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Abstract

Oblivious RAM (ORAM), first introduced in the ground-breaking work of Goldreich and
Ostrovsky (STOC ’87 and J. ACM ’96) is a technique for provably obfuscating programs’ access
patterns, such that the access patterns leak no information about the programs’ secret inputs. To
compile a general program to an oblivious counterpart, it is well-known that Ω(logN) amortized
blowup is necessary, where N is the size of the logical memory. This was shown in Goldreich and
Ostrovksy’s original ORAM work for statistical security and in a somewhat restricted model
(the so called balls-and-bins model), and recently by Larsen and Nielsen (CRYPTO ’18) for
computational security.

A long standing open question is whether there exists an optimal ORAM construction that
matches the aforementioned logarithmic lower bounds (without making large memory word
assumptions, and assuming a constant number of CPU registers). In this paper, we resolve
this problem and present the first secure ORAM with O(logN) amortized blowup, assuming
one-way functions. Our result is inspired by and non-trivially improves on the recent beautiful
work of Patel et al. (FOCS ’18) who gave a construction with O(logN · log logN) amortized
blowup, assuming one-way functions.

One of our building blocks of independent interest is a linear-time deterministic oblivious
algorithm for tight compaction: Given an array of n elements where some elements are marked,
we permute the elements in the array so that all marked elements end up in the front of the
array. Our O(n) algorithm improves the previously best known deterministic or randomized
algorithms whose running time is O(n · log n) or O(n · log log n), respectively.

Keywords: Oblivious RAM, randomized algorithms, compaction.

*Errata: The scheme in this version is almost identical to the version posted on Cryptology eprint on Dec 11,
2018. The only slight difference is that when we rebuild levels 1, 2, . . . , j − 1 into the next empty level j, we empty
only the elements in the oblivious dictionary D marked with levels j − 1 or smaller. We do not empty elements in
D marked with level greater than j − 1. We gratefully acknowledge Falk, Noble, and Ostrovsky [20] for pointing out
this subtlety. These changes have been explicitly marked in Construction 9.1.
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1 Introduction

Oblivious RAM (ORAM), first proposed by Goldreich and Ostrovsky [29, 31], is a technique
to compile any program into a functionally equivalent one, but whose memory access patterns
are independent of the program’s secret inputs. The overhead of an ORAM is defined as the
(multiplicative) blowup in runtime of the compiled program. Since Goldreich and Ostrovsky’s
seminal work, ORAM has received much attention due to its applications in cloud computing,
secure processor design, multi-party computation, and theoretical cryptography (for example,
[6, 25,26,28,45–47,51,57,59,60,64,67,68])

For more than three decades, the biggest open question in this line of work is regarding the
optimal overhead of ORAM. Goldreich and Ostrovsky’s original work [29,31] showed a construction
with O(log3N) blowup in runtime, assuming the existence of one-way functions, where N denotes
the memory size consumed by the original non-oblivious program. On the other hand, they proved
that any ORAM scheme must incur at least Ω(logN) overhead, but their lower bound is restricted
to schemes that treat the contents of each memory word as “indivisible” (see Boyle and Naor [7]) and
make no cryptographic assumptions. In a recent work, Larsen and Nielsen [41] showed that Ω(logN)
overhead is necessary for all online ORAM schemes,1 even ones that use cryptographic assumptions
and might perform non-trivial encodings on the contents of the memory. Since Goldreich and
Ostrovsky’s work, a long line of research has been dedicated to improving the asymptotic efficiency
of ORAM [12,33,40,58,61,63]. Prior to our work, the best known scheme, allowing computational
assumptions, is the elegant work by Patel et al. [53]: they showed the existence of an ORAM
with O(logN · log logN) overhead, assuming one-way functions. In comparison with Goldreich and
Ostrovksy’s original O(log3N) result, Patel et al. seems tantalizingly close to matching the lower
bound, but unfortunately we are still not there yet and the construction of an optimal ORAM
continues to elude us even after more than 30 years.

1.1 Our Results: Optimal Oblivious RAM

We resolve this long-standing problem by showing a matching upper bound to Larsen and Nielsen’s [41]
lower bound: an ORAM scheme with O(logN) overhead and negligible security in λ, where N is the
size of the memory and λ is the security parameter, assuming one-way functions. More concretely,
we show: 2

Theorem 1.1. Assume that there is a PRF family that is secure against any probabilistic polynomial-time
adversary except with a negligible small probability in λ. Assume that λ ≤ N ≤ T ≤ poly(λ) for any
fixed polynomial poly(·), where T is the number of accesses. Then, there is an ORAM scheme with
O(logN) overhead and whose security failure probability is upper bounded by a suitable negligible
function in λ.

In the aforementioned results and throughout this paper, unless otherwise noted, we shall
assume a standard word-RAM where each memory word has at least w = logN bits, i.e., large
enough to store its own logical address. We assume that word-level addition and boolean operations
can be done in unit cost. We assume that the CPU has constant number of private registers. For our
ORAM construction, we additionally assume that a single evaluation of a pseudorandom function

1An ORAM scheme is online if it supports accesses arriving in an online manner, one by one. Almost all known
schemes have this property.

2Note that for the (sub-)exponential security regime, e.g., failure probability of 2−λ or 2−λ
ε

for some ε ∈ (0, 1),
perfectly secure ORAM schemes [14, 19] asymptotically outperform known statistically or computationally secure
constructions assuming that N = poly(λ).

1



(PRF), resulting in at least word-size number of pseudo-random bits, can be done in unit cost.3

Note that all earlier computationally secure ORAM schemes, starting with the work of Goldreich
and Ostrovsky [29,31], make the same set of assumptions. Additionally, we remark that our result
can be made statistically secure if one assumes a private random oracle to replace the PRF (the
known logarithmic ORAM lower bound [29, 31, 41] still hold in this setting). Finally, we note that
our construction suffers from huge constants due to the use of certain expander graphs; improving
the concrete constant is left for future work.

In Appendix A we provide a comparison with previous works, where we make the comparison
more accurate and meaningful by explicitly stating the dependence on the error probability (which
was assumed to be some negligible functions in previous works).

1.2 Our Results: Optimal Oblivious Tight Compaction

Closing the remaining log logN gap for ORAM turns out to be highly challenging. Along the way,
we actually construct an important building block, that is, a deterministic, linear-time, oblivious
tight compaction algorithm. This result is an important contribution on its own, and has intimate
connections to classical algorithms questions, as we explain below.

Tight compaction is the following task: given an input array of size n containing either real or
dummy elements, output a permutation of the input array where all real elements appear in the
front. Tight compaction can be considered as a restricted form of sorting, where each element in the
input array receives a 1-bit key, indicating whether it is real or dummy. One näıve solution for tight
compaction, therefore, is to rely on oblivious sorting to sort the input array [1, 32]; unfortunately,
due to recent lower bounds [22,44], we know that any oblivious sorting scheme must incur Ω(n·log n)
time on a word-RAM, either assuming that the algorithm treats each element as “indivisible” [44]
or assuming that the famous Li-Li network coding conjecture [43] is true [22].

A natural question, therefore, is whether we can do asymptotically better than just näıvely
sorting the input. It turns out that this question is related to a line of work in the classical algorithms
literature, that is, the design of switching networks and routing on such networks [1,4,5,23,55,56].
First, a line of combinatorial works showed the existence of linear-sized super-concentrators [54,55,
62], i.e., switching networks with n inputs and n outputs such that vertex-disjoint paths exist from
any k elements in the inputs to any k positions in the outputs. One could leverage a linear-sized
super-concentrator construction to obliviously route all the real elements in the input to the front of
the output array deterministically and in linear time (by routing elements along the routes), but it
is not clear yet how to find routes (i.e., a set of vertex-disjoint paths) from the real input positions
to the front of the output array.

In an elegant work in 1996, Pippenger [56] showed a deterministic, linear-time algorithm for
route-finding but unfortunately the algorithm is not oblivious. Shortly afterwards, Leighton et
al. [42] showed a probabilistic algorithm that tightly compacts n elements in O(n · log log λ) time
with 1− negl(λ) probability — their algorithm is almost oblivious except for leaking the number of
reals and dummies. After Leighton et al. [42], this line of work remained somewhat stagnant for
almost two decades. Only recently, did we see some new results: Mitchell and Zimmerman [49] as
well as Lin et al. [44] showed how to achieve the same asymptotics as Leighton et al. [42] but now
making the algorithm fully oblivious.

In this paper, we give an explicit construction of a deterministic, oblivious algorithm that tightly
compacts any input array of n elements in linear time, as stated in the following theorem:

3Alternatively, if we use number of IOs as an overhead metric, we only need to assume that the CPU can evaluate
a PRF internally without writing to memory, but the evaluation need not be unit cost.
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Theorem 1.2 (Linear-time oblivious tight compaction). There is a deterministic, oblivious tight
compaction algorithm that compacts n elements in O(dD/we · n) time on a word-RAM where D is
the bit-width for encoding each element and w ≥ log n is the word size.

Our algorithm is not comparison-based and not stable and this is inherent. Specifically, Lin et
al. [44] recently showed that any stable, oblivious tight compaction algorithm (that treats elements
as indivisible) must incur Ω(n · log n) runtime, where stability requires that the real elements in
the output must appear in the same order as the input. Further, due to the well-known 0-1
principle [18,66], any comparison-based tight compaction algorithm must incur at least Ω(n · log n)
runtime as well.4

Not only our ORAM construction relies on the above compaction algorithm in several key
points, but it is a useful primitive independently. For example, we use our compaction algorithm
to give a perfectly oblivious algorithm that randomly permutes arrays of n elements in (worst-case)
O(n · log n) time. All previously known such constructions have some probability of failure.

2 Technical Roadmap

We give a high-level overview of our results. In Section 2.1 we provide a high-level overview of our
ORAM construction which uses an oblivious tight compaction algorithm. In Section 2.2 we give a
high-level overview of the techniques underlying our tight compaction algorithm.

2.1 Oblivious RAM

In this section we present a high-level description of the main ideas and techniques underlying our
ORAM construction. Full details are given later in the corresponding technical sections.

Hierarchical ORAM. The hierarchical ORAM framework, introduced by Goldreich and Ostro-
vsky [29, 31] and improved in subsequent works (e.g., [12, 33, 40]), works as follows. For a logical
memory of N blocks, we construct a hierarchy of hash tables, henceforth denoted T1, . . . , TL where
L = logN . Each Ti stores 2i memory blocks. We refer to table Ti as the i-th level. In addition,
we store next to each table a flag indicating whether the table is full or empty. When receiving an
access request to read/write some logical memory address addr, the ORAM proceeds as follows:

� Read phase. Access each non-empty levels T1, . . . , TL in order and perform Lookup for addr.
If the item is found in some level Ti, then when accessing all non-empty levels Ti+1, . . . , TL
look for dummy.

� Write back. If this operation is read, then store the found data in the read phase and write
back the data value to T0. If this operation is write, then ignore the associated data found in
the read phase and write the value provided in the access instruction in T0.

� Rebuild: Find the first empty level `. If no such level exists, set ` := L. Merge all {Tj}0≤j≤`
into T`. Mark all levels T1, . . . , T`−1 as empty and T` as full.

For each access, we perform logN lookups, one per hash table. Moreover, after t accesses,
we rebuild the i-th table dt/2ie times. When implementing the hash table using the best known
oblivious hash table (e.g., oblivious Cuckoo hashing [12, 33, 40]), building a level with 2k items
obliviously requires O(2k · log(2k)) = O(2k · k) time. This building algorithm is based on oblivious

4Although the algorithm of Leighton et al. [42] appears to be comparison-based, it is in fact not since the algorithm
must tally the number of reals/dummies and make use of this number.
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sorting, and its time overhead is inherited from the time overhead of the oblivious sort procedure
(specifically, the best known algorithm for obliviously sorting n elements takes O(n · log n) time [1,
32]). Thus, summing over all levels (and ignoring the logN lookup operations across different levels

for each access), t accesses require
∑logN

i=1

⌈
t
2i

⌉
· O(2i · i) = O(t · log2N) time. On the other hand,

lookup takes essentially constant time per level (ignoring searching in stashes which introduce an
additive factor) and this O(logN) per access. Thus, there is an asymmetry between build time and
lookup time, and the main overhead is the build.

The work of Patel et al. [53]. Classically (e.g., [12, 29, 31, 33, 40]), oblivious hash tables were
built to support (and be secure for) every input array. This required expensive oblivious sorting,
causing the extra logarithmic factor. The key idea of Patel et al. [53] is to modify the hierarchical
ORAM framework to realize ORAM from a weaker primitive: an oblivious hash table that works
only for randomly shuffled input arrays. Patel et al. describe a novel oblivious hash table such that
building a hash table containing n elements can be accomplished without oblivious sorting and
consumes only O(n · log log λ) total time5 and lookup consumes O(log log n) total time. Patel et al.
argue that their hash table construction retains security not necessarily for every input, but when
the input array is randomly permuted, and moreover the input permutation must be unknown to
the adversary.

To be able to leverage this relaxed hash table in hierarchical ORAM, a remaining question
is the following: whenever a level is being rebuilt in the ORAM (i.e., a new hash table is being
constructed), how do we make sure that the input array is randomly and secretly shuffled? A näıve
answer is to employ an oblivious random permutation to permute the input, but known oblivious
random permutation constructions require oblivious sorting which brings us back to our starting
point. Patel et al. solve this problem and show that there is no need to completely shuffle the
input array. Recall that when building some level T`, the input array consists of only unvisited
elements in tables T0, . . . , T`−1 (and T` too if ` is the largest level). Patel et al. argue that the
unvisited elements in tables T0, . . . , T`−1 are already randomly permuted within each table and the
permutation is unknown to the adversary. Then, they presented a new algorithm, called multi-
array shuffle, that combines these arrays to a shuffled array within O(n · log log λ) time, where
n = |T0| + |T1| + . . . + |T`−1|.6 The algorithm is somewhat involved, randomized, and has a
negligible probability of failure.

The blueprint. Our construction builds upon and simplifies the construction of Patel et al. To
get better asymptotic overhead, we improve their construction in two different aspects:

1. We show how to implement our variant of multi-array shuffle (called intersperse) in O(n) time.
Specifically, we show a new reduction from intersperse to tight compaction.

2. We develop a hash table that supports build in O(n) time assuming that the input array is
randomly shuffled. The lookup is O(1), ignoring time spent on looking in stashes. Achieving
this is rather non-trivial: first we use a “packing” style trick to construct oblivious Cuckoo
hash tables for small sizes where n ≤ poly log λ, achieving linear-time build and constant-time
lookup. Relying on the advantage we gain for problems of small sizes, we then show how to solve
problems of medium and large sizes, again relying on oblivious tight compaction as a building

5λ denotes the security parameter. Since the size of the hash table n may be small, here we separate the security
parameter from the hash table’s size.

6The time overhead is a bit more complicated to state and the above expression is for the case where |Ti| = 2|Ti−1|
for every i (which is the case in a hierarchical ORAM construction).
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block. The bootstrapping step from medium to large is inspired by Patel et al. [53] at a very
high level, but our concrete construction differs from Patel et al. [53] in many technical details.

We describe the core ideas behind these improvements next. In Section 2.1.1, we present our
multi-array shuffle algorithm. In Section 2.1.2, we show how to construct a hash table for shuffled
inputs achieving linear build time and constant lookup.

2.1.1 Interspersing Randomly Shuffled Arrays

Given two arrays, I1 and I2, of size n1, n2, respectively, where each array is randomly shuffled, our
goal is to output a single array that contains all elements from I1 and I2 in a randomly shuffled
order. Ignoring obliviousness, we could first initialize an output array of size n = n1 + n2, mark
exactly n1 random locations in the output array, and place the elements from I1 arbitrarily in
these locations. The elements from I2 are placed in the unmarked locations.7 The challenge is how
to perform this placement obliviously, without revealing the mapping from the input array to the
output array.

We observe that this routing problem is exactly the “reverse” problem of oblivious tight com-
paction, where one is given an input array of size n containing keys that are 1-bit and the goal is to
sort the array such that all elements with key 0 appear before all elements with key 1. Intuitively,
by running this algorithm “in reverse”, we obtain a linear time algorithm for obliviously routing
marked elements to an array with marked positions (that are not necessarily at the front). Since
we believe that this procedure is useful in its own right, we formalize it independently and call it
oblivious distribution. The full details appear in Section 6.

2.1.2 An Optimal Hash Table for Shuffled Inputs

In this section, we first describe a warmup construction that can be used to build a hash table in
O(n · poly log log λ) time and supports lookups in O(poly log log λ) time. We will then get rid of the
additional poly log log λ factor in both the build and lookup phases.

Warmup: oblivious hash table with poly log log λ slack. Intuitively, to build a hash table,
the idea is to randomly distribute the n elements in the input into B := n/poly log λ bins of size
poly log λ in the clear. The distribution is done according to a pseudorandom function with some
secret key K, where an element with address addr is placed in the bin with index PRFK(addr).
Whenever we lookup for a real element addr′, we access the bin PRFK(addr′); in which case, we
might either find the element there (if it was originally one of the n elements in the input) or we
might not find it in the accessed bin (in the case where the element is not part of the input array).
Whenever we perform a dummy lookup, we just access a random bin.

Since we assume that the n balls are secretly and randomly distributed to begin with, the build
procedure does not reveal the mapping from original elements to bins. However, a problem arises
in the lookup phase. Since the total number of elements in each bin is revealed, accessing in the
lookup phase all real keys of the input array would produce an access pattern that is identical
to that of the build process, whereas accessing n dummy elements results in a new, independent
balls-into-bins process of n balls into B bins.

To this end, we first throw the n balls into the B bins as before, revealing loads n1, . . . , nB.
Then, we sample new secret loads L1, . . . , LB corresponding to an independent process of throwing

7Note that the number of such assignments is
(

n
n1,n2

)
. Assuming that each array is already permuted, the number

of possible outputs is
(

n
n1,n2

)
· n1!n2! = n!.
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n′ := n · (1− 1/poly log λ) balls into B bins. By a Chernoff bound, with overwhelming probability
Li < ni for every i ∈ [B]. We extract from each bin arbitrary ni − Li elements obliviously
and move them to an overflow pile (without revealing the Li’s). The overflow pile contains only
n/poly log λ elements so we use a standard Cuckoo hashing scheme such that it can be built in
O(m · logm) = O(n) time and supports lookups effectively in O(1) time (ignoring the stash).8 The
crux of the security proof is showing that since the secret loads L1, . . . , LB are never revealed, they
are large enough to mask the access pattern in the lookup phase so that it looks independent of
the one leaked in the build phase.

We glossed over many technical details, the most important ones being how the bin sizes are
truncated to the secret loads L1, . . . , LB, and how each bin is being implemented. For the second
question, since the bins are of O(poly log λ) size, we support lookups using a perfectly secure ORAM
constructions that can be built in O(poly log λ · poly log log λ) and looked up in O(poly log log λ)
time [14,19] (this is essentially where our poly log log factor comes from in this warmup). The first
question is slightly more tricky and here we employ our linear time tight compaction algorithm to
extract the number of elements we want from each bin.

The full details of the construction appear in Section 7.

Remark 2.1 (Comparison of the warmup construction with Patel et al. [53]). Our warmup con-
struction borrows the idea of revealing loads and then sampling new secret loads from Patel et al.
However, our concrete instantiation is different and this difference is crucial for the next step where
we get an optimal hash table. Particularly, the construction of Patel et al. has log log λ layers of
hash tables of decreasing sizes, and one has to look for an element in each one of these hash tables,
i.e., searching within log log λ bins. In our solution, by tightening the analysis (that is, the Chernoff
bound), we show that a single layer of hash tables suffices; thus, lookup accesses only a single bin.
This allows us to focus on optimizing the implementation of a bin towards the optimal construction.

Oblivious hash table with linear build time and constant lookup time. In the warmup
construction, (ignoring the lookup time in the stash of the overflow pile9), the only super-linear
operation that we have is the use of a perfectly secure ORAM, which we employ for bins of size
O(poly log λ). In this step, we replace this with a data structure with linear time build and constant
time lookup: a Cuckoo hash table for lists of polylogarithmic size.

Recall that in a Cuckoo hash table each element receives two random bin choices (e.g., deter-
mined by a PRF) among a total of ccuckoo · n bins where ccuckoo > 1 is a suitable constant. During
build-time, the goal is for all elements to choose one of the two assigned bins, such that every bin
receives at most one element. At this moment it is not clear how to accomplish this build process,
but suppose we can obliviously build such a Cuckoo hash table in linear time, then the problem
would be solved. Specifically, once we have built such a Cuckoo hash table, lookup can be accom-
plished in constant time by examining both bin choices made by the element (ignoring the issue of
the stash for now). Since the bin choices are (pseudo-)random, the lookup process retains security
as long as each element is looked up at most once. At the end of the lookups, we can extract the
unvisited elements through oblivious tight compaction in linear time — it is not hard to see that
if the input array is randomly shuffled, the extracted unvisited elements appear in a random order
too.

8We refer to Section 4.5 for background information on Cuckoo hashing.
9For the time being, the reader need not worry about how to perform lookup in the stash. Later, when we use

our oblivious Cuckoo hashing scheme in the bigger hash table construction, we will merge the stashes of all Cuckoo
hash tables into a single one and treat the merged stash specially.
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Therefore the crux is how to build the Cuckoo hash table for polylogarithmically-sized, randomly
shuffled input arrays. Our observation is that classical oblivious Cuckoo hash table constructions
can be split into three steps: (1) assigning two possible bin choices per element, (2) assigning either
one of the bins or the stash for every element, and (3) routing the elements according to the Cuckoo
assignment. We delicately handle each step separately:

1. For step (1) the n = poly log λ elements in the input array can each evaluate the PRF on its
associated key, and write down its two bin choices (this takes linear time).

2. Implementing step (2) in linear time is harder as this step is dominated by a sequence of
oblivious sorts. To overcome this, we use the fact that the problem size n is of size poly log λ.
As a result, the index of each item and its two bin choices can be expressed using O(log log λ)

bits which means that a single memory word (which is log λ bits long) can hold O
(

log λ
log log λ

)
many elements’ metadata. We can now apply a “packed sorting” type of idea [2, 13, 17, 36]
where we use the RAM’s word-level instructions to perform SIMD-style operations. Through
this packing trick, we show that oblivious sorting and oblivious random permutation (of the
elements’ metadata) can be accomplished in O(n) time!

3. Step (3) is classically implemented using oblivious bin distribution which again uses oblivious
sorts. Here, we cannot use the packing trick since we operate on the elements themselves, so
we use the fact that the input array is randomly shuffled and just route the elements in the
clear.

There are many technical issues we glossed over, especially related to the fact that the Cuckoo
hash tables are of size ccuckoo · n bins, where ccuckoo > 1. This requires us to pad the input array
with dummies and later to use them to fill the empty slots in the Cuckoo assignment. Additionally,
we also need to get rid of these dummies when extracting the set of unvisited element. All of these
require several additional (packed) oblivious sorts or our oblivious tight compaction.

We refer the reader to Section 8 for the full details of the construction.

2.1.3 Additional Technicalities

The above description, of course, glossed over many technical details. To obtain our final ORAM
construction, there are still a few concerns that have not been addressed. First, recall that we
need to make sure that the unvisited elements in a hash table appear in a (pseudo-)random order
such that we can make use of this residual randomness to re-initialize new hash tables faster. To
guarantee this for the Cuckoo hash table that we employ for poly log λ-sized bins, we need that the
underlying Cuckoo hash scheme we employ satisfy an additional property called the “indiscrim-
inating bin assignment” property: specifically, we need that the two pseudo-random Cuckoo-bin
choices for each element do not depend on the order in which they are added, their keys, or their
positions in the input array. In our technical sections later, this property will allow us to do a
coupling argument and prove that the residual unvisited elements in the Cuckoo hash table appear
in random order.

Additionally, some technicalities remain in how we treat the smallest level of the ORAM and
the stashes. The smallest level in the ORAM construction cannot use the hash table construction
described earlier. This is because elements are added to the smallest level as soon as they are
accessed and our hash table does not support such an insertion. We address this by using an
oblivious dictionary built atop a perfectly secure ORAM for the smallest level of the ORAM. This
incurs an additive O(poly log log λ) blowup. Finally, the stashes for each of the Cuckoo hash tables
(at every level and every bin within the level) incur O(log λ) time. We leverage the techniques from
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Kushilevitz et al. [40] to merge all stashes into a common stash of size O(log2 λ), which is added
to the smallest level when it is rebuilt.

On deamortization. As the overhead of our ORAM is amortized over several accesses, it is
natural to ask whether we can deamortize the construction to achieve the same overhead in the
worst case, per access. Historically, Ostrovsky and Shoup [51] deamortized the hierarchical ORAM
of Goldreich and Ostrovsky [31], and related techniques were later applied on other hierarchical
ORAM schemes [12,34,40]. Unfortunately, the technique fails for our ORAM as we explain below
(it fails for Patel et al. [53], as well, by the same reason).

Recall that in the hierarchical ORAM, the i-th level hash table stores 2i keys and is rebuilt every
2i accesses. The core idea of existing deamortization techniques is to spread the rebuilding work
over the next sequence of 2i ORAM accesses. That is, copy the 2i keys (to be rebuilt) to another
working space while performing lookup on the same level i to fulfill the next 2i accesses. However,
plugging such copy-while-accessing into our ORAM, an adversary can access a key in level i right
after the same level is fully copied (as the copying had no way to foresee future accesses). Then, in
the adversarial eyes, the copied keys are no longer randomly shuffled, which breaks the security of
the hash table (which assumes that the inputs are shuffled). Indeed, in previous works, where hash
tables were secure for every input, such deamortization works. Deamortizing our construction is
left as an open problem.

2.2 Tight Compaction

Recall that tight compaction can be considered as a restricted form of sorting, where each element
in the input array receives a 1-bit key, indicating whether it is real or dummy. The goal is to move
all the real elements in the array to the front obliviously, and without leaking how many elements
are reals. We show a deterministic algorithm for this task.

Reduction to loose compaction. Pippenger’s self-routing super-concentrator construction [56]
proposes a technique that reduces the task of tight compaction to that of loose compaction. Infor-
mally speaking, loose compaction receives as input a sparse array, containing a few real elements
and many dummy elements. The output is a compressed output array, containing all real elements
but the procedure does not necessarily remove all the dummy elements. More concretely, we care
about a specific form of loose compactor (parametrized by n): consider a suitable bipartite ex-
pander graph that has n vertices on the left and n/2 vertices on the right where each node has
constant degree. At most 1/128 fraction of the vertices on the left will receive a real element, and
we would like to route all real elements over vertex-disjoint paths to the right side such that every
right vertex receives at most 1 element. The crux is to find a set of satisfying routes in linear time
and obliviously. Once a set of feasible routes have been identified, it is easy to see that performing
the actual routing can be done obliviously in linear time (and for obliviousness we need to route a
dummy element over an edge that bears 0 load). During this process, we effectively compress the
sparse input array (represented by vertices on the left) by 1/2 without losing any element.

Using Pippenger’s techniques [56] and with a little extra work, we can derive the following
claim — at this point we simply state the claim while deferring algorithmic details to subsequent
technical sections. Below D denotes the number of bits it takes to encode an element and w denotes
the word size:

Claim: There exist appropriate constants C,C ′ > 6 such that the following holds: if we can solve
the aforementioned loose compaction problem obliviously in time T (n) for all n ≤ n0, then we can
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construct an oblivious algorithm that tightly compacts n elements in time C ·T (n)+C ′ ·dD/we·n
for all n ≤ n0.

As mentioned, the crux is to find satisfying routes for such a “loose compactor” bipartite graph
obliviously and in linear time. Achieving this is non-trivial: for example, the recent work of Chan
et al. [14] attempted to do this but their route-finding algorithm requires O(n log n) runtime —
thus Chan et al. [14]’s work also implies a loose compaction algorithm that runs in time O(n log n+
dD/we·n). To remove the extra log n factor, we introduce two new ideas, packing, and decomposition
— in fact both ideas are remotely reminiscent of a line of works in the core algorithms literature on
(non-comparison-based, non-oblivious) integer sorting on RAMs [2, 17, 36] but obviously we apply
these techniques to a different context.

Packing: linear-time compaction for small instances. We observe that the offline route-
finding phase operates only on metadata. Specifically, the route-finding phase receives the following
as input: an array of n bits where the i-th bit indicates whether the i-th input position is real or
dummy. If the problem size n is small, specifically, if n ≤ w/ logw where w denotes the width of
a memory word, we can pack the entire problem into a single memory word (since each element’s
index can be described in log n bits). In our technical sections we will show how to rely on word-
level addition and boolean operations to solve such small problem instances in O(n) time. At a
high level, we follow the slow route-finding algorithm by Chan et al. [14], but now within a single
memory word, we can effectively perform SIMD-style operations and we exploit this to speed up
Chan et al. [14]’s algorithm by a logarithmic factor for small instances.

Relying on the above Claim that allows us to go from loose to tight, we now have an O(n)-time
oblivious tight compaction algorithm for small instances where n ≤ w/ logw; specifically, if the
loose compaction algorithm takes C0 · n time, then the runtime of the tight compaction would be
upper bounded by C · C0 · n+ C ′ · dD/we · n ≤ C · C0 · C ′ · dD/we · n.

Decomposition: bootstrapping larger instances of compaction. With this logarithmic
advantage we gain in small instances, our hope is to bootstrap larger instances by decomposing
larger instances into smaller ones.

Our bootstrapping is done in two steps — as we calculate below, each time we bootstrap, the
constant hidden inside the O(n) runtime blows up by a constant factor; thus it is important that
the bootstrapping is done for only O(1) times.

1. Medium instances: n ≤ (w/ logw)2. For medium instances, our idea is to divide the input
array into

√
n segments each of B :=

√
n size. As long as the input array has only n/128

or fewer real elements, then at most
√
n/4 segments can be dense, i.e., each containing

more than
√
n/4 real elements (1/4 is loose but sufficient). We rely on tight compaction

for small segments to move the dense segments in front of the sparse ones. For each of the
3
√
n/4 segments, we next compress away 3/4 of the space for using tight compaction for

small instances. Clearly, the above procedure is a loose compaction and consumes at most
2 · C · C ′ · C0 · dD/we · n+ 6dD/we · n ≤ 2.5 · C · C ′ · C0 · dD/we · n runtime.

So far we have constructed a loose compaction algorithm for medium instances. Using the
aforementioned Claim, we can in turn construct an algorithm that obliviously and tightly
compacts a medium-sized instance of size n ≤ (w/ logw)2 in time at most 3C2·C ′·C0·dD/we·n.

2. Large instances: arbitrary n. We can now bootstrap to arbitrary choices of n by dividing
the problem into m := n/( w

logw )2 segments where each segment contains at most ( w
logw )2
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elements. Similar to the medium case, at most 1/4 fraction of the segments can have real
density exceeding 1/4 — which we call such segments dense. As before, we would like to move
the dense segments in the front and the sparse ones to the end. Recall that Chan et al. [14]’s
algorithm solves loose compaction for problems of arbitrary size m in time C1 · (m logm +
dD/wem) Thus due to the above claim we can solve tight compaction for problems of any
size m in time C · C1 · (m logm+ dD/we ·m) + C ′ · dD/we ·m. Thus, in O(dD/we · n) time
we can move all the dense instances to the front and the sparse instances to the end. Finally,
by invoking medium instances of tight compaction, we can compact within each segment in
time that is linear in the size of the segment. This allows us to compress away 3/4 of the
space from the last 3/4 segments which are guaranteed to be sparse. This gives us loose
compaction for large instances in O(dD/we · n) time — from here we can construct oblivious
tight compaction for large instances using the above Claim.10

Remark 2.2. In our formal technical sections later, we in fact directly use loose compaction for
smaller problem sizes to bootstrap loose compaction for larger problem sizes (whereas in the above
version we use tight compaction for smaller problems to bootstrap loose compaction for larger
problems). The detailed algorithm is similar to the one described above: it requires slightly more
complicated parameter calculation but results in better constants than the above more intuitive ver-
sion.

3 Preliminaries

Throughout this work, the security parameter is denoted λ, and it is given as input to algo-
rithms in unary (i.e., as 1λ). A function negl : N → R+ is negligible if for every constant c > 0
there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc. Two sequences of ran-
dom variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for any
probabilistic polynomial-time algorithm A, there exists a negligible function negl(·) such that∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]

∣∣ ≤ negl(λ) for all λ ∈ N. We say that X ≡ Y for such
two sequences if they define identical random variables for every λ ∈ N. The statistical dis-
tance between two random variables X and Y over a finite domain Ω is defined by SD(X,Y ) ,
1
2 ·
∑

x∈Ω |Pr[X = x]− Pr[Y = x]|. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. By ‖
we denote the operation of string concatenation.

Definition 3.1 (Pseudorandom functions (PRFs)). Let PRF be an efficiently computable function
family indexed by keys sk ∈ {0, 1}λ, where each PRFsk takes as input a value x ∈ {0, 1}n(λ) and
outputs a value y ∈ {0, 1}m(λ). A function family PRF is δA-secure if for every (non-uniform)
probabilistic polynomial-time algorithm A, it holds that∣∣∣∣ Pr

sk←{0,1}λ

[
APRFsk(·)(1λ) = 1

]
− Pr
f←Fλ

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤ δA(λ),

for all large enough λ ∈ N, where Fλ is the set of all functions that map {0, 1}n(λ) into {0, 1}m(λ).

It is known that one-way functions are existentially equivalent to PRFs for any polynomial n(·)
and m(·) and negligible δA(·) [37,50]. Our construction will employ PRFs in several places and we
present each part modularly with its own PRF, but note that the whole ORAM construction can
be implemented with a single PRF from which we can implicitly derive all other PRFs.

10We omit the concrete parameter calculation in the last couple of steps but from the calculations so far, it should
be obvious by now that the there is at most a constant blowup in the constants hidden inside the big-O notation.
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3.1 Oblivious Machines

We define oblivious simulation of (possibly randomized) functionalities. We provide a unified
framework that enables us to adopt composition theorems from secure computation literature (see,
for example, Canetti and Goldreich [9, 10,30]), and to prove constructions in a modular fashion.

Random-access machines. A RAM is an interactive Turing machine that consists of a memory
and a CPU. The memory is denoted as mem[N,w], and is indexed by the logical address space
[N ] = {1, 2, . . . , N}. We refer to each memory word also as a block and we use w to denote
the bit-length of each block. The CPU has an internal state that consists of O(1) words. The
memory supports read/write instructions (op, addr, data), where op ∈ {read,write}, addr ∈ [N ] and
data ∈ {0, 1}w ∪ {⊥}. If op = read, then data = ⊥ and the returned value is the content of the
block located in logical address addr in the memory. If op = write, then the memory data in logical
address addr is updated to data. We use standard setting that w = Θ(logN) (so a word can store
an address). We follow the convention that the CPU performs one word-level operation per unit
time, i.e., arithmetic operations (addition or subtraction), bitwise operations (AND, OR, NOT, or
shift), memory accesses (read or write), or evaluating a pseudorandom function [12,31,33,40,41,53].

Oblivious simulation of a (non-reactive) functionality. We consider machines that interact
with the memory via read/write operations. We are interested in defining sub-functionalities such as
oblivious sorting, oblivious shuffling of memory contents, and more, and then define more complex
primitives by composing the above. For simplicity, we assume for now that the adversary cannot see
memory contents, and does not see the data field in each operation (op, addr, data) that the memory
receives. That is, the adversary only observes (op, addr). One can extend the constructions for the
case where the adversary can also observe data using symmetric encryption in a straightforward
way.

We define oblivious simulation of a RAM program. Let f : {0, 1}∗ → {0, 1}∗ be a (possibly
randomized) functionality in the RAM model. We denote the output of f on input x to be f(x) = y.
Oblivious simulation of f is a RAM machine Mf that interacts with the memory, has the same
input/output behavior, but its access pattern to the memory can be simulated. More precisely, we
let (out,Addrs) ← Mf (x) be a pair of random variable that corresponds to the output of Mf on
input x and where Addrs define the sequence of memory accesses during the execution. We say that
the machine Mf implements the functionality f if it holds that for every input x, the distribution
f(x) is identical to the distribution out, where (out, ·) ← Mf (x). In terms of security, we require
oblivious simulation which we formalize by requiring the existence of a simulator that simulates
the distribution of Addrs without knowing x.

Definition 3.2 (Oblivious simulation). Let f : {0, 1}∗ → {0, 1}∗ be a functionality, and let Mf be
a machine that interacts with the memory. We say that Mf obliviously simulates the functionality
f , if there exists a probabilistic polynomial time simulator Sim such that for every input x ∈ {0, 1}∗,
the following holds:{

(out,Addrs) : (out,Addrs)←Mf (1λ, x)
}
λ
≈
{(
f(x),Sim(1λ, 1|x|)

)}
λ
.

Depending on whether ≈ refers to computational, statistical, or perfectly indistinguishability, we
say Mf is computationally, statistically, or perfectly oblivious, respectively.

Later in our theorem statements, we often wish to explicitly characterize the security failure
probability. Thus we also say that Mf (1 − δA)-obliviously simulates the functionality f , iff no
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non-uniform probabilistic polynomial-time A(1λ) can distinguish the above joint distributions with
probability more than δA(λ) — note that the failure probability δA is allowed to depend on the
adversary A’s algorithm and running time. Additionally, a 1-oblivious algorithm is also called
perfectly-oblivious.

Intuitively, the above definition requires indistinguishability of the joint distribution of the
output of the computation and the access pattern, similarly to the standard definition of secure
computation in which the joint distribution of the output of the function and the view of the
adversary is considered (see the relevant discussions in Canetti and Goldreich [9,10,30]). Note that
here we handle correctness and obliviousness in a single definition. As an example, consider an
algorithm that randomly permutes some array in the memory, while leaking only the size of the
array. Such a task should also hide the chosen permutation. As such, our definition requires that
the simulation would output an access pattern that is independent of the output permutation itself.

Parametrized functionalities. In our definition, the simulator receives no input, except the
security parameter and the length of the input. While this is very restricting, the simulator knows
the description of the functionality and therefore also its “public” parameters. We sometimes
define functionalities with explicit public inputs and refer to them as “parameters”. For instance,
the access pattern of a procedure for sorting of an array depends on the size of the array; a
functionality that sorts an array will be parameterized by the size of the array, and this size will
also be known by the simulator.

Modeling reactive functionalities. We consider functionalities that are reactive, i.e., proceed
in stages, where the functionality preserves an internal state between stages. Such a reactive
functionality can be described as a sequence of functions, where each function also receives as input
a state, updates it, and outputs an updated state for the next function. We extend Definition 3.2
to deal with such functionalities.

We consider a reactive functionality F as a reactive machine, that receives commands of the
form (commandi, inpi) and produces an output outi, while maintaining some (secret) internal state.
An implementation of the functionality F is defined analogously, as an interactive machine MF
that receives commands of the same form (commandi, inpi) and produces outputs outi. We say that
MF is oblivious, if there exists a simulator Sim that can simulate the access pattern produced by
MF while receiving only commandi but not inpi. Our simulator Sim is also a reactive machine that
might maintain a state between execution.

In more detail, we consider an adversary A (i.e., the distinguisher or the “environment”) that
participates in either a real execution or an ideal one, and we require that its view in both exe-
cution is indistinguishable. The adversary A chooses adaptively in each stage the next command
(commandi, inpi). In the ideal execution, the functionality F receives (commandi, inpi) and computes
outi while maintaining its secret state. The simulator is then being executed on input commandi
and produces an access pattern Addrsi. The adversary receives (outi,Addrsi). In the real execution,
the machine M receives (commandi, inpi) and has to produce outi while the adversary observes
the access pattern. We let (outi,Addrsi) ← Mf (commandi, inpi)) denote the join distribution of
the output and memory accesses pattern produced by M upon receiving (commandi, inpi) as input.
The adversary can then choose the next command, as well as the next input, in an adaptive manner
according to the output and access pattern it received.

Definition 3.3 (Oblivious simulation of a reactive functionality). We say that a reactive machine
MF is an oblivious implementation of the reactive functionality F if there exists a PPT simulator

12



Sim, such that for any non-uniform PPT (stateful) adversary A, the view of the adversary A in the

following two experiments Exptreal,M
A (1λ) and Exptideal,F

A,Sim (1λ) is computationally indistinguishable:

Exptreal,M
A (1λ):

Let (commandi, inpi)← A
(
1λ
)

Loop while commandi 6= ⊥:
outi,Addrsi ←M

(
1λ, commandi, inpi

)
(commandi, inpi)← A

(
1λ, outi,Addrsi

)

Exptideal,F
A,Sim (1λ):

Let (commandi, inpi)← A
(
1λ
)

Loop while commandi 6= ⊥:
outi ← F(commandi, inpi).

Addrsi ← Sim
(
1λ, commandi

)
.

(commandi, inpi)← A
(
1λ, outi,Addrsi

)
Definition 3.3 can be extended in a natural way to the cases of statistical security (in which A

is unbounded and its view in both worlds is statistically close), or perfect security (A is unbounded
and its view is identical).

To allow our theorem statements to explicitly characterize the security failure probability, we
also say that Mf (1 − δA)-obliviously simulates the reactive functionality F , iff no non-uniform
probabilistic polynomial-time A(1λ) can distinguish the above joint distributions with probability
more than δA(1λ) — note that the failure probability δA is allowed to depend on the adversary A’s
algorithm and running time.

An example: ORAM. An example of a reactive functionality is an ordinary ORAM, imple-
menting logical memory. Functionality 3.4 is a reactive functionality in which the adversary can
choose the next command (i.e., either read or write) as well as the address and data according to
the access pattern it has observed so far.

Functionality 3.4: FORAM

The functionality is reactive, and holds an internal state – N memory blocks, each of size w. Denote
the internal state X[1, . . . , N ]. Initially, X[addr] = 0 for every addr ∈ [N ].

� Access(op, addr, data): where op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.

1. If op = read, set data∗ := X[addr].

2. If op = write, set X[addr] := data and data∗ := data.

3. Output data∗.

Definition 3.3 requires the existence of a simulator that on each Access command only knows
that such a command occurred, and successfully simulates the access pattern produced by the real
implementation. This is a strong notion of security since the adversary is adaptive and can choose
the next command according to what it have seen so far.

Hybrid model and composition. We sometimes describe executions in a hybrid model. In
this case, a machine M interacts with the memory via read/write-instruction and in addition can
also send F-instruction to the memory. We denote this model as MF . When invoking a function
F , we assume that it only affects the address space on which it is instructed to operate; this is
achieved by first copying the relevant memory locations to a temporary position, running F there,
and finally copying the result back. This is the same whether F is reactive or not. Definition 3.3
is then modified such that the access pattern Addrsi also includes the commands sent to F (but
not the inputs to the command). When a machine MF obliviously implements a functionality G in
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the F-hybrid model, we require the existence of a simulator Sim that produces the access pattern
exactly as in Definition 3.3, where here the access pattern might also contain F-commands.

Concurrent composition follows from [10], since our simulations are universal and straight-line.
Thus, if (1) some machine M obliviously simulates some functionality G in the F-hybrid model,
and (2) there exists a machine MF that obliviously simulate F in the plain model, then there exists
a machine M ′ that obliviously simulate G in the plain model.

Input assumptions. In some algorithms, we assume that the input satisfies some assumption.
For instance, we might assume that the input array for some procedure is randomly shuffled or that
it is sorted according to some key. We can model the input assumption X as an ideal functionality
FX that receives the input and “rearranges” it according to the assumption X . Since the mapping
between an assumption X and the functionality FX is usually trivial and can be deduced from
context, we do not always describe it explicitly.

We then prove statements of the form: “The algorithm A with input satisfying assumption X
obliviously implements a functionality F”. This should be interpreted as an algorithm that receives
x as input, invokes FX (x) and then invokes A on the resulting input. We require that this modified
algorithm implements F in the FX -hybrid model.

4 Oblivious Building Blocks

Our ORAM construction uses many building blocks, some of which new to this work and some of
which are known from the literature. The building blocks are listed next. We advise the reader to
use this section as a reference and skip it during a first read.

� Oblivious Sorting Algorithms (Section 4.1): We state the classical sorting network of
Ajtai et al. [1] and present a new oblivious sorting algorithm that is more efficient in settings
where each memory word can hold multiple elements.

� Oblivious Random Permutations (Section 4.2): We show how to perform efficient obliv-
ious random permutations in settings where each memory word can hold multiple elements.

� Oblivious Bin Placement (Section 4.3): We state the known results for oblivious bin
placement of Chan et al. [12, 15].

� Oblivious Hashing (Section 4.4): We present the formal functionality of a hash table that
is used throughout our work. We also state the resulting parameters of a simple oblivious
hash table that is achieved by compiling a non-oblivious hash table inside an existing ORAM
construction.

� Oblivious Cuckoo Hashing (Section 4.5): We present and overview the state-of-the-art
constructions of oblivious Cuckoo hash tables. We state their complexities and also make
minor modifications that will be useful to us later.

� Oblivious Dictionary (Section 4.6): We present and analyze a simple construction of a
dictionary that is achieved by compiling a non-oblivious dictionary (e.g., a red-black tree)
inside an existing ORAM construction.

� Oblivious Balls-into-Bins Sampling (Section 4.7): We present an oblivious sampling of
the approximated bin loads of throwing independently n balls into m bins, which uses the
binomial sampling of Bringmann et al. [8].
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4.1 Oblivious Sorting Algorithms

The elegant work of Ajtai et al. [1] shows that there is a comparator-based circuit with O (n · log n)
comparators that can sort any array of length n.

Theorem 4.1 (Ajtai et al. [1]). There is a deterministic oblivious sorting algorithm that sorts n
elements in O (dD/we · n · log n) time where D denotes the number of bits it takes to encode a single
element and w denotes the length of a word.

Packed oblivious sort. We consider a variant of the oblivious sorting problem on a RAM, which
is useful when each memory word can hold up to B > 1 elements. The following theorem assumes
that the RAM can perform only word-level addition, subtraction, and bitwise operations in unit
cost (as defined in Section 3.1).

Theorem 4.2 (Packed oblivious sort). There is a deterministic packed oblivious sorting algorithm
that sorts n elements in O

(
n
B · log2 n

)
time, where B denotes the number of elements each memory

word can pack.

Proof. We use a variant of bitonic sort, introduced by Batcher [5]. It is well-known that, given
a list of n elements, bitonic sort runs in O

(
n · log2 n

)
time. The algorithm, viewed as a sorting

network, proceeds in O
(
log2 n

)
iterations, where each iteration consists of n

2 comparators (see
Figure 1). In each iteration, the comparators are totally parallelizable, but our goal is to perform the
comparators efficiently using standard word-level operation, i.e., to perform each iteration in O

(
n
B

)
standard word-level operations. The intuition is to pack sequentially O (B) elements into each word
and then apply SIMD (single-instruction-multiple-data) comparators, where a SIMD comparator
emulates O(B) standard comparators using only constant time. We show the following facts: (1)
each iteration runs in O

(
n
B

)
SIMD comparators and O

(
n
B

)
time, and (2) each SIMD comparator

can be instantiated by a constant number of word-level subtraction and bitwise operations.

Figure 1: A bitonic sorting network for 8 inputs. Each horizontal line denotes an input from the
left end and output to the right end. Each vertical arrow denotes a comparator such that compares
two elements and then swaps the greater one to the pointed end. Each dashed box denotes an
iteration in the algorithm. The figure is modified from [65].

To show fact (1), we first assume without loss of generality that n and B are powers of 2. We
refer to the packed array which is the array of n

B words, where each word stores B elements. Then,
for each iteration, we want a procedure that takes as input the packed array from the previous
iteration, and outputs the packed array that is processed by the comparators prescribed in the
standard bitonic sort. To use SIMD comparators efficiently and correctly, for each comparator, the
input pair of elements has to be aligned within the pair of two words. We say that two packed
arrays are aligned if and only if the offset between each two words is the same. Hence, it suffices
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to show that it takes O(1) time to align O(B) pairs of elements. By the definition of bitonic sort,
in the same iteration, the offset between any compared pair is the same power of 2 (see Figure 1).
Since B is also a power of 2, one of the following two cases holds:

(a) All comparators consider two elements from two distinct words, and elements are always
aligned in the input.

(b) All comparators consider two elements from the same word, but the offset t between any
compared pair is the same power of 2.

In case (a), the required alignment follows immediately. In case (b), it suffices to do the following:

1. Split one word into two words such that elements of the offset t are interleaved, where the
two words are called odd and even, and then

2. Shift the even word by t elements so the comparators are aligned to the odd word.

The above procedure takes O(1) time. Indeed, there are two applications of the comparators, and
thus it blows up the cost of the operation by a factor of 2. Thus, the algorithm of an iteration
aligns elements, applies SIMD comparators, and then reverses the alignment. Every iteration runs
O
(
n
B

)
SIMD comparators plus O

(
n
B

)
time.

For fact (2), note that to compare k-bit strings it suffices to perform (k+1)-bit subtraction (and
then use the sign bit to select one string). Hence, the intuition to instantiate the SIMD comparator
is to use “SIMD” subtraction, which is the standard word subtraction but the packed elements are
augmented by the sign bit. The procedure is as follows. Let k be the bit-length of an element such
that B · k bits fit into one memory word. We write the B elements stored in a word as a vector
~a = (a1, . . . , aB) ∈ ({0, 1}k)B. It suffices to show that for any ~a = (a1, . . . , aB) and ~b = (b1, . . . , bB)
stored in two words, it is possible to compute the mask word ~m = (m1, . . . ,mB) such that

mi =

{
1k if ai ≥ bi
0k otherwise.

For binary strings x and y, let xy be the concatenation of x and y. Let ∗ be a wild-card bit. Assume
additionally that the elements are packed with additional sign bits, i.e., ~a = (∗a1, ∗a2, . . . , ∗aB).
This can be done by simply splitting one word into two. Consider two input words ~a = (1a1,
1a2, . . . , 1aB) and ~b = (0b1, 0b2, . . . , 0bB) such that ai, bi ∈ {0, 1}k. The procedure runs as follows:

1. Let ~s′ = ~a −~b, which has the format
(
s1∗k, s2∗k, . . . , sB∗k

)
, where si ∈ {0, 1} is the sign bit

such that si = 1 iff ai ≥ bi. Keep only sign bits and let ~s =
(
s10k, . . . , sB0k

)
.

2. Shift ~s and get ~m′ =
(
0ks1, . . . , 0

ksB
)
. Then, the mask is ~m = ~s− ~m′ =

(
0sk1, . . . , 0s

k
B

)
.

The above takes O(1) subtraction and bitwise operations. This concludes the proof.

4.2 Oblivious Random Permutations

We say that an algorithm ORP is a statistically secure oblivious random permutation, iff ORP
statistically obliviously simulates the functionality Fperm which, upon receiving an input array of
n elements, chooses a random permutation π from the space of all n! permutations on n elements,
uses π to permute the input array, and outputs the result. Note that this definition implies that
not only does ORP output an almost random permutation of the input array; moreover, the access
patterns of ORP is statistically close for all input arrays and all permutations. As before, we
use the notation (1− δ)-oblivious random permutation to explicitly denote the algorithm’s failure
probability δ.
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Theorem 4.3. Let n > 100 and let D denote the number of bits it takes to encode an element.
There exists a (1 − e−

√
n)-oblivious random permutation for arrays of size n. It runs in time

O(TD+logn
sort (n) + n), where T `sort(n) is an upper bound on the time it takes to sort n elements each

of size ` bits.

Later, in our ORAM construction, this version of ORP will be applied to arrays of size n ≥
log3 λ, where λ is a security parameter, and thus the failure probability is bounded by a negligible
function in λ.

Proof of Theorem 4.3. We apply a similar algorithm as that of Chan et al. [11, Figure 2 and
Lemma 10], except with different parameters:

� Assign each element an 8 log n-bit random label drawn uniformly from {0, 1}8 logn. Obliviously
sort all elements based on their random labels, resulting in the array R. This step takes
O(TD+logn

sort (n) + n) time.

� In one linear scan, write down two arrays: 1) an array I containing the indices of all elements
that have collisions; and 2) an array X containing all the colliding elements themselves. This
can be accomplished in O(n) time assuming that we can leak the indices of the colliding
elements.

� If the number of elements that collide is greater than
√
n, simply abort throwing an Overflow

exception. Otherwise, use a näıve quadratic oblivious random permutation algorithm to
obliviously and randomly permute the array X, and let Y be the outcome. This step can
be completed in O(n) time where the quadratic oblivious random permutation performs the
following: for each of i ∈ {1, 2, . . . , n}, sample a random index r from {1, 2, . . . , n − i + 1},
and write the i-th element of the input to the r-th unoccupied position of the output through
a linear scan of the output array.

� Finally, for each j ∈ |I|, write back each element Y[j] to the position R[I[j]] and output the
resulting R.

To bound the probability of Overflow, we first prove the following claim:

Claim 4.4. Let n > 100. Fix a subset S ⊆ {1, 2, . . . , n} of size α ≥ 2. Throw elements {1, 2, . . . , n}
to n8 bins independently and uniformly at random. The probability that every element in S has a
collision with any other elements is upper bounded by α!/n2α.

Proof. If all elements in S see collisions for some sample path determined by the choice of all
elements’ bins denoted ψ, then the following event GS must be true for the sample path ψ: there is
a permutation S′ of S such that for every i ∈ {dα/2e, . . . , α}, S′[i] either collides with some element
in S′ whose index j < i (i.e., with an element before itself) or with an element outside of S (i.e.,
from [n] \ S).

Therefore, the fraction of sample paths for which a fixed subset S of size α all have collision
is upper bounded by the fraction of sample paths over which the above event GS holds. Now, the
fraction of sample paths over which the GS holds is upper bounded by α!·(n/n8)bα/2c ≤ α!/n2α.

We proceed with the proof of Theorem 4.5. The probability that there exists at least α collisions
is upper bounded by the following expression since there are at most

(
n
α

)
possible choices for such
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a subset S:(
n

α

)
· α!

n2α
=

n!

(n− α)!α!
· α!

n2α
≤ e

√
n(n/e)n√

2π(n− α)((n− α)/e)n−α ·
√

2πα(α/e)α
· α!

n2α

≤e
√
n

2π
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n2α
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α! · e

√
n

2π
·
(

n
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· 1

αα
· 1

nα

≤α! · e
√
n

2π
·
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α
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)n
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αα
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Plugging in α =
√
n, we can upper bound the above expression as follows assuming large n > 100:

√
n! · e

√
n

2π
·
(

1 +

√
n
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√
n

)√n·√n
· 1

(n
√
n)
√
n
≤
√
n! · e

√
n

2π
·
(

1 +
1

0.5
√
n

)0.5
√
n·2·
√
n

· 1

(n
√
n)
√
n

≤
√
n! · e

√
n

2π
· exp(2

√
n) · 1

(n
√
n)
√
n
≤ exp(−

√
n)

Having bounded the Overflow probability, the obliviousness proof can be completed in identical
manner to that of Lemma 10 in Chan et al. [11], since our algorithm is essentially the same as theirs
but with different parameters. We stress the algorithm is oblivious even though the positions of
the colliding elements are revealed.

Packed oblivious random permutation. The following version of oblivious random permu-
tation has good performance when each memory word is large enough to store many copies of the
elements to be permuted tagged with their own indices. The algorithm follows directly by plug-
ging in our oblivious packed sort (Theorem 4.2) into the oblivious random permutation algorithm
(Theorem 4.3).

Theorem 4.5 (Packed oblivious random permutation). Let n > 100 and let D denote the number of
bits it takes to encode an element. Let B = bw/(log n+D)c be the element capacity of each memory
word and assume that B > 1. Then, there exists an (1 − e−

√
n)-oblivious random permutation

algorithm that permutes the input array in time O
(
n
B · log2 n+ n

)
.

Perfect oblivious random permutation. Note that the permutation of Theorem 4.3 runs in
time O(n·log n) but it may fail w.p. e−

√
n. We construct a perfectly oblivious random permutation in

this paper. This scheme comes as a by-product of our tight compaction and intersperse algorithms
that we construct later in Sections 5 and 6.4.

Theorem 4.6 (Perfectly oblivious random permutation). For any n, any m ∈ [n], suppose that
sampling an integer uniformly at random from [m] takes unit time. Then, there exists a perfectly
oblivious random permutation such that permutes an input array of size n in O(n · log n) time.

Proof. We will prove this theorem in Section 6.4.

4.3 Oblivious Bin Placement

Let I be an input array containing real and dummy elements. Each element has a tag from
{1, . . . , |I|} ∪ {⊥}. It is guaranteed that all the dummy elements are tagged with ⊥ and all real
elements are tagged with distinct values from {1, . . . , |I|}. The goal of oblivious bin placement is to
create a new array I′ of size |I| such that a real element that is tagged with the value i will appear
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in the i-th cell of I′. If no element was tagged with a value i, then I′[i] = ⊥. The values in the tags
of real elements can be thought of as “bin assignments” where the elements want to go to and the
goal of the bin placement algorithm is to route them to the right location obliviously.

Oblivious bin placement can be accomplished with O(1) number of oblivious sorts (Section 4.1),
where each oblivious sort operates over O(|I|) elements [12,15]. In fact, these works [12,15] describe
a more general oblivious bin placement algorithm where the tags may not be distinct, but we only
need the special case where each tag appears at most once.

4.4 Oblivious Hashing

An oblivious (static) hashing scheme is a data structure that supports three operations Build,
Lookup, and Extract that realizes the following (ideal) reactive functionality. The Build procedure
is the constructor and it creates an in-memory data structure from an input array I containing
real and dummy elements where each real element is a (key, value) pair. It is assumed that all real
elements in I have distinct keys. The Lookup procedure allows a requestor to look up the value of
a key. A special symbol ⊥ is returned if the key is not found or if ⊥ is the requested key. We say
a (key, value) pair is visited if the key was searched for and found before. Finally, Extract is the
destructor and it returns a list containing unvisited elements padded with dummies to the same
length as the input array I.

An important property that our construction relies on is that if the input array I is randomly
shuffled to begin with (with a secret permutation), the outcome of Extract is also randomly shuffled
(in the eyes of the adversary). In addition, we need obliviousness to hold only when the Lookup
sequence is non-recurrent, i.e., the same real key is never requested twice (but dummy keys can be
looked up multiple times). The functionality is formally given next.

Functionality 4.7: FnHT – Hash Table Functionality for Non-Recurrent Lookups

� FnHT.Build(I):

– Input: an array I = (ai, . . . , an) containing n elements, where each ai is either dummy
or a (key, value) pair denoted (ki, vi) ∈ {0, 1}D × {0, 1}D.

– Assumption: throughout the paper, we assume that both the key and the value can
be stored in O(1) memory words, i.e., D = O(w) where w denotes the word size.

– The procedure:
1. Initialize the state state to (I,P), where P = ∅.

– Output: The Build operation has no output.

� FnHT.Lookup(k):

– Input: The procedure receives as input a key k (that might be ⊥, i.e., dummy).

– The procedure:
1. Parse the internal state as state = (I,P).

2. If k ∈ P (i.e., k is a recurrent lookup) then halt and output fail.

3. If k = ⊥ or k /∈ I, then set v∗ = ⊥.

4. Otherwise, set v∗ = v, where v is the value that corresponds to the key k in I.

5. Update P = P ∪ {(k, v)}.
– Output: The element v∗.
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� FnHT.Extract():

– Input: The procedure has no input.

– The procedure:
1. Parse the internal state state = (I,P).

2. Define an array I′ = (a′1, . . . , a
′
n) as follows. For i ∈ [n], set a′i = ai if ai = (k, v) /∈ P.

Otherwise, set a′i = dummy.

3. Shuffle I′ uniformly at random.

– Ouptut: The array I′.

Construction of näıveHT. A näıve, perfectly secure oblivious hashing scheme can be obtained
directly [14, 19] from a perfectly secure ORAM construction [14, 19]. Both schemes [14, 19] are
Las Vegas algorithms: for any capacity n, it almost always takes O(log3 n) time to serve a request
— however with negligible in n probability, it may take longer to serve a request. We stress
that although the runtime may sometimes exceed the stated bound, there is never any security or
correctness failure in the known perfectly secure ORAM constructions [14,19]. We observe that the
scheme of Chan et al. [14] is a Las Vegas algorithm only because the oblivious random permutation
they employ is a Las Vegas algorithm. In this paper, we actually construct a perfect oblivious
random permutation that runs in O(n · log n) time with probability 1 (Theorem 4.6). Thus, we
can replace the oblivious random permutation in Chan et al. [14] with our own Theorem 4.6.
Interestingly, this results in the first non-trivial perfectly oblivious RAM that is not a Las Vegas
algorithm.

Theorem 4.8 (Perfect ORAM (using [14] + Theorem 4.6)). For any capacity n ∈ N, there is
a perfect ORAM scheme that consumes space O(n) and worst-case time overhead O

(
log3 n

)
per

request.

To construct näıveHT using perfectly secure ORAM scheme, we use Theorem 4.8 to compile a
standard, balanced binary search tree data structure (e.g., a red-black tree). Finally, Extract can
be performed in linear time if we adopt the perfect ORAM of Theorem 4.8 which incurs constant
space blowup. In more detail, we flatten the entire in-memory data structure into a single array,
and apply oblivious tight compaction (Theorem 1.2) on the array, moving all the real elements to
the front. We then truncate the array at length |I|, apply a perfectly random permutation on the
truncated array, and output the result. This gives the following construction.

Theorem 4.9 (näıveHT). Assume that each memory word is large enough to store at least Θ(log n)
bits where n is an upper bound on the total number of elements that exist in the data structure.
There exists a perfectly secure, oblivious hashing scheme that consumes O(n) space; further,

� Build and Extract each consumes n · poly log n time;

� Each Lookup request consumes poly log n time.

Later in our paper, whenever we need an oblivious hashing scheme for a small (poly log(λ)-
sized) bin, we will adopt näıveHT since it is perfectly secure. In comparison, schemes whose failure
probability is negligible in the problem size (poly log(λ) in this case) may not yield negl(λ) fail-
ure probability. Indeed, almost all known computationally secure [29, 31, 33, 40] or statistically
secure [58, 61, 63] ORAM schemes have a (statistical) failure probability that is negligible in the
problem’s size and are thus unsuited for small, poly-logarithmically sized bins. In a similar vein, ear-
lier works also employed perfectly secure ORAM schemes to treat poly-logarithmic size inputs [58].
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4.5 Oblivious Cuckoo Hashing

A Cuckoo hashing scheme [52] is a hashing method with constant lookup cost (ignoring the stash).
Imagine that we wish to hash n balls into a table of size ccuckoo · n, where ccuckoo > 1 is an
appropriate fixed constant. Additionally, there is a stash denoted S of size s for holding a small
number of overflowing balls. We also refer to each position of the table as a bin, and a bin can
hold exactly one ball. Each ball receives two independent bin choices. During the build phase,
we execute a Cuckoo assignment algorithm that picks either a bin-choice for each ball among its
two specified choices, or assigns the ball to some position in the stash. It must hold that no two
balls are assigned to the same location either in the main table or in the stash. Kirsch et al. [39]
showed an assignment algorithm that succeeds with with probability 1 − n−Ω(s) over the random
bin choices, where s denotes the stash size.

Without privacy, it is known that such an assignment can be computed in O(n) time. However,
it is also known that the standard procedure for building a Cuckoo hash table leaks information
through the algorithm’s access patterns [12, 33, 60]. Goodrich and Mitzenmacher [33] (see also
the recent work of Chan et al. [12]11) showed that a Cuckoo hash table can be built obliviously
in O (n · log n) total time. In our ORAM construction, we will need to apply Chan et al. [12]’s
oblivious Cuckoo hashing techniques in a non-blackbox fashion to enable asymptotically more
efficient hashing schemes for randomly shuffled input arrays. Below, we present the necessary
preliminaries.

4.5.1 Build Phase: Oblivious Cuckoo Assignment

To obliviously build a Cuckoo hash table given an input array, we have two phases: 1) a metadata
phase in which we select a bin among the two bin choices made by each input ball or alternatively
assign the ball to a position in the stash; and 2) the actual (oblivious) routing of the balls into
their destined location in the resulting hash-table data structure. The problem solved by the the
first phase (i.e., the metadata step), is called the Cuckoo assignment problem, formally defined as
below.

Oblivious Cuckoo assignment. Let n be the number of balls to be put into the Cuckoo hash
table, let I = ((u1, v1), . . . (un, vn)) be the array of the two bin choices made by each of the n balls,
where ui, vi ∈ [ccuckoo ·n] for i ∈ [n]. In the Cuckoo assignment problem, given such an input array
I, the goal is to output an array A = {a1, . . . an}, where ai ∈ {bin(ui), bin(vi), stash(j)} denotes
that the i-th ball is assigned either to bin ui or bin vi, or to the j-th position in the stash. We say
that a Cuckoo assignment A is correct iff it holds that (i) each bin and each position in the stash
receives at most one ball, and (ii) the number of balls in the stash is bounded by a parameter s.

Given a correct assignment A, a Cuckoo hash table can be built by obliviously placing the balls
into the position it is assigned too. A straightforward way to accomplish this is through a standard
oblivious bin placement algorithm (Section 4.3)12.

Theorem 4.10 (Oblivious Cuckoo assignment [12,33]). Let ccuckoo > 1 be a suitable constant, δ >
0, n ∈ N, the stash size s ≥ log(1/δ)/ log n, and let ncuckoo := ccuckoo ·n+s and ` := 8 log2(ncuckoo).

11Chan et al. [12] is a re-exposition and slight rectification of the elegant ideas of Goodrich and Mitzenmacher [33];
also note that the Cuckoo hashing appears only in the full version of Chan et al., http://eprint.iacr.org/2017/924.

12The description here differs slightly from previous works [12]. In previous works, the Cuckoo assignment A was
allowed to depend not only on the two bin choices I, but also on the balls and keys themselves. In our work, the fact
that the Cuckoo assignment is only a function of I is crucial – see Remark 4.13 for a discussion on this property that
we call indiscrimination.
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Then, there is a deterministic oblivious algorithm denoted cuckooAssign that successfully finds a

Cuckoo assignment problem with probability 1−O(δ)− exp
(
−Ω

(
n5/7

log4(1/δ)

))
over the choice of the

random bins I. It runs in time O
(
ncuckoo + T `sort(ncuckoo) + log 1

δ · T
`
sort(n

6/7)
)
, where T `sort(m) is

the time bound for obliviously sorting m elements each of length `.
As a special case, suppose that n ≥ log8(1/δ), s = log(1/δ)/ log n, and the word size w ≥

Ω(log n), using the AKS oblivious sorting algorithm (Theorem 4.1), the algorithm runs in time
O(n · log n) with success probability 1−O(δ).

In fact, to obtain the above theorem, we cannot directly apply Chan et al. [12]’s Cuckoo hash-
table build algorithm, but need to make some minor modifications. We refer the reader to Re-
mark 4.13 and Appendix B for more details.

A variant of the Cuckoo assignment problem. Later, we will need a variant of the above
Cuckoo assignment problem. Imagine that the input array is now of size exactly the same as the
total size consumed by the Cuckoo hash-table, i.e., ncuckoo := ccuckoo · n + s where s denotes the
stash size; but importantly, at most n balls in the input array are real and the remaining are
dummy. Therefore, we may imagine that the input array to the Cuckoo assignment problem is the
following metadata array containing either real or dummy bin choices: I = {(ui, vi)}i∈[ncuckoo] where
ui, vi ∈ [ncuckoo] if i corresponds to a real ball and ui = vi = ⊥ if i corresponds to a dummy ball.

We would like to compute a correct Cuckoo assignment for all real balls in the input. This
variant can easily be solved as follows: 1) obliviously sort the input array such that the upto n
real balls’ bin choices are in the front — let X denote the outcome; 2) apply the aforementioned
cuckooAssign algorithm to X[1 : n], resulting in an output assignment array denoted A of length n;
3) pad A to length ncuckoo by adding ncuckoo − n dummy assignment labels of appropriate length
resulting in the array A′ and 4) reverse route A′ back to the input array — this can be accomplished
if in step 1 we remembered the per-gate routing decisions in the sorting network. Henceforth, we
refer to this slight variant as cuckooAssign. Note that Steps 1 and 4 of the above algorithm require
oblivious sorting for elements of at most ` := 8 log2(ccuckoo · n) bits.

Corollary 4.11 (Oblivious Cuckoo assignment variant). Suppose that δ > 0, n ≥ log8(1/δ),
the stash size s ≥ log(1/δ)/ log n. Then, there is a deterministic, oblivious algorithm denoted
cuckooAssign that successfully finds a Cuckoo assignment for the above variant of the problem with
probability 1−O(δ), consuming the same asymptotical runtime as Theorem 4.10.

Later, when we apply Corollary 4.11, if a single memory word can pack B > 1 elements of
length ` := 8 log2(ccuckoo ·n) — this happens when the Cuckoo hash-table’s size is small — we may
use packed oblivious sorting to instantiate the sorting algorithm. This gives rise to the following
corollary:

Corollary 4.12 (Packed oblivious Cuckoo assignment). Suppose that δ > 0, n ≥ log8(1/δ), the
stash size s ≥ log(1/δ)/ log n, and let ` := 8 log2(ccuckoo · n + s). Then, there is a deterministic
oblivious algorithm running in time O(ncuckoo + (ncuckoo/w) · log3 ncuckoo) that successfully finds a
Cuckoo assignment (for both of the above variants) with probability 1−O(δ) over the choice of the
random bins, where w denotes the word size.

Although we state the above corollary for general n, we only gain in efficiency when we apply
it to the case of large word size w and small n.

Proof. Let ncuckoo = ccuckoo · n + s. If ` = log ncuckoo < w, we use packed oblivious sorting to
instantiate all the oblivious sorting in the cuckooAssign or cuckooAssign algorithms. By Theorem 4.2,
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the running time is upper bounded by O(ncuckoo +(ncuckoo/(w/ log ncuckoo)) · log2 ncuckoo +log(1/δ) ·(
n

6/7
cuckoo/(w/ log ncuckoo)

)
· log2 ncuckoo) ≤ O(ncuckoo + (ncuckoo/w) · log3 ncuckoo)) where the last

inequality relies on the fact that n ≥ log8(1/δ). Finally, it is not hard to see that the theorem also
holds for ` ≥ w too — in this case, we can use the normal AKS sorting network to instantiate the
oblivious sorting.

Remark 4.13 (Indiscriminate hashing). As mentioned earlier, to get Theorem 4.10, Corollary 4.11,
and Corollary 4.12, we cannot directly apply Chan et al. [12]’s oblivious Cuckoo hash-table building
algorithm. In particular, their algorithm does not explicitly separate the metadata phase from
the actual ball-routing phase; consequently, in their algorithm, the final assignment computed may
depend on the element’s key, and not just the bin-choice metadata array I. In our paper, we need
an extra indiscrimination property: after the hash-table is built, the location of any real ball is fully
determined by its relative index in the input array as well as the bin-choice metadata array I. This
property will be needed to prove an extra property for our oblivious hashing schemes, that is, if
the input array is randomly shuffled, then all unvisited elements in the hash-table data structure
must appear in random order. Note that the way we formulated the Cuckoo assignment problem
automatically ensures this indiscriminate property. See Appendix B for details, where we describe
a variant of the algorithm of Chan et al. [12] that satisfies our needs.

4.5.2 Oblivious Cuckoo Hashing

We get an oblivious Cuckoo hashing scheme as follows:

� To perform Build, use the aforementioned cuckooAssign algorithm, while determining element’s
(k, v) two bin choices by evaluating a pseudorandom function PRFsk(k) where sk is a secret
key sampled freshly for this hash-table instance, and stored inside the CPU.

� For Lookup of key k, we evaluate the element’s two bin choices using the PRF, and look up
the corresponding two bins in the hash-table. Besides these two bins, we also need to scan
through the stash (no matter whether the element is found in one of the two bins). After an
element has been looked up, it will be marked as removed.

� Finally, to realize Extract we obliviously shuffle all unvisited elements using a perfect oblivious
random permutation (Theorem 4.6) and output the resulting array.

We have the following theorem:

Theorem 4.14 (cuckooHT). Assume a δAPRF-secure PRF. For any δ > 0, n ≥ log8(1/δ), there is an
oblivious hashing scheme denoted cuckooHTδ,n = (Build, Lookup,Extract) which (1− O(δ)− δAPRF)-
obliviously simulates FnHT. Moreover, the algorithm satisfies the following properties:

� Build takes as input I of length n, and outputs a Cuckoo table T of size O(n) and a stash S
of size O(log(1/δ)/ log n). It requires O (n · log n) time.

� Lookup requires looking up only O(1) positions in the table T which takes O(1) time, and
making a linear scan of the stash S consuming O(log(1/δ)/ log n) time.

� Extract performs a perfect oblivious random permutation, consuming O (n · log n) time.

Remark 4.15. This above scheme is different from the one of Chan et al. [12] in three aspects: 1)
we explicitly separate the assignment phase from the ball-routing phase during Build; 2) we satisfy
the indiscriminate property mentioned in Remark 4.13, and 3) we additionally support Extract
(whereas Chan et al. do not).
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4.6 Oblivious Dictionary

As opposed to the oblivious hash table from Section 4.4, which is a static data structure, an
oblivious dictionary is an extension of oblivious hashing, which allows to add only one element at
a time into the structure using an algorithm Insert, where Insert is called at most n times for a pre-
determined capacity n. Also, the dictionary supports Lookup and Extract procedures as described
in oblivious hashing. Note that there is no specific order in which Insert and Lookup requests have
to be made and they could be mixed arbitrarily. Another difference between our hashing notion
and the dictionary notion is that the Extract operation outputs all elements, including “visited”
elements (while Extract of oblivious hashing outputs only “unvisited” elements). In summary, an
oblivious dictionary realizes Functionality 4.16 described below.

Functionality 4.16: FnDict – Dictionary Functionality

� FnDict.Init():

– Input: The procedure has no input.

– The procedure:
1. Allocate an empty set S and an empty table T .

– Output: The operation has no output.

� FnDict.Insert(k, v):

– Input: A key-value pair denoted (k, v). (where (k, v) might be dummy (⊥,⊥)):

– The procedure:
1. If |S| < n and k 6 ⊥, add k to the set S and set T [k] = v.

– Output: The operation has no output.

� FnDict.Lookup(k):

– Input: The procedure receives as input a key k (that might be ⊥, i.e., dummy).

– The procedure:
1. Initialize v∗ := ⊥.

2. If q ∈ S, set v∗ := T [q].

– Output: The element v∗.

� FnDict.Extract():

– Input: The procedure has no input.

– The procedure:
1. Initialize an empty array L.

2. Iterate over S and for each k ∈ S, add (k, T [k]) to L.

3. Pad L to be of size n.

4. Randomly shuffle L and denote the output by L′.

– Output: The array L′.
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Corollary 4.17 (Perfectly secure oblivious dictionary). For any capacity n ∈ N, there exists a
perfectly-oblivious dictionary (Init, Insert, Lookup,Extract) such that the time of Init and Extract is
O
(
n · log3 n

)
, O
(
n · log3 n

)
, respectively, the time of Insert, Lookup are both O

(
log4 n

)
.

Proof. The realization of the oblivious dictionary is very similar to the näıveHT. Without security,
the functionalities can be realized in O(n) or O(log n) time using a standard, balanced binary search
tree data structure (e.g., red-black tree) and the standard linear-time Fisher-Yates shuffle [24]. To
achieve obliviousness, it suffices to compile the algorithms and the data structure using the perfect
ORAM of Theorem 4.8, which is perfectly-oblivious and incurs O(log3 n) overhead per access.

4.7 Oblivious Balls-into-Bins Sampling

Consider the ideal functionality F throw-balls
n,m that throws n balls into m bins uniformly at random

and outputs the bin loads. A non-oblivious algorithm for this functionality will throw each ball
independently at random and will run in ime O(n). To achieve obliviousness, we need to be able
to sample binomials.

Let Binomial(n, p) be the binomial distribution parameterized by n independent trial with suc-
cess probability p. Let Fbinomial be an ideal functionality that samples from Binomial(n, 1/2) and
outputs the result. The standard way to implement Fbinomial is to toss n independent coins, but
this takes time O(n). Since this is too expensive for our purposes, we settle for an approximation
using an algorithm of Bringmann et al. [8] (see also [21]).

Theorem 4.18 (Sampling Binomial Variables [8, Theorem 5]). Assume word RAM arithmetic, log-
ical operations, and sampling a uniformly random word takes O(1) time. For any n = 2O(w), there
is a (1− n · δ)-oblivious RAM algorithm SampleApproxBinomialδ that implements the functionality
Fbinomial in time O

(
log5(1/δ)

)
.

Here is our implementation of F throw-balls using SampleApproxBinomialδ.

Algorithm 4.19: SampleBinLoadm,δ(n)

� Input: a secret number of balls n ∈ N.

� Public parameters: the number of bins m ∈ N, which is a power of 2.

� The Algorithm:

1. (Base case.) If m = 1, output n. Otherwise, continue with the following.

2. Sample a binomial random variable X ← SampleApproxBinomialδ(n), where X is the
total number of balls in the first m/2 bins.

3. Recursively call SampleBinLoadm/2,δ(X) and SampleBinLoadm/2,δ(n −X), let L1, L2 be
the results.

4. Output the concatenated array L1‖L2.

If we use δ = 0 in the above algorithm, then SampleBinLoad perfectly and obliviously implements
F throw-balls. Using the efficient algorithm for sampling approximated binomials (Theorem 4.18), we
get the following theorem.

Theorem 4.20. For any integer n = 2O(w), m a power of 2, SampleBinLoadm,δ (1 − m · n · δ)-
obliviously implements the functionality F throw-balls

n,m in time O(m · log5(1/δ)).
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5 Oblivious Tight Compaction

In this section, we describe a deterministic linear-time procedure (in the balls and bins model)
which solves the tight compaction problem: given an input array containing n balls each of which
marked with a 1-bit label that is either 0 or 1, output a permutation of the input array such that
all the 1 balls are moved to the front of the array.

Theorem 5.1 (Restatement of Theorems 1.2). There exists a deterministic oblivious tight com-
paction algorithm that takes O (dD/we · n) time to compact any input array of n elements each can
be encoded using D bits, where w is the word size.

Our approach extends to oblivious distribution: Given an array containing n balls and an
assignment array A of n bits such that each ball is marked with a 1-bit label that is either 0 or
1 and the number of 0-balls equals the number of 0-bits in A, output a permutation of the input
balls such that all the 0-balls are moved to the positions of 0-bits in A. See Section 5.3 for details.

A bipartite expander. Our construction relies on bipartite expander graphs where the entire
edge set can be computed in linear time in the number of nodes.

Theorem 5.2. For any constant ε ∈ (0, 1), there exists a family of bipartite graphs {Gε,n}n∈N and
a constant dε ∈ N, such that for every n ∈ N being a power of 2, Gε,n = (L,R,E) has |L| = |R| = n
vertices on each side, it is dε-regular, and for every sets S ⊆ L, T ⊆ R, it holds that∣∣∣∣e(S, T )− dε

n
· |S| · |T |

∣∣∣∣ ≤ ε · dε ·√|S| · |T |,
where e(S, T ) is the set of edges (s, t) ∈ E such that s ∈ S and t ∈ T .

Furthermore, there exists a (uniform) linear-time algorithm that on input 1n outputs the entire
edge set of Gε,n.

Such graphs are well known (c.f. Margulis [48] and Pippenger [56]) and we provide a proof in
Appendix C.1 for completeness. Note that the property that the entire edge set can be computed
in linear time is crucial for us (but to the best of our knowledge has not been exploited before).

5.1 Reducing Tight Compaction to Loose Compaction

We first reduce the problem of tight compaction in linear time to loose compaction in linear time.
A loose compaction algorithm is parametrized by a sufficiently large constant ` > 2 (which will be
chosen in Section 5.2), and the input is an array I of size n that has real and dummy balls. It is
guaranteed that the number of reals is at most n/`. The expected output of the procedure is an
array of size n/2 that contains all the real balls.

From SwapMisplaced to TightCompaction. The first observation for our tight compaction algo-
rithm is that some balls already reside in the correct place, and only some balls have to be moved.
In fact, the number of 0-balls that are “misplaced” equals exactly the number of 1-balls that are
misplaced. Specifically, assume that there are c balls marked 0; all 1 balls in the subarray I[1, . . . , c]
are misplaced, and all 0 balls in I[c+ 1, . . . , n] are also misplaced. Notice that the number of mis-
placed 0 balls equals the number of misplaced 1 balls. Therefore, we have reduced the problem of
tight compaction to the problem of swapping misplaced 0 balls with the misplaced 1 balls. This
reduction is described as Algorithm 5.3.

Algorithm 5.3: TightCompaction(I):
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� Input: an array I of n balls, each ball is labeled as 0 or 1.

� The algorithm:

1. Count the number of 0-balls in I, let c be the number.

2. For i = 1, 2, . . . , n, do the following.
(a) If I[i] is a 1-ball and i ≤ c, mark I[i] as blue.

(b) If I[i] is a 0-ball and i > c, mark I[i] as red.

(c) Otherwise, mark I[i] as ⊥.

3. Run SwapMisplaced(I), let O be the result.

� Output: The array O.

From LooseSwapMisplaced and LooseCompaction to SwapMisplaced. In SwapMisplaced, we are
given n balls, each is labeled as either red, blue or ⊥. It is guaranteed that the number of blue
balls equals the number of red balls. Our goal is to obliviously swap the locations of the blue
balls with the red balls. To implement SwapMisplaced we use two subroutines, LooseCompaction`
and LooseSwapMisplaced`, parametrized with a number ` > 2 that have the following input-output
guarantees:

� The algorithm LooseCompaction` receives as input an array I consisting of n balls, where at
most 1/` fraction are real and the rest are dummies. The output is an array of size n/2 that
contains all the real balls. We implement this procedure in Section 5.2.

� The algorithm LooseSwapMisplaced` receives the same input as SwapMisplaced: n balls, each
is labeled as either red, blue or ⊥, and the number of blues equals the number of reds. This
procedure swaps the locations of all the red-blue balls except 1/` fraction. All the swapped
balls are labeled with ⊥. We implement this procedure below in this subsection.

Using these two procedures, SwapMisplaced works by first running LooseSwapMisplaced` which
makes all the necessary swaps except for at most 1/` fraction. We then perform LooseCompaction`
on the resulting array, moving all the remaining red and blue balls to the first half of the ar-
ray. Then, we continue recursively and perform SwapMisplaced on the first half of the array. To
be able to facilitate the recursion, we record the original placement of the balls and their move-
ments, and revert them in the end. Given a linear time algorithm for LooseCompaction` and
LooseSwapMisplaced` (that we will achieve below), the recursive formula for the running time of
the algorithm is T (n) = T (n/2) +O(n), and therefore is linear. The description of SwapMisplaced
is given in Algorithm 5.5 and we have the following claim.

Claim 5.4. Let I be any input where the number of balls marked red equals the number of balls
marked blue, and let O = SwapMisplaced(I). Then, O is a permutation of the balls in I, where each
red ball in I swaps its position with one blue ball in I. Moreover, the runtime of SwapMisplaced(I)
is linear in |I|.

Algorithm 5.5: SwapMisplaced(I)

� Input: an array I of n balls, each ball is labeled as red, blue, or ⊥, where the number of balls
marked red equals the number of balls marked blue.

� The algorithm:
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1. Run LooseSwapMisplaced`(I), let I′ be the result.

2. Replace all balls marked as ⊥ in I′ with dummies. Run LooseCompaction`(I
′) while

relating to all balls marked with blue or red as real. Let Ireal be the result of the
procedure, where |Ireal| = n/2, and record all moves in an array Aux.
At the end of this step, we are guaranteed that all blue and red balls appear in Ireal.

3. Run SwapMisplaced recursively on Ireal and let I′real be the result. In I′real, every red ball
is swapped with some blue ball and vise versa.

4. Reverse route of all real balls from I′real to I′ using Aux, let O be the resulting array
after such routing.

� Output: The array O.

Implementing LooseSwapMisplaced`. The access pattern of the algorithm is determined by a
(deterministically generated) expander graph Gε,n = (L,R,E), where the allowed swaps are vertices
of distance 2. That is, we interpret L = R = [n]; if two vertices i, k ∈ R have some common neighbor
j ∈ L, and I[i], I[k] are both marked with different colors, then we swap them and change their
mark to ⊥. Choosing the expansion parameters of the graph appropriately guarantees that after
performing these swaps, there are at most n/` misplaced balls. As the graph is d-regular, there are
at most

(
d
2

)
· n neighbors of distance 2, and since d = O(1), the total running time is O(n).

Algorithm 5.6: LooseSwapMisplaced`(I)

� Input: An array I of n balls, each ball is labeled as red, blue or ⊥. The number of balls
marked as red equals the number of balls marked blue.

� Parameters: A parameter ` ∈ N.

� The algorithm:

1. Generate a bipartite graph Gε,n = (L,R,E) with vertex set L = R = [n] such that
ε ≤ 1

2
√
`

(see Theorem 5.2).

2. For j = 1, . . . , n, do:
(a) For all edges (j, i) ∈ E and (j, k) ∈ E do the following: If (I[i], I[k]) are marked

(blue, red) or (red, blue), then swap between I[i] and I[k]. Mark both as⊥. Otherwise,
perform dummy swap.

� Output: The array I

Claim 5.7. Let I be an input array in which the number of balls marked blue equals the number of
balls marked red. Denote as O the output array. Then, O is a swap of the input array:

� There exist pairs of indices (i1, j1), . . . , (ik, jk) all distinct such that the following holds: For
every ` ∈ [k], I[i`], I[j`] are marked with different colors ((red, blue) or (blue, red)), and O[i`] =
I[j`], O[j`] = I[i`] and both O[i`],O[j`] are marked ⊥.

� For every i 6∈ {i1, . . . , ik, j1, . . . , jk} then O[i] = I[i] and both have the same mark.

In O, the number of balls marked red equals the number of balls marked blue, and there are at most
1/` fraction of marked balls.
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Proof. The algorithm only performs swaps between red and blue balls and therefore O is a permuta-
tion of I, the three conditions hold, and the number of balls marked red equals the number of balls
marked blue. It remain to show that the number of red/blue balls in O is at most n/`. In the end of
the execution of the algorithm, let Rred be the set of all vertices in R that are marked red, and let
Rblue be the set of vertices in R that are marked blue. Then, it must be that Γ(Rred)∩Γ(Rblue) = ∅,
as otherwise the algorithm would have swapped an element in Rred with an element in Rblue. Since
the number of balls in Rred and in Rblue is equal, it suffices to show that for every subset R′ ⊂ R of
size greater than n/(2`), it holds that |Γ(R′)| > n/2. This implies that |Rred| = |Rblue| ≤ n/(2`),
as otherwise Γ(Rred)∩Γ(Rblue) 6= ∅. The fact that every set of vertices is expanding follows generi-
cally by the equivalence between spectral expansion (the definition of expanders we use) and vertex
expansion. We give a direct proof below.

Let R′ ⊂ R with |R′| > n/2` and let L′ = Γ(R′) be its set of neighbors. Since the graph is
dε-regular for some dε ∈ O(1), it holds that e(L′, R′) = dε · |R′|. Thus, by the guarantee on the
expander graph (Theorem 5.2) and by ε ≤ 1

2
√
`
, it holds that

dε ·
∣∣R′∣∣ = e(L′, R′) ≤ dε |L′| |R′|

n
+

dε

2
√
`
·
√
|L′| |R′|.

Dividing by dε · |R′| and rearranging, we get

1− |L
′|
n
≤

√
|L′|

4` · |R′|
.

Since |R′| > n/(2`), we have

1− |L
′|
n

<

√
|L′|
2n

.

Solving the above by squaring and rearranging,
(

1− |L
′|
n

)2
− |L

′|
2n < 0, we have |L′| > n/2.

5.2 Loose Compaction

In Section 5.2.1, we describe the algorithm CompactionFromMatching – compacting an array given
the required matching (via “folding”). In Section 5.2.2, we show how to compute the matching, both
for the case where m is “big” (SlowMatch) and when m is “small” (FastMatch). In Section 5.2.3,
we present the full loose compaction algorithm.

5.2.1 Compaction from Matching

We show that with the appropriate notion of matching (given below), one can “fold” an array A,
with density of real balls being small enough, such that all the real balls reside in the output array
of size n/2.

Definition 5.8 ((B,B/4)-Matching). Let G = (L,R,E) be a bipartite graph, and let S ⊆ L and
M ⊆ E. Given any vertex u ∈ L ∪ R, define ΓM (u) := {v ∈ L ∪ R | (u, v) ∈ M} as the subset of
neighboring vertices in M . We say that M is a (B,B/4)-matching for S, iff (i) for every u ∈ S,
|ΓM (u)| ≥ B, and; (ii) for every v ∈ R, |ΓM (v)| ≤ B/4.

In Algorithm 5.9, we show how to compact an array given a (B,B/4)-matching for the set of all
dense bins S, where a bin is said to be dense if it contains more than B/4 real balls. We assume that
the matching itself is given to us via an algorithm ComputeMatchingG(S). The implementation of
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ComputeMatchingG(·) is given in Section 5.2.2. Note that for any problem size m < 2B, it suffices to
perform oblivious sorting (e.g., Theorem 4.1) instead of the following algorithm as B is a constant.

Algorithm 5.9: CompactionFromMatchingD(A)

� Public parameters: D is the size of each ball in bits.

� Input: An array I of m balls, in which at most m/128 are real.

� The Procedure:

1. Let ε = 1/64 and let dε be the constant regularity of the graph Gε,? guaranteed by The-
orem 5.2, and set B = dε/2.

2. Interpret the array I as m/B bins, where each bin consists of B balls. Let S be the set
of indexes i such that I[i] consists of more than B/4 real balls (the “dense” bins in I).
Let I′ be an array of m/B empty bins, where the capacity of a bin is B balls.

3. Let Gε,m/B = (L,R,E) be the dε-regular bipartite graph guaranteed by Theorem 5.2,
where |L| = |R| = m/B.

4. Compute a (B,B/4)-matching for S via M ← ComputeMatchingGε,m/B (S).

5. Distribute: For all i ∈ |E|, get the edge (u, v) = E[i] (where u ∈ L, v ∈ R).
(a) If M [i] = 1, move a ball from bin I[u] to bin I′[v].

(b) If M [i] = 0, access I[u] and I′[v] but move nothing.

6. Fold: Let O be an array of size m/(2B) empty bins, each of capacity of B balls. For
i ∈ [m/(2B)], move all real balls in (I[i], I[m/(2B) + i]), (I′[i], I′[m/2B + i]) to bin O[i],
pad O[i] with dummy balls if there are less than B real balls.

� Output: The array O.

Given that |E| = O(m) and B is a constant, the running time is linear in dD/we · m. Also,
there are at most m

B ·
1
32 dense bins as the total number of real balls is at most m

128 (i.e., |S| ≤ m
32B ),

so M is a (B,B/4)-matching by ComputeMatching, as we will show later in Claim 5.16. Hence,
correctness holds. As for correctness, the (B,B/4) matching M guarantees that every vertex in
the right vertices of G contains at most B/4 real elements. As a result, after the distribute phase,
all bins in the entire graph contain at most B/4 real elements, and we can fold the array without
having any overflow. The following claim is immediate.

Claim 5.10. Let I be an array of m balls, where each ball is of size D bits, and where at most
m/128 balls are marked real. Then, the output of CompactionFromMatchingD(I) is an array of m/2
balls that contains all real balls in I. The running time of the algorithm is O(dD/we ·m) plus the
running time of ComputeMatchingGε,m/B .

5.2.2 Computing the Matching

To compute the matching, we have two cases to consider, depending on the size of the input, and
each algorithm results in different running time.

Algorithm 5.11: ComputeMatchingGε,m/B (S)

� Public parameters: ε = 1
64 , B, m and a graph Gε,m/B = (L,R,E).

� Input: a set S ⊂ L such that |S| ≤ m
32B .

� Procedure:
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1. If m
B > w

logw , then let M ← SlowMatchGε,m/B (S).

2. If m
B ≤

w
logw , then let M ← FastMatchGε,m/B (S).

� Output: M .

Case I: SlowMatch
(
m
B
> w

logw

)
. We transform the non-oblivious algorithm described in the

overview, that runs in time O(m), into an oblivious algorithm, by performing fake accesses.
This results in an algorithm that requires O(m · logm) time [14]. The bolded instructions in
SlowMatchGε,m/B (S) are the ones where we pay the extra logm factor in efficiency; these accesses
will be avoided in Case II (FastMatch).

Algorithm 5.12: SlowMatchGε,m/B (S)

� Public parameters: ε = 1
64 , B, m and a graph Gε,m/B = (L,R,E).

� Input: a set S ⊂ L such that |S| ≤ m
32B and m

B > w
logw .

� The procedure:

1. Let M be a bit-array of length |E| initialized to all 0s.

2. Let L′ = S be the “dense” vertices in L, and let R′ = Γ(L′): initialize R′ as an array of
m/B 0s; for every edge (u, v) ∈ E, if L′[u] = 1 then assign R′[v] = 1. Note that each
L′, R′ is stored as an array of m/B indicators.

3. Repeat the following for log(m/B) iterations.
(a) For each vertex u ∈ L, if u ∈ L′, send one request to every neighboring vertex

v ∈ Γ(u). (If u 6∈ L′, perform fake accesses)

(b) For each vertex v ∈ R, if v ∈ R′, do the following (perform fake accesses if
v ∈ R \R′):

i. Let the number of received requests be c.

ii. If c ≤ B/4, then reply positive to every request. Otherwise, reply negative to
every request.

(c) For each vertex u ∈ L, if u ∈ L′, do the following (perform fake accesses to
u ∈ L \ L′).

i. Let the number of received positives be c.

ii. If c ≥ B, then add to M every edge that replied positive, and remove vertex u
from L′. (Otherwise, perform fake accesses to M).

(d) Recompute R′ = Γ(L′) from the updated L′.

� Output: The array M .

In the following claim we show that the size of L′ decreases by a constant factor in every iteration
which implies that the algorithm finishes after log(m/B) iterations. This means that SlowMatch
outputs a correct (B,B/4)-matching for S in time O(m · logm) (see Claim 5.14).

Claim 5.13. Let S ⊂ L such that |S| ≤ m/(32B), and let ε = 1
64 . In each iteration of Algo-

rithm 5.12, the number of unsatisfied vertices |L′| decreases by a factor of 2.
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Proof. Let L′ be the set of unsatisfied vertices at beginning of any given round, let R′neg ⊆ R′ ⊆
Γ(L′) be the set of neighbors such that reply negative, and let m′ = m/B. Then, e(L′, R′neg) >
|R′neg| · B/4. From the expansion property in Theorem 5.2, we obtain |R′neg| · B/4 < e(L′, R′neg) ≤
dε |L′|

∣∣R′neg

∣∣ /m′+εdε√|L′| ∣∣R′neg

∣∣; dividing by
∣∣R′neg

∣∣ dε and rearranging this becomes ε
√
|L′| /

∣∣R′neg

∣∣ >
B/(4dε) − |L′| /m′. We chose B as the largest power of 2 that is no larger than dε/2, and so
B/dε > 1/4. Since |L′| /m′ ≤ 1/32 (recall that L′ is initially S, and the number of dense vertices,
|S|, is at most m/(32B)), and since ε = 1

64 , we have that:√
|L′| /

∣∣R′neg

∣∣ > 1

ε
· B

4dε
− 1

ε
· |L

′|
m′

>
1

ε
·
(

1

16
− 1

32

)
,

then
√
|L′| /

∣∣R′neg

∣∣ ≥ 64/16− 64/32, i.e.,
∣∣R′neg

∣∣ ≤ |L′| /4.

We conclude that the number of vertices in R′ that reply negatively is at most |L′| /4. As L′

has dε |L′| outgoing edges, and R′neg has at most dε
∣∣R′neg

∣∣ ≤ dε |L′| /4 incoming edges, at most one
quarter of edges in L′ lead to R′neg and yield a negative reply. Since dε = B/2 and every vertex
in L′ sends dε requests and all negative are from R′neg, there are at most dε |L′| /4 negative replies,
and therefore at most |L′| /2 nodes in L′ get more than B = dε/2 negatives. We conclude that at
least |L′| /2 nodes become satisfied.

Claim 5.14. Let S ⊂ L such that |S| ≤ m/(32B), and let ε = 1
64 . Then, SlowMatchGε,m/B takes

as input S, runs obliviously in time O(m · logm), and outputs a (B,B/4)-matching for S.

Proof. The runtime follows by there are log m
B iterations and each iteration takes O(m) time.

Obliviousness follows since the access pattern is a deterministic function of the graph Gε,m/B,
which depends only on the parameter m (but not on the input S). We argue correctness next. By
Step 3(c)ii, every removal of vertex u from L′ has at least B edges in the output M . Also, the edge
added to M must have a vertex in R′ that has at most B/4 requests at Step 3(b)ii. Observing that
the set of received requests at Step 3(b)ii is non-increasing over iterations, it follows that for every
v ∈ R, ΓM (v) ≤ B/4. By Claim 5.13, after log(m/B) iterations, we have L′ = ∅, and hence every
u ∈ S has at least B edges in M .

Case II: FastMatch
(
m
B
≤ w

logw

)
. Here, we improve the running time by relying on the fact that

for instances where m is really small (as above), the number of words needed to encode the whole
graph is really small (i.e., constant). While obliviousness is obtained again by accessing the whole
graph, this time it will be much cheaper as we will be able to read the whole graph while accessing
a small number of words. The algorithm is described in Algorithm 5.15. Note that whenever we
write, e.g., “access Reply[v]”, we actually access the whole array Reply as it is O(1) words, and do
not reveal which vertex we actually access. Thus, each iteration takes time O(|L′|+ |R′|), and since
the size of |L′| is reduced by a factor of 2 in each iteration (and since |R′| ≤ dε · |L′|), we perform
O(m) time in total. Additionally, note that we store the set L′ as a set (i.e., a list) and not as a bit
vector, as we cannot afford the O(m) time required to run over all balls of L and then ask whether
the element is in L′.

Algorithm 5.15: FastMatchGε,m/B (S)

� Public parameters: ε = 1
64 , B, m and a graph Gε,m/B = (L,R,E).

� Input: a set S ⊂ L such that |S| ≤ m
32B and m

B ≤
w

logw .

� The procedure:
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1. Represent Gε,m/B and initialize internal variables as follows:
(a) Represent L = R = {0, . . . ,m/B− 1}, where each identifier requires logw bits. The

set of edges E is represented as dε arrays E1, . . . , Edε . For a given node u ∈ L, let
v1, . . . , vdε ∈ R be its set of neighbors. We write E1[u] = v1, . . . , Edε [u] = vdε . Each
array Ei can be stored in a single word.

(b) Initialize an array of counters ctr = (ctr[0], . . . , ctr[m/B − 1]), i.e., a counter for
every v ∈ R. Initialize an array of lists Req = (Req[0], . . . ,Req[m/B − 1]), each
item Req[v] for v ∈ R is a list of at most B/4 identifiers of nodes in L that sent
a request. Initialize an array of lists Reply = (Reply[0], . . . ,Reply[m/B − 1]), where
each item Reply[v] for v ∈ L is a list of at most dε identifiers of nodes in R that
replied positively to a request. Observe that ctr,Req and Reply requires O(1) words.

(c) Given the set S of marked nodes in L, we put all identifiers in a single word L′. The
set R′ is also a set of identifiers. Initially, R′ is the set of all neighbors of L′. The
set M is an array of |E| indicators.

2. Repeat the following for i = log(m/B), . . . , 1 iterations.
(a) Initialize ctr = 0 (note that a single access initializes the whole array).

(b) For each vertex u ∈ L′: (in the i-th iteration, make exactly 2i accesses; i.e., perform
fake accesses to L′ if necessary)

i. Let (v1, . . . , vdε) = (E1[u], . . . , Edε [u]). Append u to the lists Req[v1], . . . ,Req[vdε ].

ii. Increment the counters ctr[v1], . . . , ctr[vdε ].

(c) For each v ∈ R′, do the following: (in the i-th iteration, make exactly 2i ·dε accesses;
i.e., make fake accesses to R′ if necessary)

i. Access ctr[v]. If ctr[v] ≤ B/4, then iterate over all identifiers Req[v] and for each
node u ∈ Req[v] add v to Reply[u]. This corresponds to answering positive to
requests.

(d) For each vertex u ∈ L′, do the following (perform 2i total accesses).
i. Let the number of received positive be c.

ii. If c ≥ B, then add to M every edge that replied positive, and remove vertex u
from L′. Otherwise, do nothing.

(e) Recompute R′ = Γ(L′) from the updated L′, and initialize again the counters.

� Output: The array M .

Claim 5.16. Given the public dε-regular bipartite graph Gε,m/B = (L,R,E) such that B = dε/2, let
S ⊆ L be a set such that |S| ≤ m

32B . Then, ComputeMatchingGε,m/B (S) outputs a (B,B/4)-matching

for S, where the running time is O(m) if m
B ≤

w
logw , and O(m · logm) otherwise.

Proof. The correctness follows from Claim 5.14 and the time bound follows from the time of
FastMatch and SlowMatch in both cases.

5.2.3 Oblivious Loose Compaction

By combining Claim 5.16 and Claim 5.10 we get the following corollary.

Corollary 5.17. The total running time of CompactionFromMatchingD on an array of m elements
each of size D bits is O(dD/we ·m) if m ≤ w

logw , and O(dD/we ·m+m · logm) otherwise.
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The next algorithm shows how to compute LooseCompaction`(I) for any input array I in which
there are at most |I|/` elements that are marked.

Algorithm 5.18: LooseCompaction`(I)

� Public parameters: Size of input array n, maximum acceptable sparsity ` (= 238).

� Input: An array I with n balls each of size D bits, where at most n/` balls are real and the
rest are dummy.

� The procedure: Let p := w
logw . We have three cases:

Case I: Compaction for big arrays, i.e., n ≥ p2 :

1. Let µ = p2. Represent I as another array A that consists of n/µ blocks: for each
i ∈ [n/µ], let A[i] be the block consists of all balls I[(i− 1) · µ+ 1], . . . , I[i · µ].

2. For each i ∈ [n/µ], label A[i] as dense if A[i] consists of more than µ/
√
` real balls.

3. Run O1 = CompactionFromMatchingµ·D(A). O1 is of size n/2, and consists of all dense
blocks in A.

4. Repeat the above process, this time on the array O1: interpret it as n/2µ blocks, mark
dense blocks as before, and let O′1 = CompactionFromMatchingµ·D(O1). O′1 is of size
n/4.

5. Replace all dense blocks in A with dummy blocks. For every i ∈ [n/µ], run O2,i ←
LooseCompaction√`/2(A[i]), and then run again O′2,i ← LooseCompaction√`/2(O2,i). Note

that |A[i]| = µ and
∣∣∣O′2,i∣∣∣ = µ/4.

6. Output: O′1‖O′2,1‖ . . . ‖O′2,n/µ (which is of total size n/2, as |O′1| = n/4 and
∑n/µ

i=1

∣∣∣O′2,i∣∣∣ =

n/4).

Case II: Compaction for moderate arrays, i.e., p ≤ n < p2 :

Similar to Case I, where this time we work with µ = p instead of p2.

Case III: Compaction for small arrays, i.e., n < p :

1. Run O = CompactionFromMatchingD(A).

2. Output: O.

Theorem 5.19. Let ` = 238. For any input array I with n balls such that each ball consists of
D bits and with at most n/` real balls, the procedure LooseCompaction`(I) outputs an array of size
n/2 consisting of all real balls in I, and runs in time O(dD/we · n).

Proof. To show the correctness, we check that in all cases, both CompactionFromMatching and
LooseCompaction` are called with an input array I such that at most |I|/128 balls are real so that
the correctness is implied by Claim 5.10 (henceforth referred to as the 128-condition). We proceed
by checking the 128-condition for each case in LooseCompaction`. Note that 238 = (2 · (2 ·128)2)2.13

� Case I: It is always called with ` = 238. At Step 2, note that the number of dense
blocks is at most n

µ ·
1√
`

as the total number of real balls is at most n
` . Hence, the two

CompactionFromMatching takes as input at most (nµ)/
√
` and then ( n2µ)/(

√
`/2) dense blocks,

13For readability, we recurse with
√
` instead of optimizing the constants (e.g., 238). Compared to the non-oblivious

routing of Pippenger [56], our constant is much larger, and it is an open problem to resolve this issue or prove it is
inherent.
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and the 128-condition holds as
√
`/2 = (2 · 128)2 > 128. The two LooseCompaction√`/2 takes

at most µ/
√
` and (µ2 )/(

√
`/2) real balls as each block is not dense, and then the 128-condition

holds for
√
` and

√
`/2 similarly.

� Case II: It can be either called directly with ` = 238, or called indirectly from Case I with
` = (2 · 128)2. Hence, the number of real is at most n/(2 · 128)2. By the same calculation as
Case I, the two CompactionFromMatching and two LooseCompaction√`/2 take an input array

such that the sparsity is at least
√

(2 · 128)2/2 = 128, and the 128-condition holds.

� Case III: Similar to Case II, it can be called directly, indirectly from Case I, or indirectly
from Case II with ` = 238, (2 · 128)2, or 128 respectively. Hence, the given sparsity ` is at
least 128, and hence the 128-condition holds directly for CompactionFromMatching.

To show the time complexity, observe that, except for CompactionFromMatching, all other pro-
cedures run in time O(n). By Corollary 5.17, running CompactionFromMatching on m items of size
D bits takes O(dD/we ·m) time if m ≤ w

logw , or O(dD/we ·m + m · logm) otherwise. For any n,
the depth of the recursive call to LooseCompaction is at most 2. Hence, it suffices to show that in
each case, every CompactionFromMatching run in O(dD/we · n) time. We proceed from Case III
back to I.

� Case III: Since n < w
logw , the CompactionFromMatchingD takes an input size m = n < w

logw
runs in O(dD/we · n) time by Corollary 5.17.

� Case II: Given that n <
(

w
logw

)2
, the subsequent CompactionFromMatchingD·p takes input

size m = n
p <

w
logw . Hence, its running time is O(dD · p/we ·m) = (dD/we ·n), as in Case III.

� Case I: For arbitrary n, the subsequent invocation of CompactionFromMatchingD·p2 , in Steps 3
and 4, takes an input size m = n/p2 and then m/2. By Corollary 5.17, in both cases, the
procedure runs in time O(dD · p2/we ·m+m · logm) = O(dD/we · n+ (n/p2) · log n). Since
Case I is the starting point of the algorithm, by the standard RAM model, we have that
w = Ω(log n), which implies that n/p2 = O(n/ log n) as p = w/ logw. Thus, the total time is
bounded by O(dD/we · n).

Plugging LooseCompaction238 into SwapMisplaced, by Claim 5.4 and Theorem 5.19, we have the
linear-time tight compaction claimed in Theorem 5.1.

5.3 Oblivious Distribution

In oblivious distribution, the input is an array I of n balls and a set A ⊆ [n] such that each ball in
I is labeled as 0 or 1 and the number of 0-balls is equal to |A|. The output is a permutation of I
such that for each i ∈ [n], the i-th location is a 0-ball if and only if i ∈ A. By marking red, blue, or
⊥ correspondingly, SwapMisplaced achieves oblivious distribution as elaborated in Algorithm 5.20,
where the set A is represented as an array of n indicators such that i ∈ A iff A[i] = 0.

Algorithm 5.20: Distribution(I, A)

� Input: an array I of n balls and an array A of n bits, where each ball is labeled as 0 or 1,
and the number of 0-balls in I equals to the number of 0s in A.

� The algorithm:

1. For each i ∈ [n], mark the ball I[i] as follows:
(a) If I[i] is tagged with 1 and A[i] = 0, mark I[i] as red.
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(b) If I[i] is tagged with 0 and A[i] = 1, mark I[i] as blue.

(c) Otherwise (I[i] is tagged with A[i]), mark I[i] as ⊥.

2. Run SwapMisplaced(I) and let O be the result.

� Output: The array O.

The correctness, security, and time complexity of Distribution follow directly from those of
SwapMisplaced, and this gives the following theorem.

Theorem 5.21 (Oblivious distribution). There exists a deterministic oblivious distribution algo-
rithm that takes O(n) time on input arrays of size n.

6 Interspersing Randomly Shuffled Arrays

In this section, we present the following variants of shuffling on an array of n elements. We suppose
that for any m ∈ [n], sampling an integer uniformly at random from the set [m] takes unit time.14

6.1 Interspersing Two Arrays

We first describe a building block called Intersperse that allows us to randomly merge two randomly
shuffled arrays. Informally, we would like to realize the following abstraction:

� Input: An array I := I0‖I1 of size n and two numbers n0 and n1 such that |I0| = n0 and
|I1| = n1 and n = n0 + n1. We assume that each element in the input array fits in O(1)
memory words.

� Output: An array B of size n that contains all elements of I0 and I1. Each position in B
will hold an element from either I0 or I1, chosen uniformly at random and the choices are
concealed from the adversary.

Looking ahead, we will invoke the procedure Intersperse with arrays I0 and I1 that are al-
ready randomly and independently shuffled (each with a hidden permutation). So, when we apply
Intersperse on such arrays the output array B is guaranteed to be a random permutation of the
array I := I0‖I1 in the eyes of an adversary.

The intersperse algorithm. The idea is to first generate a random auxiliary array of 0’s and 1’s,
denoted Aux, such that the number of 0’s in the array is exactly n0 and the number of 1’s is exactly
n1. This can be done obliviously by sequentially sampling each bit depending on the number of 0’s
we sampled so far (see Algorithm 6.1). Aux is used to decide the following: if Aux[i] = 0, then the
i-th position in the output will pick up an element from I0, and otherwise, from I1.

Next, to obliviously route elements from I0 (and I1, respectively) to the i-th position such
that Aux[i] = 0 (and Aux[i] = 0, respectively), it is performed using the deterministic oblivious
distribution given in Section 5.3 — mark every element in I0 as 0-balls, mark every element in I1 as

14In the standard RAM model, we assume only a memory word (i.e., fair random bits) can be sampled uniformly
at random in unit time. We note that to represent the probability of the shuffling exactly, infinite random bits are
necessary, which implies that no shuffling can finish in worst-case finite time. One may approximate the stronger
sampling using standard random words and repeating, and then bound the total number of repetition to get a high-
probability time (where the total number of repetition is a sum of geometric random variables, which has a very
sharp tail due to Chernoff bound). We adopt the stronger sampling for simplicity.
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1-balls, and then run Distribution (Algorithm 5.20) on the marked array I = I0‖I1 and the auxiliary
array Aux.

The formal description of the algorithm for interspersing two arrays is given in Algorithm 6.1.
The functionality that it implements (assuming that the two input arrays are randomly shuffled)
is given in Functionality 6.2 and the proof that the algorithm implements the functionality is given
in Claim 6.3.

Algorithm 6.1: Interspersen(I0‖I1, n0, n1) – Shuffling an Array via Interspersing Two
Randomly Shuffled Subarrays

� Input: An array I := I0‖I1 that is a concatenation of two arrays I0 and I1 of sizes n0 and
n1, respectively.

� Public parameters: n := n0 + n1.

� Input assumption: Each one of the arrays I0, I1 is independently randomly shuffled.

� The algorithm:

1. Sample an auxiliary array Aux uniformly at random among all arrays of of size n with
n0 0’s and n1 1’s:
(a) Initialize m0 := n0 and m1 := n1.

(b) For every position 1, 2, . . . , n, flip a random coin that results in heads with proba-
bility m1

m0+m1
. If heads, write down 1 and decrement m1. Else, write down 0 and

decrement m0.

2. For every i ∈ [n], mark I[i] as 0 if i ≤ n0, otherwise mark I[i] as 1.

3. Run Distribution(I,Aux), let B be the resulting array.

� Output: The array B.

Functionality 6.2: Fn
Shuffle(I) – Randomly Shuffling an Array

� Input: An array I of size n.

� Public parameters: n.

� The functionality:

1. Choose a permutation π : [n]→ [n] uniformly at random.

2. Initialize an array B of size n. Assign B[i] = I[π(i)] for every i = 1, . . . , n.

� Output: The array B.

Claim 6.3. Let I0 and I1 be two arrays of size n0 and n1, respectively, that satisfies the input
assumption as in the description of Algorithm 6.1. The Algorithm Interspersen(I0‖I1, n0, n1) obliv-
iously implements functionality FnShuffle(I0‖I1). The implementation has O(n) time.

The proof of this claim is deferred to Appendix C.2.

6.2 Interspersing Multiple Arrays

We generalize the Intersperse algorithm to work with k ∈ N arrays as input. The algorithm is called
Intersperse(k) and it implements the following abstraction:
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� Input: An array I1‖ . . . ‖Ik consisting of k different arrays of lengths n1, . . . , nk, respectively.
The parameters n1, . . . , nk are public.

� Output: An array B of size
∑k

i=1 ni that contains all elements of I1, . . . , Ik. Each position
in B will hold an element from one of the arrays, chosen uniformly at random and the choices
are concealed from the adversary.

As in the case of k = 2, we will invoke the procedure Intersperse(k) with arrays I1, . . . , Ik that
are already randomly and independently shuffled (with k hidden permutations). So, when we apply
Intersperse(k) on such arrays the output array B is guaranteed to be a random permutation of the
array I := I1‖ . . . ‖Ik in the eyes of an adversary.

The algorithm. To intersperse k arrays I1, . . . , Ik, we intersperse the first two arrays using
Interspersen1+n2

, then intersperse the result with the third array, and so on. The precise description
is given in Algorithm 6.4.

Algorithm 6.4: Intersperse(k)n1,...,nk
(I1‖ . . . ‖Ik) – Shuffling an Array via Interspersing k

Randomly Shuffled Subarrays

� Input: An array I := I1‖ . . . ‖Ik consisting of k arrays of sizes n1, . . . , nk, respectively.

� Public parameters: n1, . . . , nk.

� Input assumption: Each input array is independently randomly shuffled.

� The algorithm:

1. Let I′1 := I1.

2. For i = 2, . . . k, do:
(a) Execute Intersperse∑i

j=1 nj
(I′i−1‖Ii,

∑i−1
j=1 nj , ni). Denote the result by I′i.

3. Let B := I′k.

� Output: The array B.

We prove that this algorithm obliviously implements a uniformly random shuffle.

Claim 6.5. Let k ∈ N and let I1, . . . , Ik be k arrays of n1, . . . , nk elements, respectively,
that satisfy the input assumption as in the description of Algorithm 6.4. The Algorithm

Intersperse
(k)
n1,...,nk(I1‖ . . . ‖Ik) obliviously implements the functionality FnShuffle(I). The implemen-

tation requires O
(
n+

∑k−1
i=1 (k − i) · ni

)
time.

The proof of this claim is deferred to Appendix C.2.

6.3 Interspersing Reals and Dummies

We describe a related algorithm, called IntersperseRD, which will also serve as a useful building
block. Here, the abstraction we implement is the following:

� Input: An array I of n elements, where each element is tagged as either real or dummy. The
real elements are distinct. We assume that if we extract the subset of all real elements in the
array, then these elements appear in random order. However, there is no guarantee of the
relative positions of the real elements with respect to the dummy ones.
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� Output: An array B of size |I| containing all real elements in I and the same number of
dummy elements, where all elements in the array are randomly permuted.

In other words, the real elements are randomly permuted, but there is no guarantee regarding
their order in the array with respect to the dummy elements. In particular, the dummy elements
can appear in arbitrary (known to the adversary) positions in the input, e.g., appear all in the
front, all at the end, or appearing in all the odd positions. The output will be an array where all
the real and dummy elements are randomly permuted, and the random permutation is hidden from
the adversary.

The implementation of IntersperseRD is done by first running the deterministic tight compaction
procedure on the input array such that all the real balls appear before the dummy ones. Next, we
count the number of real elements in this array run the Intersperse procedure from Algorithm 6.1
on this array with the calculated sizes. The formal implementation appears as Algorithm 6.6.

Algorithm 6.6: IntersperseRDn(I) – Shuffling an Array via Interspersing Real and
Dummy

� Input: An array I of n elements, where each element is tagged as either real or dummy. The
real elements are distinct. We assume that each element fits in O(1) memory words.

� Public parameters: n.

� Input assumption: The input I restricted to the real elements is randomly shuffled.

� The algorithm:

1. Run the deterministic oblivious tight compaction algorithm on I (see Section 4), such
that all the real balls appear before the dummy ones. Let I′ denote the output array of
this step.

2. Count the number of reals in I′ by a linear scan. Let nR denote the result.

3. Invoke Interspersen(I′, nR, n− nR) and let B be the output.

� Output: The array B.

We prove that this algorithm obliviously implements a uniformly random shuffle.

Claim 6.7. Let I be an array of n elements that satisfies the input assumption as in the descrip-
tion of Algorithm 6.6. The Algorithm IntersperseRDn(I) obliviously implements the functionality
FnShuffle(I). The implementation has O(n) time.

The proof of this claim is deferred to Appendix C.2.

6.4 Perfect Oblivious Random Permutation (Proof of Theorem 4.6)

Recall that an oblivious random permutation shuffles an input array of n elements using a secret
permutation π : [n] → [n] uniformly at random (Section 4.2). The following (perfect) oblivious
random permutation, PerfectORP, is constructed with standard divide-and-conquer technique using
Intersperse for merging.

Algorithm 6.8: PerfectORP(I) – Perfect Oblivious Random Permutation

� Input: An array I of n elements.

� The algorithm:
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1. (Base case.) If n = 1, output I directly (skip all following steps).

2. Let A1 be the front dn/2e elements of I, A2 be the back bn/2c elements.

3. Recursively run PerfectORP(A1),PerfectORP(A2), let A′1, A
′
2 be the results respectively.

4. Run Interspersen(A′1‖A′2, dn/2e , bn/2c), let O be the result.

� Output: The array O.

We argue that PerfectORP runs in O(n · log n) time and permutes I uniformly at random. The
time bound follows since Intersperse runs in O(n) time (Claim 6.3) and the recursion consists of 2
sub-problems, each of half the size. The fact that the permutation is uniformly random follows by
induction and that Intersperse perfectly-obliviously implements FnShuffle (Claim 6.3).

7 BigHT: Oblivious Hashing for Non-Recurrent Lookups

The hash table construction we describe in this section suffers from poly log log λ extra multiplicative
factor in Build and Lookup (which lead to similar overhead in the implied ORAM construction).
Nevertheless, this hash table serves as a first step and we will get rid of the extra factor in Section 8.
Hence, the parameter of expected bin load µ = log9 λ is seemingly loose in this section but is
necessary later in Section 8 (to apply Cuckoo hash). Additionally, note that this hash table captures
and simplifies many of the ideas in the oblivious hash table of Patel et al. [53] and can be used to
get an ORAM with similar overhead to theirs.

Construction 7.1: Hash Table for Shuffled Inputs

Procedure BigHT.Build(I):

� Input: An array I = (a1, . . . , an) containing n elements, where each ai is either dummy or
a (key, value) pair denoted (ki, vi), where both the key k and the value v are D-bit strings
where D := O(1) · w.

� Input assumption: The elements in the array are uniformly shuffled.

� The algorithm:

1. Let µ := log9 λ, ε := 1
log2 λ

, δ := e− log λ·log log λ, and B := dn/µe.
2. Sample PRF key. Sample a random PRF secret key sk.

3. Directly hash into major bins. Throw the real ai = (ki, vi) into B bins using PRFsk(ki).
If ai = dummy, throw it to a uniformly random bin. Let Bin1, . . . ,BinB be the resulted
bins.

4. Sample independent smaller loads. Execute Algorithm 4.19 to obtain (L1, . . . , LB) ←
SampleBinLoadB,δ(n

′), where n′ = n·(1− ε). If there exists i ∈ [B] such that ||Bini| − µ| >
0.5 · εµ or

∣∣∣Li − n′

B

∣∣∣ > 0.5 · εµ, then abort.

5. Create major bins. Allocate new arrays (Bin′1, . . . ,Bin′B), each of size µ. For every i,
iterate in parallel on both Bini and Bin′i, and copy the first Li elements in Bini to Bin′i.
Fill the empty slots in Bin′i with dummy. (Li is not revealed during this process, by
continuing to iterate over Bini after we cross the threshold Li.)

6. Create overflow pile. Obliviously merge all of the last |Bini| − Li elements in each bin
Bin1, . . . ,BinB into an overflow pile:
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– For each i ∈ [B], replace the first Li positions with dummy.

– Concatenate all of the resulting bins and perform oblivious tight compaction on the
resulting array such that the real balls appear in the front. Truncate the outcome
to be of length εn.

7. Prepare an oblivious hash table for elements in the overflow pile by calling the Build
algorithm of the (1 − O(δ) − δAPRF)-oblivious Cuckoo hashing scheme (Theorem 4.14)
parameterized by δ (recall that δ = e−Ω(log λ·log log λ)) and the stash size log(1/δ)/ log n.
Let OF = (OFT,OFS) denote the outcome data structure. Henceforth, we use OF.Lookup
to denote a lookup operation to this oblivious Cuckoo hashing scheme.

8. Prepare data structure for efficient lookup. For i = 1, . . . , B, call näıveHT.Build(Bin′i) on
each major bin to construct an oblivious hash table, and let OBini denote the outcome
for the i-th bin.

� Output: The algorithm stores in the memory a state that consists of (OBin1, . . . ,OBinB,OF,
sk).

Procedure BigHT.Lookup(k):

� Input: The secret state (OBin1, . . . ,OBinB,OF, sk), and a key k to look for (that may be ⊥,
i.e., dummy).

� The algorithm:

1. Call v ← OF.Lookup(k).

2. If k = ⊥, choose a random bin i
$←[B] and call OBini.Lookup(⊥).

3. If k 6= ⊥ and v 6= ⊥ (i.e., v was found in OF), choose a random bin i
$←[B] and call

OBini.Lookup(⊥).

4. If k 6= ⊥ and v = ⊥ (i.e., v was not found in OF), let i := PRFsk(k) and call v ←
OBini.Lookup(k).

� Output: The value v.

Procedure BigHT.Extract():

� Input: The secret state (OBin1, . . . ,OBinB,OF, sk).

� The algorithm:

1. Let T = OBin1.Extract()‖OBin2.Extract()‖ . . . ‖OBinB.Extract()‖OF.Extract().

2. Perform oblivious tight compaction on T , moving all the real balls to the front. Truncate
the resulting array at length n. Let X be the outcome of this step.

3. Call X′ ← IntersperseRDn(X) (Algorithm 6.6).

� Output: X′.

We prove that our construction obliviously implements Functionality 4.7 for every sequence
of instructions with non-recurrent lookups between two Build operations and as long as the input
array to Build is randomly and secretly shuffled.

Theorem 7.2. Assume a δAPRF-secure PRF. Then, Construction 7.1 (1−n2·e−Ω(log λ·log log λ)−δAPRF)-
obliviously implements Functionality 4.7 for all n ≥ log11 λ, assuming that the input array (of size
n) for Build is randomly shuffled. Moreover,
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� Build and Extract each take O
(
n · poly log log λ+ n · logn

log2 λ

)
time; and

� Lookup takes O(poly log log λ) time in addition to linearly scanning a stash of size O(log λ).

In particular, if log11 λ ≤ n ≤ poly(λ), then hash table is (1−e−Ω(log λ·log log λ)−δAPRF)-obliviously
and consumes O(n · poly log log λ) time for the Build and Extract phases; and Lookup consumes
O(poly log log λ) time in addition to linearly scanning a stash of size O(log λ).

Proof. The proof of security is given in Appendix C.3. We give the efficiency analysis here. In
Construction 7.1, there are n/ log9 λ major bins and each is of size O(log9 λ). The subroutine
SampleBinLoadB,δ(n

′) runs in time O(B · log5(1/δ)) ≤ O
(⌈
n/ log9 λ

⌉
· log6 λ

)
= O

(
n/ log3 λ

)
by

Theorem 4.20 (recall that δ = e− log λ·log log λ) and since n ≥ log11 λ. We employed the hash table
näıveHT (Theorem 4.9) for each major bin, and thus their initialization takes time

n

µ
·O (µ · poly logµ) ≤ O(n · poly log log λ).

The overflow pile consists of εn ≥ log9 λ ≥ log8(1/δ) elements as n ≥ log11 λ, and it is implemented
via an oblivious Cuckoo hashing scheme (Theorem 4.14) so its initialization takes time O(εn ·
log(εn)) ≤ O

(
n · logn

log2 λ

)
, where the stash size is O

(
log(1/δ)
log εn

)
≤ O(log λ). Each Lookup incurs

O(poly log log λ) time from the major bins and O(log λ) time from the linear scan of OFS, the stash
of the overflow pile (searching in OFT incurs O(1) time). The overhead of Extract depends on the
overhead of Extract for each major bin and Extract from the overflow pile. The former is again

bounded by O(n · poly log log λ) and the latter is bounded by O(εn · log(εn)) ≤ O
(
n · logn

log2 λ

)
.

Finally, observe that it is not difficult to adjust the constants in our construction and analysis
to show the following more general corollary:

Corollary 7.3. Assume a δAPRF-secure PRF. Then, for any constant c ≥ 2, there exists an algorithm
that (1− n2 · e−Ω(log λ·log log λ)− δAPRF)-obliviously implements Functionality 4.7 for all n ≥ log9+c λ,
assuming that the input array (of size n) for Build is randomly shuffled. Moreover,

� Build and Extract each take O
(
n · poly log log λ+ n · logn

logc λ

)
time; and

� Lookup takes O(poly log log λ) time in addition to linearly scanning a stash of size O(log λ).

Proof. We can let ε = 1
logc λ in Construction 7.1. The analysis follows in a similar fashion.

Remark 7.4. As we mentioned, Construction 7.1 is only the first step towards the final oblivious
hash table that we use in the final ORAM construction. We make significant optimizations in
Section 8. We show how to improve upon the Build and Extract procedures from O(n ·poly log log λ)
to O(n) by replacing the näıveHT hash table with an optimized version (called SmallHT) that is
more efficient for small lists. Additionally, while it may now seem that the O(log λ)-stash overhead
of Lookup is problematic, we will “merge” the stashes for different hash tables in our final ORAM
construction and store them again in an oblivious hash table.
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8 SmallHT: Oblivious Hashing for Small Bins

In Section 7, we constructed an oblivious hashing scheme for randomly shuffled inputs where
Build and Extract consumes n · poly log log λ time and Lookup consumes poly log log λ. The ex-
tra poly log log λ factors arise from the oblivious hashing scheme (denoted näıveHT) which we use
for each major bin of size ≈ log9 λ. To get rid of the extra poly log log λ factors, in this section,
we will construct a new oblivious hashing scheme for poly log λ-sized arrays which are randomly
shuffled. In our new construction, Build and Extract takes linear time and Lookup takes constant
time (ignoring the stash which we will treat separately later).

As mentioned in Section 2.1, the key idea is to rely on packed operations such that the metadata
phase of Build (i.e., the cuckoo assignment problem) takes only linear time — this is possible because
the problem size n = poly log λ is small. The more tricky step is how to route the actual balls into
their destined location in the hash-table. We cannot rely on standard oblivious sorting to perform
this routing since this would consume a logarithmic extra overhead. Instead, we devise a method to
directly place the balls into the destined location in the hash-table in the clear — this is safe as long
as the input array has been padded with dummies to the output length, and randomly shuffled;
in this way only a random permutation is revealed. A technicality arises in realizing this idea:
after figuring out the assigned destinations for real elements, we need to expand this assignment to
include dummy elements too, and the dummy elements must be assigned at random to the locations
unoccupied by the reals. At a high level, this is accomplished through a combination of packed
oblivious random permutation and packed oblivious sorting over metadata.

We first describe two helpful procedures (mentioned in Section 2.1.2) in Sections 8.1 and 8.2.
Then, in Section 8.3, we give the full description of the Build, Lookup, and Extract procedures
(Construction 8.5). Throughout this section, we assume for simplicity that n = log9 λ (while in
reality n ∈ log9 λ± log7 λ).

8.1 Step 1 – Add Dummies and Shuffle

We are given a randomly shuffled array I of length n that contains real and dummy elements. In
Algorithm 8.1, we pad the input array with dummies to match the size of the hash-table to be
built. Each dummy will receive a unique index label, and we rely on packed oblivious random
permutation to permute the labeled dummies. Finally, we rely on Intersperse on the real balls to
make sure that all elements, including reals and dummies, are randomly shuffled.

More formally, the output of Algorithm 8.1 is an array of size ncuckoo = ccuckoo · n + log λ,
where ccuckoo is the constant required for Cuckoo hashing, which contains all the real elements
from I and the rest are dummies. Furthermore, each dummy receives a distinct random index
from {1, . . . , ncuckoo − nR}, where nR is the number of real elements in I. Assuming that the real
elements in I are a-priori uniformly shuffled, then the output array is randomly shuffled.

Algorithm 8.1: Shuffle the Real and Dummy Elements

� Input: An input array I of length n consisting of real and dummy elements.

� Input Assumption: The real elements among I are randomly shuffled.

� The algorithm:

1. Count the number of real elements in I. Let nR be the output.

2. Write down a metadata array MD of length ncuckoo, where the first nR elements con-
tain only a symbol real, and the remaining ncuckoo − nR elements are of the form
(⊥, 1), (⊥, 2), . . . , (⊥, ncuckoo−nR), i.e., each element is a ⊥ symbol tagged with a dummy
index.
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3. Run packed oblivious random permutation (Theorem 4.5) on MD, packing O
(

w
logn

)
elements into a single memory word. Run oblivious tight compaction (Theorem 5.1) on
the resulting array, moving all the dummy elements to the end.

4. Run tight compaction (Theorem 5.1) on the input I to move all the real elements to the
front.

5. Obliviously write down an array I′ of length ncuckoo, where the first nR elements are
the first nR elements of I and the last ncuckoo − nR elements are the last ncuckoo − nR
elements of MD, decompressed to the original length as every entry in the input I.

6. Run Intersperse on I′ (Algorithm 6.6) letting n1 := nR and n2 := ncuckoo − nR. Let X
denote the outcome array.

� Output: The array X.

Claim 8.2. Algorithm 8.1 fails with probability at most e−Ω(
√
n) and completes in O(n+ n

w · log3 n)
time. Specifically, for n = log9 λ and w ≥ log3 log λ, the algorithm completes in O(n) time and

fails with probability e−Ω(log9/2 λ).

Proof. All steps except the oblivious random permutation in Step 3 incur O(n) time and are
perfectly correct by construction. Each element of MD can be expressed with O(log n) bits, so the
packed oblivious random permutation (Theorem 4.5) incurs O

(
(n · log3 n)/w

)
time and has failure

probability at most e−Ω(
√
n).

8.2 Step 2 – Evaluate Assignment with Metadata Only

We obliviously emulate the Cuckoo hashing procedure, but doing it directly on the input array is
too expensive (as it incurs oblivious sorting inside) so we do it directly on metadata (which is short
since there are few elements), and use the packed version of oblivious sort (Theorem 4.2). At the
end of this step, every element in the input array should learn which bin (either in the main table
or the stash) it is destined for. Recall that the Cuckoo hashing consists of a main table of ccuckoo ·n
bins and a stash of log λ bins.

Our input for this step is an array MDX of length ncuckoo := ccuckoo ·n+ log λ which consists of
pairs of bin choices (choice1, choice2), where each choice is an element from [ccuckoo · n] ∪ {⊥}. The
real elements have choices in [ccuckoo · n] while the dummies have ⊥. This array corresponds to the
bin choices of the original elements in X (using a PRF) which is the original array I after adding
enough dummies and randomly shuffling that array.

To compute the bin assignments we start with obliviously assigning the bin choices of the real
elements in MDX. Next, we obliviously assign the remaining dummy elements to the remaining
available locations. We do so by a sequence of oblivious sort algorithms. See Algorithm 8.3.

Algorithm 8.3: Evaluate Cuckoo Hash Assignment on Metadata

� Input: An array MDX of length ncuckoo = ccuckoo · n + log λ, where each element is either
dummy or a pair (choicei,1, choicei,2), where choicei,b ∈ [ccuckoo · n] for every b ∈ {1, 2}, and
the number of real pairs is at most n.

� Remark: All oblivious sorting in the algorithm below will be instantiated using packed
oblivious sorting (including those called by cuckooAssign and oblivious bin placement).

� The algorithm:
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1. Run the indiscriminate oblivious Cuckoo assignment algorithm cuckooAssign (see Sec-
tion 4.5) with parameter δ = e− log λ log log λ, and let AssignX be the result. For every i for
which MDX[i] = (choicei,1, choicei,2), we have that AssignX[i] ∈ {choicei,1, choicei,2} ∪
Sstash, i.e., either one of the two choices or the stash Sstash = [ncuckoo] \ [ccuckoo · n]. For
every i for which MDX[i] is dummy we have that AssignX[i] = ⊥.

2. Run oblivious bin placement (Section 4.3) on AssignX, and let Occupied be the output
array (of length ncuckoo). For every index j we have Occupied[j] = i if AssignX[i] = j
for some i. Otherwise, Occupied[j] = ⊥.

3. Label the i-th element in AssignX with a tag t = i for all i. Run oblivious sorting on

AssignX and let Ãssign be the resulting array, such that all real elements appear in the
front, and all dummies appear at the end, and ordered by their respective dummy-index
(i.e. given in Algorithm 8.1, Step 2).

4. Label the i-th element in Occupied with a tag t = i for all i. Run oblivious sorting on

Occupied and let ˜Occupied be the resulting array, such that all occupied bins appear
in the front and all empty bins appear at the end (where each empty bin contains an
index (i.e., a tag t) of an empty bin in Occupied).

5. Scan both arrays Ãssign and ˜Occupied in parallel, updating the destined bin of each

dummy element in Ãssign with the respective tag in ˜Occupied (and each real element
pretends to be updated).

6. Run oblivious sorting on the array Ãssign (back to the original ordering in the array
AssignX) according to the tag labeled in Step 3. Update the assignments of all dummy
elements in AssignX according to the output array of this step.

� Output: The array AssignX.

Claim 8.4. For n ≥ log9 λ, Algorithm 8.3 fails with probability at most e−Ω(log λ·log log λ) and com-

pletes in O
(
n · (1 + log3 n

w )
)

time. Specifically, for n = log9 λ and w ≥ log3 log λ, Algorithm 8.3

completes in O(n) time.

Proof. The input arrays is of size ncuckoo = ccuckoo · n + log λ and the arrays MDX, AssignX,

Occupied, ˜Occupied, Ãssign are all of length at most ncuckoo and consist of elements that
need O(log ncuckoo) bits to describe. Thus, the cost of packed oblivious sort (Theorem 4.2) is
O((ncuckoo/w) · log3 ncuckoo) ≤ O((n · log3 n)/w). The linear scans take time O(ncuckoo) = O(n).
The cost of the cuckooAssign (see Corollary 4.12) from Step 1 has failure probability e−Ω(log λ·log log λ)

and it takes time O((ncuckoo/w) · log3 ncuckoo) ≤ O((n · log3 n)/w).

8.3 SmallHT Construction

The full description of the construction is given next. It invokes Algorithms 8.1 and 8.3.

Construction 8.5: SmallHT – Hash table for Small Bins

Procedure SmallHT.Build(I):

� Input: An input array I of length n consisting of real and dummy elements. Each real
element is of the form (k, v) where both the key k and the value v are D-bit strings where
D := O(1) · w.
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� Input Assumption: The real elements among I are randomly shuffled.

� The algorithm:

1. Run Algorithm 8.1 (prepare real and dummy elements) on input I, and receive back an
array X.

2. Choose a PRF key sk where PRF maps {0, 1}D → [ccuckoo · n].

3. Create a new metadata array MDX of length n. Iterate over the the array X and for
each real element X[i] = (ki, vi) compute two values (choicei,1, choicei,2) ← PRFsk(ki),
and write (choicei,1, choicei,2) in the i-th location of MDX. If X[i] is dummy, write
(⊥,⊥) in the i-th location of MDX.

4. Run Algorithm 8.3 on MDX to compute the assignment for every element in X. The
output of this algorithm, denoted AssignX, is an array of length n, where in the i-th
position we have the destination location of element X[i].

5. Route the elements of X, in the clear, according to AssignX, into an array Y of size
ccuckoo · n and into a stash S.

� Output: The algorithm stores in the memory a secret state consists of the array Y, the
stash S and the secret key sk.

Procedure SmallHT.Lookup(k):

� Input: A key k that might be dummy ⊥. It receives a secret state that consists of an array
Y, a stash S, and a key sk.

� The algorithm:

1. If k 6= ⊥:
(a) Evaluate (choice1, choice2)← PRFsk(k).

(b) Visit Ychoice1 ,Ychoice2 and the stash S to look for the key k. If found, remove the
element by overwriting ⊥. Let v∗ be the corresponding value (if not found, set
v∗ := ⊥).

2. Otherwise:
(a) Choose random (choice1, choice2) independently at random from [ccuckoo · n].

(b) Visit Ychoice1 ,Ychoice2 and the stash S and look for the key k. Set v∗ := ⊥.

� Output: Return v∗.

Procedure SmallHT.Extract().

� Input: The algorithm has no input; It receives the secret state that consists of an array Y,
a stash S, and a key sk.

� The algorithm:

1. Perform oblivious tight compaction (Theorem 5.1) on Y‖S, moving all the real elements
to the front. Truncate the resulting array at length n. Let X be the outcome of this
step.

2. Call X′ ← IntersperseRDn(X) (Algorithm 6.6).

� Output: The array X′.

We prove that our construction obliviously implements Functionality 4.7 for every sequence
of instructions with non-recurrent lookups between two Build operations, assuming that the input
array for Build is randomly shuffled.
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Theorem 8.6. Assume a δAPRF-secure PRF. Suppose that n = log9 λ and w ≥ log3 log λ. Then,
Construction 8.5 (1−n ·e−Ω(log λ·log log λ)−δAPRF)-obliviously implements Functionality 4.7 assuming
that the input for Build (of size n) is randomly shuffled. Moreover, Build and Extract incur O(n)
time, Lookup has constant time in addition to linearly scanning a stash of size O(log λ).

Proof. The proof of security is given in Appendix C.4. We proceed with the efficiency analysis. The
Build operation executes Algorithm 8.1 that consumes O(n) time (by Claim 8.2), then performs
additional O(n) time, then executes Algorithm 8.3 that consumes O(n) time (by Claim 8.4), and
finally performs additional O(n) time. Thus, the total time is O(n). Lookup, by construction,
incurs O(1) time in addition to linearly scanning the stash S which is of size O(log λ). The time of
Extract is O(n) by construction.

8.4 CombHT: Combining BigHT with SmallHT

We use SmallHT in place of näıveHT for each of the major bins in the BigHT construction from
Section 7. Since the load in the major bin in the hash table BigHT construction is indeed n = log9 λ,
this modification is valid. Note that we still assume that the number of elements in the input to
CombHT, is at least log11 λ (as in Theorem 7.2).

However, we make one additional modification that will be useful for us later in the construction
of the ORAM scheme (Section 9). Recall that each instance of SmallHT has a stash S of size O(log λ)
and so Lookup will require, not only searching an element in the (super-constant size) stash OFS

of the overflow pile from BigHT, but also linearly scanning the super-constant size stash of the
corresponding major bin. To this end, we merge the different stashes of the major bins and store
the merged list in an oblivious Cuckoo hash (Section 4.5). (A similar idea has also been applied in
several prior works [15,33,35,40].) This results with a new hash table scheme we call CombHT.

Construction 8.7: CombHT: combining BigHT with SmallHT

Procedure CombHT.Build(I): Run Steps 1–7 of Procedure BigHT.Build in Construction 7.1,
where in Step 7 let OF = (OFT,OFS) denote the outcome structure of the overflow pile. Then,
perform:

8. Prepare data structure for efficient lookup. For i = 1, . . . , B, call SmallHT.Build(Bini) on each
major bin to construct an oblivious hash table, and let {(OBini,Si)}i∈[B] denote the outcome
bins and the stash.

9. Concatenate the stashes S1, . . . ,SB (each of size O(log λ)) from all small hash tables together.
Pad the concatenated stash (of size O(n/ log7 λ)) to the size O(n/ log2 λ). Call the Build
algorithm of an oblivious Cuckoo hashing scheme on the combined set (Section 4.5), and let
CombS = (CombST,CombSS) denote the output data structure, where CombST is the main
table and CombSS is the stash.

Output: Output (OBin1, . . . ,OBinB,OF,CombS, sk).

Procedure Lookup(ki): The procedure is the same as in Construction 7.1, except that whenever
visiting some bin OBinj for searching for a key ki, instead of visiting the stash of OBinj to look for
ki, we visit CombS.

Procedure Extract(). The procedure Extract is the same as in Construction 7.1, except that
T = OBin1.Extract()‖ . . . ‖OBinB.Extract()‖OF.Extract()‖CombS.Extract().
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Theorem 8.8. Assume a δAPRF-secure PRF. Suppose that the input I of the Build algorithm has
length n ≥ log11 λ. Then, Construction 8.7 is (1−n2 ·e−Ω(log λ log log λ)−δAPRF)-obliviously implements
Functionality 4.7 assuming that the input for CombHT.Build is randomly shuffled. Moreover,

� Build and Extract each take O
(
n+ n · logn

log2 λ

)
time; and

� Lookup takes O(1) time in addition to linearly scanning a stash of size O(log λ).

In particular, if log11 λ ≤ n ≤ poly(λ), the hash table is (1− e−Ω(log λ·log log λ))− δAPRF)-oblivious and
consumes O(n) time for the Build and Extract phases; and Lookup consumes O(1) time in addition
to linearly scanning a stash of size O(log λ).

Proof. The proof of security is given in Appendix C.5. We proceed with the efficiency analysis.
Since each stash Si is of size O(log λ) and there are n/ log9 λ major bins, the merged and padded
stash CombS has size size O(n/ log2 λ). The size of the overflow pile OF is O(n/ log2 λ). Thus,
we can store each of them using an oblivious Cuckoo hashing and this requires O(n/ log2 λ) space
for the main tables (resulting with OFT and CombST) plus an additional stash of size O(log λ)
(resulting with OFS and CombSS).

Thus, by Theorem 8.6 and 7.2, CombHT.Build(I) and CombHT.Extract performs inO
(
n+ n · logn

log2 λ

)
time. Regarding CombHT.Lookup, it needs to perform a linear scan in two stashes (OFS and
CombSS) of size O(log λ) plus constant time to search the main Cuckoo hash tables (OFT and
CombST).

If we use the earlier Corollory 7.3 to instantiate the BigHT, we can generalize the above theorem
to the following corollary:

Corollary 8.9. Assume a δAPRF-secure PRF and c ≥ 2. Then, there exists an algorithm that
(1− n2 · e−Ω(log λ log log λ) − δAPRF)-obliviously implements Functionality 4.7 assuming that the input
array is of length at least n ≥ log9+c λ and moreover the input is randomly shuffled. Furthermore,
the algorithm achieves the following performance:

� Build and Extract each take O
(
n+ n · logn

logc λ

)
time; and

� Lookup takes O(1) time in addition to linearly scanning a stash of size O(log λ).

Remark 8.10. In our ORAM construction we will have O(logN) levels, where each (non-empty)
level has a merged stash and also a stash from the overflow pile OFS, both of size O(log λ). We
will employ the “merged stash” trick once again, merging the stashes of every level in the ORAM
into a single one, resulting with a total stash size O(logN · log λ). We will store this merged
stash in an oblivious dictionary (see Section 4.6), and accessing this merged stash would cost
O
(
log4(logN + log λ)

)
total time.

9 Oblivious RAM

In this section, we utilize CombHT in the hierarchical framework of Goldreich and Ostrovsky [31] to
construct our ORAM scheme. We denote by λ the security parameter. For simplicity, we assume
that N , the size of the logical memory, is a power of 2. Additionally, we assume that w, the word
size is Θ(logN).
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ORAM Initialization. Our structure consists of one dictionaryD (see Section 4.6), andO(logN)
levels numbered `+ 1, . . . , L respectively, where ` = d11 log log λe, and L = dlogNe is the maximal
level.

� The dictionary D is an oblivious dictionary storing 2`+1 +logN log λ elements. Every element
in D is of the form (levelIndex,whichStash, data), where levelIndex ∈ {`, . . . , L}, whichStash ∈
{overflow, stashes,⊥} and data ∈ {0, 1}w.

� Each level i ∈ {` + 1, . . . , L} consists of an instance, called Ti, of the oblivious hash table
CombHT from Section 8.4 that has capacity 2i.

Additionally, each level is associated with an additional bit fulli, where 1 stands for full and 0 stands
for available. Available means that this level is currently empty and does not contain any blocks,
and thus one can rebuild into this level. Full means that this level currently contains blocks, and
therefore an attempt to rebuild into this level will effectively cause a cascading merge. In addition,
there is a global counter ctr that is initialized to 0.

Construction 9.1: Oblivious RAM Access(op, addr, data).

� Input: op ∈ {read,write}, addr ∈ [N ] and data ∈ {0, 1}w.

� Secret state: The dictionary D, levels T`+1, . . . , TL, the bits full`+1, . . . , fullL and counter
ctr.

� The algorithm15 :

1. Initialize found := false, data∗ := ⊥, levelIndex := ⊥ and whichStash := ⊥.

2. Perform fetched := D.Lookup(addr). If fetched 6= ⊥:
(a) Interpret fetched as (levelIndex,whichStash, data∗).

(b) If levelIndex = `, then set found := true.

3. For each i ∈ {`+ 1, . . . , L} in increasing order, do:
(a) If found = false:

i. Run fetched := Ti.Lookup(addr) with the following modifications:
– Instead of visiting the stash of OF, namely OFS, in Construction 8.7, check

whether levelIndex = i and whichStash = overflow. If so, treat the value data∗

as if it is fetched from OFS.

– Instead of visiting the stash of CombS, namely CombSS, check whether levelIndex =
i and whichStash = stashes, and if so, treat the value data∗ as if it is fetched
from CombSS

16.

ii. If fetched 6= ⊥, let found := true and data∗ := fetched.

(b) Else, Ti.Lookup(⊥).

4. If found = false, i.e., this is the first time addr is being accessed, set data∗ = 0.

5. Let (k, v) := (addr, data∗) if this is a read operation; else let (k, v) := (addr, data). Insert
(k, (`,⊥, v)) into oblivious dictionary D using D.Insert(k, (`,⊥, v)).

6. Increment ctr by 1. If ctr ≡ 0 mod 2`, perform the following.
(a) Let j be the smallest level index such that fullj = 0 (i.e., available). If all levels are

marked full, then j := L. In other words, j is the target level to be rebuilt.

15Steps 6b, 6c, 6(e)iv have been modified on August 18, 2020 thanks to the subtlety Falk et al. [20] pointed out.
The difference from the eprint version dated December 11, 2018 is that when we rebuild levels 1 . . . , j − 1 into level
j, we do not empty elements in D whose levelIndex is at most j − 1.

16Note that if we use the oblivious Cuckoo hash table construction of Chan et al. [12], even if the block is found
in the CombSS or OFS of level i, we will still visit real addresses (computed with a PRF function over the logical
addresses) in the main Cuckoo hash tables.
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(b) Let D̃ := D.Extract(). Let D1 be a copy of D̃ preserving only elements whose
levelIndex is at most j − 1, and all other elements are marked dummy. Let D2 be a
copy of D̃ preserving only elements whose levelIndex is greater than j − 1, and all
other elements are marked as dummy.

(c) Let U := D1‖T`+1.Extract()‖ . . . ‖Tj−1.Extract() and set j∗ := j − 1. If all levels
are marked full, then additionally let U := U‖TL.Extract() and set j∗ := L. (Here,
we change also Construction 8.7 such that CombHT.Extract() does not extract the
element from the stashes. The element of those are already kept in D.)

(d) Run Intersperse
(j∗−`)
2`+1,2`+1,2`+2,...,2j∗

(U) (Algorithm 6.4) to randomly shuffle U. Denote

the output by Ũ. If j = L, then additionally do the following to shrink Ũ to size
N = 2L:

i. Run the tight compaction on Ũ moving all real elements to the front. Truncate
Ũ to length N .

ii. Run Ũ← IntersperseRDN (Ũ) (Algorithm 6.6).

(e) Rebuild the jth hash table with the 2j elements from Ũ via Tj := CombHT.Build(Ũ)
(Construction 8.7) and let OFS,CombSS be the associated stashes of that level (of
size O(log λ) each). Mark fullj := 1.

i. Initialize a new oblivious dictionary D which will hold at most 2`+1 +logN log λ
elements.

ii. For each element (k, v) in the stash OFS, run D.Insert(k, (j, overflow, v)).

iii. For each element (k, v) in the stash CombSS, run D.Insert(k, (j, stashes, v)).

iv. For each tuple e ∈ D2, run D.Insert(e).

(f) For i ∈ {`+ 1, . . . , j − 1}, reset Ti to be empty structure and set fulli := 0.

� Output: Return data∗.

We prove that our construction obliviously implements the ORAM functionality (Functional-
ity 3.4) and analyze it amortized overhead.

Theorem 9.2. Let N ∈ N be the capacity of ORAM and λ ∈ N be a security parameter. Assume
a δAPRF-secure PRF. For any number of queries T = T (N,λ) ≥ N , Construction 9.1 (1 − T · N2 ·
e−Ω(log λ·log log λ)−δAPRF)-obliviously implements the ORAM functionality. Moreover, the construction

has O
(

logN ·
(

1 + logN
log2 λ

)
+ log9 log λ

)
amortized time overhead.

Proof. The proof of security is given in Appendix C.6 and we give the efficiency analysis next.
We may consider two cases:

� if w < log3 log λ, which implies that N < 2O(log3 log λ), we can use a perfect ORAM on N
which yields an ORAM scheme with O(log9 log λ) overhead (see Theorem 4.8).

� therefore, henceforth it suffices to consider the case when w ≥ log3 log λ.

In each of the T Access operations, Steps 1–5 perform a single Lookup and Insert operation on the
oblivious dictionary, and one Lookup on each T`, . . . , TL. These operations require O(log4 log λ) +
O(logN) time. In Step 6, for every 2` requests of Access, one Extract and at most O(2`) Insert
operations are performed on the oblivious dictionary D, and at most one CombHT.Build on T`+1.
These require O

(
2` · log3(2`+1) + 2` · log4(2`+1) + 2`+1

)
= O(2` · log4 log λ) time. In addition, for

each j ∈ {` + 1, . . . , L}, for every 2j requests of Access, at most one Extract is performed on Tj ,

50



one Build on Tj+1, one Intersperse
(j−`)
2`+1,2`+1,2`+2,...,2j

, one IntersperseRDN , and one tight compaction,

all of which require linear time and thus the total time is O(2j + 2j · j
log2 λ

) by Build and Extract of

CombHT (Theorem 8.8). Hence, over T requests, the amortized time is

1

T

 T
2`
·O
(

2` · log4 log λ
)

+

L∑
j=`+1

T

2j
·O
(

2j ·
(

1 +
j

log2 λ

)) = O

(
log4 log λ+ logN ·

(
1 +

logN

log2 λ

))
.

As a corollary, we can now state a more general version:

Corollary 9.3 (Precise statement of Theorem 1.1). Let N ∈ N be the capacity of ORAM and λ ∈ N
be a security parameter. Assume a δAPRF-secure PRF. For any number of queries T = T (N,λ) ≥ N
and any constant c > 1, there is a (1−T ·N2·δ−δAPRF)-oblivious construction of an ORAM. Moreover,

the construction has O
(

logN ·
(

1 + logN
logc(1/δ)

)
+ poly(log log(1/δ))

)
amortized time overhead.

Proof. There are two differences to the statement of Theorem 9.2. First, we replaced the term
e−Ω(log λ·log log λ) with δ. This means that Ω((1/δ)1/ log log(1/δ)) ≤ λ ≤ O(log(1/δ)), and so we can
replace the O(logN/ log2 λ) term from Theorem 9.2 with O(logN · log2 log(1/δ)/ log2(1/δ)) and the
poly(log log λ) term with poly(log log(1/δ)). Second, we generalize the exponent of the log2 λ to any
constant c > 1 (and this absorbes the logc log(1/δ) factor). This is okay by relying on Corollary 8.9
to instantiate our ORAM’s CombHT (which will make the ORAM’s smallest level larger but still
upper bounded by poly log(λ)).

Remark 9.4 (Using More CPU Registers). Our construction can be slightly modified to obtain
optimal amortized time overhead (up to constant factors) for any number of CPU registers, as
given by the lower bound of Larsen and Nielsen [41]. Specifically, if the number of CPU registers
is m, then we can achieve a scheme with O(log(N/m)) amortized time overhead.

If m ∈ N1−ε for ε > 0, then the lower bound still says that Ω(logN) amortized time overhead
is required so we can use Construction 9.1 without any change (and only utilize a constant number
of CPU registers). For larger values of m (e.g., m = O(N/ logN)), we slightly modify Construc-
tion 9.1 as follows. Instead of storing levels ` = d11 log log λe through L = dlogNe in the memory,
we utilize the extra space in the CPU to store levels ` through `m , blogmc while the rest of the
levels (i.e., `m + 1 through L) are stored in the memory, as in the above construction. The number
of levels that we store in the memory is O (logN − logm)) = O (log(N/m)) which is the significant
factor in the overhead analysis (as the amortized time overhead per level is O(1)).
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A Comparison with Prior Works

In the introduction, we have presented the overhead of our construction as a function of N and
assuming that λ ≤ N ≤ T ≤ poly(λ) for any fixed polynomial poly(·), where N is the size of
the memory, and T is a bound on the number of accesses. In order to have a more meaningful
comparison with previous works, we restate our result as well as some prior results using two
parameters, N and δ, as above, and no longer assume that λ ≤ N ≤ T ≤ poly(λ). Our construction
achieves:

Theorem A.1. Assume the existence of a pseudo-random function (PRF) family. Let N denote
the maximum number of blocks stored by the ORAM.

For any δ > 0, and any constant c ≥ 1, there exists an ORAM scheme with

O

(
logN ·

(
1 +

logN

logc(1/δ)

)
+ poly log log

(
1

δ

))
amortized overhead, and for every probabilistic polynomial-time adversary A adaptively issuing at
most T requests, the ORAM’s failure probability is at most T 3 · δ + δAprf where δAprf denotes the
probability that A breaks PRF security.

Previous works. We state other results with the same parameters N, δ, for the best of our
understanding. In all results stated below we assume O(1) CPU private registers and use δ to
denote the ORAM’s statistical failure probability; however, keep in mind that all computationally
secure results below have an additional additive failure probability related to the PRF’s security.

Goldreich and Ostrovsky [29, 31] showed a computationally secure ORAM construction with
O
(
log2N · log(1/δ)

)
overhead. Their work proposed the elegant hierarchical paradigm for con-

structing ORAMs and subsequent works have improved the hierarchical paradigm leading to asymp-
totically better results. The work of [12] (see also [33, 40]) showed how to improve Goldreich and
Ostrovsky’s construction to O

(
log2N/ log logN + log(1/δ) · log log(1/δ)

)
overhead. The work of

Patel et al. [53] achieved O
(

logN ·
(

log log(1/δ) + logN
log(1/δ)

)
+ log(1/δ) · log log(1/δ)

)
overhead (to

the best of our understanding).
Besides the hierarchical paradigm, Shi et al. [58] propose the tree-based paradigm for construct-

ing ORAMs. Subsequent works [15,16,61,63] have improved tree-based constructions, culminating
in the works of Circuit ORAM [63] and Circuit OPRAM [15]. Circuit ORAM [63] achieves O

(
logN ·

(logN + log(1/δ))
)

overhead and statistical security. Subsequently, the Circuit OPRAM work [15]
showed (as a by-product of their main result on OPRAM) that we can construct a statistically
secure ORAM with O

(
log2N + log(1/δ)

)
overhead (by merging the stashes of all recursion depths

in Circuit ORAM) and a computationally secure ORAM with O
(
log2N/ log logN + log(1/δ)

)
over-

head (by additionally adopting a metadata compression trick originally proposed by Fletcher et
al. [26]).

B Details on Oblivious Cuckoo Assignment

Recall that the input of Cuckoo assignment is the array of the two choices, I = ((u1, v1), . . . (un, vn)),
and the output is an array A = {a1, . . . an}, where ai ∈ {ui, vi, stash} denotes that the i-th ball
ki is assigned to either bin ui, or bin vi, or the secondary array of stash. We say that a Cuckoo
assignment A is correct iff it holds that (i) each bin is assigned to at most one ball, and (ii) the
number of balls in the stash is minimized.
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To compute A, the array of choices I is viewed as a bipartite multi-graph G = (U ∪ V,E),
where U = {ui}i∈[n], V = {vi}i∈[n], E is the multi-set {(ui, vi)}i∈[n], and the ranges of ui and vi
are disjoint. Given G, the Cuckoo assignment algorithm performs an oblivious breadth-first search
(BFS) such that traverses a tree for each connected component in G. In addition, the BFS performs
the following for each edge e ∈ E: e is marked as either a tree edge or a cycle edge, e is tagged
with the root r ∈ U ∪V of the connected component of e, and e is additionally marked as pointing
toward either root or leaf if e is a tree edge. Note that all three properties can be obtained in the
standard tree traversal. Given such marking, the idea to compute A is to assign each tree edge
e = (ui, vi) toward the leaf side, and there are three cases for any connected component:

(1) If there is no cycle edge in the connected component, perform the following. If e = (ui, vi)
points toward a leaf, then assign ai = vi; otherwise, assign ai = ui.

(2) If there is exactly one cycle edge in the connected component, traverse from the cycle edge
up to the root using another BFS, reverse the pointing of every edge on the path from the
cycle edge to the root, and then apply the assignment of (1).

(3) If there are two or more cycle edges in the connected component, throw extra cycle edges to
the stash by assigning ai = stash, and then apply the assignment of (2).

The above operations take constant passes of sorting and BFS, and hence it remains to implement
an oblivious BFS efficiently.

Recall that in a standard BFS, we start with a root node r and expand to nodes at depth
1. Then, iteratively we expands all nodes at depth i to nodes of depth i + 1 until all nodes are
expanded. Any cycle edges is detected when two or more nodes expand to the same node (because
any cycle in a bipartite graph must consist of a even number of edges). We say the nodes at depth
i is the i-th front and the expanding is the i-th iteration. To do it obliviously, the oblivious BFS
performs the maximum number of iterations, and, in the i-th iteration, it touches all nodes, yet
only the i-th front is actually expanded. Each iteration is accomplished by sorting and grouping
adjacent edges and then updating the marking within each group.17 Note that the oblivious BFS
does not need to know any connected components in advance. It simply expands all nodes in the
beginning, and then, a front “includes” nodes in another front when the two meet and the first
front has a root node that precedes the other root. Such BFS is not efficient as the maximum
number of iterations is n, and each iteration takes several sorting on O(n) elements.

To achieve efficiency, the intuition is that in the random bipartite graph G, with overwhelming
probability, (i) the largest connected component in G is small, and (ii) there are many small
connected components such that the BFS finishes in a few iterations. The intuition is informally
stated by the following two tail bounds, where γ < 1 and β < 1 are constants such that depends
only on the Cuckoo constant, ccuckoo.

1. For every integer s, the size of the largest connected component of G is greater than s with
probability O(γ−s).

2. Conditioning on the largest component is at most s, the following holds. For any integer t, let
Ct be the total number of edges of all components such that the size is at least t. Let c = 1/7.

If t satisfies that nβt ≥ Θ(n1−c), then Ck = O(nβk) holds with probability 2
−Ω
(
n1−2c

s4

)
.

Using such tail bounds, the BFS is pre-programmed in the following way. The second tail bound
says that after the t-th iteration of the BFS, we can safely eliminate (1 − β)n edges that is (with

17If there is a tie in the sorting of edges, we resolve it by the ordering of edges in I. This resolution was arbitrary in
Chan et al. [12], which is insufficient in our case. Here, we want it to be decided based on the original ordering as it
implies that the assignment A is determined given (only) the input I. We called this the indiscrimination property
in Remark 4.13.
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high probability) in components of size at most t until there are Θ(n1−c) edges remaining. Then,
using the first tail bound, it suffices to run the BFS for s additional iterations on the remaining
edges to figure out the remaining assignment (with overwhelming probability). To achieve failure
probability δ, a standard choice is s = log 1

δ [12, 33,40].
Therefore, the access pattern of such oblivious BFS is pre-determined by constants γ, β, δ, which

does not depend on the input I. The tail bounds incurs failure in correctness for a δ fraction among
all I, and then it is fixed by checking and applying perfectly correct but non-oblivious algorithm,
which incurs loss in obliviousness. This concludes the construction of cuckooAssign at a very high
level, and we have the following lemma.

Lemma B.1. Let n be the input size. Let the input of two choices be sampled uniformly at random.
Then, the cuckoo assignment runs in time O(T (n)+log 1

δ ·T (n6/7)) except with probability δ+log n ·

2
−Ω( n5/7

log4 1/δ
)
, where T (m) is the time to sort m integers each of O(logm) bits.

Assuming n = Ω(log8 1
δ ) and plugging in T (m) = O(m logm), we have the standard statement

of O(n log n) time and δ failure probability [12,33,40].

C Deferred Proofs

C.1 Proof of Theorem 5.2

To prove Theorem 5.2 we need several standard definitions and results. Given G = (V,E) and a
set of vertices U ⊂ V , we let Γ(U) be the set of all vertices in V which are adjacent to a vertex in
U (namely, Γ(U) = {v ∈ V | ∃u ∈ U, (u, v) ∈ E}).

Definition C.1 (The parameter λ(G) [3, Definition 21.2]). Given a d-regular graph G on n vertices,
we let A = A(G) be the matrix such that for every two vertices u and v of G, it holds that Au,v
is equal to the number of edges between u and v divided by d. (In other words, A is the adjacency
matrix of G multiplied by 1/d.) The parameter λ(A), denoted also as λ(G), is:

λ(A) = max
v∈1⊥,‖v‖2=1

‖Av‖2,

where 1⊥ = {v |
∑

vi = 0}.

Lemma C.2 (Expander mixing lemma [3, Definition 21.11]). Let G = (V,E) be a d-regular n-vertex
graph. Then, for all sets S, T ⊆ V , it holds that∣∣∣∣e(S, T )− d

n
· |S| · |T |

∣∣∣∣ ≤ λ(G) · d ·
√
|S| · |T |,

Proof of Theorem 5.2. Recall the graph of Margulis [48]. Fix a positive i ∈ N. The vertex set
V = [i]× [i]. A node (x, y) ∈ V is connected to (x, y), (x, x+y), (x, x+y+1), (x+y, y), (x+y+1, y)
(all arithmetic is modulo i). We let HN be the resulting graph that has N = i2 vertices. Notice
that HN is nonbipartite, but we will construct bipartite Gε,N from HN .

It is known (Margulis [48], Gabber and Galil [27], and Jimbo and Maruoka [38]) that for every
n which is a square (i.e., of the form n = i2 for some i ∈ N), Hn is 5-regular and λ(Hn) is at
most a constant fraction for all n. Also, the neighbors of each vertex can be computed via O(1)
elementary operations so the entire edge set of Hn can be computed in linear time in n. To boost
λ(Hn) to satisfy λ < ε, we consider the k-th power of Hn. This yields a 5k-regular graph Hk

n on
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n vertices whose λ parameter is λ(Hn)k. By choosing k to be a sufficiently large constant such
that λ(Hn)k < ε, we obtain the resulting (5k)-regular graph Hk

n. The entire edge set of this graph
can also be computed in O(n) time since moving from the (i − 1)-th to the i-th power requires
O(1) operations for each of the 5 edges that replace an edge – so the total time per vertex is∑k

i=1O(5i) = O(5k) = O(1).
This completes the required construction for sizes 22, 24, 26, . . . (i.e., for even powers of 2). We

can fill in the odd powers by padding. Given the graph Hk
n, we can obtain the required graph for

2n vertices by considering 2 copies of Hk
n and connecting all pairs of vertices between them, that

is, performing direct product of Hk
n with the complete graph on two vertices. The resulting graph

H̃k
2n has 2n vertices on each side, it is (2 · 5k)-regular and λ(H̃k

2n) = λ(Hk
n) < ε.

Finally the desired bipartite graph Gε,n = (L,R,E) is obtained by: let L and R each be the
vertex set [n], and for each pair (u, v) ∈ L × R add the edge (u, v) to E if and only if (u, v) is an
edge on the nonbipartite graph Hk

n (or H̃k
n if n is an odd power of 2), where the vertices of Hk

n (or
H̃k
n resp.) is also numbered by [n]. The inequality and thus the theorem now follow by applying

the Expander Mixing Lemma (Lemma C.2).

C.2 Deferred Proofs from Section 6

Proof of Claim 6.3. We build a simulator that receives only n := n0 + n1 and simulates the access
pattern of Algorithm 6.1. The simulating of the generation of the array Aux is straightforward, and
consists of modifying two counters (that can be stored at the client side) and just a sequential write
of the array Aux. The rest of the algorithm is deterministic and the access pattern is completely
determined by the size n. Thus, it is straightforward to simulate the algorithm deterministically.

We next prove that the output distribution of the algorithm is identical to that of the ideal
functionality. In the ideal execution, the functionality simply outputs an array B, where B[i] =
(I0‖I1)[π(i)] and π is a uniformly random permutation on n elements. In the real execution, we
assume that the two arrays were first randomly permuted, and let π0 and π1 be the two permuta-
tions.18 Let I′ be an array define as I′ := π0(I0)‖π1(I1). The algorithm then runs the Distribution
on I′ and Aux, where Aux is a uniformly random binary array of size n that has n0 0’s and n1 1’s,
and ends up with the output array B such that for all positions i, the label of the element B[i] is
Aux[i]. Note that Distribution is not a stable, so this defines some arbitrary mapping ρ : [n] → [n].
Hence, the algorithm outputs an array B such that B[i] = ρ−1(I′[i]). We show that if we sample
Aux, π0, and π1, as above, the resulting permutation is a uniform one.

To this end, we show that (1) Aux is distributed according to the distribution above, (2) the
total number of different choices for (Aux, π0, π1) is n! (exactly as for a uniform permutation),
and (3) any two choices of (Aux, π0, π1) 6= (Aux′, π′0, π

′
1) result with a different permutation. This

completes our proof.
For (1) we show that the implementation of the sampling of the array in Step 1 in Algorithm 6.1

is equivalent to uniformly sampling an array of size n0 + n1 among all arrays of size n0 + n1 with
n0 0’s and n1 1’s. Fix any array X ∈ {0, 1}n that consists of n0 0’s followed by n1 1’s. It is enough
to show that

Pr [∀i ∈ [n] : Aux[i] = X[i]] =
1(
n
n0

) .
18Recall that according to our definition, we translate an “input assumption” to a protocol in the hybrid model

in which the protocol first invoke a functionality that guarantee that the input assumption holds. In our case, the
functionality receives the input array I0‖I1 and the parameters n0, n1, chooses two random permutations π0, π1 and
permute the two arrays I0, I1.
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This equality holds since the probability to get the bit b = X[i] in Aux[i] only depends on i and on
the number of b’s that happened before iteration i. Concretely,

Pr [∀i ∈ [n] : Aux[i] = X[i]] =

(
n0!

n · . . . · (n− n0)

)
·
(

n1!

(n− n0 − 1) · . . . · 1

)
=

n0! · n1!

n!
=

1(
n
n0

) .
For (2), the number of possible choices of (Aux, π0, π1) is(

n

n0

)
· n0! · n1! =

(n0 + n1)!

n0! · n1!
· n0! · n1! = n! .

For (3), consider two different triples (Aux, π0, π1) and (Aux′, π′0, π
′
1) that result with two permu-

tations ψ and ψ′, respectively. If Aux(i) 6= Aux′(i) for some i ∈ [n] and without loss of generality
Aux(i) = 0, then ψ(i) ∈ {1, . . . , n0} while ψ′(i) ∈ {n0 + 1, . . . , n}. Otherwise, if Aux(i) = Aux′(i)
for every i ∈ [n], then there exist b ∈ {0, 1} and j ∈ [nb] such that πb(j) 6= π′b(j). Since the tight
compaction circuit Cn is fixed given Aux, the jth input in Ib is mapped in both cases to the same
location of the bit b in Aux. Denote the index of this location by j′. Thus, ψ(j′) = πb(i) while
ψ′(j′) = π′b(i) which means that ψ 6= ψ′, as needed.

The implementation hasO(n) time since there are three main steps and each can be implemented
in O(n) time. Step 1 has time O(n) since there are n coin flips and each can be done with O(1)
time (by just reading a word from the random tape). Steps 2 is only marking n elements, and
Step 3 can be implemented in O(n) time by Theorem 5.21.

Proof of Claim 6.5. The simulator that receives n1, . . . , nk runs the simulator of Intersperse for k−1
times with the right lengths, as in the description of the algorithm. The indistinguishability follows
immediately from the indistinguishability of Intersperse. For functionality, note that whenever
Intersperse is applied, it holds that both of its inputs are randomly shuffled which means that
the input assumption of Intersperse holds. Thus, the final array B is a uniform permutation of
I1‖ . . . ‖Ik.

Since the time of Interspersen is linear in n, the time required in the i-th iteration of

Intersperse
(k)
n1,...,nk is O

(∑i
j=1 nj

)
. Namely, we pay O(n1) in k − 1 iterations, O(n2) in k − 2

iterations, and so on. Overall, the time is bounded by O
(∑k

i=1(k − i+ 1) · ni
)

, as required.

Proof of Claim 6.7. We build a simulator that receives only the size of I and simulates the access
pattern of Algorithm 6.6. The simulation of the first and second steps is immediate since they are
completely deterministic. The simulating of the execution of Interspersen is implied by Claim 6.3.

The proof that the output distribution of algorithm is identical to that of the ideal functionality
follows immediately from Claim 6.3. Indeed, after compaction and counting the number of real
elements, we execute Interspersen with two arrays I′R and I′D of total size n, where I′R consists of
all the nR real elements and I′D consists of all the dummy elements. The array I′R is uniformly
shuffled to begin with by the input assumption, and the array I′D consists of identical elements, so
we can think of it as if they are randomly permuted. So, the input assumption of Interspersen (see
Algorithm 6.1) holds and thus the output is guaranteed to be randomly shuffled (by Claim 6.3).

The implementation runs in O(n) time since the first two steps take O(n) time (by Theorem 5.1)
and Interspersen itself runs in O(n) time (by Claim 6.3).
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C.3 Proof of Security of BigHT (Theorem 7.2)

We view our construction in a hybrid model, in which we have ideal implementations of the un-
derlying building blocks: an oblivious hash table for each bin (implemented via näıveHT, as in
Section 4.4), an oblivious Cuckoo hashing scheme (Section 4.5), an oblivious tight compaction al-
gorithm (Section 5), and an algorithm for sampling bin loads (Section 4.7). Since the underlying
Cuckoo hash scheme (on εn = n/ log λ elements with stash of size O(log λ)) is ideal we have to
take into account the probability that it fails: at most O(δ) + δAprf = e−Ω(log λ·log log λ) + δAprf , where

δ = e− log λ·log log λ. The failure probability of sampling the bin loads is nB · δ ≤ n2 · e− log λ·log log λ.
These two terms are added to the error probability of the scheme. Note that our tight compaction
and näıveHT are perfectly oblivious.

We describe a simulator Sim that simulates the access patterns of the Build, Lookup, and Extract
operations of BigHT:

� Simulating Build. Upon receiving an instruction to simulate Build with security parameter
1λ and a list of size n, the simulator runs the real algorithm Build on input 1λ and a list
that consists of n dummy elements. It outputs the access pattern of this algorithm. Let
(OBin1, . . . ,OBinB,OF, sk) be the output state. The simulator stores this state.

� Simulating Lookup. When the adversary submits a Lookup command with a key k, the
simulator simulates an execution of the algorithm Lookup on input ⊥ (i.e., a dummy element)
with the state (OBin1, . . . ,OBinB,OF, sk) (which was generated while simulating the the Build
operation).

� Simulating Extract. When the adversary submits an Extract command, the simulator exe-
cutes the real algorithm with its stored internal state (OBin1, . . . ,OBinB,OF, sk).

We prove that no adversary can distinguish between the real and ideal executions. Recall that in
the ideal execution, with each command that the adversary outputs, it receives back the output of
the functionality and the access pattern of the simulator, where the latter is simulating the access
pattern of the execution of the command on dummy elements. On the other hand, in the real
execution, the adversary sees the access pattern and the output of the algorithm that implements
the functionality. The proof is via a sequence of hybrid experiments.

Experiment Hyb0(λ). This is the real execution. With each command that the adversary submits
to the experiment, the real algorithm is being executed, and the adversary receives the output of
the execution together with the access pattern as determined by the execution of the algorithm.

Experiment Hyb1(λ). This experiment is the same as Hyb0, except that instead of choosing a
PRF key sk, we use a truly random function O. That is, instead of calling to PRFsk(·) in Step 3 of
Build and Step 4 of the function Lookup, we call O(sk‖·).

The following claim states that due to the δAPRF-security of the PRF, experiments Hyb0 and
Hyb1 are computationally indistinguishable. The proof of this claim is standard.

Claim C.3. For any probabilistic polynomial-time adversary A, it holds that

|Pr [Hyb0(λ) = 1]− Pr [Hyb1(λ) = 1]| ≤ δAPRF(λ).
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Experiment Hyb2(λ). This experiment is the same as Hyb1(λ), except that with each command
that the adversary submits to the experiment, both the real algorithm is being executed as well as
the functionality. The adversary receives the access pattern of the execution of the algorithm, yet
the output comes from the functionality.

In the following claim, we show that the initial secret permutation and the random oracle,
guarantee that experiments Hyb1 and Hyb2 are identical.

Claim C.4. Pr [Hyb1(λ) = 1] = Pr [Hyb2(λ) = 1].

Proof. Recall that we assume that the lookup queries of the adversary are non-recurring. Our goal
is to show that the output distribution of the extract procedure is a uniform permutation of the
unvisited items even given the access patter of the previous Build and Lookup operations. By doing
so, we can replace the Extract procedure with the ideal FnHT.Extract functionality which is exactly
the difference between Hyb1(λ) and Hyb2(λ).

Consider a sequence of operations that the adversary makes. Let us denote by I the set of
elements with which it invokes Build and by k∗1, . . . , k

∗
m the set of keys with which it invokes

Lookup. Finally, it invokes Extract. We first argue that the output of FnHT.Extract consists of the
same elements as that of Extract. Indeed, both FnHT.Lookup and Lookup mark every visited item so
when we execute Extract, the same set of elements will be in the output.

We need to argue that the distribution of the permutation of unvisited items in the input of
Extract is uniformly random. This is enough since Extract performs IntersperseRD which shuffles
the reals and dummies to obtain a uniformly random permutation overall (given that the reals were
randomly shuffled to begin with). Fix an access pattern observed during the execution of Build and
Lookup. We show, by programming the random oracle and the initial permutation appropriately
(while not changing the access pattern), that the permutation of the unvisited elements is uniformly
distributed.

Consider tuples of the form (πin,O, R,T, πout), where (1) πin is the permutation performed on I
by the input assumption (prior to Build), (2) O is the random oracle, (3) R is the internal random-
ness of all intermediate functionalities and of the balls into bins choices of the dummy elements; (4)
T is the access pattern of the entire sequence of commands (Build(I), Lookup(k∗1), . . . , Lookup(k∗m)),
and (5) πout is the permutation on I′ = {(k, v) ∈ I | k /∈ {k∗1, . . . , k∗m}} which is the input to Extract.
The algorithm defines a deterministic mapping ψR(πin,O)→ (T, πout).

To gain intuition, consider arbitrary R, πin, and O such that ψR(πin,O)→ (T, πout) and two dis-
tinct existing keys ki and kj that are not queried during the Lookup stage (i.e., ki, kj /∈ {k∗1, . . . , k∗m}).
We argue that from the point of view of the adversary, having seen the access pattern and all query
results, he cannot distinguish whether πout(i) < πout(j) or πout(i) > πout(j). The argument will
naturally generalize to arbitrary unqueried keys and an arbitrary ordering.

To this end, we show that there is π′in and O′ such that ψR(π′in,O′)→ (T, π′out), where π′out(`) =
πout(`) for every ` /∈ {i, j}, and π′out(i) = πout(j) and π′out(j) = πout(i). That is, the access pattern is
exactly the same and the output permutation switches the mappings of ki and kj . The permutation
π′in is the same as πin except that π′in(i) = πin(j) and π′in(j) = πin(i), and O′ is the same as O except
that O′(ki) = O(kj) and O′(kj) = O(ki). This definition of π′in together with O′ ensure, by our
construction, that the observed access pattern remains exactly the same. The mapping is also
reversible so by symmetry all permutations have the same number of configurations of πin and O.

For the general case, one can switch from any πout to any (legal) π′out by changing only πin and
O at locations that correspond to unvisited items. We define

π′in(i) = πin(πout
−1(π′out(i))) and O′(ki) = O(kπin(πout

−1(π′out(i)))
).
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This choice of π′in and O′ do not change the observed access pattern and result with the output
permutation π′out, as required. By symmetry, the resulting mapping between different (π′in,O′) and
π′out is regular (i.e., each output permutation has the same number of ways to reach to) which
completes the proof.

Experiment Hyb3(λ). This experiment is the same as Hyb2(λ), except that we modify the def-
inition of Extract to output a list of dummy elements. This is implemented by modifying each
Obini.Extract() to return a list of dummy elements (for each i ∈ [B]), as well as OF.Extract(). We
also stop marking elements that were searched for during Lookup.

Recall that in this hybrid experiment the output of Extract is given to the adversary by the
functionality, and not by the algorithm. Thus, the change we made does not affect the view of the
adversary which means that experiments Hyb2 and Hyb3 are identical.

Claim C.5. Pr [Hyb2(λ) = 1] = Pr [Hyb3(λ) = 1].

Experiment Hyb4(λ). This experiment is identical to experiment Hyb3(λ), except that when the
adversary submits the command Lookup(k) with key k, we run Lookup(⊥) instead of Lookup(k).

Recall that the output of the procedure is determined by the functionality and not the algorithm.
In the following claim we show that the access pattern observed by the adversary in this experiment
is statistically close to the one observed in Hyb3(λ).

Claim C.6. For any (unbounded) adversary A, there is a negligible function negl(·) such that

|Pr [Hyb3(λ) = 1]− Pr [Hyb4(λ) = 1] | ≤ n · e−Ω(log5 λ).

Proof. Consider a sequence of operations that the adversary makes. Let us denote by I = {k1, k2,
. . . , kn : k1 < k2 < . . . < kn} the set of elements with which it invokes Build, by π the secret input
permutation such that the i-th element I[i] = kπ(i), and by Q = {k∗1, . . . , k∗m} the set of keys with
which it invokes Lookup. We first claim that it suffices to consider only the joint distribution of
the access pattern of Step 3 in Build(I), followed by the access pattern of Lookup(k∗i ) for all k∗i ∈ I.
In particular, in both hybrids, the outputs are determined by the functionality, and the access
pattern of Extract() is identically distributed. Moreover, the access pattern in Steps 4 through 6
in Build is deterministic and is a function of the access pattern of Step 3. In addition, in both
executions Lookup(k) for keys such that k 6∈ I, as well as Lookup(⊥) cause a linear scan of the
the overflow pile followed by an independent visit of a random bin (even when conditioning on
the access pattern of Build) – we can ignore such queries. Finally, even though the adversary is
adaptive, we essentially prove in the following that the entire view of the adversary is close in both
experiment, and therefore the ordering of how the view is obtained cannot help distinguishing.

Let X ← BallsIntoBins(n,B) denote a sample of the access pattern obtained by throwing n balls
into B bins. It is convenient to view X as a bipartite graph X = (Vn ∪ VB, EX), where Vn are the
n vertices representing the balls, VB are B vertices representing the bins, and EX are representing
the access pattern. Note that the output degree of each balls is 1, whereas the degree of each bin
is its load, and the expectation of the latter is n/B. For two graphs that share the same bins VB,
X = (Vn1∪VB, EX) and Y = (Vn2∪VB, EY ), we define the union of the two graphs, denoted X∪Y ,
by X ∪ Y = (Vn1 ∪ Vn2 ∪ VB, EX ∪ EY ). Consider the following two distributions.

Distribution AccessPtrn3(λ): In Hyb3(λ), the joint distribution of the access pattern of
Step 3 in Build(I), followed by the access pattern of Lookup(ki) for all ki ∈ I, can be described by
the following process:
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1. Sample X ← BallsIntoBins(n,B). Let (n1, . . . , nB) be the loads obtained in the process
and µ = n

B be the expectation of ni for all i ∈ [B].

2. Sample independent bin loads (L1, . . . , LB)← F throw-balls
n′,B , where n′ = n · (1− ε). Let µ′ = n′

B
be the expectation of Li for all i ∈ [B].

3. Overflow: If for some i ∈ [B] we have that |ni − µ| > 0.5εµ or |Li − µ′| > 0.5εµ, then abort
the process.

4. Consider the graph X = (Vn ∪ VB, EX), and for every bin i ∈ [B], remove from EX exactly
ni − Li edges arbitrarily (these correspond to the elements that are stored in the overflow
pile). Let X ′ = (Vn ∪ VB, E′X) be the resulting graph. Note that X ′ has n′ edges, each bin
i ∈ [B] has exactly Li edges, and n− n′ vertices in Vn have no output edges.

5. Recall that π is the input permutation on I. Let Ẽ′X = {(π(i), vi) : (i, vi) ∈ E′X} be the
set of permuted edges, Ṽn′ ⊂ Vn be the set of nodes that have an edge in Ẽ′X , and X̃ ′ =
(Ṽn′ ∪ VB, Ẽ′X). Note that there are n′ vertices in Ṽn′ .

6. For the εn remaining vertices in Vn but not in Ṽn′ that have no output edges (i.e., the balls
in the overflow pile), sample new and independent output edges, where each edge is obtained
by choosing independent bin i ← [B]. Let Z ′ be the resulting graph (corresponds to the
access pattern of Lookup(ki) for all ki that appear in OF and not in the major bins). Let
Y = X̃ ′ ∪ Z ′. (The graph Y contains edges that correspond to the “real” elements placed
in the major bins which were obtained from the graph X̃ ′, together with fresh “noisy” edges
corresponding to the elements stored in the overflow pile).

7. Output (X,Y ).

Distribution AccessPtrn4(λ): In Hyb4(λ), the joint distribution of the access pattern of
Step 3 in Build(I), followed by the access pattern of Lookup(⊥) for all ki ∈ I, is described by the
following (simpler) process:

1. Sample X ← BallsIntoBins(n,B). Let (n1, . . . , nB) be the loads obtained in the process
and µ = n

B be the expectation of ni for all i ∈ [B].

2. Sample independent bin loads (L1, . . . , LB)← F throw-balls
n′,B , where n′ = n · (1− ε). Let µ′ = n′

B
be the expectation of Li for all i ∈ [B].

3. Overflow: If for some i ∈ [B] we have that |ni − µ| > 0.5εµ or |Li − µ′| > 0.5εµ, then abort
the process.

4. Sample an independent Y ← BallsIntoBins(n,B). (Corresponding to the access pattern of
Lookup(⊥) for every command Lookup(k).)

5. Output (X,Y ).

By the definition of our distributions and hybrid experiments, we need to show

|Pr [Hyb3(λ) = 1]− Pr [Hyb4(λ) = 1] | ≤ SD (AccessPtrn3(λ),AccessPtrn4(λ)) ≤ n · e−Ω(log5 λ).

Towards this goal, first, by a Chernoff bound per bin and union bound over the bins, then by
µ = log9 λ and ε = 1

log2 λ
, it holds that

Pr
AccessPtrn3

[Overflow] = Pr
AccessPtrn4

[Overflow] ≤ B · 2 exp(−µ(0.5ε)2/2) ≤ n · e−Ω(log5 λ).

We condition on Overflow not occurring and show that both distributions output two independent
graphs, i.e., two independent samples of BallsIntoBins(n,B), and thus they are equivalent.
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This holds in AccessPtrn4 directly by definition. As for AccessPtrn3, consider the joint distri-
bution of (X, X̃ ′) conditioning on Overflow not happening. For any graph G = (Vn′ ∪ VB, EG) that
corresponds to a sample of BallsIntoBins(n′, B), we have that X̃ ′ = G if and only if (i) the loads of
X̃ ′ equals to the loads of G and (ii) Ẽ′X = EG, where the loads of G are defined as the degrees of
nodes v ∈ VB. Observe that, by definition, the loads of X̃ ′ are exactly the loads of Z: (L1, . . . , Ln),
and hence the loads of X̃ ′ are independent of X. Also, since Overflow does not happen, X, and the
event of (i), the probability of Ẽ′X = EG is exactly the probability of the n′ vertices in X̃ ′ matching
those in G, which is 1

n′! by the uniform input permutation π. It follows that

Pr[X ′ = G | X ∧ ¬Overflow] = Pr[loads of G = (L1, . . . , Ln) | ¬Overflow] · 1

n′!
= Pr[Z = G | ¬Overflow]

for all G, which implies that X ′ is independent of X. Moreover, in Step 6, we sample a new
graph Z ′ = BallsIntoBins(n − n′, B), and output Y as X̃ ′ augmented by Z ′. In other words,
we sample Y as follows: we sample two independent graphs Z ← BallsIntoBins(n′, B) and Z̃ ′ ←
BallsIntoBins(n−n′, B), and output the joint graph Z ∪Z ′. This has exactly the same distribution
as an independent instance of BallsIntoBins(n,B). We therefore conclude that

SD (AccessPtrn3(λ) | ¬Overflow,AccessPtrn4(λ) | ¬Overflow) = 0.

Thus, following a fact on statistical distance,19

SD (AccessPtrn3(λ),AccessPtrn4(λ))

≤ SD (AccessPtrn3(λ) | ¬Overflow,AccessPtrn4(λ) | ¬Overflow) + Pr [Overflow] ≤ n · e−Ω(log5 λ).

Namely, the access patterns are statistically close. The above analysis assumes that all n elements
in the input I are real and the m Lookups visit all real keys in I. If the number of real elements is less
than n (or even less than n′), then the construction and the analysis go through similarly; the only
difference is that the Lookups reveal a smaller number of edges in X̃ ′, and thus the distributions
are still statistically close. The same argument follows if the m Lookups visit only a subset of real
keys in I. Also note that fixing any set Q = {k∗1, . . . , k∗m} of Lookup, every ordering of Q reveals
the same access pattern X̃ ′ as X̃ ′ is determined only by I, π,X,Z, and thus the view is identical
for every ordering. This completes the proof of Claim C.6.

Experiment Hyb5. This experiment is the same as Hyb4, except that we run Build in input I
that consists of only dummy values.

Recall that in this hybrid experiment the output of Extract and Lookup is given to the adversary
by the functionality, and not by the algorithm. Moreover, the access pattern of Build, due to the
random function, each O(sk||ki) value is distributed uniformly at random, and therefore the random
choices made to the real elements are similar to those made to dummy elements. We conclude that
the view of the adversary in Hyb4(λ) and Hyb5(λ) is identical.

Claim C.7. Pr [Hyb4(λ) = 1] = Pr [Hyb5(λ) = 1].

19The fact is that for every two random variables X and Y over a finite domain, and any event E such that
PrX [E] = PrY [E], it holds that SD(X,Y ) ≤ SD(X | E, Y | E) + PrX [¬E]. This fact can be verified by a direct
expansion.
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Experiment Hyb6. This experiment is the same as Hyb5, except that we replace the random
oracle O(sk‖·) with a PRF key sk.

Observe that this experiment is identical to the ideal execution. Indeed, in the ideal execution
the simulator runs the real Build operation on input that consists only of dummy elements and has
an embedded PRF key. However, this PRF key is never used since we input only dummy elements,
and thus the two experiments are identical.

Claim C.8. Pr [Hyb5(λ) = 1] = Pr [Hyb6(λ) = 1].

By combining Claims C.3–C.8, we have that BigHT is (1−n2 ·e−Ω(log λ·log log λ)−δAPRF)-oblivious,
which concludes the proof of Theorem 7.2.

C.4 Proof of Security of SmallHT (Theorem 8.6)

We view our construction in a hybrid model, in which we have ideal implementations of the un-
derlying building blocks: an oblivious random permutation (see Section 4.2 and Claim 8.2) and an
oblivious Cuckoo assignment (see Section 4.5 and Claim 8.4). Since the two building blocks are
ideal, we take into account the failure probability of the Cuckoo assignment, e−Ω(log λ·log log λ), and
the failure probability of the random permutation, e−Ω(

√
n) ≤ e−Ω(log λ log log λ) since n = log9 λ.

We present a simulator Sim that simulates Build, Lookup and Extract procedures of SmallHT.

� Simulating Build. Upon receiving an instruction to simulate Build with security parameter
1λ and a list of size n, the simulator Sim runs the real SmallHT.Build algorithm on input 1λ

and a list that consists of n dummy elements. It outputs the access pattern of this algorithm.
Let (Y, S, sk) be the output state, where Y is an array of size ccuckoo · n, S is a stash of size
O(log λ), and sk is a secret key used to generate pseudorandom values. The simulator stores
this state.

� Simulating Lookup. When the adversary submits a Lookup command with a key k, the
simulator Sim simulates an execution of the algorithm SmallHT.Lookup on input ⊥ (i.e., a
dummy element) with the state (Y,S, sk) (which was generated while simulating the the Build
operation).

� Simulating Extract. When the adversary submits an Extract command, the simulator Sim
executes the real SmallHT.Extract algorithm with its stored internal state (Y,S, sk).

We proceed to show that no adversary can distinguish between the real and ideal executions.
Recall that in the ideal execution, with each command that the adversary outputs, it receives
back the output of the functionality and the access pattern of the simulator, where the latter is
simulating the access pattern of the execution of the command on dummy elements. On the other
hand, in the real execution, the adversary sees the access pattern and the output of the algorithm
that implements the functionality. The proof is via a sequence of hybrid experiments.

Experiment Hyb0(λ). This is the real execution. With each command that the adversary submits
to the experiment, the real algorithm is being executed, and the adversary receives the output of
the execution together with the access pattern as determined by the execution of the algorithm.

Experiment Hyb1(λ). This experiment is the same as Hyb0, except that instead of choosing a
PRF key sk, we use a truly random function O. That is, instead of calling to PRFsk(·) in Step 3 of
Build and Step 4 of the function Lookup, we call O(sk‖·).

The following claim states that due to the security of the PRF, experiments Hyb0 and Hyb1 are
computationally indistinguishable. The proof of this claim is standard.
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Claim C.9. For any probabilistic polynomial-time adversary A, it holds that

|Pr [Hyb0(λ) = 1]− Pr [Hyb1(λ) = 1]| ≤ δAPRF(λ).

Experiment Hyb2(λ). This experiment is the same as Hyb1(λ), except that with each command
that the adversary submits to the experiment, both the real algorithm is being executed as well as
the functionality. The adversary receives the access pattern of the execution of the algorithm, yet
the output comes from the functionality.

In the following claim, we show that the initial secret permutation and the random oracle,
guarantee that experiments Hyb1 and Hyb2 are identical.

Claim C.10. Pr [Hyb1(λ) = 1] = Pr [Hyb2(λ) = 1].

Proof. Recall that we assume that the lookup queries of the adversary are non-recurring. Our goal
is to show that the output distribution of the extract procedure is a uniform permutation of the
unvisited items even given the access patter of the previous Build and Lookup operations. By doing
so, we can replace the Extract procedure with the ideal FnHT.Extract functionality which is exactly
the difference between Hyb1(λ) and Hyb2(λ).

Consider a sequence of operations that the adversary makes. Let us denote by I the set of
elements with which it invokes Build and by k∗1, . . . , k

∗
m the set of keys with which it invokes

Lookup. Finally, it invokes Extract. We first argue that the output of FnHT.Extract consists of the
same elements as that of Extract. Indeed, both FnHT.Lookup and SmallHT.Lookup remove every
visited item so when we execute Extract, the same set of elements will be in the output.

We need to argue that the distribution of the permutation of unvisitied items in the output of
Extract is uniformly random. This is enough since Extract performs IntersperseRD which shuffles
the reals and dummies to obtain a uniformly random permutation overall (given that the reals were
randomly shuffled to begin with). Fix an access pattern observed during the execution of Build and
Lookup. We show, by programming the random oracle and the initial permutation appropriately
(while not changing the access pattern), that the permutation is uniformly distributed.

Consider tuples of the form (πin,O, R,T, πout), where (1) πin is the permutation performed
on I by the input assumption (prior to Build), (2) O is the random oracle, (3) R is the internal
randomness of all intermediate procedures (such as IntersperseRD, Algorithms 8.1 and 8.3, etc); (4)
T is the access pattern of the entire sequence of commands (Build(I), Lookup(k∗1), . . . , Lookup(k∗m)),
and (5) πout is the permutation on I′ = {(k, v) ∈ I | k /∈ {k∗1, . . . , k∗m}} which is the input to Extract.
The algorithm defines a deterministic mapping ψR(πin,O)→ (T, πout).

To gain intuition, consider arbitrary R, πin, and O such that ψR(πin,O)→ (T, πout) and two dis-
tinct existing keys ki and kj that are not queried during the Lookup stage (i.e., ki, kj /∈ {k∗1, . . . , k∗m}).
We argue that from the point of view of the adversary, having seen the access pattern and all query
results, he cannot distinguish whether πout(i) < πout(j) or πout(i) > πout(j). The argument will
naturally generalize to arbitrary unqueried keys and an arbitrary ordering.

To this end, we show that there is π′in and O′ such that ψR(π′in,O′)→ (T, π′out), where π′out(`) =
πout(`) for every ` /∈ {i, j}, and π′out(i) = πout(j) and π′out(j) = πout(i). The permutation π′in is the
same as πin except that π′in(i) = πin(j) and π′in(j) = πin(i), and O′ is the same as O except that
O′(ki) = O(kj) andO′(kj) = O(ki). The fact that the access pattern after this modification remains
the same stems from the indiscriminate property of the hash table construction procedure which
says that the Cuckoo hash assignments are a fixed function of the two choices of all elements (i.e.,
MDX), independently of their real key value (i.e., the procedure does not discriminate elements
based on their keys in the input array). Note that the mapping is also reversible so by symmetry
all permutations have the same number of configurations of πin and O.
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For the general case, one can switch from any πout to any (legal) π′out by changing only πin and
O at locations that correspond to unvisited items. We define

π′in(i) = πin(πout
−1(π′out(i))) and O′(ki) = O(kπin(πout

−1(π′out(i)))
).

Due to the indiscriminate property, this choice of π′in and O′ do not change the observed access
pattern and result with the output permutation π′out, as required. By symmetry, the resulting
mapping between different (π′in,O′) and π′out is regular (i.e., each output permutation has the same
number of ways to reach to) which completes the proof.

Experiment Hyb3(λ). This experiment is the same as Hyb2(λ), except that we modify the defi-
nition of Extract to output a list of n dummy elements. We also stop marking elements that were
searched for during Lookup.

Recall that in this hybrid experiment the output of Extract is given to the adversary by the
functionality, and not by the algorithm. Thus, the change we made does not affect the view of the
adversary which means that experiments Hyb2 and Hyb3 are identical.

Claim C.11. Pr [Hyb2(λ) = 1] = Pr [Hyb3(λ) = 1].

Experiment Hyb4(λ). This experiment is identical to experiment Hyb3(λ), except that when the
adversary submits the command Lookup(k) with key k, we ignore k and run Lookup(⊥).

Recall that the output of the procedure is determined by the functionality and not the algorithm.
By construction, the access pattern observed by the adversary in this experiment is identical to
the one observed from Hyb3(λ) (recall that we already switched the PRF to a completely random
choices).

Claim C.12. Pr [Hyb3(λ) = 1] = Pr [Hyb4(λ) = 1].

Experiment Hyb5. This experiment is the same as Hyb4, except that we run Build in input I
that consists of only dummy values.

Recall that in this hybrid experiment the output of Extract and Lookup is given to the adversary
by the functionality, and not by the algorithm. Moreover, the access pattern of Build, due to the
random oracle and the obliviousness of all the underlying building blocks (oblivious Cuckoo hash,
oblivious random permutation, oblivious tight compaction, IntersperseRD, oblivious bin assignment,
and oblivious sorting), the view of the adversary in Hyb4(λ) and Hyb5(λ) is identical.

Claim C.13. Pr [Hyb4(λ) = 1] = Pr [Hyb5(λ) = 1].

Experiment Hyb6. This experiment is the same as Hyb5, except that we replace the random
oracle O(sk‖·) with a PRF key sk.

Observe that this experiment is identical to the ideal execution. Indeed, in the ideal execution
the simulator runs the real Build operation on input that consists only of dummy elements and has
an embedded PRF key. However, this PRF key is never used since we input only dummy elements,
and thus the two experiments are identical.

Claim C.14. Pr [Hyb5(λ) = 1] = Pr [Hyb6(λ) = 1].

By combining Claims C.9–C.14, SmallHT is (1 − e−Ω(log λ·log log λ) − δAPRF)-oblivious, and we
conclude the proof of Theorem 8.6.
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C.5 Proof of Security of CombHT (Theorem 8.8)

We present a sequence of hybrid constructions (where we ignore the failure probability of the primi-
tives we use) and show that each one of them obliviously implements Functionality 4.7. Afterwards,
we will account for the security loss of each modification and/or primitive we use.

� Construction I: This construction is the same as Construction 7.1, except that we replace
each näıveHT with SmallHT. Let S1, . . . ,SB denote the small stash of the bins OBin1, . . . ,OBinB,
respectively.

� Construction II: This construction is the same as Construction I, except the following
(inefficient) modification. Instead of searching for the key ki in the small stash Si of one of
the bins of SmallHT, we search for ki in all small stashes S1, . . . ,SB in order.

� Construction III: This construction is the same as Construction II, except that we modify
Build as follows. We merge all the small stashes S1, . . . ,SB into one long list. As in Construc-
tion II, when we have to access one of the stashes and look for a key ki, we perform a linear
scan in this list, searching for ki.

� Construction IV: This construction is the same as Construction III, except that we make
the search in the merged set of stashes more efficient. In CombHT.Build we construct an
oblivious Cuckoo hashing scheme as in Theorem 4.14 on the elements in the combined set of
stashes. The resulting structure is called CombS = (CombST,CombSS) and it is composed of
a main table and a stash. Observe that this construction is identical to Construction 8.7.

Construction II is the same as Construction I, except that there is a blowup in the access
pattern of each Lookup by performing a linear scan of all elements in all stashes. In terms of
functionality, by construction the input/output behavior of the two constructions is exactly the
same. For obliviousness, one can simulate the linear scan of all the stashes by performing a fake
linear scan. More formally, there exists a 1-to-1 mapping between access pattern provided by
Construction I and an access pattern provided by Construction II. Thus, there is no security loss
from Construction I to Construction II.

Construction III and Construction II are the same, except for a cosmetic modification in the
locations where we put the elements from the stashes. Thus, no security loss from Construction II
to Construction III.

Construction IV is the same as Construction III, except that we apply an oblivious Cuckoo
hash on the merged set of hashes ∪i∈[B]Si to improve on Lookup time (compared to a linear scan).

Lastly, we analyze the total security loss. We first implemented all the major bins with
SmallHT. Since there are n/µ < n bins, by Theorem 8.6, this amounts to n · e−Ω(log λ log log λ) +
δAPRF total security loss. We lose an additional e−Ω(log λ·log log λ) + δAPRF additive term by imple-
menting the merged stashes using an oblivious cuckoo hash. Also, recall that the original secu-
rity loss of BigHT was already n2 · e−Ω(log λ·log log λ) + δAPRF. In conclusion, the final construction(
1− n2 · e−Ω(log λ·log log λ) − δAPRF

)
-obliviously implements Functionality 4.7.

C.6 Proof of Security of ORAM (Theorem 9.2)

We show the existence of a simulator for which, for any sequence of operations Access(op1, addr1, datai),
. . . ,Access(opn, addrn, datan), the joint distribution of the output of the simulator and the output
of the functionality is indistinguishable from the access pattern of the construction and the output
of the construction. We show that by a sequence of intermediate constructions.
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Construction 1. Our starting point is a construction in the (FHT,FDict,FShuffle,Fcompaction)-
hybrid model which is slightly different from Construction 9.1. In this construction, each level
T`+1, . . . , TL is implemented using the ideal functionality FHT (of the respective size). The dictio-
naryD is implemented using the ideal functionality FDict. Steps 6d and 6(d)ii are implemented using
FShuffle of the respective size, and the compaction in Step 6(d)i is implemented using Fcompaction.
Note that in this construction, Step 6(e)iv is invalid, as the FHT functionality is not necessarily
implemented using stashes. This construction boils down to the construction of Goldreich Ostro-
vsky using ideal implementations of (FHT,FDict,FShuffle,Fcompaction). For completeness, we provide
a full description:

The construction: Let ` = 11 log log λ and L = logN . The internal state include an handle
D to F2`

Dict, handles T`+1, . . . , TL to FHT
2`+1,N , . . . ,FHT

2L,N , respectively, a counter ctr and flags
full`+1, . . . , fullL. Upon receiving a command Access(op, addr, data):

1. Initialize found := false, data∗ := ⊥, levelIndex := ⊥ and whichStash := ⊥.

2. Perform fetched := D.Lookup(addr). If fetched 6= ⊥:

(a) Interpret fetched as (levelIndex,whichStash, data∗).

(b) If levelIndex = `, then set found := true.

3. For each i ∈ {`+ 1, . . . , L} in increasing order, do:

(a) If found = false, run fetched := Ti.Lookup(addr). If fetched 6= ⊥, let found = true and
data∗ := fetched.

(b) Else, Ti.Lookup(⊥).

4. If found = false, i.e., this is the first time addr is being accessed, set data∗ = 0.

5. Let (k, v) := (addr, data∗) if op = read operation; else let (k, v) := (addr, data). Insert
(k, (`,⊥, v)) into oblivious dictionary D using D.Insert(k, (`,⊥, v).

6. Increment ctr by 1. If ctr ≡ 0 mod 2`, perform the following.

(a) Let j be the smallest level index such that fullj = 0 (i.e., empty). If all levels are marked
full, then j := L. In other words, j is the target level to be rebuilt.

(b) Let D̃ := D.Extract(). Let D1 be a copy of D̃ preserving only elements whose levelIndex
is at most j − 1, and all other elements are marked dummy. Let D2 be a copy of D̃
preserving only elements whose levelIndex is greater than j − 1, and all other elements
are marked as dummy.20

(c) Let U := D1‖T`+1.Extract()‖ . . . ‖Tj−1.Extract() and set j∗ := j − 1. If all levels are
marked full, then additionally let U := U‖TL.Extract() and set j∗ := L.

(d) Run FShuffle(U). Denote the output by Ũ. If j = L, then additionally do the following
to shrink Ũ to size N = 2L:

i. Run Fcompaction(Ũ) moving all real elements to the front. Truncate Ũ to length N .

ii. Run Ũ← FNShuffle(Ũ)

(e) Rebuild the jth hash table with the 2j elements from Ũ by calling FHT.Build(Ũ).

(f) Initialize a new dictionary D and for each tuple in e ∈ D2, run D.Insert(e). Mark
fullj := 1.

(g) For i ∈ {l, . . . , j − 1}, reset Ti to empty structure and set fulli := 0.

7. Output data∗.

Claim C.15. Construction 1 is perfectly oblivious and implements Functionality 3.4 (FORAM).

20Note that in Construction 1, all elements in D have (levelIndex,whichStash) = (`,⊥). At the end of this step, D1

is always D, and D2 contains only dummies.
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Proof. Since the functionality FORAM is deterministic, it suffices to show that the construction is
correct (i.e., it computes the same output as the ideal functionality), and to present a simulator
that produces an access pattern that is computationally-indistinguishable from the one produced
by the real construction.

Correctness is straightforward, as all sub-algorithms are ideal implementations. Note that all
input assumptions are guarantees, e.g., we never lookup for the same element more than once until
the table is being rebuilt.

The simulator Sim runs the algorithm Access on dummy values. In more detail, it maintains
an internal secret state that consists of handles to ideal implementations of the dictionary D, the
hash tables T`+1, . . . , TL, bits full`+1, . . . , fullL and counter ctr exactly as the real construction.
Upon receiving a command Access(⊥,⊥,⊥), the simulator runs Construction 1 on input (⊥,⊥,⊥).
By definition of the algorithm, the access pattern (in particular, which ideal functionalities are
being invoked with each Access) is completely determined by the internal state ctr, full`+1, . . . , fullL.
Moreover, the change of these counters is deterministic and is the same in both real and ideal
executions. As a result, the real algorithm and the simulator perform the exact same calls to the
internal ideal functionalities with each Access. In particular, it is important to note that Lookup
is invoked on all levels regardless of which level the element was found, and the level that is being
rebuild is completely determined by the value of ctr. Moreover, the construction preserves the
restriction of the functionality FHT in which any key is being searched for only once between two
calls to Build.

Give that Construction 1 obliviously implement Functionality 3.4, we proceed with a sequence of
constructions and show that each and one of them implements also Functionality 3.4.

� Construction 2. This is the same as in Construction 1, where we instantiate FShuffle and
Fcompaction with the real implementations. Explicitly, we instantiate FShuffle in Step 6d in

Construction 1 with Intersperse(j∗−`) (Algorithm 6.4), instantiate FShuffle with IntersperseRD
(Algorithm 6.6), and instantiate Fcompaction with an algorithm for tight compaction (Theo-
rem 5.1). Note that at this point, the hash tables T`+1, . . . , TL are still implemented using
the ideal functionality FHT, as well as D that uses FDict.

� Construction 3. In this construction, we follow Construction 2 but instantiate FHT with
Construction 8.7 (i.e., CombHT from Theorem 8.8). Note that we do not combine the stashes
yet. That is, we simply replace Step 6e (as Build), Step 3 (as Lookup) and Step 6c (as
Extract()) in Construction 1 with the implementation of Construction 8.7 instead of the ideal
functionality FHT.

� Construction 4. In this construction, we follow Construction 3 but change Step 6e (in
Construction 1) as the corresponding step in Construction 9.1: We add all elements in D2,
OFS, and CombSS into a newly initialized D, marked with their level index and what stash
they are coming from (where whichStash = overflow in case that the element comes from OFS,
and whichStash = stashes in case that the element comes from CombSS). Moreover, we change
the construction of CombHT.Extract() to ignore the stashes, as in Step 6c in Construction 9.1.
Note that here except for the smallest level `, for every other level, we are not using D for
any lookup yet, and the stashes OFS and CombSS are still being used. Moreover, note that
now each element in the stash of some level i has two copies: one in D, and one in the stash
of level i. In Lookup, the element will be found in D, but we ignore it except for the smallest
level `. We will find it when we will visit the level i. When rebuilding the level, we ignore
the copy in the stash of level i, but use the copy that is in D.

� Construction 5. In this construction, we follow Construction 4, but make the following
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change. In Step 3 of Construction 1, we modify the Lookup procedure to be that of Con-
struction 8.7. That is, whenever accessing OFS and CombSS, we perform lookup at the stored
values levelIndex and whichStash. Basically, in Construction 5, we are no longer using OFS

and CombSS (when being built, we copy their content to D; in Lookup, we first look in D and
if found, we continue to look in all levels until the level in which the element belongs to. We
do not access the stashes of each level).

� Construction 6. This is the same as Construction 5, where we replace the ideal implemen-
tation FDict of the dictionary D with the real perfect oblivious dictionary (Corollary 4.17).
Note that this is exactly Construction 9.1.

The theorem is obtained using a sequence of simple claims, given that Construction 1 implements
FORAM.

Claim C.16. Construction 2 perfectly-obliviously implements Functionality 3.4.

Proof. This follows by composing Claims 6.7,6.5 and Theorem 5.1. It is important to note that the
input assumptions are preserved, and therefore we can replace the functionality with the respective
algorithm:

� We invoke Intersperse(j∗−`) (in Step 6d instead of FShuffle) on arrays that are output of Extract
and therefore are randomly shuffled, maintaining the input assumption of Algorithm 6.4.

� We invoke IntersperseRD (in Step 6(d)ii) on an array in which the real elements are randomly
shuffled, as this is an output of compaction on a randomly shuffled array. Therefore, this
maintains the input assumption of Algorithm 6.6.

Claim C.17. Construction 3 (1 − T · N2 · e−Ω(log λ log log λ) − δAPRF)-obliviously implements Func-
tionality 3.4

Proof. For any T ∈ N accesses, Construction 3 instantiates O(T · logN) instances of CombHT.
The input for CombHT.Build in Step 6e is always randomly permuted, as this is an output of
IntersperseRD. By Theorem 8.8, each instantiation of CombHT incurs failure probability N2 ·
e−Ω(log λ log log λ) +δAPRF. In Construction 3 instantiates O(N) CombHT per N requests. Hence, using
composition and taking union bound over T requests, Construction 3 is (1−T ·N2 ·e−Ω(log λ log log λ)−
δAPRF)-oblivious.

Claim C.18. Construction 4 (1 − T · N2 · e−Ω(log λ log log λ) − δAPRF)-obliviously implements Func-
tionality 3.4.

Proof. The difference from Construction 3 is only by adding more elements into D, however, except
with T ·N2 ·e−Ω(log λ log log λ) probability, the size of D never exceeds its capacity log11 λ+logN log λ.
This is because there are O(logN) levels, each has its own stash of size O(log λ). The probability
that a level that contains n elements exceeds its stash of size s is bounded by n−Θ(s). Since
the smallest level is of size 2(log λ)11 and each stash is of size O(log λ) except with probability
e−Ω(log λ·log log λ). By a union bound over all O(logN) levels and all T requests of the ORAM, the
number of elements in all stashes combined does not exceed logN log λ except with probability
T ·N2 · e−Ω(log λ·log log λ). Moreover, it contains at most log11 λ elements from level `.

Moreover, note that we do not consider these added elements to D when we perform lookups
(the construction will find them in D, but they will be ignored and will be found again in the
relevant level). In fact, we claim that the stash of each level appears twice: Once in that level, and
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once in D. To see that, observe that whenever we rebuild level j we take D and split it into 2: D1

contains all the stashes of level < j, and D2 contains all the stashes of level > j. The dictionary D1

will be used for building the level j, whereas all elements in D2 are copied into a new dictionary
D. Thus, when we rebuild level j, all the elements and all stashes of levels `, . . . , j − 1 will appear
in level j after building the level, whereas all stashes of levels j + 1, . . . , L will remain in D. Note
that when we rebuild a level, Extract ignores the element in the stashes, and therefore we do not
maintain multiple copies of each element. An element is being copied when rebuilding level j into
D, will be found during lookup in level j, and the copy in level j will be destroyed when the level
is rebuilt.

In terms of functionality, we compute exactly the same input/output behavior as in Construction
3. As for the access pattern, the change is just by adding more accesses into D when rebuilding
a level, and omit accesses to the stashes when rebuilding a level. Those are deterministic changes
to the access pattern since D is realized by FDict at this moment. We therefore conclude that
Construction 4 obliviously implements Functionality 3.4.

Claim C.19. Construction 5 (1 − T · N2 · e−Ω(log λ log log λ) − δAPRF)-obliviously implements Func-
tionality 3.4.

Proof. The construction is just as Construction 4, where instead of searching in each level for the
elements in the stashes OFS and CombSS, we look at the stored values levelIndex and whichStash
and data∗. In case one of the elements appear in one of the stashes, it also appears in the dictionary
D, as we copy all those elements into D when building the level. We then never access stashes of
each level after copying the elements into D when re-building the level.

In terms of functionality, the construction has the exact same input/output behavior as Con-
struction 4. In terms of the access pattern, we skip visiting of the stashes in each level, which is
just omitting (a deterministic and well defined) part of the access pattern. Note that until access-
ing levelIndex, we look for the correct key, and pretend that the element was not found yet. In
levelIndex, we simulate exactly the case as the level is found in that level, and in the correct stash
in that level. Thus, D behaves as a logical extension of the stashes of each level. The change in
the access pattern is deterministic, as we just do not visit the stashes in each level, and therefore
the construction implements Functionality 3.4.

Claim C.20. Construction 6 (1 − T · N2 · e−Ω(log λ log log λ) − δAPRF)-obliviously implements Func-
tionality 3.4

Proof. As Construction 5 is a construction in the FDict-hybrid model, substituting FDict with the
perfect oblivious dictionary (Corollary 4.17) incurs no security loss. Hence, the claim follows by
using composition.

This completes the proof of obliviousness (Theorem 9.2).
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