
Key Encapsulation from Noisy Key Agreement
in the Quantum Random Oracle Model

Alan Szepieniec1, Reza Reyhanitabar2, and Bart Preneel1

1 imec-COSIC KU Leuven, Belgium
alan.szepieniec@esat.kuleuven.be, bart.preneel@esat.kuleuven.be

2 Elektrobit Automotive GmbH, Germany
reza.reyhanitabar@elektrobit.com

Abstract. A multitude of post-quantum key encapsulation mechanisms
(KEMs) and public key encryption (PKE) schemes implicitly rely on a
protocol by which Alice and Bob exchange public messages and converge
on secret values that are identical up to some small noise. By our count,
24 out of 49 KEM or PKE submissions to the NIST Post-Quantum Cryp-
tography Standardization project follow this strategy. Yet the notion of
a noisy key agreement (NKA) protocol lacks a formal definition as a
primitive in its own right. We provide such a formalization by defining
the syntax and security for an NKA protocol. This formalization brings
out four generic problems, called A and B State Recovery, Noisy Key
Search, and Noisy Key Distinguishing (NKD), whose solutions must be
hard in the quantum computing model. Informally speaking, these can
be viewed as noisy, quantum-resistant counterparts of the problems aris-
ing from the classical Diffie-Hellman type protocols. We show that many
existing proposals contain an NKA component that fits our formalization
and we reveal the induced concrete hardness assumptions. The question
arises whether considering NKA as an independent primitive can help
provide modular designs with improved efficiency and/or proofs. As the
second contribution of this paper, we answer this question positively by
presenting a generic transform from a secure NKA protocol to an IND-
CCA secure KEM in the quantum random oracle model, with a security
bound related to the insecurity of the NKD problem. This transforma-
tion is essentially the same as that of the NIST candidate Ramstake.
While establishing the security of Ramstake was our initial objective,
the collection of tools that came about as a result of this journey is of
independent interest.

Keywords: Post-quantum, key encapsulation, public key encryption, quantum
random oracle model, noisy key agreement.

1 Introduction

Post-Quantum Cryptography. Most of the standard public key cryptosys-
tems in use, including Diffie-Hellman and derivatives thereof, RSA, DSA, ECDSA,

and ElGamal cryptosystems, rely on the computational hardness of number the-
oretic problems. For these problems, in particular factoring and discrete log
(DLOG) problems, quantum computers offer exponential speedups compared
to classical computers. Shor’s factoring and discrete logarithm algorithms [57]
render these cryptosystems insecure in the quantum computing era.

The anticipation of this threat is what drives the development and deploy-
ment of post-quantum cryptography—cryptographic algorithms that despite run-
ning on classical computers promise to resist quantum attacks—well before large-
scale quantum computers arrive.

In contrast to the aforementioned public key schemes, symmetric key algo-
rithms such as AES and its various modes of operations, as well as hash functions
such as SHA2 and SHA3 remain relatively unaffected by quantum computers.
The best known quantum attack on these primitives is Grover’s generic search
algorithm [33] and it offers only a square root speed-up, meaning that the same
security level is attained against quantum computers by merely doubling the key
or output length. In this line, NIST has initiated a competition for post-quantum
cryptography standardization [49]. Out of 69 complete and proper submissions,
22 proposals achieve signature scheme functionality and 49 achieve key encapsu-
lation mechanisms (KEMs) or public key encryption (PKE) or both (with some
overlap) [50].

Key Exchange (KE). KE protocols enable two parties who communicate over
an adversarially-controlled channel to obtain a secret session key. Starting with
the seminal work of Diffie and Hellman [28], there is now a rich body of work
on this topic in the literature containing several security models and design
paradigms [12,20,41,42,24]. By convention, we consider Key Agreement (KA)
protocols as a subset of KE protocols in which both parties influence the genera-
tion of the resulting session key; for instance, Diffie-Hellman (DH) type protocols
are classic examples of KA.

Key Encapsulation Mechanism. Cramer and Shoup [22,23] provided, among
other contributions, a formal treatment of hybrid Public Key Encryption (PKE)
secure against adaptive chosen ciphertext attacks (CCA) [56]. The approach,
known as the KEM/DEM (Key Encapsulation Mechanism/Data Encapsulation
Mechanism) framework, rigorously captures the folklore method for building a
hybrid encryption scheme, namely by using public key cryptography to encap-
sulate a symmetric session key, followed by symmetric-key encryption.

While the original and main application of KEM has been in hybrid PKE,
it has turned out that pure KEM can be a useful cryptographic tool in its own
right in other applications; for example, to build schemes for identification [9]
and authenticated key exchange [19,31,66].

Design Strategies. We identify three binary design choices that partition the
design space of KEMs and PKEs. They are noisy versus noise-free, convergence
versus inversion, and reconciliation versus transmission. The last choice only
makes sense in the case of noisy convergence.

2

Noisy versus noise-free considers the nature of the underlying mathematical
hard problems. Multivariate quadratic (MQ) equations and supersingular isoge-
nies (SI) achieve computational hardness without adding random noise, whereas
lattice- and code-based problems are computationally difficult precisely because
they rely on the addition of noise. The newest member of the latter class is the
family of problems based on sparse integers and arithmetic modulo (pseudo-)
Mersenne primes [1,50].

Convergence versus inversion looks at the strategy to achieve the targeted
KEM or PKE functionality. The earlier MQ, code- and lattice-based cryptosys-
tems relied on trapdoor inversion [45,46,51,34], in which the public operation
amounts to evaluating a trapdoor function and the secret operation amounts to
inverting it. In contrast, newer proposals implicitly rely on a noisy key agree-
ment protocol in which two parties obtain roughly the same key which is hard for
the passive eavesdropper to approximate [29,7,16,26]. The exception to this rule
is the supersingular isogeny Diffie-Hellman (SIDH) cryptosystem [38], and its
brother CSIDH [21], both of which converge on identical keys and hence might
be termed an exact key agreement (EKA) protocol but nevertheless amounts to
a special case of NKA. To date, SIDH and CSIDH are the only post-quantum
cryptosystem capable of achieving static key agreement (SKA) functionality,
whereby any pair of participants who know each other’s public key can derive
the same shared symmetric key without interaction, opening up the possibility
for bypassing the exchange of public key messages and instead communicating
over the symmetric channel immediately.

Reconciliation versus transmission deals with the details of obtaining identi-
cal keys after similar keys were obtained through a noisy convergence strategy.
Reconciliation entails sending helper data to enable the receiver to correct the
errors or otherwise extract an identical template from the noisy views of the
shared key. There are many subtle variants, all of which rely on the specific me-
chanics of the underlying mathematics [29,54,16,62]. In contrast, transmission3

uses the shared noisy key to mask a new message entirely; this new message must
then contain enough redundancy to be decodable after being masked and un-
masked with two approximately equal one-time pads. Transmission is arguably
less prone to error, but does come with a bandwidth penalty [6,40].

Our Contribution. This paper presents two main contributions. The first is
a formal syntax and security definition to capture the notion of a noisy key
agreement (NKA) protocol as a new useful primitive. The second is a generic
transformation to turn an NKA protocol into an IND-CCA secure KEM in the
quantum random oracle model. Based on the previous categorization of design
strategies, our transformation applies to noisy convergence based protocols, and
uses the transmission strategy.

The syntax of NKA protocols captures the intuition where, after an initial-
ization phase that generates public parameters, Alice and Bob generate a state

3 Also called the encryption-based approach in NewHopeSimple [6], and an asymmetric
key consensus in the context of OKCN/AKCN [40].

3

isogeny LATTICE CODING THEORY SPARSE INTEGERS mq

EKA NKA

SKA KEM PKE

A
B

C
[6

0
],

Z
H

F
E

[5
5
],

E
F

C
[5

9
]

S
ID

H
[3

8
],

C
S
ID

H
[2

1
]

M
cE

liece
[46], N

iederreiter
[51]

M
cB

its
[14],

C
A

K
E

[10]

O
u
ro

b
o
ro

s
[2

6
],

H
Q

C
[4

7
]

A
JP

S
[1]

R
am

st
ak

e
[5

0]

NTRU
[34]

N
H

[7,6],
K

yb
er

[18]

D
X

L
[29]

L
P

R
[43,44]

B
C

N
S

[17],
F
rod

o
[16]

(trivial)

Cramer-Shoup [23]

Fig. 1: Map of post-quantum KEM and PKE. The bold objects indicate the contribu-
tions of this paper. Italics denotes noisy mathematics; blue arrows denote convergence,
red ones denote inversion, and black ones represent generic transforms.

and contribution pair. They then exchange their protocol contributions and use
their own state and the other party’s contribution to converge on approximately
the same value. An explicit treatment of protocol failure events resulting from
excessive noise, which may cause decryption or decapsulation errors, is built in
to our formalism.

This syntax naturally lends to four attack vectors, which we formulate as
generic problems called A State Recovery (ASR), B State Recovery (BSR), Noisy
Key Search (NKS), and Noisy Key Distinguishing (NKD), mirroring the DLOG,
computational Diffie-Hellman (CDH) and decisional Diffie-Hellman (DDH) Prob-
lems in Diffie-Hellman protocols. While the classical DLOG, CDH and DDH
problems are efficiently solvable by quantum algorithms, these new generic prob-
lems arising from formalization of noisy key agreement must remain hard in the
quantum computing model. Hence, instantiations of NKA must rely on concrete
hardness assumptions that guarantee infeasibility of these generic problems even
in the face of quantum solvers. Many existing proposals contain an NKA com-
ponent that fits our formalization; we identify the induced concrete hardness
assumptions.

Security of an NKA protocol is defined with respect to the NKD problem.
Specifically, an NKA protocol is secure if and only if its NKD problem is hard
on average. We justify this definition in several ways.

– The hardness of NKD implies the hardness of NKS, ASR and BSR; therefore
the NKD Assumption is the strongest assumption.

4

– It is analogous to regular Diffie-Hellman, where the protocol is secure if and
only if the DDH problem is hard (assuming authenticated links).

– We consider an example from the NIST PQC project that fits the NKA
framework and where ASR and BSR are hard, but where NKD is easy,
which led to the submission’s prompt cryptanalysis.

– We consider in the appendix an alternate definition of security based on a
suitable adaptation of the well-known Canetti-Krawczyk session-key security
(SK-security) notion [20]. We find that this security notion is equivalent to
the average-case hardness of the NKD problem.

These results indicate that the average-case hardness of the NKD problem is
essential in the context of secure NKA-based KEMs and PKEs.

As our second and main contribution, we provide a generic NKA-to-KEM
transformation for noisy, convergence-based protocols, applying the transmis-
sion strategy, and featuring an IND-CCA security proof in the quantum ran-
dom oracle model. The main feature in this context is its genericity : it applies
regardless of the mathematics of the underlying NKA protocol and as such en-
ables a modular design workflow. We note that the Ramstake submission [50]
uses essentially the same transformation but was presented without proof; this
paper therefore proves the security of Ramstake, assuming the appropriate NKD
problem is hard on average.

In comparison to other IND-CCA transforms in the literature, the most ob-
vious difference is that the starting point of our transform is an NKA protocol,
whereas other IND-CCA transforms start from an IND-CPA secure PKE or
KEM. We include the key-confirmation hash of Targhi-Unruh in the cipher-
text [61] and follow the derandomization and re-encryption approach so named
by Hofheinz et al. [35]. We note that a recent result by Jiang et al. [39] suggests
that this additional hash might not be necessary, but we leave open for the time
being the question whether dropping it affects the security of our particular
construction. In contrast to these related results [61,35,39], our session key is
computed from bipartite contribution, i.e., as a function of both the public key
and the encapsulator’s randomness; this property prevents Bob from establish-
ing the same symmetric key for separate channels, one with Alice and one with
Charlie.

An outstanding feature of our proof is the tighter security bound: the insecu-
rity of the underlying primitive (NKD of the NKA protocol in our case; IND-CPA
security of the PKE or KEM elsewhere) undergoes a square-root degradation,
similar to the result by Jiang et al. and in stark contrast to the quartic root
degradation of Targhi-Unruh and Hofheinz et al.. This improved bound is the
result of treating the extendable output function that is used for derandomiza-
tion as a random oracle; this enables an argument about the queries that are
made to it. While our bound does feature fourth-roots, they apply only to the
hash function insecurity.

Central to our security proof is a new technique for lifting classically-valid
random oracle model security proofs to the quantum random oracle model. We
introduce, define, and use, the aggregate quantum query amplitude, which be-

5

haves similar to the expected number of times a particular query was made
by an adversary throughout the entire computation. We use this notion as a
starting point to derive lemmata that enable refined argumentation about ad-
versarial query behavior, as well as to derive a multi-target generalization of
Unruh’s One-Way to Hiding Lemma [64]. These lemmata are used in the secu-
rity proof to capture the intuition that a quantum adversary does not know the
random oracle’s output on inputs that were not queried. We believe this notion
and our proof technique to be of independent interest as a useful tool in security
analysis of other PQC schemes.

Ramstake and the NIST PQC Project. While our starting point was the
establishment of a security proof for Ramstake, this journey has led to many
independently useful tools for the analysis and provable security of post-quantum
cryptosystems. Nevertheless, we stress that despite the detour we were successful
in this endeavor. The main contribution of this paper remains the establishment
of a security proof reducing the IND-CCA security of Ramstake to solving the
appropriate version of the NKD problem — called the Low Hamming Diffie-
Hellman Decision (LHDHD) Problem in the context of Ramstake [50].

The ongoing NIST PQC project, as a design-focused project with a some-
what fixed timeframe, has boosted research on PQC and has attracted 69 pro-
posals, which are the subject of intense scrutiny. Nevertheless —or perhaps
accordingly— it is compelling and timely to revisit the foundations of secu-
rity notions and of design paradigms for next-generation PQC schemes in order
to stay ahead of emerging threats and to prevent past failures from being trans-
muted in future. This paper aims to be a step forward in this direction.

Organization of the Paper. Section 2 provides notations, conventions and
definitions used throughout the paper. In Sect. 3 we present our noisy key agree-
ment formalism, including syntax, abstract hard problems, and security defini-
tion. Section 4 presents our NKA-to-KEM transformation, and we follow up in
Sect. 5 with a discussion on proof techniques (including the aggregate quantum
query amplitude) before presenting the security proof. Section 6 concludes the
paper.

2 Preliminaries

Notation and conventions. We use a ← b to denote the assignment of the

value b to the variable a, and a
$←− A to denote the assignment of a uniformly

random element from the set A. Algorithms are denoted in sans-serif font and
the event that an algorithm A, on input x, outputs y is written as A(x)⇒ y and
A(x) 6⇒ y when it does not output y. A long double right arrow (=⇒) denotes

logical implication, and
4
= denotes equality by definition. Superscript, e.g., AO

denotes an algorithm A having oracle access to O, meaning that A can query O
and receive responses in a black box manner but he cannot study the oracle’s
code or composition.

6

A function negl : N→ R>0 is negligible if for all polynomials p(x) ∈ R[x] there
is an N ∈ N such that for all x > N , negl(x) drops faster than the reciprocal of
|p(x)|. Formally, we need only consider the dominant monomial of p(x):

∀c > 1 .∃N ∈ N .∀λ > N . negl(λ) ≤ 1

λc
.

Quantum Computation. The state of a quantum system of k qubits is given

by a unit-length vector in ket notation, e.g. |Ψ〉 ∈ H, where H ⊂ C2k

; where
〈Ψ | is its complex conjugate transpose, and 〈Ψ |Φ〉 is the standard inner product.
The composition of two quantum systems is described by the tensor product
|Ψ〉 ⊗ |Φ〉 ∈ H1 ⊗ H2, which is the vector of all multilinear products. However,
sometimes quantum systems of more than one qubit cannot be factored into the
tensor product of independent systems; in this case the two systems are entan-
gled. Except for measurements, all quantum computations are unitary transforms
on the state space. Measurement of a system |Ψ〉 is defined with respect to a
set of orthonormal basis vectors |b0〉, |b1〉, . . . , |b2k−1〉 and affects the system by
collapsing it to |bi〉 with probability 〈bi|Ψ〉〈Ψ |bi〉. Any bitstring s ∈ {0, 1}k has
an associated basis vector |s〉 = |bi〉 for some i. Whenever a state is a non-trivial
sum of basis vectors, i.e., with weights different from 0, −1 and 1, it represents
a superposition of values. Except for measurement, all quantum operations are
reversible. Moreover, it is possible to transform any quantum circuit into an
equivalent circuit where all the measurement operators are located at the end.

An equivalent characterization of quantum computation is in terms of a sys-

tem’s density operator or density matrix ρ ∈ C2k×2k

, as opposed to its state

vector |Ψ〉 ∈ H ⊂ C2k

. The density operator associated with a pure state |Ψ〉
is ρ = |Ψ〉〈Ψ |. When the density operator has a higher rank it represents a
probability ensemble: the density matrix ρ =

∑
pi|ψi〉〈ψi| represents a system

that has a probability pi of having state |ψi〉. The density operator is especially
useful for its characterization of parts of a complex quantum system because
this operator, together with the partial trace operator, leads to the correct de-
termination of observable statistics. The reduced density operator ρA of a sub-
system A of a composite system A + B with density matrix ρA,B is obtained
by “tracing out” the Hilbert space HB associated with B, i.e., by applying the
partial trace operator ρA = TrB(ρA,B) which is defined by ∀|a〉 ∈ HA, |b〉 ∈
HB .TrB(|a〉 ⊗ |b〉〈a| ⊗ 〈b|) = |a〉〈a|〈b|b〉. The trace distance between two states

ρ0 and ρ1 is defined as TD(ρ0, ρ1) = 1
2Tr

(√
(ρ0 − ρ1)†(ρ0 − ρ1)

)
, and captures

the maximum probability of all unbounded time quantum algorithms to distin-
guish ρ0 from ρ1. We overload notation by using TD(|φ〉, |ψ〉) to denote the trace
distance of the pure states’ density operators; and again by using TD(A(),B())
to denote the trace distance of the output states of quantum algorithms A and B.
For more details on quantum computation and quantum information we refer the
reader to a comprehensive treatment of the subject by Nielsen and Chuang [52].

We use capital letters without ket notation to denote quantum registers, i.e.,
the sets of qubits assigned to a variable. We use lowercase letters in ket notation

7

to denote computational basis vectors with unspecified index, and Greek letters
in ket notation to denote non-trivial superpositions of computational basis states.

Quantum Random Oracle Model. Our security proof relies on the mod-
eling of hash functions as random oracles [30,13], which are uniformly random
functions H : {0, 1}∗ → {0, 1}λ with a fixed output length, typically equal to the
security parameter. If necessary, the random oracle’s output space can be lifted
to any finite set X. We use subscripts to differentiate the random oracles associ-
ated with different output spaces. The adversary has no access to the function’s
full description or source code. Security proofs of this type are said to hold in
the random oracle model (ROM).

Boneh et al. show that the random oracle model is not a suitable model when
attacks on quantum computers are to be considered [15]. Instead, adversaries
have access to a black box that operates on a query-response register pair (Q,R)
by sending |q, r〉 7→ |q, r⊕H(q)〉. In this model, quantum adversaries are capable
of querying the random oracle on superpositions of bit strings and should receive
a superposition answer back. Many classically-valid random-oracle constructions
fail to account for this capability and rely in their security proofs on notions or
behaviors which become ill-defined when quantum access is considered, such
as the list of queries or lazy sampling. As a result, the security proof is valid
in the classical random oracle model but invalid in the quantum random oracle
model (QROM). Many subsequent works elaborate on the notion either by lifting
constructions or proofs to the QROM [58,63,65,61], or by showing that such a
lift is impossible [25,8].

Derandomization. Our construction relies on derandomization. While pseudo-
random generators are usually sufficient for this task, in our case the adversary
has quantum oracle access to the function. We thus opt for an extendable-output
function (XOF) [48], which we model as a random oracle in the security proof.

In derandomization, probabilistic polynomial-time algorithms are made de-
terministic. In particular, let A be a probabilistic polynomial-time algorithm and
s ∈ {0, 1}λ a seed. We write A(x) to denote that A is run on input x ∈ {0, 1}∗,
and A(x; r) to make the contents of its random tape r ∈ {0, 1}R explicit. Then A
is derandomized by invoking A(x;H3(s,R)) for some s. In fact, in our construc-
tion we make abstraction of the output length R and instead use denote by H3

the function that takes a short input and outputs “enough” random bits.

Key Encapsulation Mechanism. A Key Encapsulation Mechanism (KEM)
E = (KeyGen,Encaps,Decaps) is a triple of probabilistic polynomial-time algo-
rithms, where

– KeyGen takes a security parameter λ (in unary representation) and outputs
two objects: a secret key sk and a public key pk ;

– Encaps takes a public key pk and outputs two objects: a symmetric key k
from a symmetric key space SKSpace and a ciphertext c;

– Decaps takes a secret key sk and a ciphertext c and outputs a session key k
from the symmetric key space SKSpace, or returns ⊥ if a failure has occurred.

8

A KEM’s failure probability ε is defined as

ε = Pr

ke 6= kd

∣∣∣∣∣∣
sk , pk ← KeyGen(1λ)
ke, c← Enc(pk)
kd ← Dec(sk , c)

 , (1)

and should be small or else the scheme is not usable.
Security of KEMs is defined using the following IND-CCA4 game, defined

with respect to an adversary AD(·) who who has black box access to a decapsula-
tion oracle. The IND-CPA game relaxes this notion by disallowing decapsulation
queries, but is otherwise identical.

Game 2: IND-CCA

1. sk , pk ← KeyGen(1κ)

2. b
$←− {0, 1}

3. k0
$←− SKSpace

4. c, k1 ← Encaps(pk)
5. S ← ∅
6. define D(q) as:
7. S ← S ∪ {q}
8. return Decaps(sk , q)

9. b′ ← AD(·)(pk , kb, c)
10. return [[b = b′ ∧ c 6∈ S]]

Game 3: IND-CPA

1. sk , pk ← KeyGen(1κ)

2. b
$←− {0, 1}

3. k0
$←− SKSpace

4. c, k1 ← Encaps(pk)
5. b′ ← A(pk , kb, c)
6. return [[b = b′]]

The Iverson brackets [[·]] evaluate to 1 if the logical expression is true and to
0 otherwise. A KEM is secure if for all polynomial-time quantum adversaries
AD(·) with classical black box query access to a decapsulation oracle D, their
advantage AdvIND-CCA

E (AD(·)) is negligible:

AdvIND-CCA
E (AD(·))

4
=

∣∣∣∣Pr
[
GameA

D(·)

IND-CCA(1λ)⇒ 1
]
− 1

2

∣∣∣∣ ≤ negl(λ) . (2)

Most proposals for post-quantum KEMs claim only to satisfy the strictly
weaker indistinguishability under chosen plaintext attack (IND-CPA) security
notion and emphasize targeting the exchange of ephemeral keys only, being a
scenario in which chosen ciphertext attacks are unrealistic. Nevertheless, there
are several notable exceptions that do meet the stronger IND-CCA require-
ment [10,18,4]. Moreover, there are generic conversions from IND-CPA secure
KEMs and PKEs to IND-CCA secure ones in the classical and quantum random
oracle models [32,27,61,36,35].

Error-Correcting Codes. A linear [n, k, d]-code C is a subspace Fnq of dimen-
sion k. We consider here only bitstrings in which case the symbol field Fq = F2

4 The pseudocode of Game 2 follows the IND-CCA-OP notion of Bellare, Hofheinz
and Kiltz [11], who prove equivalence between this and five other common IND-CCA
notions for KEMs.

9

and codewords are elements of Fn2 ∼= {0, 1}n but encode elements of Fk2 ∼= {0, 1}k
with k < n. The minimum distance d of a code is the Hamming weight of its
smallest nonzero codeword: d = minc∈C\{0}HW(c). The code is capable of finding
the nearest codeword c ∈ C to a noisy word c′ as long as the Hamming weight
of the distance is at most d: HW(c′ − c) ≤ d/2. This process is called error
correction. This paper abstractly assumes the availability of two functionalities:

– C.encode : Fk2 → Fn2 , which generates codewords from messages;
– C.decode : Fn2 → Fk2 , which corrects the errors and returns the associated

message, or returns ⊥ if the received word is more than Hamming distance
t away from the nearest codeword.

3 Noisy Key Agreement

The common theme in all constructions relying on what we call noisy key agree-
ment is the distinction between “small” and “large” elements in compatible
spaces. Before the protocol starts, Alice and Bob agree publicly on a random
large element G. When the protocol starts, both generate small secrets a, b and
c, d respectively. They then exchange messages aG + b and cG + d, and obtain
views acG + ad and acG + cb of a noisy shared secret which differ only by a
still-small term ad− cb.

To the best of our knowledge, the first use of the term “Noisy Diffie-Hellman”
traces back to a pair of presentations given by Gaborit in 2010 [2,3], although
the underlying strategy was already folklore knowledge by that point5. We prefer
to reserve the term Diffie-Hellman for noise-free key agreement protocols involv-
ing square-and-multiply or double-and-add procedures to compute commutative
actions on group elements.

The purpose of this section is to abstract out the mathematics and find a
syntax that contains all instances of this principle. We call the resulting formal-
ism noisy key agreement (NKA). Its desirable properties are: (i) NKA should
contain standard Diffie-Hellman-based key agreement protocols for noise level
zero. (ii) NKA should come with a usable security definition. (iii) NKA should
be identifiable inside the constructions that are supposedly based on it.

3.1 Syntax

We formalize the above intuition as follows. Before the protocol starts, Alice and
Bob must agree on a set of instance parameters iparams, which is the output of
the initialization function Init when run on the security parameter λ (provided
in unary notation). Alice’s and Bob’s tasks during the protocol are divided into
two algorithms each. In the contribute algorithms AContr and BContr, they each
generate a state, A state and B state, in addition to contributions A contr and
B contr . The contributions are sent to the other party, whereas the states are

5 Consider for instance Peikert’s invited talk at TCC 2009 [53] or Alekhnovich’s FOCS
2003 paper [5].

10

kept secret. In the converge algorithms AConv and BConv, Alice and Bob use their
own proper state and the other party’s contribution to obtain a view of the shared
noisy key: SA ← AConv(A state,B contr) and SB ← BConv(B state,A contr).
Without loss of generality, we assume that SA and SB are bit strings of length `.
If all goes well, the two views of the session key are close, or specifically, different
in at most t bits: HW(SA ⊕ SB) ≤ t.

Definition 1 (noisy key agreement protocol). A noisy key agreement pro-
tocol between two parties A and B is a tuple Π = (Init, AContr, BContr, AConv,
BConv) of five polynomial-time algorithms where the first three are probabilistic
and the last two are deterministic. The algorithms are associated with spaces
ParSp, ContrSp, StateSp, {0, 1}` and have type signatures as follows (omitting
the random coins and where λ is the security parameter).

– Init : {1λ} → ParSp
– AContr,BContr : ParSp→ StateSp× ContrSp
– AConv,BConv : StateSp× ContrSp→ {0, 1}`

The algorithms are such that, with respect to a noise level t ≤ `/2 and correctness
error ε,

Pr

HW(SA ⊕ SB) ≤ t

∣∣∣∣∣∣∣∣∣∣
iparams ← Init(1λ)
A state,A contr ← AContr(iparams)
B state,B contr ← BContr(iparams)
SA ← AConv(A state,B contr)
SB ← BConv(B state,A contr)

 ≥ 1− ε , (3)

where HW: {0, 1}∗ → N is the Hamming weight function.

3.2 Generic Problems

The NKA syntax defines three attackable secrets whose recovery is sufficient to
undermine the security of the protocol. Also, since the shared secret is what is
used in a subsequent module, we note that distinguishing it from random may be
a fourth viable attack in many circumstances. We capture these attack strategies
in the language of generic problems whose average-case hardness is a necessary
condition for security. Any instantiation of NKA therefore defines concrete in-
stantiations of of these hard problems, which then induce concrete average-case
hardness assumptions which are necessary for that protocol’s security.

The first pair of problems is to recover Alice’s secret state from their protocol
contribution. If AContr and BContr are identical, then so are these two problems.
In the standard Diffie-Hellman key agreement protocol, these problems boil down
to the discrete logarithm problem: to obtain a from p, g, and gamod p.

A State Recovery (ASR).
Input: iparams, A contr
Task: find A state.

B State Recovery (BSR).
Input: iparams, B contr
Task: find B state.

11

The next problem captures the task of finding the agreed-upon session key,
or a similar enough bit string, from all public information. In the standard Diffie-
Hellman key agreement protocol, this problem is essentially the computational
Diffie-Hellman problem, i.e., asking to obtain gab from g, ga and gb (all mod p).

Noisy Key Search (NKS).
Input: iparams, A contr , B contr
Task: find S ∈ {0, 1}` such that HW(S ⊕ SA) ≤ t and HW(S ⊕ SB) ≤ t.

Like the state recovery problems, the noisy key problem comes with a deci-
sional variant. This problem captures the task of determining whether a candi-
date session key is close enough to Alice’s and Bob’s views.

Noisy Key Distinguishing (NKD).

Input: iparams, A contr , B contr , S; where if b = 0, S
$←− {S |HW(S⊕SA) ≤

t ∧ HW(S ⊕ SB) ≤ t}, and if b = 1, S
$←− {0, 1}`

Task: output 1 if HW(S ⊕ SA) ≤ t and HW(S ⊕ SB) ≤ t; and 0 otherwise.

Clearly, a solver for ASR or for BSR can be used to solve NKS; and a solver for
NKS can be used to solve NKD. Therefore, the strongest assumption associated
to these problems is assuming that NKD is hard.

Assumption 1 (NKD assumption). The given NKA protocol Π = (Init,
AContr, BContr, AConv, BConv) with noise level t and correctness error ε is
such that for all polynomial time adversaries A in the NKD game (Game 4),
their advantage AdvNKDΠ (A) is negligible:

AdvNKDΠ (A)
4
=

∣∣∣∣Pr[GameANKD(1λ) 6⇒ 0]− 1 + ε

2

∣∣∣∣ ≤ negl(λ) . (4)

When the argument is omitted, the expression denotes the maximum of this quan-

tity across all quantum polynomial-time adversaries: AdvNKDΠ
4
= maxA AdvNKDΠ (A).

12

Game 4: NKDA(1λ)

1. iparams ← Init(1λ)
2. A state,A contr ← AContr(iparams)
3. B state,B contr ← BContr(iparams)
4. SA ← AConv(A state,B contr)
5. SB ← BConv(B state,A contr)
6. if HW(SA ⊕ SB) > t then:
7. return ⊥
8. b

$←− {0, 1}
9. if b = 1 then:

10. S
$←− {x ∈ {0, 1}` |HW(x⊕ SA) ≤ t ∧ HW(x⊕ SB) ≤ t}

11. else:

12. S
$←− {0, 1}`

13. b̂← A(iparams,A contr ,B contr , S)

14. return [[b̂ = b]]

An interesting problem arises in the formalization of this assumption when
the two parties’ views of the session key is too different. In other words, whenever
HW(SA ⊕ SB) > t. Assumption 1 deals with this issue by aborting and ignoring
the adversary in this case, but conservatively counting these events as wins for
the adversary.

Whether or not to count these aborts as wins for the adversary is a matter
of context. In one extreme, when a failure event occurs all bets are off in terms
of security. In the other extreme, security is only compromised when the adver-
sary successfully attacks a successful session. We choose the first option as it
is more conservative and as the alternative implies complex design constraints.
Note that an adversary whose strategy is random guess has success probability
Pr[GameANKD(1λ) 6⇒ 0] = ε+ (1− ε) · 1

2 = 1+ε
2 and hence advantage 0.

3.3 Security

We define the security of an NKA protocol in terms of the NKD game. This
follows the regular Diffie-Hellman case in the authenticated links model, where
security is based on the DDH assumption.

Definition 2 (security of NKA protocols). An NKA protocol Π is secure
if and only if the NKD Assumption holds for Π.

So far, the identification of security with the NKD game has been justified by
two arguments. First, the hardness of NKD implies the hardness of NKS, ASR,
and BSR. Second, this identification mirrors the case of regular Diffie-Hellman.
We supplement this justification with two more arguments. The next section
studies a cryptosystem where ASR/BSR are hard, but which failed because NKD
is not. Appendix B considers an alternate definition of security called noisy key

13

security (NK-security), along the lines of the session-key security (SK-security)
notion in the authenticated links model of Canetti and Krawcyzk [20]. The con-
clusion there is that NK-security and the NKD Assumption are equivalent, up
to a polynomial factor related to the number of sessions started and corrupted in
the NK-security game. These indications strongly suggest that the NKD game
is not merely a useful formalism, but an essential point of consideration in the
context of noisy key agreement protocols.

3.4 Case Study: CFPKM

CFPKM [50] was a KEM proposal based on polynomial system solving with
noise (PoSSoWN) submitted to the NIST project. Despite featuring a proof of
security, the cryptosystem was broken within days. Since it implicitly relies on a
noisy key agreement protocol, it is worthwhile to study what went wrong through
the lens of the generic problems described above. The following description is
simplified for clarity.

A CFPKM public key consists of a seed seed and a vector b1 ∈ Zmq , where
seed is expanded into a list ofm quadratic polynomials F(x) = (f1(x), . . . , fm(x))
with small coefficients in n variables x = (x1, . . . , xn) over Zq with q a power
of 2. The secret key is a short vector sa ∈ Znq and the vector b1 is found as
b1 = F(sa) + e1 with e1 ∈ Zmq a vector of small random errors. To encapsu-
late, the user chooses a random short vector sb ∈ Znq . The ciphertext is then
F(sb)+e2, where e2 is also a vector of small random errors, in addition to some
reconciliation information. The key is obtained as the most significant bits of
b1 �F(sb), where � is the component-wise product. The decapsulator obtains
the same key by computing F(sa) � (F(sb) + e2) and taking the most signifi-
cant bits of this vector’s components, and by correcting occasional errors when
necessary. We identify the underlying noisy key agreement protocol with func-
tionalities and noisy key views as follows. We use msb(·) to denote the function
that takes the most significant bits from each component of its vector argument.

Init: generate F from seed
AContr: sample sa, e1 and transmit b1 = F(sa) + e1

BContr: sample sb, e2 and transmit b2 = F(sb) + e2

AConv: compute v1 = msb(b2 �F(sa))
BConv: compute v2 = msb(b1 �F(sb))
SA: v1

SB : v2

This description gives rise to the following instantiations of the abstract hard
problems. The state recovery problems are instances of PoSSoWN.

A State Recovery (ASR).
Input: F ,b1 s.t. b1 = F(sa)+e1 for
some small e1, sa
Task: find sa, e1 s.t. b1 = F(sa)+e1

B State Recovery (BSR).
Input: F ,b2 s.t. b2 = F(sb) + e2 for
some small e2, sb
Task: find sb, e2 s.t. b2 = F(sb) + e2

14

Noisy Key Search (NKS).
Input: F ,b1,b2 such that b1 = F(sa) + e1 and b2 = F(sb) + e2 for
some short sa, sb, e1, e2

Task: find S ∈ {0, 1}` such that HW(S ⊕ v1) ≤ t and HW(S ⊕ v2) ≤ t,
where v1 = msb(F(sa)� e1) and v2 = msb(F(sb)� e2).

Noisy Key Distinguishing (NKD).
Input: F ,b1,b2, S such that b1 = F(sa) + e1 and b2 = F(sb) + e2 for
some short sa, sb, e1, e2

Task: decide whether HW(S ⊕ v1) ≤ t and HW(S ⊕ v2) ≤ t, where v1 =
msb(F(sa)� e1) and v2 = msb(F(sb)� e2).

The parameters of CFPKM are chosen to guarantee that the solution of the
ASR/BSR problems have an infeasible target complexity. However, our analysis
suggests that the hardness of ASR and BSR is not enough. Instead, one must
look at NKD and tragically, it turns out that in this case NKD is not hard at
all. In fact, the attack actually solves the NKS problem for a large proportion
of instances by computing v = msb(b1 � b2).

Appendix A presents a similar analysis of several KEMs chosen as suitable
representatives for their proper branches of mathematics, and identifies the in-
duced hard problems and associated hardness assumptions. This demonstrates
that our syntax and hard problems are generic and indeed capable of capturing
a multitude of noisy key agreement based schemes. The examples treated there
are not known to be insecure. That is to say: there are no known attacks on the
induced NKD problems.

4 NKA to KEM: Generic Construction

This section presents a transformation to obtain a KEM from an NKA protocol.
In a nutshell, the public key is one contribution to the protocol. The random coins
of the encapsulation algorithm are deterministically derived from its seed s ∈
{0, 1}λ via a XOF. This algorithm generates the other protocol contribution and
uses his view SB of the shared noisy key as a one-time pad to mask an encoding
(using some error-correcting code) of the seed s ∈ {0, 1}λ. The decapsulation
algorithm derives its own view SA of the shared noisy session key to undo the
one time pad up to some errors, after which it can decode the noisy codeword
and obtain the seed s. At this point, the decapsulation algorithm simulates
the encapsulation algorithm with the exact same deterministic parameters and
verifies that the produced ciphertext is identical to the received one.

The resulting KEM is shown in Algorithms 5, 7, and 8. (For a syntactically
correct presentation we split the probabilistic portion of the encapsulation from
the deterministic portion.) The transformation’s parameters are

– Π, the noisy key agreement protocol with session key length `, noise level t,
and correctness error ε;

– C, the error-correcting coder and decoder for a [n ≤ `, k = λ, d > t]-code;

15

– H1,H2 : {0, 1}∗ → {0, 1}λ, hash functions;
– H3 : {0, 1}λ → {0, 1}∗, a cryptographically secure variable output length

function whose output is long enough to derandomize any polynomial-time
probabilistic algorithm; this may be instantiated by a XOF but we make
abstraction of the output length.

We denote the resulting tuple of algorithms as K = SNOTP(Π, C,H1,H2,H3).

algorithm KeyGen
input: 1λ — security parameter
output: sk — secret key

pk — public key

1: iparams ← Π.Init(1λ)
2: A state,A contr ← Π.AContr(iparams)
3: pk ← (iparams,A contr)
4: sk ← (A state, pk)
5: return sk , pk

Algorithm 5: Key Generation of the KEM.

algorithm DetEncaps
input: pk = (iparams,A contr) — public key

s ∈ {0, 1}λ — random seed
output: k — symmetric key

c — ciphertext

1: B state,B contr ← Π.BContr(iparams;H3(s))
2: SB ← Π.BConv(B state,A contr)
3: e← C.encode(s)
4: c← (B contr , e⊕ SB ,H2(s))
5: k ← H1(pk‖s)
6: return k, c

Algorithm 6: Deterministic encapsulation algorithm of the KEM.

Ramstake uses a slight variant of this transformation [50]. The change there is
in line 5 of DetEncaps where k is computed as k ← H1(pk‖coins) instead, where
coins = H3(s), i.e., the same coins with which DetEncaps was derandomized.
It is clear that this change does not degrade security, for example by setting
H1(pk‖s) = H′1(pk‖H3(s)).

16

algorithm Encaps
input: pk = (iparams,A contr) — public key
output: k — symmetric key

c — ciphertext

1: s
$←− {0, 1}λ

2: return DetEncaps(pk , s)

Algorithm 7: Encapsulation algorithm of the KEM.

algorithm Decaps
input: sk = (A state, pk) — secret key
input: c = (B contr , E, h) — ciphertext
output: k — symmetric key if successful, or ⊥ indicating failure

1: SA ← Π.AConv(A state,B contr)
2: s← C.decode(E ⊕ SA)
3: if s =⊥ or H2(s) 6= h then:
4: return ⊥
5: end
6: k, c′ ← DetEncaps(pk , s)
7: if c′ 6= c then:
8: return ⊥
9: end

10: return k

Algorithm 8: Decapsulation of the KEM.

4.1 Decapsulation Injectivity

Our construction actually achieves something in addition to IND-CCA security:
decapsulation injectivity. In other words, for any given secret key sk , and for every
key k there is (with overwhelming probability) at most one ciphertext c such that
Decaps(sk , c) = k. This might sound alarming at first, for instance because it is
well known that a public key encryption scheme where every message maps onto
one ciphertext cannot be IND-CPA secure, let alone IND-CCA secure.

However, the crucial distinction is that the ciphertexts of KEMs represent
encapsulations of uniformly random keys. In contrast, PKEs must encrypt arbi-
trary messages, thus enabling the attacker to engineer repeat queries or another
attack scenario that requires choosing precisely which messages to encrypt.

Decapsulation injectivity addresses benign malleability, which is the ability
of an attacker to modify ciphertexts only if the encapsulated key remains intact.
Schemes based on noisy key agreement are inherently resilient to noise and as
a result, a ciphertext with added noise may still decapsulate correctly. Also, in
some cases the mathematical objects on which the protocol relies, do not have a
unique bit-level representation; in this case an adversary can switch representa-

17

tions to obtain a ciphertext that decapsulates to the same key. IND-CCA alone
is not sufficient to preclude benign malleability or attacks exploiting it.

Theorem 1 (correctness). Let Π be an NKA protocol with failure probability
ε. The failure probability of the KEM K = SNOTP(Π, C,H1,H2,H3) is

Pr

kc 6= kd

∣∣∣∣∣∣
sk , pk ← KeyGen(1λ)
ke, c← Encaps(pk)
kd ← Decaps(sk , c)

 = ε . (5)

Proof. By construction, we have pk = (iparams,A contr), sk = (A state, pk)
and c = (B contr , SB ⊕ C.encode(s),H2(s)), where c is deterministically gener-
ated from s and pk . Moreover, the encapsulator finds k = H1(pk‖s). The decap-
sulator then computes SA = Π.AConv(A state,B contr) and with probability ε,
the strings SA and SB will lie too far apart for correct decoding. However, if
HW(SA⊕SB) ≤ t, then the decapsulator obtains the correct s from which he can
produce the exact same ciphertext as well as k = H1(pk‖s). In other words, there
is a KEM decapsulation failure only when there is an NKA protocol failure. ut

5 NKA to KEM: Security Analysis

5.1 Techniques

We first explain some tools used in the proof before presenting the proof itself.

Inversion. The task of the simulator is to find a preimage x for an output image
y = H(x) that was also output by the simulated algorithm H. In the classical
random oracle model, the simulator B can peruse the list of queries made by A

to H and test each such query xi for H(xi)
?
= y.

In the quantum random oracle model, this list of queries is ill-defined because
the queries themselves may be represented by quantum superposition states.
Instead, it is possible to accomplish the same thing by replacing the random
function with a random polynomial H ∈ F2` [x] of degree 2Q̂− 1, where Q̂ is the
number of queries made by A to H. Given the output image y, the simulator can
factor H(x)−y in polynomial time to obtain the a list of at most 2Q̂−1 candidates

{xi}2Q̂−2
i=0 . By selecting one at random, the simulator obtains the correct preimage

with probability 1
2Q̂−1

. Zhandry shows that 2Q̂-wise independent functions (such

as this polynomial) are perfectly indistinguishable from a random function [67].
To the best of our knowledge, this technique for inversion in the quantum random
oracle model was first used by Unruh for his non-interactivity transform [63].

Insecurity of One-Wayness. Recall that in the One-Wayness game, the chal-
lenger samples a random preimage x and runs the adversary on input H(x). The
adversary wins if he outputs a y such that H(x) = y. To capture the hardness

18

of this task, we use a result by Unruh [63]. Here the adversary is given access
to a random Bernoulli-distributed function F : {0, 1}∗ → {0, 1} and each F(x)
is independently Bernoulli-distributed with Pr[F(x) = 1] = γ. For any quantum
adversary A making at most Q̂ queries, Pr[F(AF()) = 1] ≤ 2(Q̂+1)

√
γ. An adver-

sary finding a preimage x of y in the One-Wayness game is simultaneously finding
a preimage x of 1 for the Bernoulli-distributed function F(x) = [[H(x) = y]], and
so Pr[H(AH(H(x))) = H(x)] ≤ 2(Q̂+ 1)

√
2−n, where n is the output length of H.

Insecurity of Collision Resistance. In the collision resistance game, the
adversary oracle access to a function H and is tasked with finding a pair of
colliding preimages x1 and x2, i.e., such that H(x1) = H(x2). The success prob-
ability of any adversary making at most Q̂ queries is bounded by Pr[H(x1) =
H(x2) |x1, x2 ← AH()] ≤ C(Q̂+1)32−n, for some universal constant C and where
n is the output length of H [68].

Aggregate quantum query amplitude. Our proof relies in part on the indis-
tinguishability of two worlds predicated on a certain value s not being queried to
the random oracle. Classically, we can define bk,s ∈ {0, 1} as the Boolean value
that takes the value 1 in the worlds where the value of query k is s, and 0 in
the worlds where it is not, and then proceed to make a distinction depending on
whether the aggregation as =

∨
k bk,s equals 1. In the quantum case, however,

these variables are ill-defined because each query does not have an associated
value but an associated quantum state, which might be a superposition of many
values with possibly non-uniform amplitudes. Nevertheless, we show that the ar-
gument can be made to work (even in the quantum random oracle model) when
we look instead at these variables’ expectation value E[bk,s] ∈ R≥0. To this end,

we define the quantum query amplitude b̂k,s ∈ C at the kth query associated
with a set S of potential values, and its aggregate across all queries âs, in a way
that mirrors (but does not capture) the classical notion.

Definition 3 (aggregate quantum query amplitude). Let AH be a quantum
algorithm with oracle access to H making Q̂ queries. In particular, A consists of
Q̂+ 1 unitary transforms U0, . . . , UQ̂ operating on a triple of quantum registers
S,Q,R, and interleaved with unitaries H operating only on Q,R and sending
|q, r〉 7→ |q, r ⊕ H(q)〉. Let ρQk represent the reduced density matrix with respect
to Q immediately after query k, with query indexation starting at zero. Then
the aggregate quantum query amplitude âS associated with a set S of potential
queries is

âS =

Q̂−1∑
k=0

√∑
s∈S
〈s|ρQk |s〉 . (6)

The aggregate quantum query amplitude is useful as a standalone concept be-
cause it enables arguments that consider the degree to which an adversary is
querying some member of a set S and how this quantity changes as this set is
modified. The following two lemmas illustrate this fact.

19

Lemma 1. For any two sets S1,S2 ⊆ {0, 1}∗, âS1 ≤ âS1∪S2 .

Proof. Since 〈s|ρQk |s〉 is a positive quantity for any s, increasing the range of the
sum from S1 to S1 ∪ S2 can only make the sum larger. ut

Lemma 2. For any two sets S1,S2 ⊂ {0, 1}∗, if âS1 ≤ 1 and âS2 ≤ 1 then
âS1∪S2 ≤ âS1 + âS2 .

Proof. Overload “\” such that S2\S1
4
= S2\(S2 ∩ S1). Then we have

âS1∪S2 =

Q̂−1∑
k=0

√ ∑
s∈S1∪S2

〈s|ρQk |s〉 =

Q̂−1∑
k=0

√∑
s∈S1

〈s|ρQk |s〉+
∑

s∈S2\S1

〈s|ρQk |s〉 (7)

≤
Q̂−1∑
k=0

√∑
s∈S1

〈s|ρQk |s〉+

Q̂−1∑
k=0

√ ∑
s∈S2\S1

〈s|ρQk |s〉 = âS1 + âS2\S1 (8)

≤ âS1 + âS2 . (9)

The first inequality holds because the terms in the square root are smaller than
1 because âS1 ≤ 1 and âS2\S1 ≤ âS2 ≤ 1. The second holds due to lemma 1. ut

We now upper-bound the trace distance of any pair of quantum distinguishers
DHb with oracle access to Hb for some b ∈ {0, 1}, where H0(x) 6= H1(x) =⇒
x ∈ S, in terms of âS . This trace distance in turn upper bounds the maximum
distinguishing advantage across all adversaries. The following proof draws in
large part on [8, Lemma 37].

Lemma 3. Let D be a quantum distinguisher making at most Q̂ queries to one
of two oracles H0,H1, whose outputs differ only on a set S of inputs. Then the
trace distance of the distinguishers’ final states is bounded by

TD(DH0(),DH1()) ≤ 2âS . (10)

Proof. Without loss of generality, D uses three registers S,Q,R for its state, and

consists of unitary transformations {Uk}Q̂k=0 operating on all three registers inter-
leaved with oracle queries, which are also unitary transformations Hb but which
operate only on Q,R and map |q, r〉 7→ |q, r⊕Hb(q)〉. So if |Ψ0〉 is the adversary’s

initial state, then its final state is given by |Ψ Q̂b 〉 =
(∏Q̂−1

k=0 UQ̂−kHb

)
|Ψ0〉.

Let |Ψ ib〉 =
(∏i

k=0 Ui−kHb

)
|Ψ0〉 be the state before query number i (with

indexation of queries starting at 0), and let |Ψ Q̂b 〉 denote the final state. Define
the trace distance at stage i as

Di = TD(|Ψ i0〉, |Ψ i1〉) . (11)

20

And then

Di = TD(|Ψ i0〉, |Ψ i1〉) (12)

= TD(UiH0|Ψ i−1
0 〉, UiH1|Ψ i−1

1 〉) (13)

= TD(H0|Ψ i−1
0 〉, H1|Ψ i−1

1 〉) (14)

≤ TD(H0|Ψ i−1
0 〉, H1|Ψ i−1

0 〉) + TD(H1|Ψ i−1
0 〉, H1|Ψ i−1

1 〉) (15)

= TD(H0|Ψ i−1
0 〉, H1|Ψ i−1

0 〉) + TD(|Ψ i−1
0 〉, |Ψ i−1

1 〉) (16)

= TD(H0|Ψ i−1
0 〉, H1|Ψ i−1

0 〉) +Di−1 , (17)

where the triangle inequality is used (15). Moreover, since D0 = 0, we have

TD(DH0(),DH1()) = DQ̂ ≤
Q̂−1∑
i=0

TD(H0|Ψ i0〉, H1|Ψ i0〉) . (18)

Now consider the projection operator PS which operates on Q and projects
onto the span of all |s〉 where s ∈ S. Formally, PS =

∑
s∈S I(S)⊗|s〉〈s|⊗I(R). Let

PS̄ be its complement, i.e., PS̄ =
∑
s 6∈S I(S) ⊗ |s〉〈s| ⊗ I(R). We use the symbol

z to represent values contained in register S; r for values in R; and both q and
s for values in Q.

TD(H0|Ψ i0〉, H1|Ψ i0〉) = TD((PS + PS̄)H0|Ψ i0〉, (PS + PS̄)H1|Ψ i0〉) (19)

= TD(PSH0|Ψ i0〉+ PS̄H0|Ψ i0〉, PSH1|Ψ i0〉+ PS̄H1|Ψ i0〉)
(20)

= TD(PSH0|Ψ i0〉+ PS̄H0|Ψ i0〉, PSH1|Ψ i0〉+ PS̄H0|Ψ i0〉)
(21)

≤ 2‖PSH0|Ψ i0〉‖ (22)

= 2

√
〈Ψ i0|H

†
0P
†
SPSH0|Ψ i0〉 (23)

= 2

√∑
s∈S
〈Ψ i0|H

†
0(I(S) ⊗ |s〉〈s| ⊗ I(R))H0|Ψ i0〉 (24)

= 2

√∑
s∈S

∑
z,r

(〈z| ⊗ 〈s| ⊗ 〈r|)H0|Ψ i0〉〈Ψ i0|H
†
0(|z〉 ⊗ |s〉 ⊗ |r〉) (25)

= 2

√∑
s∈S
〈s|ρQi |s〉 . (26)

Equation 21 holds because H0 and H1 are only different when q ∈ S, so their effect
is the same when projecting onto span({|s〉}s 6∈S). The inequality (22) holds due
to [8, lemma 35] (with |Φ〉 = PS̄H0|Ψ i0〉). Equation 26 holds because the reduced

21

density operator of H0|Ψ i0〉 =
∑
z,q,r αz,q,r|z, q, r⊕H0(q)〉 with respect to register

Q is given by

ρQi = TrS,R
(
H0|Ψ i0〉〈Ψ i0|H

†
0

)
(27)

=
∑
z1,z2

∑
q1,q2

∑
r1,r2

αz1,q1,r1α
†
z2,q2,r2〈z1|z2〉〈r1 ⊕ H0(q1)|r2 ⊕ H0(q2)〉|q1〉〈q2| (28)

=
∑
z

∑
q1,q2

∑
r1,r2

αz,q1,r1α
†
z,q2,r2〈z|z〉〈r1 ⊕ H0(q1)|r2 ⊕ H0(q2)〉|q1〉〈q2| (29)

=
∑
z

∑
q1,q2

 ∑
r1,r2 | r1⊕H0(q1)=r2⊕H0(q2)

αz,q1,r1α
†
z,q2,r2

 |q1〉〈q2| (30)

=
∑
z

∑
q1,q2

∑
r

αz,q1,r⊕H0(q1)α
†
z,q2,r⊕H0(q2)|q1〉〈q2| . (31)

In particular, this means that

∑
s∈S
〈s|ρQi |s〉 =

∑
s∈S
〈s|

(∑
z

∑
q1,q2

∑
r

αz,q1,r⊕H0(q1)α
†
z,q2,r⊕H0(q2)|q1〉〈q2|

)
|s〉 (32)

=
∑
s∈S

(∑
z

∑
q1,q2

∑
r

αz,q1,r⊕H0(q1)α
†
z,q2,r⊕H0(q2)〈s|q1〉〈q2|s〉

)
(33)

=
∑
s∈S

∑
z

∑
r

αz,s,r⊕H0(s)α
†
z,s,r⊕H0(s) (34)

=
∑
s∈S

∑
z

∑
r
αz,s,r⊕H0(s)α

†
z,s,r⊕H0(s) (〈z| ⊗ 〈s| ⊗ 〈r ⊕ H0(s)|) (|z〉 ⊗ |s〉 ⊗ |r ⊕ H0(s)〉)

(35)

=
∑
s∈S

∑
z

∑
r

(〈z| ⊗ 〈s| ⊗ 〈r ⊕ H0(s)|)H0|Ψ i0〉〈Ψ i0|H
†
0 (|z〉 ⊗ |s〉 ⊗ |r ⊕ H0(s)〉) . (36)

Consequently,

TD(DH0(),DH1()) = DQ̂ ≤ 2

Q̂−1∑
k=0

√∑
s∈S
〈s|ρQk |s〉 = 2âS . � (37)

This theorem shows that if an algorithm A is capable of making a distinction
between H0 and H1, where H0 and H1 differ only on a set S, then âS must be
large. The next lemma completes the reasoning by lower-bounding the success
probability of an extractor machine who, given black-box access to A, H0, and
H1, attempts to output some s ∈ S.

Lemma 4 (Multi-target one-way to hiding). Let H0 and H1 be oracle func-
tions that differ only on input set S, and let A be a quantum adversary that

22

makes at most Q̂H queries to either H0 or H1. Let E be the following algorithm:

select b
$←− {0, 1} and k

$←− {0, . . . , Q̂H − 1} at random, simulate AHb until the
kth query, measure the query register in the computational basis, and output the
result. Then

Pr[EA,H0,H1()⇒ s ∈ S] ≥
(
âS

Q̂H

)2

≥
(

1

2Q̂H

TD(AH0(),AH1())

)2

. (38)

Proof. The probability that E outputs a member of S is given by

Pr[EA,H0,H1()⇒ s ∈ S] =

Q̂H−1∑
k=0

∑
s∈S

Pr[EA,H0,H1()⇒ s ∧ E chooses k] (39)

=

Q̂H−1∑
k=0

∑
s∈S
〈s|ρQk |s〉 ·

1

Q̂H

. (40)

Compare with âS , which is bounded by via Jensen’s inequality by

âS =

Q̂H−1∑
k=0

√∑
s∈S
〈s|ρQk |s〉 = Q̂H

Q̂H−1∑
k=0

1

Q̂H

√∑
s∈S
〈s|ρQk |s〉 (41)

≤ Q̂H

√√√√ Q̂H−1∑
k=0

1

Q̂H

∑
s∈S
〈s|ρQk |s〉 . (42)

Plugging in Eqn. 40 and Lemma 3 yields the theorem statement. ut

Note that there is a subtle sleight-of-hand going on concerning the defini-
tion of âS in the presence of two oracles.6 In fact, the quantity âS might differ
depending on whether the distinguisher has access to H0 or H1. To be rigorous

then, we ought to consider two distinct quantities, â
(0)
S and â

(1)
S , accordingly.

However, we argue that this distinction — and intentionally glossing over
it — does not lead to different results. The proof of Lemma 3 bounds the trace

distance in terms of â
(0)
S , but a perfectly analogous proof and bound work for

â
(1)
S . In other words, the lemma holds for both choices of the definition of âS .

In a similar vein, Lemma 4 remains accurate. The event EA,H0,H1()⇒ s ∈ S
ought to be associated with â

(0)
S or â

(1)
S , depending on whether b = 0 or b = 1.

So by considering b as one of the random variables over which the probability is
taken, we can write

Pr[EA,H0,H1()⇒ s ∈ S] = Pr[EA,H0,H1()⇒ s ∈ S | b = 0]Pr[b = 0]

+ Pr[EA,H0,H1()⇒ s ∈ S | b = 1]Pr[b = 1] (43)

≥ 1

2

(
â

(0)
S

Q̂H

)2

+
1

2

(
â

(1)
S

Q̂H

)2

. (44)

6 We thank the astute anonymous reviewer for pointing this out.

23

Both terms are bounded individually by the trace distance via Lemma 3. As an

alternative to treating â
(0)
S and â

(1)
S separately, one can define âS as the mean

âS
4
= 1

2 â
(0)
S + 1

2 â
(1)
S , in which case Pr[EA,H0,H1()⇒ s ∈ S] ≤

(
âS
Q̂H

)2

follows from

Eqn. 44 via Jensen’s inequality.
We draw attention to some differences with respect to Unruh’s one-way to

hiding lemma [64]. First, our lemma works with an arbitrary potential query set
S, whereas Unruh’s lemma works only for a single query. Second, our lemma
does not assume H0 and H1 are random functions per se, but only that they
are black boxes accessed as oracles. Third, in Unruh’s lemma the adversary A
has access to only one random oracle H and his input is the query-response pair
(x, z), where either z = H(x) or z = y 6= H(x), and his task is to decide which is
the case. In our lemma the distinguisher D is tasked with distinguishing which
of two different oracles he has access to. This difference is immaterial, however,
since one can used to derive the other. In fact, Unruh’s original proof starts by
translating the problem into distinguishing two oracles that differ only on x.

5.2 Security Reduction

The security bound involves two parameters determined by the NKA protocol: ε
and φ. The first is the failure probability. The second warrants some explanation.
In the NKD game when b = 0, S is sampled uniformly at random. However, there
is a small probability that this uniform S happens to lie in the radius-t sphere
centered at SA, and in this case the adversary might decide that the ciphertext
is correctly formed or decapsulate it outright and indicate incorrectly that b = 1.

We therefore capture this probability explicitly: φ =
(∑t

k=0

(
`
k

))
/2`.

The construction involves two hash functions, H1 and H2, and one variable
output function, H3. In the security argument these are modeled as random
oracles.

Theorem 2 (IND-CCA security if NKD Assumption holds). Let A be a
quantum adversary in the IND-CCA game against K = SNOTP(Π, C,H1,H2,H3).
Let Qd, Q̂H1

, Q̂H2
, Q̂H3

be its number of queries to the decapsulation oracle, H1,
H2 and H3, respectively. Let `, t and ε be the session key length, noise threshold,
and failure probability of the NKA protocol Π. Then the advantage AdvIND-CCA

K (A)
is upper bounded by

AdvIND-CCA
K (A) ≤ 2ε+ φ− εφ

2(1− φ)(1− ε)
+

AdvNKDΠ

(1− ε)(1− φ)
+ C(Q̂H2

+ 1)32−λ

+ 2Q̂H3

√
2(Q̂H1 + 1)

√
2−λ + 2Q̂H3

√
2(Q̂H2 + 1)

√
2−λ + 4Q̂H3

√
AdvNKDΠ (45)

in the quantum random oracle model, where C is the constant of collision resis-
tance insecurity.

Proof. The proof follows from a sequence of games arguments. At each iteration,
a simulator is simulating the previous game and the previous game’s adversary
in order to win the next game.

24

– Game 1 is identical to the IND-CCA for KEMs game against K. So by defi-
nition,

AdvIND-CCA
K (A) =

∣∣∣∣Pr[Game 1A
D(·)

(1λ)⇒ 1]− 1

2

∣∣∣∣ . (46)

– Game 2 is the IND-CPA game against a variant of the KEM that drops de-
randomization. In particular, there are three modifications: a) the modified
algorithm DetEncaps′ is identical to DetEncaps except for line 1, which be-
comes

1: B state, B contr ← Π.BContr(iparams) ;

b) Decaps′ is identical to Decaps except with lines 6–9 replaced by

6: k ← H1(pk‖s) ;

c) the hash value h is dropped from the ciphertext and line 3 of Decaps
becomes

3: if s =⊥ then: .

The adversary B of Game 2 simulates A and is therefore responsible for mak-
ing A’s view of events as close to an authentic run of Game 1 as possible. In
particular, B forwards all queries to the oracles to its oracles H1,H3 and for-
wards all responses back. However, B presents A with a backdoored random
oracle H2 which is really a random polynomial of degree at most 2Q̂H2

− 1.
The purpose of this switch is to be able to answer decapsulation queries as
follows.

1. define D(q) as:
2. B contr , E, h← q
3. factors ← factorize(H2(x)− h)
4. for x ∈ factors do:
5. k′, c′ ← DetEncaps(pk , x)
6. if c′ = q then return k′

7. return ⊥

Since H2 is a 2Q̂H2
-wise independent function, it is perfectly indistinguish-

able from a true random oracle as long as at most Q̂H2
queries are made

to it. Consequently, this simulated random oracle does not affect security or
winning probability. The simulator’s running time does increase as a result
of this inversion strategy. For every query, he has to factorize a degree at
most 2Q̂H2

− 1 polynomial and then for each of the at most 2Q̂H2
− 1 fac-

tors run the deterministic encapsulation procedure followed by some testing.
Nevertheless, this operational cost is still linear in Qd and polynomial in
Q̂H2

.

25

At some point, the simulator B receives the challenge ciphertext-key pair
(c, k), where c is lacking a hash-of-seed h. The simulator appends a random

value h∗
$←− {0, 1}λ to the ciphertext before forwarding it, along with the

challenge key, to the adversary A. The simulator B outputs whatever the
adversary A outputs.
The difference in input distribution of A when it is playing Game 1 versus
when it is being simulated by B is characterized by the fact that no s′ ∈
{0, 1}λ satisfies DetEncaps′(pk ,H3(s′)) = (c, ·) in the latter case. Therefore,
provided that A fails to query H3 on likely candidates for s, the difference
in winning probability of A and B in their proper games is negligible. To
formalize this argument, consider the adversary’s aggregate quantum query
amplitude âS on H3 for the set S whose members s′ satisfy:

• H1(pk‖s′) = k, or
• H2(s′) = h∗, or
• Π.BContr(iparams;H3(s′)) = (B contr , ·), or
• Π.BContr(iparams;H3(s′)) = (·,B state) and C.decode(Π.BConv(A contr ,

B state)⊕ E) = s′, or
• s′ = s.

This list is exhaustive because any s′ that does not satisfy any of these
conditions is independent of the provided ciphertext and key. The first bullet
point represents H−1

1 (pk , ·), the set of preimages of k under H1(pk , ·). The
second bullet point represents H−1

2 (h∗), the set of preimages of h∗ under H2.
The next two bullet points represent the set SH3 , the set of preimages under
H3 to bitstrings that, when fed as random tape to Π.BContr, generate a state
B state or contribution B contr with which the NKD game is won. The last
bullet point indicates that the adversary is querying the payload s, which
he obtained from solving the NKS problem to find S and then decoding
S ⊕ SB ⊕ C.encode(s).
By separating the aggregate amplitude along these lines we obtain using
lemma 2

âS ≤ âH1(pk ,·)−1(k) + âH−1
2 (h∗) + âSH3

+ âs . (47)

The first two terms in this expression can be bounded by the an extrac-
tor’s success probability at winning a One-Wayness game using lemma 4.
Specifically, (

âH1(pk ,·)−1(k)

Q̂H3

)2

≤ Pr[EA()⇒ s ∈ H1(pk , ·)−1(k)] (48)

≤ 2(Q̂H1 + 1)
√

2−λ , (49)

and similarly, â2
H−1

2 (h∗)
≤ 2Q̂2

H3
(Q̂H2

+ 1)
√

2−λ. With respect to the third

term, observe that this gives rise to an extractor machine that solves NKD,

so âSH3
≤ Q̂H3

√
AdvNKDΠ . The same is true for the fourth term but in a

26

roundabout manner. Define this fourth extractor machine as follows: E4

takes an NKD instance (iparams,A contr ,B contr , S) and embeds this in-
stance into a public key and ciphertext in order to simulate the adversary.
In particular, the public key is (iparams,A contr) and the ciphertext is
(B contr , C.encode(s) ⊕ S, h) for randomly chosen s, h. Next, E4 measures
a random query to H3 in the computational basis and outputs 1 if this mea-
surement yields s and 0 otherwise. If the adversary solves NKS and queries
s, then E4 has a 1/Q̂H3

chance of winning the NKD game. So

âs ≤ Q̂H3

√
Pr[E4 wins NKD] ≤ Q̂H3

√
AdvNKDΠ . (50)

Putting these terms together we obtain

âS ≤ Q̂H3

(√
2(Q̂H1

+ 1)
√

2−λ +

√
2(Q̂H2

+ 1)
√

2−λ + 2

√
AdvNKDΠ

)
. (51)

Without loss of generality, the behavior of H1, H2 and H3 with respect to in-
puts s′ 6∈ S is identical across games 1 and 2; in other words, these functions
are only different on members of S. However, the adversary has access to
another oracle whose responses can potentially help it distinguish. In partic-
ular, if the adversary manages to find one element of a pair (s1, s2) such that
(B contr ′, E′, h′) = DetEncaps(pk , s1) = DetEncaps(pk , s2), then the decap-
sulation oracle might produce different outputs. In Game 1 the oracle will
decapsulate using C.decode(Π.AConv(A state,B contr ′)⊕E′) and obtain s1

or s2 via C.decode(SA⊕E′), but the decapsulation oracle from the simulation
of B will decapsulate using whichever factor of the polynomial H2(x) − h′
happens to be the first member of this list to pass the re-encapsulation test.
When there is a colliding pair (s1, s2) for the query ciphertext, this first
factor might be the wrong one.
Nevertheless, it is possible to bound the probability of such a collision. The
third component is h′ = H2(s1) = H2(s2). So it is possible to turn B into
a collision-finder for H2 by modifying its decapsulation oracle D(q). Instead
of returning the first ciphertext that passes the re-encapsulation test of line
6, it runs through all iterations of the loop first. If there are two (or more)
factors that pass this test, all are outputted. If there is only one, then k′ is
outputted, and otherwise ⊥.
Consequently, an adversary A that distinguishes Game 1 from the simulation
of B leads to either a collision for H2, or to an extractor producing a member
of S. This means that the distinguishing advantage of any adversary A across
game 1 and game 2 (where it is being simulated by B) can be bounded using
lemma 3 and the collision resistance insecurity:

|Pr[Game 1A(1λ)⇒ 1]− Pr[Game 2B
A

(1λ)⇒ 1]| ≤ 2âS + C(Q̂H2 + 1)32−λ

(52)

≤ 2Q̂H3

(√
2(Q̂H1

+ 1)
√

2−λ +

√
2(Q̂H2

+ 1)
√

2−λ + 2
√

AdvNKD
Π

)
+ C(Q̂H2

+ 1)32−λ .

(53)

27

– Game 3 is the NKD game. The adversary C in this game simulates B and is
thus responsible for making B’s view of events as close as possible to an au-
thentic execution of Game 2. In particular, C uses its input as well as the chal-
lenge session key to generate the public key and a challenge ciphertext that

transmits a random seed s
$←− {0, 1}λ. He presents the simulated algorithm

B with a random oracle H1 that is programmed to output k = H1(pk‖s) for

some randomly chosen k
$←− {0, 1}λ. At some point the simulated adversary

B outputs a bit b̂ and the simulator C outputs this same bit.

If an NKA failure event F occurs, then the simulator C “wins” regardless of
the behavior of the adversary B — because its output ⊥ contributes to the
adversary’s advantage just as much as the output 1.

If the adversary B wins with output b̂ = 0, then the ciphertext c = (B contr ,
S⊕C.encode(s)) is not an encapsulation of k and consequently C.decode(SA⊕
S⊕C.encode(s)) 6= s. This implies that SA and S are more than t bits apart,
implying that S was chosen randomly because b = 0. So the simulator C
wins by outputting b̂.

If the adversary B wins with output b̂ = 1, then the ciphertext c = (B contr ,
S⊕C.encode(s)) is an encapsulation of k = H1(pk‖s), meaning that C.decode(
SA⊕S⊕C.encode(s)) = s. This implies that SA is t or fewer bits apart from
S. This in turn implies one of two things; either that S was chosen from
the intersection of spheres centered at SA or SB because b = 1; or else that
S was drawn uniformly at random and happens to lie close to SA. In the
former case, the simulator who outputs b̂ = 1 wins as well. If b = 0, the latter

case occurs with a probability φ =
(∑t

k=0

(
`
k

))
/2`, i.e. the probability of a

uniformly random string S
$←− {0, 1}` having Hamming distance at most t

from a given SA ∈ {0, 1}`.

Pr[GameC
B

NKD(1λ) 6⇒ 0] = Pr[Game 3C
B

(1λ) 6⇒ 0]

= Pr[F ∨ (¬F ∧ CB(1λ)⇒ b)] = Pr[F] + Pr[¬F ∧ CB(1λ)⇒ b] (54)

≥ Pr[¬F] Pr[CB(1λ)⇒ b | ¬F] (55)

= (1− ε)
(
Pr[CB(1λ)⇒ b = 0 | ¬F] + Pr[CB(1λ)⇒ b = 1 | ¬F]

)
(56)

=
1− ε

2

(
Pr[CB(1λ)⇒ 0 | b = 0 ∧¬F] + Pr[CB(1λ)⇒ 1 | b = 1 ∧¬F]

)
(57)

= 1−ε
2

(
Pr[B(1λ)⇒ 0 ∧ HW(S ⊕ SA) > t | b = 0 ∧ ¬F] + Pr[B(1λ)⇒ 1 | b = 1 ∧ ¬F]

)
(58)

≥ 1−ε
2

(
Pr[B(1λ)⇒ 0 | b = 0 ∧ ¬F] · (1− φ) + Pr[B(1λ)⇒ 1 | b = 1 ∧ ¬F]

)
(59)

≥ 1−ε
2

(
Pr[B(1λ)⇒ 0 | b = 0 ∧ ¬F] + Pr[B(1λ)⇒ 1 | b = 1 ∧ ¬F]

)
· (1− φ)

(60)

= (1− φ) · Pr[¬F] · Pr[B(1λ)⇒ b] = (1− ε− φ+ εφ) · Pr[Game 2B(1λ)⇒ 1]
(61)

28

Now describe AdvNKDΠ (C) =
∣∣∣Pr[NKDCB

Π (1λ) 6⇒ 0]− 1+ε
2

∣∣∣ in terms of AdvIND-CCA
K (A).

Then we get:

AdvNKDΠ (C) = Pr[Game 3C(1λ) 6⇒ 0]− 1 + ε

2
(62)

≥ (1− ε− φ+ εφ) · Pr[Game 2B(1λ)⇒ 1]− 1 + ε

2
(63)

≥ (1− ε− φ+ εφ) ·

(
Pr[Game 1A(1λ)⇒ 1]− 2Q̂H3

(√
2(Q̂H1

+ 1)
√

2−λ

+

√
2(Q̂H2 + 1)

√
2−λ + 2

√
AdvNKDΠ

)
− C(Q̂H2 + 1)32−λ

)
− 1 + ε

2
. (64)

Isolate the quantity AdvIND-CCA
K (A) = Pr[Game 1A(1λ) ⇒ 1] − 1

2 and use the

inequality AdvNKDΠ (C) ≤ AdvNKDΠ . This yields the theorem statement:

AdvIND-CCA
K (A) ≤

AdvNKDΠ + 1+ε
2

(1− ε)(1− φ)
− 1

2
+ 2Q̂H3

(√
2(Q̂H1 + 1)

√
2−λ (65)

+

√
2(Q̂H2

+ 1)
√

2−λ + 2

√
AdvNKDΠ

)
+ C(Q̂H2

+ 1)32−λ . �

6 Conclusion

This paper introduces the noisy key agreement (NKA) protocol as a standalone
concept, and an appropriate security definition in the form of the NKD game.
Furthermore, it presents a transformation turning an NKA protocol into a key
encapsulation mechanism (KEM) secure in the quantum random oracle model.
The security proof relies on modeling the derandomization function H3 as a
variable output length random oracle, along with new techniques for refined
reasoning about the queries made by a quantum adversary and uses the NKA
protocol as a starting point.

The bound’s reliance on the error probabiliy ε is to be expected because
the occurrence of a protocol failure is equated to a complete loss of security.
However, there is also a term involving φ, the probability of a uniformly random
bitstring being less than t bits apart from a given one. The presence of this
parameter is an artifact of the NKD formalism as (1− ε)(1−φ)/2 upper bounds
any adversary’s advantage in that game. In practice, both ε and φ should be
made negligible in the security parameter.

Provided that this constraint is satisfied, our bound is much tighter than
the those of Targhi-Unruh and Hofheinz et al. [61,35]. In particular, the term
AdvNKDΠ , which captures the insecurity of the underlying primitive, is degraded
only by a square root, similar to the bound of Jiang et al. [39]. In contrast, the
insecurity of the underlying primitive degrades with a quartic root in Targhi-
Unruh and Hofheinz et al. All roots are the result either of the One-Way to
Hiding Lemma or else of the One-Wayness game.

29

With respect to the concrete security of the Ramstake proposal, a couple
of remarks are in order. First, the security bound explicitly features the error
probability ε which in the case of Ramstake is rather high — roughly 2−64 for a
security level of 128 bits against quantum computers. The bound therefore estab-
lishes less security than the claimed 128 bits. Nevertheless, when conditioning for
the absence of decapsulation failures, the bottleneck becomes preimage search
in a random function, and after that the NKD advantage. Moreover, it is by no
means clear how much and even whether security is lost in the event of a de-
capsulation failure, although answering this question is a task for cryptanalysis
rather than provable security.

Second, length of the hashes and seed is twice the claimed security level,
in accordance with a speedup due to Grover’s algorithm. However, the security
degradation in the present bound resulting from these hash functions is a fourth
root, much better than Grover’s algorithm from the attacker’s point of view. It
remains an open question to determine whether this fourth root degradation is
tight, i.e., whether it can be matched by an attack. We note that Hülsing et
al. [37] have a root-free insecurity function for preimage search applying specif-
ically in the context of compressing hash functions. While their result does not
apply in the present context, it is an uplifting indication that maybe the fourth
root degradation is not a necessary quality of a security bound.

Acknowledgements

The authors would like to thank Aysajan Abidin, Chris Peikert, Mike Ham-
burg, Keita Xagawa, anonymous reviewers, and others for useful comments and
feedback, missing references, and pointing out flaws in proofs.

References

1. Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A New Public-Key Cryptosys-
tem via Mersenne Numbers. IACR Cryptology ePrint Archive 2017, 481, version
20170530:072202

2. Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy Diffie-Hellman
Protocols (2010), https://pqc2010.cased.de/rr/03.pdf, PQCrypto 2010 (recent
results session)

3. Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy Diffie-
Hellman protocols or code-based key exchanged and encryption without mask-
ing (2010), https://rump2010.cr.yp.to/fae8cd8265978675893352329786cea2.

pdf, CRYPTO 2010 (rump session)

4. Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly Secure
Ring-LWE Based Key Encapsulation with Short Ciphertexts. In: Foley, S.N., Goll-
mann, D., Snekkenes, E. (eds.) ESORICS 2017, Part I. LNCS, vol. 10492, pp.
29–46. Springer (2017)

5. Alekhnovich, M.: More on average case vs approximation complexity. In: FOCS
2003. pp. 298–307. IEEE Computer Society (2003)

30

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconcilia-
tion. IACR Cryptology ePrint Archive 2016, 1157

7. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum Key Exchange
- A New Hope. In: Holz, T., Savage, S. (eds.) USENIX 2016. pp. 327–343. USENIX
Association (2016)

8. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum Attacks on Classical Proof Sys-
tems: The Hardness of Quantum Rewinding. In: IEEE FOCS 2014. pp. 474–483.
IEEE Computer Society (2014)

9. Anada, H., Arita, S.: Identification Schemes from Key Encapsulation Mechanisms.
IEICE Transactions 95-A(7), 1136–1155 (2012)

10. Barreto, P.S.L.M., Gueron, S., Gueneysu, T., Misoczki, R., Persichetti, E.,
Sendrier, N., Tillich, J.: CAKE: Code-based Algorithm for Key Encapsulation.
IACR Cryptology ePrint Archive 2017, 757

11. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the Definition of IND-CCA: When
and How Should Challenge Decryption Be Disallowed? J. Cryptology 28(1), 29–48
(2015)

12. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In:
CRYPTO ’93. LNCS, vol. 773, pp. 232–249. Springer (1993)

13. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS ’93. pp. 62–73. ACM (1993)

14. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: Fast Constant-Time Code-Based
Cryptography. In: Bertoni, G., Coron, J. (eds.) CHES 2013. LNCS, vol. 8086, pp.
250–272. Springer (2013)

15. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random Oracles in a Quantum World. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer (2011)

16. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the Ring! Practical, Quantum-Secure Key
Exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 2016. pp. 1006–1018. ACM (2016)

17. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-Quantum Key Exchange
for the TLS Protocol from the Ring Learning with Errors Problem. In: IEEE S&P
2015. pp. 553–570. IEEE Computer Society (2015)

18. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: CRYSTALS - Kyber: a CCA-secure module-lattice-based
KEM. IACR Cryptology ePrint Archive 2017, 634

19. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3), 181–199 (2009)

20. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer (2001)

21. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. IACR Cryptology ePrint Archive 2018,
383 (2018)

22. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In: CRYPTO ’98

23. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM J. Comput.
33(1), 167–226 (2003)

31

24. Cremers, C.J.F., Feltz, M.: Beyond eCK: Perfect Forward Secrecy under Actor
Compromise and Ephemeral-Key Reveal. Des. Codes Cryptography 74(1), 183–
218 (2015)

25. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat-Shamir Transformation in a
Quantum World. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 62–81. Springer (2013)

26. Deneuville, J., Gaborit, P., Zémor, G.: Ouroboros: A Simple, Secure and Efficient
Key Exchange Protocol Based on Coding Theory. In: Lange, T., Takagi, T. (eds.)
PQCrypto 2017. LNCS, vol. 10346, pp. 18–34. Springer (2017)

27. Dent, A.W.: A Designer’s Guide to KEMs. In: Paterson, K.G. (ed.) IMA 9th Conf.
Cryptography and Coding. LNCS, vol. 2898, pp. 133–151. Springer (2003)

28. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Informa-
tion Theory 22(6), 644–654 (1976)

29. Ding, J., Lie, X., Lin, X.: A Simple Provably Secure Key Exchange Scheme Based
on the Learning with Errors Problem. IACR Cryptology ePrint Archive 2012, 688
(2012)

30. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO ’86. LNCS, vol. 263,
pp. 186–194. Springer (1986)

31. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Des. Codes Cryptography 76(3),
469–504 (2015)

32. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption
at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC ’99. LNCS, vol. 1560, pp.
53–68. Springer (1999)

33. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
Miller, G.L. (ed.) ACM STOC 1996. pp. 212–219. ACM (1996)

34. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J. (ed.) ANTS-III, 1998. LNCS, vol. 1423, pp. 267–288.
Springer (1998)

35. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A Modular Analysis of the Fujisaki-
Okamoto Transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer (2017)

36. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-Speed Key Encapsu-
lation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol.
10529, pp. 232–252. Springer (2017)

37. Hülsing, A., Rijneveld, J., Song, F.: Mitigating Multi-target Attacks in Hash-Based
Signatures. In: Cheng, C., Chung, K., Persiano, G., Yang, B. (eds.) PKC 2016, Part
I. LNCS, vol. 9614, pp. 387–416. Springer (2016)

38. Jao, D., Feo, L.D.: Towards Quantum-Resistant Cryptosystems from Supersingular
Elliptic Curve Isogenies. In: Yang, B. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer (2011)

39. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure
KEM without additional hash. IACR Cryptology ePrint Archive 2017, 1096 (2017)

40. Jin, Z., Zhao, Y.: Optimal Key Consensus in Presence of Noise. CoRR
abs/1611.06150 (2016)

41. Krawczyk, H.: SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer (2003)

32

42. LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger Security of Authenticated
Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol.
4784, pp. 1–16. Springer (2007)

43. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption.
In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer (2011)

44. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. J. ACM 60(6), 43:1–43:35 (2013)

45. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EURO-
CRYPT ’88. LNCS, vol. 330, pp. 419–453. Springer (1988)

46. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DNS
Progress Report 4244, 114–116 (1978)

47. Melchor, C.A., Blazy, O., Deneuville, J., Gaborit, P., Zémor, G.: Efficient Encryp-
tion from Random Quasi-Cyclic Codes. CoRR abs/1612.05572 (2016)

48. National Institute for Standards and Technology (NIST): FIPS PUB 202, SHA-3
Standard: Permutation-Based Hash and Extendable-Output Functions (2015)

49. National Institute for Standards and Technology (NIST): Post-quantum
crypto standardization (2018), http://csrc.nist.gov/groups/ST/

post-quantum-crypto/

50. National Institute for Standards and Technology (NIST): Submission to
the NIST call for PQC proposals. (2018), https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions

51. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory. Problemy Upravlenija i Teorii Informacii.
15, 159–166 (1986)

52. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge university press (2010)

53. Peikert, C.: Some recent progress in lattice-based cryptography. In: Reingold, O.
(ed.) TCC 2009. Lecture Notes in Computer Science, vol. 5444. Springer (2009),
http://web.eecs.umich.edu/~cpeikert/pubs/slides-tcc09.pdf, invited talk.

54. Peikert, C.: Lattice Cryptography for the Internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer (2014)

55. Porras, J., Baena, J., Ding, J.: Zhfe, a new multivariate public key encryption
scheme. In: Mosca, M. (ed.) PQCrypto 2014. Lecture Notes in Computer Science,
vol. 8772, pp. 229–245. Springer (2014)

56. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO ’91. LNCS, vol.
576, pp. 433–444. Springer (1991)

57. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: FOCS 35. pp. 124–134. IEEE Computer Society (1994)

58. Song, F.: A Note on Quantum Security for Post-Quantum Cryptography. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer (2014)

59. Szepieniec, A., Ding, J., Preneel, B.: Extension Field Cancellation: A New Central
Trapdoor for Multivariate Quadratic Systems. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 182–196. Springer (2016)

60. Tao, C., Diene, A., Tang, S., Ding, J.: Simple Matrix Scheme for Encryption. In:
PQCrypto 2013

61. Targhi, E.E., Unruh, D.: Post-Quantum Security of the Fujisaki-Okamoto and
OAEP Transforms. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS,
vol. 9986, pp. 192–216 (2016)

33

62. Tolhuizen, L., Rietman, R., Garćıa-Morchón, Ó.: Improved key-reconciliation
method. IACR Cryptology ePrint Archive 2017, 295

63. Unruh, D.: Non-Interactive Zero-Knowledge Proofs in the Quantum Random Ora-
cle Model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS,
vol. 9057, pp. 755–784. Springer (2015)

64. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49:1–49:76
(2015)

65. Unruh, D.: Computationally Binding Quantum Commitments. In: Fischlin, M.,
Coron, J. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 497–527.
Springer (2016)

66. Yoneyama, K.: Compact Authenticated Key Exchange from Bounded CCA-Secure
KEM. IEICE Transactions 98-A(1), 132–143 (2015)

67. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer (2012)

68. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Information & Computation 15(7&8), 557–567 (2015), http://www.rintonpress.
com/xxqic15/qic-15-78/0557-0567.pdf

34

A Concrete Instantiations of NKA Protocols

We now consider several concrete instantiations of noisy key agreement that
are used in the literature to generate key encapsulation mechanisms or public
key encryption schemes. In all cases, the participants of the protocol converge to
mathematical objects whose distance is small in some sense. We make abstraction
of this notion of smallness and represent the mathematical objects as bitstrings
(denoted by x·y) at which point the Hamming weight metric can be used.

It is worth emphasizing that the concrete problems we identify must be as-
sumed to be hard, even in the context of quantum computers, in order for the
protocol and KEM or PKE to be secure. Nevertheless, the NKD Assumption
is the only requirement; the other problems are hard on average if the NKD
Assumption is true.

NewHope [7]. NewHope defines a ring Rq ∼= Z[X]/〈q,Xn + 1〉 and a centered
binomial distrubution Ψn16 over Rq. Elements that are sampled according to Ψn16

are considered small. The protocol functionalities and noisy key views are as
follows.

Init: generate a ∈ Rq from seed
AContr: sample s, e ∼ Ψn16 and transmit b = as + e
BContr: sample s′, e′ ∼ Ψn16 and transmit u = as′ + e′

AConv: compute v = us
BConv: compute v′ = bs′

SA: xvy
SB : xv′y

This description gives rise to the following hard problems. The state recovery
problems are instances of Ring-LWE.

A State Recovery (ASR).
Input: a,b ∈ Rq s.t. b = as + e for
some e, s ∼ Ψn16

Task: find s, e ∼ Ψn16 s.t. b = as + e

B State Recovery (BSR).
Input: a,u ∈ Rq s.t. u = as′+e′ for
some e′, s′ ∼ Ψn16

Task: find s, e ∼ Ψn16 s.t. u = as′+e′

Noisy Key Search (NKS).
Input: a,b,u ∈ Rq such that b = as + e and u = as′ + e′ for some
s, s′, e, e′ ∼ Ψn16

Task: find S ∈ {0, 1}` such that HW(S⊕ xvy) ≤ t and HW(S⊕ xv′y) ≤ t,
where v = us and v′ = bs′.

Noisy Key Distinguishing (NKD).
Input: a,b,u ∈ Rq and S ∈ {0, 1}` such that b = as+e and u = as′+e′

for some s, s′, e, e′ ∼ Ψn16

Task: output 1 if HW(S ⊕ xvy) ≤ t and HW(S ⊕ xv′y) ≤ t, where v = us
and v′ = bs′; and 0 otherwise.

35

Ramstake [50]. Ramstake operates on integers modulo a large Mersenne prime
p, the set of which we denote by Zp. Smallness is associated with having a bit
expansion of low Hamming weight. We denote this set of sparse integers by S.
The functionalities and noisy key views are as follows.

Init: sample A ∈ Zp
AContr: sample b, c

$←− S and transmit D = Ab+ cmod p

BContr: sample b′, c′
$←− S and transmit D′ = Ab′ + c′mod p

AConv: compute E = D′amod p
BConv: compute E′ = Da′mod p
SA: xEy
SB : xE′y

The problems of recovering either participant’s state is in fact an affine
variant of the low-Hamming weight ratio problem introduced by Aggarwal et
al. [1]. Paraphrased but without loss of generality, this problem asks to find
low-Hamming-weight integers f and g such that the given integer H satisfies
f × (−H) + g = 0mod p.

A State Recovery (ASR).
Input: A,D ∈ Zp s.t. D = Ab+ c for
some b, c ∈ S
Task: find b, c ∈ S s.t. D = Ab+ c

B State Recovery (BSR).
Input: A,D′ ∈ Zp s.t. D′ = Ab′ + c′

for some b′, c′ ∈ S
Task: find b′, c′ ∈ S s.t. D′ = Ab′+c′

Noisy Key Search (NKS).
Input: A,D,D′ ∈ Zp such that D = Ab + c and D′ = Ab′ + c′ for some
b, c, b′, c′ ∈ S
Task: find S ∈ {0, 1}` such that HW(S⊕xEy) ≤ t and HW(S⊕xE′y) ≤ t,
where E = D′a and E′ = Da′.

Noisy Key Distinguishing (NKD).
Input: A,D,D′ ∈ Zp, S ∈ {0, 1}` such that D = Ab+c and D′ = Ab′+c′

for some b, c, b′, c′ ∈ S
Task: output 1 if HW(S⊕xEy) ≤ t and HW(S⊕xE′y) ≤ t, where E = D′a
and E′ = Da′; and 0 otherwise.

Ouroboros [26]. Ouroboros uses the ring R = F2[X]/〈Xn − 1〉, in which
elements are considered small if their Hamming weight is less than a given bound.
Let Snw ⊂ R denote the subset of ring elements whose Hamming weight is w.
The functionalities and noisy key views are as follows.

Init: generate h ∈ R from seed

AContr: sample x,y
$←− Snw and transmit s = xh + y

BContr: sample r1, r2
$←− Snw and transmit sr = r1 + hr2

AConv: compute SA = ysr
BConv: compute SB = sr2

SA: xSAy
SB : xSBy

36

While the values SA and SB are computed, both are instantly added to
other values. Bob obtains sε = SB + er + ε for specific values of er and ε, and
transmits this value alongside sr. Alice obtains ec = sε − SA, which is a noisy
codeword from which the specialized decoder can recover ε. Ouroboros thus uses
the transmission-based approach, and makes clever use of the decoder provided
by the algebraic structure on which the noisy key agreement protocol is based.

A State Recovery (ASR).
Input: h, s ∈ R s.t. s = xh + y for
some x,y ∈ Snw
Task: find x,y ∈ Sn2 s.t. s = hx + y

B State Recovery (BSR).
Input: h, sr ∈ R s.t. sr = r2h + r2 for
some r1, r2 ∈ Snw
Task: find r1, r2 ∈ Sn2 s.t. s2 = hr2+r1

Noisy Key Search (NKS).
Input: h, s, sr ∈ R such that s = xh + y and sr = hr2 + r1 for some
x,y, r1, r2 ∈ Snw
Task: find S ∈ {0, 1}` such that HW(S⊕xSAy) ≤ t and HW(S⊕xSBy) ≤ t,
where SA = srx and SB = sr2.

Noisy Key Distinguishing (NKD).
Input: h, s, sr ∈ R, S ∈ {0, 1}` such that s = xh + y and sr = hr2 + r1

for some x,y, r1, r2 ∈ Snw
Task: output 1 if HW(S ⊕ xSAy) ≤ t and HW(S ⊕ xSBy) ≤ t, where
SA = srx and SB = sr2; and 0 otherwise.

SIDH [38]. The supersingular isogeny Diffie-Hellman (SIDH) is the only noise-
free key agreement protocol on this list, and as such achieves identical views
on the session key for both parties. The protocol relies on the commutativity
of random walks in an isogeny graph of supersingular elliptic curves. We use
the following standard notation, denoting elliptic curves by E; k-order torsion
subgroups by E[k]; isogenies by ψ, φ; base points by P,Q; j-invariant by j(·).
Generally speaking, `A = 2 and `B = 3 and the exponents eA and eB are large,
say on the order of several hundreds. PA, QA ∈ E[`eAA] are elements of the `eAA -
order torsion subgroup of E, and vice versa for B. The protocol’s functionalities
and session key can be summarized as follows.

37

Init: select E0
$←− E(Fq); PA, QA

$←− E0[`eAA]; PB , QB
$←− E0[`eBB]

AContr: sample mA, nA
$←− Z/`AeAZ; compute RA = mAPA+nAQA;

find φ : E(Fq)→ E(Fq) such that ker φ = 〈RA〉;
transmit EA = φ(E0), φ(PB), φ(QB)

BContr: samplemB , nB
$←− Z/`BeBZ; computeRB = mBPB+nBQB ;

find ψ : E(Fq)→ E(Fq) such that kerψ = 〈RB〉;
transmit EB = ψ(E0), ψ(PA), ψ(QA)

AConv: compute R′A = nAψ(PA) +mAψ(QA) ∈ EB ;
find φ′ : E(Fq)→ E(Fq) such that ker φ′ = 〈R′A〉;
compute EBA = φ′(EB)

BConv: compute R′B = nBφ(PB) +mBφ(QB) ∈ EA;
find ψ′ : E(Fq)→ E(Fq) such that kerψ′ = 〈R′B〉;
compute EAB = ψ′(EA)

SA: xj(EBA)y
SB : xj(EAB)y

The original SIDH paper already explicitly considers the hard problems
associated with the protocol. They are called the Computational Supersingu-
lar Isogeny (CSSI) problem for ASR or BSR; Supersingular Computational
Diffie-Hellman (SSCDH) problem for NKS; and Supersingular Decisional Diffie-
Hellman (SSDDH) problem for NKD. We adopt this nomenclature.

Computational Supersingular Isogeny Problem (CSSI).
Input: E0, EA = φ(E0);PB , QB , PA, QA ∈ E0;φ(PB), φ(QB) ∈ EA for
some isogeny φ : E0 → EA with ker φ = 〈nAPA +mAQA〉
Task: find a generator for 〈R〉 = 〈nAPA +mAPA〉 = ker φ

Supersingular Isogeny Computational Diffie-Hellman (SS-
CDH) Problem.
Input: E0, EA = φ(E0), EB = ψ(E0); PA, QAPB , QB ∈ E0;
φ(PB), φ(QB) ∈ EA;ψ(PA), ψ(QA) ∈ EB for isogenies φ, ψ : E0 → EA
with ker φ = 〈nAPA +mAQA〉 and kerψ = 〈nBPB +mBQB〉
Task: find j(EAB) where EAB ∼= E0/〈nAPA+mAQA+nBPB+mBQB〉.

Supersingular Isogeny Decisional Diffie-Hellman (SSDDH)
Problem.
Input: E0, EA = φ(E0), EB = ψ(E0); PA, QAPB , QB ∈ E0;
φ(PB), φ(QB) ∈ EA;ψ(PA), ψ(QA) ∈ EB ; j ∈ Fq for isogenies φ, ψ :
E0 → EA with ker φ = 〈nAPA +mAQA〉 and kerψ = 〈nBPB +mBQB〉
Task: output 1 if j = j(E0/〈nAPA +mAQA + nBPB +mBQB〉); and 0
otherwise.

38

B Noisy Key Security

In the previous we have defined, with some justification, the security of NKA
protocols in terms of the NKD game. Here we extend this justification by con-
sidering the most general possible security definition, i.e., an adaptation of the
Canetti-Krawczyk session key security (SK-security) notion in the authenticated
links model [20], which we call noisy key security (NK-security). It turns out that
NK-security is equivalent to the hardness of NKD, up to a polynomial factor.

B.1 NK-Security

Adapting SK-security to the noisy case presents two difficulties.
First, Alice and Bob do not agree on the same key but on two different

views SA and SB which are close under the Hamming metric. The adversary is
deemed successful if he can distinguish between a uniformly random key and one
drawn at random from the intersection of radius-t spheres centered at SA and
SB . This extension captures the special case of noise-free key agreement of the
Canetti-Krawczyk model, in which this intersection collapses to a single point
SA = SB .

Second, there is a small but nonzero probability of failure even when the
adversary does not interfere and it is conceivable that approximating either
Alice’s view or Bob’s view of the session key is easier in this case. To deal with
this issue, the security game aborts when the adversary picks a failing game.
This choice is the same for the NKD game.

Like Canetti-Krawczyk’s definition, ours considers an adversary A and any
number of parties Pi each pair of which can run any number of sessions. The
adversary can

– see, block, resend all messages passed between parties (but not modify them);
– schedule events, i.e., instruct parties to start sessions or proceed with the

next step;
– expire sessions, i.e., instruct parties to forget the agreed-upon session key or

associated state;
– expose sessions, either though
• session-state reveal, which reveals a party’s session state; or
• session-key query, which reveals one party’s view of the session key; or
• corruption, in which case the adversary learns the entire working memory

of a targeted party whose subsequent actions are all directed by the
adversary.

The adversary chooses among all the unexposed sessions one test session, and
if this test session is unsuccessful (HW(SA⊕SB) > t) the game aborts. Otherwise

the adversary receives a string S which is, depending on a coin flip b
$←− {0, 1},

either either drawn from the intersection of radius-t spheres centered at SA and
SB , or uniformly at random from the set of all bit strings of the same length.
The adversary outputs a bit b̂ guessing at the distribution from which S was

39

drawn; he wins if he guesses correctly. The protocol is noisy key secure in the
authenticated links model if no polynomial-time quantum adversary has more
than a negligible distinguishing advantage. This notion is captured in words by
Definition 4. Pseudocode for the oracles’ behavior and the game mechanics is
given in Appendix B.2.

Definition 4 (noisy key security). Let Π = (Init, AContr, BContr, AConv,
BConv) be a noisy key agreement protocol between parties PA and PB, with cor-
rectness error ε. The game NK defines an adversary A··· = (A···1 ,A

···
2) with oracle

access to the following functions:

– start(PA, PB) instructs parties PA and PB to start a new session with a fresh
session id;

– deliver(receiver , sender , session id , contribution) delivers the unaltered con-
tribution message from receiver to sender if both are involved in session id
session id;

– contribute(party , session id) instructs participant party to generate a contri-
bution message for session session id;

– converge(party , session id , contribution) instructs participant party to con-
verge, and thus obtain their view of the shared noisy session key;

– expire(party , session id) instructs participant party to consider session ses-
sion id expired, that is to say inactive for all intents and purposes;

– reveal state(party , session) reveals the secret state of participant party for
session session id, but as a result the session becomes exposed;

– query key(party , session id) reveals party’s view of the shared noisy session
key from session session id, but as a result the session becomes exposed;

– corrupt(party , code) instructs participant party to execute code with access to
party’s state and with capability to send authentic-looking messages on behalf
of party, but as a result all of party’s sessions become exposed.

The NK game proceeds in two phases: in phase 1, the adversary A···1 runs with
access to all the above oracles for a polynomially bounded number of time steps
and as a result outputs a secret state and a test session test session id. If session
test session id fails (HW(SA ⊕ SB) > t) or if it has been exposed (through an
invocation of reveal state, query key, or corrupt) then the game aborts and outputs

⊥. Phase 2 starts when the challenger flips a coin b and if b = 0 he sets S
$←−

{0, 1}` but if b = 1 then S
$←− {x ∈ {0, 1}` |HW(x⊕ SA) ≤ t ∧ HW(x⊕ SB) ≤ t}

where SA and SB are the views of the shared noisy session key of parties PA
and PB associated with session test session id. Then A···2 is run with access to
all oracles on input (state, S) for another polynomially bounded number of steps,

after which he outputs a guess b̂. The game outputs 1 if b = b̂ and 0 otherwise.
Then the noisy key agreement protocol is noisy key secure (NK-secure) in

the authenticated links model if for all polynomial time quantum adversaries
A··· who starts k sessions and corrupts r of them, their advantage AdvNKΠ (A···) is
negligible:

AdvNKΠ (A···)
4
=

∣∣∣∣∣Pr[GameANK(1λ) 6⇒ 0]−
1 + εk−rk + r

k

2

∣∣∣∣∣ ≤ negl(λ) . (66)

40

This expression for the adversary’s advantage is rather complex but certainly
valid. The adversary who corrupts every session he starts in order to engineer
game abortions, has advantage zero. The same is true for the adversary who does
not corrupt any session but flips a coin and guesses accordingly. The adversary’s
advantage remains zero for any combination of these two extremes. Therefore,
the expression captures the adversary’s advantage over a näıve strategy.

We stress that a NKA protocol must consist of two independent messages,
one in each direction, as formalized in the syntax. While the Canetti-Krawczyk
security model does not impose any bounds on the number of messages ex-
changed or their scheduling, in the case of NKA this restriction on the number
of passes is critical; if the parties involved are allowed more then they can agree
on an exact key simply by transmitting auxiliary information to correct errors.

Game 9: NKA···(1λ)

1. party states ← [∅ for all parties]
2. authentic messages, global sessions ← empty lists
3. session counter ← 0
4. test session id , state ← A···1 (1κ)
5. if global sessions[test session id].exposed = True then:
6. return ⊥
7. PA ← global sessions[test session id].A
8. PB ← global sessions[test session id].B
9. SA ← party states[PA].sessions[test session id].S

10. SB ← party states[PB].sessions[test session id].S
11. if HW(SA ⊕ SB) > t then:
12. return ⊥
13. b

$←− {0, 1}
14. if b = 1 then:

15. S
$←− {x ∈ {0, 1}` |HW(x⊕ SA) ∧ HW(x⊕ SB)}

16. else:

17. S
$←− {0, 1}`

18. b̂← A···2 (state, S)

19. return [[b = b̂]]

41

B.2 Pseudocode for Oracle Behavior

Oracle 10: deliver(·)
1. define deliver(receiver, sender, session id , contribution) as:
2. if (receiver, sender, session id , contribution) 6∈ authentic messages then:
3. return ⊥
4. if session id 6∈ party states[receiver].sessions.keys() then:
5. return ⊥
6. if session id 6∈ party states[sender].sessions.keys() then:
7. return ⊥
8. party states[receiver].sessions[session id].contribution = contribution

Oracle 11: start(·)
1. define start(PA, PB) as:
2. global sessions.append(global session(
3. A = PA,
4. B = PB ,
5. exposed = False))

6. iparams ← Π.Init(1κ)
7. party states[PA].sessions.append(session(
8. key = session counter ,
9. A = PA,

10. B = PB ,
11. params = iparams,
12. state = ∅,
13. contribution = ∅,
14. S = 0`))

15. party states[PB].sessions.append(session(
16. key = session counter ,
17. A = PA,
18. B = PB ,
19. params = iparams,
20. state = ∅,
21. contribution = ∅,
22. S = 0`))

23. session counter ← session counter + 1

42

Oracle 12: contribute(·)
1. define contribute(party, session id) as:
2. if session id 6∈ party states[party].sessions.keys() then:
3. return ⊥
4. session ← party states[party].sessions[session id]
5. if party = session.A then:
6. session.state, session.contribution ← Π.AContr(session.params)
7. else:
8. session.state, session.contribution ← Π.BContr(session.params)

9. party states[party].sessions[session id] ← session
10. msg ← message(
11. sender = party,
12. receiver = {session.A, session.B}\party ,
13. session id = session id,
14. contribution = session.contribution)

15. authentic messages.append(msg)
16. return msg . allow adversary to block

Oracle 13: converge(·)
1. define converge(party, session id, contribution) as:
2. if session id 6∈ party states[party].sessions.keys() then:
3. return ⊥
4. session ← party states[party].sessions[session id]
5. other ← {session.A, session.B}\party
6. if (other, party, session id, contribution) 6∈ authentic messages then:
7. return ⊥
8. if party = session.A then:
9. session.S ← Π.AConv(session.state, contribution)

10. else:
11. session.S ← Π.BConv(session.state, contribution)
12. session.state = ∅
13. party states[party].sessions[session id] ← session

Oracle 14: expire(·)
1. define expire(party, session id) as:
2. if session id 6∈ party states[party].sessions.keys then:
3. return ⊥
4. party states[party].sessions[session id].S = ∅

43

Oracle 15: reveal state(·)
1. define reveal state(party, session id) as:
2. if session id 6∈ party states[party].sessions.keys then:
3. return ⊥
4. global sessions[session id].exposed ← True
5. return party states[party].sessions[session id].state

Oracle 16: query key(·)
1. define query key(party, session id) as:
2. if session id 6∈ party states[party].sessions.keys then:
3. return ⊥
4. global sessions[session id].exposed ← True
5. return party states[party].sessions[session id].S

Oracle 17: corrupt(·)
1. define corrupt(party, code) as:
2. for all session ∈ party states[party].sessions do:
3. if session.state 6= ∅ or session.S 6= ∅ then:
4. global sessions[session.session id].exposed ← True
5. execute(code) with access to:
6. • authentic messages.append(sender = party , ·, ·, ·)
7. • party states[party]

Some explanation about the variables’ purpose and usage is in order. In the
following enumeration we mix descriptions of variables and their types.

– session id, party id : integer. These identifiers are just integers.
– party state : list of dict mapping session id to session. This variable is a list

containing for each party i a dict called sessions, which is a dictionary map-
ping session ids to session objects.

– session. This type is a tuple containing the following objects:

• key : session id. Integer uniquely identifying the session and counterpart-
session pair. (In other words, the other party involved in this session has
a matching session and it has the same key.)

• A : party id. This party id indicates the party who is taking on the role
of A in the NKA session.

• B : party id. This party id indicates the party who is taking on the role
of B in the NKA session.

• params : ParSp. This object takes on the value iparams as generated by
the Init function of the NKA protocol.

• state : StateSp. This variable takes on the value of A state or B state in
the NKA protocol.

• contribution : ContrSp. This variable takes on the value of this party’s
contribution in the NKA protocol.

44

• S : {0, 1}`. This is the view of the shared noisy key as held by the party
in question.

– global sessions : list of global session. This list of global session objects con-
tains big picture information on superficial session attributes like the parties
involved and whether or not the session has been exposed.

– global session. This object consists of the following variables:

• A : party id. This variable is the party id of the party who assumes the
role of A in the NKA session pair.

• B : party id. This variable is the party id of the party who assumes the
role of B in the NKA session pair.

• exposed : {True,False}. Boolean variable indicating whether the session
has been exposed or not.

– authentic messages : list of message objects, representing all information
transmitted between parties.

– message. This object consists of the following variables:

• sender : party id. This variable identifies the originator of the message.

• receiver : party id. This variable identifies the intended receiver of the
message.

• session id : session id. This variable identifies the session pair to which
this protocol contribution pertains.

• contribution : ContrSp. The actual content of the message: an NKA pro-
tocol contribution.

– test session id : session id. The identifier of the test session as output by the
adversary at the end of the first phase.

– state : {0, 1}∗. The adversary’s state at the end of the first phase; recording
this state allows the adversary to pick up where it left off.

– PA, PB : party id. These identifiers determine the parties involved in the
session pair that was chosen as test session by the adversary.

– SA, SB : {0, 1}`. These are the views of the noisy session key associated with
the two parties in the session pair that was chosen as test session by the
adversary.

– S : {0, 1}`. Challenge key, to be fed to the adversary in the second phase.
The adversary wins if he can tell whether S was drawn from a uniform
distribution or from the intersection of two radius-t spheres centered at SA
and SB .

– b, b̂ : {0, 1}. Bits, one determining whether to sample S at random or from
the intersection of spheres; the other being the adversary’s guess.

B.3 NK-security and NKD Assumption

Theorem 3. The NKD Assumption is necessary and sufficient for NK-security.

This theorem is an immediate corollary of the following two lemmas, both of
which have straightforward proofs.

45

Lemma 5 (NKD =⇒ NK). Let A be a polynomial time quantum adversary
in the NK game with respect to an NKA protocol Π with failure probability ε,
and let k and r be the number of sessions started and corrupted, respectively,

by A, and
1+ε k−r

k + r
k

2 + ζ its winning probability. Then there is a polynomial
time quantum algorithm B that wins the NKD game in polynomial time with
probability 1+ε

2 + ζ
k−r .

Proof. The arguments of B are (iparams,A contr ,B contr , S). B chooses a ran-

dom session identifier id
$←− {0, . . . , k − 1} and simulates the NK game. The

oracles are defined in accordance with Definition 4 except where the session
with session id = id is concerned. For this session, the instance parameters and
both parties’ contributions are set to iparams, A contr, and B contr. The views
of the session keys are set to the same random bitstring of length `.

The adversary A···1 (1λ) is run and if its output test session id 6= k then B

flips a coin b̂
$←− {0, 1} and returns that. Otherwise A···2 (state, S) is run, where

S is B’s fourth argument. If session id is exposed, B returns a random coin flip

b̂
$←− {0, 1} and otherwise B returns the output of b̂← A···2 . The exact behavior of

B and the modified oracle interface it provides the simulated adversary A with,
are presented in Algorithm 18 and oracle contribute′, with the other oracles being
identically defined to those in Definition 4.

The tuple (iparams, A contr, B contr) associated with each session is iden-
tically distributed, including session id . Therefore the probability that A···1 ’s
output test session id = id is exactly 1/k. Let z be shorthand for the output of

the NKD game, i.e., z ← NKDBA···

(1λ).

46

Algorithm 18: BA···(iparams,A contr ,B contr , S)

1. party states ← [∅ for all parties]
2. authentic messages, global sessions ← empty lists
3. session counter ← 0

4. id
$←− {0, . . . , k − 1}

5. test session id , state ← A···1 (1κ)
6. if test session id 6= id then:
7. return ⊥
8. b̂← A···2 (state, S)
9. if global sessions[id].exposed = True then:

10. b̂
$←− {0, 1}

11. return b̂

Oracle 19: contribute′

1. define contribute(party, session id) as:
2. if session id 6∈ party states[party].sessions.keys() then:
3. return ⊥
4. session ← party states[party].sessions[session id]
5. if party = session.A then:
6. session.state, session.contribution ← Π.AContr(session.params)
7. if session id = id then:
8. session.contribution ← A contr

9. else:
10. session.state, session.contribution ← Π.BContr(session.params)
11. it session id = id then:
12. session.contribution ← B contr

13. party states[party].sessions[session id] ← session
14. msg ← (
15. sender = party,
16. receiver = {session.A, session.B}\party ,
17. session id = session id,
18. contribution = session.contribution)

19. authentic messages.append(msg)
20. return msg . allow adversary to block

47

Then we have:

Pr[NKDBA···

(1λ) 6⇒ 0]
4
= Pr[z 6= 0] (67)

= Pr[z 6= 0 | z 6=⊥] · Pr[z 6=⊥] + Pr[z 6= 0 | z =⊥] · Pr[z =⊥] (68)

= ε+ Pr[z 6= 0 | z 6=⊥ ∧test session id = id] · Pr[test session id = id] · (1− ε)
+ Pr[z 6= 0 | z 6=⊥ ∧ test session id 6= id] · Pr[test session id 6= id] · (1− ε)

(69)

= Pr[NKA···(1λ) 6⇒ 0 | 6⊥] · 1

k
· (1− ε) + ε+

1

2
· k − 1

k
· (1− ε) (70)

=
(

Pr[NKA···(1λ) 6⇒ 0 | 6⊥] · Pr[6⊥]

+ Pr[NKA···(1λ) 6⇒ 0 | ⊥] · Pr[⊥]

− Pr[NKA···(1λ) 6⇒ 0 | ⊥] · Pr[⊥]
)
· (Pr[6⊥])−1 · 1

k
· (1− ε)

+ ε+
1

2
· k − 1

k
· (1− ε) (71)

= Pr[NKA···(1λ) 6⇒ 0] · (Pr[6⊥])−1 · 1

k
· (1− ε)

−
(
r

k
+
k − r
k

ε

)
· (Pr[6⊥])−1 · 1

k
· (1− ε)

+ ε+
1

2
· k − 1

k
· (1− ε) (72)

= Pr[NKA···(1λ) 6⇒ 0] ·
(

k

k − r − εk + εr

)
· 1

k
· (1− ε)

−
(
r

k
+
k − r
k

ε

)
·
(

k

k − r − εk + εr

)
· 1

k
· (1− ε)

+ ε+
1

2
· k − 1

k
· (1− ε) (73)

=
1

k − r
Pr[NKA···(1λ) 6⇒ 0]− ε

k
− r

k(k − r)
+ ε+

1− ε
2
· k − 1

k
(74)

=
1

k − r

(
1 + k−r

k ε+ r
k

2
+ ζ

)
− ε

k
− r

k(k − r)
+ ε+

1− ε
2
· k − 1

k
(75)

=
ζ

k − r
+

1
2

k − r
+

ε

2k
+

r
2

k(k − r)
− ε

k
− r

k(k − r)
+ ε+

1− ε
2
· k − 1

k
(76)

=
1 + ε

2
+

ζ

k − r
(77)

ut

Lemma 6 (NK =⇒ NKD). Let A be a polynomial time quantum adversary
in the NKD game with respect to an NKA protocol Π with failure probability ε,
whose winning probability is 1+ε

2 + ζ. Then there is a polynomial time quantum

48

algorithm B··· that wins the NK game with respect to Π in polynomial time with
probability 1+ε

2 + ζ.

Proof. The adversary B··· = (B···1 ,B
···
2) behaves as follows. In phase 1, B···1 starts

a session between two random parties and instructs both of them to contribute
and converge; he thus obtains session id , iparams,A contr ,B contr . His output
is then (test session id = session id , state = (iparams,A contr ,B contr)).

In phase 2, B···2 runs on input (state = (iparams,A contr ,B contr), S). He
invokes A as an NKD-oracle, namely by passing it the arguments (iparams,

A contr , B contr , S) and obtaining A’s guess b̂, which is also B···2 ’s output.
Whenever A wins, so does B···, so the theorem follows. ut

The reduction NKD =⇒ NK loses a security factor 1/(k− r), where k is the
number of sessions started by the NK adversary and r is the number of sessions
corrupted. However, this security loss is a necessary consequence of restricting
the number of available sessions to one, as in the NKD game. NK-security and
the NKD Assumption remain asymptotically equivalent.

49

