
Delegation of Decryption Rights with Revocability from Learning with

Errors

Abstract

The notion of decryption rights delegation was initially introduced by Blaze et al. in EUROCRYPT 1998. It,
defined as proxy re-encryption, allows a semi-trusted proxy to convert a ciphertext intended for a party to another
ciphertext of the same plaintext, without knowledge of the underlying plaintext and decryption key. It has been
explored to many real-world applications, e.g., encrypted email forwarding. However, the intrinsic all-or-nothing
share feature of proxy re-encryption yields a limitation that the share cannot be revoked. This may hinder the
scalability of its applications in practice. In this paper, for the first time, we define the concept of revocability
in terms of decryption rights delegation. The novel concept enables data owner to revoke the shared decryption
rights when needed. Inspired by the seminal lattice-based proxy re-encryption proposed in PKC 2014, we design
a concrete lattice-based construction which satisfies the notion. In our construction, we make use of binary-tree
structure to implement the revocation of decryption rights, so that the update of re-encryption key is reduced
to O(logN) (instead of O(N)), where N is the maximum number of delegatee. Furthermore, the security of our
scheme is based on the standard learning with errors problem, which could be reduced to the worst-case hard
problems (such as GapSVP and SIVP) in the context of lattices. The scheme is chosen ciphertext secure in the
standard model. As of independent interest, our scheme achieves both backward and forward security, which
means that once a user is revoked after a time period t, it cannot gain access to all encrypted files before and
after t.

Keywords: Revocability, proxy re-encryption, lattice, learning with errors.

1 Introduction

The concept of proxy re-encryption (PRE) was first introduced by Blaze, Bleumer and Strauss[7] in EUROCRYPT
1998 to enable an intermediate proxy to convert a ciphertext of Alice to that of Bob without compromising the
information of the underlying plaintext. Alice here is known as the delegator while Bob is the delegatee. The
semi-trusted proxy can fulfil the conversion with help of a re-encryption key given by the delegator. PRE has been
employed into many real-world applications, e.g., encrypted email forwarding, and domain interoperability manager
(DIM) module in digital rights management (DRM) systems.

As for the first example, while Alice is on vacation, the email proxy may convert Alice’s incoming encrypted emails
to those which can be decrypted by secretary Bob via the re-encryption key given by Alice, so that Bob can handle
the emails on behalf of Alice. The PRE mechanism provides scalable and convenient features over data sharing: (i)
Alice does not need always to be online; (ii) Alice does get rid of download-decrypt-and-re-encrypt mode to relieve
computation and communication complexity in data sharing; (iii) Alice does not have to share her secret/decryption
key with Bob for encrypted data sharing.

PRE can also be employed to DRM systems. Digital content providers may leverage DRM mechanism to protect
the ownership and access rights of digital content from being infringed by malicious Internet users. A DRM system
is able to bind digital content with ownership license, meanwhile, only an authenticated user can access the content.
DRM, nevertheless, suffers from a domain limitation that a digital content in the domain A can only be accessed by
the devices within that domain. That makes DRM non-scalable in practical use. DIM intermediate module, one of
the typical applications of PRE technology, may come to help solve the domain problem. Specifically, the module can
be used to convert a ciphertext (license) of the domain A to the ciphertext (license) belonging to another domain,
say B. Furthermore, the module cannot extract the underlying plaintext from the ciphertexts (licenses), so that the
confidentiality of data but also effective cross-domain conversion are guaranteed (please refer to Figure 1). But the
DIM fails to support the revocability of decryption rights delegation.

Traditional PRE, being as a type of all-or-nothing decryption rights delegation, cannot allow a delegator to revoke
its shared decryption rights from delegatee (after a re-encryption key is issued to the proxy). In the above encrypted
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Figure 1. Effective DIM Interface in DRM

email forwarding setting, Bob can keep gaining access to all encrypted emails intended for Alice (even if Alice is back
to work). This may not scale well in practice because one may prefer to only share decryption rights with others
within some fixed time slots, for example, after returning to work, Alice may choose to handle the emails on her own
without any interference of Bob. To the best of our knowledge, there is no PRE scheme (in the context of public key
encryption) dealing with the issue of revocability.

One may think that revoking the delegation of decryption rights is trivial in the sense that a delegator may just
request a proxy to delete the corresponding re-encryption key (so that the re-encryption may be terminated). This
naive solution, we state, may work in the context where the sharing is not time-related/updated. In practice, it may
be difficult to isolate data sharing from time period. In payTV application (e.g. Netflix), an encrypted movie may
be watched by subscribers based on payment status. A re-encryption key here may relate with a time period, say a
month, so that subscribers can decrypt and watch the movie in the month they’ve paid the subscription fee. Simply
deleting re-encryption key to revoke a subscriber’s rights may not scale well, for instance, the subscriber may join
back in the next month. Another concern here for the revocation is that if the revoked subscriber is still able to gain
access to the movies which are encrypted before the revocation point. In addition to maintain the confidentiality of
data, the efficiency of revocation must be taken into account. How to guarantee data confidentiality in the revocation
of time-related decryption rights delegation without linear complexity that motivates our work.

In recent years, lattice-based cryptography has attracted numerous attention from cryptographic researchers. The
lattice as an alternative underlying primitive is more and more applicable to cryptographic schemes. Compared to the
traditional cryptography based on number theory hard problems (e.g., integer factorization and discrete logarithm),
the promising features of lattice-based cryptography are as follows: (i) it is conjectured to be secure against quantum
computer attacks; (ii) it is with algorithmic simplicity and high parallelism; (iii) it has an average-case/worst-case
reduction for commonly used hard assumptions. This paper also seeks a way to construct PRE with revocability in
the lattice-based setting to present secure system which can hold against the attacks of quantum computers.

1.1 Our Contributions

1. To the best of our knowledge, we propose the notion of revocable PRE, for the first time, in which the
revocability is linked with time period. The definition and security model of revocable PRE are defined in this
paper. In the security model, an adversary should follow the restrictions defined as in traditional PRE setting
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and furthermore, it is allowed to update re-encryption key and revoke system users. However, it is restricted
that the adversary cannot decrypt the ciphertexts which are encrypted before/after the time period of the
revocation.

2. At a first glance, a trivial revocation system (as mentioned in the previous section) may incur that the revocation
complexity is linear in the number of users. Our scheme relieves the workload of delegator from linear to
logarithmic complexity by using binary tree structure to organize re-encryption keys. We also provide a non-
interactive re-encryption key update technique which is used to shorten the time of key update (w.r.t. user
revocation).

3. The forward security is considered in our construction. To achieve the goal, we need to update the ciphertext
of delegator that is stored in server whilst the corresponding delegatee is revoked, say at time period t. After
confirming to revoke the decryption rights of Bob at t, Alice will update the re-encryption key from herself to
Bob so that a proxy cannot convert the ciphertext of Alice to Bob by using the updated re-encryption key. But
the proxy can still use the re-encryption keys that are generated at t′ < t to convert the ciphertexts under t′ to
Bob. The decryption capability of Bob is not revoked in terms of the ciphertexts generated before t. To tackle
this problem (to guarantee forward security), after the update of re-encryption key, we make an update for the
ciphertext of Alice as well by executing algorithm UpCipher (after ReKeyRev) to update the ciphertexts of
Alice under t′ < t.

4. A concrete lattice-based revocable PRE construction is presented in this paper. The CCA security of our
construction is proved based on the hardness of the learning with errors (LWE) in the standard model, which
is as hard as several worst-case lattice problems, such as GapSVP for some factors Õ(n/α) or SIVPγ for some
polynomial factor γ = poly(n).

The main technical roadmap of our construction is to design an interface to combine the technique of revoca-
ble IBE [11] with PRE technique[18] to achieve efficient, non-interactive and collusion-free PRE with revocability.
Specifically, we embed time information into public key of user and split the public key into three parts and further,
merge re-encryption key into a binary tree structure. The time information is compatible with [18] in terms of
re-encryption key generation, we therefore inject randomness to guarantee that the time term on both sides of the
equation will not be eliminated, which is immune to a means of attack in [14] (note more details are given in Section
5). Furthermore, we prove that our scheme can hold against chosen ciphertext attacks (CCA). The tricky part of
security proof is on how to answer re-encryption key queries issued by adversary. In the real system, denoted by AR
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and further the re-encryption key from user pk∗ to pk′ is constructed as

rkpk∗−→pk′ =

X00 +X′
00 X01 +X′

01 X′
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X10 +X′
10 X11 +X′

11 X′
12

0 0 I

 .

1.2 Related Work

There have been many research works on user revocation to date. Boneh and Franklin [9] design a key revocation
mechanism that allows legitimate users to periodically update the secret key corresponding to time slot. However,
their key update algorithm requires a trusted key issuer which consumes computation and communication complexity
linearly in the number of non-revoked users. Besides, the key issuer requires a secure channel to transmit the updated
keys to system users. Following the seminal work [9], fuzzy identity-based encryption (IBE) and binary tree data
structure are creatively combined together to yield an identity revocation scheme [8]. The scheme reduces the key
update complexity (on key issuer side) from linear to logarithmic level. Chen et al. [11] later propose an IBE scheme
from lattices with efficient key revocation, and prove the scheme to be selective secure in the standard model and
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Table 1: Comparison with related PRE schemes

PRE Based on Revocability security standard model
XT10 [17] LWE × CPA

√

ABPW13 [4] LWE × CPA
√

Kir14 [18] LWE × ?*
√

NAL15 [25] NTRU × CPA
√

Fan16 [14] LWE × CCA
√

Ours LWE
√

CCA
√

* [14] points out that [18] is not secure.

under the LWE assumption. Seo et al. [27] design a concrete construction based on pairings, in which the construction
is able to hold against the attacks, called decryption key exposure attack. Lee et al. [19] propose an adaptive-identity
security revocable IBE (RIBE) scheme with pairings by using the subset difference method. Ling et al. [21] deliver
the first construction of lattice-based revocable predicate encryption, satisfying the notion of full-hiding security in
the standard model.

Since its introduction, PRE has been well studied for the past decades. Ateniese and Fu et al. [6] design a first
unidirectional PRE scheme, which is used as a mechanism of access control over encrypted file system. Their scheme
is based on bilinear pairings and achieves the security of chosen plaintext attack (CPA) in the standard model.
Green and Ateniese [16] introduce the notion of identity-based PRE (IB-PRE) and propose a concrete construction
satisfying the notion. The construction is unidirectional, multi-hop, and proved to be CPA secure in random oracle
model. Canetti and Hohenberger et al. [10] present the first CCA secure bidirectional PRE with high efficiency in
re-encryption. The security is based on the decisional bilinear Diffie-Hellman (DBDH) assumption in the standard
model. In order to achieve CCA security, they leverage one-time signature to guarantee integrity of ciphertext. A
new notion, called key privacy, is introduced in [5] in the sense that a proxy cannot obtain the identities of delegator
and delegatee from a given re-encryption key (i.e. achieving anonymity). Their construction is with CPA security in
the standard model. A few replayable CCA (RCCA) secure unidirectional PRE schemes in the standard model have
been proposed by Libert and Vergnaud et al. [20]. Aono et al. [4] introduce the first lattice-based PRE based on the
LWE problem, which is CPA secure in the standard model. Kirshanova et al. [18] present a CCA1 secure PRE on
top of [23].

The aforementioned schemes, however, cannot provide the revocability of decryption rights delegation. We
compare our scheme with other related PRE schemes in Table 1 in terms of functionality and security. We state that
our scheme is the first of its type achieving revocability and CCA security with LWE in the standard model.

1.3 Paper Outline

The rest of the paper is organized as follows. In section 2, some basic definitions, hard problems, and some
conclusions in lattices are given. In section 3, we present the definition of revocable PRE (RPRE) and further
formalize the security model. In section 4, we give a concrete RPRE scheme and prove its security in the standard
model. In section 5, we conclude our work.

2 Preliminaries

2.1 Notation

Throughout the paper we say that a function in n is negligible, denoted by negl(n), if it vanishes faster than
the inverse of any polynomial in n. We say that a probability p(n) is overwhelming if 1 − p(n) is negligible. The
statistical distance between two distribution X and Y(or two random variables having those distributions), viewed
as functions over a countable domain D, is defined as ∆(X ;Y) = 1

2

∑
s∈D |Pr[X = s] − Pr[Y = s]|. We say that X

and Y are statistically close if d(λ) = ∆(X (λ);Y(λ)) is a negligible function of λ, where X (λ) and Y(λ) be ensembles
of random variables.

We denote column vectors by lower-case bold letters(e.g., x) and matrices by upper-case bold letters(e.g., X). We
identity a matrix X with the ordered set {xj} of its column vectors, and let X||X′ denote the concatenation of the
matrices X,X′. And we define ∥X∥ = maxj∥xj∥, where ∥ · ∥ denotes the Euclidean norm, ⟨·⟩ denotes inner product.
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2.2 Lattice Definiton

Definition 1 (Integer Lattice [15, 22]). Let B = [b1| . . . |bm] ∈ Rm×m be an m × m matrix whose columns are
linearly independent vectors b1, . . . ,bm ∈ Rm. The m-dimensional full-rank lattice Λ generated by B is the set,

Λ = L(B) = {y ∈ Rm s.t. ∃s ∈ Zm,y = Bs =

m∑
i=1

sibi}

Here, we are interested in integer lattices, i.e., when L is contained in Zm. We let det(Λ) denote the determinant of
Λ. The dual lattice of Λ, denoted Λ∗, is defined to be Λ∗ = {x ∈ Rn : ∀v ∈ Λ, ⟨x,v⟩ ∈ Z}.

Definition 2 (q-ary lattice). For prime q, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λq(A) := {e ∈ Zm s.t. ∃s ∈ Zn
q where A⊤s = e mod q}

Λ⊥
q (A) := {e ∈ Zm s.t. Ae = 0 mod q}

Λu
q (A) := {e ∈ Zm s.t. Ae = u mod q}

We can observe that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t and hence Λu

q (A) is a shift of Λ⊥
q (A).

2.3 The Gram-Schmidt Norm

Definition 3 (Gram-Schmidt norm). Let S be a set of vectors S = {s1, . . . , sk} in Rm. We use the following
standard notations:

- ∥S∥ denotes the L2 length of the longest in S, i.e., max 1≤i≤k∥si∥.

- S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk taken in that order.

We refer to ∥S̃∥ as the Gram-Schmidt norm of S.

Lemma 1 ([13], Lemma 7.1). There is a deterministic poly-time algorithm ToBasis(S,B) that, given a full rank
set S of lattice vectors in Λ = L(B), outputs a basis T of Λ such that ∥t̃i∥ ≤ ∥s̃i∥ for all i.

In 1996, Ajtai [3] showed how to sample an essentially uniform matrix A ∈ Zn×m
q with an associated basis SA

of Λ⊥
q (A) with low Gram-Schmidt norm. Here we use an improved algorithm from [1]. The following Theorems 3.2

are derived from [1] taking σ := 1
3 .

Theorem 1. Let q ⩾ 3 be odd and m := ⌈6n log q⌉. There is a probabilistic polynomial-time algorithm TrapGen(q,n)
that outputs a pair (A ∈ Zn×m

q ,S ∈ Zn×m) such that A is statistically close to a uniform matrix in Zn×m
q and S is

a basis for Λ⊥
q (A) satisfying

∥S̃∥ ⩽ O(
√
n log q) and ∥S∥ ⩽ O(n log q)

with all but negligible probability in n.

2.4 The LWE Problems

In this paper, the security of our construction is reduced to the learning with errors problem, which may be seen
as average case problem related to the family of lattices described above.

Definition 4 (Learning with Errors [26]). For a prime q, a positive integer n, and a distribution χ over Zq, the
LWEq,χ problem is to distinguish, given oracle access to any desired m = poly(n) samples, between the distribution
As,χ (for uniformly random and secret s ∈ Zn

q )and the uniform distribution over Zn
q × Zq.

We give an outline of Gaussian distributions over lattice. For any s > 0 and dimension m ≥ 1, the Gaussian func-
tion ρs : Rm → (0, 1] is defined as ρs(x) = exp(−π∥x∥2/s2). For any coset Λ⊥

y (A), and probability zero elsewhere.
We summarize several facts from the literature about discrete Gaussian over lattices, again specialized to our family
of interest.

Lemma 2 ([24], Lemma 4.4). For any n-dimensional lattice Λ, vector c ∈ Rn, and reals 0 < ϵ < 1, s ⩾ ηϵ(Λ)(the
smoothing parameter ηϵ(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ⩽ ϵ), we have

Pr
x∼DΛ,s,c

{∥x− c∥ > s
√
n} ⩽ 1 + ϵ

1− ϵ
· 2−n
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Lemma 3 ([15]). There are two PPT algorithms SampeGaussia(A,TA, σ, c) and a PPT algorithm SampePre(A,
TA, σ, u), the former returns x ∈ Λ⊥

q (A) drawn from a distribution statistically close to DΛ,s,c, and the latter
returns x ∈ Λu

q (A) sampled from a distribution statistically close to DΛu
q (A),σ, whenever Λu

q (A) is not empty, where

TA be a basis for Λ⊥
q (A) and σ ⩾ ∥T̃A∥ω(

√
logm), for c ∈ Rm and u ∈ Zn

q .

2.5 Encoding Vectors as Matrices

Our construction needs a function Hf : Zn
q −→ Zn×n

q which is able to map vectors (in Zn
q ) to matrices (in Zn×n

q ),
and the security proof of our scheme requires the function satisfying strong injectivity, i.e., for two distinct vectors
u,v, det(Hf (u)−Hf (v)) ̸= 0.

Definition 5. Let a prime q and a positive integer n. We say that a function Hf : Zn
q ←− Zn×n

q is an encoding with
full rank differences (FRD) if:

1. For all distinct u,v ∈ Zn
q , the matrix Hf (u)−Hf (v) ∈ Zn×n

q is full rank.

2. Hf is computable in polynomial time.

We use an injective FRD encoding function in [2], and a short instruction is as follows. We have the finite field Zq,
a polynomial g ∈ F[X] of degree less than n, and let coeffs(g) ∈ Fn be defined n-vector which element is coefficients
of g. Let f be some polynomial of degree n in F[X] that is irreducible. For input u = (u0, u1, . . . , un−1) define the

polynomial g(x) =
∑n−1

i=0 uix
i.

Define Hf (u) as

Hf (u) :=


coeffs(g)

coeffs(x · gmodf)
coeffs(x2 · gmodf)

...
coeffs(xn−1 · gmodf)

 ∈ Fn×n (1)

Theorem 2 ([12]). Let F be a field and f a polynomial in F[X]. If f is irreducible in F(X) then the function Hf (u)
defined in (1) is an encoding with full rank differences.

2.6 The Binary-tree Data Structure

In order to reduce the number of re-encryption key update (on the side of delegator), we use a binary tree [8] and
further assign re-encryption key to leaf node of the tree. Each user has keys computed on of all nodes on the path
from the leaf node corresponding to that user to the root node for the decryption of ciphertext encrypted under the
time period t. When no user is revoked, the delegator just needs to submit the key update computed on the node
of binary tree to the proxy. When a certain number of users are revoked, delegator first locates the minimal set of
nodes in the tree which contains a common ancestor among all the leaf nodes for non-revoked users.

We use the following notations. BT denotes the binary tree. If root denotes root node and ν denotes a leaf node,
the Path(ν) denotes the set of node on the path from ν to the root(including ν and the root). If θ is a non-leaf
node, θl and θr denote the left and right child of θ. We assume that the mark of each re-encryption key, such as
rkA−→B , rkA−→C , rkA−→D, . . . , is assigned to each leaf node ν. Upon system registration, the delegator provides the
proxy with a set of distinct re-encryption keys for each node in Path(ν).

We here present an KUNodes algorithm which takes as input a binary tree BT, a time t, and a revocation list RL.
The delegator is able to determine a minimal set Y which includes none ancestor of node in RL with corresponding
time on or before t (revoked re-encryption key), and all other leaf nodes (non-revoked re-encryption key) have
exactly one ancestor in the set Y. In other words, the algorithm KUNodes finds a minimal set containing ancestors
of non-revoked re-encryption key. Its output is all non-revoked children of the revoked nodes. The delegator further
publishes a re-encryption key update for all nodes in Y.

A mark of re-encryption key is assigned to every leaf node ν, and then to form a valid re-encryption key cor-
responding to the time t if the set Y and Path(ν) have a common node. Through this operation, every revocation
list RL only needs the delegator to carry out the logarithmic work of the maximal number of re-encryption keys and
linear number of revoked re-encryption keys. Figure 1a shows an example where there is no revoked user, while Bob
is revoked and those nodes flagged by “1” are included in set Y in Figure 1b.
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Figure 1: Examples of binary tree revocation structure

Algorithm 1 KUNodes

Require: BT, RL, t
1: X,Y←− ∅
2: for (νi, ti) ∈ RL do
3: if ti ⩽ t then add Path(νi) to X end if
4: end for
5: for θ ∈ X do
6: if θl /∈ X then add θl to Y end if
7: if θr /∈ X then add θr to Y end if
8: end for
9: if Y = ∅ then add root to Y end if

10: return Y

3 Syntax of RPRE

We start with defining the general syntax of a revocable proxy re-encryption scheme.

3.1 System Definition

Definition 6 (Revocable Proxy Re-encryption). A proxy re-encryption with revocability includes nine probabilistic
polynomial time (PPT) algorithms, namely Setup, KeyGen, Encrypt, Decrypt, ReKeyGen, UpKey, ReEnc,
ReKeyRev, and UpCip with associated message space M , time space T . We assume that the size of T is polyno-
mial in the security parameter 1n. Each algorithm is run by either one of parties, proxy, delegator, and delegatee.
The proxy maintains a revocation list RL and state ST. In what follows, an algorithm is called stateful if it updates
RL or ST. Here we regard time space as discrete rather than continuous.

– (param,RL, ST ) ← Setup (1n): Intake a security parameter n, the setup algorithm outputs a global public
parameter param, a revocation list RL(initially empty), and a state ST, where n ∈ N.

– (pk, sk) ← KeyGen (param): Intake param, the key generation algorithm outputs a public key pk and a
secret key sk. We let param include into the following algorithms as an implicit input.

– C ← Encrypt(pk,M, t): Intake a public key pk, a message M ∈ M, and a time t ∈ T , the encryption
algorithm outputs a ciphertext C ∈ C.

– rkpk→pk′|t ← ReKeyGen(pk, sk, pk′, t, RL, ST ): Intake two public keys pk, pk′, a private key sk, a time t ∈ T ,
the revocation list RL, and the state ST, the re-encryption key generation algorithm outputs a re-encryption
key rkpk→pk′|t or a special symbol ⊥ indicating that pk′ has been revoked.

– upkeyt→t′ ← UpKey(pk, sk, t, t′, ST ): Intake a public key pk, a private key sk, two time periods t < t′ ∈ T
and the state ST, the update key generation algorithm outputs a update key upkeyt→t′ .

– Ct′ ← UpCip(pk, C, upkeyt→t′ , ST ): Intake the public key pk, the state ST , a cipherext C of pk at time t
and a update key upkeyt→t′ , the update ciphertext algorithm outputs the updated ciphertext of pk at time t′,
where t < t′.
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– CR ← ReEnc(rk, C): Intake a proxy re-encryption key rk and a ciphertext C, the re-encryption algorithm
outputs a ciphertext CR.

– RL← ReKeyRev(pk, pk′, t, RL, ST ): Intake public keys pk, pk′, a revocation time t ∈ T , the revocation list
RL, and the state ST , the re-encryption key revocation algorithm outputs an updated revocation list RL.

– M ← Decrypt(sk, C): Intake a secret key sk and a ciphertext C, the decryption algorithm outputs a message
M ∈M.

Correctness. The correctness requires that for all n ∈ N, t ∈ T , M ∈M, all (pk, sk)← KeyGen(param), and
all possible valid states ST and revocation lists RL, if a user with the public key pk was not revoked before or, at
time t, the followings hold:

– We have Decrypt(sk,Encryption(pk,M, t0)) = M , where t0 ≤ t;

– We have Decrypt(sk,UpCip(pk,Encryption(pk,M, t0),UpKey(pk, sk, t0, t1, ST ), ST)) = M , where t0 <
t1 ≤ t;

– Given a re-encryption key rkpk→pk′|t1 ← ReKeyGen(pk, sk, pk′, t1, RL, ST ) and for any C ← Encrypt(pk,
M , t1), we have Decrypt(sk′, ReEnc(rkpk→pk′|t1 , C)) = M , where t1 ≤ t.

3.2 System Workflow

We here give a concise flow chart to illustrate our system. We assume there are four system users, in which
Alice is delegator, and the rest of them are delegatees. There are two blocks in Figure 2, indicating the workflow
before and after revocation, respectively. In general, our system works as follows. A data owner, Alice, encrypts
her data and further uploads the ciphertext to a semi-trusted cloud server, who acts as a proxy. To fulfil secure
data sharing, with the re-encryption keys (given by Alice), rkAlice→Bob, rkAlice→Cindy, rkAlice→Dale, the proxy can
convert Alice’s encryption to the ciphertexts intended for Bob, Cindy and Dale, respectively. If Alice decides to revoke
the decryption rights delegation of Bob, she may send a request with necessary information to the proxy. By the
necessary information, we mean the new re-encryption keys for Cindy and Dale along with a ciphertext update key.
The proxy further updates the ciphertext of Alice by using the update key (without compromising the underlying
plaintext). We here note that the new re-encryption keys are corresponding to the updated ciphertext of Alice,
so that the proxy is allowed to convert the updated ciphertexts for Cindy and Dale. In our concrete construction
(which is introduced in Section 4), we relate time period with encryption such that delegation of decryption rights
(i.e. re-encryption key) is also limited to a time slot. A valid re-encryption requires that the time slot embedded
into the re-encryption key must match the one associated with the ciphertext. The ciphertext update stage lifts the
ciphertext from an old time slot say t to a new one t′, so that the re-encryption key (from Alice to Bob) under t
is effective no more in re-encryption. In this way, re-encryption is only valid for the non-revoked users, Cindy and
Dale. It is worth of mentioning that we make use of binary tree structure to reduce the re-encryption key update
complexity to O(logN) in this paper, where N is the number of delegatee.

3.3 Security Notion

We formalize the RPRE-CCA security below. Our security model considers not only the standard notion of PRE
security but also the re-encryption key revocability.

RPRE-CCA Game. Let 1n be the security parameter, A be any PPT adversary. Consider the following
experiment for a RPRE scheme Π with a plaintext spaceM, a key space K, a ciphertext space C and the revocation
list RL and the state ST :

Before proceeding to security game, we divide all users into two categories: honest user (HU) and corrupted
user (CU). HU is a set of honest users only allowing A to know the corresponding public keys, while CU is a set of
corrupted users manipulated by A.
Setup. Output the public parameters param, a revocation list RL (initially empty), and a state ST, where param
is sent to A. A is given the target pk∗ and time t∗, labeling it as honest.
Phase1. A can adaptively make a polynomial number of queries of the following oraclesO = (OKeyGen, OReKeyGen,
OUpKey, OReEnc, ODec, OReKeyRev, OUpCip):



9

Alice
Proxy

Bob Cindy Dale

Revocation request 

about Bob

UpCip

Ciphertext of Alice ReEnc to Bob

ReEnc to Cindy

ReEnc to Dale

Before revoking Bob

After revoking Bob ReEnc to Cindy

ReEnc to Dale

Invoke ReKeyGen to

 generate 

rkAlice Cindy rkAlice Dale

UpKey

Figure 2: System Workflow

– OKeyGen: if A request a key of user i with a tag honest, the challenger returns pki and records i ∈ HU ;
otherwise, the challenger returns (pki, ski) and records i ∈ CU , where (pki, ski)← KeyGen(param).

– OReKeyGen: A is allowed to ask a re-encryption key query rkpk→pk′|t from pk to pk′ under a time t, the
challenger responds by running the ReKeyGen algorithm to generate a re-encryption key rkpk→pk′|t for the
adversary. If a query indicates that pk = pk′ or pk ∈ HU, pk′ ∈ CU , it will be ignored. The adversary can
repeat polynomial times for different couple of identities.

– OReEnc: A is allowed to query re-encryption tuple (pk, pk′, t, Cpk), the challenger responds by running
ReKeyGen algorithm to generate a re-encryption key rkpk→pk′|t and further computing ciphertext Cpk′ by
running ReEnc algorithm. If pk = pk′ or pk ∈ HU, pk′ ∈ CU , the query will be ignored.

– ODec: A is allowed to ask a decryption query on C of user pk (where pk ̸= pk∗), the challenger runs Decrypt
to return m.

– OReKeyRev: A outputs a tuple (pk, t), the challenger updates RL by running ReKeyRev.

– OUpKey: A sends a tuple (pk, t, t′) to the challenger. The challenger runs the algorithm UpKey to generate
upkeyt→t′ .

– OUpCip: A is allowed to query (pk, t, t′, C). The challenger runs the algorithm UpCip to convert ciphertext
C under t to the one under t′, where t < t′.

Challenge. A outputs two equal length plaintext m0,m1 ∈ M. The challenger picks a random bit b ∈ {0, 1} and
sets the challenge ciphertext to C∗ = Encrypt(pk∗,mb, t

∗).
Phase 2. Same as Phase 1.
Guess. A outputs a guess b′ ∈ {0, 1} and wins if b = b′.
The following restrictions must be hold:

– OReKeyGen and OReKeyRev must be queried in non-decreasing order, i.e., the time of the current queries must
be later than or equal the time of previous queries.
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– OReKeyRev cannot be queried at time t, if it has been queried at t once.

– When OReKeyGen is queried at time t∗, user pk∗ must be in RL.

– A is not allowed to query the decryption oracle for the challenge ciphertext C∗ of pk∗ at time t∗. If C∗ at time
t∗ is converted to C∗ at time t for t∗ < t by using OUpCip or OUpKey, A still cannot access to the decryption
oracle for the query of C∗ at time t.

We refer to A in the above game as an RPRE-CCA adversary. We define the advantage of A in attacking an
RPRE scheme ϵ as

Advϵ,A =

∣∣∣∣∣Pr

b = b′ :

param← Setup(1n, N)
(m0,m1)← A(param, pk∗, t∗)O

C∗ ← Encrypt(param, pk∗,mb)
b′ ← A(C∗)O

− 1

2

∣∣∣∣∣
Definition 7. We say that an RPRE scheme is CCA if for all probabilistic polynomial time algorithm A and negligible
function ε, we always have that Advϵ,A is a negligible function, that is, Advϵ,A ⩽ ε

4 Construction

4.1 Intuition of Our Construction

We first consider how to establish a connection between public key and time period for a user. Recall that a public
key in a PRE scheme consists of three parts: the first two parts [A0|A1] (of the pk = ([A0|A1|A2]) are regarded
as an entirety, and the last part [A2] is regarded as the other entirety in our construction. The re-encryption key
is generated in the following two steps. First, we choose two matrices randomly, namely, AR and AL, such that
the sum of the two equals the first two parts of pk. We extract SRKR and SRKL through a Gaussian sampler
from the AR, AL, and further store them in the nodes θ ∈ Path(v) and θ ∈ KUNodes(v), respectively. Second,
we add a random vector s to protect the time period from being cancelled out during some computation intaking
the part A2. Xθ,t is also extracted through a Gaussian sampler and stored in the node θ ∈ KUNodes(v). The
revocation of re-encryption key relies on if SRKR, SRKL, and URKt are in the same node of the tree. In order to
answer the re-encryption key query issued by adversary in the simulation, we divided the first two parts of pkA into
U[AR1 |AR2 ] and [I−U][AL1 |AL2 ] in accordance with a certain proportion of U : [I−U], where U is a unimodular
matrix. Since the challenger of the security game will not have the private keys of honest users, we exploit Gaussian
random sampling method to extract R∗

1 and R∗
2 from the Gauss distribution to construct honest user’s public key

pk = ([A0| − A0R1| − A0R2 −Hf (t
∗)G],H), and we add −Hf (t

∗)G to each honest user’s key. In this way, we
enable the challenger to answer the queries of re-encryption key and decryption.

4.2 Our RPRE Scheme

Below we present our RPRE scheme from lattices.

• Setup(1n): On input a security parameter 1n, it chooses r that is a fixed function w(
√
logn). Set the modulus

q = pe = poly(n) and k = O(logn). The dimension of the public key is m = l + 2nk, where l = O(nk). We
adopt the standard trapdoor generation function in [23] to build the gadget matrix G and the two functions
associated with it, namely, the invert function gG and the sampler fG. The trapdoors R1,R2 ∼ Dl×nk so that
(A0,A0R1,A0R2) is negl(n)−far from uniformly distribution Zn×l

q ×Zn×nk
q ×Zn×nk

q . All H ∈ Zn×n
q that are

used in out scheme are invertible, and the difference between two such matrices, H′ −H′′, is also invertible.
This occurs with a non-negligible probability of (1−1/p)e when p is prime. Therefore we can always find those
matrices with rejection samplings.

The LWE error rate 1/α = O((nk)3) ·r3. We define a encoding function as enc(m) = Bm ∈ Znk, which encodes
the message space {0, 1}nk to the cosets of Λ/2Λ for the lattice Λ = Λ(G⊤) using any basis B ∈ Znk of Λ, and
this encoding can be efficiently inverted.

• KeyGen(param): On input A0
$←− Zn×l

q , R1,R2
$←− Dl×nk, an invertible matrix H

$←− Zn×n
q . The public key is

pk = (A,H) where A = [A0|A1|A2] = [A0|−A0R1|−A0R2] ∈ Zn×(l+2nk)
q . The private key is sk = [R1|R2] ∈

Zl×2nk.
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• Encryption(pk,m, t): On input m ∈ {0, 1}nk, a vector r
$←− Zn

q , a time vector t←− Zn
q . Compose Au = [A0|A1+

HG|A2 +Hf (t)G], and sample three error vectors e0
$←− Dl

Z,αq, e1, e2
$←− Dnk

Z,s, where s2 = (∥e0∥2 + lαq2) · r2.
The composed error vector is concatenated by the three vectors e = (e0|e1|e2) ∈ Zm. Let

b⊤ = 2(r⊤[A0|A1 +HG|A2 +Hf (t)G] mod q) + e⊤ + (0,0, enc(m))⊤ mod 2q

where the dimension of first zero vector is l, and that of the second is nk. Return the ciphertext c = b ∈ Zm
2q.

• Decryption(pk, sk, c): Recall that pk = [A,H], sk = [R1|R2], and c = b. Compute Au = [A0|A1 +HG|A2 +
Hf (t)G] through matrix Hu, and perform the following steps:

1. Output ⊥ if the form of c is invalid or Hf (t) = 0. Otherwise, call the algorithm InvertO([R1|R2], Au, b,
Hf (t)) to get values z ∈ Zn

q and e = (e0, e1, e2) ∈ Zl
q ×Znk

q ×Znk
q so that b⊤ = z⊤Au + e⊤ mod q. If the

call to Invert fails for any reason, output ⊥.
2. If ∥e0∥ ⩾ αq

√
l or e1, e2 ⩾ αq

√
2lnk · w(

√
log n), output ⊥.

3. Let v = b − e mod 2q, parsed as v = (v0,v1,v2) ∈ Zl
2q × Znk

2q × Znk
2q . If v0 /∈ 2Λ(A0

⊤), output ⊥.
Otherwise, compute

v⊤

R1 R2

I 0
0 I

 mod 2q ∈ Znk
2q

and apply encode−1 to the last nk coordinates if it exists, otherwise output ⊥.

• ReKeyGen(pk, sk, pk′, t,RL,ST):

Recall that pk = ([A0|A1|A2],H), sk = [R1|R2], and pk′ = ([A′
0|A′

1|A′
2],H

′). In this step, the algorithm’s
input is the public key of the delegator and the delegatee, and a part of re-encryption key needed in our
construction is generated by the private key of the delegator. The specific process is as follows:

1. For each θ ∈ Path(υ), if AR and AL have not to been defined, the first two items of the delegatee’s public
key [A′

0|A′
1 +H′G] would be divided into two parts: denoted by AR and AL satisfy [A′

0|A′
1 +H′G] =

AR +AL.

We make AR parse as two matrices AR1 ∈ Zn×l
q and AR2 ∈ Zn×nk

q . Making use of the first part of
the secret key R1(the Gaussian matrix) and the invertible matrix H ∈ Zn×n

q from the public key. More
concretely, we sample column wise so that for each column of AR1 and obtain an l + nk dimensional
column of the part of re-encryption key by executing SampleO. And we derive an (l + nk) × l matrix
after sampling l times and parse it as two matrices X00 ∈ Zl×l and X10 ∈ Znk×l with Gaussian entries of
parameter s.

[A0| −A0R1 +HG]

(
X00

X10

)
= [AR1 ]

And continue sampling for the cosets obtained from the columns of AR2 , we derive an (l+nk)×nk matrix
after sampling nk times and parse it as two mtrices X01 ∈ Zl×nk and X11 ∈ Znk×nk with Gaussian entries

of parameter s
√

l
2 :

[A0| −A0R1 +HG]

(
X01

X11

)
= [AR2 ]

Combined with the above two steps, we could get

[A0| −A0R1 +HG]

(
X00 X01

X10 X11

)
= [AR1 |AR2 ] = [AR]

We denote

(
X00 X01

X10 X11

)
by Xθ,R, then store ARXθ,R in node θ ∈ Path(υ), and output SRKR =

(θ,Xθ,R)θ∈Path(υ).
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2. For each θ ∈ KUNodes(υ), if AR and AL are not defined, by the above definition we definite AR and AL

to satisfy [A′
0|A′

1 +H′G] = AR +AL.

The same calculation method as the first step is adopted to generate Xθ,L =

(
X′

00 X′
01

X′
10 X′

11

)
correspond to

AL, and store AL and Xθ,L in the node θ ∈ KUNodes, that is [A0|−A0R1 +HG]

(
X′

00 X′
01

X′
10 X′

11

)
= [AL].

And output SRKL = (θ,Xθ,L)θ∈KUNodes(υ).

3. In this step, our algorithm whose input is the public key of the delegator and the delegatee and the private
key of the delegator is used to generate the time-control part of the proxy re-encryption key needed in the
scheme. The specific process is as follows:

Select matrix function Hf (x) : x −→ Zn×n
q ,x ∈ Zn

q whose input is the time vector t ∈ Zn
q and the random

vector s
$←− Zn

q . In order to hold the containing time t item in the final term, we have to make the con-
taining t item on both sides of the equation inequality, to avoid it being eliminated(under the assumption
that the third column and the third row of proxy re-encryption key are identity matrix I). So we intro-

duce a random vector s
$←− Zn

q in A2+Hf (t)G, make the right-hand side of the equation A′
2+Hf (t+ s)G:

[A0|A1 +HG|A2 +Hf (t)G]

X02

X12

I

 = [A′
2 +Hf (t+ s)G]

The method used here is the same as SRKeyGen in the previous step. Sampling for the cosets is obtained
from the columns of the matrix A′

2 −A2 + (Hf (t+ s)−Hf (t))G by executing SampleO. The outputs,
namely X02 ∈ Zl×nk,X12 ∈ Znk×nk, have Gaussian distributed entries with parameter s

√
l:

[A0|A1 +HG]

(
X02

X12

)
= A′

2 −A2 + (Hf (t+ s)−Hf (t))G

We denote

(
X02

X12

)
by Xθ,t, and then store θ and Xθ,t in node θ ∈ KUNodes(υ), and output URKt =

(θ,Xθ,t)θ∈KUNodes(υ).

4. ∀(α,Xα,R) ∈ SRKR, (β,Xβ,L) ∈ SRKL, (γ,Xγ,t) ∈ URKt, if ∃(α, β, γ) satisfies α = β = γ then the
re-encryption key is a matrix with Gaussian entries:

rk =

(
Xθ,R +Xθ,L Xθ,t

0 I

)
=

X00 X01 X02

X10 X11 X12

0 0 I

 ;

on the otherwise, if any two sets of SRKR,SRKL and URKt do not have a common node, rk ←− ⊥.
5. Output re-encryption key rk satisfying:

[A0|A1 +HG|A2 +Hf (t)G]

(
Xθ,R +Xθ,L Xθ,t

0 I

)
= [A′

0|A′
1 +H′G|A′

2 +Hf (t+ s)G]

• UpKey(pk, t′, t, ST, sk): Recall that sk = [R1|R2]. The delegator would generate a proxy re-encryption key
rkt′→t, and the ciphertext of delegator would be converted at time t′ to the time t by the proxy. Using the
first part of private key sk : R1 and the invertible matrix H of the public key, and executing SampleO algo-
rithm(similar to the operations in algorithm ReKeyGen), output X1 ∈ Zl×nk,X2 ∈ Znk×nk, where

[A0|A1 +HG]

(
X1

X2

)
= Hf (t)−Hf (t

′)G

The re-encryption key is the matrix:

rkt′→t =

I 0 X1

0 I X2

0 0 I


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• ReEnc(rk, c): Recall that c = (Hu,b). Convert the ciphertext of delegator to the ciphertext of delegatee by using
the proxy re-encryption key. The specific process is as follows:

b⊤ · rk

= 2(r⊤[A0|A1 +HG|A2 +Hf (t)G] mod q) + e⊤ + (0,0, enc(m))⊤ ·

X00 X01 X02

X10 X11 X12

0 0 I

 mod 2q

= 2(r⊤[A0
′|A1

′ +H′G|A2
′ +Hf (t+ s)G] mod q) + e⊤ + (0,0, enc(m))⊤ mod 2q, (2)

where e = (e0, e1, e2) = (e0X00 + e1X01, e0X01 + e1X11, e0X02 + e1X12 + e2).

Finally, we output the ciphertext c = (Hf (t+ s)G,b)

• ReKeyRev(pk, pk′, t, RL, ST ): On input a public key pk′ = ([A0
′|A1

′|A2
′,H′]), a time t, the revocation list RL,

and the state ST, the algorithm adds (pk −→ pk′, t) to RL for all nodes v associated with pk −→ pk′ and return
RL.

• UpCipher(pk,b⊤, rkt→t′ , ST, ): When user pk is revoked and the proxy re-encryption keys are updated, the
proxy could re-encrypt the ciphertext of delegator at time t to time t′ as follows:

b⊤ · rkt→t′

= 2(r⊤[A0|A1 +HG|A2 +Hf (t)G] mod q) + e⊤ + (0,0, enc(m))⊤ ·

I 0 X1

0 I X2

0 0 I

 mod 2q

= 2(r⊤[A0|A1 +HG|A2 +Hf (t
′)G] mod q) + ẽ⊤ + (0,0, enc(m))⊤ mod 2q, (3)

where ẽ = (ẽ0, ẽ1, ẽ2) = (e0, e1, e0X1 + e1X2 + e2).

Correctness. We present the correctness of our scheme by showing both the original ciphertext and the re-
encrypted ciphertext can be decrypted correctly. We verify that the process of re-encryption. The proxy can
convert ciphertext of pk to pk′ through the corresponding re-encryption key where the pk′ is not a revoked user:
∀(α,Xα,R) ∈ SRKR, (β,Xβ,L) ∈ URKt, (γ,Xγ,t) ∈ URKt, ∃(α, β, γ) satisfies α = β = γ. We can chalk up

rk =

(
Xθ,R +Xθ,L Xθ,t

0 I

)
by running ReKeyGen(SRKR,SRKL,URKt). We further call the re-encryption

algorithm ReEnc to get ciphertext 2(r⊤[A0
′|A1

′ +H′G|A2
′ +Hf (t+ s)G] mod q) + e⊤ + (0,0, enc(m))⊤ mod 2q.

We here explore that how to set appropriate parameters include size of noise so that the re-encrypted ciphertext
can be decrypted correctly. Our scheme has the same parameter setting of the original ciphertext as [MP12]. And
the parameter setting of the re-encrypted ciphertext is as same as [EK14]’s, by taking 1/α = O(nk)3 · r3 we have the
desired property for both error terms: e0R

′
1+e1, e0R

′
2+e2 ∈ P1/2(q ·B(−⊤)). It can be proved that the Decryption

algorithm in our revocable proxy re-encryption scheme is correct.

5 Security Analysis

We first elaborate that our scheme is immune to a means of attack in [14]. The attack method adopted in that
article is that the adversary can tell the real system from the simulation system by distinguishing an equation with
public key and proxy re-encryption key. The basic reason is that the second part of the third item — HuG is equal
in two sides of the following equation:

[A0|A1 +HG|A2 +HuG]

X02

X12

I

 = [A′
2 +HuG].

It is easy to check and compare with equation:
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[A0|A1 +HG]

X02

X12

I

 = [A∗
0| −A∗R∗

1]

X00

X10

I

 ·R′
2 ̸= A′

2 −A2.

The adversary could easily tell if the public key pk1, pk2, proxy re-encryption key rk are from the real system or
the simulation system after using the above comparison method.

But our scheme is immune to this attack. We add a random vector s←− Zn
q into the third part of matrix so that

the time term on both sides of the equation would not be eliminated, and the adversary cannot distinguish the real
system and the simulation system effectively.

[A0|A1 +HG|A2 +Hf (t)G]

X02

X12

I

 = [A′
2 +Hf (t+ s)G]

Next we consider the security proof of our scheme. The challenger has to possess R and an invertible H so that
he can could the LWE problem successfully.

The simulator must guarantee that he is able to answer the query of adversary, that is H is an invertible matrix.
However, once the adversary askes decryption query about challenge ciphertext, then H is the zero matrix, the
simulator cannot transform it to a G − trapdoor matrix and decrypt it to recover the corresponding plaintext.
Therefore, there is no invertible H involved, we embed LWE instance into the challenge ciphertext, and the output
of the adversary will help us tackle the decision-LWE problem.

Theorem 3. Our scheme is CCA-secure under conditions of decision-LWE where α′ = α/3 ⩾ 2
√
n/q.

Proof. First, we transform the LWE distribution As,α′ = (a, b =< s,a > /q + e mod 1) to (a, 2(< s, a > modq) +
e′ mod 2q), where e′ −→ DZα,q

, b −→ 2qb + DZ2qb,s, s
2 = (αq)2 − (2α′q)2 ⩾ 4n ⩾ ηϵ(Z)2. This converts a uniform

distribution on Zn
q × T to a discretized uniform distribution on Zn

q × Z2q. Once the LWE samples are the required
style, we construct a column-wise matrix A0

∗ and b∗, the public key of the target user is generated as follows:
select a invertible matrix H1

∗, a time vector t∗ and a matrix function Hf (x), private key R1
∗,R2

∗ ∈ D, output the
public key pkA∗ = ([A0

∗|−A0
∗R1

∗−H1
∗G|−A0

∗R1
∗−Hf (t

∗)G],H1
∗), where t∗ is statistically hidden from the

adversary.
We choose X00 and X10 from a Gaussian distribution with parameter s so as to generate public key of valid user.

First, we set a unimodular matrix U ∈ Zl×l
q , and two matrices AR1 ,AR2 are generated respectively: Let

U−1[A0
∗| −A0

∗R1
∗]

(
X00

X10

)
= AR1 ,

[A0
∗| −A0

∗R1
∗]

(
X00

X10

)
= UAR1 ,

and

U−1[A0
∗| −A0

∗R1
∗]

(
X00

X10

)
R′

1 = A′
0R

′
1,

[A0
∗| −A0

∗R1
∗]

(
X00

X10

)
R′

1 = UAR2 .

Let X′
θ,R be denoted by [

(
X00

X10

)
|
(
X00

X10

)
R′

1]. And put X′
θ,R into node θ ∈ Path(υ), and continue to produce

X′
θ,L.
We choose X′

00 and X′
01 from the Gaussian distribution with parameter s, make

[I−U]−1[A∗
0| −A∗

0R
∗
1]

(
X′

00

X′
10

)
= A′

L1
,

[A∗
0| −A∗

0R
∗
1]

(
X′

00

X′
10

)
= [I−U]AL1 ,

and
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[I−U]−1[A∗
0| −A∗

0R
∗
1]

(
X′

00

X′
10

)
R′

1 = A′
0L

′
2,

[A∗
0| −A∗

0R
∗
1]

(
X′

00

X′
10

)
R′

1 = [I−U]AL2 .

Let X′
θ,L be denoted by [

(
X′

00

X′
10

)
|
(
X′

00

X′
10

)
R′

1], And put X′
θ,L into node θ ∈ KUNodes(υ), noticing that [A∗

0| −

A∗
0R

∗
1][X

′
θ,R +X′

θ,L] = [UAR1 + [I−U]AL1 |UAR2 + [I−U]AL2 ] = [A′
0| −A′

0R
′
1].

We choose R′
2 ∈ Zl×nk

q from a distribution B defined over Z that outputs 0 with probability 1/2 and ±1 with

probability 1/4 each: [A∗
0| − A∗

0R
∗
1]

(
X′

00

X′
10

)
R′

2 = A′
0R

′
2. So the whole public key of a honest user is pk′ =

([A′
0| −A′

0R
′
1| −A′

0R
′
2−Hf (t

∗)G]). We add −Hf (t
∗)G to each honest key. A′

0R
′
1 is negl(n)-far from uniform and

−Hf (t
∗) is concealed from adversary.

Let (
X′

00

X′
10

)
+

(
X00

X10

)
=

(
X00

X10

)
,(

X′
00

X′
10

)
R′

1 +

(
X00

X10

)
R′

1 =

(
X01

X11

)
,(

X′
00

X′
10

)
R′

2 =

(
X02

X12

)
,

and (
X00 +X′

00 X01 +X′
01 X′

02

X10 +X′
10 X11 +X′

11 X′
12

)
=

(
X00 X01 X02

X10 X11 X02

)
,

each entry of the resulting matrices X01,X11,X
′
01,X

′
11,X

′
02,X

′
12 is the inner of product of a Gaussian l-dimensional

row-vector and a {0,−1, 1}-vector with half of the coordinates equal zero, which is equivalent to l/2 additions of

Gaussians with parameter s. Since in the scheme we obtain

(
X01

X11

)
,

(
X02

X12

)
with parameter s

√
l/2, then the

simulated re-encryption key is

rkpk∗−→pk′ =

X00 X01 X02

X10 X11 X12

0 0 I

 .

1. If no valid user is revoked, KUNodes(BT,RL, t∗)
∩
Path(v∗) = ∅ the challenger replies the query about private

key of id∗ through {(θ, e =
(
X00 X01

X10 X11

)
)}θ∈path(v∗) and a update key query for t∗ and {(θ, e1 =

(
X00

′ X01
′

X10
′ X11

′

)
, e2 =(

X02

X12

)
)}θ∈KUNodes(BT,RL,t∗).

2. If a user is revoked, that is rev = 1, the produce way of keys are as above. But the challenger can only reply

an updated key query for t∗ through

(
X′

00

X′
10

)
R′

2 for θ, θ ∈ KUNodes(BT,RL, t∗)

Next we consider the decryption query about ciphertext c = (Hf (t
′),b) for pk′ = ([A′

0| − A0R
′
1| − A′

0R
′
2 −

Hf (t
∗)G],H′), where

b⊤ = 2(r⊤[A0
′|A1

′ +HG|A2
′ + (Hf (t

∗)−Hf (t
′))G] mod q) + e⊤ + (0,0, enc(m))⊤ mod 2q

We first check that Hf (t
′) is invertible or not, and call InvertO algorithm when Hf (t

∗) −Hf (t
′) is a invertible

matrix, whose input is (sk = [R′
1|R′

2],Au = [A0
′|A1

′+HG|A2
′+(Hf (t

∗)−Hf (t
′))G,b, (Hf (t

∗)−Hf (t
′))]), output

is (z, e) ∈ Zn
q to satisfy b = zAu + e mod q. If norm of e is small enough, v = b− e = (v0,v1,v2), maintaining

v0 ∈ Zl
q and v0 ∈ 2Λ(A0

⊤), we could obtain that v = 2(rAu mod q) + (0,0, enc(m)) mod 2q.
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We multiply the matrix to perform the decryption operation v

R1 R2

I 0
0 I

 = 2(r⊤[H′G|Hf (t
∗) − Hf (t

′)]) +

(0,0, enc(m)). And the message m could be recovered by running the enc−1 algorithm at the last nk coordinates.
So the simulator can answer the decryption query of c = (b⊤,Hf (t

′)) for valid user with an overwhelming probability
if t′ ̸= t∗, Otherwise, return ⊥.

In order to answer the re-encryption query from pk′ = ([A′
0| −A0R

′
1| −A′

0R
′
2 −Hf (t

∗)G] with H′ ∈ Zn×n
q to

pk′′ = ([A′′
0| −A′′

0R
′′
1| −A′′

0R
′′
2 −Hf (t

∗)G] with H′′ ∈ Zn×n
q ,

we convert

b⊤ = 2(r⊤[A0
′|A1

′ +HG|A2
′ + (Hf (t

∗)−Hf (t
′))G] mod q) + e⊤ + (0,0, enc(m))⊤ mod 2q

to

b′⊤ = 2(r⊤[A0
′′|A1

′′ +HG|A2
′′ + (Hf (t

∗)−Hf (t
′))G] mod q) + e′

⊤
+ (0,0, enc(m))⊤ mod 2q

by the re-encryption key rkpk′−→pk′′ , which is decrypted by sk′′ = [R′′
1|R′′

2].
To answer the UpKey query of pk∗ from t′ to t, the challenger uses the first part of private key R∗

1 and the

algorithm SampleO, output X∗
1,X

∗
2. The re-encryption key returned is rkt′→t =

I 0 X∗
1

0 I X∗
2

0 0 I

. The query about

UpCipher could be answered by the ciphertext at time t′ multiply by the re-encryption key rkt′→t.
Finally, let us consider the challenge ciphertext of m ∈ {0, 1}nk, which is generated by the public key pk∗. The

challenge ciphertext is b′⊤ = 2(r⊤[A0
∗|A1

∗|A2
∗] mod q) + e⊤ + (0,0, enc(m))⊤ mod 2q when t′ = t∗, and s ∈ Zn

q

and e are fairly small.
We use b∗ at the beginning of game rather than calculated b. The b∗ = 2(r⊤A∗

0 mod q) + ẽ0 mod q is LWE
distribution where s←− Zn

q , ẽ0 ←− DZ,αq. We set the first nk item of b∗t to be b0
⊤, the later 2nk item of b∗t to be

b1
⊤ = b0

⊤R1
∗ + ẽ1

⊤
mod 2q ∈ Z2q

nk

b2
⊤ = b0

⊤R2
∗ + ẽ2

⊤
+ enc(m) mod 2q ∈ Z2q

nk,

where e1, e2 ←− Dnk
αq

√
m,r

. So the final challenge ciphertext is b = (b0
⊤,b1

⊤,b2
⊤), t∗ which has the same

distribution as the ciphertext in the real system. The noise term in b1
⊤ is ẽ0R1 + ẽ1

⊤
, which has negl(n)-distance

with DZ,s where s
2 = (∥ẽ02+l(αq)2 ·r2∥), the same to b⊤

2 . Notice that R
∗
1,R

∗
2 ←− D, (A∗

0R
∗
1,A

∗
0R

∗
2,−b∗R∗

1,−b∗R∗
2)

is negl(n)-uniform distribution according to LHL(leftover hash lemma) and A∗
0,b

∗ is uniform distribution. Therefore,
the challenge ciphertext in the view of adversary has the same distribution as what ciphertext in the real system is,
therefore the adversary cannot distinguish them.

6 Conclusion

In this paper, we have introduced the notion of revocable PRE and further designed a concrete construction
satisfying the notion. In the construction, the revocability is reflected on the update of re-encryption key. We have
leveraged binary tree structure to reduce the complexity of re-encryption key update to O(logN), where N is the
number of delegatee. We also have considered the update of ciphertext so that a revoked user (at time period t)
cannot gain access to all the ciphertexts encrypted before t. That allows us to maintain forward security. Besides, our
scheme enjoys some distinct features, for example, the generation of re-encryption key is non-interactive, ciphertext
update and re-encryption are off-loaded to proxy. Our construction is lattice based and meanwhile proved CCA secure
under the LWE assumption in the standard model. We here leave the efficiency simulation and implementation of
the scheme as parts of our future work. This paper also leaves some interesting open problems. First of all, one may
consider how to convert our construction with LWE to the version based on RLWE to reduce storage/communication
cost. Second, the revocability currently is limited to O(logN). There may be a way to reduce the complexity to
constant.
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