
Preprocess-then-NTT Technique and Its
Applications to KYBER and NEWHOPE

Shuai Zhou1,2,3, Haiyang Xue1,2,3, Daode Zhang1,2,3,(�), Kunpeng Wang1,2,3,
Xianhui Lu1,2,3, Bao Li1,2,3, and Jingnan He1,2,3

1 School of Cyber Security, University of Chinese Academy of Sciences.
2 Data Assurances and communications Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China.
3 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China.
{zhoushuai,zhangdaode }@iie.ac.cn

Abstract. The Number Theoretic Transform (NTT) provides efficient
algorithm for multiplying large degree polynomials. It is commonly used
in cryptographic schemes that are based on the hardness of the Ring
Learning With Errors problem (RLWE), which is a popular basis for
post-quantum key exchange, encryption and digital signature.

To apply NTT, modulus q should satisfy that q ≡ 1 mod 2n, RLWE-
based schemes have to choose an oversized modulus, which leads to ex-
cessive bandwidth. In this work, we present “Preprocess-then-NTT (Pt-
NTT)” technique which weakens the limitation of modulus q, i.e., we only
require q ≡ 1 mod n or q ≡ 1 mod n/2. Based on this technique, we
provide new parameter settings for KYBER and NEWHOPE (two NIST
candidates). In these new schemes, we can reduce public key size and
ciphertext size at a cost of very little efficiency loss .

Keywords: NTT, Preprocess-then-NTT, Kyber, NewHope, Ring Learn-
ing With Errors, Module Learning With Errors

1 Introduction

Fast Fourier Transform (FFT) algorithms can be applied to the efficient nega-
cyclic convolution of two integer sequences of length n. When the coefficients of
sequence (or polynomial) are specialized to come from a finite field, the FFT is
called the Number Theoretic Transform (NTT) [11] and can be used to compute
polynomial multiplication efficiently over this specific finite field. For example,
when polynomials come from Rq = Zq[x]/x

n + 1, the product corresponds to
a nega-cyclic convolution of the coefficient sequences. Note that Zq denotes the
quotient ring Z/qZ of the rational integers ring Z, and n = 2n

′−1 such that xn+1
is the 2n′ -th cyclotomic polynomial. In this setting, the NTT is usually computed
with a special type of FFT algorithm that can be efficiently implemented when
q is a prime satisfying that q ≡ 1 mod 2n [17], which in turn means that the
underlying finite field contains 2n-th roots of unity.

2 Shuai Zhou et al.

1.1 RLWE-based cryptography

Lattice-based cryptography has emerged as a promising candidate for public-key
cryptography that is still secure after the likely advent of quantum computers.
The first lattice-based encryption scheme was proposed by Ajtai and Dwork
[1]. This scheme was later simplified and improved by Regev [19]. And a major
achievement of Regev was the introduction of Learning With Errors problem
(LWE), which was relatively simple to use in cryptographic constructions.

The LWE assumption is asymptotically at least as hard as some standard
worst-case lattice problems [19]. Based on the LWE problem, Lyubashevsky et
al. [18] proposed a variant of LWE over polynomial rings and showed that the
variant enjoyed a worst-case hardness guarantee. The variant was defined as
Ring-Learning With Errors problem (RLWE). The polynomial rings in RLWE
assumption are usually defined asRq = Zq[x]/x

n+1 as mentioned above. RLWE-
based schemes have been proposed for public-key encryption [18], digital signa-
tures [16] and key exchange [8]. In order to compute the multiplication of poly-
nomials efficiently, most RLWE-based schemes invoke the NTT technique [17]
which requires that q is a prime and satisfies q ≡ 1 mod 2n. As a result, these
schemes have higher efficiency than that without applying the NTT algorithm.

RLWE-based schemes also have some drawbacks. Stebila et al. [20] reported
the performance of standalone post-quantum cryptographic operations of key
exchange protocols (passively secure key encapsulation mechanisms, KEMs), as
well as standard cryptographic operations for comparison. As is shown in Table
1 [20], the key exchange scheme based on RLWE assumption (NewHope) has a
significant increase in running time, while its bandwidth is too large comparing
with ECDH nistp256. Reducing the bandwidth (even if only a few tens of bytes)
makes sense in RLWE-based post-quantum cryptographic schemes, especially in
some special scenario. For example, in the wireless sensor nodes, power is very
crucial factor and most of the power is due to the RF transceiver module. Thus,
decreasing the bandwidth by reducing the sizes of keys and ciphertexts will be
hugely beneficial in the scenario.

Table 1: Performance of standalone cryptographic operations, showing mean
runtime in milliseconds of standalone cryptographic operations, communication
sizes (public key messages) in bytes, and claimed security level in bits.

Scheme Alice0 Bob Alice1 Communication(bytes) Claimed security
(ms) (ms) (ms) A→ B B → A classical quantum

RSA 3072-bit − 0.09 4.49 387/0∗ 384 128 -
ECDH nistp256 0.37 0.70 0.33 32 32 128 -

NewHope 0.11 0.16 0.03 1824 2048 229 206

PtNTT and Its Applications to KYBER and NEWHOPE 3

1.2 Our contribution

Because modulus q is required to satisfy that 2n|q−1 in the NTT, RLWE-based
schemes have to choose an oversized modulus, which leads to excessive band-
width. To reduce the bandwidth of RLWE-based schemes in the case of using
NTT, we present a method to preprocess the polynomials first by using a divide-
and-conquer strategy, and then apply the NTT, which is called Preprocess-then-
NTT (PtNTT). According to the times of preprocess, our PtNTT algorithm can
be classified as 1-round PtNTT (1PtNTT) and 2-round PtNTT (2PtNTT).

Polynomial multiplication over a finite field is one of fundamental operations
required in cryptographic schemes based on the RLWE problem, and NTT is
commonly used in the RLWE-based schemes. So, our PtNTT can be applied to
a large portion of RLWE-based schemes to reduce the value of modulus q, which
will decrease the bandwidth.

1.2.1∼ 1PtNTT and its application to KYBER.

In 1PtNTT, we first divide the polynomial f with n coefficients into two new
low-dimensional polynomials of degree n/2 according to the parity of index,
and then apply the NTT to the two low-dimensional polynomials respectively.
So, our 1PtNTT algorithm only requires that q ≡ 1 mod n instead of q ≡ 1
mod 2n in the NTT, i.e., weakens the limitation of modulus q. There exist some
advantages and disadvantages of 1PtNTT compared with the NTT algorithm:

• Advantages. Our 1PtNTT algorithm weakens the limitation of modulus q,
i.e., we require that q ≡ 1 mod n instead of q ≡ 1 mod 2n in the NTT.

• Disadvantages. Although our 1PtNTT algorithm is very efficient, it is still
slightly less efficient than the NTT. The computational cost of 1PtNTT to
compute the product of two polynomials of degree n is about 1.17 times that
of the NTT algorithm.

Its application to KYBER. According to the three parameter sets for KYBER 1

[6] which are called KYBER512-CCA-KEM, KYBER768-CCA-KEM, KYBER1024-
CCA-KEM, we will give a series of new parameter settings. Because the mod-
ulus q in our schemes is smaller, we call our scheme small-KYBER, i.e., small-
KYBER512-CCA-KEM, small-KYBER768-CCA-KEM, and small-KYBER1024-CCA-
KEM. The modulus q = 3329 and parameters for small-KYBER1024 has been
proposed in an early work[22]. Comparing with the original KYBER schemes,
there are some advantages and disadvantages of small-KYBER:

• Advantages. Because the mudulus q is smaller in small-KYBER, we can
reduce both public key size and ciphertext size of schemes. More precisely,
◦ In small-KYBER512-CCA-KEM, the public key size and the ciphertext

size are 64 and 64 bytes respectively fewer than that of KYBER512-CCA-
KEM;

1 KYBER was constructed under the Module Learning With Errors (MLWE) assump-
tion, which is a module version of the RLWE assumption.

4 Shuai Zhou et al.

◦ In small-KYBER768-CCA-KEM, the public key size and the ciphertext
size are 96 and 32 bytes respectively fewer than that of KYBER768-CCA-
KEM;

◦ In small-KYBER1024-CCA-KEM, the public key size and the ciphertext
size are 128 and 128 bytes respectively fewer than that of KYBER1024-
CCA-KEM.

Note that small-KYBER has a similar decryption error probability and a same
security level compared with KYBER. Please see more details in Tables 4, 5.

• Disadvantages. Although small-KYBER schemes have achieved high effi-
ciency, they are slightly slower than the original KYBER schemes. For a
worst case of three parameter sets, the cycle counts of “Key Generation”,
“Encapsulation” and “Decapsulation” in small-KYBER1024-CCA-KEM are
1.3296, 1.2856 and 1.4138 times that in KYBER1024-CCA-KEM. However,
the purpose of decreasing the bandwidth is more meaningful than improving
the efficiency of KYBER schemes. In small-KYBER1024-CCA-KEM, the run-
ning time of “Key Generation”, “Encapsulation” and “Decapsulation” are
0.118 ms, 0.149 ms and 0.188 ms. While in KYBER1024-CCA-KEM, they are
0.089 ms, 0.116 ms and 0.133 ms. Note that, all results are obtained on a
3.3 GHz CPU. Please see more details in Table 6.

In short, we can use fewer bytes to store public keys and ciphertexts to re-
duce the bandwidth of schemes at a cost of very little loss of efficiency.

1.2.2∼ 2PtNTT and its application to NEWHOPE.

In the NEWHOPE [2], there are two parameter settings for n, i.e., n = 512 and
n = 1024 respectively. Even though 1PtNTT technique can weaken the limita-
tion of modulus q and requires that q ≡ 1 mod n, there is still no suitable prime
modulus to satisfy the weakened requirement for two values of n, 512 and 1024,
simultaneously. That’s to say, we can not apply 1PtNTT technique to NEWHOPE
schemes directly. So we propose 2PtNTT technique to address this problem.

In 2PtNTT, we first divide the polynomial f with n coefficients into two
new low-dimensional polynomials of degree n/2 according to the parity of index,
and then divide each polynomial of degree n/2 into two polynomials of degree
n/4 according to the parity of index. After that, we apply the NTT to the four
polynomials of degree n/4 respectively. So, our 2PtNTT algorithm only requires
that q ≡ 1 mod n/2 instead of q ≡ 1 mod 2n in the NTT, i.e., further weakens
the limitation of modulus q. There exist some advantages and disadvantages of
2PtNTT compared with the NTT algorithm:

• Advantages. Our 2PtNTT algorithm weakens the limitation of modulus q,
i.e., we require that q ≡ 1 mod n/2 instead of q ≡ 1 mod 2n in the NTT.

• Disadvantages. Although our 2PtNTT algorithm is also efficient, it is still
slightly less efficient than the NTT. The computational cost of 2PtNTT to
compute the product of two polynomials of degree n is 1.25 times that of
the NTT algorithm.

PtNTT and Its Applications to KYBER and NEWHOPE 5

Its application to NEWHOPE. According to the two parameter settings for
NEWHOPE [2] which are called NEWHOPE512, NEWHOPE1024, we will give two
new parameter settings. Because the modulus q in our schemes is smaller, we call
our scheme small-NEWHOPE, i.e., small-NEWHOPE and small-NEWHOPE1024.
Comparing with the original NEWHOPE schemes, there are some advantages
and disadvantages of small-NEWHOPE:

• Advantages. Because the modulus q is smaller in small-NEWHOPE, we can
reduce both public key size and ciphertext size of schemes. More precisely,
◦ In small-NEWHOPE512-CPA-KEM, the public key size and the ciphertext

size are64 and 64 bytes respectively fewer than that of NEWHOPE512-
CPA-KEM;

◦ In small-NEWHOPE512-CCA-KEM, the public key size and the cipher-
text size are64 and 64 bytes respectively fewer than that of NEWHOPE512-
CCA-KEM;

◦ In small-NEWHOPE1024-CPA-KEM, the public key size and the cipher-
text size are128 and 128 bytes respectively fewer than that of NEWHOPE-
1024-CPA-KEM.

◦ In small-NEWHOPE1024-CCA-KEM, the public key size and the cipher-
text size are 128 and 128 bytes respectively fewer than that of NEWHOPE-
1024-CCA-KEM.

Note that small-NEWHOPE has a similar decryption error probability and
a same security level compared with NEWHOPE. Please see more details in
Tables 7, 8.

• Disadvantages. Although our small-NEWHOPE schemes have achieved high
efficiency, they are slightly slower than the original NEWHOPE schemes. For a
worst case of two parameter settings, the cycle counts of “Key Generation”,
“Encapsulation” and “Decapsulation” in small-NEWHOPE1024-CCA-KEM
are 1.4747, 1.6202 and 2.3130 times that in NEWHOPE1024-CCA-KEM. How-
ever, the purpose of decreasing the bandwidth is more meaningful than im-
proving the efficiency of NEWHOPE schemes. In small-NEWHOPE1024-CCA-
KEM, the running time of “Key Generation”, “Encapsulation” and “Decap-
sulation” are 0.082 ms, 0.133 ms and 0.049 ms. While in NEWHOPE1024-
CCA-KEM, they are 0.056 ms, 0.082 ms and 0.021 ms. Note that, all results
are obtained on a 3.3 GHz CPU. Please see more details in Table 9.

In brief, we can use fewer bytes to store public keys and ciphertexts to reduce
the bandwidth of schemes at a cost of very little loss of efficiency.

1.3 Our technique

Because 2PtNTT is similar to 1PtNTT, in this subsection, we will only introduce
one of our main techniques, 1PtNTT. Our 1PtNTT algorithm only requires that
the modulus q satisfies that q−1 can be divided by n, i.e., n|(q−1). However, in
this case, if 2n ∤ (q−1), we can not exploit the negative wrapped convolution[17]
and this is why we need to preprocess the polynomials. Similar to the process

6 Shuai Zhou et al.

of computing polynomial multiplication by using NTT, our 1PtNTT technique
contains 2 phases: 1PtNTT and 1PtNTT−1.

In 1PtNTT, we first divide the polynomial f(x) ∈ Zq[x]/(x
n + 1) with n

coefficients into two low-dimension polynomials of degree n/2 according to the
parity of index, feven(y) ∈ Zq[y]/(y

n/2 + 1) and fodd(y) ∈ Zq[y]/(y
n/2 + 1),

where feven contains all the even-indexed coefficients of f and fodd contains all
the odd-indexed coefficients of f , and y = x2. It is easy to see that f(x) =
feven(x

2)+x ·fodd(x2). As a result, we can apply the NTT to the two low-degree
polynomials. So we define 1PtNTT(f) = (NTT(feven),NTT(fodd)). In order to
recover f from its 1PtNTT transformed representation f̂ = (f̂even, f̂odd), we
define 1PtNTT−1(f̂) = (NTT−1(f̂even),NTT

−1(f̂odd)). It is very obvious that
the following equation 1PtNTT−1(1PtNTT(f)) = (feven, fodd) = f holds.

As we all know, the NTT provides an efficient algorithm for multiplying large
degree polynomials. Here comes a question how can we use 1PtNTT to compute
the product of two polynomials f and g? Let y denote x2 and let p(x) ∈ Rq

denote the product of f(x) and g(x), then

peven(y) = feven(y) · geven(y) + fodd(y) · (y · godd(y)) ∈ Zq[y]/(y
n/2 + 1),

podd(y) = fodd(y) · geven(y) + feven(y) · godd(y) ∈ Zq[y]/(y
n/2 + 1).

And p(x) = peven(x
2) + x · podd(x2) ∈ Zq[x]/(x

n + 1).
If we define −−→godd as

(
−godd[n2 − 1], godd[0], godd[1], · · · , godd[n2 − 2]

)
, and a

bow-tie multiplication as

1PtNTT(f) ▷◁ 1PtNTT(g) = (NTT(feven) ◦ NTT(geven) + NTT(fodd) ◦ NTT(−−→godd),
NTT(fodd) ◦ NTT(geven) + NTT(feven) ◦ NTT(godd)),

where ◦ denotes coefficient-wise multiplication. Then the following equation
p = 1PtNTT−1(1PtNTT(f) ▷◁ 1PtNTT(g)) holds, which is very similar to p =
NTT−1(NTT(f) ◦ NTT(g)) in the NTT algorithm.

1.4 Related Work

Inspired by KYBER [6], D’Anvers et al. [12, 13] also proposed a family of cryp-
tographic primitives, i.e., Saber which includes three IND-CCA secure KEMs
LightSaber-KEM, Saber-KEM and FireSaber-KEM. Saber-KEMs have similar
public key and ciphertext sizes respectively compared with our small-KYBER-
KEMs. Moreover, Saber-KEMs have better efficiency than KYBER-KEMs, so it
is easy to get a conclusion that Saber-KEMs are more efficient than our small-
KYBER-KEMs. We emphasize that, there exist two main differences between
Saber and our small-KYBER.

• In order to get rid of the constraint to modulus q caused by applying the
NTT algorithm, D’Anvers et al. [12, 13] invoked the Karatsuba polynomial
multiplication method which does not require any special modulus. As a
result, all moduli in Saber schemes are powers of 2, i.e., q = 213, while

PtNTT and Its Applications to KYBER and NEWHOPE 7

all moduli in our small-KYBER schemes are primes, i.e., q = 3329, which
might increase confidence in security. It is more popular for constructions of
schemes using prime modulus than non-prime modulus.

• Saber-KEMs rely on the hardness of the Module Learning With Rounding
(MLWR) problem, while our small-KYBER-KEMs are constructed under the
Module Learning With errors problem. As a result, Saber does not require
sampling of error polynomials, thus saving in computation time.

1.5 Outline

The remainder of the paper is organized as follows. In Section 2 we review the
necessary background. In Section 3 we present our Preprocess-then-NTT tech-
nique and describe its complexity. The applications of PtNTT to KYBER and
NEWHOPE are given in Section 4, followed by the implementation and perfor-
mance of new schemes. In Section 5, we give the conclusion.

2 Preliminaries

Polynomial rings and vectors. Let Z be the ring of rational integers. Let
Zq denote the quotient ring Z/qZ, for an integer q ≥ 1. We denote by R the
ring Z[x]/xn + 1 and by Rq the ring Zq[x]/x

n + 1, where n = 2n
′−1 such that

xn + 1 is the 2n
′-th cyclotomic polynomial. Throughout this paper, the values

of n, n′ are 256, 9, respectively. Regular font letters denote element in Rq and
bold lower-case letters represent vectors with coefficients in Rq. By default, all
vectors will be column vectors. Bold upper-case letters are matrices.

For an element a ∈ Rq, we write a =
∑n−1

i=0 aix
i, ai ∈ Zq. We also use the

same symbol a to denote the coefficient vector a = (a0, · · · , an−1). Let a ◦ b
denote pointwise or coefficient-wise multiplication of a, b ∈ Rq. For a vector a
(or matrix A), we denote by a⊤ (or A⊤) its transpose.
Sets and distributions. For a set S, we write s $← S to denote s is chosen
uniformly at random form S. In case S is a probability distribution over R,
then x

$← S means the sampling of x ∈ R according to S. For a probabilistic
algorithm A we denote by y ← A that the output of A is assigned to y and
that A is running with randomly chosen coins. We define the centered binomial
distribution ψη for some positive integer η as follows:

(a1, · · · , aη, b1, · · · , bη)
$← {0, 1}2η and output Ση

i=1(ai − bi).

The distribution ψη is centered (its mean is 0), has variance η/2 and gives a
standard deviation of

√
η/2. The function Sam is an extendable function. If we

would like Sam to take as input x and then produce a value y that is distributed
according to distribution S, we write y ∼ S = Sam(x).
Compression and Decompression. We define a function Compressq(x, d) that
takes an element x ∈ Zq and outputs an integer in {0, 1, · · · , 2d − 1}, where

8 Shuai Zhou et al.

d < ⌈log q⌉. We furthermore define a function Decompressq(x, d), such that x′ =
Decompressq(Compressq(x, d), d) is an element close to x. The two functions are
defined as:

Compressq(x, d) = ⌈(2d/q) · x⌋ mod 2d;

Decompressq(x, d) = ⌈(q/2d) · x⌋.

2.1 Ring LWE and Module LWE problems

The Learning with Errors (LWE) problem was popularized by Regev [19] who
proved that, solving a random LWE instance is as hard as solving worst-case in-
stances of certain lattice problems under a quantum reduction. Later on, Lyuba-
shevsky, Peikert and Regev [18] proposed a variant of the LWE problem–the
Ring-LWE problem which relies on module lattices, and its hardness can be re-
lated to the worst case hardness of finding short vectors in ideal lattices [21,
18]. Recently, Langlois and Stehlé [15] proposed a module version of Ring-LWE,
Module-LWE.
The Ring Learning with Errors problem, decisional version. The de-
cisional version of the Ring Learning with Errors problem, DRLWEm,q,χ, with
m unknowns, m ≥ 1 samples, modulo q and error distribution χ, is defined as
follows: for a uniform random secret s ∈ Rq, and given m samples either all of
the form (a, b = a · s + e mod q) where the coefficients of e are independently
sampled following the distribution χ (i.e., ei

$← χ), or from the uniform distri-
bution (a, b) ∈ Rq × Rq, decide whether the samples come from the former or
the latter case.
In fact, we will use a variant of the above problem, where the secret s are
chosen from the same distribution as the error e. This variant was proven to be
equivalent to the original problem by Applebaum et al. in [5].
The Module Learning with Errors problem, decisional version. The
decisional version of the Module Learning with Errors problem, DMLWEm,q,χ,
consists in distinguishing m samples either all of the form (a, b = a⊤s+ e) with
s

$← χk common to all samples and e
$← χ fresh for every sample, or from the

uniform distribution (a, b) ∈ Rk
q × Rq, decide whether the samples come from

the former or the latter case.

2.2 Number-theoretic transform

There exist many efficient algorithms in the literature to compute the multi-
plication of two polynomials and a survey which introduces fast multiplication
algorithms can be found in [7]. In this subsection, we recall the Number The-
oretic Transform (NTT) [11] which is a specialized version of the Fast Fourier
Transform (FFT) where the roots of unity are taken from a finite ring instead
of the complex number.

Let n be a power of 2 and q be a prime satisfying that q ≡ 1 mod 2n.
Let ω be an n-th primitive root of unity in Zq, i.e., ωn ≡ 1 mod q. For an

PtNTT and Its Applications to KYBER and NEWHOPE 9

element f ∈ Rq, the forward transformation f̂ = NTT(f) is given by f̂i =∑n−1
j=0 fj · ωij mod q and the inverse transformation f = NTT−1(f̂) is defined

by fi = n−1
∑n−1

j=0 f̂j ·ω−ij mod q, where i = 0, · · · , n−1. The following equation
NTT−1(NTT(f)) = f holds.

Because applying the above NTT transform provides a cyclic convolution,
computing p = f ·g mod xn+1 with two polynomials f, g would require applying
the NTT of length 2n and thus should append n zeros to each input. This
effectively doubles the length of the inputs and also requires the computation of
an explicit reduction modulo xn+1. In order to avoid this issue, Lyubashevsky et
al. [17] introduced the negative wrapped convolution: let γ be a 2n-th primitive
root of unity such that γ =

√
ω mod q. Define f̃ = (f0, γf1, · · · , γn−1fn−1) and

g̃ = (g0, γg1, · · · , γn−1gn−1), then the negative wrapped convolution of f, g is
given by p = (1, γ, · · · , γn−1)◦NTT−1(NTT(f̃)◦NTT(g̃)). This operation satisfies
p = f · g in Rq and implicitly includes the reduction modulo xn + 1 without
increasing the length of the inputs. More precisely, for a polynomial f ∈ Rq, we
define its forward transformation f̂ = NTT(f) with f̂i =

∑n−1
j=0 γ

jfj ·ωij mod q

and its inverse transformation f = NTT−1(f̂) with fi = n−1γ−i
∑n−1

j=0 f̂j · ω−ij

mod q. Using NTT and NTT−1, we can compute the product f ·g very efficiently
as p = NTT−1(NTT(f) ◦ NTT(g)).

The computational cost of a forward NTT transformation NTT is determined
by a function T (n) = n log n in [10]. By comparing the definitions of NTT and
NTT−1, we see that by modifying the NTT algorithm to switch the roles of f and
f̂ , replace ω by ω−1, and divide each element of the result by n, we can compute
the inverse transformation NTT−1. So the computational cost of an inverse NTT
transformation NTT−1 is same as that of its forward NTT transformation NTT,
i.e., T (n) = n log n. If we use NTT to compute the multiplication of two poly-
nomials, the total computation includes two forward NTT transformations, one
point-wise multiplication of degree bounded by n and one inverse NTT trans-
formation. Obviously, the computational cost of multiplication by using NTT is
T1(n) = 3n log n+ n.

3 1-Round Preprocess-then-NTT (1PtNTT)

In 1PtNTT algorithm, we only require that modulus q satisfies that q − 1 can
be divided by n, i.e., n | (q − 1). However, in this case, we can not exploit the
negative wrapped convolution [17] if 2n ∤ (q − 1), because there does not exist
any 2n-th root of unity in Zq.

Our 1-round preprocess-then-NTT technique employs a divide-and-conquer
strategy, using the even-indexed and odd-indexed coefficients of f(x) ∈ Zq[x]/(x

n+
1) separately to define two new polynomials feven(y) and fodd(y) whose degrees
are bounded by n

2 :

feven(y) = f0 + f2 · y + f4 · y2 + · · ·+ fn−2 · yn/2−1 ∈ Zq[y]/(y
n/2 + 1),

fodd(y) = f1 + f3 · y + f5 · y2 + · · ·+ fn−1 · yn/2−1 ∈ Zq[y]/(y
n/2 + 1).

10 Shuai Zhou et al.

It follows that

f(x) = feven(x
2) + x · fodd(x2) ∈ Zq[x]/(x

n + 1). (1)

It is easy to see that feven contains all the even-indexed coefficients of f and
fodd contains all the odd-indexed coefficients of f .

If we denote x2 by y, the two polynomials of degree n/2, feven(y) and fodd(y),
are both in Zq[y]/(y

n/2+1), then we can apply the NTT to get their transformed
representations, i.e., NTT(feven) and NTT(fodd). Define

1PtNTT(f) = f̂ = (NTT(feven),NTT(fodd)) ,

1PtNTT−1(f̂) =
(
NTT−1(f̂even),NTT

−1(f̂odd)
)
.

Then the following equation 1PtNTT−1(1PtNTT(f)) = (feven, fodd) = f holds.
As mentioned above, we first divide f(x) to define two new polynomials of

degree n/2 and then apply the NTT. We call our technique “1-round Preprocess-
then-NTT” (1PtNTT, for short).

3.1 How to compute the product of two polynomials f and g?

As we all know, the NTT provides an efficient algorithm for multiplying large de-
gree polynomials. It is commonly used in cryptographic schemes that are based
on the hardness of the RLWE problem to efficiently implement modular polyno-
mial multiplication. Here comes a question how can we use 1PtNTT to compute
the product of two polynomials f and g?

As the same way in Equation 1, for g(x) ∈ Zq[x]/(x
n + 1), we can use the

coefficients of g(x) separately to define two new polynomials geven(y), godd(y) ∈
Zq[y]/(y

n/2 + 1) satisfying the following equation

g(x) = geven(x
2) + x · godd(x2) ∈ Zq[x]/(x

n + 1). (2)

Let p(x) ∈ Zq[x]/(x
n + 1) denote the product of f(x) and g(x) and let

peven(y) = feven(y) · geven(y) + fodd(y) · (y · godd(y)) ∈ Zq[y]/(y
n/2 + 1),

podd(y) = fodd(y) · geven(y) + feven(y) · godd(y) ∈ Zq[y]/(y
n/2 + 1).

Then, according to Equations 1 and 2, the following equation p(x) = peven(x
2)+

x · podd(x2) ∈ Zq[x]/(x
n + 1) holds.

An anticirculant vector of godd is defined by the following Toeplitz vector:

−−→godd :=
(
−godd[

n

2
− 1], godd[0], godd[1], · · · , godd[

n

2
− 2]

)
∈ Zn/2

q ,

which denotes y · godd(y) ∈ Zq[y]/(y
n/2 + 1). Using 1PtNTT and 1PtNTT−1 we

can compute the product p of two elements f, g ∈ Rq very efficiently through

PtNTT and Its Applications to KYBER and NEWHOPE 11

the following equation 1PtNTT−1 (1PtNTT(f) ▷◁ 1PtNTT(g)), where ▷◁ denotes
bow-tie multiplication defined as following:

1PtNTT(f) ▷◁ 1PtNTT(g)

= (NTT(feven),NTT(fodd)) ▷◁ (NTT(geven),NTT(godd),NTT(
−−→godd))

=
(
f̂even, f̂odd

)
▷◁ (ĝeven, ĝodd,NTT(

−−→godd))

=
(
f̂even ◦ ĝeven + f̂odd ◦ NTT(−−→godd), f̂odd ◦ ĝeven + f̂even ◦ ĝodd

)
.

3.2 Complexity of 1PtNTT and its comparison with NTT

In this subsection, we first analyse the theoretical complexity of 1PtNTT algo-
rithm. Then we present some implementation results for different parameters to
show the performance of 1PtNTT algorithm and its comparison with NTT .

The complexity of 1PtNTT. As for 1PtNTT, its forward transformation
1PtNTT embeds two forward NTT transformations of two different polynomials
of degree n/2. As a result, the computational complexity of a 1PtNTT is bounded
by T2(n) = n log(n/2). In a similar way, we can also get a conclusion that the
complexity of an inverse transformation 1PtNTT−1 is T3(n) = n log(n/2). In
order to show the difference between these two algorithms, we present the ratios
of the time cost of 1PtNTT to that of NTT as follows:

ratio1ptntt/ntt =
log n− 1

log n
and ratio1ptntt−1/ntt−1 =

log n− 1

log n
.

Next, we analyse the complexity of computing two polynomials’ product
by using 1PtNTT algorithm. According to the computation rule of 1PtNTT,
there exist two forward 1PtNTT transformations (one includes two forward NTT
transformations , the other embeds three forward NTT transformations), four
point-wise multiplications of two polynomials of degree bounded by n/2, and one
inverse 1PtNTT transformation. As a result, the computational cost of comput-
ing product of two polynomials by using 1PtNTT is

T4(n) = (2 + 3) · n
2
log

n

2
+ 2n+ T3(n) =

7n

2
log

n

2
+ 2n,

which is ratio1 =
7 log n− 3

6 log n+ 2
times that using NTT.

Comparison of 1PtNTT and NTT. Although 1PtNTT can use some param-
eters that are not suitable for NTT, we analyse and compare the computational
cost of 1PtNTT and NTT for the same parameters, so that we can make it easy
to demonstrate the efficiency of 1PtNTT. In our implementation, we specify the
details of the two methods for (n, q) ∈ {(256, 7681), (512, 12289), (1024, 12289)}
which are used in [3, 2, 4, 9, 6]. The results are reported in Table 2, and were ob-
tained by running the implementation on a 3.30GHZ Inter Core i5-6600 processor

12 Shuai Zhou et al.

Table 2: Results of our C implementations of 1PtNTT on a 3.30GHZ Inter Core
i5-6600 processor with Turbo Boost and Hyperthreading disabled. Results are
compared with the implementation of the NTT.

Operation n=256, q=7681 n=512, q=12289 n=1024, q=12289
1PtNTT 13161 21523 47436
NTT 14056 24057 52034

Experimental-ratio 0.9363 0.8947 0.9116
Theoretical-ratio 0.8750 0.8889 0.9000

1PtNTT−1 10940 23038 50512
NTT−1 11845 25091 55075

Experimental-ratio 0.9236 0.9182 0.9171
Theoretical-ratio 0.8750 0.8889 0.9000

multiplication by using 1PtNTT 51213 90116 197427
multiplication by using NTT 42959 81368 180347

Experimental-ratio 1.1921 1.1075 1.0947
Theoretical-ratio 1.0600 1.0714 1.0806

with Turbo Boost and Hyperthreading disabled. We compiled our C implemen-
tation with gcc-5.4.0 and flags -O3 -fomit-frame-pointer -march=native.
For all other routines we report the average of 10000 runs. We denote the ratio of
theoretical computational cost of PtNTT operations to that of NTT operations
by “Theoretical-ratio”. And “Experiment-ratio” represents the ratio of practical
cycle counts of 1PtNTT to that of NTT.

4 2-Round Preprocess-then-NTT (2PtNTT)

In 2PtNTT algorithm, we only require that modulus q satisfies that q − 1 can
be divided by n

2 , i.e., n
2 | (q − 1). However, in this case, we can not exploit the

negative wrapped convolution [17] if 2n ∤ (q − 1), because there does not exist
any 2n-th root of unity in Zq.

Based on the first round preprocess, we use the even-indexed and odd-indexed
coefficients of f(x) ∈ Zq[x]/(x

n + 1) separately to define two new polynomials
feven(y) and fodd(y) whose degrees are bounded by n

2 . Then, by using the same
preprocess again to feven(y) and fodd(y), we can define four polynomials fee(z),
feo(z), foe(z) and foo(z) of degree-bound n

4 . In fact, fee(z) and feo(z) contains
all the coefficients fi of f satisfying that i ≡ 0 mod 4 and i ≡ 2 mod 4, respec-
tively. foe(z) and foo(z) contains all the coefficients fi of f satisfying that i ≡ 1
mod 4 and i ≡ 3 mod 4, respectively. More precisely,

fee(z) = f0 + f4 · z + f8 · z2 + · · ·+ fn−4 · zn/4 ∈ Zq[z]/(z
n/4 + 1),

feo(z) = f2 + f6 · z + f10 · z2 + · · ·+ fn−2 · zn/4 ∈ Zq[z]/(z
n/4 + 1),

foe(y) = f1 + f5 · z + f9 · z2 + · · ·+ fn−3 · zn/4 ∈ Zq[z]/(z
n/4 + 1),

foo(y) = f3 + f7 · z + f11 · z2 + · · ·+ fn−1 · zn/4 ∈ Zq[z]/(z
n/4 + 1).

PtNTT and Its Applications to KYBER and NEWHOPE 13

It follows that

f(x) = fee(x
4) + x · foe(x4) + x2 · feo(x4) + x3 · foo(x4) ∈ Zq[x]/(x

n + 1). (3)

Note that the four polynomials of degree n/4, fee(z), feo(z), foe(z) and foo(z),
are all in Zq[z]/(z

n/4 +1), then we can apply the NTT to get their transformed
representations. Define

2PtNTT(f) = f̂ = (NTT(fee),NTT(foe),NTT(feo),NTT(foo)) ,

2PtNTT−1(f̂) =
(
NTT−1(f̂ee),NTT

−1(f̂oe),NTT
−1(f̂eo),NTT

−1(f̂oo)
)
.

Then the following equation 2PtNTT−1(2PtNTT(f)) = (fee, foe, feo, foo) = f
holds.

4.1 How to compute the product of two polynomials f and g?

Here comes a question how can we use 2PtNTT to compute the product of two
polynomials f and g?

As the same way in Equation 3, for g(x) ∈ Zq[x]/(x
n + 1), we can use the

coefficients of g(x) separately to define four new polynomials of degree n/4, i.e.,
gee(z), geo(z), goe(z), goo(z) ∈ Zq[z]/(z

n/4 + 1) satisfying the following equation

g(x) = gee(x
4) + x · goe(x4) + x2 · geo(x4) + x3 · goo(x4) ∈ Zq[x]/(x

n + 1). (4)

Let p(x) ∈ Zq[x]/(x
n + 1) denote the product of f(x) and g(x) and let

pee(z) =fee(z) · gee(z) + foe(z) · (z · goo(z)) + feo(z) · (z · geo(z)) + foo(z) · (z · goe(z)) ,
poe(z) =fee(z) · goe(z) + foe(z) · gee(z) + feo(z) · (z · goo(z)) + foo(z) · (z · geo(z)) ,
peo(z) =fee(z) · geo(z) + foe(z) · goe(z) + feo(z) · gee(z) + foo(z) · (z · goo(z)) ,
poo(z) =fee(z) · goo(z) + foe(z) · geo(z) + feo(z) · goe(z) + foo(z) · gee(z).

Note that all of pee(z), poe(z), peo(z) and poo(z) belong to Zq[z]/(z
n/4+1). Then,

according to Equations 3 and 4, the following equation p(x) = pee(x
4) + x ·

poe(x
4) + x2 · peo(x4) + x3 · poo(x4) ∈ Zq[x]/(x

n + 1) holds.
An anticirculant vector of gee is defined by the following Toeplitz vector:

−→gee :=
(
−godd[

n

4
− 1], godd[0], godd[1], · · · , godd[

n

4
− 2]

)
∈ Zn/4

q ,

which denotes z · godd(z) ∈ Zq[z]/(z
n/4 + 1). Using 2PtNTT and 2PtNTT−1 we

can compute the product p of two elements f, g ∈ Rq very efficiently through
the following equation 2PtNTT−1 (2PtNTT(f) ▷◁ 2PtNTT(g)), where ▷◁ denotes

14 Shuai Zhou et al.

bow-tie multiplication defined as following:

2PtNTT(f) ▷◁ 2PtNTT(g)

= (NTT(fee),NTT(foe),NTT(feo),NTT(foo)) ▷◁

(NTT(gee),NTT(goe),NTT(geo),NTT(goo),NTT(
−→goe),NTT(−→geo),NTT(−→goo))

=
(
f̂ee, f̂oe, f̂eo, f̂oo

)
▷◁ (ĝee, ĝoe, ĝeo, ĝoo,NTT(

−→goe),NTT(−→geo),NTT(−→goo))

=(f̂ee ◦ ĝee + f̂oe ◦ NTT(−→goo) + f̂eo ◦ NTT(−→geo) + f̂oo ◦ NTT(−→goe),

f̂ee ◦ ĝoe + f̂oe ◦ ĝee + f̂eo ◦ NTT(−→goo) + f̂oo ◦ NTT(−→geo),

f̂ee ◦ ĝeo + f̂oe ◦ ĝoe + f̂eo ◦ ĝee + f̂oo ◦ NTT(−→goo),

f̂ee ◦ ĝoo + f̂oe ◦ ĝeo + f̂eo ◦ ĝoe + f̂oo ◦ ĝee).

4.2 Complexity of 2PtNTT and its comparison with NTT

In this subsection, we first analyse the theoretical complexity of 2PtNTT algo-
rithm. Then we present some implementation results for different parameters to
show the performance of 2PtNTT algorithm and its comparison with NTT .

The complexity of 2PtNTT. As for 2PtNTT, its forward transformation
PtNTT embeds two forward NTT transformations of four different polynomials
of degree n/4. As a result, the computational complexity of a 2PtNTT is bounded
by T5(n) = n log(n/4). In a similar way, we can also get a conclusion that the
complexity of an inverse transformation PtNTT−1 is T6(n) = n log(n/4). In order
to show the difference between these two algorithms, we present the ratios of the
time cost of PtNTT to that of NTT as follows:

ratio2ptntt/ntt =
log n− 2

log n
and ratio2ptntt−1/ntt−1 =

log n− 2

log n
.

Next, we analyse the computational cost of multiplication by using 2PtNTT
algorithm. As mentioned above, the computational cost of multiplication by
using NTT is T1(n) = 3n log n + n. According to the computation rule of 2Pt-
NTT, there exist two forward 2PtNTT transformations (one includes 4 forward
NTT transformations , the other embeds 7 forward NTT transformations), 16
point-wise multiplications of two polynomials of degree bounded by n/4, and
one inverse 2PtNTT transformation. As a result, the time cost of computing the
product of two polynomials by using 2PtNTT is

T7(n) = (4 + 7) · n
4
log

n

4
+ 4n+ T6(n) =

15n

4
log

n

4
+ 4n,

which is ratio2 =
15 log n− 14

12 log n+ 4
times that using NTT.

Comparison of 2PtNTT and NTT. Although 2PtNTT can use some param-
eters that are not suitable for NTT, we analyse and compare the computational

PtNTT and Its Applications to KYBER and NEWHOPE 15

Table 3: Results of our C implementations of 2PtNTT on a 3.30GHZ Inter Core
i5-6600 processor with Turbo Boost and Hyperthreading disabled. Results are
compared with the implementation of the NTT.

Operation n=256, q=7681 n=512, q=12289 n=1024, q=12289
2PtNTT 10072 17384 38092
NTT 13621 20294 45176

Experimental-ratio 0.7394 0.8566 0.8432
Theoretical-ratio 0.7500 0.7778 0.8000

2PtNTT−1 8728 17374 38840
NTT−1 10232 21858 47790

Experimental-ratio 0.8530 0.7949 0.8127
Theoretical-ratio 0.7500 0.7778 0.8000

multiplication by using 2PtNTT 46356 83648 180252
multiplication by using NTT 37046 69048 152722

Experimental-ratio 1.2513 1.2028 1.1803
Theoretical-ratio 1.0600 1.0804 1.0968

cost of 2PtNTT and NTT for the same parameters, so that we can make it easy
to demonstrate the efficiency of 2PtNTT. In our implementation, we specify the
details of the two methods for (n, q) ∈ {(256, 7681), (512, 12289), (1024, 12289)}
which are used in [3, 2, 4, 9, 6]. The results are reported in Table 3, and were ob-
tained by running the implementation on a 3.30GHZ Inter Core i5-6600 processor
with Turbo Boost and Hyperthreading disabled. We compiled our C implemen-
tation with gcc-5.4.0 and flags -O3 -fomit-frame-pointer -march=native.
For all other routines we report the average of 10000 runs. We denote the ratio of
theoretical computational cost of 2PtNTT operations to that of NTT operations
by “Theoretical-ratio”. And “Experiment-ratio” represents the ratio of practical
cycle counts of 2PtNTT to that of NTT.

5 Application of 1PtNTT to KYBER

Recently, Avanzi et al. [6] submitted a suite of public-key encapsulation mecha-
nisms denoted as KYBER to NIST as a candidate of the standard of post-quantum
cryptography, based on the conjectured quantum hardness of the MLWE prob-
lem. The KYBER cryptosystem is based on a variant of their previously pro-
posed Kyber [9] scheme which is a semantically secure public-key encryption
(PKE) scheme with respect to adaptive chosen plaintext attacks (CPA) (see Ap-
pendix). Morever, In Appendix, we will present a brief description of KYBER-
CPA-PKE, where KYBER-CPA-PKE denotes the IND-CPA secure public key
encryption scheme of KYBER.

5.1 Small-KYBER parameter sets
In [6], Avanzi et al. defined three parameter sets for KYBER, which they call these
schemes KYBER512, KYBER768, KYBER1024. According to their three KYBER

16 Shuai Zhou et al.

schemes, we will give new parameter setting. As shown in Table 4, the modulus
q in our schemes is smaller, so we call our scheme small-KYBER, i.e., small-
KYBER512, small-KYBER768, small-KYBER1024. Note that Table 4 also lists the
derived parameter δ, which is the probability that the decryption of a valid
KYBER-CPA-PKE ciphertext fails.

The parameters were obtained via the following approaching: 1) n is set to
256 because the goal is to encapsulate 256-bit symmetric keys. 2) q is set to the
smallest prime satisfying n|(q − 1), which is required to enable the 1PtNTT-
based multiplication. 3) k is selected to fix the lattice dimension as a multiple
of n. 4) The remaining parameters η, du, dv, dt were chosen to balance between
security, public-key and ciphertext size and failure probability.

The failure probability δ is computed following the approach outlined above
using the analysis script small_Kyber.py which is available online at https://
github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_Kyber. In ad-
dition, we also present the classical and quantum core-SVP hardness of the dif-
ferent proposed parameter sets of small-KYBER with the claimed security level
in Table 4. The lower bounds of the cost of the primal and dual attack [20]
were computed with the help of the Python script small_Kyber.py. Note that
small_Kyber.py is same as the Python script Kyber.py [6] except that param-
eter sets are different.

Table 4: Parameters of small-KYBER-CPA-PKE and KYBER-CPA-PKE and de-
rived high-level properties.

Security Security
n k q η (du, dv, dt) δ (classical,quantum) level

KYBER512 256 2 7681 5 (11,3,11) 2−145 (112,102) 1
KYBER768 256 3 7681 4 (11,3,11) 2−142 (178,161) 3
KYBER1024 256 4 7681 3 (11,3,11) 2−169 (242,219) 5
our schemes:
small-KYBER512 256 2 3329 2 (10,3,10) 2−138 (111,100) 1
small-KYBER768 256 3 3329 2 (10,5,10) 2−144 (181,164) 3
small-KYBER1024 256 4 3329 1 (10,3,10) 2−192 (232,210) 5

5.2 Interconversion to KEM
Small-KYBER-CPA-PKE can be converted to an IND-CPA-secure key encapsu-
lation mechanism small-KYBER-CPA-KEM by using the public key encryption
scheme to convey a secret. Furthermore, we can apply the QFO⊥

m transform
in [14] to construct an IND-CCA-secure key encapsulation mechanism small-
KYBER-CCA-KEM from small-KYBER-CPA-PKE and four hash functions same
as that in [6]. Instantiating small-KYBER-CCA-KEM by the parameter sets in
Table 4, we can provide public key, secret key, and ciphertext sizes in Table 8
for our three KEMs that support the transmission of a 256-bit message or key.

PtNTT and Its Applications to KYBER and NEWHOPE 17

Table 5: Sizes of public keys, secret keys, and ciphertexts of small-KYBER and
KYBER in bytes.

Scheme |pk| (Bytes) |sk| (Bytes) |ciphertext| (Bytes)
KYBER512-CCA-KEM 736 1632 800

small-KYBER512-CCA-KEM 672 1504 736
Difference value 64 128 64

KYBER768-CCA-KEM 1088 2400 1152
small-KYBER768-CCA-KEM 992 2208 1120

Difference value 96 192 32

KYBER1024-CCA-KEM 1440 3168 1504
small-KYBER1024-CCA-KEM 1312 2912 1376

Difference value 128 256 128

Table 6: Cycle counts of key generation, encapsulation, and decapsulation of
small-KYBER and KYBER.

Scheme Key Generation Encapsulation Decapsulation
small-KYBER512-CCA-KEM 143628 203364 285379

KYBER512-CCA-KEM 122748 175528 209074
Ratio 1.1701 1.1586 1.3650

small-KYBER768-CCA-KEM 251538 332148 427738
KYBER768-CCA-KEM 203356 274274 321248

Ratio 1.2369 1.2110 1.3315

small-KYBER1024-CCA-KEM 390326 490956 620420
KYBER1024-CCA-KEM 293562 381882 438824

Ratio 1.3296 1.2856 1.4138

Performance of reference. Here, we give all the remaining details of results of
our implementations for small-KYBER-CCA-KEM in Table 6. Both implemen-
tations are fully protected against timing attack. All cycle counts are obtained
by running the implementation on a 3.30GHZ Inter Core i5-6600 processor with
Turbo Boost and Hyperthreading disabled. They are median cycle counts over
100 measurements. We compiled our C implementation with gcc-5.4.0 and flags -
O3 -fomit-frame-pointer -march=native. The implementation of our proto-
cols is available at https://github.com/ncepuzs/Preprocess_Then_NTT/tree/
master/Small_Kyber.

6 Application of 2PtNTT to NEWHOPE

Recently, Alkim et al. [2] submitted a suite of public-key encapsulation mech-
anisms denoted as NEWHOPE to NIST as a candidate of the standard of post-
quantum cryptography, based on the conjectured quantum hardness of the RLWE
problem. The NEWHOPE cryptosystem is based on a variant of their previously
proposed NewHope-Simple [4] scheme which is a semantically secure public-key
encryption scheme with respect to adaptive chosen plaintext attacks (CPA). In

18 Shuai Zhou et al.

Appendix, we will present a brief description of NEWHOPE-CPA-PKE includ-
ing 2PtNTT and 2PtNTT−1 computations, where NEWHOPE-CPA-PKE denotes
the IND-CPA secure public key encryption scheme of NEWHOPE.

6.1 Small-NEWHOPE parameter sets
In [2], Alkim et al. defined two parameter sets for NEWHOPE, which they call
these two schemes NEWHOPE512, NEWHOPE1024. According to their NEWHOPE
schemes, we will give two new parameter settings. As shown in Table 7, the
modulus q in our schemes is smaller, so we call our scheme small-NEWHOPE,
i.e., NEWHOPE512, small-NEWHOPE1024. Note that the table also lists the de-
rived parameter δ, which is the probability that the decryption of a valid small-
NEWHOPE-CPA-PKE ciphertext fails.

The parameters were obtained via the following approaching: 1) n is set to
512 or 1024 because the goal is to encapsulate 256-bit symmetric keys. 2) q is
set to the smallest prime satisfying n

2 |(q−1) for n = 512, 1024, which is required
to enable the 2PtNTT-based multiplication. 4) The remaining parameter η was
chosen to balance between security and failure probability.

The failure probability δ is computed following the approach outlined above
using the analysis script small_NewHope.py which is available online at https:
//github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_NewHope.
In addition, we also present the classical and quantum core-SVP hardness of the
different proposed parameter sets of small-KYBER with the claimed security level
in Table 7. The lower bounds of the cost of the primal and dual attack [20] were
computed with the help of the Python script small_NewHope.py. Note that
small_NewHope.py is same as the Python script scripts/PQsecurity.py [2]
except that parameter sets are different.

Table 7: Parameters of small-NEWHOPE-CPA-PKE and NEWHOPE-CPA-PKE
and derived high-level properties.

Security Security
n q η δ (classical,quantum) level

NEWHOPE512-CPA-PKE 512 12289 8 2−213 (112,101) 1
NEWHOPE1024-CPA-PKE 1024 12289 8 2−216 (257,233) 5
our schemes:
small-NEWHOPE512-CPA-PKE 512 7681 5 2−261 (112,101) 1
small-NEWHOPE1024-CPA-PKE 1024 7681 5 2−224 (257,233) 5

6.2 Interconversion to KEM
Small-NEWHOPE-CPA-PKE can be converted to an IND-CPA-secure key encap-
sulation mechanism small-NEWHOPE-CPA-KEM by using the public key encryp-
tion scheme to convey a secret. Furthermore, we can apply the QFO⊥

m transform

PtNTT and Its Applications to KYBER and NEWHOPE 19

in [14] to construct an IND-CCA-secure key encapsulation mechanism small-
NEWHOPE-CCA-KEM from small-NEWHOPE-CPA-PKE and three hash func-
tions same as that in [2]. Instantiating small-NEWHOPE-CPA-KEM and small-
NEWHOPE-CCA-KEM by the parameter sets in Table 7, we can provide public
key, secret key, and ciphertext sizes in Table 8 for our four KEMs that support
the transmission of a 256-bit message or key.

Table 8: Sizes of public keys, secret keys, and ciphertexts of small-NEWHOPE
and NEWHOPE in bytes.

Scheme |pk| (Bytes) |sk| (Bytes) |ciphertext| (Bytes)
NEWHOPE512-CPA-KEM 928 896 1088

small-NEWHOPE512-CPA-KEM 864 832 1024
Difference value 64 64 64

NEWHOPE512-CCA-KEM 928 1888 1120
small-NEWHOPE512-CCA-KEM 864 1760 1056

Difference value 64 128 64

NEWHOPE1024-CPA-KEM 1824 1792 2176
small-NEWHOPE1024-CPA-KEM 1696 1664 1048

Difference value 128 128 128

NEWHOPE1024-CCA-KEM 1824 3680 2208
small-NEWHOPE1024-CCA-KEM 1696 3424 2080

Difference value 128 256 128

Performance of reference. Here, we give all the remaining details of results
of our implementations for small-NEWHOPE KEMs in Table 9. Both implemen-
tations are fully protected against timing attack. All cycle counts are obtained
by running the implementation on a 3.30GHZ Inter Core i5-6600 processor with
Turbo Boost and Hyperthreading disabled. They are median cycle counts over
100 measurements. We compiled our C implementation with gcc-5.4.0 and flags -
O3 -fomit-frame-pointer -march=native. The implementation of our proto-
cols is available at https://github.com/ncepuzs/Preprocess_Then_NTT/tree/
master/Small_NewHope.

7 Conclusion

We have presented Preprocess-then-NTT technique to weaken the limination for
modulus q of the NTT. We further apply PtNTT to KYBER [6] and NEWHOPE
[2], and provide new parameter settings. Because of the usage of PtNTT, our new
schemes achieve smaller public key sizes, smaller ciphertext sizes and a similar
failure probability at a same security level. Also, it is interesting to see that the
order of savings in size of the public keys and ciphertexts are the same for both
the NEWHOPE and KYBER schemes, which is due to the fact that only one bit
is saved per coefficient due to the reduction in modulus. The PtNTT algorithm

20 Shuai Zhou et al.

Table 9: Cycle counts of key generation, encapsulation, and decapsulation of
small-NEWHOPE and NEWHOPE.

Scheme Key Generation Encapsulation Decapsulation
small-NEWHOPE512-CPA-KEM 114033 167178 73210

NEWHOPE512-CPA-KEM 91292 133902 34534
Ratio 1.2491 1.2485 2.1199

small-NEWHOPE512-CCA-KEM 132886 200420 266202
NEWHOPE512-CCA-KEM 105178 155156 175661

Ratio 1.2634 1.2917 1.5154

small-NEWHOPE1024-CPA-KEM 272060 439358 161848
NEWHOPE1024-CPA-KEM 184488 271180 69974

Ratio 1.4747 1.6202 2.3130

small-NEWHOPE1024-CCA-KEM 289157 427598 538098
NEWHOPE1024-CCA-KEM 210072 314130 361852

Ratio 1.3765 1.3612 1.4870

enables that the aforementioned improvements can be also achieved in a large
portion of existing RLWE-based schemes.

8 Acknowledgments

We thank the anonymous Inscrypt’2018 reviewers for their helpful comments.
This work was supported by the National Basic Research Program of China
(973 project, No.2014CB340603), the National Cryptography Development Fund
MMJJ20170116 and the National Natural Science Foundation of China (No.
61572495, No.61602473, No.61772515, No.61672030, No.61272040).

References

1. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing, pages 284–293. ACM, 1997.

2. E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann, P. Schwabe,
and D. Stebila. Newhope-algorithm specifcations and supporting documentation.
Available at: https://newhopecrypto.org/.

3. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
- A new hope. In 25th USENIX Security Symposium, pages 327–343, 2016.

4. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Newhope without rec-
onciliation. IACR Cryptology ePrint Archive, 2016:1157, 2016. Available at:
http://eprint.iacr.org/2016/1157.

5. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO 2009,
pages 595–618, 2009.

PtNTT and Its Applications to KYBER and NEWHOPE 21

6. R. Avanzi, J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS - kyber: Algo-
rithm specifications and supproting documentation. Available at: https://pq-
crystals.org/.

7. D. J. Bernstein. Fast multiplication and its applications. Algorithmic number
theory, 44:325–384, 2008.

8. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, pages 553–570, 2015.

9. J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, and D. Stehlé. CRYSTALS - kyber: a cca-secure module-lattice-based
KEM. IACR Cryptology ePrint Archive, 2017:634, 2017.

10. E. Chu and A. George. Inside the FFT black box: serial and parallel fast Fourier
transform algorithms. CRC Press, 1999.

11. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

12. J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. Saber: Module-lwr based
key exchange, cpa-secure encryption and cca-secure KEM. In AFRICACRYPT
2018, pages 282–305, 2018.

13. J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. Saber: Module-
lwr based kem. Available at:https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Round-1-Submissions.

14. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the fujisaki-
okamoto transformation. In TCC 2017, Part I, pages 341–371, 2017.

15. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lat-
tices. Des. Codes Cryptography, 75(3):565–599, 2015.

16. V. Lyubashevsky. Lattice signatures without trapdoors. In Advances in Cryptology
- EUROCRYPT 2012, pages 738–755, 2012.

17. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest
proposal for FFT hashing. In FSE 2008, pages 54–72, 2008.

18. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT 2010, pages 1–23, 2010.

19. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

20. D. Stebila and M. Mosca. Post-quantum key exchange for the internet and the
open quantum safe project. In Selected Areas in Cryptography - SAC 2016, pages
14–37, 2016.

21. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption
based on ideal lattices. In ASIACRYPT 2009, pages 617–635, 2009.

22. H. Xue, X. Lu, B. Li, B. Liang, and J. He. Understanding and constructing AKE
via double-key key encapsulation mechanism. In ASIACRYPT 2018, pages 158–
189, 2018.

Appendix: Preliminaries

Public-Key Encryption. A public-key encryption PKE = (Gen,Enc,Dec) con-
sists of three algorithms and a finite message space M. The key generation

22 Shuai Zhou et al.

algorithm takes as input 1λ outputs a key pair (pk, sk), where pk also de-
fines a randomness space R. The encryption algorithm Enc takes as input pub-
lic key pk, a message m ∈ M, a random string r

$← R, and outputs a ci-
phertext c ∈ C. The decryption algorithm Dec, on input sk and a cipher-
text c, outputs either a message m = Dec(sk, c) ∈ M or a special symbol ⊥
to indicate that c is not a valid ciphertext. For correctness, we require that
Pr[m = Dec(sk, c)|c = Enc(pk,m, r), r

$← R] = 1 − negl(λ), where negl(λ) de-
notes a negligible function.

Here, we define indistinguishability under chosen plaintext attacks (IND-
CPA) for a PKE scheme.
Definition 1. For any adversary A, we define its IND-CPA advantage against
a PKE scheme PKE = (Gen,Enc,Dec) as follows:

Advind−cpa
PKE,A (λ) :=

∣∣∣2Pr[Exptind−cpa
PKE,A (λ) = 1]− 1

∣∣∣ ,
where Exptind−cpa

PKE,A (λ) is experiment in Figure 1.

Exptind−cpa
PKE,A (λ) : Exptind−cpa

KEM,A (λ) : Exptind−cca
KEM,A (λ) :

b
$← {0, 1} b

$← {0, 1} b
$← {0, 1}

(pk, sk)← Gen(1λ) (pk, sk)← Gen(1λ) (pk, sk)← Gen(1λ)
(m0,m1, st)← A1(pk) (c∗, k∗0)← Encaps(pk) (c∗, k∗0)← Encaps(pk)

c∗ ← Enc(pk,mb) k∗1
$← K k∗1

$← K
b′ ← A2(pk, c

∗, st) b′ ← A(pk, c∗, k∗b) b′ ← ADecaps(·)(pk, c∗, k∗b)

return b′
?
= b return b′

?
= b return b′

?
= b

Fig. 1: Games for PKE and KEM schemes

Key-Encapsulation Mechanism. A Key-Encapsulation Mechanism (KEM)
KEM = (Gen,Encaps,Decaps) consists of three algorithms and a finite message
space M. The key generation algorithm takes as input 1λ outputs a key pair
(pk, sk), where pk also defines a randomness space R and a finite key space
K. The encapsulation algorithm Encaps takes as input public key pk, a random
string r

$← R, and outputs (c, k) ∈ C × K. The deterministic decapsulation
algorithm Decaps, on input sk and a ciphertext c, outputs either a key k =
Dec(sk, c) ∈ K or a rejection symbol ⊥/∈ K. For correctness, we require that
Pr[k = Decaps(sk, c)|(k, c) = Encaps(pk, r), r

$←R] = 1− negl(λ), where negl(λ)
denotes a negligible function.

We define indistinguishability under chosen-plaintext and chosen-ciphertext
attacks (denoted by IND-CPA, and IND-CCA) for KEMs, respectively.

PtNTT and Its Applications to KYBER and NEWHOPE 23

Definition 2. For any adversary A, we define its IND-CPA and IND-CCA
advantages against a KEM scheme KEM = (Gen,Encaps,Decaps) as follows:

Advind−cpa
KEM,A (λ) :=

∣∣∣2Pr[Exptind−cpa
KEM,A (λ) = 1]− 1

∣∣∣ ,
Advind−cca

KEM,A (λ) :=
∣∣∣2Pr[Exptind−cca

KEM,A (λ) = 1]− 1
∣∣∣ ,

where Exptind−cpa
KEM,A (λ) and Exptind−cca

KEM,A (λ) are experiments in Figure 1.

small-KYBER-CPA-PKE. In Algorithms 1, 2 and 3, we will present a brief de-
scription of KYBER-CPA-PKE, where KYBER-CPA-PKE denotes the IND-CPA
secure public key encryption scheme of KYBER.

Let k, dt, du, dv be positive integers, and recall that n = 256. Let M =
{0, 1}256 denote the message space, where every message m ∈M can be viewed
as a polynomial in Rq with coefficients in {0, 1}. Consider the public-key en-
cryption scheme KYBER=(Gen, Enc, Dec) as described in Algorithms 1-3.

Algorithm 1: KYBER-CPA-PKE Key Generation
Output: Secret key sk := s
Output: Public key pk := (t, ρ)

1 Algorithm KYBER-CPA-PKE.Gen()
2 ρ, σ

$← {0, 1}256

3 A ∼ Rk×k
q := Sam(ρ)

4 (s, e) ∼ ψk
η × ψk

η := Sam(σ)
5 t := Compressq(As+ e, dt)

6 end

Algorithm 2: KYBER-CPA-PKE Encryption
Input: Public key pk = (t, ρ)
Input: Message m ∈M
Output: Ciphertext c := (u, v)

1 KYBER-CPA-PKE.Enc()
2 r

$← {0, 1}256
3 t := Decompressq(t, dt)

4 A ∼ Rk×k
q := Sam(ρ)

5 (r, e1, e2) ∼ ψk
η × ψk

η × ψη := Sam(r)

6 u := Compressq(A
⊤r+ e1, du)

7 v := Compressq(t
⊤r+ e2 + ⌊ q2⌉ ·m, dv)

8 end

24 Shuai Zhou et al.

Algorithm 3: KYBER-CPA-PKE Decryption
Input: Secret key sk = s
Input: Ciphertext c = (u, v)
Output: Message µ ∈M

1 Algorithm KYBER-CPA-PKE.Dec()
2 u := Decompressq(u, du)

3 v := Decompressq(v, dv)

4 µ := Compressq(v − u⊤s, 1)

5 end

small-NEWHOPE-CPA-PKE. In Algorithms 4, 5 and 6, we will present a brief
description of NEWHOPE-CPA-PKE including 2PtNTT and 2PtNTT−1 compu-
tations, where NEWHOPE-CPA-PKE denotes the IND-CPA secure public key
encryption scheme of NEWHOPE.

Algorithm 4: small-NEWHOPE-CPA-PKE Key Generation
Output: Secret key sk := s
Output: Public key pk := b̂, seed

1 Algorithm small-NEWHOPE-CPA-PKE.Gen()
2 seed

$← {0, 1}256
3 â← Samp(seed)

4 s, e
$← ψη

5 ŝ← 2PtNTT(s)

6 b̂← â ▷◁ ŝ+ 2PtNTT(e)

7 end

PtNTT and Its Applications to KYBER and NEWHOPE 25

Algorithm 5: small-NEWHOPE-CPA-PKE Encryption
Input: Public key pk = b̂, seed
Input: Message m ∈ {0, 1}256
Output: Ciphertext c := û, h

1 Algorithm small-NEWHOPE-CPA-PKE.Enc()
2 â← Samp(seed)

3 s′, e′, e′′
$← ψη

4 t̂← 2PtNTT(s′)

5 û← â ▷◁ t̂+ 2PtNTT(e′)

6 v′ ← 2PtNTT−1(̂b ▷◁ t̂) + e′′ + Encode(m) //Encode : {0, 1}256 →Rq

7 h← Compressq(v
′, 3)

8 end

Algorithm 6: small-NEWHOPE-CPA-PKE Decryption
Input: Secret key sk = s
Input: Ciphertext c := û, h
Output: Message µ ∈ {0, 1}256

1 Algorithm small-NEWHOPE-CPA-PKE.Dec()
2 ŝ← 2PtNTT(s)
3 v′ ← Decompressq(h, 3)

4 µ← Decode(v′ − 2PtNTT−1(û ▷◁ ŝ))

5 end

