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Abstract

A traitor tracing scheme is a public key encryption scheme for which there are many secret
decryption keys. Any of these keys can decrypt a ciphertext; moreover, even if a coalition of
users collude, put together their decryption keys and attempt to create a new decryption key,
there is an efficient algorithm to trace the new key to at least one the colluders.

Recently, Goyal, Koppula and Waters (GKW, STOC 18) provided the first traitor tracing
scheme from LWE with ciphertext and secret key sizes that grow polynomially in log n, where n is
the number of users. The main technical building block in their construction is a strengthening
of (bounded collusion secure) secret-key functional encryption which they refer to as mixed
functional encryption (FE).

In this work, we improve upon and extend the GKW traitor tracing scheme:

o We provide simpler constructions of mixed FE schemes based on the LWE assumption. Our
constructions improve upon the GKW construction in terms of expressiveness, modularity,
and security.

e We provide a construction of attribute-based traitor tracing for all circuits based on the
LWE assumption.
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1 Introduction

A traitor tracing scheme [CFN94] is a public key encryption scheme for which there are many secret
decryption keys, so that any of these keys could decrypt the ciphertext. In addition, if a coalition
of users collude to create a new decryption key, then there is an efficient algorithm to trace the new
key to (at least one of) its creators.

Recently, Goyal, Koppula and Waters (GKW) [GKW18] constructed the first traitor tracing
scheme from standard assumptions with ciphertext and secret key sizes that grow polynomially in
log n, where n is the number of users. The security of the scheme relies on the polynomial hardness
of the LWE assumption with sub-exponential modulus-to-noise ratio. The main technical building
block in their construction is a strengthening of bounded-collusion-secure secret-key functional
encryption which they refer to as mized functional encryption (mixed FE), and the bulk of the
paper (over 60 pages) is dedicated to constructing mixed FE for branching programs.

Mixed FE. A functional encryption (FE) scheme allows us to encrypt a program f and create
secret keys for inputs x, so that given an encryption of f and a key for xz, we learn f(z) and
nothing else about f. In this work, we focus on secret-key FE schemes where encryption requires
the master secret key, and security is guaranteed for an a-priori bounded number of ciphertexts,
but an unbounded number of secret keys. A mixed FE scheme is a secret-key FE scheme with
an additional “restricted” public-key encryption algorithm that enables encrypting only the “all
accept” program; roughly speaking, we can obliviously sample encryptions of the “all accept”
programs without knowing the master secret key.

This work. In this work, we improve upon and extend the GKW traitor tracing scheme:

e We provide simpler and more modular constructions of mixed FE schemes based on the
LWE assumption. Our constructions improve upon the GKW construction in terms of both
expressiveness and security. Our first construction obtains mixed FE for all circuits and with
adaptive security, whereas the prior construction [GKW18] only achieves selective security
for branching programs. Our second construction achieves selective security for all circuits
with tighter overhead growth for the number of secret key ciphertexts generated.

e We provide a construction of attribute-based traitor tracing schemes for all circuits based on
the LWE assumption.

1.1 Technical overview

In the technical overview, we focus on our simpler constructions of mixed FE schemes. In addition
to the algorithms (Setup, SKGen, SK-Enc, Dec) in a standard secret-key FE scheme, a mixed
FE scheme has an additional PK-Enc algorithm that is able to encrypt “all-1” program without
knowing the master secret key.

Both of our new constructions work for any arbitrary polynomial bound ¢ on the number of
ciphertexts. The GKW construction focused on the setting ¢ = 2 which already suffices for traitor-
tracing, and provided a brief sketch for extending the construction to arbitrary ¢ but without any
analysis. !

! In this work we use a simulation based definition of security where ¢ refers to the (maximum) total number of



Construction Function class blow-up security
[GKW1§] NCt O(t?) selective
Lockable obfuscation + [GVW12] poly-size circuits  O(t?) adaptive
Lockable obfuscation + [AR17] poly-size circuits  O(t?) selective
Key-homomorphic PCPRF poly-size circuits  O(t) selective

Figure 1: Summary of our ¢-CT mixed FE schemes. PCPRF refers to private constrained PRF.
Here, selective means that all ¢ ciphertexts queries come before the (unbounded) secret key queries,
whereas adaptive allows arbitrary interweaving of these queries. Note that “FULL-SIM security”
in [AR17] correspond to selective security here (in Definition 2.2 for FULL-SIM in the paper, secret
keys in the security game correspond to ciphertexts in our setting). As noted earlier, the work of
[GKW18] proved security for the case of t = 2 and the more general case with O(¢?) blowup was
only sketched.

We provide two constructions achieving incomparable guarantees, based on two natural and
complementary approaches:

1. The first construction shows how to generically transform a t-CT secret-key functional en-
cryption (SKFE) into a ¢-CT mixed FE using lockable obfuscation (a.k.a. “compute-and-
compare obfuscator”) [GKW17, WZ17], which can be based on LWE. This construction ex-
tends the coverage of mixed FE in [GKWI18] from branching programs to all circuits. It
also carries over the adaptivity achieved by the underlying ¢-CT SKFE schemes (e.g. in
[GVW12, Agrl17, AR17)?) to the final mixed FE scheme. A t-CT SKFE schemes can be
constructed from any one-way function [SS10, GVW12]; thus, this construction shows how
to leverage lockable obfuscation to add a “restricted public-key mode” to any t-CT SKFE
scheme and give us a mixed-FE scheme. The construction and proof fit in a little over a page.

2. The second construction starts from the observation that the LWE-based private-constrained
PRFs in [CC17, BTVW17, CVW18] already give a 1-CT mixed FE scheme. Furthermore, we
show how to construct a ¢-CT mixed FE in a natural way leveraging the key-homomorphic
property of the private constrained PRF's. Therefore we get a construction of t-CT mixed FE
for circuits for which security follows directly from the key-homomorphic PCPRF.

The blow-up of our ¢-CT mixed-FE is only O(t). Previously for simulation-secure secret-key
FE with bounded collusion, the blow-up is at least O(t?) [Agr17, AR17] (let us remark that
these constructions are public-key FE schemes). We sketch this construction and proof later
in the introduction, again in a little over a page.

ciphertexts seen by the attacker. The work of [GKW18] uses an indistinguishability notion of security where they
refer to the number of encryption oracle queries given to the attacker in addition to the challenge ciphertext. Roughly,
a t ciphertext scheme in our definition corresponds to a t — 1 query scheme in [GKW18].

2These prior works construct 1-CT ¢-SK public-key FE scheme, which implies a many-CT t-SK public-key FE
scheme, and therefore a many-CT, t-SK secret-key FE scheme. By flipping the ciphertexts and secret keys, we obtain
a t-CT, many-SK SKFE.



1.2 Mixed FE from Lockable Obfuscation

Our first construction adds lockable obfuscation on top of a plain ¢-CT SKFE to produce the
public-key ciphertext, i.e. let the public-key ciphertext be the dummy obfuscated programs that
always evaluate to “L”.

In more detail, we construct the mixed-FE scheme as follows:

e Setup: Choose a master secret key (msk) for the SKFE.
o SKGen(msk,z): use the SKFE msk to generate sk.

e SK-Enc(msk, f): sample a random “lock” «, then run the SKFE secret-key encryption for a
function H, ; which computes the following multiple-output-bit functionality

Ho (o) = {a if f() =0

0 else

Then, produce the lockable obfuscation Obf[Prg ct,,,a] as the ciphertext, where Prg ), (Y)
parses Y as a SKFE secret key and computes the SKFE decryption functionality.

e PK-Enc: Use the simulator of lockable obfuscation to get a dummy obfuscated program of
appropriate size. The program outputs “L” on every input.

e Dec: Run the obfuscated program, if it outputs “L” then output 1, else output 0.

We need mixed-FE to satisfy two security conditions. First, an adversary’s view given polyno-
mially many secret keys for inputs x, and at most ¢ (secret key) ciphertexts for functions fi,..., f;
can be simulated given only the function evaluations f;(x) for all z. This property, called functional
indistinguishability, follows directly from the security of the SKFE. Indeed, we do not rely on obfus-
cation security here. The second security property, called secret/public mode indistinguishability,
says that a public-key encryption and a secret key encryption of the trivial branching program f
(which outputs 1 on all inputs) are computationally indistinguishable. Furthermore, this should
hold even given polynomially many SKFE keys and ¢t — 1 SKFE ciphertexts for arbitrary functions.
This property follows from a combination of symmetric-FE security and lockable obfuscation, by
first changing the symmetric-FE ciphertext from H, ; to the “all 1” function, then changing real
obfuscation to simulated using the lockable obfuscation security.

1.3 Mixed FE from Private Constrained PRFs

A constrained PRF is a standard PRF with the additional property that given a program M and
a PRF key K, we can create a constrained key that allows someone to evaluate the PRF at inputs
x where M (z) = 0 while randomizing the outputs of all other inputs. A private constrained PRF
(PCPREF) satisfies the additional requirement that the constrained key hides M (in the appropriate
sense). We will work with a strengthening of this requirement, which says that given M along with
a sequence of inputs {x;} such that M (z;) = 1, the joint distribution of the constrained key for M
along with the PRF evaluations at {z;} are pseudorandom.

We show how to construct a 1-CT mixed-FE scheme starting from any PCPRF. We then show
how to “boost” this basic construction to a t-CT mixed-FE, assuming that the underlying PCPRF



is also key-homomorphic [BLMR13], namely for all K, K, z, we have PRF g i/ (z) =~ PRF(z) +
PRF/(x). Our schemes achieve simulation-based security, and support functions computable by
polynomial-size circuits.

1-CT scheme. We observe that a PCPRF scheme already gives a 1-CT mixed FE scheme:

e Setup: Choose a master secret key msk for the PCPRF.

SKGen(msk, z): A secret key for z is a PRF evaluation at z;

SK-Enc(msk, M): An encryption of a program M is a constrained key for M;

PK-Enc: Use the simulator of the PCPRF to produce a simulated constrained key.

Dec: To decrypt, we compare the constrained evaluation at x with the PRF evaluation at z;
if they are equal, we output 0, and otherwise, we output 1.

The existing security proofs show that, if for all z; we have M (x;) = 1, then the constrained key
for the program is computationally indistinguishable from a random key that is independent of
the PRF evaluations. This means that we can obliviously sample encryptions of the “always-1"
program by sampling a random ciphertext.

From 1-CT to 2-CT. We provide an almost generic transformation from a 1-CT to a 2-CT
scheme, assuming that the underlying scheme is key-homomorphic, and also satisfies a natural
distribution requirement. Namely, we require that for msky, msky, msk’ that are correctly generated
from the 1-CT mixed FE scheme, the distributions of msk; 4+ msky, msk; — msks, and msk’ are
identical. In addition, for all x, we have

skGen(msky, ) + skGen(mska, z) = skGen(msk; + msks, z)

When the 1-CT mixed FE schemes are instantiated by the PCPRFs in [CC17, BTVW17,
CVW18], they satisfy an approximate notion of key-homomorphism, which suffices for the purpose
of constructing collusion resistant mixed FE. In the rest of the introduction we assume the un-
derlying PCPRF's are exact key-homomorphic for simplicity, and leave the instantiations from the
approximate ones in the main body.

Our 2-CT mixed FE scheme works as follows:

e Setup: choose A pairs of msk;; as the master secret keys for the 1-CT scheme;

e SKGen(msk,z): The secret key for x runs the secret-key generation algorithm for the 1-CT
scheme over all the A pairs of msk; ;, outputs {skGen(msk; p, ) }ic[r) be{0,1};

e SK-Enc(msk, M): To encrypt a program M, we pick a random z € {0, l}A, output z and the
1-CT encryption SK-Enc(msky,, M) as the ciphertext, where msky, := msky ,, + -+ + mskj ,,;

e PK-Enc: pick a random z € {0, 1}A, then run the PK-Enc mode of the 1-CT scheme.

e Dec: To decrypt, first derive skGen(msky, ) = Zf‘zl skGen(msk; ,, z) and then run the 1-CT
decryption algorithm.



Next, we sketch a proof of security by constructing a simulator for the 2-CT scheme, starting from
that for the 1-CT scheme. Suppose we want to simulate encryptions of two programs M?!, M?
under tags z',z?. The only property we need from z',z? is that they differ in one bit position,
which happens with probability 1 — 2~*. For notational simplicity, assume that

z! =00---0,22=10---0

Now, using the simulator for the 1-CT scheme (and a hybrid argument), we can simulate the
1-CT encryptions SK-Enc(msky, M), SK-Enc(mskz, M?) for two random msky, msko, along with
skGen(msky, x) and skGen(msks, ) for arbitrarily many z’s.

To construct a simulator for the 2-CT scheme, we follow the natural simulation strategy where
we pick msk; ; and program

msk,1 = mskj, msk,2 = msky

as follows:

e We sample (msk; o, msk;1),7 = 2,..., A ourselves;

e We implicitly program
A A

msky o = msky — g msk; o, msky 1 = msky — g msk; o
i=2 =2

Simulating the ciphertexts is straight-forward. To simulate a key {skGen(msk;,x)} for z,

e We can compute skGen(msk; o, z),skGen(msk; 1, ), = 2,..., X ourselves since we know msk; o, msk; 1;

e We can compute skGen(mskj o, z) using the key-homomorphic property via

A
skGen(msky g, z) = skGen(nTsJkl, x) — Z skGen(msk; 0, )
=2

We can similarly compute skGen(msk; 1, ).

From 2-CT to t-CT. To obtain a scheme that is secure for ¢ ciphertexts, we follow [GKWI18,
Remark 8.1] and sample each entry of the tag z from a larger alphabet. The natural extension of the

previous argument is to require that with high probability over z(1), ..., z(®) there exists j* € [A]
such that zj(.p, o ,z](i) are all distinct. This would require an alphabet of size Q(¢2). Instead, we
observe that it suffices that there exists ji, ..., j; € [A] such that the ¢ pairs (j7, ](.11)), oo (91, z](.?)
are distinct (the natural extension corresponds to the special case ji = --- = j; = j*); this
relaxation allows us to work with an alphabet of size O(t). In the security proof, we will receive
ciphertexts and secret keys corresponding to ¢ independent rFqu, e r;\sJkt, which we “embed” into
msk.. @),...,msk.. (.
91 9t o7

We proceed to describe our construction in a bit more detail. We replace A pairs of master secret

keys {mSkﬂ'vd}je[A} def0.1} (in the 2-CT scheme) with A many (2t — 2)-tuples of {mSkﬂld}je[A] de[2t—2]

and sample the tag z from [2t —2]*. For each tag z(), i € [t], the probability that the j** coordinate

% = 1, therefore the probability that

one of the coordinate of z(¥ is unique is at least 1 — 272 (this unique coordinate corresponds to
J7). By a union bound, with probability at least 1 —¢- 27, all the tags has one unique coordinate.

of z®) does not show up in the other t — 1 tags is >



1.4 Attribute-based Traitor Tracing

Finally, we very briefly describe our results on attribute-based traitor tracing. An attribute-based
traitor-tracing (AB-TT) scheme is like an ABE with tracing capabilities. The key generation
algorithm gives out secret keys sk ; for functions f with respect to some identity ¢. The encryption
procedure encrypts a message m with respect to an attribute z and the resulting ciphertext can
be correctly decrypted by sk¢; if f(x) = 1. The identity i is completely irrelevant from the point
of view of ABE correctness/security. The tracing algorithm is given a decoder D which is able to
distinguish between the encryptions of some two messages mg, m1 with respect to some attribute
x. The goal is to recover some traitor ¢ whose key sky; was used in the creation of the decoder and
who is qualified to decrypt meaning that f(z) = 1. Note that there may be many other traitors
that participate in the creation of the decoder and who are not qualified to decrypt (e.g., have keys
sky,; for some g such that g(x) = 0) but the tracing algorithm must find a traitor who is qualified
to decrypt.

We argue that catching a qualified user is the correct definition for tracing. For example,
imagine that a system is setup such that for a certain attribute x corresponds to extremely sensitive
information that only highly positioned individuals can access. By the ABE security properties,
if a decoder D were discovered that could decrypt such ciphertexts it must be the case that such
a highly positioned user contributed to it. It would be rather unsatisfying if a tracing algorithm
were only able to finger a lower level individual that contributed to it. We note that such tracing
definitions were considered in prior works [ADM™07, KS11, LCW13, LW15], however, any black
box tracing in such works required a \/n factor of ciphertext blowup for n users which was inherited
from [BSW06, BW06]. We improve this to polylog(n), by constructing AB-TT from attribute-based
mixed FE, which can be obtained from ABE and mixed-FE for all polynomial-time computations.
For more details, we refer the reader to Section 5.

Additional related work on tracing Our work and comparisons focus on tracing schemes
that are collusion resistant. Starting with [CFN94] there existed many cryptosystems that would
be collusion resistant up to ¢ corrupted users where ¢ was some parameter of system setup. See
[ABPT17] and the references therein for further discussion of collusion bounded systems. Boneh,
Sahai and Waters [BSW06] gave the first collusion resistant tracing schemes with ciphertext size
that was sublinear in the number of users n. They achieved ciphertext growth proportional to y/n
using composite order bilinear groups. Later variants [BW06, GKSW10, Frel(] achieved similar
ciphertext size under improved bilinear assumptions. Several years later Boneh and Zhandry [BZ14]
utilized indistinguishability obfuscation to achieve the ideal case where ciphertexts grow polyno-
mially in log(n) and A. However, indistinguishability obfuscation is not known from standard
assumptions.

2 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as \) is a vari-
able that is used to parameterize the computational complexity of the cryptographic algorithm or
protocol, and the adversary’s probability of breaking security. An algorithm is “efficient” if it runs
in (probabilistic) polynomial time over \.

When a variable v is drawn randomly from the set S we denote as v & Sorv U(s),



sometimes abbreviated as v when the context is clear. We use ~; and = as the abbreviation for
statistically close and computationally indistinguishable.

Let R,Z,N be the set of real numbers, integers and positive integers. Denote Z/(qZ) by Zj.
For n € N, [n] := {1,...,n}. A vector in R" (represented in column form by default) is written
as a bold lower-case letter, e.g. v. For a vector v, the i*® component of v will be denoted by v;.
A matrix is written as a bold capital letter, e.g. A. The i*" column vector of A is denoted a;.
The length of a vector is the £,-norm ||v||, = (3 vP)/P. The length of a matrix is the norm of its
longest column: ||A[|, = max; ||a;||,. By default we use f2-norm unless explicitly mentioned. When
a vector or matrix is called “small”, we refer to its norm.

2.1 Learning with errors

We recall the learning with errors problem.

Definition 1 (Decisional learning with errors (LWE) [Reg09]). For n,m € N and modulus ¢ > 2,
distributions for secret vectors, public matrices, and error vectors 6,7, x C Z,. An LWE sample is
obtained from sampling s < 0%, A < 7"*™ e < x™, and outputting (A,s” A + el mod q).

We say that an algorithm solves LWE,, ;,, 4 6.,y if it distinguishes the LWE sample from a random
sample distributed as 7> x U(Zéxm) with probability bigger than 1/2 plus non-negligible.

Lemma 2.1 (Standard form [Reg09, Pei09, BLP13, PRS17]). Givenn € N, for any m = poly(n),
g < 205 Let =7 = U(Zg), x = Dz, where o > 2/n. If there exists an efficient (possibly
quantum) algorithm that breaks LWE,, 1, 0 0., then there exists an efficient (possibly quantum)
algorithm for approximating SIVP and GapSVP in the {5 norm, in the worst case, to within O(nq/a)
factors.

We drop the subscripts of LWE when referring to standard form of LWE with the parameters
specified in Lemma, 2.1.

2.2 Secret-key and Mixed Functional Encryption
t-CT SKFE. We begin with the definition for SKFE:

Definition 2 (Secret-key functional encryption (SKFE)). A secret-key functional encryption scheme
for a class of functions F,, = {f : {0, 1}* — {0,1}} is a tuple of probabilistic polynomial time (p.p.t)
algorithms (Setup, skGen, skEnc, Dec) such that:

° Setup(l’\) takes as input the security parameter 1%, and outputs the master secret key msk
and the public parameters pp.

e skGen(msk,m) takes as input msk and a message m € {0, 1}*, and outputs a decryption key
sk

e skEnc(msk, f) takes as input msk and a function f € F,,, and outputs a ciphertext ct.

e Dec(skyy,, ct) takes as input sk, and ct, and outputs a single bit.



Correctness. For every message m € {0, 1}* and function f € F,, we have:

Pr[msk <Setup(1*); sk, < skGen(msk,m) :
Dec(sky,, skEnc(msk, f)) = f(m)] = 1 — negl(\),
where the probability is taken over the randomness of the algorithms Setup, skGen, skEnc, Dec.

Function-hiding security. For all p.p.t stateful algorithms Adv, there is a p.p.t. stateful algo-
rithm Sim such that:

{Experiment REALAdv(l)\)}A y e {Experiment IDEAL g, Sim(l)\)})\ N
€ ’ €

where the real and ideal experiments of stateful algorithms Adv, Sim are as follows:

Experiment REAL g, (1) Experiment IDEALAdV’Sim(lk)
msk < Gen(1%), Sim « 1
For i € [t]: For i € [t]:
Adv — 1. Adv — 1
Adv « ctll = skEnc(pp, msk, f11); Adv + ctll = Sim(l‘f[i]‘);
Repeat polynomially many times: Repeat polynomially many times:
Adv — m; Adv < skGen(pp, msk,m) Adv — m; Adv < Sim(m, {fm (m)} [t])
1€
Adv — b; Output b Adv — b; Output b

In the experiments, the adversary Adv can ask for ¢ ciphertexts followed by polynomially many
decryption key queries. Once Adv makes a ciphertext query for a function f € F), in the real
experiment Adv obtains the ciphertext generated by the secret-key encryption algorithm; in the
ideal experiment Adv obtains the ciphertext generated by Sim given only the (circuit) size of f.
Once Adv makes a message query m, in the real experiment Adv obtains sk, from the decryption
key generation algorithm; in the ideal experiment, Adv obtains the decryption key generated by
the simulator who is given m, and { £t (m)} . The output of the experiment is the final output
bit of Adv.

1€]t]

Remark 2.2 (adaptive security). A t-CT SKFE scheme is called adaptively secure if the function
and ciphertext queries can be made adaptively in any order. Some constructions achieve partially
adaptive security and we will explicitly mention the restrictions.

t-CT mixed FE. We provide a simulation-based definition for t-ciphertext (¢-CT) mixed-FE,
which is same as the definition in [GKW18, Section 5] where it is referred to as (¢ — 1)-bounded
mixed-FE.

Definition 3 (Mixed functional encryption). A mixed functional encryption scheme for a class of
functions F,, = {f : {0,1}# — {0,1}} is a tuple of probabilistic polynomial time (p.p.t) algorithms
(Setup, skGen, skEnc, Dec, pkEnc) such that:

o (Setup, skGen, skEnc, Dec) are the same as SKFE.



e pkEnc(pp) takes as input pp, and outputs a ciphertext ct.

Correctness and Function-hiding security. Same as SKFE.

Public/secret-key mode indistinguishability. In addition to the security requirement above
for a normal secret-key functional encryption, a mixed-FE further requires that for a function f
queried to the encryption oracle, if for all message m queried by the adversary, f(m) = 1 (the other
potential t — 1 functions does not have to satisfy this requirement), then the secret-key ciphertext
skEnc(msk, f) is indistinguishable from a sample from pkEnc(pp). Formally, we require that for all
p-p-t stateful algorithms Adv, the following two experiments produce indistinguishable outputs:

{Experiment SKEXPAdV(lA)} =5 {Experiment PKEXPAdV(l)‘)}
AeN AeN

The experiments are as follows:

Experiment SKEXP g, (1) Experiment PKEXP 5y, (1)
pp, msk < Gen(1%), pp, msk < Gen(1%),
For ¢ in [i* — 1] For i in [i* — 1]
Adv — £l Adv — f1i;
Adv « ctll = skEnc(msk, fI7); Adv + ctll = skEnc(msk, f11);
Adv — fl; Adv — I,
Adv < ctli’l = skEnc(msk, fm); Adv « ctli’l = pkEnc(pp);
For i in [i* + 1,¢]: For ¢ in [i* + 1,¢]:
Adv — U, Adv — fli;
Adv < ctll = skEnc(msk, f17); Adv <+ ctl) = skEnc(msk, fI1);

Repeat polynomially many times:  Repeat polynomially many times:
Adv — m; Adv « skGen(msk, m) Adv — m; Adv < skGen(msk, m)
Adv — b; Output b Adv — b; Output b

Remark 2.3 (comparison with [GKW18]). What we call a ¢-CT mixed FE is referred as a (t —1)-
query mixed FE in [GKW18]. In the latter, security is formalized using a indistinguishability-based
paradigm. For the public/secret-key mode indistinguishability, they require that the two ciphertexts
are indistinguishable given honestly generated secret keys from skGen.

3 t-CT mixed-FE from lockable obfuscation and ¢t-CT SKFE

In this section, we present a construction of ¢-ciphertext mixed-FE for the class of all poly-time
computable functions from any lockable obfuscation for all poly-time computable functions and
t-ciphertext secret key functional encryption for all poly-time computable functions. Thus, our
construction shows how to use lockable obfuscation to generically add a public-key oblivious sam-
pling mode to a SKFE.



3.1 Lockable obfuscation
Recall the definition of lockable obfuscation from [GKW17, WZ17].

Definition 4 (Lockable (or compute-and-compare) obfuscation). Consider a family of functions
F = {Fahren where Fy = {f:{0,1}*M — {0,1}*V}, v(X) = w(log)). A lockable obfuscator
takes a function f € F and a target a € {0, 1}, outputs an obfuscated program Obf[f, a] which
satisfies the following properties:

Functionality. Obf[f, a] takes an input = € {0, 1}¢, output 1 if f(x) = o; L otherwise.

Virtual black-box security. A lockable obfuscator is said to satisfy virtual black-box security
if there is a p.p.t. simulator S such that for all f € F,

Obf([f,a] ~. S(1*, 111
over a & {0,1}" and the randomness of the obfuscator and S.

3.2 The Mixed-FE Construction

Construction 3.1. Given a t-CT SKFE FE = (FE.Gen, FE.skGen, FE.skEnc, FE.Dec) and a lockable
obfuscator Obf, construct a t-CT mixed-FE as follows.

e Setup(1?) runs FE.msk <+ FE.Gen(1%), and treat it as the master secret key.
e skGen(msk, z) outputs FE.sk, < FE.skGen(FE.msk, z).
e pkEnc(pp) outputs the simulated code for the lockable obfuscation Obf.S(1*, 1P (D),

e skEnc(msk, f) samples a random string o < {0,1}*, runs FE.cty < FE.skEnc(msk, H, f)
where H, ; computes the following multiple-output-bit functionality

Hy y(z) = {a if f(2) =0

0 else

Then, produce the lockable obfuscation Obf[Prg ct,,,a] as the ciphertext, where Prgct, (Y)
computes FE.Dec(FE.cty,Y).

e Dec(sk,,ct) parses sk, as FE.sk,, and ct as Obf[Prg.ct,,, @], outputs Obf[Prg ct,, , o (FE.sky).

3.3 The security analysis

Theorem 3.2. Construction 3.1 is a t-C'T mized-FE assuming the underlying obfuscator Obf is a
lockable obfuscation and FE is a t-CT secure secret-key FFE.

The only additional property (compared to a normal SKFE) is the indistinguishability of the
public-key and the secret-key ciphertext for a function f s.t. for all  queried in the game, f(x) = 1.
The intuition is that in that case, the « in the SKFE ciphertexts is hidden following the plain SKFE
security. Therefore the « in the lockable obfuscation target is random and independent, and we
can trigger the simulation security of the lockable obfuscation.
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Proof. We prove the indistinguishability of the public and secret-key modes.

Consider the following intermediate distribution for the ¢-CT mixed-FE experiment. Once Adv
makes a ciphertext query for a function f(i) € Fa, i € [t], the challenger responds by sampling
a random string a(® < {0,1}*, runs FE.cty <« FE.Sim(lpOIY|Hf(i)|). Then produces the lockable
obfuscation Obf[PFE.ctH,a(")] as the ciphertext, where Prgct, (Y) computes FE.Dec(FE.cty,Y).
Once Adv makes a message query m, the challenger responds with a decryption key FE.sk,, <+
FE.Sim(m, {19}, ).

So if there is an adversary that distinguishes the real distribution and the intermediate distri-
bution, then there is an adversary that breaks the simulation security for the t-CT SKFE. If there
is an adversary that distinguishes the intermediate distribution from the public key mode, then
we build an adversary that breaks the lockable obfuscation, due to the fact that the Prg t,, in the
intermediate distribution does not depend on a/". ]

4 t-CT mixed-FE from key-homomorphic private constrained PRF

In this section we present a construction of mixed-FE from key-homomorphic PCPRF.

4.1 Background of key-homomorphic private constrained PRFs

We first give the definition of a key-homomorphic private constrained PRF, which literally combines
key-homomorphism [BLMR13] with private constrained PRFs [BLW17, CC17]. For the purpose
of this paper we work with the KHPCPRFs that satisfy the simulation-based definition given
one constrained key and many input queries. We then explain that the PCPRF constructions in
[CC17, BTVW17, CVW18] satisfy an approximate version of key-homomorphism, which suffices
for constructing mixed-FE.

Definition 5 (Key-homomorphic private constrained PRF (KHPCPRF)). Consider a family of
functions F = {F)}ren where F) = {Fj: D)y — R)}, along with a tuple of efficient functions
(ppGen, skGen, Constrain, Eval, Constrain.Eval). For a constraint family C = {Cy = {C' : Dy — {0,1}}}\cx»

e The public parameter generation algorithm ppGen(1*, Fy) takes the security parameter A and
the description of the constraint class Fy, generates the public parameter pp.

e The secret key generation algorithm skGen(l)‘, pp) takes the security parameter A, and the
public parameter pp, generates the secret key sk.

e The evaluation algorithm Eval(sk, z) takes sk, an input x, outputs Fy ().

e The constraining algorithm Constrain(1*, pp, sk, C) takes sk, a constraint C' € Cy, outputs the
constrained key cke.

e The constrained evaluation algorithm Constrain.Eval(ckc, x) takes a constrained key cke, an
input z, outputs Fek, ().

F is called a family of key-homomorphic private constrained PRF for C if it satisfies the following
properties:

11



Functionality preservation for C(z) = 0. For any constraint C' € Cy, any input x € D) s.t.
C(x) =0,
Pr[Eval(sk, z) = Constrain.Eval(ckc, z)] > 1 — negl(\),

where the probability is taken over the randomness in algorithms ppGen, skGen and Constrain.

Pseudorandomness and constraint-hiding.  For any polynomial time algorithm Adv, there
is a polynomial time algorithm Sim such that:

{Experiment REALAdV(l’\)} B {Experiment IDEALpq, Sim(lA)} :
AeN ’ AeN

where the ideal and real experiments are defined as follows. In the experiments the adversary can
ask a single constraint query followed by polynomially many input queries. Once Adv makes the
constraint query C' € Cy, in the real experiment Adv obtains the constrained key generated by the
constraining algorithm; in the ideal experiment Adv obtains a key generated by Sim, whereas Sim
is given only the size of C. Once Adv makes an input query x, Adv is expected to provide a bit
d, indicating the value of C'(x). In the real experiment Adv obtains the unconstrained function
value at x. In the ideal experiment Sim learns the indicator bit d,; if d, = 0 then Adv gets a value
generated by Sim, and if d, = 1 then Adv obtains a random value from the range R of the function.
The output of the experiment is the final output bit of Adv.

Experiment REAL gy, (1) Experiment IDEALaqgy sim (1Y)

pp + ppGen(17), Sim « 1*
sk < skGen (1%, pp), Sim « 1%
Adv — C; Adv — C;
Adv <« Constrain(pp, sk, C) Adv « Sim(11)
Repeat : Repeat :
Adv — x; y = Eval(sk, z) Adv — z; y = Sim(z, d;)
Adv + y if d, =1 then y = U(R); Adv <y
Adv — b; Output b Adv — b; Output b

Key-homomorphism for the SK. Let o denote the group operation. For pp < ppGen(1*, Fy),
sk, sky < skGen(1%, pp), and any input = € D,

Pr[Eval(sk; o ske, z) = Eval(sky, x) o Eval(ska, )] > 1 — negl(\).

The distribution requirement on the secret keys. Let o denote the group operation. We
additionally require that for pp < ppGen(1*, Fy), for sky, sk, sk’ sampled from skGen(1*, pp) with
independent randomness, sk o sk, ski o (—sks), and sk’ are from the same distribution.

Almost key-homomorphic PCPRF and the LWE-based constructions. The existing
LWE-based PCPRFs satisfies the notion of almost-key-homomorphism. For simplicity we focus
on the case where the range of the PRF is Zj for n,p € N, and let the operation be +, which is
what the LWE-based PCPRFs work with.
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Definition 6 (Almost-key-homomorphism). For B, p,n € N such that B < p. Let + be the group
operation. A family of PRFs F = {F)}ien with domain Dy and range Z; is called B-almost-key-
homomorphic if for pp < ppGen(1*, Fy), ski,sks <— skGen(1*, pp), and any input 2 € D.

||Eval(ski, z) + Eval(ska, x) — Eval(sk; o skg, z)|lcc < B

Next we briefly explain how to set the parameters for the existing lattice-based PCPRFs to
achieve almost-key-homomorphism.

Let ¢ > p > 2 be the moduli. In all the LWE-based PCPRF constructions, the evaluation algo-
rithms first work entirely over Zy, then finalize by applying a (coordinate-wise) rounding operation
la] p @ Lg = Zp by multiplying a by p/q and rounding the result to the nearest integer. For any
a,b € Zy, we have

[lal, + 8], — la+b],1 <1

For the two PCPRF constructions [CC17, CVW18] for branching programs from the GGH15
approach [GGH15]. Let h be the length of the branching program (i.e. the number of indexes),
¢ be the bit-length of the input, and 7 be the index-to-input mapping. Recall that the (secret-

key) evaluation algorithm takes as input a sequence of matrices {Si,b € ngn}ie[h] , and a vector

a sampled uniformly random from Zj, computes the output on z € {0, 1} as

y = H Si,x.,r<i) ca
i€[h] P

By treating a as the secret key, the matrices in {Si7b € Z];X”} as the public parameters

i€[h],b
(which is explicit proved in [CVW18] and generalizable to the setting in [CC17]), we have 1-almost-

key-homomorphism since for all = € {0, 1},

i€[h] i€[h] i€[h]

p p p

So setting p to be a bit larger than the appropriated number of key addition suffices for achieving
a meaningful key-homomorphism. The distribution property holds since the secret key is sampled
uniformly random from Zj.

For the PCPRF constructions for all poly-size circuits in [BTVW17], the first construction
[BTVW17, Section 4] satisfies almost-key homomorphism and the distribution requirement. Very
briefly, the construction uses a secret key s sampled uniformly random from Zj, and a set of
matrices in the public parameter pp. The evaluator takes an input x and pp, derives a matrix
pp(x) which is independent of the secret key, then computes LST . pp(:vﬂp. The approximate-key
homomorphism and the distribution property follow immediately.

Remark 4.1. One can also define key-homomorphism for the constrained keys in the natural way,
although it is not used in this paper. Let us remark that the constrained keys of the PCPRFs from
[CC17, CVW18] are also key-homomorphic.
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4.2 Constructing t-CT mixed-FE from KHPCPRF

Next we construct a t-CT secure mixed-FE from key-homomorphic PCPRF. The construction
achieves t-CT security with a O(t) blow-up in the size of the functional decryption key, which is
smaller than the other existing secret-key functional encryptions with bounded collusion.

We first describe the construction of a mixed-FE from a PCPRF with exact key-homomorphism,
then explain how to modify the construction and security analysis slightly to work with the LWE-
based almost-key-homomorphic PCPRFs.

Let us remark that the construction and security analysis for a 1-CT secure mixed-FE from
PCPRF (even without key-homomorphism) is implicit in [CC17, Section 6] and is explained in the
introduction. So we deal with the case of 2 < ¢ < poly(A) directly.

Let T ={1,2,...,2t — 2}. The idea is to pick A x (2¢t —2) independently sampled secret keys for
the KHPCPRF scheme, denote each of them as sk; 4, j € [A], d € T. To generate a ciphertext for a
function f, pick a random vector z € T*, and encrypt the function f in the constrained key derived
from the secret key » el skj,z;- We then prove each encryption is a constrained key derived from
an independently generated master secret key with overwhelming probability.

Construction 4.2. Given a key-homomorphic PCPRF F with group operation +, domain D and
range R, construct a t-CT secure mixed-FE MFE as follows.

e MFE.Setup(1*) runs F.ppGen(1*) to generate F.pp. Then runs F.skGen(1*, pp) for A - (2t — 2)
times with independent randomness, denote the resulting set of secret keys as {F.sk; 4}

Let MFE.msk := F.pp, {F.sk; 4} let MFE.pp := F.pp.

JEN,AET "
JEN,deT

e MFE.skGen(MFE.msk, ) takes a message x € D), outputs

sk, = z, {F.EvaI(F.Skj,d,$)}jem,de7"

e MFE.skEnc(MFE.msk, f) samples z & T2 Then let F.sky =2 ep Fskj,z;. Outputs
cty = z, F.Constrain(F.pp, F.sky¢, f).

e MFE.pkEnc(MFE.pp) runs the simulator of F on the size of the maximum constraint 11650 to
generate a simulated constrained key F.Sim.ck, outputs

cty =z & T, F.Sim.ck
e MFE.Dec(sk,,cty) parses sk, as , {yﬂ':d}je[/\} ger and cty as z, cky, outputs

0 if F.Constrain.Eval(cky, ©) = >\ ¥j,z
1 else '

Correctness.  For f and z such that f(z) = 0, then

F.Constrain.Eval(cks,z) = F.Eval(F.sk¢, x) = Z F.Eval(F.sk; ., ),
J€
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where the first equality follows the correctness of the PCPRF, the second equality follows the exact
key-homomorphism.

For f and z such that f(z) = 1, by the pseudorandomness of the PRF evaluations on x such that
f(x) =1, F.Eval(F.sk¢, ) looks random, and is therefore unlikely to be equal to F.Constrain.Eval(cky, x)
as long as the range R is super-polynomially large.

Theorem 4.3. Assuming F is a key-homomorphic PCPRF, Construction /.2 gives a t-CT secure
mized-FE.

Proof. We construct the mixed-FE simulator MFE.Sim(1%) as follows:

1. Preprocessing: Sample a set of tags {ZM & T’\}. " We define t + 1 sets H, for i € [t], and
S

G w.r.t. the tags, where H! contains the coordinates that only appear in zll; G contains the
indexes that either appear in the tags for more than once, or never appear in the tags. Later
we will prove that w.h.p. all the sets 7!, i € [t], are non-empty.

Formally, first initialize all the sets as empty sets. Then for (j,d) € [A\] x T

o If there exists an ¢* € [t] such that zg.m = d and Vi # ¥, zg-i*] # d, then add (j,d) in
ML
e Else, add (j,d) in G.

2. Given the itﬁ ciphertext query, MFE.Sim(1%) calls for F.Sim.ckll « F.Sim(11€), outputs
zl F.Sim.ckl! as the simulated ciphertext ctld.

3. Given a decryption key query on the input x with the indicators { £t (:z)}l el the mixed-FE
simulator MFE.Sim (1%, z, {f[i] (w)}ie[t]) outputs x and {ny’d}je[)\} ge7» Where each y; ;4 is

computed in the following way:

e First go over all (j,d) € G, and let y, ;4 & Ry, where R is the range of the KHPCPRF.
e Then, for each i € [t], let pl*) := |H[).

For the first p — 1 indexes (j,d) € H, let y, jq & Ry.

For the last index (5%, d*) € H, let

F.Constrain.Eval(F.Sim.ckll, ) = 371y i) Y, if fil(z) =0 0
Y 5% ,d* = g ) .
’ U(Ry) if fl(z) =1

We first prove that with all but negligible probability, all the sets H, i e [t], are non-empty.
Lemma 4.4. With probability greater or equal to 1 —t -2, |HE| > 1 for all i € [t].

Proof. For each tag zl!, i € [t], the probability that the j* coordinate of zl does not show up in

the other ¢t — 1 tags is > % = % Therefore the probability that [H| > 1is 1 — 27,

Therefore with probability greater or equal to 1 —¢- 27, |Hll| > 1 for all ¢ € [t]. O
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Next we reduce the simulation security of the KHPCPRF (with the same public parameter and
many independent secret keys) to the indistinguishability of the real experiment and the simulated
one for the mixed-FE scheme. Suppose there is a p.p.t. adversary A that breaks the t-CT secure
mixed-FE MFE with non-negligible probability 7, we build a p.p.t. adversary A’ for the KHPCPRF
F. A’ goes through the following stages.

1. Preprocessing: A’ sample a set of tags {z[i] & 7')‘} " Define the sets [, for i € [t], and
i€t
G w.r.t. the tags in the same way as was defined for the MFE simulator.

2. The mixed-FE ciphertext queries: Once the mixed-FE adversary A makes the encryption
queries for { f [i]}i i A’ then forwards the ¢ functions as the KHPCPRF constrained key

queries. A’ gets back t constrained keys {ckm} " each of them is either a real constrained
i€t

key ekl F.Const}rain(F.pp, F.skm, fm) derived from some secret key F.skm, or a simulated
constrained key ckl!l « F.Sim(1/¢).
A’ then responses zl1, ckl! to A as the ciphertext ctlil, for i € [t].

3. The mixed-FE decryption key queries: Once the mixed-FE adversary A makes a func-

tional decryption key query on z, A’ forwards x with the indicators { £t (:z:)}l e 2 8 KH-

PCPRF evaluation query. A’ gets back t evaluations {y[i]}i e each of them is either the

real evaluation yl) = F.EvaI(F.sk[i],a:) on some secret key F.skl’), or a simulated evaluation

yll = F.Sim(z, fl(z)).
A’ then produces the set {yx7j7d}je[)\] ge7 as follows:

e First go over all (j,d) € G, and let y, j 4 & Ry, where R) is the range of the KHPCPRF.
e Then, for each i € [t], let pl := |H1].
For the first p — 1 indexes (j,d) € Hl, let Y. jd & Ry.
For the last index (j*,d*) € HY, let Yz j* dr = ylil — Zje[/\}’#j* yz7j7zj['i].
A’ then responses x, {yx,j,d}j €N deT to A as the functional decryption key for z.

4. Finally A’ forwards the answer of A on whether the scheme is real or simulated.

We justify that the distributions produced by A’ are computationally close to the desired dis-
tributions in the mixed-FE security game. Recall that all the sets [, for i € [t], are non-empty
with probability > 1 — ¢ -2~ due to Lemma 4.4.

If the KHPCPRF samples A’ received are from the real distribution, then

e The correct distribution of a mixed-FE ciphertext is

U(T*),F.Constrain(F.pp, F.sky, f), where F.skf = > F.skj.,.
JEA]

The distribution of the mixed-FE ciphertext produced by A’ is

U(’T)‘), F.Constrain(F.pp, F.sk, f), with some correctly generated secret key F.sk.
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These two distributions are the same due to the distribution requirement for the correctly
generated secret keys for F. Recall that for sky,sks,sk’ sampled from F.skGen(1,pp) with
independent randomness, ski + sko and sk’ are required to be from the same distribution.
This immediately implies that the sum of many correctly generated secret keys distributes
the same as a single secret key.

e The correct mixed-FE functional decryption key for x is sk, = x, {F.Eval(F.sk; g4, x)}je[A],deT‘
We argue that the mixed-FE functional decryption key for x produced by A’ is computation-
ally indistinguishable to the real one due to the pseudorandomness of the PRF evaluations
w.r.t. the secret keys whose constrained keys are not giving out.

— For all (j,d) € G, the PRF secret keys on these indexes are independent from the
constrained keys that are given out, so the PRF evaluations on these indexes are indis-
tinguishable from random.

— For each i € [t], pick an index (j*,d*) € HU, the real PRF evaluation Yz j*.d* can be
re-written following the key-homomorphism as

F.Eval(F.skp,z) — > F.EvaI(F.skj7Z;i],x):F.Eval((F.skf— > F.skj7zgi]),x).
JEMLi#i* JEMLi#G

Therefore, y, ;+ 4+ distributes correctly due to the distibution requirement of the KH-
PCPRF secret keys. The PRF evaluations on the rest of the indexes in H[! are using
independent PRF secret keys, so these evaluations are pseudorandom.

If the KHPCPRF samples A’ received are from the simulated distribution, then

e The correct simulated distribution of the mixed-FE ciphertexts is U(7?), F.Sim(1/!), which
is exactly what A’ produces.

e For the simulated mixed-FE functional decryption key for x. Observe that the constrained
PRF simulator outputs U(Ry) if f(z) = 1, outputs F.Constrain.Eval(F.Sim.ck, z) if f(z) = 0.
So the functional decryption key produced by A’ follows the correct distribution.

Hence A’ wins with 7 — negl()\) advantage in the KHPCPRF simulation security game.

Finally we verify the public/secret-key mode indistinguishability. It follows from observing that
if fll (x) = 1 for all x being queried, the simulated ciphertext is independent from the simulated
functional decryption keys, and has the same distribution as the public-key mode. O

The instantiation from the LWE-based almost-key-homomorphic PCPRFs. We pro-
vide the details for instantiating the mixed-FE from the LWE-based 1-almost-key-homomorphic
PCPRFs. Note that the maximum number of key addition is A in both the construction and the
analysis, so we can choose the modulus p to be > 4\, the range R as Z; where n = Q()N), and the
rest of the parameters under the restrictions mentioned in the original PCPRF constructions.

In the construction of the mixed-FE, we change the decryption algorithm as: MFE.Dec(sk,,cty)
parses sk, as x, {yjad}je[A],deT and cty as z,cky, outputs

0 if HF.Constrain.EvaI(ckf,m) - (Zje[/\] yj’zj)Hoo <A

1 else
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In the simulation, we change one piece in the simulated functional decryption key for each
i € [t]. That is, for the last index (5*,d*) € HI, we let

zZ-
J

F.Constrain.Eval(F.Sim.ckl?l, ) + N(\) — > e Yy oA if fil(z)=0
U(R)) if fil(z) =1

y:ﬂ,j*,d* =

where N () is a noise factor added to compensate the error caused by the almost-hey-homomorphism.
The distribution of N()) is efficiently sampleable and identical to the distribution of

) " F.Eval(F sk;, z) — F.Eval(F sk, z)
JE]

where {F.sk; + F.skGen(1*,F.pp)} and F.sky =37y Fusk;.

VISR

5 Attribute-Based Traitor Tracing

5.1 Definition of Attribute-Based Traitor Tracing

Definition 7 (Attribute-Based Traitor Tracing (AB-TT)). An attribute-based traitor-tracing (AB-
TT) scheme for a class of functions 7, = {f : {0,1}* — {0,1}} and a message length ¢ (where p, ¢
are functions of the security parameter \) is a tuple of p.p.t. algorithms (Setup, skGen, Enc, Dec, Trace)
such that:

° Setup(l’\) takes as input the security parameter 1%, outputs the master secret key msk and
the public parameter pp.

o skGen(msk, f,4) takes msk, a function f € F, and an identity i € [2}] and outputs a decryption
key sky ;.

e Enc(pp,z,m) takes as input pp, the attribute 2 € {0,1}* and a message m € {0,1}¢ and
outputs a ciphertext ct.

o Dec(sky;,ct) takes sky; and ct, outputs the message m or L.

° TraceD(msk, 17, 1", 2, mo, m1) takes as input msk the number of identities n € Z, a correctness
parameter h, an attribute z € {0, 1}* and two messages mg, mj as well as oracle-access to a
“decoder” D. Outputs an identity ¢ € [2*] or L to indicate that no identity was traced.

The scheme satisfies the following properties:

e Correctness: This is the same as in standard ABE if we ignore the index i (allow it to be
arbitrary).

e ABE Security: This is the same as in standard ABE if we ignore the index i (allow the
adversary to choose it arbitrarily).

e Tracing Security: For any £(\) = 1/ poly()\). We define the following experiment between an
adversary A and a challenger:

L 17« A(1M).
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2. (mpk, msk) < Setup(1*)

3. (D, z,mg,my) < AKCGen(msk-)(ppy 2 € {0,1}#,m € {0,1}¢ and oracle queries (f,t)
must satisfy f € F, and t € [n].

4. t + Trace? (msk, 17,1172 2 mg, m;)
Within the above experiment, define the event GoodDecoder to occur if
Pr[D(ct) =b : b+« {0,1},ct < Enc(pp,z,myp)] > 1/2 4+ €())

where D, x, mg, m1 are defined in step 3 of the experiment. Define the event BadTrace to occur
if, for the ¢ output by the trace algorithm in step 4, the adversary never made a skGen query
of the form (f,t) where f(z) = 1. We require that Pr[GoodDecoder A BadTrace| < negl(\).

We make several remarks about the above definition. Firstly, while syntactically the scheme
allows the identities i to come from a large space [2%], for tracing security we assume that the
range of identities [n] is polynomially sized where the polynomial can be chosen arbitrarily by the
adversary. Secondly, we think of the identities ¢ as corresponding to users but each user can get
several different keys sk;; for different functions f.

5.2 Tool: Attribute-Based Mixed FE

An attribute-based Mixed FE (AB-MFE) combines aspects of MFE and ABE. In particular, like in
ABE, a secret key is associated with an ABE function f and a (public-key) ciphertext is associated
with an ABE attribute = and a message m and decryption works if f(z) = 1. However, like in
MFE, the secret key is also associated with an MFE function g. The MFE function is irrelevant
when decrypting public-key ciphertexts. But there is also a secret-key encryption algorithm that
additionally associates a ciphertext with an MFE attribute y. A secret-key ciphertext decrypts
correctly if f(z) =1 and g(y) = 1. The security requirements are a combination of MFE and ABE
security.

(Note that, from the point of view of MFE, we switched the role of attributes and functions
from the original definition by associating secret keys with functions and ciphertexts with attributes.
This change is essentially cosmetic to better fit the connection with ABE and one can convert back
and forth easily using universal circuits.)

Definition 8 (Attribute-Based Mixed FE). An attribute-based mized-FE (AB-MFE) scheme for
a class of ABE functions F,, = {f : {0,1}* — {0,1}}, MFE functions G, = {g : {0,1} — {0,1}}
and message length ¢ (where p,v, ¢ are functions of the security parameter \) is a tuple of p.p.t.
algorithms (Setup, skGen, pkEnc, skEnc, Dec) such that:

) Setup(l/\) takes as input the security parameter 1%, outputs the master secret key msk and
the public parameter pp.

o skGen(msk, f, g) takes msk, an ABE function f € F,, a MFE function g € G, and outputs a
decryption key sk .

e pkEnc(pp,z,m) takes as input pp, the ABE attribute = € {0,1}* and a message m € {0,1}*
and outputs a ciphertext ct.
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e skEnc(msk, z,y, m) takes as input pp, the ABE attribute z € {0,1}* the MFE attribute
y € {0,1}” and a message m € {0,1} and outputs a ciphertext ct.

o Dec(skyq,ct) takes sky, and ct, outputs a message m or L.
The scheme is g-query secure for some polynomial ¢ = g(A) if it satisfies the following properties:

e Correctness: For all f € F, and all z € {0,1}* such that f(z) =1, for all g € G, and all
m € {0,1}¢ it holds that

(pp, msk) « Setup(1%),
Pr | Dec(skfg4,ct) =m : skgg < skGen(msk, f, g), | > 1 —negl())
ct < pkEnc(pp, z,m)

Furthermore, for all f,z, m as above and all y € {0,1}" such that g(y) = 1 it holds that:

(pp, msk) « Setup(1%),
Pr |Dec(skfg,ct) =m : sky, < skGen(msk, f,g), | > 1 — negl(})
ct < skEnc(pp, z,y, m)

e ABE Security: The algorithms (Setup, skGen, pkEnc, Dec) satisfy ABE security if we ignore
the g part of skGen.

e Public/Secret Hiding.: Consider the following experiment with an adversary A
1. (mpk, msk) « Setup(1*)
2. (x*’ y*,m*) . AskGen(msk,-,-),skEnc(msk,-,-,-)(mpk)
3. b« {0,1}. If b = 0 then set ct < pkEnc(pp, z*, m*) else if b = 1 set ct < skEnc(msk, z*, y*, m*).
4. b+ Alct).
An adversary A in the above experiment is legal if (a) it makes at most ¢ queries to the skEnc
oracle, and (b) every query (f,g) made to the skGen oracle satisfies g(y*) = 1, meaning that

the MFE component is always qualified to decrypt. We require that for any legal A in the
above game we have Pr[b/ = b] < 3 + negl()).

e MFE Attribute Hiding: Consider the following experiment with an adversary A

1. (mpk, msk) < Setup(1*)
2. (1’*, m*’ Y0, yl) . AskGen(msk,~,-),skEnc(msk,-,-,-)(mpk)
3. b+ {0,1}, ct < skEnc(msk, z*, yp, m*).
4. b+ Act).
An adversary A in the above experiment is legal if (a) it makes at most ¢ queries to the skEnc

oracle, and (b) every query (f,g) made to the skGen oracle satisfies g(yo) = g(y1). We require
that for any legal A in the above game we have Pr[b/ = b] < % + negl()).

e Message Hiding: Consider the following experiment with an adversary A

1. (mpk, msk) < Setup(1*)
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2. (l‘*, y*7 mo, ml) « AskGen(msk,-,~),skEnc(msk,-,',~)(mpk)
3. b+« {0,1}, ct « skEnc(msk, z*, y*, my).
41— Act).

An adversary A in the above experiment is legal if (a) it makes at most ¢ queries to the skEnc
oracle, and (b) every query (f,g) made to the skGen oracle satisfies g(y*) = 0 or f(z*) = 0.
We require that for any legal A in the above game we have Pr[t/ = b] < % + negl(\).

Decoder-Based Security. In the above definition of AB-MFE security we considered three
security properties each of which consists of a 4-step experiment. For each of them, the adversary
can make at most ¢ queries to skEnc(msk, -) oracle during the experiment and at the end of the
experiment gets as input a ciphertext ct and outputs a bit b. We now consider a variant of the
three security properties which we call decoder-based security. Firstly, the adversary loses access
access to the skEnc(msk, -) oracle entirely in each of the experiments. Secondly, in step 2 of each of
the experiments the adversary additionally outputs a decoder circuit D and the experiment ends.
For some ¢ = ¢(\), we say that the decoder is e-good if Pr[D(ct) = b] > 1/2 + ¢ where b and ct are
sampled as in step 3 of each of the original experiments. For decoder-based security we will require
that in each of the experiments, for any legal adversary A and for any €(A) = 1/ poly(A) it holds
that
Pr[D is e(\)-good] < negl())

where D is the output of the adversary in step 2 of the experiment.

The reason for defining both standard and decoder-based security properties is that the standard
definitions are more natural to target when constructing Attribute-Based Mixed-FE, while the
decoder definitions are directly compatible with tracing definitions. The lemma below connects
them, allowing us to get the best of both worlds.

Lemma 5.1. An AB-MFE with (q = 1)-query security also satisfies decoder-based security.

A variant of the above lemma for MFE was given in [GKW18] (Section 4.1). The proof of our
lemma for AB-MFE is identical, up to minor syntactic changes needed to account for the expanded
ABE syntax.

5.3 From Attribute-Based Mixed-FE to Attribute-Based Traitor Tracing

We now move on to building Attribute-Based Traitor Tracing from Attribute-Based Mixed-FE
using the decoder-based security properties. We begin with some high level intuition. Suppose an
attacker produces a decoder D that can decrypt ciphertexts associated with some attribute x. A
natural approach would be to follow [GKW18] using the Mixed-FE piece to remove each user one
index at a time until we reach an index ¢ where the decryption probability between encryptions to
index ¢ and i + 1 differ. At this point we can finger user i as having contributed to creating the
box D. However, the problem with this strategy is that the decoder algorithm might catch (and
only catch) a user i who was not qualified to decrypt the ABE ciphertext to begin with. As argued
earlier a meaningful trace will catch a user with a private key for f where f(z) = 1.

For that reason the MixedFE component will be used to gradually remove only qualified de-
cryptors one index at a time. That is the function g will be of the form if f(z) =0or j >1i. Soa
user with index ¢ and f(x) = 0 will always have the Mixed-FE component output 1 even if j > i.
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Therefore if there is some index ¢ where the decoding probability differs between encryptions to in-
dex ¢ — 1 and ¢ it must be the case that user ¢ was a contributor and was qualified to decrypt. This
is perhaps slightly counterintuitive as our tracing strategy explicitly always allows non-qualified
users to pass the Mixed-FE portion.

We observe that for any good decoder box there must be some such i. The public/secret hiding
property guarantees that any good decryptor box for the public key encryption will still decrypt
well on index ¢ = 0. The Message hiding property guarantees that when encrypting to index i = n
that no user will be able to decrypt. This is either because f(z) = 0 or due to the way g was
selected. Thus there must exists some ¢ where the decoder has a non-negligible gap in decrypting.

A formal description of the tracing system appears below.

Let 7, = {f : {0,1}* — {0,1}} be a function family. Define the family G, = {g : {0,1}" —
{0,1}} consisting of functions

oa_J 1 iff(r)=0o0rj>i
gri(x.) = { 0 otherwise

where i € [2%], j € [2)] U {0} and f € F,.

Assume that ABMFE = (Setup, skGen, pkEnc, skEnc, Dec) is an AB-MFE for the class of ABE
functions F, and the class of MFE functions G,. Further assume that ABMFE satisfies decoder-
based security.

We show how to construct an AB-TT scheme ABTT = (Setup’, skGen’, Enc’, Dec’, Trace) for the
function class F, = {f : {0,1}* — {0,1}} as follows.

e Setup’ is the same as Setup.

e skGen'(msk, f,7): Construct gs; € G, and let sky,; < skGen(msk, f, gy,
e Enc is the same as pkEnc.

e Dec’ is the same as Dec.

. TraceD(msk, 1",1" 2, mg,m1): Let ¢ = 1/h and W = X - (n-h)2. For i = 0 to n, the trace
algorithm does the following:
1. It first sets ¢; := 0. For j =1 to W, it does the following:
(a) Tt chooses b;; + {0, 1}, sets ct; ; < skEnc(msk, z, (z,4),my, ;). If D(ct;;) = bij, it
sets ¢; =¢; + 1.
2. Tt sets p; = ¢;/W.

The trace algorithm outputs the first index ¢ € {1,2,...,n} such that p;_1 —p; > ¢/4n. If no
such index exists output L.

Theorem 5.2. For any F, with a corresponding G,, if ABMFE is a secure AB-MFE for the ABE
class F,, and the MFE class G, satisfying decoder-based security then the scheme ABTT 1is a secure
attribute-based traitor tracing scheme (AB-TT).

A variant of the above theorem showing that (non attribute-based) MFE implies traitor-tracing
was given in [GKW18] (Section 4.2.2). The proof of our theorem for AB-MFE is essentially identical.
We give a high level proof below.
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Proof. Assume that, in the tracing game, the adversary outputs a good decoder D meaning that the
event GoodDecoder occurs. This means D can find b given pkEnc(pp, z, mp) with some noticeable
advantage €.

e By (decoder-based) public/secret hiding, it must be the case that D can find b given skEnc(msk, z, (x,0), mp)
with advantage ¢ — negl(\). Otherwise D could distinguish between pkEnc(pp,z,m;) and
skEnc(msk, z, (x,0),my) even though for all f,i we have g¢;(x,0) = 1.

e By (decoder-based) message hiding, D can only have negligible advantage in finding b given
skEnc(msk, z, (x,n+1),m;). Not that for every AB-MFE secret key obtained by the adversary
associated with functions (f, gr;) we have that either f(x) =0 or gs;(z,n+1) = ~f(x) = 0.

e Combining the above two points, there must be at least one index j such that the advantage
of D in finding b given skEnc(msk, z, (x, j), myp) is at least (¢ — negl()\))/n > &/(2n) larger for
j versus j+ 1. We can use the Chernoff bound to argue that, with overwhelming probability,
the tracing algorithm outputs some ¢ for which the difference in advantage is at least &' /8n.
For this ¢ there must be at least one b € {0,1} such that the decoder D can distinguish
between skEnc(msk, z, (x,t), mp) and skEnc(msk, z, (x,t + 1), m;p) with noticeable advantage.

e By (decoder-based) attribute-hiding security, the above can only happen if the adversary got
an AB-MFE secret key for the functions (f, gy,;) such that gr;(x,t) # gy ;(z,t + 1), which
can only happen if f(x) =1 and j = ¢t. This means that the adversary must have queried an
AB-TT secret key for the function f such that f(x) = 1 with the identity ¢. Therefore the
tracing algorithm succeeds in finding a valid traitor ¢ and the event BadTrace does not occur
whenever GoodDecoder occurs as we wanted to show.

O]

5.4 From Mixed-FE to Attribute-Based Mixed-FE

Let ABE = (ABE.Setup, ABE.skGen, ABE.Enc, ABE.Dec) be an ABE scheme for all circuits. Let
MFE = (MFE.Setup, MFE.skGen, MFE.pkEnc, MFE.skEnc, MFE.Dec) be an MFE scheme (without a
message) for some function class 7, = {f : {0,1}* — {0,1}}; for simplicity we switch the roles of
attribute/function and associate keys with functions and ciphertexts with attributes. We construct
and AB-MFE scheme ABMFE = (Setup, skGen, pkEnc, skEnc, Dec) as follows:

e Setup: Run (ABE.pp, ABE.msk) + ABE.Setup(1*) and (MFE.pp, MFE.msk) <~ MFE.Setup(1*).
Output pp = (ABE.pp, MFE.pp) and msk = (ABE.msk, MFE.msk).

e skGen(msk, f,g): Let MFE.sk, < MFE.skGen(MFE.msk,g). Let C be a circuit which has
f,MFE.sk, hard-coded inside it, takes as input z, MFE.ct and outputs 1 if f(z) = 1 and
MFE.Dec(MFE.sky,ct) = 1. Output sky, <— ABE.skGen(ABE.msk, C).

e pkEnc(pp, z,m): Let MFE.ct < MFE.pkEnc(MFE.pp).
Output ct < ABE.Enc(ABE.pp, (z, MFE.ct), m).

e skEnc(msk, z,y, m): Let MFE.ct < MFE.skEnc(MFE.msk, y).
Output ct < ABE.Enc(ABE.pp, (2, MFE.ct), m).

o Dec(sky 4,ct): Output ABE.Dec(sky g, ct).
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Theorem 5.3. If ABE is a secure ABE scheme and MFE is a secure MFE scheme then ABMFE
is a secure AB-MFFE scheme.

Proof. The correctness of the AB-MFE follows directly from that of the ABE and MFE schemes.
The ABE security of the AB-MFE follows directly from the ABE security of the ABE. The “pub-
lic/secret hiding” security of the AB-MFE follows directly from that of the MFE. The “attribute-
hiding” security of the AB-MFE follows directly from the “attribute-hiding” security of the MFE
(previously we called this “function hiding” but since we switched the roles of attributes and func-
tions this is now “attribute hiding”). Lastly for message-hiding security of the AB-MFE we rely on
the security of the ABE. In particular, the adversary gets as a challenge an ABE ciphertext with
attribute (z*, MFE.ct = MFE.skEnc(MFE.msk, y*)) but only has ABE keys for circuits C' such that
C(x,MFE.ct) = 1 if f(z*) = 1 and MFE.Dec(MFE.skgy,ct) = 1 < g(y*) = 1. Therefore if one of
f(x*) =0 or g(y*) = 0 always holds, it must mean that none of the ABE secret keys are qualified
to decrypt the challenge ciphertext. O
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