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Abstract

Shamir’s celebrated secret sharing scheme provides an efficient method for encoding a secret
of arbitrary length ` among any N ≤ 2` players such that for a threshold parameter t, (i) the
knowledge of any t shares does not reveal any information about the secret and, (ii) any choice
of t+1 shares fully reveals the secret. It is known that any such threshold secret sharing scheme
necessarily requires shares of length `, and in this sense Shamir’s scheme is optimal. The more
general notion of ramp schemes requires the reconstruction of secret from any t+ g shares, for
a positive integer gap parameter g. Ramp secret sharing scheme necessarily requires shares of
length `/g. Other than the bound related to secret length `, the share lengths of ramp schemes
can not go below a quantity that depends only on the gap ratio g/N .

In this work, we study secret sharing in the extremal case of bit-long shares and arbitrar-
ily small gap ratio g/N , where standard ramp secret sharing becomes impossible. We show,
however, that a slightly relaxed but equally effective notion of semantic security for the secret,
and negligible reconstruction error probability, eliminate the impossibility. Moreover, we pro-
vide explicit constructions of such schemes. One of the consequences of our relaxation is that,
unlike standard ramp schemes with perfect secrecy, adaptive and non-adaptive adversaries need
different analysis and construction. For non-adaptive adversaries, we explicitly construct secret
sharing schemes that provide secrecy against any τ fraction of observed shares, and reconstruc-
tion from any ρ fraction of shares, for any choices of 0 ≤ τ < ρ ≤ 1. Our construction achieves
secret length N(ρ− τ − o(1)), which we show to be optimal. For adaptive adversaries, we con-
struct explicit schemes attaining a secret length Ω(N(ρ− τ)). We discuss our results and open
questions.

1 Introduction

Secret sharing, introduced independently by Blakley [3] and Shamir [21], is one of the most fun-
damental cryptographic primitives with far-reaching applications, such as being a major tool in
secure multiparty computation (cf. [12]). The general goal in secret sharing is to encode a secret
s into a number of shares X1, . . . ,XN that are distributed among N players such that only certain
authorized subsets of the players can reconstruct the secret. An authorized subset of players is a
set A ⊆ [N ] such that the set of shares with indices in A can collectively be used to reconstruct the
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secret s (perfect reconstructiblity). On the other hand, A is an unauthorized subset if the knowledge
of the shares with indices in A reveals no information about the secret (perfect privacy). The set of
authorized and unauthorized sets define an access structure, of which the most widely used is the
so-called threshold structure. A secret sharing scheme with threshold access structure, is defined
with respect to an integer parameter t and satisfies the following properties. Any set A ⊆ [N ] with
|A| ≤ t is an unauthorized set. That is, the knowledge of any t shares, or fewer, does not reveal
any information about the secret. On the other hand, any set A with |A| > t is an authorized set.
That is, the knowledge of any t+ 1 or more shares completely reveals the secret.

Shamir’s secret sharing scheme [21] gives an elegant construction for the threshold access struc-
ture that can be interpreted as the use of Reed-Solomon codes for encoding the secret. Suppose the
secret s is an `-bit string and N ≤ 2`. Then, Shamir’s scheme treats the secret as an element of the
finite field Fq, where q = 2`, padded with t uniformly random and independent elements from the
same field. The resulting vector over Ft+1

q is then encoded using a Reed-Solomon code of length
N , providing N shares of length ` bits each. The fact that a Reed-Solomon code is Maximum
Distance Separable (MDS) can then be used to show that the threshold guarantee for privacy and
reconstruction is satisfied.

Remarkably, Shamir’s scheme is optimal for threshold secret sharing in the following sense: Any
threshold secret sharing scheme sharing `-bit secrets necessarily requires shares of length at least
`, and Shamir’s scheme attains this lower bound [23].

It is natural to ask whether secret sharing is possible at share lengths below the secret length
log q < `, where log is to base 2 throughout this work. Of course, in this case, the threshold
guarantee that requires all subsets of participants be either authorized, or unauthorized, can no
longer be attained. Instead, the notion can be relaxed to ramp secret sharing which allows some
subset of participants to learn some information about the secret. A ramp scheme is defined with
respect to two threshold parameters, t and r > t + 1. As in threshold scheme, the knowledge of
any t shares or fewer does not reveal any information about the secret. On the other hand, any r
shares can be used to reconstruct the secret. The subsets of size between t+ 1 and r−1, may learn
some information about the secret. The information-theoretic bound (see e.g. [18]) now becomes

` ≤ (r − t) log q. (1)

Ideally, one would like to obtain equality in (1) for as general parameter settings as possible.

Let g : = r − t denote the gap between the privacy and reconstructibility parameters. Let the
secret length ` and the number of players N be unconstrained integer parameters. It is known that,
using Reed-Solomon code interpretation of Shamir’s approach applied to a random linear code, for
every fixed relative gap γ : = g/N , there is a constant q only depending on γ such that a ramp
secret sharing scheme with share size q exists. Such schemes can actually be constructed by using
explicit algebraic geometry codes instead of random linear codes. In fact, this dependence of share
size q on relative gap g/N is inherent for threshold and more generally ramp schemes. It is shown
in an unpublished work of Kilian and Nisan 1 for threshold schemes, and later more generally in
[8], that for ramp schemes with share size q, threshold gap g, privacy threshold t and unconstrained
number of players N , the following always holds: q ≥ (N − t + 1)/g. Very recently in [4], a new
bound with respect to the reconstruction parameter r is proved through connecting secret sharing
for one bit secret to game theory: q ≥ (r + 1)/g. These two bounds together yield

q ≥ (N + g + 2)/(2g). (2)

1Their result is unpublished, and is independently obtained and generalised by [8] (see [8, Appendix A]).
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Note that the bound (2) is very different from the bound (1) in nature. The bound (1) is the
fundamental limitation of information-theoretic security, bearing the same flavour as the One-
Time-Pad. The bound (2) is independent of the secret length and holds even when the secret is
one bit.

We ask the following question: For a fixed constant share size q (in particular, q = 2), is it
possible to construct (relaxed but equally effective) ramp secret sharing schemes with arbitrarily
small relative gap γ > 0 that asymptotically achieve equality in (1)?

Our results in this work show that the restriction (2) can be overcome if we allow a negligi-
ble privacy error in statistical distance (semantic security) and a negligible reconstruction error
probability.

1.1 Related work

Secret sharing with binary shares is recently selectively studied in [5] with the focus on the tradeoff
between the privacy parameter t and the computational complexity of the reconstruction func-
tion. The concern of this line of works is to construct secret sharing schemes whose sharing and
reconstructing algorithms are both in the complexity class AC0 (i.e., constant depth circuits).

The model of secret sharing considered in [5] has perfect privacy, namely, the distributions of
any t shares from a pair of distinct secrets are identical, while reconstruction is not necessarily with
probability 1. In a followup work [6], the privacy is further relaxed to semantic security with an
error parameter ε > 0. The relaxation is shown to be useful in allowing more choices of t while
keeping the computational complexity of the reconstruction algorithm within AC0.

In [5, 6], the secret is one bit. In [9], secrets of length equal to a fraction of N (number of
players) is considered. This time binary secret sharing with adaptive and non-adaptive adversaries
similar to the model we consider in this work is defined. However the paper considers only a
privacy threshold t, and reconstruction is from the full share set (r = N always). Their goal is to
achieve large secrets ` = Ω(N) over binary shares with large privacy parameter t = Ω(N), which is
also similar to ours. They have an additional goal of keeping the computational complexity of the
reconstruction algorithm within AC0, which we do not consider in this work. Their large privacy
parameter t = τN is with a τ much smaller than 1, which means that the relative threshold gap
γ = 1− τ can not be arbitrarily small.

In the literature, perhaps the closest notion to secret sharing with binary shares is that of wiretap
codes, first studied in information theory. In the basic wiretap channel model of Wyner and its
extension to broadcast channel with confidential messages [25, 14], there is a point-to-point main
channel between a sender and a receiver that has partial leakage to the adversary, and the leakage
of information is modelled by a second point-to-point wiretapper channel between the sender and
the adversary. To goal of the sender is to encode messages in such a way that the receiver can
decode them, while the adversary does not learn much about them [25]. The highest information
rate achievable for a wiretap channel is called the secrecy capacity. A Binary Erasure Channel with
erasure probability p (BECp) is a probabilistic transformation that maps inputs 0 and 1 to a symbol
?, which denotes erasure, with probability p and to the inputs themselves with probability 1 − p.
The erasure channel scenario of wiretap model is closely related to secret sharing with fixed share
size. For a pair (BECpm ,BECpw) of BEC’s, such that pm < pw, it is known that the secrecy capacity
is the difference of the respective channel capacities: (1− pm)− (1− pw) = pw − pm.

It is important to note the distinctions between the erasure wiretap model above, and binary
secret sharing. First, the guarantees of wiretap codes are required to only hold for random mes-
sages, whereas in secret sharing, the cryptographic convention of security for worst-case messages
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is required. Second, in the standard wiretap model, the notion of secrecy is information-theoretic
and is typically measured in terms of the mutual information. Namely, for a random `-bit message
M, and letting W denote the information delivered to the adversary, secrecy is satisfied in the weak
(resp., strong) sense if I(M;W) ≤ ε` (resp., I(M;W) ≤ ε) for an arbitrarily small constant ε. The
randomness of the random variable W depends on the randomness of M, the two channels, as well
as the internal randomness of the encoder. For secret sharing, on the other hand, either perfect
secrecy or semantic secrecy (negligible leakage with respect to statistical distance) is a requirement.

The notion of secrecy in wiretap codes has evolved over years. More recently the notion of
semantic security for wiretap model has been introduced [2], which allows arbitrary message dis-
tribution and is shown to be equivalent to negligible leakage with respect to statistical distance.

There remains one last distinction between semantically secure wiretap model and secret sharing
with fixed share size. That is the nature of the main and wiretapper channels are typically stochastic
(e.g., the erasure channel with random i.i.d. erasures), whereas for secret sharing a worst-case
guarantee for the erasure patterns is required. Namely, in secret sharing, reconstruction with
overwhelming probability is required for every choice of r or more shares, and privacy of the secret
is required for every (adaptive or non-adaptive) choice of the t shares observed by the adversary.

On the other hand, Ozarow and Wyner proposed the wiretap channel II, where an adversary
observes arbitrary t out of the total N bits of the communication [19]. The wiretapper channel of the
wiretap channel II is the adversarial analogue of a BECpw with erasure probability pw = (N − t)/N .
This is exactly the same as the privacy requirement of the binary secret sharing. But in the wiretap
channel II model, the main channel is a clear channel. This is corresponding to the special case of
binary secret sharing where the reconstruction is only required when all shares are available. The
adversarial analogue of the erasure scenario Wyner wiretap channel should have a main channel that
erases Npm components out of the total N components, which is the same as the reconstruction
requirement of binary secret sharing. Moreover, same as the Wyner wiretap channel model, the
secrecy of the wiretap channel II is only required for uniform message and satisfies the weak (resp.,
strong) secrecy mentioned above.

1.2 Our contributions

We motivate the study of secret sharing scheme with fixed share size q, and study the extremal
case of binary shares. Our goal is to show that even in this extremely restrictive case, a slight
relaxation of the privacy and reconstruction notions of ramp secret sharing guarantees explicit
construction of families of ramp schemes 2 with any constant relative privacy and reconstruction
thresholds 0 ≤ τ < ρ ≤ 1, in particular, the relative threshold gap γ = ρ− τ can be an arbitrarily
small constant. Namely, for any constants 0 ≤ τ < ρ ≤ 1, it can be guaranteed that any τN or
fewer shares reveal essentially no information about the secret, whereas any ρN or more shares
can reconstruct the exact secret with a negligible failure probability. While we only focus on the
extremal special case q = 2 in this presentation, all our results can be extended to any constant q
(see Section 6).

We consider binary sharing of a large `-bit secret and for this work focus on the asymptotic case
where the secret length `, and consequently the number of players N , are sufficiently large. We
replace perfect privacy with semantic security, the strongest cryptographic notion of privacy second
only to perfect privacy. That is, for any two secrets (possibly chosen by the adversary), we require
the adversary’s view to be statistically indistinguishable. The view of the adversary is a random

2We abuse the notion and will continue calling these relaxed schemes ramp schemes.
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variable with randomness coming solely from the internal randomness of the sharing algorithm.
The notion of indistinguishability that we use is statistical (total variation) distance bounded by a
leakage error parameter ε that is negligible in N . Using non-perfect privacy creates a distinction
between non-adaptive and adaptive secrecy. A non-adaptive adversary chooses any τ fraction of
the N players at once, and receives their corresponding shares. An adaptive adversary however,
selects share holders one by one, receives their shares and uses its available information to make
its next choice. When ε = 0, i.e., when perfect privacy holds, non-adaptive secrecy automatically
implies adaptive secrecy as well. However, this is not necessarily the case when ε > 0 and we thus
study the two cases separately. Similarly, we replace the perfect reconstruction with probabilistic
reconstruction allowing a failure probability δ that is negligible in N . The special case of δ = 0
means perfect reconstruction.

Note that secret sharing with fixed share size necessarily imposes certain restrictions that are
not common in standard secret sharing. Unlike secret sharing with share length dependent on the
secret length (for threshold schemes) or secret length and threshold gap (for ramp schemes), binary
sharing of an `-bit secret obviously requires at least ` shares to accommodate the secret information.
For a family of ramp secret sharing schemes with fixed share size q and fixed relative thresholds
0 ≤ τ < ρ ≤ 1, as N grows the absolute gap length (ρ−τ)N grows, and the accommadatable length
of the secret is expected to grow and so the ratio `/N ∈ (0, 1] becomes a key parameter of interest
for the family, referred to as the coding rate. As is customary in coding theory, it is desired to
characterize the maximum possible ratio `/N ∈ (0, 1] for binary secret sharing. We use the relation
(a similar relation was used in [10] for robust secret sharing) between a binary secret sharing family
with relative threshold (τ, ρ) and codes for a Wyner wiretap channel with two BEC’s to derive a
coding rate upper bound of ρ− τ for binary secret sharing (see Lemma 11).

Our main technical contributions are explicit constructions of binary secret sharing schemes in
both the non-adaptive and adaptive models, and proving optimality of non-adaptive construction.
Namely, we prove the following:

Theorem 1 (informal summary of Lemma 11, Corollary 17, and Corollary 21). For any choice of
0 ≤ τ < ρ ≤ 1, and large enough N , there is an explicit construction of a binary secret sharing
scheme with N players that provides (adaptive or non-adaptive) privacy against leakage of any τN
or fewer shares, as well as reconstruction from any ρN or more of the shares (achieving semantic
secrecy with negligible error and imperfect reconstruction with negligible failure probability). For
non-adaptive secrecy, the scheme shares a secret of length ` = (ρ− τ − o(1))N , which is asymptot-
ically optimal. For adaptive secrecy, the scheme shares a secret of length ` = Ω((ρ− τ)N).

As a side contribution, our findings unify the Wyner wiretap model and its adversarial analogue.
Our capacity-achieving construction of binary secret sharing for non-adaptive adversaries implies
that the secrecy capacity of the adversarial analogue of the erasure scenario Wyner wiretap channel
is similarly characterized by the erasure ratios of the two channels. Moreover, the secrecy can be
strengthened to semantic security.

This answers an open question posted in [1]. The authors studied a generalisation of the wiretap
II model, where the adversary chooses t bits to observe and erases them. They showed that the
rate 1 − τ − h2(τ), where h2(·) is the binary entropy function, can be achieved and left open the
question of whether a higher rate is achievable. Our result specialized to their setting shows that,
the rate 1− 2τ can be explicitly achieved.
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1.3 Our approach and techniques

Our explicit constructions follow the paradigm of invertible randomness extractors formalized
in [11]. Invertible extractors were used in [11] for explicit construction of optimal wiretap cod-
ing schemes in the Wiretap channel II [19]. This, in particular, is corresponding to the ρ = 1
special case of secret sharing where reconstruction is only required when all shares are available.
Moreover, the secrecy there is an information-theoretic notion, and only required to hold for uni-
form messages. The consequence of the latter is that the construction in [11] does not directly give
us binary secret sharing, not even for the ρ = 1 special case. The exposition below is first focused
on how semantic security is achieved.

As in [11], we rely on invertible affine extractors as our primary technical tool. Such an extractor
is an explicit function AExt : {0, 1}n → {0, 1}` such that, for any random variable X uniformly
distributed over an unknown k-dimensional affine subspace of Fn2 , the distribution of AExt(X) is
close to the uniform distribution over F`2 in statistical distance. Furthermore, the invertibility
guarantee provides an efficient algorithm for sampling a uniform element from the set AExt−1(s) of
pre-images for any given output s ∈ F`2.

It is then natural to consider the affine extractor’s uniform inverter as a candidate building
block for the sharing algorithm of a secret sharing scheme. Intuitively, if the secret s is chosen
uniformly at random, we have the guarantee that for any choice of a bounded number of the
bits of its random pre-image revealed to the adversary, the distribution of the random pre-image
conditioned on the revealed value satisfies that of an affine source. Now according to the definition
of an affine extractor, the extractor’s output (i.e., the secret s) remains uniform (and thus unaffected
in distribution) given the information revealed to the adversary. Consequently, secrecy should at
least hold in an information-theoretic sense, i.e. the mutual information between the secret and
the revealed vector components is zero. This is what was formalized and used in [11] for the
construction of Wiretap channel II codes.

For non-adaptive adversaries, in fact it is possible to use invertible seeded extractors rather
than invertible affine extractors described in the above construction. A (strong) seeded extractor
assumes, in addition to the main input, an independent seed as an auxiliary input and ensures
uniformity of the output for most fixings of the seed. The secret sharing encoder appends a
randomly chosen seed to the encoding and inverts the extractor with respect to the chosen seed.
Then, the above argument would still hold even if the seed is completely revealed to the adversary.

The interest in the use of seeded, as opposed to seedless affine, extractors is twofold. First, nearly
optimal and very efficient constructions of seeded extractors are known in the literature that extract
nearly the entire source entropy with only a short seed. This allows us to attain nearly optimal rates
for the non-adaptive case. Furthermore, and crucially, such nearly optimal extractor constructions
(in particular, Trevisan’s extractor [24, 20]) can in fact be linear functions for every fixed choice of
the seed (in contrast, seedless affine extractors can never be linear functions). We take advantage
of the linearity of the extractor in a crucial way and use a rather delicate analysis to show that in
fact the linearity of the extractor can be utilized to prove that the resulting secret sharing scheme
provides the stringent worst-case secret guarantee which is a key requirement distinguishing secret
sharing schemes (a cryptographic primitive) from wiretap codes (an information-theoretic notion).

Using a seeded extractor instead of a seedless extractor, however, introduces a new challenge.
In order for the seeded extractor to work, the seed has to be independent of the main input, which
is a distribution induced by the adversary’s choice of reading positions. The independence of the
seed and the main input can be directly argued when the adversary is non-adaptive. An adaptive
adversary, however, may choose its reading positions to learn about the seed first, and then choose
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the rest of the reading positions according the value of the seed. In this case, we can not prove the
independence of the seed and the main input.

For adaptive adversaries, we go back to using an invertible affine extractor. We prove that
both security for worst-case messages and against adaptive adversaries are guaranteed if the affine
extractor provides the strong guarantee of having a nearly uniform output with respect to the `∞
measure rather than `1. However, this comes at the cost of the extractor not being able to extract
the entire entropy of the source, leading to ramp secret sharing schemes with slightly sub-optimal
rates, albeit still achieving rates within a constant factor of the optimum. As a proof of concept,
we utilize a simple padding and truncation technique to convert any off-the-shelf seedless affine
extractor (such as those of Bourgain [7] or Li [17]) to one that satisfies the stronger uniformity
condition that we require.

We now turn to reconstruction from an incomplete set of shares. In order to provide recon-
structibility from a subset of size r of the shares, we naturally compose the encoding obtained from
the extractor’s inversion routine with a linear erasure-correcting code. The linearity of the code
ensures that the extractor’s input subject to the adversary’s observation (which now can consist of
linear combinations of the original encoding) remains uniform on some affine space, thus preserving
the privacy guarantee.

However, since by the known rate-distance trade-offs of binary error-correcting codes, no deter-
ministic coding scheme can correct more than a 1/2 fraction of erasures (a constraint that would
limit the choice of ρ), the relaxed notion of stochastic coding schemes is necessary for us to allow
reconstruction for all choices of ρ ∈ (τ, 1]. Intuitively, a stochastic code is a randomized encoder
with a deterministic decoder, that allows the required fraction of errors to be corrected. We uti-
lize what we call a stochastic affine code. Such codes are equipped with encoders that are affine
functions of the message for every fixing of the encoder’s internal randomness. We show that such
codes are as suitable as deterministic linear codes for providing the linearity properties that our
construction needs.

In fact, we need capacity-achieving stochastic erasure codes, i.e., those that correct every 1− ρ
fraction of erasures at asymptotic rate ρ, to be able to construct binary secret sharing schemes with
arbitrarily small relative gap γ = ρ − τ . To construct capacity-achieving stochastic affine erasure
codes, we utilize a construction of stochastic codes due to Guruswami and Smith [16] for bit-flip
errors. We observe that this construction can be modified to yield capacity-achieving erasure codes.
Roughly speaking, this is achieved by taking an explicit capacity-achieving linear code for BEC and
pseudo-randomly shuffling the codeword positions. Combined with a delicate encoding of hidden
“control information” to communicate the choice of the permutation to the decoder in a robust
manner, the construction transforms robustness against random erasures to worst-case erasures at
the cost of making the encoder randomized.

1.4 Organization of the paper

Section 2 contains a brief introduction to the two building blocks for our constructions: randomness
extractors and stochastic codes. In Section 3, we formally define the binary secret sharing model
and prove a coding rate upper bound. Section 4 contains a capacity-achieving construction with
privacy against non-adaptive adversaries. Section 5 contains a constant rate construction with
privacy against adaptive adversaries. Finally, we conclude the paper and discuss open problems in
Section 6.
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2 Preliminaries and definitions

In this section, we review the necessary facts and results about randomness extractors, both the
seeded and seedless affine variants, as well as the stochastic erasure correcting codes.

Randomness extractors extract close to uniform bits from input sequences that are not uniform
but have some guaranteed entropy. The closeness to uniform of the extractor output is measured
by the statistical distance (half the `1-norm). For a set X , we use X ← X to denote that X is
distributed over the set X . For two random variables X,Y ← X , the statistical distance between X
and Y is defined as,

SD(X;Y) =
1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]| .

We say X and Y are ε-close if SD(X,Y) ≤ ε. A randomness source is a random variable with lower
bound on its min-entropy, which is defined by H∞(X) = − log maxx{Pr[X = x]}. We say a random
variable X← {0, 1}n is a (n, k)-source if H∞(X) ≥ k.

For well structured sources, there exist deterministic functions that can extract close to uniform
bits. The support of X ← X is the set of x ∈ X such that Pr[X = x] > 0. An affine (n, k)-source
is an (n, k)-source whose support is an affine sub-space of {0, 1}n and each vector in the support
occurs with the same probability. Let Um denote the random variable uniformly distributed over
{0, 1}m.

Definition 2. A function AExt : {0, 1}n → {0, 1}m is an affine (k, ε)-extractor if for any affine
(n, k)-source X, we have

SD(AExt(X);Um) ≤ ε.

An affine extractor can not be a linear function.

For general (n, k)-sources, there does not exist a deterministic function that can extract close
to uniform bits from all of them simultaneously. A family of deterministic functions are needed.

Definition 3. A function Ext : {0, 1}d × {0, 1}n → {0, 1}m is a strong seeded (k, ε)-extractor if for
any (n, k)-source X, we have

SD(S,Ext(S,X);S,Um) ≤ ε,

where S is chosen uniformly from {0, 1}d. A seeded extractor Ext(·, ·) is called linear if for any fixed
seed S = s, the function Ext(s, ·) is a linear function.

We will use Trevisan’s extractor [24] in our first construction. In particular, we use the following
improvement of this extractor due to Raz, Reingold and Vadhan [20].

Lemma 4 ([20]). There is an explicit linear strong seeded (k, ε)-extractor Ext : {0, 1}d×{0, 1}n →
{0, 1}` with d = O(log3(n/ε)) and ` = k −O(d).

We will use Bourgain’s affine extractor in our second construction. We note, however, that we
could have used other explicit extractors for this purpose, such as [17].

Lemma 5 ([7]). For every constant 0 < µ ≤ 1, there is an explicit affine (µn, ε)-extractor
AExt : {0, 1}n → {0, 1}m with output length m = Ω(n) and error ε = 2−Ω(n).
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Explicit constructions of randomness extractors have efficient forward direction of extraction.
In some applications, we usually need to efficiently invert the process: Given an extractor output,
sample a random pre-image.

Definition 6 ([11]). Let f be a mapping from {0, 1}n to {0, 1}m. For 0 ≤ v < 1, a function
Inv : {0, 1}m × {0, 1}r → {0, 1}n is called a v-inverter for f if the following conditions hold:

• (Inversion) Given y ∈ {0, 1}m such that its pre-image f−1(y) is nonempty, for every r ∈ {0, 1}r
we have f(Inv(y, r)) = y.

• (Uniformity) Inv(Um,Ur) is v-close to Un.

A v-inverter is called efficient if there is a randomized algorithm that runs in worst-case polynomial
time and, given y ∈ {0, 1}m and r as a random seed, computes Inv(y, r). We call a mapping v-
invertible if it has an efficient v-inverter, and drop the prefix v from the notation when it is zero.
We abuse the notation and denote the inverter of f by f−1.

A stochastic code has a randomised encoder and a deterministic decoder. The encoder Enc : {0, 1}m×
R → {0, 1}n uses local randomness R ← R to encode a message m ∈ {0, 1}m. The decoder is a
deterministic function Dec : {0, 1}n → {0, 1}m ∪ {⊥}. The decoding probability is defined over the
encoding randomness R ← R. Stochastic codes are known to explicitly achieve the capacity of
some adversarial channels [16].

Affine sources play an important role in our constructions. We define a general requirement for
the stochastic code used in our constructions.

Definition 7 (Stochastic Affine codes). Let Enc : {0, 1}m × R → {0, 1}n be the encoder of a
stochastic code. We say it is a stochastic affine code if for any r ∈ R, the encoding function
Enc(·, r) specified by r is an affine function of the message. That is we have

Enc(m, r) = mGr + ∆r,

where Gr ∈ {0, 1}m×n and ∆r ∈ {0, 1}n are specified by the randomness r.

We then adapt a construction in [16] to obtain the following capacity-achieving Stochastic
Affine-Erasure Correcting Code (SA-ECC). In particular, we show for any p ∈ [0, 1), there is an
explicit stochastic affine code that corrects p fraction of adversarial erasures and achieves the rate
1− p (see Appendix A for more details).

Lemma 8 (Adapted from [16]). For every p ∈ [0, 1), and every ξ > 0, there is an efficiently
encodable and decodable stochastic affine code (Enc,Dec) with rate R = 1 − p − ξ such that for

every m ∈ {0, 1}NR and erasure pattern of at most p fraction, we have Pr[Dec(Ẽnc(m)) = m] ≥
1 − exp(−Ω(ξ2N/ log2N)), where Ẽnc(m) denotes the partially erased random codeword and N
denotes the length of the codeword.

3 Binary secret sharing schemes

In this section, we define our model of nearly-threshold binary secret sharing schemes. We begin
with a description of the two models of non-adaptive and adaptive adversaries which can access up
to t of the N shares.
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A leakage oracle is a machine O(·) that takes as input an N -bit string c ∈ {0, 1}N and then
answers the leakage queries of the type Ij , for Ij ⊂ [N ], j = 1, 2, . . . , q. Each query Ij is answered
with cIj . An interactive machine A that issues the leakage queries is called a leakage adversary.
Let Ac = ∪qj=1Ij denote the union of all the index sets chosen by A when the oracle input is
c. The oracle is called t-bounded, denoted by Ot(·), if it rejects leakage queries from A if there
exists some c ∈ {0, 1}N such that |Ac| > t. An adaptive leakage adversary decides the index set
Ij+1 according to the oracle’s answers to all previous queries I1, . . . , Ij . A non-adaptive leakage
adversary has to decide the index set Ac before any information about c is given. This means that
for a non-adaptive adversary, given any oracle input c ∈ {0, 1}N , we always have Ac = A for some

A ⊂ [N ]. Let View
Ot(·)
A denote the view of the leakage adversary A interacting with a t-bounded

leakage oracle. When A is non-adaptive, we use the shorthand View
Ot(·)
A = (·)A, for some A ⊂ [N ]

of size |A| ≤ t.
A function ε : N → R is called negligible if for every positive integer k, there exists an Nk ∈ N

such that |ε(N)| < 1
Nk for all N > Nk. The following definition of ramp Secret Sharing Scheme

(SSS) allows imperfect privacy and reconstruction with errors bounded by negligible functions ε(·)
and δ(·), respectively.

Definition 9. For any 0 ≤ τ < ρ ≤ 1, an (ε(N), δ(N))-SSS with relative threshold pair (τ, ρ) is a
pair of polynomial-time algorithms (Share,Recst),

Share : {0, 1}`(N) ×R → {0, 1}N ,

where R denote the randomness set, and

Recst : ˜{0, 1}N → {0, 1}`(N) ∪ {⊥},

where ˜{0, 1}N denotes the subset of ({0, 1} ∪ {?})N with at least Nρ components not equal to the
erasure symbol “?”, that satisfy the following properties.

• Reconstruction: Given r(N) = Nρ correct shares of a share vector Share(s), the reconstruct
algorithm Recst reconstructs the secret s with probability at least 1− δ(N).

When δ(N) = 0, we say the SSS has perfect reconstruction.

• Privacy (non-adaptive/adaptive):

– Non-adaptive: for any s0, s1 ∈ {0, 1}`(N), any A ⊂ [N ] of size |A| ≤ t(N) = Nτ ,

SD(Share(s0)A;Share(s1)A) ≤ ε(N). (3)

– Adaptive: for any s0, s1 ∈ {0, 1}`(N) and any adaptive adversary A interacting with a
t(N)-bounded leakage oracle Ot(N)(·) for t(N) = Nτ ,

SD
(
View

Ot(N)(Share(s0))

A ;View
Ot(N)(Share(s1))

A

)
≤ ε(N). (4)

When ε(N) = 0, we say the SSS has perfect privacy.

The difference γ = ρ− τ is called the relative gap, since Nγ = r(N)− t(N) is the threshold gap of
the scheme. When clear from context, we write ε, δ, t, k, ` instead of ε(N), δ(N), t(N), r(N), `(N).
When the parameters are not specified, we call a (ε, δ)-SSS simply a binary SSS.
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In the above definition, a binary SSS has a pair of designed relative thresholds (τ, ρ). In this
work, we are concerned with constructing nearly-threshold binary SSS, namely, binary SSS with
arbitrarily small relative gap γ = ρ − τ . We also want our binary SSS to share a large secret
` = Ω(N).

Definition 10. For any 0 ≤ τ < ρ ≤ 1, a coding rate R ∈ [0, 1] is achievable if there exists a
family of (ε, δ)-SSS with relative threshold pair (τ, ρ) such that ε and δ are both negligible in N
and `

N → R. The highest achievable coding rate of binary SSS for a pair (τ, ρ) is called its capacity.

By relating binary SSS to Wyner wiretap codes with a pair of BEC’s, we obtain the following
coding rate upper bound for binary SSS.

Lemma 11. For 0 ≤ τ < ρ ≤ 1, the coding rate capacity of binary SSS with relative threshold
pair (τ, ρ) is asymptotically upper-bounded by ρ− τ .

Proof. Let (Share,Recst) be a non-adaptive binary SSS with relative threshold pair (τ, ρ). We use
Share as the encoder and Recst as the decoder, and verify in the following that we obtain a Wyner
wiretap code for a BECpm main channel and a BECpw wiretapper channel, where pm = 1 − ρ − ξ
and pw = 1 − τ + ξ, respectively, for arbitrarily small ξ > 0. Erasure in binary SSS is worst-case,
while it is probabilistic in the Wyner wiretap model. We however note that asymptotically, the
number of random erasures of BECpm and BECpw approaches Npm and Npw, respectively, with
overwhelming probability, and so a code that protects against worst-case erasure can be used as a
wiretap code with probabilistic erasure. In our proof we also take into account the difference in the
secrecy notion in SSS and in the case of Wyner wiretap code.

The N -bit output Y = Y1, . . . ,YN of a BECp has a distribution where each bit is identically
independently erased with probability p. By the Chernoff-Hoeffding bounds, the fraction η of
erasures satisfies the following. For arbitrarily small ξ > 0,

Pr[η ≥ p+ ξ] ≤
((

p
p+ξ

)p+ξ (
1−p

1−p−ξ

)1−p−ξ
)N

;

Pr[η ≤ p− ξ] ≤
((

p
p−ξ

)p−ξ (
1−p

1−p+ξ

)1−p+ξ
)N

.

Applying the two inequalities to BECpm and BECpw , respectively, we obtain the following con-
clusions. The probability that BECpm has at most pm + ξ = 1 − ρ fraction of erasures and the
probability that BECpw has at least pw−ξ = 1−τ fraction of erasures are both at most exp(−Ω(N))
for arbitrarily small ξ > 0.

We are ready to prove the Wyner wiretap reliability and secrecy properties as defined in [25, 14].

We show correct decoding with probability 1−o(1). When the erasures are below pm+ξ = 1−ρ
fraction, it follows directly from the reconstructability of SSS that the decoding error is bounded
from above by δ, which is arbitrarily small for big enough N , where the probability is over the
randomness of the encoder. When the erasures are not below pm + ξ = 1 − ρ fraction, we do not
have correct decoding guarantee. But as argued above, this only occurs with a negligible probability
over the randomness of the BECpm . Averaging over the channel randomness of the BECpm , we
have correct decoding with probability 1− o(1).

We show random message equivocation secrecy H(S|W) ≥ `(1 − o(1)), where S is a uniform
secret and W = BECpw(Share(S)) is the view of the wiretapper. We in fact first prove the wiretap
indistinguishability security as defined in [2] and then deduce that it implies Wyner wiretap secrecy
as defined in [25, 14]. For each of the erasure patterns (say A ⊂ [N ] are not erased) of BECpw that
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exceeds pw − ξ = 1 − τ fraction (equivalently, |A| ≤ Nτ), the binary SSS privacy gives that for
any two secrets, the corresponding views W|(S = s0, A not erased) and W|(S = s1, A not erased)
are indistinguishable with error ε, which is arbitrarily small for big enough N . The distribution
(W|S = s0) and (W|S = s1) are convex combinations of W|(S = s0, A not erased) and W|(S =
s1, A not erased), respectively, for all the erasure patterns A of BECpw . As argued before, the
probability that the erasures does not exceed pw− ξ = 1− τ fraction is negligible. We average over
the channel randomness of the wiretapper channel BECpw and claim that the statistical distance of
(W|S = s0) and (W|S = s1) is arbitrarily small for big enough N . According to [2], this is strictly
stronger than the Wyner wiretap secrecy.

Finally we use the coding rate upper bound of the Wyner wiretap code to bound the coding
rate of binary SSS. We have shown that a binary SSS with relative threshold pair (τ, ρ) is a wiretap
code for the pair (BECpm ,BECpw). According to [25, 14], the achievable coding rate for the Wyner
wiretap code is (1− pm)− (1− pw) = pw − pm = ρ− τ + 2ξ. Since this holds for arbitrarily small
ξ > 0, we obtain an upper bound of ρ− τ for binary SSS with relative threshold pair (τ, ρ).

In the rest of the paper, we give two constant rate constructions of nearly-threshold binary SSS
against non-adaptive adversary and adaptive adversary, respectively. The non-adaptive adversary
construction is optimal in the sense that the coding rate achieves the upper bound in Lemma 11.

4 Secret sharing against non-adaptive adversaries

We first present our construction of capacity-achieving binary SSS against non-adaptive adversaries,
using linear strong seeded extractors and optimal rate stochastic erasure correcting codes. The
following theorem describes the construction using these components.

Theorem 12. Let Ext : {0, 1}d×{0, 1}n → {0, 1}` be a linear strong seeded (n−t, ε8)-extractor and
Ext−1(z, ·) : {0, 1}` ×R1 → {0, 1}n be the inverter of the function Ext(z, ·) that maps an s ∈ {0, 1}`
to one of its pre-images chosen uniformly at random. Let (SA-ECCenc,SA-ECCdec) be a stochastic
affine-erasure correcting code with the encoder SA-ECCenc : {0, 1}d+n×R2 → {0, 1}N that tolerates
N−r erasures and decodes with success probability at least 1−δ. Then the following coding scheme
(Share,Recst) is a non-adaptive (ε, δ)-SSS with threshold pair (t, r).{

Share(s) = SA-ECCenc(Z||Ext−1(Z, s)),where Z
$← {0, 1}d;

Recst(ṽ) = Ext(z, x),where (z||x) = SA-ECCdec(ṽ).

Here ṽ denotes an incomplete version of a share vector v ∈ {0, 1}N with some of its components
replaced by erasure symbols.

The proof of Theorem 12 will follow naturally from Lemma 13. We first state and prove this
general property of a linear strong extractor, which is of independent interest. For the property
to hold, we in fact only need the extractor to be able to extract from affine sources. The proof of
Lemma 13 is a bit long. We then break it into a claim and two propositions.

Lemma 13. Let Ext : {0, 1}d×{0, 1}n → {0, 1}m be a linear strong (k, ε)-extractor. Let fA : {0, 1}d+n →
{0, 1}t be any affine function with output length t ≤ n − k. For any m,m′ ∈ {0, 1}m, let
(Z,X) = (Ud,Un)| (Ext(Ud,Un) = m) and (Z′,X′) = (Ud,Un)| (Ext(Ud,Un) = m′). We have

SD(fA(Z,X); fA(Z′,X′)) ≤ 8ε. (5)
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Proof. For the above pairwise guarantee (5) to hold, it suffices to show that for every fixed choice of
m ∈ {0, 1}m, the distribution of fA(Z,X) is (4ε)-close to Ud×D, where Ud is the uniform distribution
on {0, 1}d.

Without loss of generality, we assume that the linear function Ext(z, ·) : {0, 1}n → {0, 1}m,
for every seed z, has the entire {0, 1}m as its image 3 . Without loss of generality, it suffices to
assume that fA is of the form fA(Z,X) = (Z,W (X)) for some affine function W : {0, 1}n → {0, 1}t.
This is because for any arbitrary fA, the information contained in fA(Z,X) can be obtained from
(Z,W (X)) for a suitable choice of W . Let D be the uniform distribution on the image of W .

Let K ← {0, 1}n be a random variable uniformly distributed over the kernel of the linear
transformation defined by W , and note that it has entropy at least n − t ≥ k. The extractor Ext
thus guarantees that Ext(Z,K), for a uniform and independent seed Z, is ε-close to uniform. By
averaging, it follows that for at least 1 − 4ε fraction of the choices of the seed z ∈ {0, 1}d, the
distribution of Ext(z,K) is (1/4)-close to uniform.

Claim 14. Let U be uniformly distributed on {0, 1}m and U′ be any affine source that is not uniform
on {0, 1}m. Then, the statistical distance between U and U′ is at least 1/2.

Claim ?? follows from the observation that any affine source U′ that is not uniform on {0, 1}m
will have a support (the set of vectors u such that Pr[U′ = u] > 0) that is an affine subspace of
{0, 1}m with dimension at most m− 1.

Continuing with the previous argument, since Ext is a linear function for every seed, the dis-
tribution of Ext(z,K) for any seed z is an affine source. Therefore, the above claim allows us to
conclude that for at least 1− 4ε fraction of the choices of z, the distribution of Ext(z,K) is exactly
uniform. Let G ⊆ {0, 1}d be the set of such choices of the seed. Observe that if Ext(z,K) is uniform
for some seed z, then for any affine translation of K, namely, K + v for any v ∈ {0, 1}n, we have
that Ext(z,K + v) is uniform as well. This is due to the linearity of the extractor.

Recall that our goal is to show that fA(Z,X) = (Z,W (X)) is (4ε)-close to Ud × D. The dis-
tribution (Z,W (X)) is obtained as (Ud,W (Un))|(Ext(Ud,Un) = m). For the rest of the proof, we
first find out the distribution (Ud,W (Un))|(Ext(Ud,Un) = m,Ud = z) for a seed z ∈ G (Proposition
15) and then take the convex combination over the uniform seed to obtain (Z,W (X)) (Proposition

16). The argument starts with a uniform message M
$← {0, 1}m instead of a particular message

m ∈ {0, 1}m. We define a new set of simplified notations. Let Z
$← {0, 1}d be an independent and

uniform seed. Let (Z,Y) be the pre-image of M and (Z,W) : = fA(Z,Y). Proposition 15 and 16
are stated in terms of the triple (M,Z,W).

Proposition 15. Let z ∈ G and consider any m ∈ {0, 1}m. Then, the conditional distribution of
W|(Z = z,M = m) is exactly D.

To prove Proposition 15, note that the distribution of (Z,Y) is uniform on {0, 1}d+n. Now,
fix any z ∈ G and let w ∈ {0, 1}t be any element in the image of W (·). Since the conditional
distribution Y|(Z = z) is uniform over {0, 1}n, further conditioning on W (Y) = w yields that
Y|(Z = z,W = w) is uniform over a translation of the kernel of W (·). By the assumption z ∈ G
and recalling M = Ext(Z,Y), we therefore know that the extractor output is exactly uniform over
{0, 1}m. That is, M|(Z = z,W = w) is exactly uniform over {0, 1}m and hence in this case M and
W are independent. On the other hand, the distribution of (Z,W) is exactly Ud × D, since the

3If this condition is not satisfied for some choice z of the seed, there must be linear dependencies between the m
output bits of Ext(z, ·). Therefore, for this choice Ext(z, ·) can never be an extractor and arbitrarily changing Ext(·, z)
to be an arbitrary full rank linear function will not change the overall performance of the extractor.
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map W (·) is linear. In particular, for any z ∈ {0, 1}d, the conditional distribution W|(Z = z) is
exactly D. This together with the fact that M and W are independent yield that the conditional
distribution of (M,W)|(Z = z) is exactly Um ×D. We have therefore proved Proposition 15.

Proposition 16. For any m ∈ {0, 1}m, the conditional distribution of (Z,W)|(M = m) is (4ε)-close
to Ud ×D.

To prove Proposition 16, it suffices to note that the distribution of (Z,W)|(M = m) is a convex
combination of the distributions (Z,W)|(M = m,Z = z) and then use the result of Proposition 15
along with the fact that Pr[Z /∈ G] ≤ 4ε. A detailed derivation follows.

Recall that for any z ∈ {0, 1}d, the conditional distribution of W|(Z = z) is exactly D (since
Y|(Z = z) is uniform over {0, 1}n). Consider any event E ⊆ {0, 1}d+t and let p := Pr[(Z,W) ∈ E ].
Since Z and W are independent, we have that

p = 2−d
∑

(z,w)∈E

D(w),

where D(w) denotes the probability assigned to the outcome w by D. On the other hand, we shall
write down the same probability in the conditional probability space M = m and show that it is
different from p by at most 4ε, concluding the claim on the statistical distance. We have

Pr[(Z,W) ∈ E|M = m] =
∑

(z,w)∈E

Pr[Z = z,W = w|M = m]

=
∑

(z,w)∈E,z∈G

Pr[Z = z,W = w|M = m]

+
∑

(z,w)∈E,z/∈G

Pr[Z = z,W = w|M = m].

Note that

η :=
∑

(z,w)∈E,z/∈G

Pr[Z = z,W = w|M = m] ≤ Pr[Z /∈ G|M = m] ≤ 4ε,

since M and Z are independent. Therefore,

Pr[(Z,W) ∈ E|M = m] =
∑

(z,w)∈E,z∈G

Pr[Z = z,W = w|M = m] + η

= 2−d
∑

(z,w)∈E,z∈G

Pr[W = w|M = m,Z = z] + η (6)

= 2−d
∑

(z,w)∈E,z∈G

D(w) + η (7)

= 2−d
( ∑

(z,w)∈E

D(w)−
∑

(z,w)∈E,z/∈G

D(w)
)

+ η

where (6) uses the independence of W and Z and (7) follows from Proposition 15. Observe that

η′ := 2−d
∑

(z,w)∈E,z/∈G

D(w) = 2−d
∑
z/∈G

∑
w :

(z,w)∈E

D(w) ≤ 2−d(2d − |G|) ≤ 4ε.
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Therefore,

Pr[(Z,W) ∈ E|M = m] = p+ η − η′ = p± 4ε = Pr[(Z,W) ∈ E ]± 4ε,

since 0 ≤ η ≤ 4ε and 0 ≤ η′ ≤ 4ε. We have therefore proved Proposition 16.

With Lemma 13 at hand, we are now at a good position to prove Theorem 12.

Proof of Theorem 12. The reconstruction from r shares follows trivially from the definition of
stochastic erasure correcting code. We now prove the privacy.

The sharing algorithm of the SSS (before applying the stochastic affine code) takes a secret,
which is a particular extractor output s ∈ {0, 1}`, and uniformly samples a seed z ∈ {0, 1}d of Ext
before uniformly finds an x ∈ {0, 1}n such that Ext(z, x) = s. This process of obtaining (z, x) is the

same as sampling (Ud,Un)
$← {0, 1}d+n and then restrict to Ext(Ud,Un) = s. We define the random

variable tuple
(Z,X) := (Ud,Un)| (Ext(Ud,Un) = s) (8)

and refer to it as the pre-image of s.

Let ΠA : {0, 1}N → {0, 1}t be the projection function that maps a share vector to the t shares
with index set A ⊂ [N ] chosen by the non-adaptive adversary. Observe that the combination (ΠA ◦
SA-ECCenc) : {0, 1}d+n → {0, 1}t (for any fixed randomness r of SA-ECCenc) is an affine function.
So the view of the adversary is simply the output of the affine function fA = (ΠA ◦ SA-ECCenc)
applied to the random variable tuple (Z,X) defined in (8).

We can now formulate the privacy of the SSS in this context. We want to prove that the
statistical distance of the views of the adversary for a pair of secrets s and s′ can be made arbitrarily
small. The views of the adversary are the outputs of the affine function fA with inputs (Z,X) and
(Z′,X′) for the secret s and s′, respectively. According to Lemma 13, we then have that the privacy
error is 8× ε

8 = ε.

We now analyze the coding rate of the (ε, δ)-SSS with relative threshold pair ( t
N ,

r
N ) constructed

in Theorem 12 when instantiated with the SA-ECC from Lemma 8 and the Ext from Lemma 4. The
secret length is ` = n− t−O(d), where the seed length is d = O(log3(2n/ε)). The SA-ECC encodes
d+ n bits to N bits and with coding rate RECC = ρ− ξ for a small ξ determined by δ (satisfying
the relation δ = exp(−Ω(ξ2N/ log2N)) according to Lemma 8). We then have n = N(ρ − ξ) − d,
resulting in the coding rate

R =
`

N
=
n− t−O(d)

N
=
N(ρ− ξ)− t−O(d)

N
= ρ− τ − (ξ +

O(d)

N
) = ρ− τ − o(1).

Corollary 17. For any 0 ≤ τ < ρ ≤ 1, there is an explicit construction of non-adaptive (ε, δ)-
SSS with relative threshold pair (τ, ρ) achieving coding rate ρ − τ − o(1), where ε and δ are both
negligible.

The binary SSS obtained in Corollary 17 is asymptotically optimal as it achieves the upper
bound in Lemma 11.

5 Secret sharing against adaptive adversaries

In this section, we will describe our construction which achieves privacy against adaptive adver-
saries, using seedless affine extractors. We start with the specific extraction property needed from
our affine extractors.
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Definition 18. An affine extractor AExt : {0, 1}n → {0, 1}m is called (k, ε)-almost perfect if for
any affine (n, k)-source X,∣∣∣∣Pr[AExt(X) = y]− 1

2m

∣∣∣∣ ≤ 2−m · ε, for any y ∈ {0, 1}m.

Almost perfect property can be trivially achieved by requiring an exponentially (in m) small
error in statistical distance, using the relation between `∞-norm and `1-norm.

Theorem 19. Let AExt : {0, 1}n → {0, 1}` be an invertible (n−t, ε2)-almost perfect affine extractor
and AExt−1 : {0, 1}` × R1 → {0, 1}n be its v-inverter that maps an s ∈ {0, 1}` to one of its pre-
images chosen uniformly at random. Let (SA-ECCenc, SA-ECCdec) be a stochastic affine-erasure
correcting code with encoder SA-ECCenc : {0, 1}n × R2 → {0, 1}N that tolerates N − r erasures
and decodes with success probability at least 1− δ. Then the (Share,Recst) defined as follows is an
adaptive (ε+ v, δ)-SSS with threshold pair (t, r).{

Share(s) = SA-ECCenc(AExt−1(s));
Recst(ṽ) = AExt(SA-ECCdec(ṽ)),

where ṽ denotes an incomplete version of a share vector v ∈ {0, 1}N with some of its components
replaced by erasure symbols.

Proof. The (r, δ)-reconstructability follows directly from the erasure correcting capability of the
SA-ECC. For any ṽ with at most N − r erasure symbols and the rest of its components consistent
with a valid codeword v ∈ {0, 1}N , the SA-ECC decoder identifies the unique codeword v with
probability 1 − δ over the encoder randomness. The corresponding SA-ECC message of v is then
inputted to AExt and the original secret s is reconstructed with the same probability.

We next prove the (t, ε)-privacy. Without loss of generality, we first assume the inverter of
the affine extractor is perfect, namely, v = 0. When v is negligible but not equal to zero, the
overall privacy error will increase slightly, but still remain negligible. For any r ∈ R2, the affine
encoder of SA-ECC is characterised by a matrix Gr ∈ {0, 1}n×N and an offset ∆r. For n unknowns
x = (x1, . . . , xn), we have

SA-ECCenc(x) = xGr + ∆r = (xG1, . . . ,xGN ) + ∆r,

whereGi = (g1,i, . . . , gn,i)
T (here the subscript “r” is omitted to avoid double subscripts) denotes the

ith column of Gr, i = 1, . . . , N . This means that knowing a component ci of the SA-ECC codeword
is equivalent to obtaining a linear equation ci ⊕ ∆i = xGi = g1,ix1 + · · · + gn,ixn about the n
unknowns x1, . . . , xn, where ∆i (again, the subscript “r” is omitted) denotes the ith component of

∆r. Now, we investigate the distribution of View
Ot(Share(s))
A for any secret s ∈ {0, 1}` by finding the

probability Pr[View
Ot(Share(s))
A = w] for arbitrary w. We then have

Pr[View
Ot(Share(s))
A = w] = Pr[View

Ot(SA-ECCenc(X))
A = w|AExt(X) = s]

=
Pr[AExt(X) = s|ViewSA-ECCenc(X)

A = w] · Pr[ViewSA-ECCenc(X)
A = w]

Pr[AExt(X) = s]

(i)
=

(1± ε
2)2−` · Pr[ViewSA-ECCenc(X)

A = w]

Pr[AExt(X) = s]

(ii)
=

(1± ε
2)2−` · 2n−rank(A)

2n

2−`

= (1± ε

2
) · 2−rank(A),
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where notations X, ±, rank(A) and (i), (ii) are explained as follows. In above, we first use the

fact that Pr[View
Ot(Share(s))
A = w] can be seen as the probability of uniformly selecting X from

{0, 1}n, with the condition that AExt(X) = s. This is true because the sets AExt−1(s) for all
s, partition {0, 1}n and the rest follows from Definition 6. The shorthand “y = 1 ± ε

2” denotes
“1 − ε

2 ≤ y ≤ 1 + ε
2”. The shorthand “rank(A)” denotes the rank of the up to t columns of G

corresponding to the index set A adaptively chosen by A. The equality (i) follows from the fact
that AExt is an (n− t, 2−(`+1)ε)-affine extractor and the uniform X conditioned on at most t linear
equations is an affine source with at least n− t bits entropy. The equality (ii) holds if and only if
w is in the set {SA-ECCenc(x)A : x ∈ {0, 1}n}. Indeed, consider X as unknowns for equations, the
number of solutions to the linear system SA-ECCenc(X)A = w is either 0 or equal to 2n−rank(A).

The distribution of View
Ot(Share(s))
A for any secret s is determined by the quantity rank(A), which

is independent of the secret s. Let W be the uniform distribution over the set {SA-ECCenc(x)A :
x ∈ {0, 1}n}. Then by the triangular inequality, we have

SD
(
View

Ot(Share(s0))
A ;View

Ot(Share(s1))
A

)
≤ SD

(
View

Ot(Share(s0))
A ;W

)
+ SD

(
W;View

Ot(Share(s1))
A

)
≤ ε

2 + ε
2 = ε.

When the inverter of the affine extractor is not perfect, the privacy error is upper bounded by ε+v.
This concludes the privacy proof.

There are explicit constructions of binary affine extractors that, given a constant fraction of
entropy, outputs a constant fraction of random bits with exponentially small error (see Lemma 5).
There are known methods for constructing an invertible affine extractor AExt′ from any affine
extractor AExt such that the constant fraction output size and exponentially small error properties
are preserved. A simple method is to let AExt′(Un||M) := AExt(Un) ⊕M (see Appendix B for a
discussion). This is summarized in the lemma below.

Lemma 20. For any δ ∈ (0, 1], there is an explicit seedless (δn, ε)-almost perfect affine extractor
AExt : {0, 1}n → {0, 1}m where m = Ω(n) and ε = exp(−Ω(n)). Moreover, there is an efficiently
computable ε-inverter for the extractor.

Proof. Let AExt : {0, 1}n → {0, 1}m be Bourgain’s affine extractor (Lemma 5) for entropy rate
µ, output length m = Ω(n), and achieving exponentially small error ε = exp(−Ω(n)). Using
the one-time pad trick (Appendix B), we construct an invertible variant achieving output length
m′ = Ω(m) = Ω(n) and exponentially small error. Finally, we simply truncate the output length of
the resulting extractor to m′′ = Ω(m′) = Ω(n) bits so that the closeness to uniformity measured by
`∞ norm required for almost-perfect extraction is satisfied. The truncated extractor is still invertible
since the inverter can simply pad the given input with random bits and invoke the original inverter
function.

It now suffices to instantiate Theorem 19 with the explicit construction of SA-ECC and the
invertible affine extractor AExt of Lemma 20. Let RECC denote the rate of the SA-ECC. Then we
have RECC = n

N , where n is the input length of the affine extractor AExt and N is the number of
players. The intuition of the construction in Theorem 19 is that if a uniform secret is shared and
conditioning on the revealed shares the secret still has a uniform distribution (being the output of
a randomness extractor), then no information is leaked. In fact, the proof of Theorem 19 above is
this intuition made exact, with special care on handling the imperfectness of the affine extractor.
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So as long as the “source” of the affine extractor AExt has enough entropy, privacy is guaranteed.
Here the “source” is the distribution Un conditioned on the adversary’s view, which is the output
of a t-bit affine function. The “source” then is affine and has at least n− τN = n(1− τ

RECC
) bits

of entropy. Now as long as τ < RECC , using the AExt from Lemma 5 (more precisely, an invertible
affine extractor AExt′ : {0, 1}n′ → {0, 1}` constructed from AExt) with µ = 1 − τ

RECC
, a constant

fraction of random bits can be extracted with exponentially small error. This says that privacy is
guaranteed for τ ∈ [0, RECC). The stochastic affine ECC in Lemma 8 asymptotically achieves the
rate 1− (1− ρ) = ρ. We then have the following corollary.

Corollary 21. For any 0 ≤ τ < ρ ≤ 1, there is an explicit constant coding rate adaptive (ε, δ)-SSS
with relative threshold pair (τ, ρ), where ε and δ are both negligible.

The construction above achieves a constant coding rate for any (τ, ρ) pair satisfying 0 ≤ τ < ρ ≤
1. However, since the binary affine extractor in Lemma 5 does not extract all the entropy from the
source and moreover the step that transforms an affine extractor into an invertible affine extractor
incurs non-negligible overhead, the coding rate of the above construction does not approach ρ− τ .
We leave explicit constructions of binary SSS against adaptive adversary with better coding rate
as an interesting technical open question.

6 Conclusion

We studied the problem of sharing arbitrary long secrets using constant length shares and required
a nearly-threshold access structure. By nearly-threshold we mean a ramp scheme with arbitrarily
small gap to number of players ratio. We show that by replacing perfect privacy and recon-
structibility with slightly relaxed notions and inline with similar strong cryptographic notions, one
can explicitly construct such nearly-threshold schemes. We gave two constructions with security
against non-adaptive and adaptive adversaries, respectively, and proved optimality of the former.
Our work also make a new connection between secret sharing and wiretap coding.

We presented our model and constructions for the extremal case of binary shares. However, we
point out that the model and our constructions can be extended to shares over any desired alphabet
size q. Using straightforward observations (such as assigning multiple shares to each player), this
task reduces to extending the constructions over any prime q. In this case, the building blocks that
we use; namely, the stochastic error-correcting code, seeded and seedless affine extractors need to
be extended to the q-ary alphabet. The constructions [24, 20, 16] that we use, however, can be
extended to general alphabets with straightforward modifications. The only exception is Bourgain’s
seedless affine extractor [7]. The extension of [7] to arbitrary alphabets is not straightforward and
has been accomplished in a work by Yehudayoff [26].

Our constructions are not linear: even the explicit non-adaptive construction that uses an affine
function for every fixing of the encoder’s randomness does not result in a linear secret sharing.
Linearity is an essential property in applications such as multiparty computation and so explicit
constructions of linear secret sharing schemes in our model will be an important achievement. Yet
another important direction for future work is deriving bounds and constructing optimal codes for
finite length (N) case. Such result will also be of high interest for wiretap coding.
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A Proof Sketch of Lemma 8

Proof. We defer the details of the construction to the full version of this paper. For now we refer
to [16, Theorem 6.1] and point out the adaptations needed. There are six building blocks involved
in the construction: SC, RS, Samp, KNR, POLYt and REC. We replace the first and last building
blocks.

The first building block is a Stochastic Code (SC). We need two properties from this building
block: detect (output ⊥) when the codeword is masked by a random offset and correct from erasures
of no more than 1− ρ+ ε fraction. While the former property is always satisfied by the original SC
used in [16], the latter property might not hold. When 1− ρ is small, we can let the decoder of the
SC used in [16] set the erased bits to 0 and decode it as errors. But when 1− ρ > 1

2 , this trick no
longer works. We then combine a systematic AMD in [13] and an erasure list-decodable code [15]
(sub-optimal suffices since SC encodes the control information which is negligible) to obtain the SC
in our construction of SA-ECC.

The last building block is a Random Error Code (REC). We also need two properties from
this building block: correct from random erasures of 1 − ρ fraction and the encoder is a linear
function. We need the latter property for affine property of the SA-ECC constructed. Explicit
linear codes at rate 1 − p that correct p fraction of random erasures are known. We can use any
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explicit construction of capacity achieving codes for BEC1−ρ for REC and use a similar argument
of [22].

We now refer to the Algorithm 1. in the proof of [16, Theorem 6.1] and show that, with the SC
and REC replaced accordingly, we do have a SA-ECC. The error correction capability and optimal
rate follow similarly as in the proof of [16, Theorem 6.1]. We next show affine property. Phase
1 and Phase 2 are about the control information, which are part of the encoding randomness
r of the SA-ECC to be fixed to constant value in the analysis of affine property. During Phase
3, the message m is linearly encoded (our REC is linear) and then permuted, followed by adding
a translation term ∆r. Since permutation is a linear transformation, we combine the two linear
transformations and write mGr + ∆r, where Gr is a binary matrix. Finally, during Phase 4,
some blocks that contain the control information are inserted into mGr + ∆r. We add dummy
zero columns into Gr and zero blocks into ∆r to the corresponding positions where the control
information blocks are inserted. Let mĜr + ∆̂r be the vector after padding dummy zeros. Let ∆̂′r
be the vector obtained from padding dummy zero blocks, complementary to the padding above,
to the control information blocks. We then write the final codeword of the SA-ECC in the form
mĜr + (∆̂r + ∆̂′r), which is indeed an affine function of the message m.

B One-Time-Pad trick of inverting extractors

There is a well known way to transform an efficient function into one that is also efficiently invertible
through a “One-Time-Pad” trick. We give a proof for the special case of affine extractors, for
completeness.

Lemma 22. Let AExt : {0, 1}n → {0, 1}m be an affine (n, k)-extractor with error ε. Then AExt′ :
{0, 1}n+m → {0, 1}m defined as follows is a ε-invertible affine (n + m, k + m)-extractor with error
ε.

AExt′(z) = AExt′(x||y) = AExt(x) + y,

where the input z ∈ {0, 1}n+m is separated into two parts: x ∈ {0, 1}n and y ∈ {0, 1}m.

Proof. Let Z be a random variable with flat distribution supported on an affine subspace of
{0, 1}n+m of dimension at least k + m. Separate Z into two parts Z = (X||Y), where X ∈ {0, 1}n
and Y ∈ {0, 1}m. Then conditioned on any Y = y, X has a distribution supported on an affine
subspace of {0, 1}n of dimension at least k. This asserts that conditioned on any Y = y,

SD(AExt(X) + y;U{0,1}m) ≤ ε.

Averaging over the distribution of Y concludes the extractor proof.

We next show an efficient inverter AExt′−1 for AExt′. For any s ∈ {0, 1}m, define

AExt′−1(s) = (Un||AExt(Un) + s).

The randomised function AExt′−1 is efficient and AExt′−1(Um)
ε∼ Un+m.
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