
FE and iO for Turing Machines
from Minimal Assumptions

Shweta Agrawal ∗ Monosij Maitra †

Abstract

We construct Indistinguishability Obfuscation (iO) and Functional Encryption (FE)
schemes in the Turing machine model from the minimal assumption of compact FE for
circuits (CktFE). Our constructions overcome the barrier of sub-exponential loss incurred
by all prior work. Our contributions are:

1. We construct iO in the Turing machine model from the same assumptions as required
in the circuit model, namely, sub-exponentially secure FE for circuits. The previous
best constructions [KLW15, AJS17] require sub-exponentially secure iO for circuits,
which in turn requires sub-exponentially secure FE for circuits [AJ15, BV15].

2. We provide a new construction of single input FE for Turing machines with unbounded
length inputs and optimal parameters from polynomially secure, compact FE for
circuits. The previously best known construction by Ananth and Sahai [AS16] relies
on iO for circuits, or equivalently, sub-exponentially secure FE for circuits.

3. We provide a new construction of multi-input FE for Turing machines. Our
construction supports a fixed number of encryptors (say k), who may each encrypt
a string xi of unbounded length. We rely on sub-exponentially secure FE for circuits,
while the only previous construction [BGJS15] relies on a strong knowledge type
assumption, namely, public coin differing inputs obfuscation.

Our techniques are new and from first principles, and avoid usage of sophisticated iO
specific machinery such as positional accumulators and splittable signatures that were used
by all relevant prior work [KLW15, AS16, AJS17].

———–
Note : The proof of Theorem 3.1 (provided partly in Section 3.3 and in Appendix B respectively)
contains a subtle bug that breaks the indistinguishability chain of TMFE. At a high level, this
is caused by propagating the data structure Trapb (for the challenge bit b ∈ {0, 1}) through the
1FE1 and 1FE2 ciphertexts across the entire computation chain; this, in turn, fails the analysis
to rely on the distributional indistinguishability of 1FE2 (and 1FE1). Nevertheless, our theorem
statement still holds true via the work in [KNTY19]. We thank Pratish Datta, Jiaxin Guan and
Alexis Korb for pointing out the issue. We will attempt to fix it and post a revised version soon.
———–
1 Introduction

The notion of indistinguishability obfuscation (iO) [BGI+01] seeks to garble programs such that
the obfuscations of any two functionally equivalent programs are indistinguishable. While
non-obvious at first what such a guarantee is good for, iO has emerged as a surprisingly
powerful notion in cryptography, leading to many advanced cryptographic applications that

∗IIT Madras, India. Email: shweta.a@cse.iitm.ac.in
†IIT Madras, India. Email: monosij@cse.iitm.ac.in

1

were previously out of reach [GGH+13, SW14, CLTV15, CHJV15, BGL+15, KLW15, BPR15,
LPST16, CHN+16, CMR17, LZ17].

Functional encryption (FE) [SW05, BSW11, O’N10] is a generalization of public key
encryption that enables fine grained access control on encrypted data. In FE, a secret key
corresponds to a function f and ciphertexts correspond to strings from the domain of f . Given
a function key SKf and a ciphertext CTx, the decryptor learns f(x) and nothing else.

While an important primitive in its own right, FE has also been shown to imply iO, albeit
with sub-exponential loss [AJ15, BV15]. Over the last few years, both primitives have received
significant attention, with a rich body of work that attempts to support more general models of
computation [BGL+15, CHJV15, KLW15, CCHR15, CCC+15, ACC+16, CH16], rely on weaker
assumptions [BKS16, GS16, LM16, BNPW16, KS17, AS17b, Lin17, LT17, KNT17, KNT18a,
KNT18b], achieve stronger security [ABSV15, BKS16] and greater efficiency [AJS17].

In this work, we make further progress towards the goal of basing iO and FE on minimal
assumptions, in the Turing machine model of computation. This question has been studied
extensively [GKP+13a, AS16, BGL+15, KLW15, CHJV15, CCC+15, CCHR15, ACC+16, CH16,
AJS17] – we refer the reader to [AS16, AJS17] for a detailed discussion. Below, we summarize
the state of art:

1. iO for Turing Machines with unbounded memory and bounded inputs are constructed in
the works of Koppula et al. and Ananth et al. [KLW15, AJS17]. Both works rely on the
existence of sub-exponentially secure iO for circuits along with other standard assumptions.
We note that FE for circuits implies iO with sub-exponential loss, so when relying on FE
for circuits, these works incur double sub-exponential loss.

2. For single input FE for Turing machines that accept unbounded length inputs and place
no restriction on the description size or space complexity of the machine, the state of art
is the work of Ananth and Sahai [AS16], which relies on the existence of iO for circuits.

3. For multi-input FE in the Turing machine model, the only known construction is [BGJS15],
which relies on the existence of public coin differing inputs obfuscation (diO).

Our Results. We construct Indistinguishability Obfuscation (iO) and Functional Encryption
(FE) schemes in the Turing machine model from the minimal assumption of compact FE for
circuits (CktFE). Our constructions overcome the barrier of sub-exponential loss incurred by all
prior work. Our contributions are:

1. We construct iO for Turing machines with bounded inputs and unbounded memory from
the same assumptions as required by iO for circuits, namely, sub-exponentially secure FE
for circuits. The previous best constructions [KLW15, AJS17] require sub-exponentially
secure iO for circuits, which in turn requires sub-exponentially secure FE for circuits
[AJ15, BV15], resulting in double sub-exponential loss.

2. We provide a new construction of single input FE for Turing machines with unbounded
inputs, achieving optimal parameters from polynomially secure, compact FE for circuits.
The previously best known construction by Ananth and Sahai [AS16] relies on iO for
circuits, or equivalently, sub-exponentially secure FE for circuits. We note that iO for
circuits implies decomposable compact FE for circuits [GGH+13] (please see Appendix F),
so our construction also implies FE for TMs from iO for circuits.

3. We provide a new construction of multi-input FE for Turing machines. Our construction
supports a fixed number of encryptors (say k), who may each encrypt a string xi of

2

unbounded length. We rely on sub-exponentially secure FE for circuits, while the only
previous construction [BGJS15] relies on a strong knowledge type assumption, namely,
public coin differing inputs obfuscation. The arity k supported by our scheme depends
on the underlying multi-input CktFE scheme, for instance using [KS17], we can support
k = polylog(λ).

Our constructions make use of FE for circuits that satisfy a mild property called decomposablity,
which in turn can be constructed generically from FE for circuits (please see Appendix F).
Decomposable FE, analogously to decomposable randomized encodings [AIK11], roughly posits
that a long string be encrypted bit by bit using shared randomness across bits. This property
is already satisfied by all known constructions of CktFE in the literature to the best of our
knowledge, please see Appendix F.1.

Our techniques are new and from first principles, and avoid usage of sophisticated iO specific
machinery such as positional accumulators and splittable signatures that were used by all
prior work [KLW15, AS16, AJS17]. Our work leverages the security notion of distributional
indistinguishability (DI) for CktFE which was first considered by [GHRW14], who provided
a construction for single input FE satisfying DI security assuming the existence of iO. We
strengthen this result by constructing DI secure CktFE from standard CktFE. Please see Figure
1 for an overview of our results.

Additional Prior Work. Since iO is considered an inherently sub-exponential assumption
and much stronger than the polynomial assumption of compact FE, replacing iO by FE in
cryptographic constructions has already been studied extensively, for instance in the context
of PPAD hardness [GPS16], multi-input FE for circuits [BKS16, KS17] as well as trapdoor
one-way permutations and universal samplers [GPSZ16]. We note that aside from reliance on
weaker, better understood assumptions, avoiding sub-exponential loss results in significantly
more efficient schemes. We refer the reader to [GPSZ16] for a detailed discussion.

Distributional indistinguishability was also considered in the context of output compressing
randomized encodings [LPST16]; indeed, this work implies that achieving DI security for FE
for Turing machines with long outputs is impossible in the plain model. We note that our
construction sidesteps this lower bound by considering Turing machines with a single output
bit.

iO for TMs with unbounded memory has been constructed by [KLW15, AJS17] as discussed
above, other prior works were limited to bounded space constraints. We note that [AJS17]
additionally achieve constant overhead in the size of the obfuscated program as well as
amortization, which we do not consider in this work. We also note that the work of [BGJS15]
achieve miFE for TMs where the number of encrypting parties can be arbitrary, whereas we
only support a-priori fixed, bounded number of parties.

The approach of using decomposable FE for circuits to construct FE for deterministic finite
automata (DFA) in the single key setting was suggested by [AS17a]. In this work we develop and
significantly generalize their ideas. In particular, we handle the unbounded key setting in FE for
TMs which necessitates dealing with the much more complex indistinguishability style definition,
for which we develop new proof techniques which use a novel “sliding trapdoor” approach and
leverage distributional indistinguishability. In contrast, since [AS17a] use simulation security
for single key FE, their proof must not contend with any of these challenges. Please see below
for details.

Our Techniques. We describe an overview of our constructions, starting with single input
FE, generalizing to multi-input FE and then building iO. All our constructions support the
Turing machine model of computation. Our constructions rely on a single input FE scheme

3

iO for TMs

FE for circuits

iO for circuits

Subexp

Subexp

Rerandomizable

encryption

DDH, LWE, etc

Subexp

FE for circuits

iO for circuits

FE for TMs

Subexp

AS16 AJS17 This

iO for circuitsFE for circuits

FE for TMs MIFE for TMs

iO for TMs

Subexp

Subexp

Poly

Figure 1: Prior work and our results. The reductions with subexponential loss are specified,
no specification implies standard polynomial loss. The dashed blue lines indicate primitives
that are not actually used by the work in question; we add these to elucidate the relationship
between primitives. We do not include [BGJS15] here since it relies on public coin diO.

for circuits, denoted by CktFE, which satisfies decomposability. In Appendix F, we show that
decomposable FE for circuits is implied by FE for circuits. Intuitively, decomposability means
that the ciphertext CTx for a multi-bit message x be decomposable into multiple ciphertext
components CTi for i ∈ |x|, one for each bit xi of the message. Moreover, the ciphertext
components encoding individual bits of a single input are tied together by common randomness,
that is CTi = E(PK, r, xi) where E is an encoding function and r is common randomness used
for all i ∈ |x|1. The notion of decomposability has been widely studied and used in the context
of randomized encodings, which may be seen as a special case of functional encryption; please
see [AIK11] as an example. We note that all known FE schemes in the literature are already
decomposable to the best of our knowledge, please see Appendix F.1 for a discussion.

Single Input TMFE. Recall that a Turing machine at any time step reads a symbol, state
pair and produces a new symbol which is written to the work tape, a new state and a left or
right head movement. By assuming the Turing machine is oblivious, the head movements of the
TM may be fixed; thus, at any given time step when a work tape cell is read, we can compute
the next time step when the same work tape cell will be accessed. This reduces the output at
any time step t to a symbol, state pair, where the state is read in the next time step t+ 1 and
the symbol is read at a future (fixed) time step t′ > t.

Our construction uses two CktFE schemes, 1FE1 and 1FE2, where 1FE2 is decomposable.
Intuitively, 1FE1 is used by the encryptor to encode the unbounded length input, while 1FE2

is used to mimic the computation of the Turing machine, as we describe next. The ciphertext
1Encoding of each bit may also use additional independent randomness, which is not relevant to the discussion

here, and hence omitted.

4

of 1FE2 is divided into two parts, encoding input components (t, σ) and q respectively. Here,
t is the current time step in the computation and σ, q are the current work-tape symbol and
state respectively. We maintain the invariant that at any time step t in the computation, both
components of the ciphertext have been computed using common randomness derived from
PRFK((t∥salt)), where salt is an input chosen by the key generator and the PRF key K is chosen
by the encryptor.

Now, to mimic the TM computation, we provide a function key for the Next functionality,
that stores the transition table, receives as input the current (symbol, state) pair, computes the
symbol to be written on the work tape and the next state using the transition table, derives
the randomness using the PRF for the appropriate time step and outputs the encodings of the
new (symbol, state) pair. In more detail, say the encryptor provides encodings of each input
symbol xi, for i ∈ [|x|], in addition to an encoding for the first (fixed) state qst, where the
encodings of (1, x1) and qst share the same randomness so that they may be concatenated to
yield a complete ciphertext for (1, x1, qst). Now, the function key may read input (1, x1, qst),
lookup the transition table and produce an encryption of the next state q2 and the symbol to
be written x′2. The randomness used to encrypt q2 is derived using a PRF as described above,
and is the same as the randomness used by the encryptor to encode (2, x2). Hence, the two
ciphertext components encoding (2, x2) and q2 may be concatenated to yield a complete 1FE2

ciphertext which may be again decrypted using the function key.
Now consider how to support writing on tape. Say the symbol x′2 will be read at future fixed

time step t′. Then the function key encodes the tuple (t′, x′2) using randomness PRFK((t
′∥salt)).

The state for time step t′, say q′ is computed at time step t′ − 1, also using randomness
PRFK((t

′∥salt)). Thus, encodings of (t′, x′2) and q′ may be joined together to yield a complete
1FE2 ciphertext which may be decrypted to propagate the computation.

A detail brushed away by the above description is that the encryptor, given input x, cannot
compute randomness generated by a PRF which has input a value salt chosen by the key
generator. This is handled by making use of an additional scheme 1FE1, which re-encrypts
ciphertexts provided by the encryptor via a ReRand functionality, using the requisite randomness.
Note that we support inputs of unbounded length by leveraging the fact that CktFE schemes
1FE1, 1FE2 support encryption of unbounded number of inputs, even if each must be of bounded
length. Thus, the encryptor provides an unbounded number of 1FE1 ciphertexts which are
rerandomized and translated to ciphertexts under 1FE2 using the ReRand function key provided
by the key generator.

Decomposability. The above construction relies on the underlying CktFE scheme satisfying
the property of decomposability. We note that decomposability is a mild assumption and already
satisfied by all known CktFE constructions in the literature to the best of our knowledge (please
see Appendix F.1 for a discussion). We can also remove the requirement of decomposability at
the expense of making our compiler more complicated2. However, a cleaner approach is to build
decomposable FE generically from standard FE, by using decomposable randomized encodings,
which may be constructed from one way functions. Please see Appendix F for details.

Encoding the PRF key. The above informal description hides an important detail – for
the function key to produce ciphertext components using a PRF, it must have the key of the

2Intuitively, we use decomposability because the “symbol” and “state” components of the ciphertext are
generated during different times in decryption, say T1 and T2. However, since the underlying CktFE is compact,
generating longer outputs comes for free. Hence, we can have the CktFE generate the complete (symbol, state)
CT for the relevant symbol and all possible states at time T1. Given in the clear, this would be insecure but this
can be fixed by further nesting these CTs within a symmetric key encryption scheme and outputting them (in
randomly permuted order). Later, at time T2, when the state is computed, the decryption can output the SKE
key to unlock the appropriate CktFE CT.

5

PRF, chosen by the encryptor3, passed to it as input. Thus the ciphertext must additionally
encode the PRF key along with inputs (t, x, q). However, the ciphertext is constructed using
randomness derived from the same PRF- resulting in circularity. We resolve this difficulty
by using constrained PRFs [BW13, KPTZ13, BGI14], and having a ciphertext encode a PRF
key that only allows computation of randomness for time steps of the future; this does not
compromise its own security. For this constraint family, we provide a construction of cPRFs
from standard assumptions. We believe this construction and the method of its application may
be useful elsewhere4.

More formally, our construction makes use of constrained, delegatable PRF for the function
family ft : {0, 1}2·λ → {0, 1} defined as follows.

ft(x∥z) = 1 if x ≥ t

= 0 otherwise

We denote the constrained PRF key Kft by Kt for brevity. By the delegation property of
constrained PRFs, we have that if t′ ≥ t then Kt′ can be derived from Kt. The proof requires
the PRF to be punctured at a fixed point in each hybrid, we provide a construction of delegatable
punctured PRF in Appendix D.

Proof Overview. While the above description of single input TMFE is natural and intuitive,
the proof of indistinguishability based security is quite subtle and requires new techniques as
we discuss next. For ease of exposition, we describe the proof overview for the case where the
adversary makes a single key request corresponding to some TM M . We must argue that the
challenge ciphertext, which is a sequence of 1FE1 ciphertexts, together with ReRand and Next
keys corresponding to a TM M , do not distinguish the bit b.

As discussed above, the 1FE1 ciphertexts are decrypted using the ReRand key to produce
a sequence of 1FE2 ciphertexts, each corresponding to a time step in the TM execution (when
the encoded symbol is read), which are in turn decrypted by Next keys to compute new 1FE2

ciphertexts for future time steps. We may view the 1FE2 ciphertexts as forming a chain, with
each link of the chain corresponding to a single step of the TM computation, and each ciphertext
producing (via decryption) a new ciphertext for the next time step, finally yielding the output
when the TM halts (after T steps, say). Intuitively, since the output of the TM does not
distinguish the bit b by admissibility of the TMFE adversary, we may argue by security of 1FE2

that the ciphertext at the penultimate step T −1 also does not distinguish b, which implies that
the ciphertext at step T − 2 hides b and so on, ultimately yielding indistinguishability of the
entire chain, and hence of the 1FE1 challenge ciphertext.

Formalizing this intuitive argument is quite tricky. A natural approach would be to consider
a sequence of hybrids, one corresponding to each link in the chain, and switch the 1FE2

ciphertexts one by one starting from the end of the chain. While intuitive, this idea is misleading
– note that a naive implementation of this idea would lead to a chain which is “broken”: namely,
its first links correspond to b = 0, and last links to b = 1. Since the ciphertext at a given step
is decrypted to compute the ciphertext at the next step, a ciphertext corresponding to b = 0
cannot in general output a ciphertext for b = 1.

A standard approach to deal with this difficulty is to embed a “trapdoor” mode within the
functionality [ABSV15, AJ15, BKS16] which lets us “hardwire” the ciphertexts that must be
output by decryption directly in the key, allowing decryption to yield an inconsistent chain.

3Note that the PRF key must be encoded in the ciphertext rather than function key since it is required to be
hidden.

4For instance, a similar situation w.r.t circularity arises in the original garbled RAM construction of Lu and
Ostrovsky [LO13].

6

However, this approach also fails in our case, since the length of the chain is unbounded and
there isn’t sufficient space in the key to incorporate all its values.

Our Approach: “Sliding” Trapdoors. We deal with this difficulty by designing a novel “sliding-
window” trapdoor approach which lets us hardwire the decryption chain “piece by piece”. In
more detail, we start with the last two time steps (T, T − 1), program the key to produce the
output corresponding to b = 1 for time step T and b = 0 for T − 1, then transition to a world
where the output corresponds to b = 1 for both T and T − 1. At this point, the hardwiring of
the output for time step T is redundant, since the ciphertext output by the decryption process
at time step T − 1 automatically computes the output coresponding to b = 1 at time step T .
Thus, we may now slide the trapdoor to program to the next pair (T − 1, T − 2), switching the
decryption output at time step T − 2 to b = 1 and so on, until the entire chain corresponds to
b = 1.

Intuitively, we are “programming” the decryption only for outputs at both ends of the
“broken link”, so that preceding links are generated using b = 0 and subsequent links are
generated using b = 1. We leverage the fact that the chain links corresponding to future
time-steps are encoded implicitly in a given time step – hence if we manage to hide the chain
inconsistency at a certain position i, this implies that the remainder of the chain is constructed
using the bit encoded at step i. Formalizing this argument requires a great deal of care, as we
must keep track of the “target” time steps corresponding to the two ends of the broken link that
are being programmed, the time steps at which the symbol and state ciphertexts are generated
to be “consumed” at the target time-steps, the particular values that must be encoded in the
symbol, state fields in both cases as well as the key that is being handled at a given time in the
proof. For more details, please see Section 3.3.

Generalising to Multi-Input FE for Turing machines. For the k party setting, a natural idea is
to have each party encrypt its own input xi, and use a k input CktFE scheme kFE [BKS16, KS17],
to “aggregate” these into the “input” ciphertext CT(x) for one long input x = (x1∥x2∥ . . . ∥xk),
under a different CktFE scheme 1FE. Note that the length of x is unknown hence it may not
be encoded “all at once” but must be encoded bit by bit as in the previous scheme. Now,
by additionally providing the 1FE ciphertext encoding the start state of the Turing machine
CT(qst), and a function key to compute the transition table of the TM as in the previous scheme,
we may proceed with the computation exactly as before.

Formalizing this idea must contend with several hurdles. In the multi-input setting, the ith

encryptor may encode multiple inputs and functionality permits “mix and match” of ciphertexts
in the sense that any input encoded by party i may be combined with any input encoded by
parties j ∈ [k], j ̸= i. Therefore, if each of k parties encodes T ciphertexts, there are T k valid
input combinations that the TM may execute on. However, when the TM is executing on any
input combination, we must ensure that it cannot mix and match symbol, state pairs across
different input combinations. Moreover, an encryption for a symbol, state pair produced by
some machine Mi should not be decryptable by any machine Mj for j ̸= i. These issues are
handled by careful design of the aggregate functionality to ensure that an execution thread of
any input combination by any machine is separate from any other. The proof extends naturally
from the single input case. Please see Section 4 for details.

Distributional Indistinguishability. As discussed above, our constructions rely on the security
notion of distributional indistinguishability (DI) for functional encryption for circuits [GHRW14].
Intuitively, this notion says that if the outputs produced by a circuit on two input distributions

7

are merely indistinguishable (as against exactly equal), then the ciphertexts encoding those
inputs must also be indistinguishable. In Appendix E we give a construction of DI secure single
input FE from standard FE.

Indistinguishability Obfuscation. Constructing iO for TMs given miFE for TM is straightfor-
ward, and adapts the miFE to iO circuit compiler by [GGG+14] to the TM setting. As in the
circuit case, an miFE for TM that supports two ciphertext queries and single key query suffices
for this transformation. Please see Section 5 for details. Since our security proof for miFE for
TM is tight, this compiler yields iO for TM from sub-exponentially secure FE for circuits rather
than sub-exponentially secure iO for circuits.

Organization of the paper. The paper is organized as follows. In Section 2 we provide
the definitions and preliminaries used by our constructions. In Section 3, we provide our
construction for single input FE for Turing machines. In Section 4, we provide our construction
for multi-input FE for Turing machines for any fixed arity k and in Section 5 we describe the
construction of iO for Turing machines for bounded inputs. Our constructions use constrained
PRFs which are instantiated in Appendix D and decomposable FE which is constructed in
Appendix F.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We begin by defining the notation that we will use throughout the paper. We use
bold letters to denote vectors and the notation [a, b] to denote the set of integers {k ∈ N | a ≤
k ≤ b}. We use [n] to denote the set [1, n]. Concatenation is denoted by the symbol ∥.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote
a negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use
poly(n) to denote a polynomial function of n. We use the abbreviation PPT for probabilistic
polynomial-time. We say an event occurs with overwhelming probability if its probability is
1− negl(n). The function log x is the base 2 logarithm of x.

2.1 Definitions: FE for Circuits

In this section, we define functional encryption for circuits, in both the single and multi-input
setting.

2.1.1 Single Input Functional Encryption for Circuits

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set.
Let F =

{
Fλ

}
λ∈N denote an ensemble where each Fλ is a finite collection of circuits, and each

circuit f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.
A functional encryption scheme CktFE for F consists of four algorithms

CktFE = (CktFE.Setup,CktFE.Keygen, CktFE.Enc,CktFE.Dec) defined as follows.

• CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation of the
security parameter and outputs the master public and secret keys (PK,MSK). Sometimes,
the CktFE.Setup algorithm may also accept as input a parameter 1ℓ, denoting the length
of the input. In this case, the input lives in domain X ℓ.

8

• CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master secret key MSK
and a circuit f ∈ Fλ and outputs a corresponding secret key SKf .

• CktFE.Enc(PK,x) is a PPT algorithm that takes as input the master public key PK and
an input message x ∈ Xλ and outputs a ciphertext CT.

• CktFE.Dec(SKf ,CTx) is an (a deterministic) algorithm that takes as input the secret key
SKf and a ciphertext CTx and outputs f(x).

Definition 2.1 (Correctness). A functional encryption scheme CktFE is correct if for all λ ∈ N,
all f ∈ Fλ and all x ∈ Xλ,

Pr

[
(PK,MSK)← CktFE.Setup(1λ);

CktFE.Dec
(
CktFE.Keygen(MSK, f),CktFE.Enc(PK,x)

)
̸= f(x)

]
= negl(λ)

where the probability is taken over the coins of CktFE.Setup, CktFE.Keygen, and CktFE.Enc.

Definition 2.2 (Compactness [AJ15]). A functional encryption scheme for circuits is said to be
compact if for any input message x, the running time of the encryption algorithm is polynomial
in the security parameter and the size of x. In particular, it does not depend on the circuit
description size or the output length of any function f supported by the scheme.

A weaker version of compactness, known as succinct or semi-compact FE, allows the run
time of the encryption algorithm to depend on the output length of the functions. Equivalently,
a semi-compact FE scheme is simply a compact FE scheme when we restrict our attention to
functions with single-bit outputs.

Distributional Indistinguishability for Circuit FE. In this section we define the notion of
distributional indistinguishability for functional encryption for circuits. The notion was first
defined by [GHRW14, Sec 3.4] in the context of reusable garbled circuits, i.e. single key
functional encryption but may be generalized to the multi-key setting in a straightforward way.
Intuitively, this notion says that if the outputs produced by a circuit on two input distributions
are indistinguishable, then the ciphertexts encoding those inputs must also be indistinguishable.

Definition 2.3. A functional encryption scheme F for a circuit family G is secure in the
distributional indistinguishability game, if for all PPT adversaries A, the advantage of A in
the following experiment is negligible in the security parameter λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any circuits gi ∈ G.
In response, A is given the corresponding keys SKgi . This step may be repeated any
polynomial number of times by the attacker.

3. Challenge Declaration: A(1λ,PK) outputs two ensembles of challenge distributions(
D0(λ), D1(λ)

)5 to the challenger, subject to the restriction that for any x0 ← D0,x1 ←
D1, it holds that gi(x0)

c
≈ gi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a random
bit b, samples xb ← Db and returns the ciphertext CTxb

.
5We omit the parameter λ in what follows for brevity of notation.

9

5. Key Queries: The adversary may continue to request keys for additional functions
gi, subject to the same restriction that for any x0 ← D0,x1 ← D1, it holds that
gi(x0)

c
≈ gi(x1) for all i.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and
1/2. In the selective game, the adversary is required to declare the challenge distributions in
the very first step, without seeing the public key.

Comparison with Standard Indistinguishability. We note that the standard insitinguisha-
bility game is implied by the above by restricting the adversary to choose distributions D0, D1

above to simply be two messages x0,x1 with probability 1 and requesting keys that satisfy
gi(x0) = gi(x1) for all i, which is a special case of gi(x0)

c
≈ gi(x1).

Decomposable functional encryption for circuits In this section, we recall the notion of
decomposable functional encryption (DFE) defined by [AS17a]. Decomposable functional
encryption is analogous to the notion of decomposable randomized encodings [AIK14]. Intu-
itively, decomposability requires that the public key PK and the ciphertext CTx of a functional
encryption scheme be decomposable into components PKi and CTi for i ∈ [|x|], where CTi

depends on a single deterministic bit xi and the public key component PKi. In addition, the
ciphertext may contain components that are independent of the message and depend only on
the randomness.

Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decomposable if
there exists a deterministic function E : P × {0, 1} ×R1 ×R2 → C such that:

1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where PKi ∈ P for
i ∈ [k]. The component PKindpt ∈ Pj for some j ∈ N.

2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here r ∈ R1 is common randomness used by all components of the encryption. Apart
from the common randomness r, each CTi may additionally make use of independent
randomness r̂i ∈ R2.

We note that if a scheme is decomposable “bit by bit”, i.e. into k components for inputs of
size k, it is also decomposable into components corresponding to any partition of the interval
[k]. Thus, we may decompose the public key and ciphertext into any i ≤ k components of
length ki each, such that

∑
ki = k. We will sometimes use Ē(y) to denote the tuple of

function values obtained by applying E to each component of a vector, i.e. Ē(PK,y, r) ≜(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where |y| = k. We assume that given the security

parameter, the spaces P, R1, R2, C are fixed, and the length of the message |x| can be any
polynomial.

2.1.2 Multi-Input Functional Encryption for Circuits

We define the notion of private-key t-input functional encryption for circuits here. Our definition
follows that of [KS17].

10

Let ∀i ∈ [t],Xi = {(Xi)}λ∈N and Y = {Yλ}λ∈N be ensembles of finite sets, and let F =
{Fλ}λ∈N be an ensemble of finite t-ary function families. For each λ ∈ N, each function f ∈ Fλ

takes as input t strings, x1 ∈ (X1)λ, . . . ,xt ∈ (Xt)λ, and outputs a value f(x1, . . . ,xt) ∈ Yλ.
A private-key t-input functional encryption scheme t-CktFE for F consists of four algorithms

t-CktFE = (t-CktFE.Setup, t-CktFE.Keygen, t-CktFE.Enc, t-CktFE.Dec) defined as follows.

• t-CktFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation of the
security parameter and outputs the master secret key MSK.

• t-CktFE.Keygen(MSK, f) is a PPT algorithm that takes as input the master secret key
MSK and a circuit f ∈ Fλ and outputs a corresponding secret key SKf .

• t-CktFE.Enc(MSK,m, ind) is a PPT algorithm that takes as input the master secret key
MSK, an input message m = xi ∈ (Xi)λ if ind = i, i ∈ [t], and outputs a ciphertext CTind.

• t-CktFE.Dec(SKf , (CT1, . . . ,CTt)) is an (a deterministic) algorithm that takes as input the
secret key SKf and t ciphertexts CT1, . . . ,CTt and outputs a string y ∈ Yλ ∪ ⊥.

Definition 2.4 (Correctness). A private-key t-input functional encryption scheme t-CktFE is
correct if for all λ ∈ N, f ∈ Fλ and all (x1, . . . ,xt) ∈ (X1)λ × . . .× (Xt)λ,

Pr

[
t-CktFE.Dec

(
t-CktFE.Keygen(MSK, f),

(
t-CktFE.Enc(MSK,x1, 1), . . . ,

t-CktFE.Enc(MSK,xt, t)
))
̸= f(x1, . . . ,xt)

]
= negl(λ)

Here, MSK← t-CktFE.Setup(1λ) and probability is taken over the random coins of t-CktFE.Setup,
t-CktFE.Enc and t-CktFE.Keygen.

Distributional Indistinguishability. We define the notion of distributional indistinguishability
for a t-input functional encryption scheme for circuits. To begin, we describe a valid t-input
adversary.

Definition 2.5 (Valid t-Input Adversary). A PPT algorithm A is a valid t-input adversary if for
all private-key t-input functional encryption schemes over message space (X1)λ×. . .×(Xt)λ, and
a circuit space F , for any (f0, f1) queried by the adversary, and any t pairs of input distribution
ensembles (D01(λ), D11(λ)), . . . , (D0t(λ), D1t(λ))

6 output by the adversary such that Dbj is a
distribution over Xj for b ∈ {0, 1}, j ∈ [t], it holds that

f0(x01, . . . ,x0t)
c
≈ f1(x11, . . . ,x1t),

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [t].

We define the following game between a challenger and an adversary:

1. Key Queries. A may adaptively submit key requests for pairs of functions (f0, f1) ∈ F .
In response, A is given the corresponding keys SKfb for some random bit b chosen by the
challenger. This step may be repeated any polynomial number of times by the attacker.

2. Ciphertext Queries. A(1λ) submits ciphertext requests for pairs of challenge distribution
ensembles (D01, D11), . . . , (D0t, D1t) to the challenger. The challenger samples xj ← Dbj

for j ∈ [t] and returns t-CktFE.Enc(MSK,xj , j), ∀j ∈ [t]. This step may be repeated any
polynomial number of times by the attacker.

6We omit the argument λ where it is implicit for notational brevity.

11

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any order. The
advantage of A is the absolute value of the difference between its success probability and 1/2.
In the selective game, the adversary is required to declare the challenge ciphertext distributions
in the very first step, without seeing the public key.

Definition 2.6. A t-input functional encryption scheme t-CktFE for a circuit family F is secure
in the distributional indistinguishability game, if for all valid PPT adversaries A, the advantage
of A in the above game is negligible in the security parameter λ.

We note that the standard indistinguishability game is the special case where the adversary
submits challenge messages rather than distributions and all queried functions must output
exactly the same rather than indistinguishable values.

2.2 Definitions: FE for Turing Machines

In this section, we will define functional encryption for Turing Machines (TM). The definition of
Turing machines and oblivious Turing machines is recalled in Appendix A. Functional encryption
for TMs is defined analogously to functional encryption for circuits, except that secret keys
correspond to TMs rather than circuits. Thus, secret keys can be used to decrypt ciphertexts of
messages of arbitrary length and the decryption time depends only the input-specific run time
of the TM on the message, not the worst case run time. We denote the runtime of a TM M
(i.e. number of steps the head takes) on an input w by runtime(M,w).

2.2.1 Single Input Functional Encryption for Turing Machines

Let M = {Mλ}λ∈N be a family of Turing machines with alphabet Σ = {Σλ}λ∈N and the
running time upper-bounded by a polynomial in λ. A functional encryption scheme TMFE for
a Turing machine family M consists of four algorithms TMFE = (TMFE.Setup,TMFE.KeyGen,
TMFE.Enc,TMFE.Dec) defined as follows.

• TMFE.Setup(1λ) is a PPT algorithm that takes as input the unary representation of the
security parameter and outputs the master public and secret keys (PK,MSK).

• TMFE.KeyGen(MSK,M) is a PPT algorithm that takes as input the master secret key
MSK and a TM M and outputs a corresponding secret key SKM .

• TMFE.Enc(PK,x) is a PPT algorithm that takes as input the master public key PK, and
an input message x ∈ Σ∗

λ of arbitrary length, outputs a ciphertext CTx.

• TMFE.Dec(SKM ,CTx) is an (a deterministic) algorithm that takes as input the secret key
SKM and a ciphertext CTx and outputs a bit b.

Definition 2.7 (Correctness). A functional encryption scheme TMFE is correct if for all M ∈M
and all x ∈ Σ∗,

Pr

[
(PK,MSK)← TMFE.Setup(1λ);

TMFE.Dec
(
TMFE.KeyGen(MSK,M),TMFE.Enc(PK,x)

)
̸= M (x)

]
= negl(λ)

where the probability is taken over the coins of TMFE.Setup, TMFE.KeyGen, and TMFE.Enc.

12

Efficiency [AS16]. The efficiency property of a public-key FE scheme for Turing machines says
that the algorithm TMFE.Setup on input 1λ should run in time polynomial in λ, TMFE.KeyGen
on input the Turing machine M and the master key MSK should run in time polynomial in
(λ, |M |), TMFE.Enc on input a message x and the public key should run in time polynomial in
(λ, |x|). Finally, TMFE.Dec on input a functional key of M and an encryption of x should run
in time polynomial in (λ, |M |, |x|, runtime(M,x)).

Distributional Indistinguishability for TMFE. In this section we define the notion of distribu-
tional indistinguishability based security for functional encryption for Turing machines. This
notion was first considered by [GHRW14] in the context of single key FE for circuits.

Definition 2.8. A functional encryption scheme F for a TM family M is secure in the
distributional indistinguishability game, if for all PPT adversaries A, the advantage of A in
the following experiment is negligible in the security parameter λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any TMs Mi ∈ M.
In response, A is given the corresponding keys SKMi . This step may be repeated any
polynomial number of times by the attacker.

3. Challenge Declaration: A(1λ,PK) outputs two challenge distribution ensembles (D0(λ), D1(λ))
7

to the challenger, subject to the restriction that for any x0 ← D0,x1 ← D1, it holds that
Mi(x0)

c
≈ Mi(x1) for all i.

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a random
bit b, samples xb ← Db and returns the ciphertext CTxb

.

5. Key Queries: The adversary may continue to request keys for additional functions, subject
to the same restriction that for any x0 ← D0,x1 ← D1, it holds that Mi(x0)

c
≈ Mi(x1)

for all i.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and
1/2. In the selective game, the adversary is required to declare the challenge distributions in
the very first step, without seeing the public key.

Comparison with Standard Indistinguishability. We note that the standard indistinguisha-
bility game is implied by the above by restricting the adversary to choose distributions D0, D1

above to simply be two messages x0,x1 with probability 1 and requesting keys that satisfy
Mi(x0) = Mi(x1) for all i.

2.2.2 Multi-Input Functional Encryption for Turing Machines

In this section, we define multi input functional encryption (miFE) for Turing machines. Our
definition generalizes the CktFE definition of [BKS16]. Our definition supports a fixed number
of encryptors, where each of k (say) encryptors is associated with an index ind ∈ [k]. An
encryptor may choose an input string of unbounded length, denoted by ℓind. We note that our
definition is weaker than that of [BGJS15], who allow for unbounded number of encryptors and
each encryptor to have a unique encryption key, a subset of which may be requested by the

7We omit the argument λ where it is implicit for notational brevity.

13

adversary. By contrast, our definition, following [BKS16], requires all encryptors to use the
same MSK and evidently cannot allow the attacker to request this.

LetM = {Mλ}λ∈N be a family of Turing machines with alphabet Σ = {Σλ}λ∈N and the run-
ning time upper-bounded by a polynomial in λ. A multi-input functional encryption scheme for
M consists of a tuple of four algorithms kTMFE = (kTMFE.Setup, kTMFE.KeyGen, kTMFE.Enc, kTMFE.Dec)
defined as follows.

• kTMFE.Setup(1λ, 1k) is a PPT algorithm that takes as input the unary representation of
the security parameter and the number of users k and outputs the master secret key MSK.

• kTMFE.KeyGen(MSK,M) is a PPT algorithm that takes as input master secret key MSK
and a TM M and outputs a corresponding secret key SKM .

• kTMFE.Enc(MSK,xind, ind) is a PPT algorithm that takes as input the master secret key
MSK, an index ind ∈ [k] denoting the party number, and an input message xind of arbitrary
length and outputs a ciphertext CTwind

.

• kTMFE.Dec(SKM , {CTxind
}ind∈[k]) is an (a deterministic) algorithm that takes as input the

functional secret key SKM and k ciphertexts CTx1 , . . . ,CTxk
and outputs a bit b.

Definition 2.9 (Correctness). A functional encryption scheme kTMFE is correct if for all M ∈M
and all xi ∈ Σ∗ for i ∈ [k],

Pr

[
kTMFE.Dec

(
kTMFE.KeyGen(MSK,M), kTMFE.Enc(MSK,x1, 1),

. . . , kTMFE.Enc(MSK,xk , k)
)
̸= M(x1∥ . . . ∥xk)

]
= negl(λ)

where MSK ← kTMFE.Setup(1λ, 1k) and the probability is taken over the coins of
kTMFE.Setup, kTMFE.KeyGen, and kTMFE.Enc.

Efficiency is as defined in Section 2.2.

Distributional Indistinguishability for kTMFE. In this section we define the notion of distri-
butional indistinguishability based security for multi-input functional encryption for Turing
machines. To begin, we define the notion of a valid k-input adversary analogously to the case
of circuits [BKS16].

Definition 2.10 (Valid k-Input Adversary). A PPT algorithm A is a valid k-input adversary,
if for a Turing machine space M with alphabet Σ, for all private key k-input functional
encryption schemes kTMFE over message space X ∗

1 × . . .×X ∗
k such that X ∗

j ⊂ Σ∗ for all j ∈ [k],
for any M ∈ M queried by the adversary, and any k pairs of input distribution ensembles
(D01(λ), D11(λ)), (D02(λ), D12(λ)), . . . , (D0k(λ), D1k(λ))

8 output by the adversary such that Dbj

is a distribution over X ∗
j for b ∈ {0, 1}, j ∈ [k], it holds that

M(x01∥ . . . ∥x0k)
c
≈ M(x11∥ . . . ∥x1k)

where xbj ← Dbj for b ∈ {0, 1}, j ∈ [k].

We define the following game between a challenger and an adversary:
8We omit the argument λ where it is implicit for notational brevity.

14

1. Key Queries. A may adaptively submit key requests for TMs Mi ∈M. In response, A is
given the corresponding keys SKMi for some random bit b chosen by the challenger. This
step may be repeated any polynomial number of times by the attacker.

2. Ciphertext Queries. A(1λ) submits ciphertext requests for k pairs of challenge distribution
ensembles (D01, D11), (D02, D12), . . . , (D0k, D1k) to the challenger. The challenger samples
xbj ← Dbj for j ∈ [k] and returns kTMFE.Enc(MSK,xbj , j) for all j ∈ [k]. This step may
be repeated any polynomial number of times by the attacker.

3. Guess. A outputs a bit b′, and succeeds if b′ = b.

In the above definition, ciphertext and key queries may be interspersed in any order. The
advantage of A is the absolute value of the difference between its success probability and 1/2.
In the selective game, the adversary is required to declare the challenge ciphertext distributions
in the very first step, without seeing the public key.

Definition 2.11. A multi input functional encryption scheme kTMFE for a TM family M is
secure in the distributional indistinguishability game, if for all valid PPT adversaries A, the
advantage of A in the above game is negligible in the security parameter λ.

We note that the standard indistinguishability game is the special case where the adversary
submits challenge messages rather than distributions and all queried machines must output
exactly the same rather than indistinguishable values.

2.2.3 Indistinguishability Obfuscation for Turing Machines

As in prior work, we construct iO for Turing machines (TMs) in the setting where the input
length is fixed a-priori. A uniform PPT machine iO is an indistinguishability obfuscator for a
class of Turing machines {Mλ}λ∈N with input length L, if the following conditions are satisfied:

1. Correctness. For all security parameters λ ∈ N, for any M ∈ Mλ and every input
x ∈ {0, 1}≤L, we have that:

Pr
[
M ′ ← iO(1λ,M,L) : M ′(x) = M(x)

]
= 1

where the probability is taken over the coin-tosses of the obfuscator iO.

2. Indistinguishability of Equivalent TMs. For every ensemble of pairs of Turing ma-
chines {M0,λ,M1,λ}λ∈N, such that M0,λ(x) = M1,λ(x) for every x ∈ {0, 1}≤L and
runtime(M0,λ,x) = runtime(M1,λ,x), we have that the following ensembles of pairs of
distributions are indistinguishable to any PPT adversary Adv:{

M0,λ,M1,λ, iO(1
λ,M0,λ)

}
c
≈

{
M0,λ,M1,λ, iO(1

λ,M1,λ)
}

3. Succinctness. For all security parameters λ ∈ N, for any M ∈ Mλ , we have that the
running time of iO(1λ,M,L) is poly(λ, |M |, L) and the evaluation time of iO(M) on input
x where x ∈ {0, 1}≤L, is poly(|M |, L, t) where t = runtime(M,x).

2.3 Constrained Pseudorandom Functions

Constrained pseudorandom functions (introduced concurrently by Boneh and Waters (CCS
2013), Boyle, Goldwasser, and Ivan (PKC 2014), and Kiayias, Papadopoulos, Triandopoulos,

15

and Zacharias (CCS 2013)), are pseudorandom functions (PRFs) that allow the owner of the
secret key K to compute a constrained key Kf , such that anyone who possesses Kf can compute
the output of the PRF on any input x such that f(x) = 1 for some predicate f . The security
requirement of constrained PRFs state that the PRF output must still look indistinguishable
from random for any x such that f(x) = 0. We will also require the property of delegatability,
formalized below.

Definition 2.12. [BW13] Let F : {0, 1}seed(λ) × {0, 1}in(λ) → {0, 1}out(λ) be an efficient function,
where seed, in and out are all polynomials in the security parameter λ. We say that F is a
delegatable constrained pseudorandom function with respect to a set system S ⊆ 2{0,1}

in(λ) if
there exist algorithms (Setup,Constrain,Eval,KeyDel) that satisfy the following:

• Setup(1λ, 1in(λ)) outputs a pair of keys pk, sk.

• Constrain(sk, S) outputs a constrained key KS which enables evaluation of F (sk,x) on all
x ∈ S and no other x.

• KeyDel(KS , S
′) outputs a constrained key KS∩S′ which enables the evaluation of F (sk,x)

for all x ∈ S ∩ S′ and no other x. We note that in systems where KeyDel is supported,
the Constrain algorithm above can be expressed as a special case of KeyDel by letting sk
correspond to the set of all inputs, i.e. sk = K{0,1}in(λ) .

• Eval(KS ,x) outputs F (sk,x) if x ∈ S, ⊥ otherwise.

Note that a set system is equivalent to a function family by defining set S as the set of inputs
where the function evaluates to 1. For our purposes, it will be more convenient to represent
sets as functions.

Security. Constrained security is defined using the following two experiments denoted EXP(0)
and EXP(1) with an adversary A. For b ∈ {0, 1} experiment EXP(b) proceeds as follows:

First, a random key k ∈ {0, 1}seed(λ) is selected and two helper sets C, V ⊆ {0, 1}in are
initialized to ∅. The set V will keep track of all the points at which the adversary can evaluate.
The set C will keep track of the points where the adversary has been challenged. The sets C and
V will ensure that the adversary cannot trivially decide whether challenge values are random
or pseudorandom. In particular, the experiments maintain the invariant that C ∩ V = ∅.

The adversary A is presented with three oracles as follows:

1. F.Eval: Given x ∈ {0, 1}in, if x /∈ C, the oracle returns F (sk,x), else it returns ⊥. The
point x is added to set V .

2. F.Constrain: Given a set S ∈ S from A, if S ∩C = ∅ the oracle returns F.Constrain(sk, S),
otherwise returns ⊥. The set V is updated to contain S.

3. Challenge: Given x from A, where x /∈ V , if b = 0, the adversary is given F (sk,x), else a
random (consistent) element y. The set C is updated to contain x.

When the adversary is done interrogating the oracles, it outputs a bit b′. Let Wb be the event
that b′ = 1 in EXP(b). The adversary’s advantage is defined as |Pr[W0]−Pr[W1]|. We say that
the PRF F is a secure constrained PRF with respect to a set system S if all PPT adversaries
A have negligible advantage in the above game.

16

3 Construction: Single Input FE for Turing Machines

In this section, we construct a single input functional encryption scheme for Turing machines,
denoted by TMFE from the following ingredients:

1. Two compact functional encryption schemes for circuits, 1FE1 and 1FE2. We will assume
that the scheme 1FE2 is decomposable as defined in Section 2.

2. A symmetric encryption scheme SKE = (SKE.KeyGen, SKE.Enc, SKE.Dec).

3. A delegatable constrained pseudorandom function (cPRF), denoted by F which supports
T delegations for the function family ft : {0, 1}2·λ → {0, 1} defined as follows. Let x, t
denote integers whose binary representations are x, t of λ bits. Then,

ft(x∥z) = 1, if x ≥ t and 0 otherwise

Intuitively, the function is parametrized by a value t and evaluates to 1 if the first half of its
input, x ≥ t. We will denote the constrained PRF key Kft corresponding to function ft by Kt

for ease of notation. By the delegation property of constrained PRFs (Section 2.3), we have
that if t′ ≥ t then Kt′ can be derived from Kt. In our construction the parameter t will represent
the time step in the computation, which means that a PRF key of the current time step can be
used to derive PRF keys for future time steps. We will denote a PRF for this functionality by
F. The security proof makes use a punctured version of the above cPRF, please see Sections 3.3
and D for details.

3.1 Construction

Below we provide our construction for single input FE for Turing machines.
Notation. Note that since 1FE2 is decomposable, there exists an encoding function E which

encodes each bit of the input and since it is compact, the output length of E is independent of
the circuit class supported by 1FE2. Thus, by choosing the encoding function first, the CktFE
scheme may support a circuit class that outputs its own ciphertext components. We denote by
Ē the encoding function E applied bitwise to a vector, i.e. Ē(w) = E(w1) . . . E(wn).

TMFE.Setup(1λ): Upon input the security parameter 1λ, do the following:

1. Let (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1
λ), where 1FE2 is a decomposable func-

tional encryption scheme for the circuit family

Next :
((
{SYM} × {0, 1}4λ × Σ× Trap

)
×
(
{ST}×Q

))
→

(
C1FE2

)2
∪{ACC,REJ,⊥}

Here, Σ and Q are the alphabet and state space respectively of the Turing machine
family. The tokens SYM and ST are flags denoting a symbol and a state respectively.
The set {0, 1}4λ encodes in order, a random value key-id associated with a TM M ,
a cPRF key, the current time step in the computation and the length of the input
string, each of λ bits. Here, Trap is a data structure of fixed polynomial length which
will be used in the proof. Since we do not need it in the construction, we do not
discuss it here, please see Figure 6 for its definition. C1FE2 denotes the ciphertext
space of 1FE2, and ACC and REJ are bits indicating accepting and a rejecting states
of a TM respectively.

17

2. Let (1FE1.PK, 1FE1.MSK) ← 1FE1.Setup(1
λ), where 1FE1 is a compact, public-key

CktFE scheme for the circuit family
ReRand :

(
{0, 1}3λ × Σ× Trap

)
→ C1FE2 ×

(
C1FE2 ∪ {⊥}

)
Again, {0, 1}3λ encodes in order, a root cPRF key, a time step and the length of the
input string respectively, while Σ, Trap and C1FE2 are as described above.

3. Output PK = 1FE1.PK and MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).

TMFE.Enc(PK,w): Upon input the public key PK, and message w of arbitrary length ℓ = |w|,
do the following:

1. Sample the root key K0 for function ft where t = 0 for the cPRF F described above.
2. For i ∈ [ℓ], let CTi = 1FE1.Enc(PK, (K0, i, ℓ, wi,Trap)), where Trap is a data structure

which is only relevant in the proof. Here, all fields of Trap are set to ⊥ except a flag
Trap.mode-real = 1 which indicates that we are in the real world. Please see Figure
6 for the definition of Trap.

3. Output CTw = {CTi}i∈[ℓ].

TMFE.KeyGen(MSK,M): Upon input the master secret key MSK and the description of a
Turing machine M , do the following. We will assume, w.l.o.g. that the TM is oblivious
(see Appendix A for a justification) and qst ∈ Q is the start state of M .

1. Sample a random value salt← {0, 1}λ.
2. Interpret MSK = (1FE1.MSK, (1FE2.PK, 1FE2.MSK)).
3. Let SKReRand = 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥) where Figure 2

defines the circuit ReRand1FE2.PK,salt,qst,⊥,⊥.
4. Let SKNext = 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,⊥,⊥) where Figure 4 defines

the circuit Next1FE2.PK,salt,M ,⊥,⊥.
5. Output SKM = (SKReRand, SKNext).

TMFE.Dec(SKM ,CTw): Upon input secret key SKM and ciphertext CTw, do the following:

1. Interpret SKM = (SKReRand, SKNext) and CTw =
(
CT1, . . . ,CT|w|

)
.

2. For i ∈ [|w|], do the following:
(a) If i = 1, invoke 1FE1.Dec(SKReRand,CT1) to obtain (CTsym,1,CTst,1).
(b) Else, invoke 1FE1.Dec(SKReRand,CTi) to obtain (CTsym,i,⊥).

3. Denote
(
(CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,|w|

)
as the new sequence of ciphertexts

obtained under the Next scheme.
4. Let t = 1. While the Turing machine does not halt, do:

(a) Invoke 1FE2.Dec
(
SKNext, (CTsym,t ,CTst,t)

)
to obtain:

• ACC or REJ. In this case, output “Accept” or “Reject” respectively, and exit
the loop.

•
(
CTsym,t′ ,CTst,t+1

)
.

Note that t′ is the next time step that the work tape cell accessed at time step
t will be accessed again.

(b) Let t = t+ 1 and go to start of loop.

18

Function ReRand1FE2.PK,salt,qst,C1,C2
(
(K0, i, ℓ, wi,Trap)

)
(a) Initialization and Choosing Real or Trapdoor mode.

Initialize an input vector inp = (wi, qst). If Trap.mode-real = 1, set out = (c1, c2), where c1 = c2 =
⊥. If i ̸= 1, set inp = (wi,⊥). Else invoke Trap-ModeReRand

(
Trap, inp, salt, ℓ, C1, C2, i

)
as described

in Figure 3 to obtain
(
inp=(u1, u2), out=(c1, c2)

)
.

(b) Computing Encrypted Symbols using randomness derived from cPRF. If out.c1 = ⊥, do the
following.

i. Noting that i > 0, derive delegated cPRF key Ki from K0 as Ki = F.KeyDel(K0, fi). Compute
randomness for encryption as ri = F.Eval(Ki, (i∥salt)).

ii. Derive delegated cPRF key Ki+1 = F.KeyDel(Ki, fi+1). Set key-id = salt.
iii. Compute the 1FE2 ciphertext component encoding wi = inp.u1 for time step i as

CTsym,i = Ē
(
1FE2.PK1, (SYM, key-id,Ki+1, i, ℓ, wi,Trap); ri

)
iv. Set out.c1 = CTsym,i.

(c) Computing Encrypted State for First Time Step. If
(
(out.c2 = ⊥) ∧ (i = 1)

)
, do the following.

i. Compute 1FE2 ciphertext component to encode the starting state qst = inp.u2 as

CTst,1 = Ē
(
1FE2.PK2, (ST, qst); r1

)
ii. Set out.c2 = CTst,1.

(d) Output. If i = 1, output out = (CTsym,1,CTst,1), else output out = (CTsym,i,⊥).

Figure 2: This circuit re-randomizes the ciphertexts provided during encryption to use
randomness derived from a cPRF. The seed for the cPRF is specified in the ciphertext and
the input is specified by the key. This ensures that each ciphertext, key pair form a unique
“thread” of execution.

3.2 Correctness and Efficiency of single input TMFE

We now argue that the above scheme is correct. The TMFE.Dec algorithm takes as input a
secret key SKM = (SKReRand, SKNext) and a ciphertext CTw =

(
CT1, . . . ,CT|w|

)
under the 1FE1

scheme supporting the functionality ReRand := ReRand1FE2.PK,salt,qst,C2,C2 . Firstly, note that
given a secret key SKReRand along with a ciphertext CTw, we have as follows.

1. Since CT1 encodes Trap with Trap.mode-real = 1, hence by the correctness of the 1FE1

scheme, we get 1FE1.Dec(SKReRand,CT1) = (CTsym,1,CTst,1) as output.

2. For i ∈ [2, |w|], since CTi encodes Trap with Trap.mode-real = 1, hence by the correctness
of the 1FE1 scheme, we get 1FE1.Dec(SKReRand,CTi) = (CTsym,i ,⊥) as the correct output.

The new sequence of 1FE2 ciphertexts output by ReRand are now sequenced as
(
(CTsym,1,CTst,1),

CTsym,2, . . . ,CTsym,|w|
)
. The 1FE2 scheme supports the functionality Next := Next1FE2.PK,salt,M ,C1,C2 .

Throughout the 1FE2 decryption, we maintain the invariant that at any time step t, apart
from a secret key SKNext, the input to the 1FE2.Dec algorithm is an entire 1FE2 ciphertext
decomposed into two components corresponding to a symbol and a state ciphertext both of
which are computed with the same randomness, which is computed as F.Eval(K0, (t∥salt))9.

9We do not explicitly construct ciphertext components corresponding to blank tape cells in the Next
functionality for ease of exposition; we assume w.l.o.g that any non-input cell that is accessed by the OTM
has been written to by the Next functionality in a previous step, thus generating the requisite symbol ciphertext.

19

Subroutine Trap-ModeReRand
(
Trap, inp, salt, ℓ, C1, C2, i

)
Interpret inp = (u1, u2) = (wi, qst) and initialize out = (c1, c2), where c1 = c2 = ⊥.

If Trap.key-id = salt, do the following.

(a) If Trap.mode-trap3 = 1, do the following:

i. If
(
(Trap.Sym TS = i) ∧ (i ≤ ℓ)

)
, compute the 1FE2 ciphertext CTsym,i =

SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,i.

ii. If
(
(Trap.ST TS = i) ∧ (i = 1)

)
, compute the 1FE2 ciphertext CTst,i =

SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,1.

(b) If Trap.mode-trap1 = 1, do the following:

i. If
(
(Trap.Sym TS1 = i)∧(i ≤ ℓ)

)
, set inp.u1 = Trap.Sym val1 with the symbol to be encrypted

and output at time step i.

ii. If
(
(Trap.ST TS1 = i)∧(i = 1)

)
, set inp.u2 = Trap.ST val1 with the start state to be encrypted

and output at time step 1.

(c) If Trap.mode-trap2 = 1, do the following:

i. If
(
(Trap.Sym TS2 = i)∧(i ≤ ℓ)

)
, set inp.u1 = Trap.Sym val2 with the symbol to be encrypted

and output at time step i.

ii. If
(
(Trap.ST TS2 = i)∧(i = 1)

)
, set inp.u2 = Trap.ST val2 with the start state to be encrypted

and output at time step 1.

If Trap.key-id ̸= salt, do the following.

(a) If salt > Trap.key-id set b = 0; else set b = 1a.

(b) If i ̸= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

Output. Return (inp, out).
aWe assume a lexicographic ordering on the salt values and a generalized comparison operator.

Figure 3: Subroutine handling the trapdoor modes in ReRand. This is “active” only in the
proof.

We show that given a secret key SKNext and the sequence of ciphertexts
(
(CTsym,1,CTst,1),

CTsym,2, . . . ,CTsym,|w|
)

generated from the outputs of the 1FE1.Dec algorithm, 1FE2.Dec
correctly computes the decomposed ciphertext components of a symbol and a state that occur
along the computation path and finally outputs the value of machine M on the sequenced
input. Define τ = runtime(M,w). Formally, by the correctness of 1FE2 scheme, at any time
step t ∈ [τ − 2], 1FE2.Dec(SKNext, (CTsym,t ,CTst,t)) correctly outputs either (CTsym,t′ ,CTst,t+1)
with t < t′ ≤ τ − 1. Further, for any time step t ∈ [τ − 2], we have:

1. Let t ∈ [τ − 2] \ [ℓ]. If the current work tape cell was accessed10, at some time step
t̃ < t, then CTsym,t encoding (SYM, key-id,Kt+1, t, ℓ, σt,Trap) was constructed at time step
t̃. Note that σt may be the blank symbol β. When t ∈ [ℓ], CTsym,t is constructed at time
step t via the ReRand circuit.

10We assume that every time a cell is accessed, it is written to, by writing the same symbol again if no change
is made.

20

Function Next1FE2.PK,salt,M ,C1,C2
(
(z1, z2)

)
(a) Reading Current (Symbol, State) Pair and Looking up Transition Table.

i. Interpret z1 = (type, key-id,Kt+1, t, ℓ, s,Trap), z2 = (type, s). If ((z1.type ̸= SYM)∨(z2.type ̸=
ST) ∨ (z1.key-id ̸= salt)), output ⊥ and abort.

ii. Interpret (z1.s, z2.s) = (σt, qt) as the symbol, state pair for the current time step t = z1.t,
input Kt+1 = z1.Kt+1 as the constrained PRF key for future time steps. Denote key-id =
z1.key-id, ℓ = z1.ℓ and Trap = z1.Trap. Using the transition table of the machine M , look up
the next state qt+1 as well as the symbol σt′ to be written on the work-tape, where t′ is the
time step the current work tape cell will next be read by M . If qt+1 is an accept or reject
state, then output ACC or REJ and exit.

iii. Initialize inp = (σt′ , qt+1).

(b) Choosing Real or Trapdoor mode. If Trap.mode-real = 1, initialize an output vector out = (c1, c2),
where c1 = c2 = ⊥. Else invoke Trap-ModeNext

(
Trap, inp, salt, ℓ, C1, C2, t, t′

)
as described in Figure

5 to obtain
(
inp=(u1, u2), out=(c1, c2)

)
.

(c) Computing Next Encrypted Symbol. If out.c1 = ⊥, do the following.

i. Noting that t′ > t, derive the randomness at time step t′ using the delegated key Kt+1 as
rt′ = F.Eval(Kt+1, (t

′∥salt)). Compute the delegated PRF key Kt′+1 = F.KeyDel(Kt+1, ft′+1).
ii. Compute the 1FE2 ciphertext component encoding the symbol σt′ = inp.u1 for time step t′

as
CTsym,t′ = Ē

(
1FE2.PK1, (SYM, key-id,Kt′+1, t

′, ℓ, σt′ ,Trap); rt′)

iii. Set out.c1 = CTsym,t′ .

(d) Computing Next Encrypted State. If out.c2 = ⊥, do the following.

i. Derive the randomness at time step t + 1 as rt+1 = F.Eval(Kt+1, (t + 1∥salt)) and compute
the 1FE2 ciphertext component encoding the state qt+1 = inp.u2 for time step t+ 1 as

CTst,t+1 = Ē
(
1FE2.PK2, (ST, qt+1); rt+1)

ii. Set out.c2 = CTst,t+1.

(e) Output : out =
(
CTsym,t′ ,CTst,t+1

)
Figure 4: Function to mimic TM computation. It reads the current symbol, state pair and
outputs an encryption of the new state and symbol to be written under the appropriate
randomness generated using a cPRF.

2. The ciphertext component CTst,t encoding (ST, qt) at time step t was constructed at time
step t− 1 for t > 1 and at time step 1, when t = 1.

3. The randomness rt = F.Eval(Kt̃+1, (t∥salt)) = F.Eval(Kt, (t∥salt)) binds the components
CTsym,t and CTst,t .

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE2 which
may be fed again with SKNext to 1FE2.Dec in order to proceed with the computation.
Thus, the execution of 1FE2.Dec at the (τ − 2)th time step provides the complete pair
(CTsym,τ−1,CTst,τ−1). By the correctness of 1FE2 scheme again, at time step t = τ − 1, invoking
1FE2.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs either “Accept” or “Reject” by simulating the
execution of M for the final time step τ inside the function Next, thus correctly outputting
M(w).

21

Subroutine Trap-ModeNext

(
Trap, inp, salt, ℓ, C1, C2, t, t′

)
Interpret the input vector inp = (u1, u2) = (σt′ , qt+1) and initialize the output vector out = (c2, c2),

where c1 = c2 = ⊥.

(a) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap3 = 1)

)
, do the following.

i. If
(
(Trap.Sym TS = t)∧ (Trap.Target TS = t′)∧ (t > ℓ)

)
, compute the 1FE2 symbol ciphertext

CTsym,t′ = SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,t′ .

ii. If
(
(Trap.ST TS = t)∧ (Trap.Target TS = t+1)∧ (t > 1)

)
, compute the 1FE2 state ciphertext

CTst,t+1 = SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,t+1.

(b) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS1 = t) ∧ (Trap.Target TS1 = t′) ∧ (t > ℓ)

)
, set inp.u1 = Trap.Sym val1 with

the symbol σt′ = Trap.Sym val1 to be encrypted and given as output for time step t′.

ii. If
(
(Trap.ST TS1 = t) ∧ (Trap.Target TS1 = t+ 1) ∧ (t > 1)

)
, set inp.u2 = Trap.ST val1 with

the state qt+1 = Trap.ST val1 to be encrypted and given as output for time step t+ 1.

(c) If
(
(Trap.key-id = salt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS2 = t) ∧ (Trap.Target TS2 = t′) ∧ (t > ℓ)

)
, set inp.u1 = Trap.Sym val2 with

the symbol σt′ = Trap.Sym val2 to be encrypted and given as output for time step t′.

ii. If
(
(Trap.ST TS2 = t) ∧ (Trap.Target TS2 = t+ 1) ∧ (t > 1)

)
, set inp.u2 = Trap.ST val2 with

the state qt+1 = Trap.ST val2 to be encrypted and given as output for time step t+ 1.

(d) Exit the subroutine returning (inp, out).

Figure 5: Subroutine handling the trapdoor modes in Next. This is “active” only in the proof.

Efficiency. The TMFE construction described above inherits its efficiency from the underlying
CktFE constructions. Note that the ciphertext is compact and is of size poly(λ, |w|). Also, the
running time of the decryption procedure is input specific since it mimics the computation of
M on w using secret key encoding M and ciphertext encoding all the intermediate states of
the computation. Additionally, the public parameters are short poly(λ), since these are just
the public parameters of a compact CktFE scheme. The function keys are also short, since they
are CktFE function keys for circuits ReRand and Next which are of size poly(λ) and poly(|M |, λ)
respectively.

3.3 Proof of Security for Single Input TMFE

Next, we prove that the above TMFE scheme satisfies distributional indistinguishability (DI)
for single (or constant) length outputs, as long as the underlying CktFE scheme satisfies
distributional indistinguishability for any output length. In Appendix E, we provide an
instantiation of a CktFE scheme satisfying distributional indistinguishability.

Theorem 3.1. Assume that the functional encryption schemes for circuits 1FE1 and 1FE2 are DI
secure (according to definition 2.3) and that F is a secure cPRF for the function family defined
above (according to definition 2.3). Then, the construction of functional encryption for Turing
machines TMFE is selective DI secure for single bit outputs (according to definition 2.8).

Since the intuition was discussed in Section 1, we proceed to the formal proof.

22

The Trapdoor Data Structure. To implement the approach discussed in Section 1, we will make
use of a data-structure Trap that lets us store all the requisite trapdoor information needed for
the security proof within the ciphertext. In our construction, decryption of a particular input
by a particular function key results in a chain of ciphertexts, each of which contain the trapdoor
data structure. In the real world, this information is not used but as we progress through the
proof, different fields become relevant. The data structure is outlined in Figure 6.

mode-real key-id val0 val1 SKE.K ⊥
mode-trap1 Target TS1 Sym TS1 Sym val1 ST TS1 ST val1
mode-trap2 Target TS2 Sym TS2 Sym val2 ST TS2 ST val2
mode-trap3 Target TS Sym TS ⊥ ST TS ⊥

Figure 6: Data Structure Trap used for Proof

Row 1. Above, key-id refers to the particular function key being considered and we switch
the execution chain from b = 0 to b = 1 key by key. All the ciphertexts in a given
execution chain share the key-id value. We assume a lexicographic order on the key-id
fields, this can be easily ensured by having a counter as part of the key-id field. We
do not make this explicit below for notational brevity. If key-id∗ is the key identity
programmed in a particular execution chain, then all keys with values smaller than key-id∗
will decrypt the chain using the input bit b = 1, and all keys with values larger than
key-id∗ will use b = 0. Hence, the 1FE1 ciphertexts provided by the encryptor must
encode messages corresponding to both values of b, the fields val0 and val1 are designed
for this purpose11. Note that 1FE2 ciphertexts computed by decryption need not track
messages corresponding to both values of b, since the “chain is extended” via decryption
corresponding to exactly one of b = 0 or b = 1 depending on the relation between the
key identities in the ciphertext and the function key. The field SKE.K refers to the key
of a symmetric key encryption scheme, which is used to decrypt some encrypted value
embedded in the function key. This is a standard trick when the key must hide something
in the public key setting. The flag mode-real means the scheme operates in the real world
mode and the trapdoor information is not used.

Rows 2 and 3. The fields Target TS1 and Target TS2 refer to the time steps corresponding
to the “broken link” in the decryption chain, namely the two time steps for which the
ciphertext and function key are being programmed so as to switch from b = 0 to b = 1.
The fields Sym TS1 and ST TS1 are the time steps when the symbol and state ciphertexts
for time step Target TS1 are generated; for instance ST TS1 = Target TS1 − 1 since the
state ciphertext for a given time step is always generated in the previous time step, while
the symbol ciphertext for a given time step may be generated much earlier. Sym TS2 and
ST TS2 are defined analogously. The fields Sym val1 and ST val1 contain the symbol and
state values which will be encrypted in the hybrid at the time steps Sym TS1 and ST TS1
when mode-trap1 is set; Sym val2 and ST val2 are defined analogously.

Row 4. When mode-trap3 is set, the symbol and state values are set to ⊥, and the values hard
coded in the function key are used for the target time step. In more detail, the function
key contains SKE encryptions of symbol and state ciphertexts corresponding to time step
Target TS hard-coded within itself. If key-id∗ = key-id, where key-id∗ is the key identity
programmed in a particular execution chain and key-id is the key identity of the function

11For the knowledgeable reader, this is similar to what was done by [AJ15].

23

key in question, and mode-trap3 = 1, then at time steps SYM TS and ST TS the SKE
secret key in row 1 of the Trap data structure is used to decrypt the SKE encryptions and
output the encrypted values.

The Hybrids. We now proceed to describe our hybrids. For simplicity we first describe the
hybrids for a single function request, for some Turing machine M . We denote by T the time
taken by M to run on the challenge messages. Since the proof is very involved, we describe it
first for the weak selective game, where the adversary specifies the challenge vectors and machine
at the same time. We discuss how to remove this restriction to obtain selective security at the
end of the detailed proof.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 = mode-trap3 =
⊥.

H(1, 1): In this world, all ciphertexts (constructed by the encryptor as well as function keys)
have mode-real = ⊥, mode-trap1 = 1, mode-trap2 = 1, mode-trap3 = ⊥. We program the
last link in the decryption chain for switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol and state
ciphertext pieces are generated for time step T − 1, and the fields Sym val1 and ST val1
contain the symbol and state values which must be encrypted by the function key in
the above time steps when mode-trap1 is set. Note that these fields exactly mimic the
behaviour in the real world, namely the time steps and values are set to be exactly what
the real world decryption would output. The fields corresponding to TS2 are defined
analogously.
Indistinguishability follows from security of 1FE1, since the decryption values in both
hybrids are exactly the same.

H(1, 2): Hardwire the key with an SKE encryption of symbol and state ciphertexts output at
step T − 1 for b = 0. Use the same ciphertexts as would be generated in the previous
hybrid.
Indistinguishability follows from security of SKE, since the only difference is the value of
the message encrypted using SKE which is embedded in the key.

H(1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS = T − 1. In this
hybrid the hardwired value in the key is used to be output as step T − 1 ciphertext.
Indistinguishability follows from security of 1FE1, since the decryption values in both
hybrids are exactly the same.

H(1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures all delegated

keys at point (T − 1∥key-id).
Indistinguishability follows from security of 1FE1. Note that we evaluate the cPRF at
point (T − 1∥key-id) only to construct the 1FE2 ciphertext output at time step T − 1
identified with key-id. This ciphertext is currently hardwired in the function key, and is
computed exactly the same way in both hybrids. Thus, the cPRF key is only required to
compute randomness of points ̸= (T −1∥key-id), for which the punctured key suffices, and
which moreover evaluates to the same value as the normal key on all such points. Hence,
we have that the decryption values in both hybrids are exactly the same. Note that the
punctured key is not used to evaluate on the punctured points.

24

H(1, 5): Switch the randomness in the 1FE2 ciphertexts for time step T−1 which are hardwired
in the key to true randomness.
Indistinguishability follows from security of punctured cPRF for the aforementioned
function family, since the remainder of the distribution only uses the punctured key.

H(1, 6): Switch the value encoded in the 1FE2 ciphertexts for time step T − 1 which are
hardwired in the key to correspond to b = 1.
Indistinguishability follows from security of 1FE2. Formally, we do a reduction which plays
the security game against the 1FE2 challenger and simulates the TMFE adversary. The
reduction simulates 1FE1 itself and receives the 1FE2 public and function keys from the
challenger. The only difference between the two hybrids is the 1FE2 ciphertext for time
step T − 1 which is embedded in the function key as received from the 1FE2 challenger.

H(1, 7): Switch randomness back to PRF randomness in the ciphertext hardwired in key, using
the punctured key for all but the hardwired ciphertext.
Indistinguishability follows from security of cPRF as discussed above.

H(1, 8): Switch the punctured root key to the normal root key.
Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 1): Switch ciphertext in slot 1 for target T − 1 to be for b = 1. Slot 2 remains b = 0. Set
mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of 1FE1, since the decryption values in both
hybrids are exactly the same.

H(2, 2): Hardwire key with SKE encryption of 1FE2 ciphertext for time step T − 2 and bit
b = 0 (same as hybrid (1, 2) but for T − 2).
Indistinguishability follows from security of SKE as above.

H(2, 3): Set mode-trap1 = 1 with target T − 1, mode-trap2 = ⊥, and mode-trap3 = 1 with
target T − 2.
Indistinguishability follows from security of 1FE1, since the decryption values in both
hybrids are exactly the same.

H(2, 4): Switch normal root key to punctured key at point (T − 2∥key-id).
Indistinguishability follows from security of 1FE1 as discussed above.

H(2, 5): Switch randomness to true in the ciphertext hardwired in key.
Indistinguishability follows from security of cPRF as discussed above.

H(2, 6): Switch hardwired 1FE2 ciphertext for step T − 2 to correspond to bit b = 1.
Indistinguishability follows from security of 1FE2.

H(2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in key.
Indistinguishability follows from security of cPRF as discussed above.

H(2, 8): Switch punctured root key to normal root key.
Indistinguishability follows from security of 1FE1 as discussed above.

25

H(3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-steps to
T − 2 and T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds to b = 1 and slot 2
for T − 3 to b = 0. Set mode-real = mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of 1FE1, since the decryption values in both
hybrids are exactly the same. Note that now slot T−1 is redundant, since T−2 ciphertext
is already switched to b = 1.
Hybrid H(3, i) will be analogous to H(2, i) for i ∈ [8].
As we proceed left in the execution chain one step at a time, we reach step ℓ where
ℓ = |w|, i.e. time steps for which 1FE1 ciphertexts are provided by the encryptor. At
this point we will hardwire the ReRand key with symbol ciphertexts for ℓ time steps, one
at a time, and the Next key for the state ciphertexts12. Moreover, we must now add
an additional hybrid in which the challenge 1FE1 ciphertext at position ℓ contains the
message bit corresponding to b = 1; intuitively, we must switch the bit before we slide the
trapdoor since the ciphertext for this position is not generated by decrypting the previous
ciphertext. In more detail, inH(T−ℓ, 8), analogously to hybrid (1, 8), the T−(T−ℓ) = ℓth

bit hard-wired in the trapdoor is changed to 1. We now add one more hybrid, namely:

H(T − ℓ, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position ℓ as follows:
the encoded message is changed corresponding to b = 1 and flag mode-real = 1. The other
flags mode-trap1 = mode-trap2 = mode-trap3 = ⊥.
Note that all ciphertexts previous to time step ℓ remain unchanged, and output their
corresponding symbol ciphertexts correctly. The Next circuit outputs the state ciphertext
for time step ℓ corresponding to bit b = 1. The only difference between this hybrid and the
previous one is that here we use the real mode to output the symbol ciphertext for b = 1
whereas previously we used the trapdoor mode to output the same symbol ciphertext.
Hence, decryption values in both hybrids are exactly the same, and indistinguishability
follows from security of 1FE1.
Finally in H(T −1, 9), the entire chain has been replaced to use b = 1 and all the challenge
1FE1 ciphertexts have encoded messages corresponding to b = 1 with mode-real = 1.

H(T): In this hybrid, all the other fields in the trapdoor data structure, excepting mode-real
are disabled and set to ⊥. This is the real world with b = 1.
Since all the encoded messages use b = 1, decryption values are all exactly the same as in
H(T − 1, 9), hence indistinguishability follows from security of 1FE1.

The formal reductions are provided in Appendix B.

Multiple Keys. We handle multiple keys by repeating the above set of hybrids key by key.
Each key carries within it an identifier key-id, and if this is less than the key identifier encoded
in the ciphertext, the bit b = 1 is used, if it is greater then the bit b = 0 is used and if it is equal,
then the above sequence of hybrids is performed to switch from b = 0 to b = 1. To support this,
the 1FE1 ciphertexts provided by the encryptor must encode messages corresponding to both
values of b, the fields val0 and val1 in the trapdoor data structure of Figure 6 are provided for
this purpose. Security follows by a standard hybrid argument as in [AJ15].

12There is an exception at time step 1 when both the symbol ciphertext and the start state ciphertexts are
hardwired in the ReRand key

26

3.4 Constructing the cPRF.

In Appendix D, we provide a construction for a cPRF F which supports puncturing and
delegation as required; the T cPRFs Fi for i ∈ [T] may each be constructed similarly. To
begin, note that we require the root key of F to be punctured at a point i∗ (say). The cPRF
construction for punctured PRF [BW13, KPTZ13, BGI14](which is in turn inherited from the
standard PRG based GGM [GGM86]) immediately satisfies this constraint, so we are left with
the question of delegation.

Recall that we are required to delegate T times, where T is the (polynomial) runtime of the
Turing machine on the encrypted input (please see Section 3), and the jth delegated key must
support evaluation of points {(k∥z) : z ∈ {0, 1}λ} for k ≥ j, except when (k∥z) = i∗. This may
be viewed as the jth key being punctured on points [1, j−1]∪ i∗. We show that the GGM based
construction for puncturing a single point can be extended to puncturing an interval (plus an
extra point). Intuitively, puncturing an interval corresponds to puncturing at most λ internal
nodes in the GGM tree. In more detail, we show that regardless of the value of j, it suffices to
puncture at most λ points in the GGM tree to achieve puncturing of the entire interval [1, j−1].
Please see Appendix D for details.

4 Construction: Multi-Input FE for Turing Machines

In this section we construct a multi-input functional encryption scheme for Turing machines.
Our construction supports a fixed number of encryptors (say k), who may each encrypt a string
wi of unbounded length. Function keys may be provided for Turing machines, so that given
k ciphertexts for wi and a function key for TM M , decryption reveals M(w1∥ . . . ∥wk) and
nothing else. We use the following ingredients for our construction:

1. A compact, k-input functional encryption scheme for circuits, kFE and a compact, public-
key functional encryption scheme 1FE. As before, we will assume that the scheme 1FE is
decomposable as defined in Section 2.

2. A symmetric encryption scheme SKE = (SKE.KeyGen, SKE.Enc, SKE.Dec).

3. A delegatable constrained pseudorandom function (cPRF), denoted by F which supports
T delegations for the function family ft : {0, 1}(k+2)·λ → {0, 1} defined as follows. Let x, t
denote integers whose binary representations are x, t of λ bits. Then,

ft(x∥z) = 1, if x ≥ t and 0 otherwise

The functionalities supported by kFE and 1FE are called Agg and Next respectively, described
next. Agg aggregates the inputs w1, . . . ,wk of all k parties into one long “global” string
(w1∥ . . . ∥wk), encrypted under the scheme 1FE. Since the length of this aggregate string
is unbounded, a single invocation of Agg produces an encryption of a single symbol in the
string, and the function is invoked repeatedly to produce ciphertexts for the entire string. Each
ciphertext output by the Agg scheme contains a symbol wi as well as the position of the symbol
within the global string. The encryption of the symbols (and the initial state) also contains
a global salt which Agg computes from the random salts provided in the ciphertexts under
the kFE scheme by the individual encryptors. The global salt identifies the particular input
combination that is aggregated, and serves as input to the PRF in the Next functionality.

Our k-input CktFE scheme may be either private or public key, and will result in the
corresponding notion for k-input TMFE. Since the multi input setting for FE is considered

27

more interesting in the symmetric key setting (see [BKS16] for a discussion), we present our
construction in the symmetric key setting – the public key adaptation is straightforward.

We note that ciphertexts output by Agg, which are encryptions of the symbols in the
aggregate string under the 1FE scheme, are exactly the same as the output of the ReRand
function in the single input scheme of Section 3. Therefore, as before, we may have the
functionality Next of the 1FE scheme mimic the computation of the Turing machine on the
global string (w1∥ . . . ∥wk). As in the previous construction, 1FE.Dec accepts as its inputs
a ciphertext decomposed into two components encoding the current symbol on the worktape
and the current state in the computation, both of which have been encrypted using the same
randomness, and outputs a ciphertext component corresponding to the symbol written on the
tape, as well as the next state. The global salt in the ciphertext, along with a random nonce
chosen by KeyGen are used as input to a cPRF as before, to compute the randomness used
to generate ciphertexts. This ensures that the execution of a given machine on a given input
combination is maintained separate from any other execution, and thwarts “mix and match”
attacks, where, for instance, an attacker may try to combine a state generated at some time
step t in one execution with a symbol generated at time step t from a different execution.

If we instantiate the underlying multi-input CktFE by the construction of [KS17], we may
let the arity k be poly-logarithmic in the security parameter. If we instantiate multi-input
CktFE by the construction of [GGG+14], we may support fixed polynomial arity at the cost of
worsening the assumption. Note that [GGG+14] rely on iO while [KS17] rely on compact FE.
Note that [BGJS15] support unbounded polynomial arity, but from public coin DiO as discussed
in Section 1.

4.1 Construction of multi-input TMFE

In the following, we denote a k-input, private-key CktFE scheme by k-CktFE and a decomposable,
public key CktFE scheme by 1FE. Since our scheme supports an a-priori fixed number of parties,
say k, we assume that every user is pre-assigned an index ind ∈ [k].

kTMFE.Setup(1λ, 1k): Upon input the security parameter 1λ and the bound 1k, do the
following:

1. Choosing the functionality for 1FE. Let 1FE be a decomposable, public-key CktFE
for the following circuit family.

Next :
((
{SYM}×{0, 1}(k+4)λ×Σ×Trap

)
×
(
{ST}×Q×{0, 1}k·λ

))
→

(
C1FE

)2
∪{ACC,REJ,⊥}

The tokens SYM and ST are flags denoting a symbol and a state respectively of a
Turing machine M which has Σ and Q as the alphabet and state space respectively.
The set {0, 1}(k+4)λ encodes in order, a random value key-id associated with a TM
M , a constrained PRF key, the current time step in the computation, the length of
the input string, each of λ bits and a string of length k ·λ bits encoding a random
value gsalt. Here, Trap is a data structure of fixed polynomial length which will be
used in the proof. Since we do not need it in the construction, we do not discuss it
here, please see Figure 17 for its definition. The set {0, 1}k·λ encodes again a random
value gsalt associated with the message component for state. C1FE is the ciphertext
space of 1FE. ACC and REJ denote tokens when M reaches an accepting state and a
rejecting state respectively.

28

2. Choosing the functionality for kFE. Let kFE be a k-CktFE for the following circuit
family.

Agg : ({SYM, SP} × {0, 1}4λ × [k]× Σ× Trap)k → C1FE ×
(
C1FE ∪ {⊥}

)
The special token SP denotes an encryption of the length of an input string
corresponding to any user. The set {0, 1}4λ encodes in order, a constrained PRF
key, the time step of the current symbol, the input length and a random salt each of
λ bits. Σ,Trap and C1FE are as described above.

3. Choosing keys for kFE and 1FE.

Let kFE.MSK←kFE.Setup(1λ, 1k), (1FE.PK, 1FE.MSK)←1FE.Setup(1λ, 1k)

4. Output MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).

kTMFE.Enc(MSK,wind, ind): Upon input the master key MSK, and message wind of arbitrary
length ℓind and an index ind ∈ [k], do the following:

1. Interpret the input MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).
2. Let wind = w1w2 . . . wℓind . Sample saltind ← {0, 1}λ.
3. Construct the data structure Trap and set all its fields to ⊥ except a flag

Trap.mode-real = 1 which indicates that we are in the real world. The data structure
Trap is only relevant in the proof. Please see Figure 6 for the definition of Trap.

• Encoding Input String and Its Length

4. If ind = 1, do the following:
(a) Sample a root key for the constrained PRF F as K0 ← F.Setup(1λ).
(b) Construct the input message len1 = (SP,K0,⊥, ℓ1, salt1, 1,⊥,Trap).
(c) Encrypt ℓ1 as a special ciphertext CT1,SP = kFE.Enc(kFE.MSK, len).
(d) For i ∈ [ℓ1] do the following:

i. Construct the input message y1,i = (SYM,K0, i, ℓ1, salt1, 1, wi,Trap).
ii. Compute the ciphertext CT1,SYM,i = kFE.Enc(kFE.MSK,yi).

5. If ind ∈ [2, k], do the following:
(a) Construct the input message lenind = (SP,⊥,⊥, ℓind, saltind, ind,⊥,Trap).
(b) Encrypt ℓind as a special ciphertext CTind,SP = kFE.Enc(kFE.MSK, len).
(c) For i ∈ [ℓind] do the following:

i. Construct the input message yind,i = (SYM,⊥, i, ℓind, saltind, ind, wi,Trap).
ii. Compute the ciphertext CTind,SYM,i = kFE.Enc(kFE.MSK,yi).

6. Output CTwind
=

(
CTind,SP, {CTind,SYM,i}i∈[ℓind]

)
.

kTMFE.KeyGen(MSK,M): Upon input the master secret key MSK and the description of a
Turing machine M , do the following. We will assume, w.l.o.g. that the TM is oblivious
(see Appendix A for a justification) and qst ∈ Q is the start state of M .

29

1. Sample a random value rand← {0, 1}λ.
2. Interpret MSK = (kFE.MSK, (1FE.PK, 1FE.MSK)).
3. Let SKAgg = kFE.KeyGen(kFE.MSK,Agg1FE.PK,rand,qst,⊥,⊥), where Figure 7 defines the

circuit Agg1FE.PK,rand,qst,⊥,⊥.

4. Let SKNext = 1FE.KeyGen(1FE.MSK,Next1FE.PK,rand,M ,⊥,⊥), where Figure 9 defines
the circuit Next1FE.PK,rand,M ,⊥,⊥.

5. Output the secret key as SKM = (SKAgg, SKNext).

Function Agg1FE.PK,rand,qst,C1,C2
(
x1,x2, . . . ,xk

)
(a) Interpret xi = (type,K, t, ℓ, salt, ind, s,Trap), for i ∈ [k] and set a flag proceed1 = proceed2 = 0.

(b) For all i, j ∈ [k], if xi.ind ̸= xj .ind for i ̸= j, set proceed = 1. If there exists exactly one i ∈ [k]
for which xi.type = SYM and xj .type = SP, ∀j ∈ [k] \ {i} and proceed1 = 1, set proceed2 = 1. If
proceed2 = 0, output ⊥ and abort.

(c) Initialization and Choosing Real or Trapdoor mode.
Let i ∈ [k] be such that xi.type = SYM. Initialize an input vector inp = (σ, qst), where σ = xi.s.
Let gsalt = (x1.salt∥x2.salt∥ . . . ∥xk.salt) and ℓ =

∑k
i=1 xi.ℓ denote the global salt and the aggregate

input length respectively. Denote pos = xi.t and do the following:

i. Computing Global Symbol Position : If 1 < xi.ind ≤ k, compute the new position of the
symbol as pos = pos+

∑
r∈S xr.ℓ, where the set S = {r | xr.ind < xi.ind} ⊂ [k].

ii. If Trap.mode-real = 1, set out = (c1, c2), where c1 = c2 = ⊥. If pos ̸= 1, set inp = (σ,⊥).
iii. Else obtain

(
inp= (u1, u2), out= (c1, c2)

)
= Trap-ModeAgg

(
Trap, inp, rand, gsalt, ℓ, C1, C2, pos

)
as described in Figure 8.

(d) If ((out.c1 = ⊥) ∨ (out.c2 = ⊥)), do the following.

i. Let p ∈ [k] be such that xp.ind = 1 and denote K0 = xp.K as the root key for cPRF.
ii. Derive the randomness for encryption at time step pos as rpos = F.Eval(K0, (pos∥rand∥gsalt)).
iii. Computing Encrypted Symbols using randomness derived from cPRF. If out.c1 = ⊥, do the

following.
• Compute the delegated PRF key Kpos+1 = F.KeyDel(K0, fpos+1). Set key-id = rand.

• Compute the 1FE symbol ciphertext encoding σ = inp.u1 as CTsym,pos =
Ē (1FE.PK1,y1; rpos),
where y1 = (SYM, key-id,Kpos+1, pos, ℓ, gsalt, σ,Trap).

iv. Computing Encrypted State for First Time Step. If ((out.c2 = ⊥) ∧ (pos = 1)), do the
following.
• Compute the 1FE state ciphertext encoding qst = inp.u2 as CTst,1 = Ē(1FE.PK2,y2; r1),

where y2 = (ST, qst, gsalt). Set out.c2 = CTst,1.

(e) If pos = 1, output out = (CTsym,1,CTst,1). Otherwise, output out = (CTsym,pos,⊥).

Figure 7: This circuit aggregates and re-randomizes the ciphertexts provided during encryption
to use randomness derived from a cPRF. The seed for the cPRF is specified in the ciphertext
for first party and the input is specified by the key. This ensures that each ciphertext, key pair
form a unique “thread” of execution.

30

Subroutine Trap-ModeAgg
(
Trap, inp, rand, gsalt, ℓ, C1, C2, pos

)
Interpret inp = (u1, u2) = (wi, qst) and initialize out = (c1, c2), where c1 = c2 = ⊥.

If Trap.key-id = rand, do the following.

(a) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap3 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS = pos)∧ (pos ≤ ℓ)

)
, compute CTsym,pos = SKE.Dec(Trap.SKE.K, C1) and set

out.c1 = CTsym,pos.

ii. If
(
(Trap.ST TS = pos) ∧ (pos = 1)

)
, compute CTst,pos = SKE.Dec(Trap.SKE.K, C2) and set

out.c2 = CTst,1.

(b) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS1 = pos) ∧ (pos ≤ ℓ)

)
, set inp.u1 = Trap.Sym val1 with the symbol to be

encrypted and output at time step pos.

ii. If
(
(Trap.ST TS1 = pos) ∧ (pos = 1)

)
, set inp.u2 = Trap.ST val1 with the start state to be

encrypted and output at time step 1.

(c) If
(
(Trap.global-salt = gsalt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

i. If
(
(Trap.Sym TS2 = pos) ∧ (pos ≤ ℓ)

)
, set inp.u1 = Trap.Sym val2 with the symbol to be

encrypted and output at time step pos.

ii. If
(
(Trap.ST TS2 = pos) ∧ (pos = 1)

)
, set inp.u2 = Trap.ST val2 with the start state to be

encrypted and output at time step 1.

(d) If Trap.global-salt < gsalt, set b = 0, if Trap.global-salt > gsalt, set b = 1.

i. If pos ̸= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

If Trap.key-id > rand, set b = 1, if Trap.key-id < rand set b = 0.

(a) If pos ̸= 1, update inp = (Trap.valb,⊥); else update inp = (Trap.valb, qst).

Output. Return (inp, out).

Figure 8: Subroutine handling the trapdoor modes in Agg. This is “active” only in the proof.

kTMFE.Dec(SKM , {CTwi}i∈[k]): Upon input secret key SKM and k ciphertexts CTw1 , . . . ,CTwk
,

do the following:

1. Interpret the secret key as SKM = (SKAgg, SKNext).
2. Parse CTwind

= (CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,ℓind)) for all ind ∈ [k].

• Aggregate the ciphertexts of all users.

3. For i = 1 to k, do the following:
(a) For j = 1 to ℓi, do the following:

i. If ((i = 1)∧ (j = 1)), invoke kFE.Dec
(
SKAgg,

(
CT1,SYM,1, {CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,1,CTst,1).

ii. If ((i = 1)∧ (j > 1)), invoke kFE.Dec
(
SKAgg,

(
CT1,SYM,j , {CTn,SP}n∈[k]\{1}

))
to obtain (CTsym,j ,⊥).

31

Function Next1FE.PK,rand,M,C1,C2
(
(z1, z2)

)
(a) Reading Current (Symbol, State) Pair and Looking up Transition Table.

i. Interpret z1 = (type, key-id,Kt+1, t, ℓ, gsalt, s,Trap), z2 = (type, s, gsalt). If ((z1.type ̸=
SYM) ∨ (z2.type ̸= ST) ∨ (z1.key-id ̸= rand) ∨ ∧(z1.gsalt ̸= z2.gsalt)), output ⊥ and abort.

ii. Interpret (z1.s, z2.s) = (σt, qt) as the symbol, state pair for the current time step z1.t = t,
input z1.Kt+1 = Kt+1 as the constrained PRF key for future time steps. Denote key-id =
z1.key-id, ℓ = z1.ℓ, gsalt = z1.gsalt and Trap = z1.Trap. Using the transition table of the
machine M , look up the next state qt+1 as well as the symbol σt′ to be written on the work-
tape, where t′ is the time step the current work tape cell will next be read by M . If qt+1 is
an accept or reject state, then output ACC or REJ and exit.

iii. Initialize inp = (σt′ , qt+1).

(b) Choosing Real or Trapdoor mode. If Trap.mode-real = 1, initialize an output vector out = (c1, c2),
where c1 = c2 = ⊥. Else invoke Trap-ModeNext

(
Trap, inp, rand, gsalt, ℓ, C1, C2, t, t′

)
as described in

Figure 10 to obtain
(
inp=(u1, u2), out=(c1, c2)

)
.

(c) Computing Next Encrypted Symbol. If out.c1 = ⊥, do the following.

i. Noting that t′ > t, derive the randomness at time step t′ using the delegated key
Kt+1 as rt′ = F.Eval(Kt+1, (t

′∥rand∥gsalt)). Compute the delegated PRF key Kt′+1 =
F.KeyDel(Kt+1, ft′+1).

ii. Compute the 1FE ciphertext component encoding the symbol σt′ = inp.u1 for time step t′ as

CTsym,t′ = Ē
(
1FE.PK1, (SYM, key-id,Kt′+1, t

′, ℓ, gsalt, σt′ ,Trap); rt′)

iii. Set out.c1 = CTsym,t′ .

(d) Computing Next Encrypted State. If out.c2 = ⊥, do the following.

i. Derive the randomness at time step t+1 as rt+1 = F.Eval(Kt+1, (t+1∥rand∥salt)) and compute
the 1FE2 ciphertext component encoding the state qt+1 = inp.u2 for time step t+ 1 as

CTst,t+1 = Ē
(
1FE2.PK2, (ST, qt+1, gsalt); rt+1)

ii. Set out.c2 = CTst,t+1.

(e) Output : out =
(
CTsym,t′ ,CTst,t+1

)
Figure 9: Function to mimic TM computation. It reads the current symbol, state pair and
outputs an encryption of the new state and symbol to be written under the appropriate
randomness generated using a cPRF.

iii. Else, invoke kFE.Dec
(
SKAgg,

(
CTi,SYM,j , {CTn,SP}n∈[k]\{i}

))
to obtain (CT

sym,L̃i+j
,⊥),

where L̃i =
∑i−1

m=1 ℓm.

• Execute the TM on aggregated input.

4. The aggregated sequence of ciphertexts under the Next scheme, of length Lk =∑k
j=1 ℓj computed above is expressed as:

((CTsym,1,CTst,1),CTsym,2, . . . ,CTsym,ℓ1 ,CTsym,ℓ1+1, . . . ,CTsym,Lk
).

5. Let t = 1. While the Turing machine does not halt, do:
(a) Invoke 1FE.Dec

(
SKNext, (CTsym,t ,CTst,t)

)
to obtain:

• ACC or REJ. In this case, output “Accept” or “Reject” respectively, and exit

32

Subroutine Trap-ModeNext
(
Trap, inp, rand, gsalt, ℓ, C1, C2, t, t′

)
Interpret the input vector inp = (u1, u2) = (σt′ , qt+1) and initialize the output vector out = (c2, c2),

where c1 = c2 = ⊥.

1. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap3 = 1)

)
, do the following.

(a) If
(
(Trap.Sym TS = t)∧ (Trap.Target TS = t′)∧ (t > ℓ)

)
, compute the 1FE2 symbol ciphertext

CTsym,t′ = SKE.Dec(Trap.SKE.K, C1) and set out.c1 = CTsym,t′ .

(b) If
(
(Trap.ST TS = t)∧ (Trap.Target TS = t+1)∧ (t > 1)

)
, compute the 1FE2 state ciphertext

CTst,t+1 = SKE.Dec(Trap.SKE.K, C2) and set out.c2 = CTst,t+1.

2. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap1 = 1)

)
, do the following:

(a) If
(
(Trap.Sym TS1 = t) ∧ (Trap.Target TS1 = t′) ∧ (t > ℓ)

)
, set inp.u1 = Trap.Sym val1 with

the symbol σt′ = Trap.Sym val1 to be encrypted and given as output for time step t′.

(b) If
(
(Trap.ST TS1 = t) ∧ (Trap.Target TS1 = t+ 1) ∧ (t > 1)

)
, set inp.u2 = Trap.ST val1 with

the state qt+1 = Trap.ST val1 to be encrypted and given as output for time step t+ 1.

3. If
(
(Trap.key-id = salt) ∧ (Trap.global-salt = gsalt) ∧ (Trap.mode-trap2 = 1)

)
, do the following:

(a) If
(
(Trap.Sym TS2 = t) ∧ (Trap.Target TS2 = t′) ∧ (t > ℓ)

)
, set inp.u1 = Trap.Sym val2 with

the symbol σt′ = Trap.Sym val2 to be encrypted and given as output for time step t′.

(b) If
(
(Trap.ST TS2 = t) ∧ (Trap.Target TS2 = t+ 1) ∧ (t > 1)

)
, set inp.u2 = Trap.ST val2 with

the state qt+1 = Trap.ST val2 to be encrypted and given as output for time step t+ 1.

4. Exit the subroutine returning (inp, out).

Figure 10: Subroutine handling the trapdoor modes in Next. This is “active” only in the proof.

the loop.
•

(
CTsym,t′ ,CTst,t+1

)
.

Note that t′ is the next time step that the work tape cell accessed at time step
t will be accessed again.

(b) Let t = t+ 1 and go to start of loop.

4.2 Correctness of Multi-Input TMFE

The proof of correctness is split into two parts. In the first part we argue that, given as
input the secret key SKAgg along with k ciphertexts under the kFE scheme, exactly one of
which encodes a symbol and the other (k− 1) encode the individual input lengths, the kFE.Dec
algorithm computes a 1FE ciphertext component of the symbol with its updated position in
the global string. By repeating this process for all symbols encoded by all users, we obtain a
sequence of 1FE ciphertext components, each containing its updated position in the aggregated
string. Additionally, each of these ciphertext components contains a global/aggregate salt that
is generated from concatenating each individual encryptor’s randomly generated salts. This
global salt identifies the particular input combination being aggregated.

Correctness of the second part corresponds to the correct execution of the Turing machine
on the aggregate sequence of ciphertexts, and this is exactly the same as in Section 3. As
before, we maintain the invariant that at any time step t, the input to the 1FE.Dec algorithm

33

is a complete 1FE ciphertext decomposed into two components corresponding to symbol and
state (along with additional auxiliary inputs), both computed with the same randomness
F.Eval(K0, (t∥rand∥gsalt)).

In more detail, we have the following. Correctness of Aggregation. Formally, let there
be k users so that k ciphertexts {CTwind

}ind∈[k] are given as input to kTMFE.Dec algorithm.
For all ind ∈ [k], let ℓind be the length of input string of user ind. Each ciphertext CTwind

is
a sequence (CTind,SP, (CTind,SYM,1, . . . ,CTind,SYM,ℓind)) of ciphertexts, where the first component
CTind,SP encodes the input string length of user ind and the second component {CTind,SYM,i}i∈[ℓind]
encodes in order the i-th symbol wi of the actual input string wind = (w1, w2, . . . , wℓind) of the
same user. These ciphertexts are generated under the kFE scheme with the master secret key
kFE.MSK which supports a k-input functionality Agg := Agg1FE.PK,rand,qst,⊥,⊥. Therefore, given
secret key SKAgg, we have:

1. Invoking kFE.Dec on the ciphertext CT1,SYM,1 encoding the first symbol of w1 along with
the special ciphertexts CTind,SP encoding |wind| for ind ̸= 1 gives (CTsym,1,CTst,1). By cor-
rectness of kFE decryption, we have: kFE.Dec

(
SKAgg,

(
CT1,SYM,1, {CTind,SP}ind∈[k]\{1}

))
=

(CTsym,1,CTst,1).

2. Invoking kFE.Dec on the ciphertext CT1,SYM,j encoding the jth symbol of w1 along with
the special ciphertexts CTind,SP encoding |wind| for ind ̸= 1 gives (CTsym,j ,⊥). By cor-
rectness of kFE decryption, we have: kFE.Dec

(
SKAgg,

(
CT1,SYM,j , {CTind,SP}ind∈[k]\{1}

))
=

(CTsym,j ,⊥).

3. Finally, ∀ ind ∈ [k] \ {1}, invoking kFE.Dec on the ciphertext CTind,SYM,j encoding
the jth symbol of wind along with the special ciphertexts CTind′,SP encoding |wind′ |
for ind ̸= ind′ computes the new global position of the symbol in the aggregated
string and outputs

(
CT

sym,L̃i+j
,⊥

)
. By correctness of kFE decryption, we have:

kFE.Dec
(
SKAgg,

(
CTind,SYM,j , {CTind′,SP}ind′∈[k]\{ind}

))
=

(
CT

sym,L̃i+j
,⊥

)
, where L̃i =∑ind−1

m=1 ℓm.

Note that F.Eval(K0, (pos∥rand∥gsalt)) is the randomness used to compute each of these
ciphertext components, where pos refers to the global position specific to a symbol in the
aggregate input string.

Correctness of TM Execution. The 1FE scheme supports the functionality Next :=
Next1FE.PK,rand,M ,⊥,⊥. Let the newly generated and organized sequence of ciphertexts based
on time steps be as follows:

(
(CTsym,1,CTst,1) , {CTsym,i}i∈[2,Lk]

)
with Lk =

∑k
i=1 ℓi. Let

w = (w1, w2, . . . , wℓ1 , wℓ1+1, wℓ1+2, . . . , wℓ1+ℓ2 , . . . , wLk
) be the aggregated input string and

define τ = runtime(M,w). For any time step t ∈ [τ − 2], we have

1. Let t ∈ [τ − 2] \ [ℓ]. If the current work tape cell was accessed13, at some time step t̃ < t,
then CTsym,t encoding (SYM, key-id,Kt+1, t, ℓ, gsalt, σt,Trap) was constructed at time step
t̃. Note that σt may be the blank symbol β. When t ∈ [ℓ], CTsym,t is constructed at time
step t via the Agg circuit.

2. The ciphertext component CTst,t encoding (ST, qt, gsalt) at time step t was constructed
at time step t− 1 for t > 1 and at time step 1, when t = 1.

13We assume that every time a cell is accessed, it is written to, by writing the same symbol again if no change
is made.

34

3. The randomness rt = F.Eval(Kt̃+1, (t∥rand∥gsalt)) = F.Eval(Kt, (t∥rand∥gsalt)) binds
CTsym,t and CTst,t and both the encoded messages also share the same global salt.

Thus, at any given time step t ∈ [τ − 2], we have a complete ciphertext of 1FE which
may be fed again with SKNext to 1FE.Dec in order to proceed with the computation.
Thus, the execution of 1FE.Dec at the (τ − 2)th time step provides the complete pair
(CTsym,τ−1,CTst,τ−1). By the correctness of 1FE scheme again, at time step t = τ − 1, invoking
1FE.Dec(SKNext, (CTsym,τ−1,CTst,τ−1)) outputs either “Accept” or “Reject” by simulating the
execution of M for the final time step τ inside the function Next, thus correctly outputting
M(w).

4.3 Proof of Security for multi-input TMFE

Security of the above construction follows the same blueprint as the proof in Section 3 except
that instead of single input functionality ReRand, we now use a k-input functionality Agg to
aggregate and rerandomize the inputs. We emphasize that the outputs produced by the Agg
functionality are exactly the same as the outputs produced by ReRand functionality in Section
3: namely a sequence of 1FE ciphertexts encoding the symbol and global position, computed
using randomness derived from a cPRF. Hence, the chief new ingredient in the security proof
is the security of Agg functionality, which is derived from the security of the kFE scheme.

Formally, we argue that:

Theorem 4.1. Assume that the k input FE for circuits kFE satisfies standard indistinguishability
(Definition 2.5), and the single input FE for circuits 1FE satisfies distributional indistinguisha-
bility (Definition 2.3). Assume that the cPRF is secure according to definition 2.3. Then, the
above construction of k input kTMFE satisfies standard indistinguishability (Definition 2.8).

The proof follows the outline of the single input case, except that now we must additionally
keep track of multiple execution threads corresponding to various combinations of ciphertexts
across multiple users, i.e. various “global salt” values. In more detail, if each of k users makes Q
ciphertext requests, then we have Qk total possible combinations of ciphertexts, each yielding
a different execution thread per key. Note that each of the Qk combinations is identified with
a unique “global salt”. We will assume w.l.o.g that there is a lexicographic ordering on all the
global salt values; this can be easily ensured by associating a counter value with each random
salt. We do not explicitly include this for notational brevity.

In the single input case, we replaced the execution chain of a machine over an input string
from b = 0 to b = 1, step by step, and enumerated over all keys. Now, we again replace an
execution chain step by step as in the single input case, but additionally enumerate over all
Qk combinations for each key, as well as over all keys as before. The number of hybrids grows
multiplicatively by Qk. Since the proof structure follows mostly like the single input case, we
provide below only the conceptual description of the main ideas and the hybrids’ sequence in
the proof. Details are provided in Appendix C.

5 Indistinguishability Obfuscation for Turing Machines

In this section we construct indistinguishability obfuscation for Turing machines with bounded
length input, i.e. the input length n = n(λ) is any fixed polynomial in the security parameter.

Our construction is a straightforward adaptation of the miFE to iO compiler for circuits
[GGG+14] to Turing machines. To support inputs of length n, we need an (n + 1)-ary miFE

35

for Turing machines denoted as (n+1)-TMFE; we instantiate this with our construction from
Section 4.

In more detail, the obfuscation of M comprises the secret key SKU for the Universal Turing
machine and (2n+1) ciphertexts under the (n+1)-TMFE scheme, where the first 2n ciphertexts
{CTb

i}i∈[n],b∈{0,1} encode bits 0 and 1 respectively for each of n positions while the last ciphertext
CTM encodes machine ⟨M⟩. To evaluate iO(M) on an input x = (x1, . . . , xn) ∈ Σn

λ, the evaluator
runs (n+1)-TMFE.Dec

(
SKU, ({CTxi

i }i∈[n],CTM)
)

to get M(x). To argue security we only need
the (n+1)-TMFE scheme to be selectively secure against two ciphertext queries per slot and a
single key query, as in the case of circuits.

5.1 Construction

Let M = {Mλ}λ∈N denote an ensemble of Turing machines with alphabet Σλ = {0, 1}. Let
Encode = {Encodeλ :Mλ → Σ∗

enc}λ∈N be an ensemble of encoding schemes for M on alphabet
Σenc such that for any M ∈ Mλ,Encodeλ (M) = ⟨M⟩. Further, let U = {Uλ}λ∈N denote
the set of Universal Turing machines parameterized by the security parameter with alphabet
ΣU = Σenc ∪ Σλ such that for all λ ∈ N, for any M ∈ Mλ and any x = (x1, . . . , xn) ∈ Σn

λ,
Uλ(x, ⟨M⟩) takes x and an encoding ⟨M⟩ of M , simulates M on x and outputs M(x).

Let (n+1)-TMFE denote the (n+1)-ary multi-input functional encryption scheme for Turing
machines with alphabet ΣU . We construct an ensemble of indistinguishability obfuscators iO =
{iOλ}λ∈N with iOλ = (iO.Obf, iO.Eval) for Mλ with inputs x ∈ Σn

λ as follows.

iO.Obf(1λ, 1n,M): On input the security parameter λ, a bound n ∈ N and a Turing machine
M ∈Mλ, do the following:

1. Compute the encoding of M as Encodeλ (M) = ⟨M⟩.
2. Compute a master secret key MSK← (n+1)-TMFE.Setup (1λ, 1n+1).
3. Compute the secret key for machine Uλ as SKU ← (n+1)-TMFE.KeyGen(MSK,Uλ).
4. For i ∈ [n], compute the encryptions CTb

i = (n+1)-TMFE.Enc(MSK, (b, i)), b ∈ Σλ.
5. Compute the encoding of M as CTn+1 = (n+1)-TMFE.Enc(MSK, (⟨M⟩, n+ 1)).
6. Output the obfuscated machine as M̃ =

(
SKU,

(
{CTb

i}i∈{1,...,n},b∈Σλ
,CTn+1

))
.

iO.Eval(M̃,x): On input the obfuscated machine M̃ and an input x ∈ Σn
λ, do the following:

1. Parse M̃ =
(
SKU,

(
{CTb

i}i∈{1,...,n},b∈Σλ
,CTn+1

))
and x = (x1, . . . , xn).

2. Compute and output (n+1)-TMFE.Dec (SKU, (CT
x1
1 , . . . ,CTxn

n ,CTn+1)).

Correctness and Efficiency. Correctness is directly followed by the correctness of (n+1)-TMFE
scheme. Since the (n+1)-TMFE we use is compact, the obfuscation size obtained by the above
scheme is poly(λ, |U|, |M |, n).

5.2 Proof of Security

We show that the construction is secure. Formally:

Theorem 5.1. Assume that (n+1)-TMFE is a 1-key, 2-ciphertext selectively secure (n + 1)-ary
multi-input functional encryption scheme for Turing machines which satisfies standard indistin-
guishability (Section 2.2.2). Then the construction in Section 5.1 is a secure indistinguishability
obfuscator for the Turing machines (Section 2.2.3) with bounded input length n.

36

Proof. Consider two Turing machines M0,M1 ∈ Mλ such that ∀x ∈ Σn
λ,M0(x) = M1(x). We

now show that if there exists a PPT adversary A that distinguishes between M̃0 = iO(M0) and
M̃1 = iO(M1) with non-negligible advantage, then there exists another PPT adversary B which
breaks the (n+1)-TMFE scheme with the same advantage. We construct B as follows.
B runs A to get two functionally equivalent machines M0,M1 ∈Mλ. It does the following:

1. B prepares a pair of sequences (x0,x1), each containing two challenge message vectors for
the (n+1)-TMFE challenger C such that for all b ∈ {0, 1},xb =

{
(xb1,1, . . . , x

b
n+1,1), (x

b
1,2, . . . , x

b
n+1,2)

}
.

– For all i ∈ [n], B sets x0i,1 = x1i,1 = 0 and x0i,2 = x1i,2 = 1

– For i = n+ 1, B sets xbn+1,1 = xbn+1,2 = ⟨Mb⟩, where Encodeλ(Mb) = ⟨Mb⟩.

B sends the pair (x0,x1) to C and receives (CT1,j , . . . ,CTn+1,j)j∈[2].

2. B requests C for a secret key corresponding to machine Uλ and receives SKU.

3. B sends M̃ = (SKU, ({CT1,j , . . . ,CTn,j}j∈[2],CTn+1,1)) as the challenge obfuscation to A
and outputs a bit b′ returned by A.

This completes the description of the reduction B. We first observe that for any x =
(x1, . . . , xn) ∈ Σn

λ, since M0 and M1 are functionally equivalent Turing machines, we have
that:

Uλ(x, ⟨M0⟩) = M0 (x) = M1 (x) = Uλ(x, ⟨M1⟩)

Further, A being a valid iO adversary, we have runtime(M0,x) = runtime(M1,x). Thus B is a
valid (n+1)-TMFE adversary. Hence, if the (n+1)-TMFE challenger had chosen challenge bit
0, then the obfuscation M̃ is of M0, else of M1. Thus the advantage of A in distinguishing the
two cases translates exactly to the advantage of B against the (n+1)-TMFE scheme.

Acknowledgement. We thank Vinod Vaikuntanathan for suggesting the generic transformation
from FE to decomposable FE.

References

[AB08] Sanjeev Arora and Boaz Barak. Complexity theory: A modern approach. Online
draft at http://www. cs. princeton. edu/theory/complexity, 2008.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Crypto, 2015.

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating ram computations with adaptive soundness and privacy. In Theory of
Cryptography Conference, pages 3–30. Springer, 2016.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 120–129, 2011.

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. SIAM J. Comput., 43(2):905–929, 2014.

37

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In CRYPTO, pages 308–326. Springer, 2015.

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability
obfuscation for turing machines: Constant overhead and amortization. In Crypto.
Springer, 2017.

[AS16] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines.
In Theory of Cryptography Conference (TCC), pages 125–153. Springer, 2016.

[AS17a] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite
automata from lwe. In ICALP, 2017.

[AS17b] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption
and indistinguishability obfuscation from degree-5 multilinear maps. In
EUROCRYPT, 2017.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Public Key Cryptography, pages 501–519, 2014.

[BGJS15] Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-
input functional encryption for unbounded arity functions. In Advances in
Cryptology–ASIACRYPT 2015, pages 27–51. Springer, 2015.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional
encryption in the private-key setting: Stronger security from weaker assumptions.
In Eurocrypt, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From
cryptomania to obfustopia through secret-key functional encryption. In Theory
of Cryptography Conference, pages 391–418. Springer, 2016.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 1480–1498. IEEE, 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In TCC, pages 253–273, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Asiacrypt. Springer, 2013.

[CCC+15] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai
Lin, and Hong-Sheng Zhou. Computation-trace indistinguishability obfuscation
and its applications. IACR Cryptology ePrint Archive, 2015, 2015.

38

[CCHR15] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Succinct
adaptive garbled ram. Cryptology ePrint Archive, Report 2015/1074, 2015. https:
//eprint.iacr.org/2015/1074.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled ram. In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
169–178. ACM, 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
Indistinguishability obfuscation of iterated circuits and ram programs. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC ’15, 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 1115–1127. ACM, 2016.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In CRYPTO, 2013.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC, 2015.

[CMR17] Brent Carmer, Alex J Malozemoff, and Mariana Raykova. 5gen-c: multi-
input functional encryption and program obfuscation for arithmetic circuits.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 747–764. ACM, 2017.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input
functional encryption. In EUROCRYPT, pages 578–602, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, 2013. http://eprint.iacr.org/.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing
private RAM computation. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, 2014.

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run turing machines on encrypted data. In
CRYPTO (2), pages 536–553, 2013.

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional
encryption. In STOC, pages 555–564, 2013.

39

https://eprint.iacr.org/2015/1074
https://eprint.iacr.org/2015/1074
http://eprint.iacr.org/

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the
cryptographic hardness of finding a nash equilibrium. In CRYPTO, pages 579–
604. Springer, 2016.

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry.
Breaking the sub-exponential barrier in obfustopia. Technical report, Cryptology
ePrint Archive, Report 2016/102, 2016. http://eprint. iacr. org/2016/102, 2016.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional
encryption with polynomial loss. In Theory of Cryptography Conference, pages
419–442. Springer, 2016.

[Imp] Russell Impagliazzo. Notes on turing machines. http://cseweb.ucsd.edu/classes/
sp11/cse201A-a/ln412.pdf.

[JSW17] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively indistinguish-
able garbled circuits. In Theory of Cryptography Conference, pages 40–71. Springer,
2017.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15,
2015.

[KNT17] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability
obfuscation for all circuits from secret-key functional encryption. IACR Cryptology
ePrint Archive, 2017:361, 2017.

[KNT18a] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-
key functional encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 603–648. Springer, 2018.

[KNT18b] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Simple and generic
constructions of succinct functional encryption. In IACR International Workshop
on Public Key Cryptography, pages 187–217. Springer, 2018.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa.
Adaptively secure and succinct functional encryption: improving security and
efficiency, simultaneously. In Advances in Cryptology–CRYPTO 2019: 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18–22, 2019, Proceedings, Part III 39, pages 521–551. Springer, 2019.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security,
CCS ’13, 2013.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key
functional encryption. In EUROCRYPT, 2017.

[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-
5 prgs. In Crypto, 2017.

40

http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf
http://cseweb.ucsd.edu/classes/sp11/cse201A-a/ln412.pdf

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Theory of Cryptography Conference, pages 443–468. Springer, 2016.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble ram programs? In Advances in
Cryptology – EUROCRYPT, 2013.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing
randomized encodings and applications. In TCC-A, 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local prgs. In Crypto, 2017.

[LZ17] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework for
building applications of obfuscation from polynomial hardness. In Theory of
Cryptography Conference, pages 138–169. Springer, 2017.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology
ePrint Archive, 2010:556, 2010.

[PF79] Nicholas Pippenger and Michael J Fischer. Relations among complexity measures.
Journal of the ACM (JACM), 26(2):361–381, 1979.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
Deniable encryption, and more. In STOC, 2014. http://eprint.iacr.org/2013/454.
pdf.

APPENDICES

A Definitions: Turing Machines

We recall the definition of a Turing machine (TM). A TM M is represented by the tuple
(Q,Γ, β,Σ, δ, qst, F) where Q is a finite set of states, Γ is a finite alphabet, β ∈ Γ is the blank
symbol, Σ ⊆ Γ \ {β} is the set of input symbols, qst is the start state, F = {qacc, qrej} where
qacc ∈ Q is the accept state, qrej ∈ Q is the reject state and δ : Q \ F × Γ → Q × Γ × {L,R}
is the transition function (stored as a table). Upon input w = (w1, . . . , wk) ∈ Σk for some
arbitrary polynomial k, the machine M accepts the input if and only if given a tape initialised
with the input w and the head at w1, following the TM’s transition function leads to qacc. We
say M(w) = 1 iff M accepts w and 0 otherwise. We also denote the runtime of a TM M (i.e.
number of steps the head takes) on an input w by runtime(M,w).

Oblivious Turing Machines

Our construction makes use of oblivious Turing machines.

Definition A.1 (Oblivious Turing Machine [Imp]). An Oblivious Turing Machine (OTM) is a
Turing Machine for which there exists a function t such that, at every timestep i the machine
head is at cell t(i) regardless of the input.

41

http://eprint.iacr.org/2013/454.pdf
http://eprint.iacr.org/2013/454.pdf

Moreover there exist efficient transformations that convert any Turing machine M that takes
time T to decide an input to an oblivious one that takes time T log T to decide the same input
[PF79]. Here, we describe a simple transformation that incurs a quadratic blowup in running
time.

Given a TM M , a simple OTM construction adds an additional marker for the head location.
Now, to simulate step i in the TM, the OTM, scans from cell 1 to cell i, ensuring that it reads
the current head location. Now, it moves back from cell i to 1, writing the correct symbol
for the next step, while also updating the state. Once back at cell 1, simulation of step i
is complete, and the OTM moves to a state simulate qi+1 and if qi+1 is not an accepting or
rejecting state, it moves to simulating step i+1. Since in step i, we would need to scan at most
i cells (as that is the farthermost the head could have moved), a O(t) computation, now takes
O(t2). Also, if we are willing to reveal the runtime of the given input on the Turing Machine,
then we can stop simulating after the last timestep t. A more efficient transformation due to
Pippenger-Fischer[PF79] reduces the time required to O(t log t).

We note that a slightly different definition of OTMs [AB08] requires that the head movements
are the same for all inputs of the same size, which would imply that the OTM runs in worst
case time. However, if we are willing to reveal the running time of a machine on a given
input, then the OTM can be made to halt once the input has been decided. In particular, if
runtime(M1,w1) = runtime(M2,w2), then the head movements of the OTM corresponding to
M1 and the OTM corresponding to M2 are exactly the same.

In our construction, the OTM will be provided the input length of the message as an explicit
input, and can use this to compute the head movements at any given time step.

B Missing Details in Proof of Theorem 3.1

Proof. In the following we argue that consecutive hybrids as defined in Section 3.3 are
indistinguishable.

Claim B.1. If 1FE1 is a secure CktFE scheme, then hybrids H(0) and H(1, 1) are indistinguish-
able.

Proof. Given a PPT adversary A that distinguishes H(0) and H(1, 1), we construct another
PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1

λ), salt← {0, 1}λ and two random
strings ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space of the SKE scheme.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0

T−1, q
0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T−2) and (T ′′, T−3) when the individual components of these two (symbol,

42

state) pairs are generated and then prepares a new pair of challenge distributions
(D̂ℓ

0, D̂ℓ
1) for the 1FE1 challenger as follows.

i. For b = 0, D̂ℓ
0 = {x0 = (x0,1, . . . , x0,ℓ)}, where ∀i ∈ [ℓ] x0,i = (K0, i, ℓ, w0,i,Trap

0),
with Trap0.mode-real = 1 and all other fields set to ⊥.

ii. For b = 1, D̂ℓ
1 = {x1 = (x1,1, . . . , x1,ℓ)}, where ∀i ∈ [ℓ] x1,i = (K0, i, ℓ, w0,i,Trap

1),
with the modified fields in Trap1 as shown in Figure 11.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥
mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ0

T−1 ST TS1 : T − 2 ST val1 : q0T−1

mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0
T−2 ST TS2 : T − 3 ST val2 : q0T−2

mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure 11: Trap1 configuration in H(1, 1)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to
A.

(d) To simulate a function key for M , B first requests for a function key to the
1FE1 challenger for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives SKReRand. B
computes by itself SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and
returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′, T −2, T ′′, T −3}, the decryption outputs are exactly the
same ciphertexts in both the H(0) and H(1, 1), since these ciphertexts are computed according
to the real world functionality of Next. At a time step t ∈ {T ′, T − 2, T ′′, T − 3} in H(1, 1), the
decryption mimics the real world decryption of H(0) due to the execution paths in the Next
function conditioned on Trap1.mode-trap1 = Trap1.mode-trap2 = 1. Therefore, B is an admissible
adversary against the 1FE1 challenger since the outputs for the two challenge message sets are
exactly the same. If b = 0, A sees the distribution of H(0), while if b = 1, A sees the distribution
of H(1, 1). Thus the advantage of A translates to the advantage of B.

Claim B.2. If SKE is a secure symmetric-key encryption scheme, then hybridsH(1, 1) andH(1, 2)
are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 1) and H(1, 2), we construct another
PPT adversary B who breaks the security of the SKE scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1
λ), (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1

λ)
and salt← {0, 1}λ. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).

43

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0
T−1, q

0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T−2) and (T ′′, T−3) when the individual components of these two (symbol,
state) pairs are generated. It then simulates the encryption oracle by computing
CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [ℓ], x1,i = (K0, i, ℓ, w0,i,Trap

1) and Trap1

is as per Figure 11. It returns the ciphertext CT = {CTi}i∈[ℓ] to A.
(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1) as follows.

• Compute a delegated cPRF key KT = F.KeyDel(K0, fT) and generate the
encryption randomness for time step T −1 as rT−1 = F.Eval(K0, (T −1∥salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′

for the future time step T − 1 as CT0
sym,T−1 = 1FE2.Enc(1FE2.PK1, z

0
1; rT−1),

where z01 = (SYM, salt,KT , T−1, ℓ, σ0
T−1,Trap

1) and Trap1 is as per Figure 11.
• Compute the 1FE2 state ciphertext to be given as output at time step T − 2

for the future time step T − 1 as CT0
st,T−1 = 1FE2.Enc(1FE2.PK2, z

0
2; rT−1),

where z02 = (ST, q0T−1).

iii. It sends the 1FE2 ciphertexts CT0
sym,T−1,CT

0
st,T−1 to the challenger of the SKE

scheme and gets back ct1, ct2.

iv. B then computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and
returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference between the two hybrids is that the SKE encryptions programmed
in the function key is random in H(1, 1) and are valid SKE encryptions of (CT0

sym,T−1,CT
0
st,T−1)

encoding the (symbol, state) pair for time step T − 1 in H(1, 2). Hence the advantage of an
adversary who distinguishes between the two hybrids translates to an advantage of an adversary
against the SKE scheme.

Claim B.3. If 1FE1 is a secure CktFE scheme, then hybrids H(1, 2) and H(1, 3) are indistinguish-
able.

Proof. Given a PPT adversary A that distinguishes H(1, 2) and (1, 3), we construct another
PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1

λ), salt ← {0, 1}λ and a key K ←
SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).

44

(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0
T−1, q

0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T−2) and (T ′′, T−3) when the individual components of these two (symbol,
state) pairs are generated and then prepares a new pair of challenge distributions
(D̂ℓ

0, D̂ℓ
1) for the 1FE1 challenger as follows.

i. For b = 0, D̂ℓ
0 = {x0 = (x0,1, . . . , x0,ℓ)}, where ∀i ∈ [ℓ] x0,i = (K0, i, ℓ, w0,i,Trap

0)
with the fields of Trap0 being same as that of in Trap1 in H(1, 2) as per Figure 11.

ii. For b = 1, D̂ℓ
1 = {x1 = (x1,1, . . . , x1,ℓ)}, where ∀i ∈ [ℓ] x1,i = (K0, i, ℓ, w0,i,Trap

1),
with the modified fields in Trap1 as shown in Figure 12.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥
mode-trap1 : ⊥ Target TS1 : ⊥ Sym TS1 : ⊥ Sym val1 : ⊥ ST TS1 : ⊥ ST val1 : ⊥
mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0

T−2 ST TS2 : T − 3 ST val2 : q0T−2

mode-trap3 : 1 Target TS : T − 1 Sym TS : T ′ ⊥ ST TS : T − 2 ⊥

Figure 12: Trap1 configuration in H(1, 3)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to
A.

(d) To simulate a function key for M , B does the following.
i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger

and receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1) as follows.

• Compute a delegated cPRF key KT = F.KeyDel(K0, fT) and generate the
encryption randomness for time step T −1 as rT−1 = F.Eval(K0, (T −1∥salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′

for the future time step T − 1 as CT0
sym,T−1 = 1FE2.Enc(1FE2.PK1, z

0
1; rT−1),

where z01 = (SYM, salt,KT , T−1, ℓ, σ0
T−1,Trap

1) and Trap1 is as per Figure 12
now.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 2
for the future time step T − 1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2, z
0
2; rT−1),

where z02 = (ST, q0T−1).
iii. Once it has generated the two 1FE2 ciphertexts CT0

sym,T−1 and CT0
st,T−1,

it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0
sym,T−1) and ct2 =

SKE.Enc(K,CT0
st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′, T − 2}, the decryption outputs are exactly the
same ciphertexts in both H(1, 2) and H(1, 3). At time step t ∈ {T ′, T − 2} in H(1, 2),
Trap0.mode-trap1 = 1 (in Figure 11) dictates the decryption to output two decomposed
components of a single 1FE2 ciphertext, one component encoding Trap0.Sym val1 = σ0

T−1 at time
step T ′ and the other encoding Trap0.ST val1 = q0T−1 at time step T−2. Alternatively inH(1, 3),
Trap1.mode-trap3 = 1 (in Figure 12) dictates the decryption to firstly use Trap1.SKE.K = K to

45

decrypt the hardwired ciphertext ct1 and output CT0
sym,T−1 at time step T ′ (respectively, ct2

and output CT0
st,T−1 at time step T −2). In both the hybrids, these symbol and state ciphertext

pieces are computed for target time step T − 1. Thus B is an admissible 1FE1 adversary. If
b = 0, A sees the distribution of H(1, 2), while if b = 1, A sees the distribution of H(1, 3). Hence
the advantage of A translates to the advantage of B.

Claim B.4. If 1FE1 is a secure CktFE scheme, then hybrids H(1, 3) and H(1, 4) are indistinguish-
able.

Proof. Given a PPT adversary A that distinguishes H(1, 3) and H(1, 4), we construct another
PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1

λ), salt ← {0, 1}λ and a key K ←
SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0

T−1, q
0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T−2) and (T ′′, T−3) when the individual components of these two (symbol,
state) pairs are generated. It then computes a root key punctured at point (T−1∥salt)
as KT−1

0 = F.Constrain(K0, (T − 1∥salt)) and then prepares a new pair of challenge
distributions (D̂ℓ

0, D̂ℓ
1) for the 1FE1 challenger as follows.

i. For b = 0, D̂ℓ
0 = {x0 = (x0,1, . . . , x0,ℓ)}, where ∀i ∈ [ℓ] x0,i = (K0, i, ℓ, w0,i,Trap

1)
with the fields of Trap1 being same as that of in Trap1 in H(1, 3) as per Figure 12.

ii. For b = 1, D̂ℓ
1 = {x1 = (x1,1, . . . , x1,ℓ)}, where ∀i ∈ [ℓ] x1,i = (KT−1

0 , i, ℓ, w0,i,Trap
1),

with Trap1 as per Figure 12.
(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to
A.

(d) To simulate a function key for M , B does the following.
i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger

and receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1), as follows.

• Compute a punctured, delegated key KT−1
T = F.KeyDel(KT−1

0 , fT) and
generate the encryption randomness for time step T − 1 as rT−1 =
F.Eval(K0, (T − 1∥salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′

for the future time step T − 1 as CT0
sym,T−1 = 1FE2.Enc(1FE2.PK1, z

0
1; rT−1),

where z01 = (SYM, salt,KT−1
T , T − 1, ℓ, σ0

T−1,Trap
1) and Trap1 is as per

Figure 12.

46

• Compute the 1FE2 state ciphertext to be given as output at time step T − 2
for future time step T−1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−1), where

z02 = (ST, q0T−1).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−1 and CT0

st,T−1,
it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−1) and ct2 =

SKE.Enc(K,CT0
st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference in H(1, 3) and H(1, 4) is the replacement of the root cPRF key K0

with a punctured root key KT−1
0 at point (T − 1∥salt) in time step T − 1 in the 1FE1 ciphertext.

Moreover, in both the hybrids, the field Trap1.mode-trap3 = 1 dictates the output at time step
t ∈ {T ′, T − 2} to be a ciphertext component for time step T − 1 as argued in Claim B.3. Thus,
the cPRF key is only required to compute randomness at points ̸= (T − 1∥salt) for which the
punctured root key suffices. Further, it evaluates to the same value as the normal key on all
such points in both the hybrids. As a consequence, the decryption values are exactly the same
for all the time steps proving the admissibility of B. Thus if b = 0, A sees the distribution of
H(1, 3), while if b = 1, A sees the distribution of H(1, 4). Hence the advantage of A translates
to the advantage of B.

Claim B.5. If F is a secure punctured, delegatable cPRF scheme, then hybrids H(1, 4) and
H(1, 5) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(1, 4) and H(1, 5), we construct another
PPT adversary B who breaks the security of the punctured, delegatable cPRF scheme F as
follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1
λ), (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1

λ),
salt← {0, 1}λ and K← SKE.KeyGen(1λ). It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1) ← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It receives

KT−1
0 on querying for a punctured key at the point (T−1∥salt) to the cPRF challenger

for F.
(b) B executes the oblivious TM M on w0 to learn the (symbol, state) pairs (σ0

T−1, q
0
T−1)

and (σ0
T−2, q

0
T−2) at time steps T − 1 and T − 2 respectively. It also records the time

steps (T ′, T−2) and (T ′′, T−3) when the individual components of these two (symbol,
state) pairs are generated. It then simulates the encryption oracle by computing
CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [ℓ], x1,i = (KT−1

0 , i, ℓ, w0,i,Trap
1) and

Trap1 is as per Figure 12. It returns the ciphertext CT = {CTi}i∈[ℓ] to A.
(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

47

ii. It then computes 1FE2 encodings of (σ0
T−1, q

0
T−1), as follows.

• Compute a delegated key from the punctured root key as KT−1
T = F.KeyDel(KT−1

0 , fT).
• Query the cPRF challenger at point (T − 1∥salt) to receive an encryption

randomness RE for time step T − 1.
• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′ for

the future time step T−1 as CT0
sym,T−1 = 1FE2.Enc(1FE2.PK1, z

0
1;RE), where

z01 = (SYM, salt,KT−1
T , T − 1, ℓ, σ0

T−1,Trap
1) and Trap1 is as per Figure 12.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 2
for the future time step T − 1 as CT0

st,T−1 = 1FE2.Enc(1FE2.PK2, z
0
2; RE),

where z02 = (ST, q0T−1).
iii. Once it has generated the two 1FE2 ciphertexts CT0

sym,T−1 and CT0
st,T−1,

it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0
sym,T−1) and ct2 =

SKE.Enc(K,CT0
st,T−1).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that when RE is computed using K0 as a pseudorandom value, A’s view is identical to
that of H(1, 4), and when RE is sampled uniformly at random, A’s view is identical to that
of H(1, 5). Hence the advantage of A in distinguishing H(1, 4) and H(1, 5) translates to the
advantage of B in breaking the security of the punctured, delegatable cPRF F.

Claim B.6. If 1FE2 is a secure CktFE scheme, then hybrids H(1, 5) and H(1, 6) are indistinguish-
able.

Proof. Given a PPT adversary A that distinguishes H(1, 5) and H(1, 6), we construct another
PPT adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1
λ), salt← {0, 1}λ and K← SKE.KeyGen(1λ)

and gets 1FE2.PK from the 1FE2 challenger. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state)

pairs (σ0
T−1, q

0
T−1) and (σ1

T−1, q
1
T−1) respectively at time step T − 1. Additionally, B

also learns the (symbol, state) pair (σ0
T−2, q

0
T−2) that is generated at time step T − 2

when M is executed on w0. Further, it records the time steps (T ′, T−2) and (T ′′, T−
3) when the individual components of these (symbol, state) pairs for w0 and w1 are
generated and then computes a root key punctured at point (T − 1∥salt) as KT−1

0 =
F.Constrain(K0, (T − 1∥salt)). It then simulates the encryption oracle by computing
CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [ℓ], x1,i = (KT−1

0 , i, ℓ, w0,i,Trap
1) and

Trap1 is as per Figure 12. It returns the ciphertext CT = {CTi}i∈[ℓ] to A.

48

(c) To simulate a function key for M , B does the following.
i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. In order to construct a function key for Next, B needs to hardwire two SKE
ciphertexts which it computes with the help of 1FE2 challenger as follows.

• Delegate the punctured root key to compute KT−1
T = F.KeyDel(KT−1

0 , fT).
• Create a 1FE2 challenge message pair as ((z01, z

0
2), (z

1
1, z

1
2)) such that ∀b ∈

{0, 1}, zb1 = (SYM, salt,KT−1
T , T − 1, ℓ, σb

T−1,Trap
1) and zb2 = (ST, qbT−1).

• It sends the challenge message pair ((z01, z
0
2), (z

1
1, z

1
2)) to the 1FE2 challenger

and gets back (CTsym,T−1,CTst,T−1).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,T−1) and
ct2 = SKE.Enc(K,CTst,T−1).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,ct1,ct2 to the
1FE2 challenger and returns a function key for M as SKM = (SKReRand, SKNext)
to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next that
outputs 1FE2 ciphertexts that are indistinguishable by the security of 1FE2 itself. Therefore, B
is an admissible 1FE2 adversary. Further, when the ciphertext for time step T − 1 is computed
as a 1FE2 encryption of a (symbol, state) pair corresponding to bit b = 0, A’s view is identical
to that of H(1, 5), and when the ciphertext for time step T −1 is computed as a 1FE2 encryption
of a (symbol, state) pair corresponding to bit b = 1, A’s view is identical to that of H(1, 6).
Thus, the advantage of A in distinguishing H(1, 5) and H(1, 6) translates to the advantage of
B in breaking the 1FE2 scheme.

Claim B.7. If F is a secure punctured, delegatable cPRF scheme, then hybrids H(1, 6) and
H(1, 7) are indistinguishable.

Proof. The proof is almost identical to Claim B.5 where the reduction plays as an adversary
against the cPRF challenger and simulates the TMFE adversary A. The only major exceptions
now are that B runs M on both the challenge messages w0 and w1 to know the (symbol, state)
pairs for both of them at the required time steps for constructing the data structure Trap and
that the 1FE2 ciphertext for the symbol and state corresponds to bit b = 1. Hence, we omit the
details.

Claim B.8. If 1FE1 is a secure CktFE scheme, then hybrids H(1, 7) and H(1, 8) are indistinguish-
able.

Proof. The proof is almost identical to Claim B.4 where the reduction plays as an adversary
against the 1FE1 challenger and simulates the TMFE adversary A. The only major exceptions
now are that B runs M on both the challenge messages w0 and w1 to know the (symbol, state)
pairs for both of them at the required time steps for constructing the data structure Trap and
that the 1FE2 ciphertext for the symbol and state corresponds to bit b = 1. Hence, we omit the
details.

Claim B.9. If 1FE1 is a secure CktFE scheme, then hybrids H(1, 8) and H(2, 1) are indistinguish-
able.

49

Proof. Given a PPT adversary A that distinguishes H(1, 8) and H(2, 1), we construct another
PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1

λ), salt← {0, 1}λ and two random
strings ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space of the SKE scheme.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state)

pairs (σ0
T−2, q

0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1 respectively.

Further, it records the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual
components of these (symbol, state) pairs for w0 and w1 respectively are generated
and then prepares a new pair of challenge distributions (D̂ℓ

0, D̂ℓ
1) for the 1FE1

challenger as follows.
i. For b = 0, D̂ℓ

0 = {x0 = (x0,1, . . . , x0,ℓ)}, where ∀i ∈ [ℓ] x0,i = (K0, i, ℓ, w0,i,Trap
0)

with Trap0 being same as Trap1 from Figure 12.

ii. For b = 1, D̂ℓ
1 = {x1 = (x1,1, . . . , x1,ℓ)}, where ∀i ∈ [ℓ] x1,i = (K0, i, ℓ, w0,i,Trap

1),
with the new fields in Trap1 as shown in Figure 13.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥
mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ1

T−1 ST TS1 : T − 2 ST val1 : q1T−1

mode-trap2 : 1 Target TS2 : T − 2 Sym TS2 : T ′′ Sym val2 : σ0
T−2 ST TS2 : T − 3 ST val2 : q0T−2

mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure 13: Trap1 configuration in H(2, 1)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to
A.

(d) To simulate a function key for M , B first requests for a function key to the
1FE1 challenger for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives SKReRand. B
computes by itself SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and
returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that for all time steps t /∈ {T ′, T − 2}, the decryption outputs are exactly the
same ciphertexts in both the H(1, 8) and H(2, 1). At a time step t ∈ {T ′, T − 2} in
H(2, 1), the decryption mimics the decryption of H(1, 8) dictated by (Trap1.mode-trap1 =
1 ∧ Trap1.mode-trap3 = ⊥). More specifically, in H(1, 8) the symbol and state ciphertexts
corresponding to time step T−1 is first computed by decrypting the SKE ciphertext components
hardwired in Next and outputting them at time steps T ′ and T − 2 respectively. Alternatively,
in H(2, 1), (Trap1.mode-trap1 = 1 ∧ Trap1.mode-trap3 = ⊥) dictates that these ciphertext

50

components are computed with the same randomness at exactly the same time steps T ′ and
T − 2 respectively. Thus B is an admissible adversary against the 1FE1 challenger since the
outputs for the two challenge message sets are exactly the same. If b = 0, A sees the distribution
of H(1, 8), while if b = 1, A sees the distribution of H(2, 1). Thus the advantage of A translates
to the advantage of B.

Claim B.10. If SKE is a secure symmetric-key encryption scheme, then hybrids H(2, 1) and
H(2, 2) are indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 1) and H(2, 2), we construct another
PPT adversary B who breaks the security of the SKE scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1
λ), (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1

λ)
and salt← {0, 1}λ. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B executes the oblivious TM M on both w0 and w1 to learn the (symbol, state)

pairs (σ0
T−2, q

0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1 respectively.

It also records the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual
components of these two (symbol, state) pairs are generated. It then simulates
the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈
[ℓ], x1,i = (K0, i, ℓ, w0,i,Trap

1) and Trap1 is as per Figure 13. It returns the ciphertext
CT = {CTi}i∈[ℓ] to A.

(c) To simulate a function key for M , B does the following.
i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2) as follows.

• Compute a delegated cPRF key KT−1 = F.KeyDel(K0, fT−1) and generate the
encryption randomness for time step T −2 as rT−2 = F.Eval(K0, (T −2∥salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′′

for the future time step T − 2 as CT0
sym,T−2 = 1FE2.Enc(1FE2.PK1, z

0
1; rT−2),

where z01 = (SYM, salt,KT−1, T − 2, ℓ, σ0
T−2,Trap

1) and Trap1 is as per
Figure 13.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 3
for the future time step T − 2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2, z
0
2; rT−2),

where z02 = (ST, q0T−2).

iii. It sends the 1FE2 ciphertexts CT0
sym,T−2,CT

0
st,T−2 to the challenger of the SKE

scheme and gets back ct1, ct2.

iv. B then computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and
returns a function key for M as SKM = (SKReRand, SKNext) to A.

51

3. When A outputs a guess, B does the same.

Note that the only difference between the two hybrids is that the SKE ciphertexts hard-
wired in the function key are random strings in H(2, 1) and are valid SKE encryptions of
(CT0

sym,T−2,CT
0
st,T−2) encoding the (symbol, state) pair for time step T−2 in H(2, 2). Hence the

advantage of an adversary who distinguishes between the two hybrids translates to an advantage
of an adversary against the SKE scheme.

Claim B.11. If 1FE1 is a secure CktFE scheme, then hybrids H(2, 2) and H(2, 3) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 2) and H(2, 3), we construct another
PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally,
it samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1

λ), salt ← {0, 1}λ,K ←
SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state)

pairs (σ0
T−2, q

0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1 respectively.

Further, it records the time steps (T ′′, T − 3) and (T ′, T − 2) when the individual
components of these (symbol, state) pairs for w0 and w1 respectively are generated
and then prepares a new pair of challenge distributions (D̂ℓ

0, D̂ℓ
1) for the 1FE1

challenger as follows.
i. For b = 0, D̂ℓ

0 = {x0 = (x0,1, . . . , x0,ℓ)}, where ∀i ∈ [ℓ] x0,i = (K0, i, ℓ, w0,i,Trap
0)

with Trap0 being same as Trap1 from Figure 13.

ii. For b = 1, D̂ℓ
1 = {x1 = (x1,1, . . . , x1,ℓ)}, where ∀i ∈ [ℓ] x1,i = (K0, i, ℓ, w0,i,Trap

1),
with the new fields in Trap1 as shown in Figure 14.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥
mode-trap1 : 1 Target TS1 : T − 1 Sym TS1 : T ′ Sym val1 : σ1

T−1 ST TS1 : T − 2 ST val1 : q1T−1

mode-trap2 : ⊥ Target TS2 : ⊥ Sym TS2 : ⊥ Sym val2 : ⊥ ST TS2 : ⊥ ST val2 : ⊥
mode-trap3 : 1 Target TS : T − 2 Sym TS : T ′′ ⊥ ST TS : T − 3 ⊥

Figure 14: Trap1 configuration in H(2, 3)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to
A.

(d) To simulate a function key for M , B does the following.
i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger

and receives SKReRand.

52

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2), as follows.

• Compute a delegated cPRF key KT−1 = F.KeyDel(K0, fT−1) and generate the
encryption randomness for time step T −2 as rT−2 = F.Eval(K0, (T −2∥salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′′

for the future time step T − 2 as CT0
sym,T−2 = 1FE2.Enc(1FE2.PK1, z

0
1; rT−2),

where z01 = (SYM, salt,KT−1, T − 2, ℓ, σ0
T−2,Trap

1) and Trap1 is as per
Figure 14.

• Compute the 1FE2 state ciphertext to be given as output at time step T − 3
for future time step T−2 as CT0

st,T−2 = 1FE2.Enc(1FE2.PK2, z
0
2;rT−2), where

z02 = (ST, q0T−2).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−2 and CT0

st,T−2,
it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−2) and ct2 =

SKE.Enc(K,CT0
st,T−2).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Observe that for all time steps t /∈ {T ′′, T − 3}, the decryption outputs are exactly the
same ciphertexts in both the H(2, 2) and H(2, 3). At time step t ∈ {T ′′, T − 3} in H(2, 2),
(Trap0.mode-trap2 = 1 ∧ Trap0.mode-trap3 = ⊥) (in Figure 13) dictates the decryption to
output two decomposed components of a single 1FE2 ciphertext, one component encoding
Trap0.Sym val2 = σ0

T−2 at time step T ′′ and the other encoding Trap0.ST val2 = q0T−2 at
time step T − 3. Alternatively in H(2, 3), (Trap0.mode-trap2 = ⊥ ∧ Trap1.mode-trap3 = 1) (in
Figure 14) dictates the decryption to firstly use Trap1.SKE.K = K to decrypt the hardwired
ciphertext ct1 and output CT0

sym,T−2 at time step T ′′ (respectively, ct2 and output CT0
st,T−2 at

time step T − 3). In both the hybrids these symbol and state ciphertext pieces are computed
for target time step T − 2. Thus B is an admissible 1FE1 adversary. If b = 0, A sees the
distribution of H(2, 2), while if b = 1, A sees the distribution of H(2, 3). Hence the advantage
of A translates to the advantage of B.

Claim B.12. If 1FE1 is a secure CktFE scheme, then hybrids H(2, 3) and H(2, 4) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 3) and H(2, 4), we construct another
PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK) ← 1FE2.Setup(1

λ), salt ← {0, 1}λ and a key K ←
SKE.KeyGen(1λ).

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).

53

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol,
state) pairs (σ0

T−2, q
0
T−2) and (σ1

T−1, q
1
T−1) at time steps T − 2 and T − 1 respec-

tively. Further, it records the time steps (T ′′, T − 3) and (T ′, T − 2) when the
individual components of these (symbol, state) pairs for w0 and w1 respectively
are generated. It then computes a root key punctured at point (T − 2∥salt)
as KT−2

0 = F.Constrain(K0, (T − 2∥salt)) and prepares a new pair of challenge
distributions (D̂ℓ

0, D̂ℓ
1) for the 1FE1 challenger as follows.

i. For b = 0, D̂ℓ
0 = {x0 = (x0,1, . . . , x0,ℓ)}, where ∀i ∈ [ℓ] x0,i = (K0, i, ℓ, w0,i,Trap

1)
with Trap1 as per Figure 14.

ii. For b = 1, D̂ℓ
1 = {x1 = (x1,1, . . . , x1,ℓ)}, where ∀i ∈ [ℓ] x1,i = (KT−2

0 , i, ℓ, w0,i,Trap
1),

with Trap1 as per Figure 14.
(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to
A.

(d) To simulate a function key for M , B does the following.
i. It requests for a function key for ReRand1FE2.PK,salt,qst,⊥,⊥ to the 1FE1 challenger

and receives SKReRand.

ii. It then computes 1FE2 encodings of (σ0
T−2, q

0
T−2), as follows.

• Compute a punctured, delegated key KT−2
T−1 = F.KeyDel(KT−2

0 , fT−1) and
generate the encryption randomness for time step T − 2 as rT−2 =
F.Eval(K0, (T − 2∥salt)).

• Compute the 1FE2 symbol ciphertext to be given as output at time step T ′′

for the future time step T − 2 as CT0
sym,T−2 = 1FE2.Enc(1FE2.PK1, z

0
1; rT−2),

where z01 = (SYM, salt,KT−2
T−1, T − 2, ℓ, σ0

T−2,Trap
1) and Trap1 is as per

Figure 14.
• Compute the 1FE2 state ciphertext to be given as output at time step T − 3

for future time step T−2 as CT0
st,T−2 = 1FE2.Enc(1FE2.PK2, z

0
2;rT−2), where

z02 = (ST, q0T−2).

iii. Once it has generated the two 1FE2 ciphertexts CT0
sym,T−2 and CT0

st,T−2,
it computes two SKE ciphertexts ct1 = SKE.Enc(K,CT0

sym,T−2) and ct2 =

SKE.Enc(K,CT0
st,T−2).

iv. Finally, it computes SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2)
and returns a function key for M as SKM = (SKReRand, SKNext) to A.

3. When A outputs a guess, B does the same.

Note that the only difference in H(2, 3) and H(2, 4) is the replacement of the root cPRF key K0

with a punctured root key KT−2
0 at point (T − 2∥salt) in time step T − 2 in the 1FE1 ciphertext.

Moreover, in both the hybrids, the field Trap1.mode-trap3 = 1 dictates the output at time step
t ∈ {T ′′, T −3} to be a ciphertext component for time step T −2 as argued in Claim B.11. Thus,
the cPRF key is only required to compute randomness at points ̸= (T − 2∥salt) for which the
punctured root key suffices. Further, it evaluates to the same value as the normal key on all
such points in both the hybrids. As a consequence, the decryption values are exactly the same
for all the time steps proving the admissibility of B. Thus if b = 0, A sees the distribution of
H(2, 3), while if b = 1, A sees the distribution of H(2, 4). Hence the advantage of A translates
to the advantage of B.

54

Claim B.13. If F is a secure punctured, delegatable cPRF scheme, then hybrids H(2, 4) and
H(2, 5) are indistinguishable.

Proof. The proof is almost identical to Claim B.5 where the reduction plays as an adversary
against the cPRF challenger and simulates the TMFE adversary A with the following major
exceptions.

1. B runs M on both the sampled messages w0 and w1 to know the (symbol, state) pairs
at the time steps T − 2 and T − 1 respectively for constructing the data structure Trap
as in H(2, 4). The challenge ciphertext encodes KT−2

0 , i.e., a root key punctured at point
(T − 2∥salt).

2. The cPRF challenger is queried at the point (T − 2∥salt) to receive an encryption
randomness for time step T − 2. This is used in computing the 1FE2 ciphertext encoding
the (symbol, state) pair generated at time steps (T ′′, T − 3) for time step T − 2 when M
is run on w0.

The other details follow as before and hence we omit them.

Claim B.14. If 1FE2 is a secure CktFE scheme, then hybrids H(2, 5) and H(2, 6) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 5) and H(2, 6), we construct another
PPT adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1
λ), salt← {0, 1}λ and K← SKE.KeyGen(1λ)

and gets 1FE2.PK from the 1FE2 challenger. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state)

pairs (σ0
T−2, q

0
T−2) and (σ1

T−2, q
1
T−2) respectively at time step T − 2. Additionally, B

also learns the (symbol, state) pair (σ1
T−1, q

1
T−1) that is generated at time step T − 1

when M is executed on w1. Further, it records the time steps (T ′′, T−3) and (T ′, T−
2) when the individual components of these (symbol, state) pairs for w0 and w1 are
generated and then computes a root key punctured at point (T − 2∥salt) as KT−2

0 =
F.Constrain(K0, (T − 2∥salt)). It then simulates the encryption oracle by computing
CTi = 1FE1.Enc(1FE1.PK, x1,i), where ∀i ∈ [ℓ], x1,i = (KT−2

0 , i, ℓ, w0,i,Trap
1) and

Trap1 is as per Figure 14. It returns the ciphertext CT = {CTi}i∈[ℓ] to A.
(c) To simulate a function key for M , B does the following.

i. It first computes SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,⊥,⊥).

ii. In order to construct a function key for Next, B needs to hardwire two SKE
ciphertexts which it computes with the help of 1FE2 challenger as follows.

• Delegate the punctured root key to compute KT−2
T−1 = F.KeyDel(KT−2

0 , fT−1).

55

• Create a 1FE2 challenge message pair as ((z01, z
0
2), (z

1
1, z

1
2)) such that ∀b ∈

{0, 1}, zb1 = (SYM, salt,KT−2
T−1, T − 2, ℓ, σb

T−2,Trap
1) and zb2 = (ST, qbT−2),

where Trap1 is as per Figure 14.
• It sends the challenge message pair ((z01, z

0
2), (z

1
1, z

1
2)) to the 1FE2 challenger

and gets back (CTsym,T−2,CTst,T−2).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,T−2) and
ct2 = SKE.Enc(K,CTst,T−2).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,ct1,ct2 to the
1FE2 challenger and returns a function key for M as SKM = (SKReRand, SKNext)
to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next that
outputs 1FE2 ciphertexts that are indistinguishable by the security of 1FE2 itself. Therefore, B
is an admissible 1FE2 adversary. Further, when the ciphertext for time step T − 2 is computed
as a 1FE2 encryption of a (symbol, state) pair corresponding to bit b = 0, A’s view is identical
to that of H(2, 5), and when the ciphertext for time step T −2 is computed as a 1FE2 encryption
of a (symbol, state) pair corresponding to bit b = 1, A’s view is identical to that of H(2, 6).
Thus, the advantage of A in distinguishing H(2, 5) and H(2, 6) translates to the advantage of
B in breaking the 1FE2 scheme.

Claim B.15. If F is a secure punctured, delegatable cPRF scheme, then hybrids H(2, 6) and
H(2, 7) are indistinguishable.

Proof. The proof is similar to Claim B.7 and hence we omit the details.

Claim B.16. If 1FE1 is a secure CktFE scheme, then hybrids H(2, 7) and H(2, 8) are
indistinguishable.

Proof. The proof is similar to Claim B.8 and hence we omit the details.

Claim B.17. If 1FE1 is a secure CktFE scheme, then hybrids H(2, 8) and H(3, 1) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(2, 8) and H(3, 1), we construct another
PPT adversary B who breaks the security of the 1FE1 scheme as follows.

1. B receives 1FE1.PK from the 1FE1 challenger and returns this to A. Additionally, it
samples by itself (1FE2.PK, 1FE2.MSK)← 1FE2.Setup(1

λ), salt← {0, 1}λ and two random
strings ct1, ct2 ← CSKE, where CSKE denotes the ciphertext space of the SKE scheme.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M obeying the admissibility criteria that
∀b ∈ {0, 1},wb ← Dℓ

b, runtime(M,w0) = runtime(M,w1) and M(w0)
c
≈ M(w1), B does

the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).

56

(b) B executes the oblivious TM M on both w0 and w1 to learn the two (symbol, state)
pairs (σ0

T−3, q
0
T−3) and (σ1

T−2, q
1
T−2) at time steps T − 3 and T − 2 respectively.

Further, it records the time steps (T ′′′, T − 4) and (T ′′, T − 3) when the individual
components of these (symbol, state) pairs for w0 and w1 respectively are generated
and then prepares a new pair of challenge distributions (D̂ℓ

0, D̂ℓ
1) for the 1FE1

challenger as follows.
i. For b = 0, D̂ℓ

0 = {x0 = (x0,1, . . . , x0,ℓ)}, where ∀i ∈ [ℓ] x0,i = (K0, i, ℓ, w0,i,Trap
0)

with Trap0 being same as Trap1 from Figure 14.

ii. For b = 1, D̂ℓ
1 = {x1 = (x1,1, . . . , x1,ℓ)}, where ∀i ∈ [ℓ] x1,i = (K0, i, ℓ, w0,i,Trap

1),
with the new fields in Trap1 as shown in Figure 15.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : ⊥ ⊥
mode-trap1 : 1 Target TS1 : T − 2 Sym TS1 : T ′′ Sym val1 : σ1

T−2 ST TS1 : T − 3 ST val1 : q1T−2

mode-trap2 : 1 Target TS2 : T − 3 Sym TS2 : T ′′′ Sym val2 : σ0
T−3 ST TS2 : T − 4 ST val2 : q0T−3

mode-trap3 : ⊥ Target TS : ⊥ Sym TS : ⊥ ⊥ ST TS : ⊥ ⊥

Figure 15: Trap1 configuration in H(3, 1)

(c) It sends the distribution pair to the 1FE1 challenger and relays the response back to
A.

(d) To simulate a function key for M , B first requests for a function key to the
1FE1 challenger for the function ReRand1FE2.PK,salt,qst,⊥,⊥ and receives SKReRand. B
computes by itself SKNext ← 1FE2.KeyGen(1FE2.MSK,Next1FE2.PK,salt,M ,ct1,ct2) and
returns a function key for M as SKM = (SKReRand, SKNext) to A.

Note that the (symbol, state) pair for time step T−2 has already been switched to correspond to
b = 1 from the prior hybrid. Thus, maintaining the trapdoor information for time step T − 1 is
now redundant and follows by normal decryption from time step T −2. The (symbol,state) pair
for time step T−3 now corresponds to bit b = 0 and therefore the decryption chain inconsistency
arises at time step T − 2 now. Hence, intuitively we “slide” the trapdoor by replacing a new
trapdoor data structure in H(3, 1) in a way that still maintains functional equivalence with
H(2, 8) at all the time steps but contains hardwired information about the time steps T −3 and
T − 2 now. We show the admissibility of the reduction B as follows.

Observe that for all time steps t /∈ {T ′′, T − 3, T ′′′, T − 4}, the decryption outputs are
exactly the same sequence of ciphertexts in both the hybrids which are output by the normal
decryption. At a time step t ∈ {T ′′, T − 3, T ′′′, T − 4} in H(3, 1), the decryption is dictated by
Trap1.mode-trap1 = Trap1.mode-trap2 = 1. In particular, the ciphertext components for time
step T − 2 corresponding to b = 1 is output at time steps T ′′ and T − 3 and is triggered by
Trap0.mode-trap3 = 1 in H(2, 8) and Trap1.mode-trap1 = 1 in H(3, 1). On the other hand, the
ciphertext components for time step T − 3 corresponding to b = 0 is output at time steps T ′′′

and T − 4 and is triggered by the normal decryption in H(2, 8) and by Trap0.mode-trap2 = 1
in H(3, 1). The ciphertext components for time step T − 1 corresponding to b = 1 is output
at time steps T ′ and T − 2 and is triggered by Trap0.mode-trap1 = 1 in H(2, 8) and by the
normal decryption (as a consequence of already having the outputs at time step T − 2 switched
to b = 1) in H(3, 1). Further, note that all these ciphertext components are exactly the same
for both the hybrids.

Therefore, B is an admissible adversary against the 1FE1 challenger since the outputs for
the two challenge message sets are exactly the same. Hence A sees the distribution of H(2, 8),

57

if b = 0, and that of H(3, 1), if b = 1. Thus the advantage of A translates to the advantage of
B.

Note thatH(3, i) is analogous toH(2, i), ∀i ∈ [8]. Now consider any pair of challenge message
vectors {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1} of arbitrary length ℓ with any TM M taking T
time steps to halt on either inputs. In general, we have that H(t, i) is analogous to H(t− 1, i),
for all t ∈ [3, T − (ℓ+1)], i ∈ [8]. Observe further that for any given k ∈ [3, T − (ℓ+1)], we have
the following computational indistinguishability chain via the intermediate hybrids.

H(k − 1, 1)
c
≈ H(k − 1, 2)

c
≈ · · ·

c
≈ H(k − 1, 8)

c
≈ H(k, 1)

c
≈ H(k, 2)

c
≈ · · ·

c
≈ H(k, 8)

We can easily extend this computational indistinguishability chain further to have the following.

H(0)
c
≈ H(1, 1)

c
≈ H(1, 8)

c
≈ H(2, 1)

c
≈ H(2, 8)

c
≈ · · ·

c
≈ H(T − (ℓ+ 1), 1)

c
≈ H(T − (ℓ+ 1), 8)

Note that in H(T − (ℓ + 1), 8), the (symbol, state) pair corresponding to the output at time
step ℓ+ 1 has already been switched to b = 1. Proceeding one step backward in the execution
chain we reach time step ℓ where the 1FE2 ciphertext components are computed partially by
each of SKReRand and SKNext. More specifically, at any time step j ∈ [2, ℓ] the 1FE2 ciphertext
component encoding the “symbol” wj is output by ReRand. Accordingly, the 1FE2 ciphertext
component encoding the “state” qj for the same time step j is output by Next only when it gets
(wj−1, qj−1) as input, i.e., the symbol and state at time step j − 1, each of which is encrypted
with the exact same randomness. Hence, to proceed with the security proof at any time step
j ∈ [2, ℓ], while switching from b = 0 to b = 1 the reduction B simulating 1FE1 itself will
now hardwire the SKE ciphertext encoding 1FE2.CT(wb,j) into ReRand and the SKE ciphertext
encoding 1FE2.CT(q

b
j) into Next after receiving them from the 1FE2 challenger. At time step

j = 1, B hardwires the SKE ciphertext encoding both 1FE2.CT(wb,1) and 1FE2.CT(qst) into
ReRand function only. This is since ReRand outputs the (symbol, state) ciphertext pair at the
first time step as per functionality. Indistinguishability between these hybrids is as before.

Similar to the transition from H(2, 8) to H(3, 1), at time step j = ℓ+1 we slide the trapdoor
to switch the ciphertext in slot 1 for time step ℓ + 1 (corresponding to b = 1) and slot 2 for
time step ℓ (corresponding to b = 0). We also set Trap1.mode-trap3 = ⊥,Trap1.mode-trap1 =
Trap1.mode-trap2 = 1. The decryption values being exactly the same in H(T − (ℓ + 1), 8) and
H(T − ℓ, 1), security follows from 1FE1.

However, once we reach time step ℓ at H(T−ℓ, 8) when the bit b (for time step ℓ) has already
been switched from 0 to 1 and we are about to slide the trapdoor to go to the next hybrid, we
must add an additional hybrid H(T − j, 9) for all j ∈ [1, ℓ], as discussed in Section 3.3, namely:
H(T − j, 9) : In this hybrid, we modify the 1FE1 challenge ciphertext in position j as follows:

the encoded message is changed corresponding to b = 1 and flag mode-real = 1. The other flags
mode-trap1 = mode-trap2 = mode-trap3 = ⊥.

Consider j = ℓ. Note that all ciphertexts previous to time step ℓ remain unchanged, and
output their corresponding symbol ciphertexts correctly. The Next circuit outputs the state
ciphertext for time step ℓ corresponding to bit b = 1. The only difference between this hybrid
and the previous one is that here we use the real mode to output the symbol ciphertext for
b = 1 whereas previously we used the trapdoor mode to output the same symbol CT. Hence,
decryption values in both hybrids are exactly the same, and indistinguishability follows from
security of 1FE1.

As before from H(1, 8) to H(2, 5) and H(2, 6) to H(3, 1), we get two similar sequence of
hybrids from H(T − (ℓ+1), 8) to H(T − ℓ, 5) and from H(T − ℓ, 6) to H(T − ℓ, 8). Additionally
we now go from H(T − ℓ, 8) to H(T − (ℓ− 1), 1) via the intermediate extra hybrid H(T − ℓ, 9)
as follows.

58

H(T − (ℓ+ 1), 8)

1FE1
c
≈ H(T − ℓ, 1)

SKE
c
≈ H(T − ℓ, 2)

1FE1
c
≈ H(T − ℓ, 3)

1FE1
c
≈ H(T − ℓ, 4)

cPRF
c
≈ H(T − ℓ, 5)

H(T−ℓ, 6)
cPRF
c
≈ H(T−ℓ, 7)

1FE1
c
≈ H(T−ℓ, 8) and H(T − ℓ, 8)

1FE1
c
≈ H(T − ℓ, 9)︸ ︷︷ ︸

1FE1
c
≈ H(T−(ℓ−1), 1)

In the following claims, we show a formal reduction between H(T −ℓ, 5) and H(T −ℓ, 6) and
sketch a high level proof of computational indistinguishability for that of between H(T − ℓ, 8)
and H(T −ℓ, 9) thereby connecting the above computational indistinguishability chains into one
when the symbol and state at time step ℓ gets switched from b = 0 to b = 1 finally.

Claim B.18. If 1FE2 is a secure CktFE scheme, then hybrids H(T − ℓ, 5) and H(T − ℓ, 6) are
indistinguishable.

Proof. Given a PPT adversary A that distinguishes H(T − ℓ, 5) and H(T − ℓ, 6), we construct
another PPT adversary B who breaks the security of the 1FE2 scheme as follows.

1. B samples (1FE1.PK, 1FE1.MSK)← 1FE1.Setup(1
λ), salt← {0, 1}λ and K← SKE.KeyGen(1λ)

and gets 1FE2.PK from the 1FE2 challenger. It sends PK = 1FE1.PK to A.

2. When A outputs a pair of challenge distributions (Dℓ
0,Dℓ

1) with support Σℓ for any
arbitrary ℓ = poly(λ) and a function query M which obeys the admissibility criteria,
B does the following.

(a) To simulate the challenge ciphertext, it first samples a pair of challenge messages
(w0,w1)← (Dℓ

0,Dℓ
1) such that {wb}b∈{0,1} = {(wb,1, . . . , wb,ℓ)}b∈{0,1}. It also samples

a root cPRF key K0 ← F.Setup(1λ).
(b) B learns the two (symbol, state) pairs at time step ℓ when the oblivious TM M is

run on both w0 and w1. Denote these pairs as (σ0
ℓ , q

0
ℓ) and (σ1

ℓ , q
1
ℓ), where σb

ℓ = wb,ℓ

now. B also learns the (symbol, state) pair at time step ℓ + 1 when M is run
on w1 and denote this pair as (σ1

ℓ+1, q
1
ℓ+1). Further, it also records the time steps

(ℓ, ℓ−1) and (ℓ′, ℓ), ℓ′ ≤ ℓ when the individual components of the (symbol, state) pairs
(σb

ℓ , q
b
ℓ), ∀b ∈ {0, 1} and (σ1

ℓ+1, q
1
ℓ+1) respectively are generated and then computes

a root key punctured at point (ℓ∥salt) as Kℓ
0 = F.Constrain(K0, (ℓ∥salt)). It then

simulates the encryption oracle by computing CTi = 1FE1.Enc(1FE1.PK, x1,i), where
∀i ∈ [ℓ], x1,i = (Kℓ

0, i, ℓ, w0,i,Trap
1) and Trap1 is as per H(T − ℓ, 3) shown in Figure

16. It returns the ciphertext CT = {CTi}i∈[ℓ] to A.

mode-real : ⊥ key-id : salt val0 : w0,i val1 : w1,i SKE.K : K ⊥
mode-trap1 : 1 Target TS1 : ℓ+ 1 Sym TS1 : ℓ′ Sym val1 : σ1

ℓ+1 ST TS1 : ℓ ST val1 : q1ℓ+1

mode-trap2 : ⊥ Target TS2 : ⊥ Sym TS2 : ⊥ Sym val2 : ⊥ ST TS2 : ⊥ ST val2 : ⊥
mode-trap3 : 1 Target TS : ℓ Sym TS : ℓ ⊥ ST TS : ℓ− 1 ⊥

Figure 16: Trap1 configuration in H(T − ℓ, 3)

(c) To simulate a function key for M , B does the following.
i. In order to construct a function key for ReRand and Next, B now needs to

hardwire an SKE ciphertext in each of the functions which it computes with
the help of 1FE2 challenger as follows.

59

• Delegate the punctured root key to compute Kℓ
ℓ+1 = F.KeyDel(Kℓ

0, fℓ+1).
• Create a 1FE2 challenge message pair as ((z01, z

0
2), (z

1
1, z

1
2)) such that ∀b ∈

{0, 1}, zb1 = (SYM, salt,Kℓ
ℓ+1, ℓ, ℓ, σ

b
ℓ ,Trap

1) and zb2 = (ST, qbℓ).
• It sends the challenge message pair ((z01, z

0
2), (z

1
1, z

1
2)) to the 1FE2 challenger

and gets back (CTsym,ℓ,CTst,ℓ).

• It then computes the two SKE ciphertexts ct1 = SKE.Enc(K,CTsym,ℓ) and
ct2 = SKE.Enc(K,CTst,ℓ).

ii. B now computes by itself SKReRand ← 1FE1.KeyGen(1FE1.MSK,ReRand1FE2.PK,salt,qst,ct1,⊥).

iii. B receives SKNext for requesting a function key for Next1FE2.PK,salt,M,⊥,ct2 to the
1FE2 challenger and returns a function key for M as SKM = (SKReRand, SKNext)
to A.

3. When A outputs a guess, B does the same.

Note that the function key queried by B to the 1FE2 challenger is for a function Next that
outputs 1FE2 ciphertexts that are indistinguishable by the security of 1FE2 itself. Therefore, B
is an admissible 1FE2 adversary. Further, when the ciphertext for time step ℓ is computed as a
1FE2 encryption of a (symbol, state) pair corresponding to bit b = 0, A’s view is identical to that
of H(T − ℓ, 5), and when the ciphertext for time step ℓ is computed as a 1FE2 encryption of a
(symbol, state) pair corresponding to bit b = 1, A’s view is identical to that ofH(T−ℓ, 6). Hence
the advantage of A in distinguishing H(T − ℓ, 5) and H(T − ℓ, 6) translates to the advantage of
B in breaking the 1FE2 scheme.

Claim B.19. If 1FE1 is a secure CktFE scheme, then hybrids H(T − ℓ, 8) and H(T − ℓ, 9) are
indistinguishable.

Proof. We describe the proof at a high level and omit the details. Note that all ciphertexts
previous to time step ℓ remain unchanged, and output their corresponding symbol ciphertexts
correctly. The Next circuit outputs the state ciphertext for time step ℓ corresponding to bit
b = 1. The only difference between this hybrid and the previous one is that here we use the real
mode to output the symbol ciphertext for b = 1 whereas previously we used the trapdoor mode
to output the same symbol ciphertext. Hence, decryption values in both hybrids are exactly the
same. When the 1FE1 ciphertext for time step ℓ is computed corresponding to b = 0, A’s view
is identical to that of H(T − ℓ, 8), and when the 1FE1 ciphertext for time step ℓ is computed
corresponding to b = 1, A’s view is identical to that of H(T − ℓ, 9). Hence the advantage of A
in distinguishing H(T − ℓ, 8) and H(T − ℓ, 9) translates to the advantage of B in breaking the
1FE1 scheme.

Denoting τ = (T −j) for any j ∈ [ℓ], we get a sequence of hybrids shown below, where we define
H(T, 1) ∆

= H(T) and have the final Claim B.20 which completes the proof of Theorem 3.1.

H(τ, 8)
1FE1
c
≈ H(τ, 9)

1FE1
c
≈ H(τ + 1, 1)

SKE
c
≈ · · ·

cPRF
c
≈ H(τ + 1, 5)

1FE2
c
≈ H(τ + 1, 6)

cPRF
c
≈ · · ·

1FE1
c
≈

H(τ + 1, 8)

1FE1
c
≈ H(τ + 1, 9)

1FE1
c
≈ H(τ + 2, 1)

Claim B.20. If 1FE1 is a secure CktFE scheme, then hybrids H(T − 1, 9) and H(T) are
indistinguishable.

60

Proof. Note that Trap1.mode-real = 1 for ciphertexts in both worlds. The only difference
between both these hybrids is that in the former Trap contains other information whereas in the
latter all other fields disabled with ⊥. However, since Trap1.mode-real = 1, these fields anyway
play no role in decryption, so the decryption values stay the same.

Selective Security. The above proof shows security as per the weak selective definition, in
which the adversary submits the challenge messages and keys at the same time. This can be
easily strengthened to selective security in which the key requests can be made after seeing the
challenge ciphertext. Since the full selective game requires an additional trapdoor structure,
we did not show it here for ease of exposition, as the current proof is already quite complex.
Note that currently, the proof is restricted to weak selective because in order to program the
symbol and state messages for some time step in the Trap data structure, the machine which
produces these symbol, state pairs must be specified. This dependency may be easily overcome
by instead having an additional trapdoor data structure in the key, which contains the above
information. Thus, the challenge ciphertext can be programmed without knowledge of the keys,
and selective security can be achieved. We defer details to the full version of the paper.

C Missing Details in Proof of Theorem 4.1

The modified trapdoor data structure is shown in Figure 17. There is an additional field that
records the global salt value.

mode-real key-id global-salt val0 val1 SKE.K

mode-trap1 Target TS1 Sym TS1 Sym val1 ST TS1 ST val1
mode-trap2 Target TS2 Sym TS2 Sym val2 ST TS2 ST val2
mode-trap3 Target TS Sym TS ⊥ ST TS ⊥

Figure 17: Data Structure Trap used for Proof

The Hybrids. We consider the case where the adversary makes a single key query but makes Q
ciphertext queries in each co-ordinate. We assume a lexicographic ordering over the Qk global
salt values, and denote by gsaltj the jth member of this sequence.

H(0): This is the real world, when mode-real = 1 and mode-trap1 = mode-trap2 = mode-trap3 =
⊥ for all ciphertexts.
For j ∈ [Qk], do:

H(j, 1, 1): In this world, all ciphertexts (constructed by the encryptor as well as function keys)
have mode-real = ⊥, mode-trap1 = 1, mode-trap2 = 1, mode-trap3 = ⊥. We program the
last link in the decryption chain corresponding to gsaltj for switching bit b by setting:

Target TS1 = T − 1,Target TS2 = T − 2

The fields Sym TS1 and ST TS1 contain the time steps when the symbol and state
ciphertext pieces are generated for time step T − 1, and the fields Sym val1 and ST val1
contain the symbol and state values which must be encrypted by the function key in the
above time steps when mode-trap1 is set.

61

Indistinguishability follows from security of kFE, since the decryption values in both
hybrids are exactly the same.

H(j, 1, 2): Hardwire the Next key with an SKE encryption of symbol and state ciphertexts
output at step T − 1 corresponding to execution thread gsaltj for b = 0. Use the same
ciphertexts would be generated in the previous hybrid.
Indistinguishability follows from security of SKE, since the only difference is the value of
the message encrypted using SKE which is embedded in the key.

H(j, 1, 3): Set mode-trap1 = ⊥, mode-trap2 = 1, mode-trap3 = 1 and Target TS = T − 1. In
this hybrid the hardwired value in the key is used to be output as step T − 1 ciphertext
corresponding to execution thread gsaltj .
Indistinguishability follows from security of kFE, since the decryption values in both
hybrids are exactly the same.

H(j, 1, 4): Change normal root key K0 to punctured root key KT−1
0 which punctures all

delegated keys at point (T − 1∥key-id∥gsaltj).
Indistinguishability follows from security of kFE.

H(j, 1, 5): Switch the randomness in the 1FE ciphertexts which are hardwired in the key to
true randomness.
Indistinguishability follows from security of punctured cPRF for the aforementioned
function family, since the remainder of the distribution only uses the punctured key.

H(j, 1, 6): Switch the value encoded in the 1FE ciphertexts which are hardwired in the key to
correspond to b = 1.
Indistinguishability follows from security of 1FE.

H(j, 1, 7): Switch randomness back to PRF randomness in the ciphertext hardwired in key,
using the punctured key for all but the hardwired ciphertext.
Indistinguishability follows from security of cPRF as discussed above.

H(j, 1, 8): Switch the punctured root key to the normal root key.
Indistinguishability follows from security of kFE as discussed above.

H(j, 2, 1): Switch ciphertext in slot 1 for target T − 1 to be for b = 1. Slot 2 remains b = 0.
Set mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of kFE, since the decryption values in both
hybrids are exactly the same.

H(j, 2, 2): Hardwire key with SKE encryption of 1FE ciphertext for time step T − 2 and bit
b = 0 (same as hybrid (1, 2) but for T − 2).
Indistinguishability follows from security of SKE as above.

H(j, 2, 3): Set mode-trap1 = 1 with target T − 1, mode-trap2 = ⊥, and mode-trap3 = 1 with
target T − 2.
Indistinguishability follows from security of kFE, since the decryption values in both
hybrids are exactly the same.

62

H(j, 2, 4): Switch normal root key to punctured key at position T − 2.
Indistinguishability follows from security of kFE as discussed above.

H(j, 2, 5): Switch randomness to true in the ciphertext hardwired in key.
Indistinguishability follows from security of cPRF as discussed above.

H(j, 2, 6): Switch hardwired 1FE ciphertext for step T − 2 to correspond to bit b = 1.
Indistinguishability follows from security of 1FE.

H(j, 2, 7): Switch randomness back to use the PRF in the ciphertext hardwired in key.
Indistinguishability follows from security of cPRF as discussed above.

H(j, 2, 8): Switch punctured root key to normal root key.
Indistinguishability follows from security of kFE as discussed above.

H(j, 3, 1): Intuitively, we slide the trapdoor left by one step, i.e. change target time-steps to
T − 2 and T − 3 in the ciphertext. Now slot 1 for T − 2 corresponds to b = 1 and slot 2
for T − 3 to b = 0. Set mode-real = mode-trap3 = ⊥ and mode-trap1 = mode-trap2 = 1.
Indistinguishability follows from security of kFE, since the decryption values in both
hybrids are exactly the same. Note that now slot T−1 is redundant, since T−2 ciphertext
is already switched to b = 1.
Hybrid H(j, 3, i) will be analogous to H(j, 2, i) for i ∈ [8].
As we proceed left in the execution chain one step at a time, we reach step ℓ where ℓ = |w|,
i.e. time steps for which kFE ciphertexts are provided by the encryptor. At this point
we will hardwire the Agg key instead for the symbol ciphertexts and the Next key for the
state ciphertexts with the exception at time step 1 when we will hardwire both the symbol
ciphertext and the start state ciphertext in Agg key itself.
After going through all the global salt values and all the key values, we replace the
challenge ciphertext to have mode-real = 1 and message corresponding to b = 1, one
step at a time. This is analogous to the case of single input TMFE, except that we must
additionally track global salt values.

H(T): In this hybrid all ciphertexts have mode-real = 1, all other trapdoor information is set
to ⊥ and b = 1 is used. This is the real world with b = 1.
Indistinguishability from H(j + 1, 1, 1) follows from security of kFE since the decryption
values in both hybrids are exactly the same.

D Constrained PRF for our Function Family

Our proof makes use of a set of delegatable constrained pseudorandom functions (cPRF). We
require T delegatable cPRFs, denoted by Fi for i ∈ [T], where each cPRF in turn supports T
delegations. The sequence of delegated keys for Fi are denoted by {Ki,t}i,t∈[T], corresponding
to functions fi,t, such that the satisfying set of fi,t+1 is strictly contained within the satisfying
set of fi,t, for all i, t ∈ [T].

In more detail, for any polynomial poly(λ), define fi,t : {0, 1}λ+poly(λ) → {0, 1} as follows.
fi,t(x∥z) = 1 if x ≥ t ∧ (x∥z) ̸= i

= 0 otherwise

Thus, the root key (and hence all delegated keys) of Fi are punctured at the point i.

63

Overview. We provide a construction for a cPRF F which supports puncturing and delegation
as required; the T cPRFs Fi for i ∈ [T] may each be constructed similarly. To begin, note that
we require the root key of F to be punctured at a point i∗ (say). The cPRF construction for
punctured PRF [BW13, KPTZ13, BGI14] (which is in turn inherited from the standard PRG
based GGM [GGM86]) immediately satisfies this constraint, so we are left with the question of
delegation.

Recall that we are required to delegate T times, where T is the (polynomial) runtime of the
Turing machine on the encrypted input (please see Section 3), and the jth delegated key must
support evaluation of points {(k∥z) : z ∈ {0, 1}λ} for k ≥ j, except when (k∥z) = i∗. This may
be viewed as the jth key being punctured on points [1, j−1]∪ i∗. We show that the GGM based
construction for puncturing a single point can be extended to puncturing an interval (plus an
extra point). Intuitively, puncturing an interval corresponds to puncturing at most λ internal
nodes in the GGM tree. In more detail, we show that regardless of the value of j, it suffices to
puncture at most λ points in the GGM tree to achieve puncturing of the entire interval [1, j−1].

Construction. Formally, the cPRF F is defined as follows. Our constrain algorithm takes as
input the set of points on which to puncture the PRF, as opposed to the satisfying set. We
compute the GGM tree as in Figure 18 and number the leaves from 1 to 2(λ+poly(λ)).

K

0G0(K)

00G0(G0(K))

000 001

01 G1(G0(K))

010 011

1 G1(K)

10G0(G1(K))

100 101

11 G1(G1(K))

110 111

i∗j − 1

Figure 18: To puncture i∗ = 010 draw path from root to i∗ and reveal nodes that are siblings
along the path. To puncture interval [1, 2]∪ {i∗} = {000, 001} ∪ {010}, compute the set Grey =
{000, 001, 00} and the punctured set P = {00, 010}. Further compute the initial revealed set
R0 = {(1, 01), (1, 00, 011)} and replace 00 and 01 by 011 to get the final revealed set Rf =
{1, 011}.

Setup(1λ): Sample a standard length doubling PRG G with seed s0. Output pk = G and
K0 = s0. As usual, we will denote by G0 the first half of the PRG output and by G1 the
second half.

Constrain(K0, [1, j−1]∪ i∗): Upon input the root key K0 and the set of points to be punctured,
do the following:

1. Compute puncturing set P: Initialize P to contain the point i∗. Compute the path
from the root node to node corresponding to point j − 1. For any right edge (a, b)
along the path, mark the left child of a grey. Mark the final node j − 1 grey. At

64

this point we have a set of grey nodes which must be punctured. Minimize this set
by checking whether both children of a node are grey, in which case, also mark the
parent grey. Finally, add the grey nodes which do not have grey parents to a set P.

2. Computing revealed set R: For every node in the set P, compute the punctured key
(as in GGM) as follows. For every node k ∈ P , compute the path from the root to k,
and add the siblings of all nodes along the path to the set R 14. Trim this set so as
to remove conflicts caused by overlapping paths as follows: if any punctured node b
in P is a descendent of some node a in R, remove a from R, compute the path from
a to b and add all the siblings of the nodes on this path to R. Repeat until there are
no more changes to R.

3. Output Kj = R.

KeyDel(Kj , fj+1): Given the punctured key for set [1, j], compute the punctured key for [1, j+1]
as follows. Note that it suffices to delegate from j to j + 1 to imply delegation from j to
any j′ for j′ > j.

1. Consider the case when j is a left child and j + 1 is a right child of the same parent.
In this case, the set Kj contains the node corresponding to j + 1. Delete this node
and return the resultant set as Kj+1.

2. Consider the case when j is a right child and j +1 is a left child of the neighbouring
parent. In this case Kj contains the parent of node j + 1. Use the parent to
evaluate the value corresponding to node j + 2, remove the parent and add the
value corresponding to node j + 2.

Eval(Kj , y): Evaluate the GGM tree on input y as Gy1 ◦ . . . ◦ Gyn(s0) and output it. Note
that Kj contains enough information to compute the path from root to y as long as y is
supported by Kj .

Correctness. We argue correctness of the Constrain algorithm first. To begin, we claim that to
puncture the interval [1, j − 1], it suffices to compute the path from the root node to j − 1, and
puncture the left siblings of any right edges along the path, i.e. if (a, b) is a right edge along the
path, we puncture the left child of a. Since a descendent of the left child of a must necessarily
have value < j− 1, it is necessary to puncture these nodes. Moreover it is sufficient, along with
j − 1 to puncture these nodes, because i) any node of value < j − 1 must have an ancestor,
say aj−1 which lies along the path P from root to j − 1 ii) If (aj−1, bj−1) ∈ P for some bj−1,
then (aj−1, bj−1) is a right edge. Since Constrain algorithm populates P with this set of points
and then minimizes this set, we have that P represents the punctured points in the tree. Next,
we argue that the nodes returned via the set R is correct: to see this, note that R is initially
populated with all the constrained keys for each punctured point in P, and this set is trimmed
to remove conflicts caused by overlapping paths. Thus, the resultant nodes returned in the set
R capture the intersection of points whose evaluation is admitted by each punctured key.

Finally, note that the Constrain algorithm runs in polynomial time: this is because we may
use binary search to compute the path from the root to any node in the graph, and all operations
deal with listing the siblings along these paths which take O(poly(λ)). Moreover, we note that
there is at most one punctured point at every level for any interval [1, j− 1], which implies that
the total runtime of Constrain is O((poly(λ))2).

14Note that this is exactly the constrained key provided for a single punctured point in the GGM based
construction.

65

Correctness of Eval is immediate, since evaluation is exactly the same as GGM evaluation.
Correctness of KeyDel is also straightforward, since we only delegate one step at a time, hence
it suffices to simply puncture one additional node corresponding to a point j+1, which is either
the right child of the same parent as j, or the left child of the neighbouring parent. Puncturing
a single node is immediate in either of these cases, as described in KeyDel above.

Security. We argue that given a punctured key, an adversary cannot distinguish a pseudoran-
dom value from a random value on any input y that is not supported by the punctured key.
Since by construction of the constrained key, the adversary does not possess any node along
the path from the root to the node corresponding to y, we have that the node corresponding to
y is pseudorandom by the standard hybrid argument for GGM security.

E Constructing DI Secure Functional Encryption

Let 1FE be a single input functional encryption scheme which satisfies standard indistinguishabil-
ity based security. We will construct a single input functional encryption scheme DiFE satisfying
distributional indistinguishability as shown below. Our proof follows the strategy of embedding
a hidden thread in the functionality which is only active during simulation [CIJ+13, ABSV15].
We note that the scheme presented below is public key, but directly lends itself to a private key
version by instead relying on private key 1FE.

DiFE.Setup(1λ, 1n): Upon input the security parameter and length of input message, do the
following:

1. Invoke (PK,MSK)← 1FE.Setup(1λ, 1n+λ+1) and output (PK,MSK).

DiFE.Enc(PK,x): Upon input the public key PK and a vector x ∈ X n, do the following:

1. Output CTx = 1FE.Enc
(
PK, (x,0, 0)

)
.

DiFE.KeyGen(MSK, f): Upon input the master secret key MSK and a circuit f , do the following:

1. Choose CT randomly from the space of Sym ciphertexts.
2. Output SKf = 1FE.KeyGen(MSK, f ′) where f ′ is as defined in Figure 19.

Functionality f ′
f,CT(x, Sym.K,mode)

If mode = 0, output y = f(x) else output y = Sym.Dec(K,CT).

Figure 19: Functionality f ′
f,CT

DiFE.Dec(PK,CTx, SKf): Upon input the public key PK, a ciphertext CTx and a function key
SKf , compute 1FE.Dec(PK,CTx, SKf) and output it.

Correctness. We have by correctness of 1FE that decryption recovers f(x) as desired.

66

Proof of Security.

Next, we argue that the DiFE scheme constructed above is secure.

Theorem E.1. Assume that 1FE is an FE scheme that satisfies standard indistinguishability
based security and that Sym is a secure symmetric key encryption scheme. Then, the DiFE
scheme constructed above satisfies distributional indistinguishability based security.

Proof. The proof proceeds via a sequence of hybrids where the first hybrid corresponds to an
encryption of vector x0 chosen from distribution D0 and the last hybrid corresponds to an
encryption of vector x1 chosen from distribution D1.

Hybrid 0: This is the real world with x0 ← D0.

Hybrid 1: In this world, we hardwire the output of the function y = f(x0), where x0 ← D0 into
the function key using symmetric key encryption. That is, let CT = Sym.Enc(Sym.K, y).

Hybrid 2: In this world, change the message in the ciphertext, i.e. message encoded is
(⊥, Sym.K,mode = 1).

Hybrid 3: In this world, we change the value of y to y = f(x1).

Hybrid 4: In this world, we change the message encrypted to (x1,0,mode = 0) where x1 ← D1.

Hybrid 5: In this world, we change the value of CT hardwired in the key back to random.

Next, we argue that consecutive hybrids are indistinguishable.

Lemma E.2. Hybrids 0 and 1 are indistinguishable assuming the security of Sym.

Proof. The only thing that changes between Hybrid 0 and 1 is the choice of CT, so that in the
former it is chosen randomly and in the latter case it is an honest encryption of the scheme
Sym. Given an adversary A who distinguishes between Hybrid 0 and Hybrid 1, we construct
an adversary B who breaks the semantic security of Sym.
B generates the public key honestly and returns it to A. When A outputs two challenge

distributions D0, D1, B samples x0 ← D0. It honestly computes ciphertexts for (x0,0,mode = 0)
and returns these to A. When A requests a function key f , B computes the value y = f(x0),
and sends y to the Sym challenger. The Sym challenger responds with CT which is either an
honest encryption of y or an element chosen randomly from the ciphertext space. B uses CT in
constructing the function key and returns this to A. Now, if CT is random, A sees the view of
Hybrid 0 and if it is an encryption of y, it sees the view of Hybrid 1.

Lemma E.3. Hybrids 1 and 2 are indistinguishable assuming the security of 1FE.

Proof. The only difference between Hybrids 1 and 2 is that in the former the encrypted message
is (x0,0,mode = 0) and in the latter it is (⊥, Sym.K,mode = 1). Assume there is an adversary
A who distinguishes between Hybrid 1 and Hybrid 2, we construct an adversary B who can
break the security of 1FE.
B does the following:

1. It obtains the public key from the 1FE challenger and returns this to A.

2. When A outputs two distribution pairs (D0, D1), it samples x0 ← D0, Sym.K and returns
challenges (x0,0,mode = 0) and (⊥, Sym.K,mode = 1) to the 1FE challenger. It obtains
an encryption of one of them chosen at random and returns this to A.

67

3. When A outputs a function f , B constructs the function f ′ as described in Figure 19
and sends this to the 1FE challenger. Here, CT is computed as Sym.Enc(Sym.K, y) where
y = f(x0). It returns the obtained key to A.

4. When A outputs a guess bit, it outputs the same.

When the 1FE challenger returns an encryption of (x0,0,mode = 0), A sees the view of Hybrid
1, and when it returns an encryption of (⊥, Sym.K,mode = 1), it sees the view of Hybrid 2.
Note that in either case the decrypted value is the same. Thus, the advantage of A translates
to the advantage of B.

Lemma E.4. Hybrids 2 and 3 are indistinguishable since f(x0) ≈ f(x1).

Proof. The only thing that differs in these 2 hybrids is the value of y. Given an adversary
A who distinguishes between hybrids 2 and 3, we construct an adversary B who distinguishes
between f(x0) and f(x1). B does the following:

1. It samples the public key honestly and gives it to A.

2. When A outputs challenge distributions D0 and D1, it computes the ciphertext for
(⊥, Sym.K,mode = 1) honestly and returns this.

3. When A outputs a key request for function f , B outputs (D0, D1, f) to the distribution
challenger. B receives y0 = f(x0) or y1 = f(x1), where xb ← Db for b ∈ {0, 1}. It uses
this to construct the circuit f ′. It then computes the key for f ′ honestly and returns this
to A.

4. When A outputs a guess, B outputs the same.

If B receives y0, A sees the distribution of Hybrid 2, else it sees the distribution of Hybrid 3.
The advantage of A therefore translates to an advantage of B.

Lemma E.5. Hybrids 3 and 4 are indistinguishable assuming the security of 1FE.

Proof. The only difference between Hybrids 3 and 4 is that in the former, the message encoded in
the ciphertext is (⊥, Sym.K,mode = 1) and in the latter the message encrypted is (x1,0,mode =
0). Note that in both cases, we have the same output of decryption hence the two ciphertexts
are indistinguishable by security of 1FE.

Lemma E.6. Hybrids 4 and 5 are indistinguishable assuming the security of Sym.

Proof. The proof is similar to Lemma E.2.

F Constructing Decomposable Functional Encryption for Circuits

Given any single-input circuit FE scheme 1FE satisfying standard indistinguishability based
security, a projective garbled circuit scheme GC = (GCirc,GInp,GEval) with indistinguishability
based security [JSW17] supporting a circuit class C = {Cλ}λ∈N with n-bit inputs, a simple PRF
F = (F.Setup,F.Eval) and a symmetric encryption scheme SYM, we can construct a single-input
decomposable FE scheme DFE supporting the circuit class C. We note that projective garbled

68

circuit schemes satisfying indistinguishability based security are implied from one-way functions
[JSW17]. The intuition behind the construction is as follows.

Intuition: The public key and master secret key for DFE would be the same as that of 1FE.
Given an n-bit message x = (x1, . . . , xn), the DFE encryption algorithm samples a PRF key K
and generates n 1FE ciphertexts encoding (K, i, xi). DFE key generation takes the master secret
key and a circuit C as input and generates a secret key for a circuit ĈC,salt. The circuit ĈC,salt

takes a 1FE message (K, i, xi) as input and generates a garbled circuit C̃ corresponding to C
and a garbled input label for the ith bit xi using randomness PRF(K, salt). This relies on the
projective property of GC [JSW17], i.e., each bit of the garbled input x̃ only depends on one bit
of the actual input x. For decryption, DFE runs the 1FE decryption on all the n 1FE ciphertexts
to obtain the garbled circuit C̃ and the garbled input x̃ and then evaluates the garbled circuit
to get the output C(x).

For proving security, we additionally need to rely on a symmetric key scheme following
standard techniques employing trapdoor modes from [CIJ+13, ABSV15]. The details follow as
shown below.

DFE.Setup(1λ, 1n): On input the security parameter λ and input message size n, do the
following:

1. Generate (1FE.PK, 1FE.MSK)← 1FE.Setup(1λ, 12λ+logn+2).
2. Output (PK,MSK) = (1FE.PK, 1FE.MSK).

DFE.Enc(PK,x): On input the public key PK and a message x = (x1, . . . , xn) of length n = |x|,
do the following:

1. Sample a PRF key K← F.Setup(1λ) and set a flag mode = 0.
2. Compute CTxi = 1FE.Enc(PK, (K,0, i, xi,mode)), ∀i ∈ [n] and output CTx =
{CTxi}i∈[n].

DFE.KeyGen(MSK, C): On input the master secret key MSK and a circuit C ∈ Cλ, do the
following:

1. Sample a random salt← {0, 1}λ, CTi ← {0, 1}ℓ(λ), ∀i ∈ [0, n].
2. Output SK

Ĉ
= 1FE.KeyGen(MSK, ĈC,salt,{CTi}i∈[n],CT0

), where ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃

is a circuit described in Figure 20.

DFE.Dec(SK
Ĉ
,CTx): On input a function key SK

Ĉ
and a decomposed ciphertext CTx =

{CTxi}i∈[n], do the following:

1. For i = 1, invoke 1FE.Dec(SK
Ĉ
,CTx1) to obtain a pair (ℓ1,x1 , C̃).

2. For all i ∈ [2, n], invoke 1FE.Dec(SK
Ĉ
,CTxi) to obtain (ℓi,xi ,⊥).

3. Note that x̃ = {ℓi,xi}i∈[n] represents the labels corresponding to the garbled input
underlying CTx generated as outputs of Ĉ, while C̃ represents the garbled circuit for
C.

4. Run GEval(C̃, x̃) to get y.

Correctness. We have by correctness of 1FE.Dec that it outputs the garbled input x̃ and the
garbled circuit C̃ correctly. The correctness of GEval implies that decryption recovers C(x) as
desired.

69

Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃
(K, SYM.K, i, xi,mode)

(a) Initialize the vector out = (c1, c2), where cj = ⊥, ∀j ∈ [2].

(b) If mode = 1, do the following:

i. Let out.c1 = SYM.Dec(SYM.K, SYM.CTi).
ii. If i = 1, let out.c2 = SYM.Dec(SYM.K, SYM.CT

C̃
).

(c) If mode = 0, do the following:

i. Compute randomness r = F.Eval(K, salt).
ii. Use randomness r to generate the garbled circuit for C as (C̃, sk) = GCirc(1λ, C; r)

as well as to generate the label corresponding to the ith input wire as ℓi,xi =
GInp(sk, (xi, i); r).

iii. Let out.c1 = ℓi,xi . If i = 1, let out.c2 = C̃.

(d) Output : out.

Figure 20: Functionality ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃

Proof of Security.

Next, we argue that the DFE scheme constructed above is secure.

Theorem F.1. Assume that 1FE is an FE scheme satisfying standard indistinguishability based
security, GC is a projective garbling scheme for circuits satisfying indistinguishability based
security, Sym is a secure symmetric key encryption scheme and F is a secure PRF. Then, the
DFE scheme constructed above is a single-input, decomposable FE scheme satisfying standard
indistinguishability based security.

Proof. The proof proceeds via a sequence of hybrids where the first hybrid corresponds to an
encryption of message x0 ∈ {0, 1}n and the last hybrid corresponds to an encryption of message
x1 ∈ {0, 1}n.

Hybrid 1: This is the real world with message x0 = (x01, . . . , x
0
n) ∈ {0, 1}n.

Hybrid 2: In this world, we hardwire Ĉ with its output, namely the garbled circuit (C̃, sk) and
input labels {ℓi,x0

i
}i∈[n], using symmetric key encryption.

Hybrid 3: In this world, we change the message in each of the n 1FE ciphertexts from
(K,0, i, x0i , 0) to (⊥, Sym.K, i,⊥, 1), i.e., the message encoded in CTxi is (⊥, Sym.K, i,⊥,mode =
1), ∀i ∈ [n].

Hybrid 4: In this world, we use true randomness to generate the garbled circuit and garbled
inputs instead of using randomness generated by PRF. Everything else remains the same
as that of the previous hybrid. Note that the garbled input labels {ℓi,x0

i
}i∈[n] encoded

by {SYM.CTi}i∈[n] correspond to the input message bits of x0 = (x01, . . . , x
0
n) from the

previous hybrids.

70

Hybrid 5: In this world, we change the garbled input labels to {ℓi,x1
i
}i∈[n] corresponding to the

input message bits of x1 = (x11, . . . , x
1
n) encoded by {SYM.CTi}i∈[n] and hardwired in the

key for Ĉ.

Hybrid 6: In this world, we change the true randomness back to randomness generated by
the PRF for computing the garbled circuit and garbled inputs. Everything else remains
the same as that of the previous hybrid. Note that the garbled input labels {ℓi,x1

i
}i∈[n]

encoded by {SYM.CTi}i∈[n] now correspond to the input message bits of x1 = (x11, . . . , x
1
n)

from the previous hybrid.

Hybrid 7: In this world, we change the message in each of the n 1FE ciphertexts
from (⊥, Sym.K, i,⊥, 1) to (K,0, i, x1i , 0), i.e., the message encoded in CTxi now is
(K,0, i, x1i , 0), ∀i ∈ [n].

Hybrid 8: In this world, we change the hardwired values in Ĉ corresponding to the
{SYM.CTi}i∈[n] and SYM.CT

C̃
slots back to random strings from the ciphertext space

of SYM. Note that this corresponds to the real world with message x1 = (x11, . . . , x
1
n) ∈

{0, 1}n.

Next, we argue that consecutive hybrids are indistinguishable.

Lemma F.2. Hybrids 1 and 2 are indistinguishable assuming the security of SYM.

Proof. The only thing that changes between Hybrid 1 and 2 are the choices of {SYM.CTi}i∈[0,n],
so that in the former it is chosen randomly and in the latter case it is an honest encryption of
the scheme SYM. Given an adversary A which distinguishes between Hybrid 1 and Hybrid 2,
we construct an adversary B which breaks the semantic security of SYM. B does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2) honestly and
returns PK to A.

2. When A outputs a pair of challenge messages (x0,x1), B samples a PRF key K ←
F.Setup(1λ) and honestly computes CTxi = 1FE.Enc(PK, (K,0, i, x0i ,mode = 0)), ∀i ∈ [n]
and returns CTx={CTxi}i∈[n] to A.

3. When A requests a function key for C, B samples salt ← {0, 1}λ and computes r =
F.Eval(K, salt). It then generates the garbled circuit (C̃, sk) = GCirc(1λ, C; r) and the
input labels {ℓi,x0

i
= GInp(sk, (i, xi); r)}i∈[n] honestly. B then sends

(
{ℓi,x0

i
}i∈[n], C̃

)
to the

SYM challenger. The SYM challenger responds with
(
{SYM.CTi}i∈[n], SYM.CT

C̃

)
upon

which B constructs the circuit ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃

and further generates a secret
key SK

Ĉ
= 1FE.KeyGen

(
MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CT

C̃

)
honestly. B sends SK

Ĉ
to A.

4. When A outputs a guess bit, it outputs the same.

Now, A sees the view of Hybrid 1 if
(
{SYM.CTi}i∈[n], SYM.CT

C̃

)
is random and A sees the view

of Hybrid 2 if
(
{SYM.CTi}i∈[n], SYM.CT

C̃

)
is an encryption of

(
{ℓi,x0

i
}i∈[n], C̃

)
.

Lemma F.3. Hybrids 2 and 3 are indistinguishable assuming the security of 1FE.

Proof. The only difference between Hybrids 2 and 3 is that in the former the encrypted messages
are {(K,0, i, x0i ,mode = 0)}i∈[n] and in the latter as {(⊥, SYM.K, i,⊥,mode = 1)}i∈[n]. Assuming

71

there is an adversary A which distinguishes between Hybrid 2 and Hybrid 3, we construct an
adversary B which breaks the security of 1FE.
B does the following:

1. It obtains the public key PK from the 1FE challenger and returns this to A.

2. When A outputs a pair of challenge messages (x0,x1), it samples K ← F.Setup(1λ),
a symmetric encryption key SYM.K and then returns n 1FE challenge message pairs
{(K,0, i, x0i ,mode = 0) , (⊥, SYM.K, i,⊥,mode = 1)}i∈[n] w.l.o.g. to the 1FE challenger. It
obtains CTx = {CTxi}i∈[n] and returns this to A.

3. WhenA outputs a function query for C, B constructs the function ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃

as described in Figure 20 and sends this to the 1FE challenger. Here, SYM.CT
C̃

is com-
puted as SYM.Enc(SYM.K, C̃) where (C̃, sk) = GCirc(1λ, C;F.Eval(K, salt)) while SYM.CTi

are computed as SYM.Enc(SYM.K, ℓi,x0
i
) where ℓi,x0

i
= GInp(sk, (i, x0i);F.Eval(K, salt)),

∀i ∈ [n]. It returns the obtained key SK
Ĉ

to A.

4. When A outputs a guess bit, it outputs the same.

When the 1FE challenger returns encryptions of {(K,0, i, x0i ,mode = 0)}i∈[n], A sees the view
of Hybrid 1, and when it returns an encryption of {(⊥, SYM.K, i,⊥,mode = 1)}i∈[n], it sees
the view of Hybrid 2. Note that in either case the decrypted value is the same and thus the
reduction B is a valid 1FE adversary. Thus, the advantage of A translates to the advantage of
B.

Lemma F.4. Hybrids 3 and 4 are indistinguishable assuming the security of PRF F.

Proof. The only difference in Hybrid 4 from Hybrid 3 is that instead of randomness generated
by the PRF, true randomness is used now to generate the garbled circuit and garbled input.
Note that the PRF key is not explicitly needed in the Hybrid 3. Thus, assuming there is an
adversary A which distinguishes between Hybrid 3 and Hybrid 4, we construct an adversary B
which breaks the security of PRF F. B does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2) honestly and
returns PK to A.

2. When A outputs a pair of challenge messages (x0,x1), B samples SYM.K and simulates the
challenge message as CTx = {CTxi}i∈[n] where CTxi = 1FE.Enc(PK, (⊥, SYM.K, i,⊥, 1))}i∈[n].

3. When A outputs a function query for C, B first queries the PRF challenger upon which it
receives r. It then uses r to compute the garbled circuit (C̃, sk) = GCirc(1λ, C; r) as well
as the garbled input labels ℓi,x0

i
= GInp(sk, (i, x0i); r)∀i ∈ [n], honestly. B then samples

salt ← {0, 1}λ and computes {SYM.CTi = SYM.Enc(SYM.K, ℓi,x0
i
)}i∈[n] and SYM.CT

C̃
=

SYM.Enc(SYM.K, C̃). It then computes SK
Ĉ
= 1FE.KeyGen(MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CT

C̃
)

for the function ĈC,salt,{SYM.CTi}i∈[n],SYM.CT
C̃

as described in Figure 20 and returns SK
Ĉ

to
A.

4. When A outputs a guess bit, B outputs the same.

If B had received r = F.Eval(K, salt) from the the PRF challenger, A sees the distribution of
Hybrid 3, else it sees the distribution of Hybrid 4 if r was sampled uniformly at random by the
PRF challenger. The advantage of A therefore translates to an advantage of B.

72

Lemma F.5. Hybrids 4 and 5 are indistinguishable assuming the security of GC.

Proof. The only difference between Hybrids 4 and 5 is that in the former, the messages encoded
in {SYM.CTi}i∈[n] ciphertexts hardwired in Ĉ were {ℓi,x0

i
}i∈[n] while in the later, the encoded

messages are {ℓi,x1
i
}i∈[n]. Note that in both cases, we have the same output of decryption since

C(x0) = C(x1) and hence the two hybrids are indistinguishable by indistinguishability based
security of GC. More formally, we show that if there is an adversary A which distinguishes
between Hybrid 4 and Hybrid 5, we construct an adversary B which breaks the security of GC.
B does the following:

1. B generates (PK,MSK) = (1FE.PK, 1FE.MSK) ← 1FE.Setup(1λ, 12λ+logn+2) honestly and
returns PK to A.

2. When A outputs a pair of challenge messages (x0,x1), B samples SYM.K and simulates the
challenge message as CTx = {CTxi}i∈[n] where CTxi = 1FE.Enc(PK, (⊥, SYM.K, i,⊥, 1))}i∈[n].

3. When A outputs a function query for C, B first constructs and sends the challenge message
pair ((C,x0), (C,x1)) to the GC challenger. On receiving (C̃, x̃ = {ℓi,xi}i∈[n]) from the
GC challenger, B computes {SYM.CTi = SYM.Enc(SYM.K, ℓi,xi)}i∈[n] and SYM.CT

C̃
=

SYM.Enc(SYM.K, C̃). It then samples salt← {0, 1}λ and generates a function key for the
function ĈC,salt,{SYM.CTi}i∈[n],SYM.CT

C̃
as SK

Ĉ
= 1FE.KeyGen(MSK, ĈC,salt,{SYM.CTi}i∈[n],SYM.CT

C̃
).

B returns SK
Ĉ

to A.

4. When A outputs a guess bit, B outputs the same.

Note that since A is a valid DFE adversary satisfying C(x0) = C(x1), this implies B is a valid
GC adversary. Further, if the GC challenger had returned (C̃, x̃ = {ℓi,x0

i
}i∈[n]), then A sees the

view of Hybrid 4 and if the GC challenger had returned (C̃, x̃ = {ℓi,x1
i
}i∈[n]), then A sees the

view of Hybrid 5. The advantage of A therefore translates to an advantage of B.

Lemma F.6. Hybrids 5 and 6 are indistinguishable assuming the security of PRF F.

Proof. The proof is similar to Lemma F.4.

Lemma F.7. Hybrids 6 and 7 are indistinguishable assuming the security of 1FE.

Proof. The proof is similar to Lemma F.3.

Lemma F.8. Hybrids 7 and 8 are indistinguishable assuming the security of SYM.

Proof. The proof is similar to Lemma F.2.

F.1 Decomposable Functional Encryption for Circuits: Instantiations

We note that most functional encryption schemes in the literature are already decomposable,
since a long input x is typically encoded bit by bit, using a separate public key component.
Indeed, we do not know of any exceptions in the literature. For instance, recall the ciphertext
of [ABSV15]:

CT0 ← OneCT.Enc(OneCT.SK,x) and
CT1 ← Sel.Enc(Sel.MPK, (OneCT.SK,K, 0λ, 0)).

73

Above, CT1 is a ciphertext component which is independent of the message (and depends only
on randomness), hence it may be denoted as CTindpt in the notation above. Therefore, it
remains to show that CT0 is decomposable. This depends on the particular OneCT scheme that
is chosen, but for instance, it was shown in [AS17a] that the OneCT succinct FE scheme from
LWE constructed by [GKP+13b] is decomposable. We refer the reader to [AS17a] for details.

We note that the recent constructions of FE from constant degree multilinear maps [Lin17,
LT17] also satisfy decomposability, despite the fact that they precompute high degree monomials
which are encoded. To see this, note that the encrypt algorithm in [Lin17, LT17] takes as input
a message x and chooses a PRG seed s (say) represented as a matrix. The encryptor computes a
long message y (say) that consists of monomials computed over x, s. While the computation of
arbitrary monomials would violate decomposability, in the above constructions, the monomials
are linear in bits of x, and the high degree terms are all computed over the bits of the seed s. Our
construction requires that the bits corresponding to the symbol and state of a TM be encoded
separately, and these would form the input x in the constructions of [Lin17, LT17]. Intuitively,
the PRG seed is used to derive randomness meant for computing a randomized encoding and
is chosen independently of the input message x. Hence, the constructions of [Lin17, LT17] also
satisfy decomposability required by our compilers.

Next, we sketch how the construction of [GGH+13] can be seen to satisfy decomposability,
with minor modifications. The ciphertext for a single bit message m in this scheme is (e1, e2, π),
where e1 = Enc(PK1,m) and e2 = Enc(PK2,m) and π is a NIZK proof that e1 and e2 both
encrypt the same bit. Note that here the two ciphertexts e1 and e2 are using distinct public key
encryption schemes (i.e. these are not ciphertext components in decomposable FE). To argue
decomposability, consider message m = (m1, . . . ,mn) as a vector of n bits rather than a single
bit. Then, we may compute the encryptions bit by bit, and also test equality bit by bit in the
NIZK, tying together all bits of m by common randomness, satisfying the given definition of
decomposability.

In more detail, we may compute e1 = (e1,1, . . . , e1,n) and e2 = (e2,1, . . . , e2,n) as well as e∗ =
Enc(PK3,R) where:

• ∀i ∈ [n], e1,i and e2,i encode message (mi,R) where R is shared across all i. Note that
R here is part of the encoded message (the encryption randomness used to construct the
ciphertexts e1,i and e2,i is different and not denoted here).

• Denote by πi the NIZK proof that e1,i and e2,i encode the same bit mi and that e1,i, e2,i
encode the same R as e∗.

Then, the n ciphertext components of the decomposable FE are (e1,1, e2,1, π1), . . . , (e1,n, e2,n, πn)
and the independent ciphertext component is e∗ (CTindpt from Definition 2.1.1). Note that if an
attacker tried to replace any one piece in this set, the R would not match (except with negligible
probability) and the NIZK proof would not validate.

The proof of security is similar to [GGH+13].

74

	Introduction
	Preliminaries
	Definitions: FE for Circuits
	Single Input Functional Encryption for Circuits
	Multi-Input Functional Encryption for Circuits

	Definitions: FE for Turing Machines
	Single Input Functional Encryption for Turing Machines
	Multi-Input Functional Encryption for Turing Machines
	Indistinguishability Obfuscation for Turing Machines

	Constrained Pseudorandom Functions

	Construction: Single Input FE for Turing Machines
	Construction
	Correctness and Efficiency of single input TMFE
	Proof of Security for Single Input TMFE
	Constructing the cPRF.

	Construction: Multi-Input FE for Turing Machines
	Construction of multi-input TMFE
	Correctness of Multi-Input TMFE
	Proof of Security for multi-input TMFE

	Indistinguishability Obfuscation for Turing Machines
	Construction
	Proof of Security

	Definitions: Turing Machines
	Missing Details in Proof of Theorem 3.1
	Missing Details in Proof of Theorem 4.1
	Constrained PRF for our Function Family
	Constructing DI Secure Functional Encryption
	Constructing Decomposable Functional Encryption for Circuits
	Decomposable Functional Encryption for Circuits: Instantiations

