
Optimized Threshold Implementations:
Securing Cryptographic Accelerators

for Low-Energy and Low-Latency Applications

Dušan Božilov1,2, Miroslav Knežević1 and Ventzislav Nikov1

1 NXP Semiconductors, Leuven, Belgium
2 COSIC, KU Leuven and imec, Belgium dusan.bozilov@esat.kuleuven.be

Abstract. Threshold implementations have emerged as one of the most popular masking
countermeasures for hardware implementations of cryptographic primitives. In the original
version of TI, the number of input shares was dependent on both security order d and algebraic
degree of a function t, namely td + 1. At CRYPTO 2015, a new method was presented yielding
to a d-th order secure implementation using d + 1 input shares. In this work, we first provide
a construction for d + 1 TI sharing which achieves the minimal number of output shares for
any n-input Boolean function of degree t = n − 1. Furthermore, we present a heuristic for
minimizing the number of output shares for higher order td + 1 TI. Finally, we demonstrate
the applicability of our results on d + 1 and td + 1 TI versions, for first- and second-order
secure, low-latency and low-energy implementations of the PRINCE block cipher.
Keywords: Threshold Implementations · PRINCE · SCA · Masking

1 Introduction

Historically, the field of lightweight cryptography has been focused on designing algorithms that
leave as small footprint as possible when manufactured in silicon. Small area implicitly results in
low power consumption, which is another, equally important, optimization target.

Hitting these two targets comes at a price since the performance and energy consumption
of lightweight cryptographic primitives are far from being competitive and, for most online
applications, they are often not meeting the requirements. There are only a handful of designs
that consider latency and energy consumption among their main design goals. PRINCE [BCG+12]
and Midori [BBI+15] are two prominent examples.

The inherent vulnerability to physical attacks is a serious threat which the field of lightweight
cryptography has been exposed to since its creation. Side-channel analysis is one of the most
powerful examples of such attack. A technique introduced by Kocher et al. [KJJ99] extracts secret
information from physical devices using power consumption or electromagnetic radiation during
the execution of cryptographic algorithm. A significant effort has ever since been invested in trying
to design hardware and software implementations resistant to these types of attacks. To resist
an adversary that has access up to d wires inside the circuit [ISW03] the secret value has to be
shared into at least d + 1 random shares using a masking technique. An example of such scheme is
Boolean masking where the secret is shared into shares using Boolean addition and the shares are
then independently processed in a way that prevents revealing the secret information.

In order to circumvent a masked implementation, attackers need to extract and combine the
secret information from several shares, i.e. they need to employ a higher-order attack of degree d
at least. These attacks are harder to mount because they are susceptible to the amount of noise
collected during the trace acquisition but they still represent a serious threat in practice. Securing
against higher-order attacks incurs penalties in silicon area, execution time, power consumption and
the amount of random bits required for secure execution. Increased cost comes from the number of
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additional shares that are required to guarantee security. When protecting a nonlinear function
the number of output shares grows exponentially and depends on the number of input shares, the
algebraic degree of the function, the number of nonlinear terms the function has, and the security
order that needs to be achieved. The challenge of designing secure cryptographic circuits becomes
significantly harder once the strict requirements have to be met for at least one of the following
metrics: silicon area, latency, power or energy consumption. In [MS16], the authors provide the
only example in the literature where latency together with side-channel protection are considered
as the main design goal. Their results indicate that this is a significantly more difficult problem
than designing a countermeasure by optimizing area or the amount of randomness, which are the
typical design criteria addressed by the scientific community. Therefore, designing side-channel
countermeasures for low-latency or low-energy implementations is considered to be an important
open problem. Threshold Implementations (TI) [NRR06] is a provably secure masking scheme
specifically designed to counter side-channel leakage caused by the presence of glitches in hardware.
The countermeasure removes the dependency between the number of nonlinear terms and the
number of input shares, which is a big advantage over classical masking schemes.

In [BGN+14], the authors extended the approach of TI to counter higher-order attacks. The
theory suggests the usage of at least td + 1 number of input shares in order to make a Boolean
function with algebraic degree t secure against a d-th order side-channel attack. That is the reason
why the TI scheme introduced in [BGN+14] is often referred to as a td + 1 TI. In 2015, the authors
of [RBN+15] proposed a Consolidated Masking Scheme (CMS), and reduced the required number
of input shares needed to resist a d-th order attack to d+1, regardless of the algebraic degree of the
shared function. Recall that this is theoretically the lowest bound on the number of input shares
with respect to the order of security d. Recently, more schemes using d + 1 shares such as Domain
Oriented Masking (DOM) and Unified Masking Approach (UMA) emerged [GMK16,GM17], where
the essential difference with CMS is in the way the refreshing of the output shares is performed.
Since the security of CMS, DOM, and UMA relies on the TI principles, in this paper we refer to
all these schemes as d + 1 TI.

While the established theory of TI guarantees that the number of input shares linearly grows
with the order of protection d, it does not provide efficient means to keep the exponential explosion
of the number of output shares under control. The state-of-the-art is a lower bound of (d + 1)t

given in [RBN+15], while in [BGN+14] the authors described a method to obtain a TI-sharing with(
td+1

t

)
output shares. The latter work also notes that the number of output shares can sometimes

be reduced by using more than td + 1 input shares. Aside from a formula for the lower bound
in [RBN+15], there was not much other work of applying d + 1 TI to functions with higher degree
than 2. The only exception is the AES implementations by [UHA17b,UHA17a] where d + 1 TI
is applied to the inversion of GF (24), which is a function of algebraic degree 3. However, even
for this particular case, the first attempt [UHA17b] resulted in sharing with minimal number of
output shares but it did not satisfy the non-completeness property of TI. Only in the follow-up
publication [UHA17a] the sharing was correct and minimal. Also, for the particular case of cubic
function, it is fairly easy to find the minimal first-order sharing of 8 output shares by exhaustive
trial and error approach.

Our Contribution

In this paper we introduce a method for optimizing Threshold Implementations, making the
low-latency implementations of side-channel secure designs practical. In particular, we provide
a constructive solution for d + 1 TI that achieves the optimal number of output shares for any
n-input Boolean function of degree t = n − 1. For td + 1 TI, we present a heuristic for higher-order
protection, that yields a number of output shares significantly lower than

(
td+1

t

)
. Additionally, we

investigate the energy consumption of different approaches, an important design factor, yet often
overlooked in the literature.

To demonstrate the feasibility of our method, we apply the optimized d + 1 TI and td + 1 TI on
the hardware implementation of PRINCE. We demonstrate how to reduce the latency to achieve
the fastest known TI protected implementation of PRINCE (round-based TI) and, at the same
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time, minimize the area penalty of adding side-channel countermeasures. By reducing the area
overhead we implicitly decrease the power consumption of our design and by reducing the latency
we ensure the implementation becomes energy-efficient.

Finally, we would like to point out that our contribution is of general interest since the method
of minimizing the number of output shares can equally well be applied to any cryptographic design.

2 Preliminaries

We use small letters to represent elements of the finite field Fn
2 . Subscripts are used to specify each

bit of an element or each coordinate function of a vectorial Boolean function, i.e. x = (x1, · · · , xn),
where xi ∈ F2 and S(x) = (S1(x), · · · , Sm(x)) where S is defined from Fn

2 to Fm
2 and Si’s are

defined from Fn
2 to F2. We omit subscripts if n = 1 or m = 1. We use subscripts also to represent

shares of one-bit variables. The reader should be able to distinguish from the context if we are
referring to specific bits of unshared variable or specific shares of a variable. We denote Hamming
weight, concatenation, cyclic right shift, right shift, composition, multiplication and addition with
wt(.), ||, ≫, ≫, ◦, . and + respectively.

Every Boolean function S can be represented uniquely by its Algebraic Normal Form (ANF):

S(x) =
∑

i=(i1,...,in)∈Fn
2

aix
i1

1 xi2

2 · · · xin
n . (1)

Then, the algebraic degree of a Boolean function S is

deg(S) = max{wt(i) : i ∈ Fn
2 , ai ̸= 0}. (2)

The algebraic degree of a vectorial Boolean function S is equal to the highest algebraic degree of
its coordinate functions Sj .

Two permutations S and S′ are affine equivalent if and only if there exists affine permutations
C and D satisfying S′ = C ◦ S ◦ D. We refer to C as the output and D as the input transformation.

The TI sharing designed to protect against the d-th order attack we will simply refer to as the
d-th order TI.

2.1 Threshold Implementations

The most important property that ensures security of TI even in the presence of glitches is non-

completeness. The d-th order non-completeness property requires any combination of up to d
component functions to be independent of at least one input share. When cascading multiple
nonlinear functions, the sharing must also satisfy the uniformity: namely a sharing is uniform
if and only if the sharing of the output preserves the distribution of the unshared output. In
other words, for a given unmasked value, all possible combinations of output shares representing
that value are equally likely to happen. Finding a uniform sharing of the given vectorial Boolean
function is still an open problem, although several heuristics exist. Fortunately, uniformity can
still be achieved by refreshing the output shares when no uniform sharing is available.

Given the shares x1, . . . , xn a refreshing can be realized by mapping (x1, . . . , xn) to (y1, . . . , yn)
using n random values r1, . . . , rn as follows:

y1 = x1 + r1 + rn yi = xi + ri−1 + ri, i ∈ {2, . . . , n} (3)

This refreshing scheme is called ring re-masking [RBN+15] and is mostly used for the higher-order
TI implementations. A simpler refreshing using n − 1 random values exists especially for the
first-order secure implementations as we can re-mask the shares x1, . . . , xn in the following way:

yi = xi + ri, i ∈ {1, . . . , n − 1}, yn = xn + r1 + . . . + rn−1 (4)

An improvement regarding the number of random bits used when multiplication gate is shared has
been achieved in [GMK16] where the amount of randomness required is halved compared to CMS.
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In [GM17], the authors have shown that the amount of randomness for sharing a multiplication
gate can be further reduced to one third, although this comes at the significant performance cost.
Since our goal is to build low-latency side-channel secure implementations, we do not take the
approach of UMA. Instead, we choose CMS for d+1 TI designs although a small reduction in area
and the amount of randomness used for refreshing might be possible if one uses DOM instead. In
this paper we will interchangeably use terms mask refreshing and re-masking.

In order to prevent glitch propagation when cascading nonlinear functions, TI requires register(s)
to be placed between the nonlinear operations. Otherwise, the non-completeness property may be
violated and the leakage of the secret internal state is likely to be manifested.

When sharing a nonlinear function the number of output shares is typically larger than the
number of input shares. This is likely to occur when applying td + 1 TI and it always occurs
when applying d + 1 TI. In order to minimize the number of output shares we need to refresh and
recombine (compress) some shares by adding several of them together. To prevent glitches from
revealing unmasked values, decreasing the number of shares can only be done after storing these
output shares into a register. The output shares that are going to be recombined together still
need to be carefully chosen such that they do not reveal any unmasked value.

While using d+1 TI the relation between the input shares needs to obey a stronger requirement,
namely shared input variables need to be independent [RBN+15]. This can be achieved in various
ways - for example by refreshing some of the inputs or by using a technique proposed in [GMK16].

2.2 Minimizing Implementation Overheads using S-box Decomposition

Similar to other side channel countermeasures, the area overhead of applying TI increases polynomi-
ally with respect to the security order and exponentially with respect to the algebraic degree of the
function we are trying to protect. To keep the large overheads caused by exponential dependency
under control, designers often use decomposition of the higher degree functions into several lower
degree functions. This approach has originally been demonstrated in [PMK+11] where the authors
implemented a TI-protected PRESENT block cipher [BKL+07] by decomposing its cubic S-box
into two simpler quadratic S-boxes. Finally, decomposition of the cubic 4-bit S-boxes into chains of
smaller quadratic S-boxes was given in [BNN+12], which eventually enables compact, side-channel
secure, implementations of all 4-bit S-boxes.

Although a decomposition of nonlinear functions into several simpler functions of smaller
algebraic degree is the proper approach to use for area reduction of the TI-protected implementations,
its side-effect is the increased latency of the S-box evaluation and hence the entire implementation.
Recall that the TI requires registers to be placed between the nonlinear operations in order to
prevent the glitch propagation, which in turn increases the latency.

2.3 A Note on Latency and Energy Efficiency

As mentioned in the introduction, most of the effort the scientific community has spent on
designing secure implementations has been focused on reducing area overheads. Another important
metric that had been given lots of attention is the amount of randomness used in protected
implementations. While both of these metrics are important, performance and energy consumption
of secure implementations have been unjustly treated as less significant. It has been widely
accepted that performance is the metric to sacrifice in order to achieve the lowest possible gate
count. Contrary to this view, most of the online applications nowadays require (very) fast execution
and it is often latency of the actual implementation that matters rather than the throughput.
Energy consumption is another equally important metric and, unlike power consumption, it cannot
be well controlled by keeping the area low while sacrificing performance. Optimizing for energy
consumption is in fact one of the most difficult optimization problems in (secure) circuit design
since the perfect balance between the circuit power consumption and its execution speed needs to
be hit.

Although the majority of results available in public literature deal with area-efficient hardware
architectures, there are still a few notable examples where the latency reduction has been the main
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target. In [MS16], the authors particularly explore the extreme case of a single clock cycle side-
channel secure implementations of PRINCE and Midori. Moreover, they conclude that designing
a low-latency side-channel secure implementation of cryptographic primitives remains an open
problem.

3 Finding an efficient sharing

To find a td + 1 or d + 1 sharing for a quadratic vectorial Boolean function is fairly straightforward
in general and especially easy for the functions that have a simple ANF e.g., a quadratic function
with a single higher degree term. However, to find an efficient sharing for a vectorial Boolean
function of algebraic degree three or higher and with several higher degree terms may not be evident
and the work required to find the minimal number of the output shares becomes increasingly
difficult. In this section we propose methods to deal with this complexity and we explicitly describe
an optimal solution for the d + 1 sharing.

3.1 How to find efficient td + 1 sharing

To obtain a td + 1 TI implementation, where t is the algebraic degree of the function and d is the
security order, one needs to go through the following two computational phases:

a) The expansion phase in which the shared function f uses sin ≥ td+1 input shares and results
in sout output shares. Output share functions fi are referred to as component functions.

b) The compression phase in which re-masked sout output shares stored in a register are combined
again to sin shares.

This process takes 2 clock cycles except when sin = sout. For example, for the first-order TI
only the first phase suffices. Additionally, if the TI sharing is uniform, refreshing step can be
removed.

The d-th order TI (more specifically, its non-completeness property) requires that any combina-
tion of up to d component functions fi is missing at least one share for each of the input variables.
The method presented in [BGN+14] demonstrates how to find a sharing with the minimum number
of input shares, i.e. sin = td + 1, which results in sout =

(
sin

t

)
output shares. However, this

approach does not guarantee that sout is indeed the theoretical minimum. Even more, there are
examples which show that by increasing sin it is possible to decrease sout.

We use sout as a figure of merit since the amount of registers required to store the output shares
and the amount of random bits required for refreshing increases with the number of output shares.
Further on, we will describe a way to find a td + 1 sharing with small sout.

For every output share there is a subset of input shares of all variables that are permitted to be
part of that share’s equation. If we enumerate all sin input shares as values from {0, . . . sin − 1},
for each output share we can define a subset of allowed input shares that can appear in that
output share. We call these sets output share sets, or output sets. Set representation determines
maximum degree of the output share component function and is equal to the number of elements
in it. Further on, we will refer to a set with k elements as k-set. It should be noted that output
sets impose no special restrictions for any particular input variable. Each input variable can have
any of the allowed input shares present in the output share.

Equation (5) shows an example of how second-order secure sharing of function xy + z can be
obtained using 6 input shares and 7 output shares. An illustration of this sharing is additionally
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represented by their output share sets on the left.

{0, 1, 2} o1 = x0y1 + x1y0 + x0y2 + x1y2 + x2y1

{0, 3, 4} o2 = z4 + x4y4 + x0y3 + x0y4 + x3y4 + x4y3

{1, 3, 5} o3 = z3 + x3y3 + x1y3 + x3y1 + x1y5 + x3y5 + x5y3

{2, 4, 5} o4 = z5 + x5y5 + x2y4 + x4y2 + x2y5 + x5y2 + x4y5 + x5y4

{0, 1, 4} o5 = z0 + x0y0 + x4y0 + x1y4 + x4y1

{0, 1, 5} o6 = z1 + x1y1 + x0y5 + x5y0 + x5y1

{0, 2, 3} o7 = z2 + x2y2 + x2y0 + x3y0 + x2y3 + x3y2 (5)

As it can be seen the output share sets dictate which indexes of variables are allowed in the
corresponding output share. For example, for o1 only input shares (i.e. indexes) 0, 1 and 2 are
allowed. That requirement is indeed fulfilled by the formula describing o1. Note that these sets do
not uniquely define the sharing. We could, for example, remove the term x0y1 from o1 and assign
it to o5 or o6, as {0, 1} is a subset of both {0, 1, 4} and {0, 1, 5}. Output share sets would still be
the same and the sharing would still be correct second-order td + 1 sharing. Good heuristic for
assigning monomials to output shares is that all output shares should have about the same amount
of terms. That way the implementation becomes balanced and the critical path is roughly equal
among all output shares.

We can reason about the properties of a given td + 1 sharing by inspecting its output sets.
Consider a sharing of a function of degree t and the set St that contains all

(
sin

t

)
different t-sets of

input shares. Correctness is satisfied if and only if the set that contains all different t-sets that are
subsets of at least one output set is equal to the St. Indeed, if that is not the case, there would
exist a cross-product of degree t that could not be part of any output share, making correctness
of the sharing violated. For Equation (5), given that the unshared function is of degree 2, we
can check and confirm that all of the

(
6
2

)
2-sets are contained in output sets of the sharing. For

non-completeness property, which ensures d-th order security, no union of d output sets is equal to
a set covering all input shares {0, . . . , sin − 1}. Equivalently, any combination of d output shares
does not contain all input shares. In Equation (5) this is true for d = 2 as no union of two output
sets gives the set of all input shares {0, 1, 2, 3, 4, 5}.

Interesting question when searching for minimal number of shares is the size of output sets.
Since any subset of output shares that contains all possible t-sets also contains all possible sets of
smaller length, and smaller output sets do not contribute in generation of correct sharing of degree
t function, we can conclude sets of length smaller than t are redundant and can be omitted. On
the other hand, the size of each output share set cannot be larger than sin − (t(d − 1) + 1). Let
us assume otherwise, i.e. there is an output set of size at least sin − t(d − 1). To cover set of all
input shares we need to add missing t(d − 1) input shares to it from other output sets. Since the
length of output set is at least t, we can do it with at most (d − 1) other output sets. But now the
non-completeness would be violated since there are d output shares which cover all input shares.

Now, we are ready to describe the greedy algorithm (see Figure 1) which finds the sharing with
small number of output shares.

Step 2b in algorithm described in Figure 1 involves randomly choosing k-set o among all possible
k-set with the desired property. This nondeterministic behavior leads to different output sharings
with different cardinalities. Hence, we iterate the greedy algorithm multiple times and choose the
output sharing So with the smallest cardinality among all executions. After 100 iterations we have
observed that the number of output shares remains the same, regardless of how many times we
run Algorithm 1, while the execution time increases. Thus, for the results we present here we have
run greedy algorithm 100 times and chosen the smallest sharing among all executions.

The example of a single pass of the greedy algorithm is given in Table 1, for Sin = 6, d = 2
and t = 2, making set O containing all sets of size k = sin − (t(d − 1) + 1) = 3. In each step of
the greedy algorithm, these sets are scored according to the step 2b. In bold we have marked
the chosen set to be added to the output sharing, and in light gray we highlight the sets that
must be removed, because if they remain in the next steps of the algorithm, they could violate
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1. For a given number of input shares sin, security order d and algebraic degree t, we work
with two sets:

(a) A set O containing initially all k-sets with k = sin − (t(d − 1) + 1), with elements from
{0, . . . , sin − 1}.

(b) An empty solution set So, i.e. initially there are no output shares.

2. Then we iterate as follows until the combination of t-sets covered by its output shares So

contains all different t-sets:

(a) Remove all k-sets from O that would cause violation of non-completeness when combined
with existing k-sets in So.

(b) From set O we pick set o that covers the highest number of t-sets that are not subsets
of any output set in So. If there are multiple k-sets with this property we randomly
choose one of them as o.

(c) We add o to So and remove it from O.

3. The set So is the found output sharing sout.

Figure 1: Greedy Algorithm for efficient td + 1 sharing

non-completeness of the constructed sharing. Left column in each table is the score of a given k-set,
or the amount of t-sets it contains, that are not present in So. Right column is all remaining k-sets
that do not violate non-completeness if added to So. In the same column above the horizontal line
is partially constructed So represented by k-sets that are added to it. If we take the fourth table,
k-set {0, 1, 4} has a score of 1 as only {1, 4} is the new t-set it would add, given {0, 1} and {0, 4}
are already subsets of output shares {0, 1, 2} and {0, 3, 4}. On the other hand, k-set {2, 4, 5} has a
score of 3 since none of the t-sets {2, 4}, {2, 5} and {4, 5} are present in any of the output shares.
For this particular order of the k-sets, we end up with output sharing that contains 7 shares.

3.2 How to find optimal d + 1 sharing

To achieve d-th order security using d + 1 sharing for a single term of degree t, i.e. a product of t
variables, one gets exactly (d + 1)t shares for the product [RBN+15]. Alternatively, for sin = d + 1
input shares and a product of t variables one gets sout = (d + 1)t output shares.

Main difference with td + 1 sharing is how the non-completeness property is interpreted. Unlike
with td + 1 TI sharing in the d + 1 TI sharing each output share should contain only one share
per input variable, in other words if in an output share there are two shares of an input variable
then the d-th order non-completeness will be violated. Recall that for the td + 1 TI using more
shares per input variable is possible since the number of input shares is bigger. We observe this in
Equations (5) and (7). In the first output share of Equation (5), we see 3 input shares of x: x0, x1

and x2. In d + 1 sharing of Equation (7), the first output share only has one input share of x: x0.
Therefore, for d + 1 case to ensure non-completeness it is enough to have only one share of each

input variable present in any given output share. We will assume that the independence of input
shares is always satisfied for the d + 1 case.

Correctness of the sharing in d + 1 case is achieved by verifying that each monomial of a shared
term (product) in the unshared function f must be present in one of the output shares.

Consider again the function xy + z. One possible first-order d + 1 sharing of it is given in



8
Optimized Threshold Implementations: Securing Cryptographic Accelerators for

Low-Energy and Low-Latency Applications

Table 1: Example execution of the greedy algorithm for the case sin = 6, d = 2, t = 2. Each table
shows a single step of algorithm execution. Left column is the amount of t-sets not covered in So

by the set on the right. Sets above the horizontal line are partially constructed sharing So.
{0, 1, 2}

3 {0, 1, 2}
3 {0, 1, 3}
3 {0, 1, 4}
3 {0, 1, 5}
3 {0, 2, 3}
3 {0, 2, 4}
3 {0, 2, 5}
3 {0, 3, 4}
3 {0, 3, 5}
3 {0, 4, 5}
3 {1, 2, 3}
3 {1, 2, 4}
3 {1, 2, 5}
3 {1, 3, 4}
3 {1, 3, 5}
3 {1, 4, 5}
3 {2, 3, 4}
3 {2, 3, 5}
3 {2, 4, 5}
3 {3, 4, 5}

{0, 1, 2}
{0, 3, 4}

2 {0, 1, 3}
2 {0, 1, 4}
2 {0, 1, 5}
2 {0, 2, 3}
2 {0, 2, 4}
2 {0, 2, 5}
3 {0, 3, 4}
3 {0, 3, 5}
3 {0, 4, 5}
2 {1, 2, 3}
2 {1, 2, 4}
2 {1, 2, 5}
3 {1, 3, 4}
3 {1, 3, 5}
3 {1, 4, 5}
3 {2, 3, 4}
3 {2, 3, 5}
3 {2, 4, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}

1 {0, 1, 3}
1 {0, 1, 4}
2 {0, 1, 5}
1 {0, 2, 3}
1 {0, 2, 4}
2 {0, 2, 5}
2 {0, 3, 5}
2 {0, 4, 5}
2 {1, 2, 3}
2 {1, 2, 4}
2 {1, 3, 4}
3 {1, 3, 5}
3 {1, 4, 5}
2 {2, 3, 4}
3 {2, 3, 5}
3 {2, 4, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}

0 {0, 1, 3}
1 {0, 1, 4}
1 {0, 1, 5}
1 {0, 2, 3}
2 {0, 2, 5}
1 {0, 3, 5}
2 {0, 4, 5}
1 {1, 2, 3}
2 {1, 2, 4}
1 {1, 3, 4}
2 {1, 4, 5}
2 {2, 3, 4}
2 {2, 3, 5}
3 {2, 4, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}
{0, 1, 4}

1 {0, 1, 4}
1 {0, 1, 5}
1 {0, 2, 3}
1 {0, 2, 5}
1 {0, 3, 5}
1 {0, 4, 5}
1 {1, 2, 3}
1 {1, 2, 4}
1 {1, 3, 4}
1 {1, 4, 5}
1 {2, 3, 4}
1 {2, 3, 5}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}
{0, 1, 4}
{0, 1, 5}

1 {0, 1, 5}
1 {0, 2, 3}
1 {0, 2, 5}
1 {0, 3, 5}
1 {0, 4, 5}
1 {1, 2, 3}
0 {1, 2, 4}
0 {1, 3, 4}
0 {1, 4, 5}
1 {2, 3, 4}

{0, 1, 2}
{0, 3, 4}
{1, 3, 5}
{2, 4, 5}
{0, 1, 4}
{0, 1, 5}
{0, 2, 3}

1 {0, 2, 3}
0 {0, 2, 5}
0 {0, 3, 5}
0 {0, 4, 5}
1 {1, 2, 3}
0 {1, 2, 4}
0 {1, 3, 4}
0 {1, 4, 5}

Equation (6).

(x, y, z)
(0, 0, 0) o1 = x0y0 + z0

(0, 1, ∗) o2 = x0y1

(1, 0, ∗) o3 = x1y0

(1, 1, 1) o4 = x1y1 + z1 (6)

The sharing can also be represented with a table as shown on the left side of Equation (6). Each
output share is a row of a table, and each column represents the shares of different input variable.
Entry in row i and column j is the allowed input share of j-th input variable for i-th output share.

Columns are representing the variables x, y and z respectively. Compared to td + 1 set
representation, table representation restricts input shares per each variable separately, while output
sets impose restriction that was the same for all input variables.

The asterisk values indicate that we do not care about what input share of z is there, because
the sharing of linear term z is ensured by combining rows 1 and 4 of the table. This also shows
that the table representation of the sharing does not uniquely determine the exact formula for each
output share, and there is certain freedom in determining where we can insert the input shares.

For example, we can use the table of Equation (6) to share function x + y + xy + z. There are
two options for terms x0 and x1, rows 1 and 2, and rows 3 and 4, respectively. The same holds for
terms y0 and y1, y0 can be either in output share 1 or 3, and y1 can be in output share 2 or 4.

Properties of non-completeness and correctness can be easily argued from the table representation.
Since for every table row, each column entry in the table can represent only one input share of
that column’s variable, first-order non-completeness is automatically satisfied. For row 3 of the
table in Equation (6) by fixing the entries representing x to 1 and y to 0 we ensure that only x1

and y0 can occur in that output sharing. Hence, there is no way that x0 or y1 can be a part of
that particular output share, which is the only way to violate non-completeness in d + 1 sharing.
Correctness of the table can be verified by checking correctness for every monomial in unshared
function f individually. If the combined columns representing variables of the monomial contain
all possible combinations of share indexes, sharing is correct. Indeed, if this is the case, all terms
of shared product for each monomial can be present in the output sharing. Following example
from Equation (6), for monomial xy we see that all four combinations {(0, 0), (0, 1), (1, 0), (1, 1)}
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are present in two columns representing variables x and y. Hence, all of the terms of shared
product xy = (x0 + x1)(y0 + y1) = x0y0 + x0y1 + x1y0 + x1y1 can be present in at least one
output share. The same holds for z = z0 + z1 as both combination {(0), (1)} are present in output
table of Equation (6). Also, it is easy to see that the number of rows in correct sharing table is
lower-bounded by the (d + 1)t, when the degree of the function is t.

Now, consider a function xy + xz + yz. One possible first-order d + 1 sharing and its table is
given in Equation (7) with table entries on the left. Columns represent x, y, and z, respectively.

(0, 0, 0) o1 = x0y0+x0z0+y0z0

(0, 1, 1) o2 = x0y1+x0z1+y1z1

(1, 0, 0) o3 = x1y0+x1z0

(1, 1, 1) o4 = x1y1+x1z1

(∗, 0, 1) o5 = y0z1

(∗, 1, 0) o6 = y1z0 (7)

Obviously, the table now has 6 rows representing different output shares, which is larger than
theoretically minimal 4 shares. Sharing given by Equation (7) is also very easily obtained when we
try to derive it by hand. Naive approach is to start by sharing xy into four shares. Next, we try to
incorporate xz into these four shares by setting all indexes of z to be equal to y. The problem
arises when we now try to add sharing of yz. In the existing four output shares we have z and y
have same indexes, thus we are required to add two more shares for terms y0z1 and y1z0.

Further on, we will show that for any function with n input variables of degree t = n − 1 it is
possible to have a d + 1 sharing with minimal (d + 1)t shares.

Definition 1. Table with n columns representing output sharing of a function of degree t with
n input variables is referred to as a Dn-table. The number of rows of the table is the number of
output shares for a given sharing. If the output sharing is correct then Dn-table is t-degree correct
Dn-table. t-degree correct Dn-table with minimal numbers of rows is called an optimal Dn-table.
Optimal Dn-table that has (d + 1)t rows is called ideal Dn-table, denoted Dn

t -table

Obviously, for t = n ideal Dn
n-table is just a table that contain all different (d + 1)t indexes of

input variables in the terms of shared product that occur when sharing a function of degree t. We
can also consider each row of a Dn-table as an ordered tuple of size n. i-th value in a such tuple
represents the i-th input variable, and it’s value is the allowed input share of that variable in the
output share represented by the tuple. All tuple entries can have values from the set {0, . . . , d}.

Definition 2. Dt-table D1 is t-subtable of Dn-table D2 for given t columns if D2 reduced to these
t columns is equal to D1.

We have shown with the sharing in Equation (6) how one can check the correctness of the table.
Now we generalize this by showing how to check if a given Dn-table can be used for sharing of
any function of degree t. It turns out that it is sufficient to check correctness only for the terms of
degree t, since if we are able to share a product of t variables with a number of output shares, we
can also always share any product of a subset of these t variables using the same output shares.

It is easy to see that a Dn-table D can be used to share any function of degree t if and only
if for any combination of t columns, Dt-table formed by chosen t columns contains all possible
(d + 1)t ordered tuples of size t. In, other words, t-subtable of D for any t columns is t-degree
correct Dt-table.

This comes from the fact that Dt-table that contains all possible (d + 1)t ordered t-tuples
represents a correct sharing for functions of degree t. If this is true for any combination of t
columns of D we can correctly share any combination of products of size t from n input variables.

An example is given in Table 2 where D3-table on the left can be used for first-order sharing of
any function of degree 2 since all 3 D2-tables obtained from it have all 4 possible ordered 2-tuples
(0, 0), (0, 1), (1, 0) and (1, 1) as at least one of its rows.
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Table 2: D3-table and its 3 2-subtables.
xyz
000
011
100
111
001
110

xy
00
01
10
11
00
11

xz
00
01
10
11
01
10

yz
00
11
00
11
01
10

Next we show how one can construct ideal Dn-table for any function for given n, d and t = n−1.
To recap, we first build a (d + 1)t × n table D, where every row is a tuple of indexes (in a single
row no variable index is allowed to be missing and, naturally, no variable index is duplicated) and
t-subtable of D for any t columns is a t-degree correct Dt-table. Since t = n − 1 we can consider
t-subtable generation as column removal from D, since there is exactly one column from it that is
missing in the generated t-subtable. As already explained, such a Dn-table D is then equivalent to
a sharing which fulfills the correctness and the non-completeness properties of TI. Constructing an
ideal Dn

n-table is trivial, since all we need to do is to enumerate all ordered index n-tuples. The
number of rows in it is (d + 1)n.

Showing that a particular Dn-table with (d + 1)n−1 rows is a Dn
n−1-table becomes equivalent to

proving that removal of any single column (restriction to n − 1 columns or, equivalently, variables)
from the Dn-table yields a Dn−1

n−1-table, since Dn−1
n−1-table contain all possible combinations of

(n − 1)-tuples with no repetitions. Alternatively, any (n − 1)-subtable of Dn
n−1-table is a Dn−1

n−1-
table.

Here we will show how to build the Dn
t -table for the case when t = n − 1. For any given Dn

n−1-
table and security order d we will prove the existence of other d Dn

n−1-tables such that no n-tuple
exists in more than one table. In other words, no two tables contain rows that are equal. We call
such d + 1 Dn

n−1-tables conjugate tables, and the sharings produced from them conjugate sharings.
Having all rows different implies that these d + 1 Dn

n−1-tables cover (d + 1)(d + 1)n−1 = (d + 1)n

index n-tuples, i.e. all possible index n-tuples. Therefore, these d + 1 Dn
n−1-tables together form a

Dn
n-table.

We build the d + 1 conjugate Dn
n−1-tables inductively. For a given d we build d + 1 conjugate

D2
1-tables, then assuming d + 1 conjugate Dn

n−1-tables exist we construct d + 1 conjugate Dn+1
n -

tables.
The initial step is easy: D2

1 has two columns (for the variables x and y) and in each row i
(enumerated from 0 to d) of each conjugate table j (enumerated from 0 to d) we set the value in the
first column to be i, and the value of the second column to be (i + j) mod (d + 1), hence obtaining
the (d + 1) conjugate D-tables with d + 1 rows. Indeed, both columns of any of the constructed
D2

1-tables contain all values between 0 and d, so by removing either column we always obtain a
correct D1

1-table, meaning we can share correctly both x and y variables. Also, this construction
ensures that second column never has the same index value in one row for different tables, therefore
no two rows for different tables are the same, ensuring that formed tables are indeed conjugate.

Induction step - assume we have d + 1 conjugate Dn
n−1-tables. Using them we are now going to

build d + 1 conjugate Dn+1
n -tables in a following manner: The example of the iterative step from

Algorithm 2 is given in the Appendix A.

Lemma 1. Given d + 1 conjugate Dn
n−1-tables the algorithm described in Figure 2 constructs d + 1

conjugate Dn+1
n -tables.

Proof. First, let us show that the constructed d + 1 Dn+1
n -tables are conjugate, i.e. there is no

(n + 1)-tuple which belongs to more than one of them. Let us then assume on the contrary, that
there exists an (n + 1)-tuple which belongs to two Dn+1

n -tables. This, in turn, will imply the
existence of an n-tuple which belongs to two of the initial d + 1 Dn

n−1-tables. This now leads to a
contradiction of the fact that these initial tables are conjugate.
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For 0 ≤ i ≤ d we construct the i-th Dn+1
n -table as follows:

1. Start with empty D-table P of n + 1 variables.

2. For 0 ≤ j ≤ d:

(a) Take the j-th Dn
n−1-table and append one more column as last column.

(b) Fill up the last column with the value (i + j) mod (d + 1).
(c) The obtained extended table is added to the D-table P .

Figure 2: Algorithm for optimal d + 1 sharing

The only remaining property which needs to be proven is that any restriction to a particular
set of columns has to have all the combinations of index n-tuples, i.e. the correctness property. In
fact, it is sufficient to prove that any set of n columns in any of the new conjugate tables contains
all possible n-tuples. Indeed, if we remove the last column in any of the so constructed tables we
get the union of the original d + 1 Dn

n−1-tables, that form one Dn
n-table. By definition Dn

n-table
satisfies this property. Lastly, we are left with the other case of removing one of the first n columns,
which results in a table of dimensions (d + 1)n × n. To show that we have all the combinations of
tuples it is sufficient to point out that, since this table contains (d + 1)n tuples and there are no
duplications, all combinations are in the table, i.e. this is again a Dn

n-table. Consider two n-tuples
and for each of them split on (n − 1)-tuple of the first n − 1 indexes and the last index as a separate
value. The two n-tuples are now equal if the two (n−1)-tuples are equal and the equality of the last
indexes is ensured. By Algorithm 2 design, equality of the last indexes (these are in the (n + 1)-st
column) implies that the two (n − 1)-tuples belong to one of the starting conjugate Dn

n−1-tables,
i.e. they can’t be in different conjugate Dn

n−1-tables. However, for the (n − 1)-tuples which belong
to one of the starting Dn

n−1-tables by assumption is known that there are no duplications and
hence the considered two (n − 1)-tuples cannot be equal. The latter finishes the proof.

Theorem 1. Any of the constructed conjugate Dn
n−1-tables by algorithm in Figure 2 provides

optimal sharing for given n, d and t = n − 1.

Proof. The algorithm is applied inductively for the number of variables from 2 till n. Since one
Dn

n−1-table contains exactly (d+1)n−1 rows, we conclude it is optimal because this is the theoretical
lower bound for the number of output shares for the case t = n − 1.

Recall that aside from a formula for the lower bound in [RBN+15], there was not much other
work of applying d + 1 TI to functions with higher degree than 2 with the only exception: the AES
implementations by [UHA17b,UHA17a] where d + 1 TI was applied to the inversion of GF (24),
which function has algebraic degree 3. When we tried to obtain by hand d + 1 TI for PRINCE
S-box of algebraic degree 3 we only managed to find output sharing for the most significant bit of
the S-box with 12 and 44 output shares, for the first-order and the second-order d + 1 TI prior to
the discovery of the Algorithm 2. Optimal solution is 8 and 27 output shares for these two cases,
respectively, which is easily found using approach described here.

Another benefit of using algorithmic solution is it can easily be automated using a computer,
removing the possibility of human error that is likely to occur, the more complex the ANF becomes.

It is well known that a balanced Boolean function of n variables has a degree at most n − 1.
Therefore all n × n S-boxes which are permutations have a degree of at most n − 1. Indeed nearly
all bijective S-boxes used in symmetric ciphers are chosen to have a maximum degree of n − 1.
Most notable exception is Keccak’s [BDPA11] χ-function which is a 5 × 5 S-box of degree 2.

A sharing with 8 shares can be easily found for χ by hand while a conjugate D5-table will have
16 entries which corresponds to the optimal sharing for degree 4. Hence, the method presented in
this section is not optimal when the degree of the function is lower than n − 1.
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Therefore, finding the optimal sharing for functions with a degree lower than n − 1 remains an
open problem.

4 PRINCE

As a proof of concept we apply different flavors of TI to PRINCE [BCG+12], a low-latency block
cipher designed to be very efficient in hardware when implemented in an unrolled manner. Its
α-reflection property allows a reuse of the same circuitry for both encryption and decryption.

Although not designed to be efficient in software, a bit-sliced software implementation of
PRINCE is also fast and can even be executed in fewer clock cycles than other lightweight block
ciphers such as PRESENT and KATAN, for example [Pap14].

Here we give a brief overview of PRINCE and for more detailed explanation of the cipher we
refer the reader to the original paper [BCG+12]. The block size is 64 bits and a key has a length of
128 bits. The key is split into two 64-bit parts k0||k1 and expanded to k0||k′

0||k1 as shown below.

(k0||k′
0||k1) = k0||((k0 ≫ 1) + (k0 ≫ 63))||k1)

As depicted in Figure 3, k0 and k′
0 are used as whitening keys at the start and at the end of the

cipher; k1 is used as round key in PRINCEcore which consists of 12 rounds. More precisely, 6
rounds followed by the middle involution layer which is then followed by the 6 inverse rounds.

R0

RC0

R1

RC1

R2

RC2

R3

RC3

R4

RC4

R5

RC5

SR-1 M′ SR R-1

6

RC6

R-1

7

RC7

R-1

8

RC8

R-1

9

RC9

R-1

10

RC10

R-1

11

RC11

PRINCEcore

k0 k′
0

k1RCi

S M

k1RCi

S-1M-1

Figure 3: PRINCE cipher.

S-box layer. The S-box is a 4-bit permutation of algebraic degree 3 and its look-up table is
S(x) = [B, F, 3, 2, A, C, 9, 1, 6, 7, 8, 0, E, 5, D, 4]. The S-box inverse is in the same affine equivalence
class as the S-box itself. Moreover, input and output transformations are the same:

S−1 = Aio ◦ S ◦ Aio (8)

The affine transformation Aio is given as Aio(x) = [5, 7, 6, 4, F, D, C, E, 1, 3, 2, 0, B, 9, 8, A].
Linear layer. Matrices M and M ′ define the diffusion layer of PRINCE. M ′ is an involution

and M matrix can be obtained from M ′ by adding a shift-rows operation SR so that M = SR ◦M ′.
Recall that SR is a linear operation that permutes the nibbles of the PRINCE state.

RCi addition is a 64-bit round constant addition. The round constants RC0 . . . RC11 are
chosen such that RCi + RC11−i = α where α is a 64-bit constant. This property, called α-
reflection property, together with the construction of PRINCEcore rounds makes the decryption of
PRINCEcore same as the encryption with k1 + α key.

4.1 S-box decomposition

PRINCE S-box has an algebraic degree three and belongs to class C131 [BNN+12]. According
to [BNN+12] and the tables given in [Nik12] there are several hundreds of decompositions into
three quadratic S-boxes and four affine transformations.

We choose a decomposition where all 3 quadratic S-boxes are the same, belonging to class Q294,
for its small area footprint. Decomposition leads to lower area and randomness requirement as they
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depend on the algebraic degree of the function when applying TI. On the other hand, performance
is penalized. PRINCE S-box ANF (o1, o2, o3, o4) = F (x, y, z, w) is given by:

o1 = 1 + wz + y + zy + wzy + x + wx + yx

o2 = 1 + wy + zy + wzy + zx + zyx

o3 = w + wz + x + wx + zx + wzx + zyx

o4 = 1 + z + zy + wzy + x + wzx + yx + wyx (9)

S-box and its inverse decompositions used in our implementation are given in Equation (10).

S = A1 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A4

S−1 = A5 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A6 (10)

Here A1 to A6 are affine transformations and their respective look-up tables are:
A1(x) = [C, E, 7, 5, 8, A, 3, 1, 4, 6, F, D, 0, 2, B, 9], A2(x) = [6, D, 9, 2, 5, E, A, 1, B, 0, 4, F, 8, 3, 7, C],
A3(x) = [0, 8, 4, C, 2, A, 6, E, 1, 9, 5, D, 3, B, 7, F ], A4(x) = [A, 1, 0, B, 2, 9, 8, 3, 4, F, E, 5, C, 7, 6, D],
A5(x) = [B, 8, E, D, 1, 2, 4, 7, F, C, A, 9, 5, 6, 0, 3], A6(x) = [9, 3, 8, 2, D, 7, C, 6, 1, B, 0, A, 5, F, 4, E].

The ANF of the Q294 function, (x, y, z, w) = F (a, b, c, d), is given in Equation (11)

x = a

y = b

z = ab + c

w = ac + d (11)

We recall that, for a secure implementation with this decomposition method, nonlinear operations
need to be separated by registers, making evaluation of a single S-box take 3 clock cycles.

As discussed in Section 2.2, we explore the implementation of the decomposed S-box in order
to address the issue of low-area and low-power applications but, in what follows, we also explore
the sharing of the non-decomposed S-box to address the issue of low latency and low energy.

5 Implementations

5.1 Unprotected implementation

Figure 4 represents the architecture of unprotected round-based PRINCE. Here we evaluate the
S-box in one cycle. One encryption is performed in 12 clock cycles. We utilize the fact that the
S-box and its inverse are in the same equivalence class to reuse the same circuitry for both first
and last rounds, with the exception that affine transformation circuits Aio are used during the
evaluation of S−1. By adding an extra multiplexer we can perform decryption as well. To minimize
the overhead of adding decryption, we use the round counter design as explained in [MS16].

Following Figure 4, when evaluating the S-box, the data travels through multiplexers α1−β2−δ1,
except in the first round where the path is α1 − β1 − δ1. Similarly, when evaluating the inverse
S-box, active path is α2 − γ1 − δ2, except in the last round where we use α1 − γ2 − δ2.

Next, in Sections 5.2-5.6 we first present the TIs of the S-box and its building block Q294 and
then in Section 5.7 we present the actual secure implementations of PRINCE.

5.2 TIs of Q294

We have implemented td + 1 and d + 1 variants of TI for both the first- and the second-order Q294

implementations . We use the first-order td + 1 direct TI sharing [BNN+12], the second-order td + 1
sharing with 5 input shares and 10 output shares, as explained in [BGN+14]. For the d + 1 first-
and second-order implementations, we used sharing given in [RBN+15]. Compression is applied to
the second-order td + 1 and both d + 1 versions. Detailed description of the hardware architecture
can be found in the Appendix B.
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Figure 4: Unprotected PRINCE round based architecture.

5.3 First-order secure td + 1 TI of PRINCE S-box

For the first-order td + 1 design, we generated sharing with 4 input and output shares following
[BNN+12].

Output bits are refreshed using Equation (4), requiring 12 random bits per S-box. The exact
sharing does not fit within the margins of this paper and will be provided as a Verilog code online.

5.4 Second-order secure td + 1 TI of PRINCE S-box

To create a second-order secure masking for the PRINCE S-box with d = 2 we have used the
iterated greedy algorithm described in Section 3.1. This algorithm provides a solution that has
17 output shares and 8 input shares. Compared to the solution given in [BGN+14], which had 35
output shares and 7 input shares, we have reduced the total number of shares by almost a half. All
output bits are refreshed using the ring re-masking from Equation (3), requiring 68 random bits
per S-box. Since the rest of the PRINCE core is using three shares (see Section 5.7), we generate
five extra shares before the S-box input which consumes 20 random bits extra. Therefore, the
whole S-box evaluation uses 88 random bits. Again, due to the limited space in this paper, the
exact sharing will be provided as an online Verilog code.

5.5 First-order secure d + 1 TI of PRINCE S-box

To implement the first-order secure masking of PRINCE S-box, with d = 1, we use the algorithm
described in Section 3.2 to obtain a conjugate D4

3-table. This table represents an optimal solution
for 2 input shares with 8 output shares for each input/output bit of the S-box. Recall that the
PRINCE S-box is a 4 × 4-bit S-box and that it has a degree 3.

All output bits are refreshed using the mask refreshing as given in Equation (4), requiring 7
bits of randomness per output bit, or 28 bits per S-box in total. The optimal sharing is given below
in Equation (12) as conjugate D4

3-table. The exact sharing will again be provided as an online
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Verilog code.

(x, y, z, w)
(0, 0, 0, 0)
(1, 1, 0, 0)
(0, 1, 1, 0)
(1, 0, 1, 0)
(0, 0, 1, 1)
(1, 1, 1, 1)
(0, 1, 0, 1)
(1, 0, 0, 1) (12)

As an example consider the first coordinate function of PRINCE as given in Equation (9):
o = 1 ⊕ wz ⊕ y ⊕ zy ⊕ wzy ⊕ x ⊕ wx ⊕ yx. Then the optimal sharing is obtained as follows:

o1 =1+w0z0+y0+z0y0+w0z0y0+x0+w0x0+y0x0

o2 = y1+z0y1+w0z0y1+x1+w0x1+y1x1

o3 = w0z1 +z1y1+w0z1y1 +y1x0

o4 = z1y0+w0z1y0 +y0x1

o5 = w1z1 +w1z1y0 +w1x0

o6 = w1z1y1 +w1x1

o7 = w1z0 +w1z0y1

o8 = w1z0y0 (13)

Note that the sharing of the cubic terms is unique while there are more options for the sharings of
the lower degree terms and that is why one needs to avoid repetitions.

5.6 Second-order secure d + 1 TI of PRINCE S-box

For the second-order secure masking of PRINCE S-box, with d = 2, we again use the algorithm
described in Section 3.2 to obtain conjugate D4

3-table. This table represents an optimal solution
with 3 input shares and 27 output shares for each input/output bit of the S-box. All output bits
are refreshed using the ring re-masking as given in Equation (3), requiring 108 random bits for
the whole S-box. The optimal sharing is given below in Equation (14) as a conjugate D4

3-table,
where the same rules are used as in the previous section for d = 1 case. The exact sharing will be
provided as an online Verilog code.

(x, y, z, w)
(0, 0, 0, 0) (0, 0, 1, 1) (0, 0, 2, 2)
(1, 1, 0, 0) (1, 1, 1, 1) (1, 1, 2, 2)
(2, 2, 0, 0) (2, 2, 1, 1) (2, 2, 2, 2)
(0, 1, 1, 0) (0, 1, 2, 1) (0, 1, 0, 2)
(1, 2, 1, 0) (1, 2, 2, 1) (1, 2, 0, 2)
(2, 0, 1, 0) (2, 0, 2, 1) (2, 0, 0, 2)
(0, 2, 2, 0) (0, 2, 0, 1) (0, 2, 1, 2)
(1, 0, 2, 0) (1, 0, 0, 1) (1, 0, 1, 2)
(2, 1, 2, 0) (2, 1, 0, 1) (2, 1, 1, 2) (14)
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Figure 5: TI PRINCE round based architecture with decomposition.

5.7 Protected implementations of the whole PRINCE cipher

Figure 5 depicts the data path of hardware implementation for the four protected round-based
implementations of PRINCE which use the S-box decomposition. All the data lines have the
width of 64 × s bits, where s is number of input shares. The only exception is the RC constant
output, which has the width of 64 bits. The sharing of the nonlinear layer, followed by the linear
layer, re-masking and compression layer is denoted with the NLRC block in Figure 5. Hardware
implementations of NLRC layers of Q294 are discussed in Appendix B.

In order to support both encryption and decryption, input and output whitening keys, kwi

and kwo are either k0 or k′
0, depending on what is being executed. We only require one extra

multiplexer to implement this feature. When evaluating the S-box, the data path of the multiplexers
is α1 − β2 − δ1 in the first, α2 − δ2 in the second, and α2 − δ3 in the third clock cycle, except in the
first round where the third cycle path is α1 − β1 − δ1. Similarly, when evaluating the inverse S-box,
the active inputs of multiplexers are α3 − γ1 − δ4 in the first, α2 − δ2 in the second, and α2 − δ3 in
the third clock cycle, except in the last round where the path during the third cycle is α2 − γ2 − δ4.

For td + 1 implementations we use 3 and 5 shares respectively for the affine operations in
order to reduce the amount of randomness required for the execution. This incurs additional
penalty in area occupied by the implementation. Recall that the output of the S-box component
functions for td+1 TI is shared with 3 and 10 shares respectively for the first- and the second-order
secure implementations. Re-masking and compression are done only for the second-order td + 1
TI. The d + 1 implementations use 2 and 3 shares for the first- and the second-order secure
implementation, respectively. The output of the S-box component functions is shared with 4 and 9
shares respectively for the first- and the second-order secure implementations. Re-masking and
compression are required in both cases.

The round constant is added to only one of the shares. The key is shared with the same number
of shares as the plaintext. Unlike most of the secure implementations available in the literature, in
this paper we focus on the round based implementation instead of the serialized one. This greatly
reduces the execution time, at the expense of increased area and the required amount of randomness
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Figure 6: TI PRINCE round based architecture without decomposition.

per clock cycle. In order to decrease area, we employ multiplexers to avoid instantiating additional
registers for the 3 stages of the S-box evaluation. Since PRINCE has 12 rounds and each with
S-box evaluations has 3 (for d = 1 and td + 1 TI) or 2 ∗ 3 stages (for d + 1 TI and td + 1 TI but
d > 1) so the total execution takes 36 or 72 clock cycles.

Figure 6 represents the architecture for the four protected round-based implementations of
PRINCE without S-box decomposition. The architecture is almost the same as for the unprotected
design. The implementations of NLRC layers of PRINCE S-box are discussed in Sections 5.3-5.6.

When evaluating the S-box, the data path of the multiplexers is α1 − β2 − δ1 except in the first
round where the path in the first clock cycle is α1 − β1 − δ1. Similarly, when evaluating the inverse
S-box, the active inputs of multiplexers are α2 − γ1 − δ2, except in the first cycle of the last round
where the path is α1 − γ2 − δ2. Unlike in the unprotected version the S-box evaluation takes two
cycles (S-box layer and linear layer are separated into two cycles), hence it takes 24 cycles for one
encryption/decryption operation. The exception is the first-order td + 1 implementation where
S-box evaluation takes one cycle, making encryption/decryption latency 12 cycles.

For td + 1 implementations we use 4 and 3 shares respectively for the affine operations. Recall
that the output of the S-box component functions for td + 1 TI is shared with 4 and 17 shares
respectively for the first- and the second-order secure implementations. Compression is required
only for the second-order td + 1 implementation, while re-masking is applied for both of them. The
d + 1 implementations use 2 and 3 shares for the first- and the second-order secure implementation,
respectively. Recall that the output of the S-box component functions is shared with 8 and 27
shares respectively. Re-masking and compression are required in both cases.

5.8 Randomness reduction

Let us take a closer look at the PRINCE round structure. As explained in Section 4 the mixing
layer consists of matrices M , M ′ or M−1. Recall that M can be obtained from M ′ using nibble
shuffling operation SR, i.e. M = SR ◦ M ′. The involution 64 × 64 matrix M ′ is constructed as
block diagonal matrix with entires (M0, M1, M1, M0) where M0 and M1 are 16 × 16 matrices.

This structure implies that 16-bit chunks of the state are processed independently. Therefore,
we can use the same randomness for all four 16-bit blocks for the attacker case of d = 1 and d = 2.

Namely, assuming the PRINCE state is composed of 16 nibbles enumerated from 0 to 15 then
the following 4 groups can be formed (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11) and (12, 13, 14, 15). When
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evaluating the S-boxes in a given group the randomness required can be reused for the evaluation
of the S-boxes in the other groups. It can also be observed that the nibble shuffling

SR : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)
SR−1 : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3)

does not cause mixing of the S-boxes outputs obtained with the same randomness. Hence, using
this structure in round-based implementation reduces the amount randomness by a factor of four.
Although the probing model does not accurately reflect the HW specifics like glitches and the
parallelism of the implementations, note the first increases the attacker capabilities while the
second diminishes it, below we will still use this attacker model in the argumentations.

When we consider first-order attacker he can probe one share out of two at a given cycle, thus
the reuse of randomness is not exploitable. For the case of second-order attacker he is able to get
either a) 2 shares out of 3 of one nibble or b) 1 share of the 2 nibbles using the same randomness
at a given cycle. In case of a) again the attacker cannot exploit the reuse of randomness since he
does not know anything about this second value which can be combined with his own knowledge
for the first value. In the case of b) the attacker is unable to mount a bivariate attack using points
from different rounds (and hence cycles) due to the re-masking after each operation and the key
addition (all of them done in the same cycle), and since the nibble shuffling does not cause mixing
of the S-boxes outputs in the same round.

6 Results

To demonstrate our results, we use the 90 nm CMOS library provided by TSMC and consider the
worst PVT corner case (the temperature of +125◦ C and the supply voltage of 1.0 V). Please note
that the worst corner case is used in almost all industrial applications. In most of the scientific
publications, however, typical corner case is usually reported, giving an optimistic estimate of what
will eventually be manufactured in silicon. For synthesis, we use Cadence Encounter RTL Compiler
version 14.20-s034 to evaluate the proposed architectures. The designs are synthesized using the
operating frequency of 10 MHz and the power consumption is estimated by simulating a back-
annotated post-synthesis netlist with 100 random test vectors, using Cadence Incisive Enterprise
Simulator version 15.10.006. Energy is calculated for one complete encryption/decryption operation.
Table 3 shows area, power and energy consumption, the number of random bits required per clock
cycle and maximum frequency for all the hardware implementations. All the designs have their
unconstrained critical paths well below 100 ns and, hence, collecting area figures and power/energy
consumption at the frequency of 10 MHz guarantees fair comparison.

It should be noted that the area, power and energy consumption of PRNG is not included in
Table 3, thus making the obtained results favoring solutions with more randomness. In practice,
one must take the impact of PRNG into account and it is expected that higher throughput
PRNGs consume more area, power and energy. However, in most security applications, PRNG
is a component shared between multiple resources, making its impact on the overall area, power
and energy consumption limited. Finally, the most energy efficient design, which is a first-order
protected td + 1 implementation with S-box decomposition from [MS16], consumes only 264 pJ
and requires no additional randomness.

As expected, the first-order d + 1 TI design with S-box decomposition occupies the smallest
area, compared to other secure implementations. Compared to the first-order td + 1 TI architecture
with S-box decomposition, this comes at the cost of extra randomness required.

We report an interesting observation when comparing energy consumption of different archi-
tectures. The smallest energy consumption of 264 pJ has been achieved for the first-order secure
td + 1 TI architecture with S-box decomposition from [MS16]. This is closely followed by our
design with the same security order and S-box structure that consumes 270 pJ. We attribute this
to the absence of randomness needed for resharing in this specific design, despite the area of both
versions of first-order td + 1 TI architectures with S-box decomposition being larger compared to
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Table 3: Area/power/energy/randomness/latency/max frequency comparison
PRINCE Area Power Energy Rand/ Clock fmax Latency

@10 MHz @10 MHz @10 MHz Cycle # @ fmax

(GE) (uW) (pJ) (bits) (cycle) (MHz) (ns)
Unprotected 3589 59 71 0 12 393 30.5

[MS16] 1st (td + 1)
with S-box decomp. 9484 66 264 0 40 328 122

1st (d + 1)
with S-box decomp. 8701 97 698 24 72 260 277

1st (td + 1)
with S-box decomp. 14153 75 270 0 36 268 134

1st (d + 1)
w/o S-box decomp.1 12220 115 276 112 24 289 83.0

1st (td + 1)
w/o S-box decomp.1 31116 576 691 48 12 204 58.8

2nd (d + 1)
with S-box decomp. 13421 161 1159 72 72 250 288

2nd (td + 1)
with S-box decomp. 18767 232 1670 40 72 243 296

2nd (d + 1)
w/o S-box decomp.1 32444 374 898 432 24 292 82.2

2nd (td + 1)
w/o S-box decomp.1 177647 1533 3679 352 24 282 85.1
1 Designs introduced in this paper

several other designs in the Table 3. Absence of randomness greatly reduces switching activity of
the circuit lowering the power consumption considerably. Still, we observe that the first-order d + 1
TI architecture without S-box decomposition consumes only 5 % more energy, while being 33 %
faster. Another interesting observation is that the first-order secure designs consume considerably
less energy compared to second-order designs.

For second-order designs, the designs without decomposition lead to large area overheads
(particularly in td + 1 scenario) and high number of random bits compared to simpler designs. We
conclude that the d + 1 designs are still interesting implementation choices if enough randomness
can be provided. Second-order td + 1, on the other hand, is quite unpractical due to its large area
overheads and large power and energy consumption.

One can see that all protected designs except first-order td + 1 without S-box decomposition
have their maximal frequency within 20 % of each other. The reason for the first-order td + 1
without S-box decomposition smaller maximum frequency is the absence of register prior to the
S-box operation. Also, the implementation from [MS16] has smaller critical path compared to our
designs. Critical path for all implementations goes from the round counter to the S-box input
register. In first-order td + 1 without S-box decomposition case we do not have the S-box input
register, thus making the critical part longer. Still, even with this limitation, the td + 1 first-order
version has smaller total latency compared to other designs.

Compared to our designs, the design described in [MS16] stores the key in plain, requiring less
area for key storage. In addition, the authors of [MS16] proposed different affine transformation
of decomposed S-boxes and their architecture has simplified interface and control logic. That is
the reason why their design is considerably smaller and has lower power consumption than the
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first-order td + 1 version of our proposal with S-box decomposition. When the energy consumption
is compared, however, the two designs perform similarly with the design of [MS16] being 2.3 %
more efficient. This is obviously due to the fact that our first-order td + 1 design with S-box
decomposition is 10 % faster in terms of the required number of clock cycles.

Another interesting observation is that our first-order td + 1 design with S-box decomposition
has lower power consumption than four other designs form Table 3, while having larger area.
As discussed previously, this is due to no additional randomness being required during the
encryption/decryption process. We have investigated the impact of mask refreshing further and
came to the conclusion that adding (or removing) the mask refreshing might change the power
consumption up to a factor of two. Example for this is the first-order d + 1 TI without S-box
decomposition, where the power/energy consumption drops by 40 % if the random inputs are set
to zero. Hence when achieving lower power/energy is a main requirement using uniform sharing is
the best approach.

Table 3 also clearly shows the difference between power and energy consumption. The most
extreme example is comparison between first-order td + 1 design without S-box decomposition and
d + 1 design with S-box decomposition. Although td + 1 design without S-box decomposition has
almost 6 times the power consumption, it has slightly smaller energy consumption, as it takes 6
times less clock cycles to complete.

As can be seen by the reported figures, adding side-channel countermeasures increases the
size of the unprotected PRINCE by at least a factor of 2.5. It should be noted that one has the
penalty of extra clock cycles as well in all the cases except the first-order td + 1 without S-box
decomposition version.

The fastest unprotected PRINCE takes 30.5 ns, followed by first-order td + 1 TI without
decomposition which takes 58.8 ns, i.e. 93% latency increase; next is the second-order d + 1 TI
without decomposition which takes 82.2 ns, i.e. additional 41% latency increase. Also, all designs
without S-box decomposition have significantly smaller latency compared to the implementation
presented in [MS16], ranging from 1.4 to 2 times performance increase.

7 Side-channel evaluation

We have chosen for evaluation the first-order PRINCE without S-box decomposition using optimal
d + 1 sharing which design was programmed onto a Xilinx Spartan-6 FPGA. The platform used is
a Sakura-G board specially designed for side-channel evaluation. The design is separated into two
FPGAs in order to minimize the noise: one that performs the PRINCE encryption and second
FPGA that handles the I/O and the start signal. Our core runs at 3.072 MHz while the sampling
rate is 500 million samples per second. Since one trace consists of 2500 points are able to cover
the first seven rounds of the execution. The power waveform is given in Figure 7.

We apply a non-specific leakage detection test [CDG+13] on the input plaintext following the
standard methodology [RGV17]. First, we test the design with randomness off to verify validity
of the setup and we are able to detect leakage with 1 million traces. As it can be seen on the
left hand side in Figure 8, there is a strong first-order leakage during the loading of the plaintext
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Figure 7: Example power trace waveform used to perform the t-test.
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Figure 8: Leakage detection test results. PRNG off (left column) and PRNG on (right column).
First- (top row) and second- (bottom row) order t-test results.

and the key. We can attribute this to the fact that one share of both the key and the plaintext
is equal to the unshared value, while the other share is zero. Another strong peak is during the
first S-box execution since the state has not diffused yet and there is still high correlation to the
input. Nonetheless, since there is no randomness added, leakage is evident in later rounds as well,
although it becomes smaller. Second-order leakage can also be observed when the masks are off.

Then we switch the randomness on and corroborate that the design does not leak using 100
million traces. Namely it can be seen that there is no first-order leakage detected for the threshold
of ±4.5 when the PRNG is on. Also as expected there is a second-order leakage since we have
tested the first-order d + 1 implementation. The resulting t-test graphs are shown in the Figure 8.

8 Conclusion and Outlook

In this paper we introduced a method for optimizing Threshold Implementations, which makes the
low-latency of side-channel secure designs practical. We have investigated several different trade-offs
that occur in side-channel secure designs. Particularly, we discuss the energy consumption of given
implementations, an important factor in several applications, such as battery powered devices.

First, we provided an algorithm which produces a d + 1 TI sharing with the optimal (minimum)
number of output shares for any n-input Boolean function of degree t = n−1. Second, we presented
a heuristic for minimizing the number of output shares for higher-order td + 1 TI. In addition to
that, we would like to point out that this contribution is of general interest since the method of
minimizing the number of output shares can equally well be applied to any cryptographic design.

Finally, we reported, evaluated and compared hardware figures for eight different TI-protected
round-based versions of PRINCE cipher, namely d+1 and td+1 TI versions, first- and second-order
secure, with or without the S-box decomposition. The td + 1 TI versions tend to consume less
randomness. The d + 1 TI versions with decomposition achieve lower area and power consumption.
The first-order designs without decomposition have favorable energy consumption. In comparison
with the previous state of the art, we show that our design without S-box decomposition are 1.4 to
2 times faster than architecture of [MS16]. It should be noted that [MS16] design still has the most
power efficient design and also the most energy efficient design, albeit by a very small margin in
the latter category. From the area viewpoint, [MS16] design is the second smallest one.

As discussed in [MS16] designing a low-latency side-channel protection in general, and for
PRINCE block cipher in particular, has been identified as an open problem. In this work we have
shown the fastest round based first and second-order secure implementations of PRINCE using
td + 1 and d + 1 TI sharing correspondingly.
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Appendix A

Example of the iterative step from algorithm 2 is presented below, where for security order d = 2
we have created 3 conjugate D3

2-tables from 3 conjugate D2
1-tables.

0 0
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2 2
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0 1
1 2
2 0


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Figure 9: Generating conjugate D3
2-tables from D2

1-tables.
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Appendix B

8.1 First-order secure td + 1 TI of Q294

We use first-order td + 1 direct TI sharing [BNN+12] with 3 shares. Here, we recall that d = 1 and
t = 2. The actual sharing is given in Equation (15).

x1 = a1 z1 = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ c1

x2 = a2 z2 = a2b2 ⊕ a2b3 ⊕ a3b2 ⊕ c2

x3 = a3 z3 = a3b3 ⊕ a3b1 ⊕ a1b3 ⊕ c3

y1 = b1 w1 = a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ d1

y2 = b2 w2 = a2c2 ⊕ a2c3 ⊕ a3c2 ⊕ d2

y3 = b3 w3 = a3c3 ⊕ a3c1 ⊕ a1c3 ⊕ d3 (15)

Figure 10 depicts the hardware implementation of the td + 1 version of Q294.

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

in1
1,2,3 in2

1,2,3 in3
1,2,3 in4

1,2,3

Figure 10: First-order secure sharing of Q294 with td + 1 TI.

8.2 Second-order secure td + 1 TI of Q294

We use the second-order td + 1 TI sharing of Q294 with 5 input shares and 10 output shares as
shown in Equation (16). In this case we have d = 2 and t = 2. The shares are first processed
and thus expanded, then refreshed and stored into a register. Next, they are compressed into 5
shares using the method explained in [BGN+14]. Values in Equation (16) denoted with the overline
represent the output after the compression step.
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x1 = a1 y1 = b1

x2 = a2 y2 = b2

x3 = a3 y3 = b3

x4 = a4 y4 = b4

x5 = a5 y5 = b5

z1 = a1b3 ⊕ a3b1 z6 = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ c1 z̄1 = z1 ⊕ z6

z2 = a2b4 ⊕ a4b2 z7 = a2b2 ⊕ a2b3 ⊕ a3b2 ⊕ c2 z̄2 = z2 ⊕ z7

z3 = a3b5 ⊕ a5b3 z8 = a3b3 ⊕ a3b4 ⊕ a4b3 ⊕ c3 z̄3 = z3 ⊕ z8

z4 = a4b1 ⊕ a1b4 z9 = a4b4 ⊕ a4b5 ⊕ a5b4 ⊕ c4 z̄4 = z4 ⊕ z9

z5 = a5b2 ⊕ a2b5 z10 = a5b5 ⊕ a5b1 ⊕ a1b5 ⊕ c5 z̄5 = z5 ⊕ z10

w1 = a1c3 ⊕ a3c1 w6 = a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ d1 w̄1 = w1 ⊕ w6

w2 = a2c4 ⊕ a4c2 w7 = a2c2 ⊕ a2c3 ⊕ a3c2 ⊕ d2 w̄2 = w2 ⊕ w7

w3 = a3c5 ⊕ a5c3 w8 = a3c3 ⊕ a3c4 ⊕ a4c3 ⊕ d3 w̄3 = w3 ⊕ w8

w4 = a4c1 ⊕ a1c4 w9 = a4c4 ⊕ a4c5 ⊕ a5c4 ⊕ d4 w̄4 = w4 ⊕ w9

w5 = a5c2 ⊕ a2c5 w10 = a5c5 ⊕ a5c1 ⊕ a1c5 ⊕ d5 w̄5 = w5 ⊕ w10 (16)

Please note that in order to avoid multivariate attacks, where the attacker probes values from
different time samples, only nonlinear parts need to be refreshed, namely z1, . . . , z5 and w1, . . . , w5.
Therefore, we need 10 random bits for each shared Q294 function.

x3
x2
x1

y1 y2 y3z1

sh 1

1
1
1

1 1

1 1

1

Figure 11: Generating two outputs bits for partial evaluation of xy + z.

The sub-circuit used to generate two output bits of a partial evaluation of shared nonlinear
function xy + z is shown in Figure 11.

8.3 First-order secure d + 1 TI of Q294

We use the first-order sharing given in [RBN+15] and shown in Equation (17). In this case it holds
d = 1. Unlike td + 1 TI, the first-order secure sharing here has four output shares for the nonlinear
component functions. For the linear parts, however, we need only two shares instead of three.
Compression and mask refreshing are needed to reduce the number of output shares and make the
output uniform, respectively.
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Figure 12: Second-order secure sharing of Q294 with td + 1 TI.

x1 = a1 y1 = b1

x2 = a2 y2 = b2

z1 = a1b1 ⊕ c1 w1 = a1c1 ⊕ d1

z2 = a1b2 w2 = a1c2

z3 = a2b2 ⊕ c2 w3 = a2c2 ⊕ d2

z4 = a2b1 w4 = a2c1

z̄1 = z1 ⊕ z2 w̄1 = w1 ⊕ w2

z̄2 = z3 ⊕ z4 w̄2 = w3 ⊕ w4 (17)

Shares that contain quadratic terms are refreshed as given in Equation (4) before storing into a
register. We have two shared output component functions with four shares, for which we need 6
random bits. As in the second-order secure td + 1 version we set appropriate register bits to 0
during initial loading to ensure correctness of the execution. A detailed hardware implementation
of the d + 1 TI sharing of Q294 is depicted in Figure 13.

8.4 Second-order secure d + 1 TI of Q294

Next, we create a second-order secure masking of Q294 following the work of [RBN+15]. In this case
d = 2. Three input shares are needed for all the operations. However, sharing a nonlinear operation
xy + z produces 9 output shares that need to be first refreshed, then stored into a register, and
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R1 R2 R3 R4 R5 R6 R7 R8

0in1
1,2 in2

1,2
in3

01 in3
2

0in4
1 0in4

2

a1 a2 b1 b2 c1 c2 d1 d2

Figure 13: First-order secure sharing of Q294 with d + 1 TI.

finally compressed. We give the formula for d + 1 second-order secure sharing in Equation (18).

x1 = a1 y1 = b1

x2 = a2 y2 = b2

x3 = a3 y3 = b3

z1 = a1b1 ⊕ c1 w1 = a1c1 ⊕ d1

z2 = a1b2 w2 = a1c2

z3 = a1b3 w3 = a1b3

z4 = a2b1 w4 = a2c1

z5 = a2b2 ⊕ c2 w5 = a2c2 ⊕ d2

z6 = a2b3 w6 = a2c3

z7 = a3b1 w7 = a3c1

z8 = a3b2 w8 = a3c2

z9 = a3b3 ⊕ c3 w9 = a3c3 ⊕ d3

z̄1 = z1 ⊕ z2 ⊕ z3 w̄1 = w1 ⊕ w2 ⊕ w3

w̄2 = w4 ⊕ w5 ⊕ w6 w̄2 = w4 ⊕ w5 ⊕ w6

w̄3 = w7 ⊕ w8 ⊕ w9 w̄3 = w7 ⊕ w8 ⊕ w9 (18)

A hardware diagram of this sharing is depicted in Figure 14.
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Figure 14: Second-order secure sharing of Q294 with d + 1 TI.


