEM

Here, we explain other instantiations of an SKEM satisfying passive RKA security.

Instantiation from the DDH assumption. As mentioned in Section 4.2, the symmetric-
key version of the ElGamal KEM yields an SKEM satisfying our passive RKA security notion.
Specifically, let G be a cyclic group with prime order p = Ω(2λ). Then, the construction of the
DDH-based SKEM is as follows:

Setup(1λ) : Pick g
r←− G, and return pp := (G, p, g) and z = z̃ := p. The session key space is G.

Encap(pp, sk ∈ Z) : Pick ct
r←− G, compute K = ctsk, and return (ct,K).

Decap(pp, sk ∈ Z, ct) : Return K = ctsk.

It is immediate to see that this SKEM satisfies the functional requirements. Specifically, we have
ctsk = ctsk mod p for any sk ∈ Z, and thus the modular-reduction of sk is naturally performed in
the exponent, and the correctness follows from that of the ElGamal KEM.

It is also straightforward to see that this SKEM is passively RKA secure under the DDH
assumption. Specifically, fix any polynomial ℓ = ℓ(λ) and a PPT adversary A, and suppose
A chooses the bound B ≥ p. Let g

r←− G, ∆1, . . . ,∆ℓ
r←− [B], sk

r←− Zp, and ct1, . . . , ctℓ
r←− G.

Then, A’s view in the passive RKA security game with b = 1 is distributed as {(∆k, ctk,Kk =
ctsk+∆k

k)k∈[ℓ]}, which is computationally indistinguishable from {R1, . . . , Rℓ
r←− G : (∆k, ctk,Kk =

Rk · ct∆k
k)k∈[ℓ]} due to the DDH assumption. (This step can be tightly reduced to the DDH as-

sumption due to its random self-reducibility.) The latter distribution is identical to {K1, . . . ,Kℓ
r←−

G : (∆k, ctk,Kk)k∈[ℓ]}, and is exactly the distribution of A’s view in the passive RKA security
game with b = 0.

Instantiations with “empty ciphertext” from hash functions. If we assume an appro-
priate form of “correlation robustness” [18, 2], we can obtain even simpler instantiations with
“empty” ciphertext. (As noted in Section 4.1, such a construction is not excluded.)

Specifically, given a hash function H : Zz → K for some z = Ω(2λ), consider an SKEM
whose encapsulation and decapsulation algorithms both take sk ∈ Z as input, and outputs
K = H(sk mod z).

If H satisfies the property that for any polynomial ℓ = ℓ(λ) and any B ≥ z (that could
be chosen maliciously by a PPT adversary), the distribution {sk r←− Zz;∆1, . . . ,∆ℓ

r←− [B] :
(∆k,H(sk+∆k mod z))k∈[ℓ]} is computationally indistinguishable from the uniform distribution

over ([B] × K)ℓ, then it directly implies that the above “empty-ciphertext” construction is a
passively RKA secure SKEM. This assumption on H is essentially the correlation robustness
[18, 2]14, with the slight difference that we consider a slightly stronger adversarial behavior in
the sense that an adversary has the power to specify the bound B ≥ z of the interval from
which the “shifts” {∆k} are chosen.

As observed in [18], it is reasonable to heuristically assume that practical cryptographic hash
functions such as SHA-256 and SHA-3, satisfy this property. Moreover, Applebaum et al. [2]
showed that a hash function H : Zp → G defined by H(x) := gx (where G is a cyclic group with
prime order p and g ∈ G is a fixed group element) can be shown to be correlation robust under

the ℓ-power DH assumption in the underlying group G, which states that {α r←− Zp : (g
αk
)k∈[ℓ]}

14Correlation robustness was first introduced in [18] for a function with one-bit output, where the authors of
[18] considered not “addition mod z” but “XOR of bitstrings” for the correlations of inputs. The notion was
generalized in [2] for a hash function with a more general form, and a general linear relation for inputs.

44

is computationally indistinguishable from the uniform distribution over Gℓ. It is immediate to
see that their analysis carries over to the case in which an adversary can specify the bound
B ≥ z := p of the interval from which the “shifts” {∆k} are chosen.

Finally, we remark that we can consider a minor variant of the above construction where
H is not a fixed hash function but chosen from a family of hash functions and put in a public
parameter. This “hash family” version of SKEM can be similarly shown to satisfy passive RKA
security from a hash-family version of correlation robustness.

Instantiations from RKA secure encryption schemes. Observe that in general, a KEM
is a simpler primitive than an encryption scheme, because the former can always be instantiated
by encrypting a random value. Although our syntactical and functional requirements exclude
constructions whose secret key is a vector of elements (such as the constructions based on the
learning with errors (LWE) and learning parities with noise (LPN) assumptions in [2]), from
the existing encryption schemes satisfying passive RKA security with respect to addition or
any stronger form of RKA security, we can also obtain concrete instantiations of an SKEM. In
particular, this “encrypting a random session-key” approach allows us to obtain RKA secure
SKEMs from the DDH assumption [2], the DCR assumption [4], and a correlation robust hash
function [2], to name a few.

However, constructing SKEMs in this way is typically redundant and/or overkill, in the
sense that the existing RKA secure encryption schemes already implicitly contains an SKEM as
its internal structure. In particular, in retrospect, our DCR-based SKEM in Section 4.2 can be
understood as obtained from the KEM-part of the encryption scheme of Böhl et al. [4] (which
is in turn based on the cascaded ElGamal scheme of Malkin et al. [23] used as symmetric
encryption), where we additionally apply a universal hash function to the message-masking
component and regard it as a session-key; the DDH-based and hash-based SKEMs can be seen
to be obtained by regarding the “message-masking” component in the RKA secure encryption
schemes in [2] as a session-key. Furthermore, other instantiations obtained in this way do
not have a merit (in terms of efficiency or assumption) compared to the DCR/DDH/hash-based
instantiations in Section 4.2 and in this section. Thus, we do not further elaborate this direction.

45

	Introduction
	Background
	Our Results

	Technical Overview
	KDM-CPA Secure Scheme by Malkin et al.
	Problem When Proving KDM-CCA Security
	The Technique by Kitagawa and Tanaka
	Adopting the Technique by Kitagawa and Tanaka
	Solution: Symmetric Key Encapsulation Mechanism (SKEM)
	Extension to the Multi-user Setting Using RKA Secure SKEM
	Differences in Usage of RKA Secure Primitive with Han et al.
	Tightness of Our Construction

	Preliminaries
	Notations
	Leftover Hash Lemma
	Assumptions
	Projective Hash Function
	Public Key Encryption

	Symmetric KEM and Passive RKA Security
	Definition
	Concrete Instantiations

	KDM-CCA Secure PKE with respect to Affine Functions
	Proposed PKE Scheme
	Basic Construction of Projective Hash Function
	Space-Efficient Construction of Projective Hash Function

	KDM-CCA Secure PKE with respect to Polynomials
	Proposed PKE Scheme
	Instantiations of Projective Hash Function

	Instantiations
	Compressing Projective Hash Functions
	Proofs of Lemmas 2 and 3
	Other Instantiations of SKEM

